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Abstract

A discrete-time Markov chain on a state space S is a sequence of random variables

X = {x0, x1, . . .} that take on values in S. A Markov chain is a model of a system

which changes or evolves over time; the random variable xt is the state of the system

at time t.

A subset E ⊆ S is referred to as an almost invariant aggregate if whenever xt ∈ E ,

then with high probability xt+1 ∈ E , as well. That is, if there is a small positive value

ε such that if xt ∈ E then the probability that xt+1 /∈ E is less than or equal to ε,

then E is an almost invariant aggregate. If E is such an aggregate and xt ∈ E , then

the probability that xt+1, . . . , xt+s ∈ E is at least (1 − ε)s. A Markov chain tends to

remain within its almost invariant aggregates (if it possesses any) for long periods of

time.

We refer to the Markov chain X as nearly uncoupled (with respect to some pos-

itive ε) if its associated state space contains two or more disjoint almost invariant

aggregates. Nearly uncoupled Markov chains are characterised by long periods of
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relatively constant behaviour, punctuated by occasional drastic changes in state.

We present a series of algorithms intended to construct almost invariant aggregates

of a given Markov chain. These algorithms are iterative processes which utilise a

concept known as the stochastic complement. The stochastic complement is a method

by which a Markov chain on a state space S can be reduced to a random process on

a proper subset S ′ ⊆ S, while preserving many of the algebraic properties of the

original Markov chain.

We pay special attention to the reversible case. A Markov chain is reversible if

it is symmetric in time – by which we mean that if we were to reverse the order of

the variables x1, . . . , xt, for some relatively large t, the resulting process would be

essentially indistinguishable from the original Markov chain.
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A note concerning the layout of this thesis

In Chapter 1 we introduce some terminology concerning Markov chains and finite

probability and survey some known results.

In Chapter 2 we examine the relationship between Markov chains and nonnegative

matrices. We examine the well-known Perron-Frobenius theorem and its application

to the theory of Markov chains.

In Chapter 3 we present the concept of a nearly uncoupled Markov chain and a

survey of some of the known properties of such a Markov chain. Algorithmic analysis

of nearly uncoupled Markov chains is the focus of this thesis.

We present the concept of the stochastic complement in Chapter 4, along with a

number of known theorems concerning its application. The stochastic complement

is a tool used to reduce the order of the state space of a given Markov chain. The

algorithms we present in this thesis utilise, to great extent, the stochastic complement

to produce the nearly uncoupled structure of a given Markov chain.

Chapters 5 and 6 contain our stochastic complement based algorithms, along
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with examinations of their properties. The algorithm presented in Chapter 5, the

Maximum Entry Algorithm, is our base algorithm. The remainder, presented in

Chapter 6, are variations which implement more in-depth reasoning.

In Chapter 7 we conclude our work and present a few notes concerning future

research.

Appendices A and B contain extensive calculations involved with solving a very

specific stochastic complement related problem. We make use of these calculations in

Chapters 5 and 6 to refine the performance of our algorithms. The reader may wish

to read these appendices before examining the algorithms in Chapters 5 and 6.

In Appendix C we apply our various algorithms to a number of known Markov

chains in order to evaluate and illustrate their performance.

In Appendix D we present sufficient conditions to ensure the success of the Maxi-

mum Entry Algorithm when applied to a particularly simple class of Markov chains.

In Appendix E we calculate the complexities (computation time required) of our

various algorithms.

Appendix F contains a brief survey of problem matrices – that is, matrices as-

sociated with Markov chains which our stochastic complement based algorithms are

unlikely to correctly analyse.

Appendix G is a summary of properties of the stochastic complement, which we

have included for ease of reference.
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Chapter 1

Finite Probability

1.1 Markov chains

A discrete-time Markov chain is a stochastic process on a finite state space S; it

is a sequence of random variables

X = {xt : t = 0, 1, 2, . . .}

that take on values in S and satisfy the Markov property.

We use the notation P[a|b] to denote the probability that statement a is true,

given that statement b is true. As well, E[y|b] is the expected value of the random

variable y, given that statement b is true.

Definition 1.1. The Markov property is the statement that for all t ≥ 0 and

i0, . . . , it−1, i, j ∈ S,

P [xt+1 = j|(x0, x1, . . . , xt−1, xt) = (i0, i1, . . . , it−1, i)] = P [xt+1 = j|xt = i] .
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That is, for any t ≥ 0, the probability distribution of the random variable xt+1 is

completely determined by the value taken on by xt.

If xt = i and xt+1 = j, we say that the Markov chain transitions from i to j at

time t+ 1, or that the Markov chain visits state i at time t and state j at time t+ 1.

Such a Markov chain is time-homogeneous if for all i, j ∈ S and t1, t2 ≥ 0 we have

P [xt2+1 = j|xt2 = i] = P [xt1+1 = j|xt1 = i] .

In particular, we note that if X is homogeneous in time then, for all i, j ∈ S and

t ≥ 0,

P [xt+1 = j|xt = i] = P [x1 = j|x0 = i] .

In other words, the Markov chain is homogeneous in time if, for all i, j ∈ S, the

probability of transitioning from i to j is independent of the time parameter. When

X is homogeneous in time, we refer to the value

aij = P [xt+1 = j|xt = i] = P [x1 = j|x0 = i]

as the ijth transition probability.

The probability distribution of the random variable x0, referred to as the initial

distribution, is, in general, independent of the transition probabilities and is taken to

be given.

We will occasionally make use of the strong Markov property – we first define the

notion of a stopping time in order to present the definition of this property.
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Definition 1.2. Let X = {xt} be a sequence of random variables on a finite state

space S. A stopping time with respect to X is a random variable T that takes on

values in

{0, 1, 2, . . .} ∪ {∞}

such that for any potential value t′, the truth (or falsehood) of the statement T = t′

is completely determined by the values taken on by x0, x1, . . . , xt′ . If t′ = ∞, this

refers to the entire sequence.

Example 1.3. Let X be a sequence of random variables on a finite state space S;

for each i ∈ S, let

Ti = inf {t ≥ 1 : xt = i} ,

with the convention that the infimum of the empty set is∞. The case Ti = 0 cannot

occur, so the falsehood of the statement Ti = 0 is trivially determined by x0. For

1 ≤ t′ < ∞, Ti = t′ if and only if xt 6= i for all 1 ≤ t ≤ t′ − 1 and xt′ = i. Finally,

Ti =∞ if and only if xt 6= i for all t ≥ 1. Each random variable Ti is a stopping time

with respect to X.

We will make use of the above stopping time, known as the first passage time, in

later sections. Stopping times are referred to as such because they often represent

the time at which a Markov chain first meets some set condition.
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Definition 1.4. Let X = {xt} be a sequence of random variables on a state space

S. The strong Markov property is the statement that if T is a stopping time with

respect to X, then for all t ≥ 1 and i, j ∈ S,

P [xT+t = j|T <∞ and xT = i] = P [xt = j|x0 = i] .

The strong Markov property informs us that if X = {xt} is a Markov chain and

T is a stopping time with respect to X, then whenever T 6=∞, the sequence

XT = {xT+t : t = 0, 1, 2, . . .}

is, itself, a Markov chain with transition probabilities identical to those of X (al-

though, generally, XT has a different initial distribution than X). It can be shown

that a sequence of random variables satisfies the strong Markov property if and only

if it satisfies the Markov property and is homogeneous in time.

Markov chains with infinite state space, continuous time parameters and/or non-

homogeneous transition probabilities are the subject of extensive bodies of research.

However, for the course of this work, we will only consider the case of discrete-time,

finite state space and time-homogeneous, and simply use the term Markov chain.

1.2 Stochastic matrices

We use the notation 1 to refer to the column vector with every entry equal to 1

and ei to refer to the column vector with ith entry equal to 1 and every other entry
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equal to 0 (the context in which they appear determines the orders of 1 and ei).

In general, we will assume that any finite state space under consideration is a

subset of {1, . . . , n}, for some positive integer n.

Let x be a random variable that takes on values in a finite state space S. The

column vector v that has

vi = P [x = i]

is referred to as the probability distribution of x. Clearly, if v is a probability distri-

bution, every vi is nonnegative and vT1 = 1 (the sum of the entries in a probability

distribution is 1).

Let X be a Markov chain on a finite state space S and let v be a probability

distribution on S. We use the notation Pv[∗] and Ev[∗] to represent the probability

measure and the expected value function, respectively, given x0 distributed via v. If

v = ei, we further abbreviate

Pi[∗] = Pei [∗] and Ei[∗] = Eei [∗].

Let X be a Markov chain on the state space S = {1, . . . , n} and let A be the

matrix of transition probabilities associated with X (also referred to as the transition

matrix of X):

aij = P [xt+1 = j|xt = i] = Pi [x1 = j] .
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The ith row of A is the probability distribution of the random variable x1 given initial

distribution ei. Thus, A is a stochastic matrix : it is square, entrywise nonnegative

and has the sum of the entries in each row equal to 1. These facts are summarised

with the notation

A ≥ 0 and A1 = 1.

The following proposition is a well-known fact concerning the transition matrix of a

Markov chain (see, for example, [2, Lemma 8.1.2]).

Proposition 1.5. Let X be a Markov chain with transition matrix A and let v be a

probability distribution on S, given in vector form. Then, for any t ≥ 1, At is, itself,

a stochastic matrix; moreover,

(
At
)
ij

= Pi [xt = j] and
(
vTAt

)
j

= Pv [xt = j] .

In other words, if v is the probability distribution of x0 then (vTAt)T is the prob-

ability distribution of xt.

1.3 The transition graph

A directed graph (digraph) is an ordered pair G = (V,E) where V is a set, referred

to as the vertices of G, and E is some subset of V × V , referred to as the directed

arcs of G; let G = (V,E) be a digraph.
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We label a directed arc (i, j) ∈ E with the notation i→ j and refer to i and j as

the endpoints, i as the initial vertex and j as the terminal vertex of the directed arc.

A directed walk of length t in G is a sequence of t+ 1 vertices in V and t directed

arcs in E of the form:

ω = i0 → i1 → · · · → it−1 → it.

When a directed walk ω is expressed in this manner, we refer to i0 as the initial vertex

and it as the terminal vertex of ω and say that ω is a directed walk from i0 to it.

We use the notation ω : i0 ; it to denote that ω is such a walk; we use the notation

i ≺G j to represent that G contains a directed walk from i to j with length greater

than or equal to 1. Directed walks may have length 0 – these walks consist of a single

vertex and no directed arcs. However, if the only directed walk from i to i is the walk

ω = i of length 0, we do not have i ≺G i. The notation i �G j is used to represent

the fact that j = i or i ≺G j.

A directed walk with its initial and terminal vertices identical is a closed walk, a

directed walk with no repeated vertices is referred to as directed path and a directed

walk with its initial and terminal vertices equal and no other repeated vertices is a

directed cycle.

For each nonempty subset C ⊆ V , we define the induced subgraph of G corre-

sponding to C to be the digraph G(C) = (C, E(C)) where

E(C) = {i→ j ∈ E : i, j ∈ C} .
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An isolated vertex is a vertex that is not an endpoint of any directed arc of G.

The digraph G is strongly connected if for any two vertices i and j we have i ≺G j. A

digraph is referred to as irreducible if it is strongly connected or consists of a single

isolated vertex.

An irreducible component of the digraph G is a maximal irreducible induced sub-

graph. That is, an irreducible component is an induced subgraph G(C) such that

either C = {i} where i is isolated, or

1. G(C) is strongly connected, and

2. if C ⊆ C ′ and G(C ′) is strongly connected, then C ′ = C.

Let S be a set. A partition of S is a collection of nonempty disjoint subsets of S,

{C1, . . . , Cm} such that

S =
m⋃
k=1

Ck.

The graph G = (V,E) is weakly connected if it consists of a single isolated vertex,

or if for any partition of V into two subsets C1 and C2 there is at least one directed

arc in E with its intial and terminal vertices not contained in the same member of

{C1, C2}. A weakly connected component of G is a maximal weakly connected induced

subgraph of G. i.e. A weakly connected component is an induced subgraph G(C)

such that either C = {i} where i is an isolated vertex or
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1. for any partition {C1, C2} of C, there is a directed arc in E with one endpoint

in C1 and the other endpoint in C2, and

2. any directed arc in E that has one endpoint in C has both endpoints in C.

Let A be a stochastic matrix with state space S. The transition graph associated

with A is the digraph G with vertex set V = S and directed arcs

E = {i→ j : aij 6= 0} .

Let X be a Markov chain with transition matrix A; the transition graph of X is

simply the transition graph of A.

Several probabilistic properties of a Markov chain correspond to combinatorial

properties of the associated digraph G. For instance, note that i ≺G j if and only if

there is a nonzero probability of transitioning from i to j in a finite number of steps.

We will occasionally make use of the terminology i ≺ j without explicitly referring

to the transition graph of a Markov chain. In this case, we will take i ≺ j to refer to

the fact that it is possible (there is a nonzero probability) that xt = j for some t ≥ 1,

given x0 = i.

1.4 Essential classes of states

Let G = (V,E) be a digraph. An essential component in G is an irreducible

component G(C) such that for any arc i → j in E, if i ∈ C then j ∈ C; i.e. an
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essential component is an irreducible component G(C) that cannot be escaped along

a directed arc (or walk). Thus if G(C) is an essential component, i ∈ C and j /∈ C,

then i ⊀G j.

Let X = {xt} be a Markov chain on state space S. An essential class of states is

a subcollection E ⊆ S that forms an essential component in the transition graph of

X.

For each state i ∈ S, let Ti be the first passage time:

Ti = inf {t ≥ 1 : xt = i} .

Further, for each state i ∈ S and time t ≥ 1, let Ni(t) be the random variable that

counts the number of passages into state i up to and including time t:

Ni(t) = |{s : 1 ≤ s ≤ t and xs = i}| .

As well, we define

Ni = Ni(∞) = |{s ≥ 1 : xs = i}|

to be the total number of transitions into i. We note that we may very well have

Ni =∞.

Definition 1.6. Let X = {xt} be a Markov chain on the state space S and let i ∈ S.

If

Pi [Ti =∞] = 0,

10



we refer to i as recurrent. If state i is not recurrent, it is transient.

That is, state i is recurrent if the probability of visiting i exactly once is 0.

Theorems 1.7 and 1.8 summarise known facts concerning recurrent and transient

states. See [23, Chapter 1] for a more in-depth examination of these concepts.

Theorem 1.7. Let X = {xt} be a Markov chain on the finite state space S. For each

i ∈ S, the following are equivalent:

1. The state i ∈ S is recurrent.

2. The state i is contained in an essential class of states.

3. Ei[Ti] <∞.

Proof Let A be the stochastic matrix and G be the transition graph associated with

X.

Let i ∈ S be recurrent and let E = {j : i ≺ j}. Since i is recurrent, the probability

of transitioning from i to i (in one or more steps) is nonzero and so i ∈ E . Let j ∈ E

and suppose that j ⊀ i; thus, j 6= i. As it is impossible to transition from j to i, if

Tj < Ti, then Ti =∞. Let ω be a directed path i; j in G and let

α =
∏

k→l∈ω

akl > 0

be the probability of transitioning from i to j along ω. Note that since ω is a directed

path it does not visit any state more than once. Thus, if the Markov chain begins at
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i and then transitions into j along ω we have Tj < Ti =∞ (since j ⊀ i, the Markov

chain cannot transition from j to i). So, we see that

Pi [Ti =∞] ≥ Pi [Tj < Ti and Ti =∞] ≥ α > 0;

which contradicts the fact that i is recurrent. Thus, if i ≺ j then j ≺ i. Let j, k ∈ E ;

then, j ≺ i ≺ k and so E is strongly connected. Further, if j ∈ E and j → k is an arc

in G, then i ≺ j ≺ k and so k ∈ E . Thus, E is an essential class of states.

Now, suppose that E is an essential class of states. If E contains only one element,

i, then we must have aii = 1. This implies that Ei[Ti] = 1 <∞. So, we assume that

E contains two or more states. Fix a state i ∈ E ; for each j ∈ E distinct from i, let

β(j) = Ei [Nj(Ti)] =
∑
m≥1

mPi [Nj(Ti) = m]

be the expected number of transitions into j between two visits to i.

We note that if

Pi [Nj(Ti) =∞] > 0,

then β(j) =∞.

As E forms an essential class, for any j ∈ E \ i, there is a directed path ωj : j ; i

in G. Let

α(j) =
∏

(k→l)∈ωj

akl > 0

12



be the probability of transitioning from j to i along ωj. Thus, after visiting state

j the probability that the Markov chain visits i before another visit to j is at least

α(j).

First we show that

Pi [Nj(Ti) =∞] = 0.

Every time the Markov chain visits j, the probability that it then visits j again before

a visit to i is less than 1− α(j). Thus,

Pi [Nj(Ti) ≥ m] ≤ (1− α(j))m,

for all positive integers m. Taking the limit as m→∞ show the above claim.

So, we have

β(j) = Ei [Nj(Ti)] =
∑
m≥1

mPi [Nj(Ti) = m] = Ei [Nj(Ti)] =
∑

1≤m<∞

mPi [Nj(Ti) = m] .

Then, for all m ≥ 0,

Pi [Nj(Ti) = m+ 1] ≤ Pi [Nj(Ti) ≥ m+ 1]

≤ (1− α(j))Pi [Nj(Ti) = m] .

This implies that for all positive integers m,

Pi [Nj(Ti) = m] ≤ (1− α(j))m−1
Pi [Nj(Ti) = 1] .
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We further note that

Pi[Nj(Ti) = 1] ≤ Pi[Nj(Ti) ≥ 1] = Pi[Tj < Ti].

Thus,

β(j) =
∞∑
m=1

mPi [Nj(Ti) = m]

≤
∞∑
m=1

m (1− α(j))m−1
Pi [Tj < Ti]

= Pi [Tj < Ti] /α(j)2.

And so we conclude that for any j ∈ E with j 6= i, β(j) = Ei[Nj(Ti)] is not equal to

∞. Now, if x0 ∈ E , then

Ti = 1 +
∑
j∈E\i

Nj(Ti).

This shows that

Ei [Ti] = 1 +
∑
j∈E\i

β(j) <∞.

Finally, suppose that Ei[Ti] < ∞. It is clear that, given x0 = i, the probability

that Ti =∞ must be 0; state i is recurrent.

Thus, we have shown that condition 1 implies condition 2, 2 implies 3 and 3

implies 1.

Theorem 1.8. Let X = {xt} be a Markov chain on a finite state space S. Then,
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1. S contains an essential class of states;

2. for any state i there is a recurrent state j such that i ≺ j; and

3. for any state i, if there is a recurrent state j such that j ≺ i, then i is recurrent.

Proof We use a proof by induction on the number of states in S. If S contains only

one element, all three statements are trivial. So, suppose that |S| ≥ 2 and that the

first statement holds for all such Markov chains on state spaces containing strictly

fewer than |S| states.

Suppose that i ≺ j for all pairs of states in S. This implies that the transition

graph of X is strongly connected – the entire state space S is a single essential class

of states and, by Theorem 1.7, every state is recurrent.

So, assume that i ⊀ j for some i, j ∈ S (possibly i = j). Let

Si = {k : i ≺ k}

and let T be the stopping time

T = inf {t ≥ 0 : xt ∈ Si} .

Note that if k ∈ Si and l /∈ Si, then k ⊀ l. Thus, for t ≥ T (if T <∞), xt ∈ Si. So,

we use the strong Markov property to define the Markov chain Y = {yt} = {xT+t}

on state space Si. Since j /∈ Si, Si contains strictly fewer states than S. By the

inductive hypothesis, it contains an essential class E , with respect to Y . An essential
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class with respect to Y is an essential class with respect to X, and so S contains an

essential class of states.

Next, consider an arbitrary state i ∈ S. First suppose that there is j ∈ S with

i ⊀ j. The above reasoning shows that Si = {k : i ≺ k} contains an essential class

E and so Si contains a recurrent state k, which then has i ≺ k. If we suppose that

i ≺ j for every j ∈ S, then i ≺ k for some recurrent k, since statement 1 implies that

S contains at least one recurrent state.

To see that the final statement holds, assume that j is recurrent and that j ≺ i.

Then, j is contained in an essential class of states, i must be contained in that same

essential class and so i is, itself, recurrent (via Theorem 1.7).
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Chapter 2

Stochastic matrices and eigenvalues of

Markov chains

2.1 Definitions

Let A be a square matrix with index set S. When A is a stochastic matrix, we

refer to S as the state space of A and the elements of S as its states. Let C1, C2 ⊆ S.

We define the (C1, C2)-submatrix of A to be the matrix

A(C1, C2) = [aij]i∈C1,j∈C2 .

When C1 = C2 = C, we refer to this submatrix as the principal submatrix of A

corresponding to C, and use the abbreviation A(C) = A(C, C). We will occasionally

refer to principal submatrices of A without reference to any collections C – these are

simply principal submatrices corresponding to some collection of indices.

17



Similarly, if v is a column vector on the index set S and C ⊆ S, the subvector

corresponding to C is the column vector

v(C) = [vi]i∈C .

When we consider submatrices (or subvectors) determined by collections C, we will

use the same indices C to reference the entries of the submatrix (or subvector). For

example, let A be a square matrix on the indices S = {1, 2, 3, 4, 5}, let C = {1, 3, 4}

and let B = A(C); then,

B =


b11 b13 b14

b31 b33 b34

b41 b43 b44

 =


a11 a13 a14

a31 a33 a34

a41 a43 a44

 .

For example, the (3, 3)th entry of B = A(C) is b33 = a33 (not a44). If i /∈ C1 or

j /∈ C2, then there is no (i, j)th entry of A(C1, C2), even if i and j are integers smaller,

respectively, than the orders of C1 and C2.

Let A be a square matrix with associated digraph G. If G is irreducible, we refer

to A as irreducible. An irreducible block of A is a principal submatrix A(C) where

G(C) is an irreducible component of G. We refer to a Markov chain as irreducible if

its transition digraph and matrix are irreducible.

A permutation matrix is a matrix P that has every entry equal to 0 or 1 and has

exactly one entry equal to 1 in every row and column. When P is a permutation

matrix, P is nonsingular and P T = P−1.
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Let A and B be square matrices with index sets SA and SB. We say that the

matrices A and B are permutation-similar if there is a permutation matrix P such

that B = PAP T ; we use the notation A ∼= B to represent this fact.

It is straightforward to show that A and B are permutation-similar if and only

if there is a bijection f : SB 7→ SA such that bij = af(i)f(j) for all i and j. When

this holds, the permutation matrix P that accomplishes the similarity is the matrix

whose rows are indexed by SB, whose columns are indexed by SA and has

pij =


1 if j = f(i),

0 if j 6= f(i).

The following lemma is a standard result in combinatorial matrix theory (see [3,

Chapter 3], for example) and will aid us in our examinations of stochastic matrices.

Lemma 2.1. Let A be a square matrix on index set S and let G be the digraph

associated with A. Then, A is permutation-similar to a matrix of the form

A ∼=


A1 0

. . .

∗ Am

 ,

where the matrices Ak are the irreducible blocks of A. Moreover, this expression is

unique, up to reordering the indices within each block and possibly reordering the

diagonal blocks.
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Let X be a Markov chain with state space S, transition matrix A and transi-

tion graph G. The above lemma implies the existence of one-to-one correspondences

between each of

1. the irreducible blocks of A;

2. the irreducible components of G,

3. and a partition of the state space S.

Further, there is a one-to-one correspondence between subcollections of each of these

and the collection of the essential classes of states with respect to X.

2.2 The Perron-Frobenius theorem

We present the Perron-Frobenius Theorem, as it applies to stochastic matrices.

Various versions of this well-known theorem (and their proofs) can be found in [3, 12,

14].

Let A be a square matrix with spectrum (eigenvalues) σ(A) = {λ1, . . . , λn}; the

spectral radius of A is the maximum modulus among the eigenvalues σ(A):

ρ(A) = max
λ∈σ(A)

{|λ|} .

A nonnegative matrix or vector is one where every entry is a nonnegative real

number; a positive matrix or vector is one where every entry is a positive number.
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Let A and B be matrices, or vectors, of the same order. If B−A is nonnegative, that

is, if bij ≥ aij for all i and j, we say that B ≥ A. Similarly, if B − A is positive we

say that B > A. We use the notation B 6= A to signify the fact that for at least one

pair i and j, bij 6= aij. (In particular, the notation A 6= 0 represents the statement

that A has at least one nonzero entry, not that every entry of A is nonzero.)

An algebraically simple eigenvalue of a square matrix is an eigenvalue whose multi-

plicity as a root of the characteristic polynomial is 1. Thus, the generalised eigenspace

and the eigenspace associated with an algebraically simple eigenvalue are identical and

have dimension equal to 1. See [14] for a full discussion on the distinction between

eigenspaces and generalised eigenspaces.

Perron-Frobenius Theorem. Let A be an irreducible nonnegative square matrix

and suppose that A 6= [0]. Then,

1. ρ(A) > 0;

2. ρ(A) is an algebraically simple eigenvalue of A;

3. the eigenspace associated with ρ(A) is spanned by a positive eigenvector;

4. if Av = λv where v 6= 0 and v ≥ 0, then λ = ρ(A) and, in fact, v > 0; and

5. if B is a nonnegative matrix such that B ≤ A and B 6= A, then ρ(B) < ρ(A).

Let A be irreducible and nonnegative. The positive number ρ(A) is referred to as

the Perron value of A; the unique positive vector v that satisfies
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Av = ρ(A)v and 1Tv = 1

is referred to as the Perron vector of A. The Perron vector of AT is referred to as the

left Perron vector of A, as we have

wTA = ρ(A)wT , whenever ATw = ρ(A)w.

Theorem 2.2 appears in [21, Theorem 1.7.5].

Theorem 2.2. Let A be an irreducible stochastic matrix. The Perron value of A is

1. Moreover, let π be the left Perron vector of A; then,

π(j)

π(i)
= Ei [Nj(Ti)] and

1

π(i)
= Ei [Ti] ,

with respect to the Markov chain associated with A.

Remark. That is, π(j)/π(i) is the expected number of visits to state j between two

visits to state i, and 1/π(i) is the expected amount of time between two visits to

state i. We refer to the left Perron vector π of an irreducible stochastic matrix as its

stationary distribution.

Proof Since A1 = 1, the Perron-Frobenius theorem implies that ρ(A) = 1. Let π be

the stationary distribution (left Perron vector) of A. Fix a state i ∈ S and let v be

the vector with
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vj = Ei [Nj(Ti)] =
∑
t≥1

Pi [xt = j and t ≤ Ti] .

We note that if j 6= i, then

vj =
∑
t≥1

Pi [xt = j and t ≤ Ti] =
∑
t≥1

Pi [xt = j and t+ 1 ≤ Ti]

(since xTi = i). When Ti < ∞, Ni(Ti) = 1 with probability 1; and so, since i

is recurrent, vi = 1. In the proof of Theorem 1.7, we saw that each vj is finite

(vj = β(j), in that proof). Now, for all j,

(
vTA

)
j

=
∑
k

vkakj

= aij +
∑
k 6=i

vkakj

= Pi [x1 = j] +
∑
k 6=i

∑
t≥1

Pi [xt = k and t+ 1 ≤ Ti]P [xt+1 = j|xt = k] .

Now, we note that
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Pi [xt = k and t+ 1 ≤ Ti]P [xt+1 = j|xt = k]

= Pi [xt = k and i /∈ {x1, . . . , xt−1}]P [xt+1 = j|xt = k]

= Pi [xt = k, xt+1 = j and i /∈ {x1, . . . , xt−1}]

= Pi [xt = k, xt+1 = j and t+ 2 ≤ Ti] .

So,

(
vTA

)
j

= Pi [x1 = j] +
∑
k 6=i

∑
t≥1

Pi [xt = k, xt+1 = j and t+ 2 ≤ Ti]

= Pi [x1 = j] +
∑
t≥1

∑
k 6=i
Pi [xt = k, xt+1 = j and t+ 2 ≤ Ti]

= Pi [x1 = j] +
∑
t≥2

Pi [xt = j and t+ 1 ≤ Ti]

=
∑
t≥1

Pi [xt = j and t+ 1 ≤ Ti]

= Ei [Nj(Ti)]

= vj.
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Thus, vTA = vT . By the Perron-Frobenius theorem, v is a scalar multiple of π. Since

vi = 1, we must have

v =
1

πi
π.

Therefore,

Ei [Nj(Ti)] = vj =
πj
πi
.

The first equality holds. Finally, we note that

1 +
∑
j 6=i

Nj(Ti) = Ti and
∑
j 6=i

πj = 1− πj.

This implies that

Ei [Ti] = 1 +
∑
j 6=i
Ei [Nj(Ti)]

= 1 +
∑
j 6=i

πj
πi

= 1 + 1−πi
πi

= 1
πi
,

proving the second equality.

Theorem 2.3 follows from the Perron Frobenius theorem together with the material

contained in [23, Chapter 1].
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Theorem 2.3. Let A be a stochastic matrix. Then, ρ(A) = 1; moreover, the multi-

plicity of 1 as an eigenvalue of A is equal to the number of essential classes contained

in the state space of the Markov chain associated with A.

Proof By Lemma 2.1, we can express A as

A ∼=


A1 0

. . .

∗ Am

 ,

where each Ak is an irreducible square matrix.

Suppose that Ak corresponds to an essential class of states. The probability of

transitioning out of an essential class is 0; so the entries contained in the same rows

as Ak but outside of Ak must all be 0. The matrix Ak is an irreducible stochastic

matrix and so has Perron value equal to 1.

Suppose that Ak does not correspond to an essential class; let the states associated

with Ak be Ck. Since Ak is irreducible and Ck is not essential, there must be i ∈ Ck

and j /∈ Ck such that aij > 0. Thus, at least one row of Ak has sum strictly less

than 1. Let Dk be the diagonal matrix whose diagonal entries are the corresponding

entries of

1− Ak1

and let A′k = Ak + Dk. The matrix A′k is then irreducible and stochastic and so

ρ(A′k) = 1. Then, we note that A′k − Ak = Dk 6= 0 is nonnegative and so ρ(Ak) < 1.
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Thus, since the eigenvalues of A are those of its diagonal blocks, the multiplicity

of 1 as an eigenvalue of A is equal to the number of essential classes. We further note

that the associated state space must contain at least one essential class of states and

so ρ(A) = 1.

Corollary 2.4. Let A be a stochastic matrix and let A1, . . . , Am be the principal

submatrices of A corresponding to essential classes. The left eigenspace of A corre-

sponding to 1 has an orthogonal basis consisting of vectors of the form

πTk
∼=
[
π̂Tk 0T

]
,

where π̂k is the stationary distribution of Ak and the support of πk consists of the

states corresponding to Ak.

Let A be a stochastic matrix. A stationary distribution of A is a left eigenvector

π associated with 1 that has each entry nonnegative and πT1 = 1. When A is irre-

ducible there is a unique stationary distribution; however, in general, the stationary

distributions are the convex hull of the vectors described in Corollary 2.4.

Let X = {xt} be a Markov chain on state space S and let C ⊆ S be a collection

of states. We say that the random process X enters C if there is some t ≥ 1 with

xt ∈ C. (If every xt ∈ C we still say that X enters C.)

Theorem 2.5 is an expanded version of [23, Theorem 4.4].
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Theorem 2.5. Let X be a Markov chain with state space S and transition matrix

A. Let E1, . . . , Em be the essential classes of states contained in S; for each i ∈ S and

1 ≤ k ≤ m, let

vk(i) = Pi [X enters Ek]

be the probability that, given x0 = i, the Markov chain will enter Ek. Then, the vectors

v1, . . . , vm form a basis of the right eigenspace of A associated with ρ(A) = 1.

Proof Note that if x0 ∈ El then xt ∈ El for all t ≥ 1; and so

vk(El) =


1 if k = l,

0 if k 6= l.

This implies that them vectors vk are linearly independent. Sincem is the multiplicity

of 1 as an eigenvalue, we simply need to show that Avk = vk. Fix a state i ∈ S and

consider the Markov chain with initial distribution ei. Since each Ek is essential,

if xt ∈ Ek then xs ∈ Ek for all s ≥ t. Thus, {x0, x1, . . .} enters Ek if and only if

{x1, x2, . . .} enters Ek. As x0 = i, the probability distribution of x1 is

rTi =

[
ai1 · · · ain

]
.

So,
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vk(i) = Pi [X enters Ek]

= Pri [X enters Ek]

=
∑
j

Pri [x0 = j and X enters Ek]

=
∑
j

aijPj [X enters Ek]

=
∑
j

aijvk(j)

= (Avk) (i).

Therefore, Avk = vk.

2.3 Substochastic matrices

A square matrix A is substochastic if it is an entrywise nonnegative square matrix

and the sum of the entries in each row is less than or equal to 1:

A ≥ 0 and A1 ≤ 1.

Principal submatrices of stochastic matrices are substochastic. We refer to a matrix
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A as properly substochastic if it is substochastic and no principal submatrix of A

(including A itself) is stochastic.

Proposition 2.6. Let A be a substochastic matrix. Then, ρ(A) ≤ 1; moreover, A is

properly substochastic if and only if ρ(A) < 1.

Proof We express A in lower-triangular form,

A ∼=


A1 0

. . .

∗ Am

 ,

where each Ak is irreducible. So,

ρ(A) = sup{ρ(Ak)}.

For each Ak, let Dk be the unique diagonal matrix such that Ak1 + Dk1 = 1.

Since A1 ≤ 1, we have Ak1 ≤ 1 for each k and so Dk ≥ 0. Thus, each Ak + Dk is

stochastic and so ρ(Ak) ≤ ρ(Ak +Dk) = 1 with equality if and only if Ak is stochastic

(Dk = 0) . Thus, ρ(A) ≤ 1, with equality if and only if one of the irreducible blocks

of A is stochastic.

Now, suppose that A is properly substochastic. Then, none of the principal sub-

matrices of A, including its irreducible blocks, are stochastic. So, via the above

reasoning, ρ(A) < 1.
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Conversely, assume that ρ(A) < 1. Suppose further that A has a principal sub-

matrix that is stochastic. Express

A ∼=

 A11 A12

A21 A22

 ,
where A11 is stochastic. We must then have A12 = 0, as A111 = 1 and A111+A121 ≤

1. Then, ρ(A) ≥ ρ(A11) = 1, contradicting our initial assumption that ρ(A) < 1. So,

if ρ(A) < 1, A is properly substochastic.

Corollary 2.7. Let A be a stochastic matrix, let C be a collection of indices of A and

let B = A(C) be the principal submatrix of A corresponding to C. Then, ρ(B) < 1

if and only if C does not contain an essential class of states. That is, B is properly

substochastic if and only if C does not contain an essential class of states.

Let B be a substochastic matrix. We will typically assume that B is a principal

submatrix of some stochastic matrix A, even if A is not explicitly given; thus, we

will refer to the indices of B as its state space. We will define an essential class of

states, with respect to B, to be some collection of states E such that the principal

submatrix B(E) is irreducible and stochastic. Let B = A(C) be a principal submatrix

of a stochastic matrix A associated with a collection of states C. Then, a collection

E ⊆ C is essential with respect to B if and only if it is essential with respect to A, as

we then have B(E) = A(E).
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Lemma 2.8. Let B be a substochastic matrix. Then, I − B is nonsingular if and

only if B is properly substochastic. Moreover, when B is properly substochastic,

(I −B)−1 =
∞∑
s=0

Bs.

Thus, (I −B)−1 is entrywise nonnegative when it exists.

Proof The matrix I − B is nonsingular if and only if 1 is not an eigenvalue of B.

Via Corollary 2.7, 1 is not an eigenvalue of the substochastic matrix B if and only if

B is properly substochastic.

Let B be properly substochastic. For complex numbers z with |z| < 1, we have

(1− z)−1 =
∞∑
s=0

zs.

Thus, since the eigenvalues λ of B satisfy |λ| < 1, the Neumann series

∞∑
s=0

Bs

converges to (I−B)−1 (see [14, Section 5.6]). Since each Bs is entrywise nonnegative,

(I −B)−1 is entrywise nonnegative.

2.4 Reversible stochastic matrices

A diagonal matrix is a matrix C that has every off-diagonal entry equal to 0 –

that is, cij = 0 whenever i 6= j. When C is diagonal, we use the shortened notation
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ci = cii. Let C be a diagonal matrix; if ci ≥ 0 for all i we refer to C as a nonnegative

diagonal matrix, and if ci > 0 for all i we refer to C as a positive diagonal matrix.

A brief introduction to reversible stochastic matrices and Markov chains, which

includes Proposition 2.12, appears in [21, Section 1.9].

Definition 2.9. Let A be a stochastic matrix. We say that A is reversible if there is

a positive diagonal matrix Π such that ΠA is symmetric. A reversible Markov chain

is one with a reversible stochastic matrix. A substochastic matrix is reversible under

the same conditions as a stochastic matrix; that is, the substochastic matrix B is

reversible if there is a positive diagonal matrix Π such that ΠB is symmetric.

Proposition 2.10. A reversible Markov chain has no transient states.

Proof Let A be stochastic and let Π be a positive diagonal matrix such that ΠA is

symmetric. Therefore πiaij = πjaji for all i and j. Each πi is nonzero; so, whenever

aij 6= 0 we also have aji 6= 0. This clearly implies that whenever i ≺ j we have j ≺ i.

So, let i be a state in the associated state space; by Theorem 1.8, there is a recurrent

state j with i ≺ j. Thus, there is a recurrent state j such that j ≺ i. The state i

must be recurrent.

Corollary 2.11. A reversible stochastic matrix is permutation-similar to a block-

diagonal matrix where each block is an irreducible reversible stochastic matrix.
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Proof Let A be reversible and let Π be a positive diagonal matrix such that ΠA is

symmetric. Since A has no transient states, it is permutation-similar to a block diag-

onal matrix where each block is irreducible and stochastic. Let A′ be an irreducible

block of A and let Π′ be the corresponding principal submatrix of Π. Then, Π′A′ is an

irreducible principal submatrix of the symmetric matrix ΠA and is, itself, symmetric.

Thus, the irreducible blocks of A are reversible.

Proposition 2.12. Let A be a reversible stochastic matrix and let Π 6= 0 be a nonneg-

ative diagonal matrix. Then, ΠA is symmetric if and only if Π1 is a left eigenvector

of A associated with 1. Thus, if A is reversible and π is a stationary distribution of

A, then for all i and j,

πiaij = πjaji.

Proof First, suppose that A is reversible and let Π 6= 0 be a nonnegative diagonal

matrix such that ΠA is symmetric. Then, for π = Π1,

πTA = 1TΠA = 1TATΠ

= 1TΠ = πT .

Since π = Π1, π 6= 0 and we see that π is a left eigenvector of A associated with 1.

Now, suppose that A is reversible and that Π 6= 0 is a nonnegative diagonal matrix

such that π = Π1 is a left eigenvector of A associated with 1. By Corollary 2.11,
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A ∼=


A1 0

. . .

0 Am

 ,

where each Ak is irreducible and reversible. Let

Π ∼=


Π1 0

. . .

0 Πm

 and πT ∼=
[
νT1 · · · νTm

]

be the expressions of Π and π corresponding to the above expression of A. We note

that for all k, νTk Ak = νTk . For each k, let Π′k be a positive diagonal matrix such that

Π′kAk is symmetric and let $k = Π′k1.

Let 1 ≤ k ≤ m. Via our initial reasoning (Π′kAk is symmetric), $T
kAk = $T

k .

Thus, since Ak is irreducible, $k > 0 and νk ≥ 0, the Perron-Frobenius Theorem

implies that there is a nonnegative number αk such that νk = αk$k. So, Πk = αkΠ
′
k,

further implying that

ΠkAk = αkΠ
′
kAk

is symmetric. The block diagonal structure of A and Π then implies that ΠA is

symmetric.

Finally, let π be a stationary distribution of A and let Π be the diagonal matrix

with ith diagonal entry equal to πi. By the above, ΠA is symmetric, implying that
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for all i and j,

πiaij = (ΠA)ij =
(
ATΠ

)
ij

= πjaji.

Proposition 2.13 is taken from [7, Proposition 2.2].

Proposition 2.13. Let A be a reversible stochastic matrix. Then, A is diagonally

similar to a symmetric matrix. Thus, the eigenvalues of A are real.

Proof Let Π be a positive diagonal matrix such that ΠA is symmetric. We define

Π1/2 and Π−1/2 to be the positive diagonal matrices whose diagonal entries are
√
πii

and 1/
√
πii, respectively. Then,

(
Π1/2AΠ−1/2

)T
= Π−1/2ATΠ1/2 = Π−1/2ATΠΠ−1/2

= Π−1/2ΠAΠ−1/2 = Π1/2AΠ−1/2.

2.4.1 The reverse of a stochastic matrix

A reversible stochastic matrix has an interesting interpretation as a model of a

Markov chain. For some stochastic processes, we can imagine running the process

backwards or “rewinding” the Markov chain.
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Definition 2.14. Let X be an irreducible time-homogeneous Markov chain on a

finite state space S with a discrete time parameter; let A be the associated transition

matrix and let π be the unique stationary distribution. The reverse Markov chain

XR is the random process on the state space S that has its ijth transition probability

equal to

aRij =
πjaji
πi

.

We provide exposition showing that the reverse of a Markov chain can be seen

as a way of reversing the process in time. Let X = {xt} be an irreducible Markov

chain on the state space S. Let A be the associated transition matrix and let π be

the stationary distribution of A; suppose further that the initial distribution of X is

π. Proposition 1.5, together with the fact that πTA = πT , implies that

Pπ [xt = i] =
(
πTAt

)
i

= πi.

Let Y = {yt} be the Markov chain on S whose ijth transition probability is the

probability that if X has transitioned into i, the preceding state was j:

bij = Pi [y1 = j] = Pπ [xs = j|xs+1 = i]

Now,
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Pπ [xs = j|xs+1 = i] =
Pπ[xs=j and xs+1=i]

Pπ [xs+1=i]

=
Pπ [xs=j]Pj [x1=i]

Pπ [xs+1=i]

=
πjaji
πi
.

Thus, we see that if the initial distribution is equal to the stationary distribution,

the reverse is, indeed, the original Markov chain being run “backward.” This can be

shown to be the case for an arbitrary initial distribution, although the calculations

are more involved.

We note that if Π is the diagonal matrix with ith diagonal entry equal to π(i),

the reverse of X is the Markov chain associated with the matrix

AR = Π−1ATΠ.

Thus, reversible Markov chains are simply those that are identical to their reverse –

the matrix ΠA is symmetric if and only if A = Π−1ATΠ.

It is clear that the stationary distribution of the reverse is identical to that of the

original matrix: since Π1 = π,

πTAR =
(
1TΠ

) (
Π−1ATΠ

)
= 1TATΠ = 1TΠ = πT .

Let the Markov chain X be reducible. If X has no transient states we may still
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define the reverse XR. Let A be the transition matrix of X. Since X has no transient

states, A is permutation similar to a block diagonal matrix:

A ∼=


A1 0

. . .

0 Am

 ,

where each Ak is an irreducible stochastic matrix. We form the reverse of X by simply

forming the reverses of its irreducible components. The reverse of X is the Markov

chain associated with the matrix

AR ∼=


AR1 0

. . .

0 ARm

 .

2.4.2 Random walks

We present a graph theoretic definition of reversible Markov chains.

An undirected graph G is an ordered pair G = (V,E). The finite collection V

is the vertex set of G and is generally assumed to be equal to {1, . . . , n} for some

positive integer n. The edge set E is a collection of unordered pairs of vertices. We

express a given element of E as ij (where i and j are vertices); thus, ij and ji refer

to the same edge in a given graph. A loop is an edge that has its endpoints identical;

that is, an edge of the form ii. An isolated vertex in a graph is a vertex that is not the

endpoint of any edge. (A vertex that has a loop but is incident to no other edges is
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not considered isolated.) In this section we only consider graphs that have no isolated

vertices. A weighted graph is a graph G = (V,E) together with a function w that

maps the elements of E to positive real numbers; we extend w to a function on V ×V

by assigning the value wij = 0 for all ij /∈ E.

Definition 2.15. Let G be a weighted graph with vertices V and weight w that has

no isolated vertices. The random walk on G is the Markov chain with state space

S = V and transition matrix A given by

aij =
wij∑

k∈S
wik

.

The matrix A, above, is clearly a stochastic matrix. Since there are no isolated

vertices, the sum of the weights of the edges incident to a given vertex is not 0; and,

for each i,

∑
j∈S

aij =
∑
j∈S

wij∑
k∈S

wik
=

∑
j∈S

wij∑
k∈S

wik
= 1.

Theorem 2.16. Let X be a time-homogeneous Markov chain on finite state space S

with discrete time parameter. Then, X is reversible if and only if it can be expressed

as a random walk on a weighted graph with no isolated vertices.

Proof Let G be a weighted graph with no isolated vertices and let X be the random

walk on G. Let W be the matrix corresponding to the weight function on G; the

matrix W is symmetric and nonnegative. Let A be the transition matrix of X and Π

be the diagonal matrix with
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πi =
∑
k

wik.

Then, we simply note that A = Π−1W , implying W = ΠA. The stochastic matrix A

is reversible, as W is symmetric and Π has positive diagonal entries.

Now, let X be a reversible Markov chain on state space S and let A be the tran-

sition matrix of X. Let Π be a positive diagonal matrix such that ΠA is symmetric.

Let wij = (ΠA)ij = πiaij; let G be the weighted graph with V = S,

E = {ij : wij 6= 0}

and weight w. Clearly, the random walk on G is identical to X.

Let W be the adjacency matrix of a weighted graph (with no isolated vertices).

By the above, the transition matrix of the associated random walk is Π−1W , where

Π is the unique diagonal matrix such that Π1 = W1. Further, the vector π = Π1 is

a scalar multiple of a stationary distribution of the associated random walk.
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Chapter 3

Nearly uncoupled Markov chains

We present the concept of a nearly uncoupled Markov chain. Algorithmic analysis

of such Markov chains will be the focus of the remainder of this work.

3.1 Definition

Definition 3.1. Let A be an irreducible stochastic matrix on the state space S, let π

be the stationary distribution of A and let E ⊆ S. We define the π-coupling measure

of E to be the value

wπ(E) =

∑
i∈E

∑
j∈E

πiaij∑
i∈E

πi

and we define the 1-coupling measure of E to be

w1(E) =

∑
i∈E

∑
j∈E

aij

|E|
.

As well, let B = A(E); then, we define wπ(B) = wπ(E) and w1(B) = w1(E). If
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the stochastic matrix A is reducible, the π-coupling measure is undefined and the

1-coupling measure is as above.

Let A, S and π be as in Definition 3.1. For a collection E ⊆ S, and a state i ∈ E ,

∑
j∈E

aij =
∑
j∈E

P [xt+1 = j|xt = i] = P [xt+1 ∈ E|xt = i] .

So, for any E ⊆ S, the value w1(E) is simply the average probability of transitioning

from a state in E to another:

w1(E) =
1

|E|
∑
i∈E

P [xt+1 ∈ E|xt = i] .

The value wπ(E) is a weighted average using weights determined by the vector π. By

Proposition 1.5 and the fact that πTA = πT ,

πi = Pπ [xt = i] ,

for all t ≥ 0. Thus,
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wπ(E) =

∑
i∈E

Pπ [xt=i]P[xt+1∈E|xt=i]∑
i∈E

Pπ [xt=i]

=

∑
i∈E

Pπ [xt=i]P[xt+1∈E|xt=i]

Pπ [xt∈E]

=
∑
i∈E

Pπ [xt=i]
Pπ [xt∈E]

P [xt+1 ∈ E|xt = i]

=
∑
i∈E
Pπ [xt = i|xt ∈ E ]P [xt+1 ∈ E|xt = i]

= Pπ [xt+1 ∈ E|xt ∈ E ] .

If the initial distribution of the Markov chain associated with A is distinct from

its stationary distribution, we still have the weaker condition

πi = lim
t→∞

1

t

t∑
s=1

Pv [xs = i] ,

regardless of the initial distribution v (this is a consequence of Theorem 2.2). So,

the π-coupling measure wπ(E) can be viewed as the long-term expected value of the

probability of transitioning from E to E . We interpret the 1-coupling measure as a

short-term probability of transitioning from E to E .

Definition 3.2. Let B be a substochastic matrix. We define the error vector of B

to be the vector
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γB = 1−B1 = (I −B)1.

The value γB(i) is referred to as the error at state i. The value

η(B) = 1TγB = 1T (I −B)1

is the total error of B.

The error vector of a substochastic matrix B is a measure of how close B is to

being stochastic – it measures how different each row sum is from 1.

Let X be a Markov chain with state space S and transition matrix A; let E ⊆ S

be nonempty and let B = A(E). Then, for i ∈ E , we have

γB(i) = 1−
∑
j∈E

aij =
∑
j /∈E

aij = P [xt+1 /∈ E|xt = i] .

Thus, for each i ∈ E , γB(i) is the probability of transitioning from i to a state not

contained in E .

Definition 3.3. Let X be an discrete-time time-homogeneous Markov chain on a

finite state space S with transition matrix A and let 0 ≤ ε < 1. Let E ⊆ S be a

nonempty proper subcollection of states and let B = A(E). We refer to E as an almost

invariant aggregate with respect to ε, if γB ≤ ε1.

Let X be a Markov chain with state space S. An almost invariant aggregate is a

nonempty collection E ⊆ S such that if xt ∈ E then the probability that xt+1 /∈ E is
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less than or equal to ε. If E is such an aggregate and x0 ∈ E , then the probability that

x1, . . . , xt ∈ E is greater than or equal to (1− ε)t. An almost invariant aggregate is a

collection of states E such that when the Markov chain enters E , it tends to remain

in E for relatively long periods of time.

Definition 3.4. Let X be a discrete time, time-homogeneous Markov chain on a

finite state space S with transition matrix A and let 0 ≤ ε < 1. We refer to X and

A as nearly uncoupled with respect to ε if S contains two or more disjoint almost

invariant aggregates with respect to ε.

We use the same definition of an almost invariant aggregate as [19]. In [7, 8],

the collection E ⊆ S is defined to be almost invariant if wπ(E) ≥ 1 − ε. In [10], the

authors propose that the condition w1(E) ≥ 1 − ε is a more useful criterion (than

that in [7, 8]) for an almost invariant aggregate. The authors of [10] claim that the

difficulties involved in solving the eigenvector equation xTA = xT for x make an

approach that does not involve the stationary distribution more robust.

In Section 4.3, we present an example of how the property of being nearly un-

coupled can effect the convergence of a Markov chain to its stationary distribution.

In light of this, we propose that the π-coupling measure should only be used if the

stationary distribution is known in advance. (In Appendix C we make use of the

π-coupling measure in just such as case.)

When the value ε has been clearly specified, or its exact value is not of particular
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interest, we will simply use the terms almost invariant aggregate and nearly uncoupled

Markov chain.

We note that Definition 3.1 is the most conservative of the three. Let A be a

stochastic matrix and let B = A(E) be a principal submatrix of A such that γB ≤ ε1.

Then, for all i ∈ E ,

P [xt+1 ∈ E|xt = i] = 1− γB(i) ≥ 1− ε.

So, any weighted average of these values, including wπ(E) and w1(E), is bounded

below by 1− ε.

Lemma 3.5. Let A be a stochastic matrix. Then, A is nearly uncoupled with respect

to 0 ≤ ε < 1 if and only if A can be expressed as a matrix of the form

A ∼=


A11 · · · A1m

...
. . .

...

Am1 · · · Amm

 or



A11 · · · A1m A10

...
. . .

...
...

Am1 · · · Amm Am0

A01 · · · A0m A00


,

where m ≥ 2 and the following 3 conditions hold:

1. for k = 1, . . . ,m, γAkk ≤ ε1;

2. for k = 1, . . . ,m, the only principal submatrix of Akk satisfying condition 1 is

Akk itself; and
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3. when the matrix A00 is present, no principal submatrix of A00 (including A00,

itself) satisfies condition 1.

Proof Clearly, a matrix of the above form is nearly uncoupled (the collections of

states corresponding to the first m blocks are disjoint almost invariant aggregates).

Now, suppose that A is nearly uncoupled with respect to ε. Then, we can express

A as an m × m or (m + 1) × (m + 1) block matrix, for some integer m ≥ 2, such

that the first m principal submatrices on the diagonal satisfy condition 1 (we simply

let the first m blocks be principal submatrices of some collection of disjoint almost

invariant aggregates). There is an upper limit as to how large m can be in such an

expression, namely, the order of A. So, suppose that A has been expressed as an

m×m or (m+ 1)× (m+ 1) block matrix satisfying condition 1 and that the integer

m is maximal among all such expressions of A. Let E1, . . . , Em, E0 be the collections

of states corresponding to this expression. We note that we may have E0 = ∅.

For k = 1, . . .m, the principal submatrix Akk may not satisfy condition 2. If Akk

does satisfy condition 2, let E ′k = Ek; otherwise, let A′kk be a principal submatrix of

Akk such that

1. γA′kk ≤ ε1, and

2. among all principal submatrices B of Akk such that γB ≤ ε1, A′kk has minimal

order.
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Such a submatrix must exist, as Akk itself has γAkk ≤ ε1. Thus, the only principal

submatrix of A′kk satisfying condition 1 is A′kk. Let E ′k be the collection of states

corresponding to A′kk.

Now, let

E ′0 = S \
m⋃
k=1

E ′k

and, if E ′0 6= ∅, let A′00 = A(E ′0). If we now suppose that there is a principal submatrix

B of A′00 such that γB ≤ ε1, this contradicts the maximality of m (we could then

construct an (m+ 1)th almost invariant aggregate). Thus, the collections E ′1, . . . , E ′m

are a set of minimal disjoint almost invariant aggregates and the collection E ′0 (when

it is nonempty) does not contain an almost invariant aggregate. The expression of A

with Aij = A(E ′i , E ′j) satisfies the statement of the theorem.

The states corresponding to block index 0 in Lemma 3.5 represent states that

are not part of any almost invariant aggregate. They are states that the Markov

chain visits only rarely, as the probability of entering this collection is at most ε, but

the probability of leaving it is strictly higher. We will refer to the members of this

collection, when it is nonempty, as near transient states.

We will use Lemma 3.5 as the canonical representation of the transition matrix of

a nearly uncoupled Markov chain. Let X be a nearly uncoupled Markov chain, with

respect to ε, on the state space S. An ε-uncoupling of X is a partition
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Ψ = (E1, . . . , Em, E0)

of S, where m ≥ 2 and E0 is allowed to be empty, such that, for k 6= 0, Ek is a minimal

almost invariant aggregate and, if it is nonempty, E0 does not contain any almost

invariant aggregates as subsets. (We specify that E0 may be empty as, normally, the

members of a partition are nonempty.) We note that if A is the transition matrix of

X and Ek is a minimal almost invariant aggregate, the principal matrix A(Ek) must

be irreducible.

Example 3.6. The matrix A1 is nearly uncoupled with respect to ε = 0.05. Its

minimal almost invariant aggregates are E1 = {1, 2} and E2 = {3}. It possesses one

near transient state; namely state 4.

A1 =



0.34 0.62 0.03 0.01

0.21 0.77 0.02 0

0.01 0.03 0.95 0.01

0.21 0.19 0.32 0.28


.

The matrix A2 is nearly uncoupled with respect to ε = 0.05. We note that

its decomposition into almost invariant aggregates and near transient states is not

unique.
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A2 =



0.94 0.02 0.03 0.01

0.03 0.93 0.03 0.01

0.03 0.04 0.92 0.01

0.01 0.01 0.02 0.96


.

The collections {1, 2}, {1, 3}, {2, 3} and {4} are all minimal almost invariant

aggregates, with respect to ε = 0.05. There are three different possibilities for the

representation of this matrix described in Lemma 3.5. In this particular example, we

can see that we simply chose ε poorly – a unique decomposition arises for ε = 0.08,

for example. However, without knowing the structure of the aggregates a priori, one

may not be able to choose ε to produce such a nice structure. As well, the particular

application may force the choice of ε. So, we cannot typically assume that the matrix

has a unique similarity to a near block lower-triangular form.

In [13], a much more strict definition of a nearly uncoupled stochastic matrix is

presented. Let A be a stochastic matrix and let δ ≥ 0. The authors consider a matrix

A to be nearly uncoupled with respect to δ if there is a partition Ψ = {E1, . . . , Em, E0},

where m ≥ 2 and E0 is allowed to be empty, such that the coupling measure µ, defined

by

µ(Ψ) =
m∑
k=1

∑
i∈Ek

∑
j /∈Ek

aij,

has µ(Ψ) ≤ δ. In terms of error vectors and total error, as we have defined them,
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µ(Ψ) =
m∑
k=1

1TγA(Ek) =
m∑
k=1

η(A(Ek)).

Let A be nearly uncoupled stochastic matrix of order n with respect to ε (under

Definition 3.4) and let Ψ be an uncoupling as in Lemma 3.5. Then,

µ(Ψ) ≤ ε (n− |E0|) ≤ εn.

So, if a Markov chain with a state space of n states is nearly uncoupled with respect

to ε, via Definition 3.4, then it is nearly uncoupled with respect to δ = εn, via the

µ-criterion.

3.2 Problem statement

We are interested in solving the following problem. Let Ã be a stochastic matrix

of the form given in Lemma 3.5 with m ≥ 2, let P be an arbitrary permutation

matrix of the same order as Ã and let A = PÃP T . Without a priori knowledge

of the matrix P , can we recover the uncoupled structure of Ã? That is, if a given

matrix is nearly uncoupled, but states from distinct almost invariant aggregates have

been “scrambled” together, can we reorder the states so that the near block diagonal

structure is apparent? Moreover, can we produce such a reordering without knowing,

in advance, whether or not A even has such a structure?

In attempting to solve this problem, it suffices to produce an ε-uncoupling
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Ψ = (E1, . . . , Em, E0)

of the state space S of A.

Suppose that A is nearly uncoupled and that Ψ is such a partition of the associated

state space. Let nk = |Ek|. We list the elements of S as a sequence i1, i2, . . . , in such

that

E1 = {i1, . . . , in1} , E2 = {in1+1, . . . , in1+n2} ,

and so forth. Then, we let P be the permutation matrix such that for each k, the

ikth entry in the kth row is the unique entry equal to 1 in that row. i.e. For all i and

j,

pij =


1 if i = ij,

0 otherwise.

Let

E ′1 = {1, . . . , n1} , E ′2 = {n1 + 1, . . . , n1 + n2} ,

and so forth. The matrix Ã = PAP T then has

Ã(E ′k) ∼= A(Ek),

for each k.
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Our solutions (the stochastic complement based algorithms) will be purely con-

structive in nature. Given a matrix A, we attempt to produce a collection of disjoint

almost invariant aggregates. If two or more almost invariant aggregates are con-

structed, then we have achieved our goal; if only one aggregate is produced, either

the matrix is not nearly uncoupled or our method has failed.

We are particularly interested in methods which avoid using the eigenvalue and/or

singular value decomposition of a matrix altogether. This is for two reasons. Firstly,

there is already a wealth of research concerned with solving this problem using spectral

or singular value based methods. Secondly, we suspect that in extreme cases, the

eigenvectors associated with eigenvalues near to 1 may be difficult to calculate and

possibly overly sensitive to perturbations.

3.3 Perron cluster based algorithms

In [7, 8], two algorithms which attempt to produce almost invariant aggregates

of a reversible Markov chain are presented. We present a brief description of the

algorithm referred to as Perron cluster cluster analysis (PCCA); see [7] for a thorough

exposition.

Let S be a collection of indices/states and let C ⊆ S. The characteristic vector

of C, labelled 1C, is the (0, 1)-vector on S that has its ith entry equal to 1 if i ∈ C or

0 if i /∈ C. A characteristic collection is a set of characteristic vectors (none of which

54



is the 0-vector) whose sum is 1. A characteristic collection corresponds to a unique

partition of S. Moreover, a characteristic collection is clearly linearly independent.

The authors only consider decompositions which do not include near transient

states. That is, if the matrix A is nearly uncoupled with respect to ε, the assumption

is made that there is a partition Ψ = (E1, . . . , Em) of the associated state space that

has γAl ≤ ε1, for each of the principal submatrices Al = A(El). Let A be a nearly

uncoupled reversible stochastic matrix and let Ψ be such an uncoupling. Without

loss of generality, we assume that

A =


A11 Aij

. . .

Amm

 ,

where each B = All has γB ≤ ε1. Let

Π =


Π1 0

. . .

0 Πm


be a positive diagonal matrix such that

W = ΠA =


Π1A11 ΠiAij

. . .

ΠmAmm

 =


W11 Wij

. . .

Wmm


is symmetric. We further assume that 1TΠ1 = 1, so that Π1 = π is the stationary

distribution of A. Since Π is a positive diagonal matrix, for any real number z, the
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matrix exponent Πz, defined to be the positive diagonal matrix with its ith diagonal

entry equal to πzi , exists. We note that the matrix Π1/2AΠ−1/2 = Π−1/2WΠ−1/2 is

symmetric and so A has real eigenvalues. Let AD be the block-diagonal matrix with

the same diagonal blocks AD(El) = A(El) as A and let AO = A− AD:

AD =


A11 0

. . .

0 Amm

 and AO =


0 Aij

. . .

0

 .

That is, A)(Ek, El) = A(Ek, El) if k 6= l and AO(Ek) = 0 for all k.

Since γAll = (I −All)1 ≤ ε1, the Perron value of each All is greater than or equal

to 1−ε; this implies that AD has at least m eigenvalues greater than or equal to 1−ε.

As well, A01 ≤ ε1 and the matrix A0 is entrywise nonnegative, so any eigenvalue of

A0 is contained in the interval [−ε, ε] (via the Perron-Frobenius theorem).

According to [14, Theorem 4.3.1], if B and C are symmetric matrices with eigen-

values

λ1(B) ≥ . . . ≥ λn(B) and λ1(C) ≥ . . . ≥ λn(C),

the eigenvalues of B + C,

λ1(B + C) ≥ . . . ≥ λn(B + C),

satisfy

λk(B + C) ≥ λk(B) + λn(C),
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for 1 ≤ k ≤ n. The m largest eigenvalues of AD are greater than or equal to 1− ε and

the smallest eigenvalue of A0 is greater than or equal to −ε. The matrices AD and

AO are not necessarily symmetric, but the matrices Π1/2ADΠ−1/2 and Π1/2AOΠ−1/2

are. So, the m largest eigenvalues of

Π1/2ADΠ−1/2 + Π1/2AOΠ−1/2 = Π1/2AΠ−1/2

are each greater than or equal to 1− 2ε. Thus, A has m eigenvalues that are greater

than or equal to 1− 2ε. We refer to the eigenvalues nearest to 1 of a reversible nearly

uncoupled stochastic matrix as the Perron cluster.

For each l, let Dl be the nonnegative diagonal matrix satisfying Dl1 = (I −All)1

and let Ãll = All +Dl. Let

Ã =


Ã11 0

. . .

0 Ãmm

 .

We note that if i ∈ El, then

|ãij − aij| =



0 if j ∈ El and j 6= i∑
k/∈El

aik if j = i

aij if j /∈ El.

So,
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∥∥∥Π(Ã− A)
∥∥∥
∞

= max
i∈S

{∑
j∈S
|πi (ãij − aij)|

}

= max
1≤l≤m

max
i∈El

{∑
j∈S
|πi (ãij − aij)|

}

= max
1≤l≤m

max
i∈El

{
2
∑
j /∈El

πiaij

}

≤ max
1≤l≤m

max
i∈El

{
2

∑
j /∈El

πiaij∑
j∈El

πj

}
= max

1≤l≤m
{2 (1− wπ(El))}

≤ 2ε.

The matrix Ã has at least m eigenvalues equal to 1. We further assume that Ã

has exactly m eigenvalues equal to 1 and that the remainder are bounded (in absolute

value) by some number significantly less than 1 [7, 8, 10, 18]. In the next section, we

examine some of the implications of this assumption.

By Theorem 2.5, the (right) eigenspace of Ã associated with eigenvalue 1 is the

linear span of the collection {1El}.

Now, suppose that Av = λv where λ ≥ 1 − 2ε and ‖v‖∞ = 1. Then, since

(A− λI)v = 0,

‖Π(Ã− I)v‖∞ ≤ ‖Π(A− λI)v‖∞ + ‖Π(Ã− A)v‖∞ + (1− λ)‖Πv‖∞

≤ 0 + ‖Π(Ã− A)‖∞‖v‖∞ + (1− λ)‖Π‖∞‖v‖∞

≤ 2ε+ (1− λ)

≤ 4ε.
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We conclude that v must be a small perturbation of some member of the span of

{1El} (as Ã has no other eigenspaces associated with eigenvalues near 1). We note

that this implies that |vi − vj| is small whenever i and j are contained in the same

aggregate El.

So, suppose that A and the other relevant terms are as above. Let v1, . . . , vm be

a collection of eigenvectors associated with the Perron cluster. If |vk(i) − vk(j)| is

small for all k we conclude that the states i and j are contained in the same almost

invariant aggregate. If there is at least one l with |vl(i)− vl(j)| large (relatively) we

conclude that i and j are members of distinct almost invariant aggregates.

Utilizing these ideas, we have a sketch of the PCCA algorithm; the algorithm

takes as inputs a nearly uncoupled reversible stochastic matrix A of order n (which is

assumed to have no near transient states and fast-mixing almost invariant aggregates),

and the Perron cluster {λ1, . . . , λm} of A. The Perron cluster can be identified by

examining the eigenvalues of A to see if there is a clear cluster about 1, or by simply

choosing an arbitrary small value δ > 0 and then selecting those eigenvalues with

|1− λ| < δ.

Algorithm 1 The Perron cluster cluster analysis algorithm

1. Let {v1, . . . , vm} be right eigenvectors of A associated with the Perron cluster.

2. Produce a characteristic collection of vectors {w1, . . . , wm} such that if
wk(i) = wk(j) = 1 for some k, then |vl(i)− vl(j)| is small for all l.

3. Return the aggregates Ek = {i : wk(i) = 1}.
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Step 2 is a somewhat involved process; see [7, 8] for the details.

A near-characteristic collection is a set of column vectors {wk} on the index set

S which are entrywise nonnegative and whose sum is 1. i.e. Each wk ≥ 0 and for all

i ∈ S,

m∑
k=1

wk(i) = 1.

A near-characteristic collection can be used to partition its associated indices in much

the same manner as a characteristic collection. We let

Ek = {i : for all l 6= k, wk(i) ≥ wl(i)} .

In other words, Ek is the collection of indices that are given the largest weight by wk.

If we do not see repeated values in the entries of the near-characteristic collection,

the collections Ek form a partition; however, if state i attains its maximum wk(i) for

multiple values of k, we can simply arbitrarily assign it to one such Ek or use some

other metric to decide on its place in a partition.

Near characteristic collections allow for a more detailed analysis of almost invariant

aggregates. Let {wk} and {Ek} be as above. If wk(i) is large and for all l 6= k the

value wl(i) is insignificant, we view i as being part of the “centre” of Ek. If wk(i) and

wl(i) are both significant, we view i as being near the “border” between Ek and El.

In this manner, a near-characteristic collection can be seen as a “fuzzy” partition,

of sorts. Given a Markov chain X on state space S and a near characteristic collection
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of vectors w1, . . . , wm, we define fuzzy collections C1, . . . , Cm and say that if xt = i,

then the probability that xt ∈ Ck is wk(i).

In [8], the algorithm PCCA+ is presented. It proceeds in the same manner

as PCCA, except in step 2 a near-characteristic collection {wk} is produced. The

PCCA+ algorithm attempts to construct {wk} in such a way that whenever |wk(i)−

wk(j)| is small for all k, |vk(i)− vk(j)| is also small for all k. The authors state that

algorithm PCCA+ is suspected to be the more robust of the two.

3.4 Fiedler vectors and connectivity

The Perron cluster approach is very much related to a concept known as the

Fiedler vector.

Let G be a connected weighted graph (with no isolated vertices) on the vertex set

S and let W be the symmetric matrix of weights associated with G. Let D be the

positive diagonal matrix with ith diagonal entry equal to

di =
∑
j∈S

wij.

Let X be the random walk on G. So, the transition matrix of X is the reversible

stochastic matrix A = D−1W and the stationary distribution is the vector

π =
1∑

i∈S
di
D1 =

1

1TD1
D1.
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Since D is a positive diagonal matrix, for any real number z, the matrix exponent

Dz exists. The normalised Laplacian matrix associated with G is the symmetric

matrix

L = D−1/2 (D −W )D−1/2 = I −D−1/2WD−1/2.

The normalised Laplacian is, necessarily, positive semidefinite (it is symmetric and

each of its eigenvalues is nonnegative). Let

λ0 ≤ λ1 ≤ . . . ≤ λn−1

be the eigenvalues of L. We note that λ0 = 0 and that a null vector of L is the vector

v = D1/21:

(
D−1/2 (D −W )D−1/2

) (
D1/21

)
= D−1/2 (D −W )1 = 0.

(since D1 = W1). The normalised Laplacian of G is intimately related to the random

walk on G, as the following matrix-similarity shows.

D1/2AD−1/2 = D1/2 (D−1W )D−1/2

= D−1/2WD−1/2

= I − L.

So, given the eigenvalues {λk} of the normalised Laplacian L of G, the eigenvalues of

the transition matrix A of the random walk on G are {1− λk}.

Let G be a weighted graph, let L be the normalised Laplacian matrix of G and

let
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0 = λ0 ≤ λ1 ≤ . . . ≤ λn−1

be the eigenvalues of L (eigenvalues with multiplicities greater than 1 are included

multiple times in this list). We will refer to an eigenvector associated with λ1 as a

Fiedler vector of G.

The Laplacian matrix of G is defined by the formula L′ = D −W , where D and

W are as above. The Laplacian matrix and the normalised Laplacian matrix are

connected via the formula

L′ = D −W = D1/2(I −D−1/2WD−1/2)D1/2 = D1/2LD1/2.

See [4, Section 1.2] for a brief discussion concerning the differences between the Lapla-

cian and the normalised Laplacian. We use the label Fiedler vector to refer to eigen-

vectors of the normalised Laplacian for simplicity’s sake – generally, this label is only

used to refer to eigenvectors of the Laplacian matrix.

The concept of a Fiedler vector first appeared in [9] (although, it is not there

referred to as such). A Fiedler vector is related, in a very interesting manner, to

connectivity properties of the graph G.

For example, suppose that G is a tree and let v be a Fiedler vector of the nor-

malised Laplacian of G. Then, the induced subgraphs G+ and G− on the vertex

sets
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S+ = {i : vi ≥ 0} and S− = {i : vi < 0}

are disjoint connected subtrees of G joined by a single edge ([9, Theorem 3.14]).

The following proposition is a rewording of [4, Lemma 2.1]. (We have rephrased

it in terms of transition probabilities; there it is presented in terms of edge weights.)

Proposition 3.7. Let A be an irreducible reversible stochastic matrix with stationary

distribution π on the state space S; let µ be the eigenvalue of A closest, but not equal,

to 1. Let E ⊆ S and let

α =
∑
i∈E

πi.

Then,

wπ(E) ≤ 1− 1

2
(1− µ)(1− α).

Moreover, equality is attained if and only if there are positive constants β and δ such

that the vector v with

vi =


β√
πi

if i ∈ E

− δ√
πi

if i /∈ E

is a Fiedler vector of the associated normalised Laplacian.

This is useful in that it provides a necessary, although not sufficient, condition

for a matrix to be nearly uncoupled. Let A be a reversible stochastic matrix on the
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state space S and suppose that we are interested in determining whether or not the

matrix is nearly uncoupled with respect to ε. Assume that A is nearly uncoupled

(with respect to ε), let π be the associated stationary distribution and let E1 and E2

be disjoint almost invariant aggregates contained in the associated state space. It

must be that for at least one of l = 1 or 2

∑
i∈El

πi ≤
1

2
.

Suppose that

α =
∑
i∈E1

πi ≤
1

2
.

Then, we must have

1− ε ≤ wπ(E1) ≤ 1− 1

2
(1− µ)(1− α) ≤ 1− 1

4
(1− µ),

further implying that 1− 4ε ≤ µ.

So, if the eigenvalue µ of A that is closest, but not equal, to 1 satisfies µ < 1− 4ε,

then we can conclude that A is not nearly uncoupled, with respect to ε. If, instead,

we have 1 − 4ε ≤ µ, then it is entirely possible that A is nearly uncoupled, with

respect to ε. Moreover, in this case, the Fiedler vector associated with normalised

Laplacian gives us a potential starting point in attempting to construct almost invari-

ant aggregates of A; one can begin by looking at the partition induced by the signs

of the entries in the Fiedler vector.
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The PCCA approach, in a sense, generalises this idea by considering what might

be called “Fiedler spaces”.

3.5 A singular value decomposition based algorithm

In [10], an alternate approach to constructing almost invariant aggregates of a

given stochastic matrix is presented. Here, we only present the algorithm, itself.

In [24], we examine this algorithm in detail and present some supplemental results

concerning its implementation.

A unitary matrix is a square complex matrix U such that UU∗ = I. A real

unitary matrix evidently satisfies UUT = I; a real unitary matrix is referred to as an

orthogonal matrix. Let A be a n×n complex matrix. A singular value decomposition

of A is an expression

A = UΣV ∗

where U and V are unitary matrices and Σ is a nonnegative diagonal matrix where

the diagonal entries satisfy σii ≥ σjj for all i < j. When A is real then U and V can

be taken to be orthogonal matrices, in which case we have

A = UΣV T .

The ith columns of U and V are referred to as left and right singular vectors, re-

spectively, of A associated with the singular value σii. If A is real and we let the ith
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columns of U and V be ui and vi, respectively, we then have

Avi = σiiui and ATui = σiivi.

We label the singular values of A as σi(A) = σii. The number σ1(A) is, in fact, equal

to the euclidean 2-norm of A: σ1(A) = ‖A‖2. See [14] for a thorough exposition of

the singular value decomposition.

The SVD-based algorithm is very simply expressed as a recursive algorithm. Its

only input is a substochastic matrix A on a state space S. Within the algorithm

there are references to singular vectors and coupling measures. It is up to the user

to decide whether to utilise left or right-singular vectors and the π or 1-coupling

measure; we will use w(E) to represent this undetermined coupling measure of the

set E . The output of the SVD-based algorithm is a partition {E1, . . . , Em} of S such

that w(Ek) > 1/2 for all k.

Algorithm 2 SVDA(A,S)

if |S| = 1 then
return {S}
Terminate the algorithm.

end if
Let v be a singular vector associated with σ2(A).
Let S+ = {i ∈ S : vi ≥ 0}, S− = {i ∈ S : vi < 0}, A+ = A(S+) and A− = A(S−).
if w(A+) ≤ 1/2 or w(A+) ≤ 1/2 then

return {S}
else

return SVDA(A+,S+) ∪ SVDA(A−,S−)
end if

Algorithm 2 uses reasoning very similar to that of Proposition 3.7 – it simply uses
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singular vectors rather than Fiedler vectors. An advantage of this approach is that

singular vectors are, in general, more easily and reliably calculated than eigenvectors.

In [15], a somewhat similar algorithm is presented. Rather than examining a

singular vector associated with the second largest singular value of A, this algorithm

proceeds by examining a singular vector associated with the second smallest singular

value of I − A (where A is the matrix in question).
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Chapter 4

The stochastic complement

We present the stochastic complement, which will be our primary tool for con-

structing almost invariant aggregates of a given Markov chain. The stochastic comple-

ment is introduced in [19]. It is there utilised as a tool for constructing the stationary

distribution of a Markov chain and analysing the rate of convergence of a Markov

chain to its stationary distribution (see Section 4.3). Many of the results of this

chapter are discussed in [19], although some appear without proof.

4.1 Definition

Definition 4.1. Let A be a stochastic matrix with associated state space S. Let

{C1, C2} be a partition of S and express

A ∼=

 A11 A12

A21 A22

 ,
69



where Aij = A(Ci, Cj). If the matrix I − A22 is nonsingular, we define the stochastic

complement of C1 to be the matrix

S(C1) = A11 + A12 (I − A22)−1A21.

If I − A22 is singular, the stochastic complement of C1 is not defined.

Proposition 4.2. Let A be a stochastic matrix with state space S and let {C1, C2} be

a partition of S. Then, the stochastic complement S(C1) exists if and only if C2 does

not contain an essential class of states.

Proof Let B = A(C2). The matrix I − B is nonsingular if and only if 1 is not an

eigenvalue of B. By Corollary 2.7, we see that I − B is nonsingular if and only if C2

does not contain an essential class of states.

Remark. The stochastic complement can be seen as a way of removing the states

C2 from the associated Markov chain. Proposition 4.2 tells us that we cannot remove

an entire essential class; i.e. the stochastic complement S(C1) exists if and only if C1

contains at least one member of every essential class.

Let A be a stochastic matrix and let

ω = i0 → i2 → · · · → it

be a directed walk of length t in the associated digraph. If t ≥ 1, the weight of ω is

the product of the t transition probabilities along ω:
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a(ω) = ai0i1ai1i2 · · · ait−1it .

If ω is a walk of length 0, we define a(ω) = 1. The weight a(ω) is the probability of

transitioning from i0 to it via the walk ω. By Proposition 1.5,

(
At
)
ij

=
∑

ω∈Ωij(t)

a(ω),

where Ωij(t) is the collection of directed walks from i to j with length equal to t. Let

ω be as above and let C ⊂ S be a subcollection of the state space; if

i1, . . . , it−1 ∈ C,

we refer to ω as a directed walk through C,

ω : i0 ;C it.

Note that the endpoints of a directed walk through C are not necessarily contained

in C; such a walk is merely one in which every interior point is contained in C. Any

directed walk of length 0 or 1 is trivially a walk through any collection, as it contains

no interior points.

Proposition 4.3. Let A be a stochastic matrix and let C1 ⊆ S be a subcollection of

the state space; let C2 = S \ C1. If the stochastic complement S(C1) is defined, it is

itself a stochastic matrix and models the following Markov chain:
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1. the state space is equal to C1; and

2. for i, j ∈ C1, the transition probability sij is the sum of the weights of the directed

walks

i;C2 j.

Proof Let

A ∼=

 A11 A12

A21 A22


(as in 4.1). We will preserve the indices of A in our examinations of its submatrices;

for example, as long i ∈ C1 and j ∈ C2, (A12)ij = aij. The inverse of I −A22 (when it

exists) is nonnegative, via Lemma 2.8. The matrix

S(C1) = A11 + A12 (I − A22)−1A21

is entrywise nonnegative. Every row sum of A is 1 and so we have

A111+ A121 = 1 and A211+ A221 = 1;

these equalities in turn imply that

A111 = 1− A121 and A211 = (I − A22)1.

Thus,
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S(C1)1 = A111+ A12 (I − A22)−1A211

= (1− A121) + A12 (I − A22)−1 (I − A22)1

= 1− A121+ A121

= 1.

Now, for i, j ∈ C1, let p
(t)
ij be the sum of the weights of the directed walks i;C2 j

with length equal to t. If t = 1, p
(1)
ij = aij; if t ≥ 2,

p
(t)
ij =

(
P12P

t−2
22 P21

)
ij
.

Let pij be the sum of the weights of the directed walks i;C2 j (of any length). Then,

for i, j ∈ C1,
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pij = p
(1)
ij + p

(2)
ij + p

(3)
ij + p

(4)
ij + . . .

= aij + (A12A21)ij + (A12A22A21)ij + (A12A
2
22A21)ij + . . .

= (A11 + A12 (I + A22 + A2
22 + . . .)A21)ij

=
(
A11 + A12 (I − A22)−1A21

)
ij

= sij.

Remark. The Markov chain described above has a straightforward interpretation

(found in [19]). We observe the chains (in the original process) that have have x0 ∈ C1;

every time the process leaves C1 we imagine “fast-forwarding” until we return to C1,

ignoring any time spent in C2. That is, if a realization of the original Markov chain

is given by

x0, x1, x2, . . .

where x0 ∈ C1, the corresponding realization of the stochastic complement S(C1) is

obtained by deleting the elements of the sequence contained in C2; i.e. it is

74



x0, xt1 , xt2 , . . .

where

t1 = inf{t ≥ 1 : xt ∈ C1}, t2 = inf{t ≥ t1 + 1 : xt ∈ C1}, t3 = inf{t ≥ t2 + 1 : xt ∈ C1},

and so forth.

4.1.1 Stochastic complements of substochastic matrices

Let B be a substochastic matrix with state space C. Recall that an essential

class of states with respect to B is a subset E ⊆ C such that B(E) is irreducible and

stochastic. Such a collection exists if and only if ρ(B) = 1, in which case B is not

properly substochastic.

We define a stochastic complement of a substochastic matrix in exactly the same

manner as for a stochastic matrix. That is, let B be a substochastic matrix with state

space C and let {C1, C2} be a partition of C such that C2 does not contain an essential

class of states. Express

B ∼=

 B11 B12

B21 B22

 ,
where Bij = B(Ci, Cj). Then, we define the stochastic complement of C1 to be the

matrix
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S(C1) = B11 +B12 (I −B22)−1B21.

The stochastic matrices of order n are a subfamily of the substochastic matrices

of order n. In the following section, we will prove a number of results concerning

stochastic complements of substochastic matrices, with the understanding that these

apply to stochastic complements of stochastic matrices.

4.2 Properties

Let A be a substochastic matrix and let S be the associated state space. Let

{C1, C2} be a partition of S such that the complement S(C1) exists. We will use the

notation

A \ C2 = S(C1).

i.e. The matrix A \ C is the stochastic complement corresponding to the partition of

S into C1 = S \ C and C2 = C. If C = {i} (that is, if we are removing a single state)

we use the notation A \ i to represent the stochastic complement of S \ i. We will

further define the trivial complement A \ ∅ = A.

We will preserve indices between a matrix and its various complements. For

example, if A is a 5×5 stochastic matrix, A\{1, 4} is a 3×3 stochastic matrix whose

rows and columns are indexed by the numbers {2, 3, 5}.
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Proposition 4.4. Let A be a substochastic matrix and let {C1, C2, C3} be a partition of

the state space into nonempty sets such that the stochastic complement S(C1) exists.

Then, S(C1) can be obtained via two stochastic complements by removing first C2 and

then C3. That is,

A \ (C2 ∪ C3) = (A \ C2) \ C3.

Proof Express A as

A =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,

where Aij = A(Ci, Cj). We perform the inverse calculation

(I − A(C2 ∪ C3))−1 =

 I − A22 −A23

−A32 I − A33


−1

=

 X−1 +X−1A23Y
−1A32X

−1 X−1A23Y
−1

Y −1A32X
−1 Y −1

 ,
where

X = I − A22 and Y = I − A33 − A32X
−1A23.

So, the stochastic complement is S(C1) =
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A11 +

[
A12 A13

] X−1 +X−1A23Y
−1A32X

−1 X−1A23Y
−1

Y −1A32X
−1 Y −1


 A21

A31



= A11 + A12X
−1A21

+ A12X
−1A23Y

−1A32X
−1A21

+ A12X
−1A23Y

−1A31

+ A13Y
−1A32X

−1A21

+ A13Y
−1A31.

If we first remove C2 via a stochastic complement we obtain

A \ C2 =

 A11 A13

A31 A33

+

 A12

A32

 (I − A22)−1

[
A21 A23

]

=

 A11 + A12X
−1A21 A13 + A12X

−1A23

A31 + A32X
−1A21 A33 + A32X

−1A23

 .
Note that the lower-right diagonal block is I − Y . Then, removing C3 (which corre-

sponds to the lower-right block) obtains (A \ C2) \ C3 =
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A11 + A12X
−1A21 +

(
A13 + A12X

−1A23

)
Y −1

(
A31 + A32X

−1A21

)
;

expansion of this expression shows that it is equal to S(C1) = A \ (C2 ∪ C3).

Corollary 4.5. Let A be a substochastic matrix with state space S and let C ⊆ S

be a collection of states that does not contain an entire essential class. Then, the

stochastic complement A \ C can be formed by removing the states i ∈ C, one at a

time, via stochastic complements. That is, let C = {i1, . . . , ik}, let A(0) = A and for

s = 1, . . . , k let A(s) = A(s−1) \ is. Then, A \ C = A(k).

Removing a single state via a complement is a simple procedure, computationally.

Let A be a stochastic matrix with associated state space S, let i ∈ S and let C = S \i.

If we permute A so that

A ∼=

 B w

vT aii

 ,
where B = A(C), we have

S(C) = A \ i = B +
1

1− aii
wvT ,

where v and w are column vectors. Note that this complement exists if and only if

aii 6= 1.
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This corollary is of great utility in applications; determining whether or not I −

A(C) is nonsingular and then calculating its inverse can be a somewhat complex

computational task. However, it is unnecessary.

Suppose that we want to calculate the stochastic complement A\C, if possible. We

simply begin removing the states in C via complements one at a time. If we discover

at some point that an intermediate complement has sii = 1 (where i is the state we

intend to remove) we have determined that there is an essential class contained in C.

Moreover, we have identified one of its members – the final state we attempted to

remove.

Further, removing the states one at a time is essentially no more costly in a

computational sense. Suppose that there are n states and we are attempting to

calculate the complement which removes a subcollection of m states. Removing all

m states at once requires the calculation of an inverse of order m, then calculating

(n−m)2m vector products (the three-fold matrix product in the formula) and then

performing a matrix addition. Removing the states one at a time only requires m

scalar multiplications, vector products and matrix additions. Analysis shows that the

complexities of the two tasks are of the same order.

A stronger version of Proposition 4.6 is presented in [19]. The theorem presented

there is used to construct a very interesting algorithm that builds the stationary vector

for a stochastic matrix out of the stationary vectors of its stochastic complements.
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Proposition 4.6. Let A be a stochastic matrix with state space S and let C ⊆ S

be a collection of states such that the stochastic complement A \ C exists. Let π be

a left eigenvector of A corresponding to the eigenvalue 1. Then, π(S \ C) is a left

eigenvector of A \ C corresponding to the eigenvalue 1.

Proof Express A as and π as

A ∼=

 A11 A12

A21 A22

 and π ∼=

 π1

π2

 ,
where C1 = S \ C, C2 = C, Aij = A(Ci, Cj) and πi = π(Ci). We have

πT1 A11 + πT2 A21 = πT1 and πT1 A12 + πT2 A22 = πT2 .

Thus,

πT1 A11 = πT1 − πT2 A21 and πT1 A12 = πT2 (I − A22) .

Therefore

πT1 (A \ C) = πT1 A11 + πT1 A12 (I − A22)−1A21

=
(
πT1 − πT2 A21

)
+ πT2 (I − A22) (I − A22)−1A21

= πT1 − πT2 A21 + πT2 A21

= πT1 .
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Now, we need to show that π1 6= 0. Let E1, . . . , Em be the essential classes of states

contained in S. By Corollary 2.4, there is a basis of m eigenvectors,

{π1, . . . , πm},

for the left eigenspace of A corresponding to the eigenvalue 1 such that for all i ∈ S,

πk(i) 6= 0 if and only if i ∈ Ek. Since the vector π is an eigenvector, we have π 6= 0,

and so there is at least one essential class of states Ek such that π(i) 6= 0 for all i ∈ Ek.

By Corollary 2.7, Ek * C, and so we see that π(i) 6= 0 for at least one state i.

Proposition 4.7. Let A be a reversible substochastic matrix and let A\C be a stochas-

tic complement. Then, A \ C is reversible.

Proof Via Corollary 4.5, it is sufficient to show that if A is a reversible substochastic

matrix and aii 6= 1, then A\i is reversible, as well. Let A be a reversible substochastic

matrix with associated state space S. Let i ∈ S and suppose that aii < 1. Let Π be

a positive diagonal matrix such that ΠA is symmetric. Express

A ∼=

 B w

vT aii

 and Π ∼=

 Π1 0

0 πi

 ,
where B = A(S \ i) and Π1 = Π(S \ i) are the principal submatrices on C = S \ i.

Then, Π1B is symmetric and Π1w = πiv. We see that Π1(A \ i) is symmetric:
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(Π1(A \ i))T =
(

Π1B + 1
1−aiiΠ1wv

T
)T

= (Π1B)T + 1
1−aiiv

(
wTΠ1

)

= Π1B + 1
1−aii

(
1
πi

Π1w
) (
πiv

T
)

= Π1B + 1
1−aiiΠ1wv

T

= Π1(A \ i).

We cannot construct a converse of the above theorem without imposing further

conditions on A; it is possible that every proper stochastic complement of A is re-

versible but A itself is not reversible. For example, let

A =


0 1 0

0 0 1

1 0 0

 .

A necessary (but not sufficient) condition for A to be reversible is that aji 6= 0

whenever aij 6= 0; so the above A is not reversible. Yet, any proper stochastic

complement of A is equal to
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 0 1

1 0

 or

[
1

]
,

both of which are reversible stochastic matrices.

Proposition 4.8. Let A be a stochastic matrix with state space S and suppose that

the stochastic complement S(C) exists. Then,

1. for any i, j ∈ C, we have i ≺ j with respect to A if and only if i ≺ j with respect

to S(C), and

2. if E is an essential class with respect to A, then E ∩ C is an essential class with

respect to S(C).

Proof Let C1 = C and C2 = S \ C. Let i, j ∈ C1 and suppose there is a directed walk

i; j in the digraph associated with A. Such a directed walk can then be expressed

as

i = i0 ;C2 i1 ;C2 · · ·;C2 it = j

where each is ∈ C1. (The vertices is in the walk are simply those that are contained

in C1; these are then connected by directed walks through C2.) Via Proposition 4.3,

we have is ≺ is+1 with respect to S(C1) and so i ≺ j with respect to S(C1). As well,

it is clear that if i ≺ j under S(C1) then i ≺ j under A. The second statement is a

direct consequence of the first.
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Proposition 4.9. Let A be a stochastic matrix with state space S and suppose that

the stochastic complement S(C) exists. Then, the Markov chains associated with A

and S(C) possess the same number of essential classes, and the multiplicities of 1 as

an eigenvalue of the matrices A and S(C) are equal.

Proof Let E1, . . . , Em be the essential classes with respect to A and let E0 be the

collection of transient states. By Proposition 4.8, each Ek ∩ C is an essential class

with respect to S(C). We simply need show that the states contained in E0 ∩ C are

transient with respect to S(C).

Let i ∈ E0 ∩ C. Since i ∈ E0, there is a recurrent state j (with respect to A) such

that

i ≺A j, but j ⊀A i.

Let Ek be the essential class that contains j and let j′ ∈ Ek ∩ C. Then, j′ is recurrent

with respect to S(C),

i ≺S(C) j
′, and j′ ⊀S(C) i.

The state i must be transient with respect to S(C).

The fact that the multiplicities of 1 as an eigenvalue coincide is then a consequence

of Theorem 2.3.

Corollary 4.10 is a consequence of Propositions 4.6 and 4.9.
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Corollary 4.10. Let A be an irreducible stochastic matrix with state space S and

unique stationary distribution π. Let C ⊆ S be a nonempty collection of states and

let π̂ = π(S \ C). Then, A \ C is irreducible and has unique stationary distribution

equal to

1

π̂T1
π̂.

Proposition 4.11. Let A be a stochastic matrix with state space S and let C1 ⊆ S.

Then, the stochastic complement S(C1) is equal to the identity matrix if and only if

C1 consists of exactly one member from each essential class. Thus, there exists a

collection C2 ⊂ S such that A \ C2 = Im if and only if S contains exactly m distinct

essential classes of states.

Proof Let C1 consist of one member from each essential class with respect to A; let

m be the number of essential classes. Then, S(C1) has a state space of order m and

m distinct essential classes. Clearly, we must have S(C1) = Im.

Conversely, if S(C1) = Im then S contains m essential classes, with respect to A

and C1 contains at least one member from each. However, we have |C1| = m and so

C1 contains exactly one member from each essential class.

In Appendix G we summarise many of the important properties of the stochastic

complement. We have included this summary for quick reference, as these properties

will appear repeatedly in later sections (especially Appendices A and B).
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4.2.1 Schur complements

Let M be a square complex matrix with index set S and let (C1, C2) be a partition

of S. Express

M ∼=

 M11 M12

M21 M22

 ,
where Mij = M(Ci, Cj). If the matrix M22 is nonsingular, the Schur complement of

M22 in M is defined to be the matrix

M/M22 = M11 −M12M
−1
22 M21.

An extensive survey of the Schur complement appears in [25].

Suppose that the matrix M , as above, is nonsingular and express M−1 = [M̃ij]

(that is, M̃ij = M−1(Ci, Cj)). If M22 is nonsingular, then M̃11 is nonsingular, as well,

and

M/M22 = M̃−1
11 .

It is important to note that if M is singular, the Schur complement of M22 in M may

still exist – the above formula is simply a property that holds in the invertible case.

The following well-known formula relates the Schur complement to the determi-

nant of a matrix: let M be a square complex matrix and let N be a nonsingular

principal submatrix of M ; then,
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det(M) = det(N) det(M/N)

([14, Section 0.8.5]).

In [19], the following relationship between the Schur complement and the stochas-

tic complement is noted. Let A be a substochastic matrix on the state space S and

let C ⊆ S be such that the stochastic complement S(C) exists. Let C1 = C, C2 = S \C

and, for i, j ∈ {1, 2}, let Aij = A(Ci, Cj). Then,

S(C) = A \ C2

= A11 + A12(I − A22)−1A21

= I − ((I − A11)− A12(I − A22)−1A21)

= I − (I − A)/(I − A22).

This is the inspiration for our own notation for the stochastic complement; when

A is substochastic and C does not contain an entire essential class,

A \ C = I − (I − A)/(I − A(C)).

We have expressed the stochastic complement with set difference notation to empha-

sise our use of the concept. In this work, the stochastic complement is a method of

deleting states from a Markov chain – a stochastic complement A \ C corresponds to

a Markov chain obtained removing or “ignoring” the collection of states C.

Many of the properties of the stochastic complement can be derived from known

properties of the Schur complement. For example, Proposition 4.4 can be obtained
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from the well-known quotient property of the Schur complement (discussed in [6]).

We have, however, included proofs of every statement in order to achieve a better

understanding of these properties.

4.3 Convergence of nearly uncoupled Markov chains

We discuss the effects that the property of being nearly uncoupled can have on

the convergence of a nearly uncoupled Markov chain to its stationary distribution.

Let X be an irreducible Markov chain on the state space S with transition matrix

A. Via the Perron-Frobenius Theorem and Theorem 2.3, 1 is a simple eigenvalue of

A.

We say that the Markov chain is periodic if S can be partitioned into collections

C1, . . . , Cp such that if xt ∈ Ck then, necessarily, xt+1 ∈ Ck+1 (with the convention that

Cp+1 = C1). This occurs if and only if for all k and l such that l 6≡ k + 1 (modulo p),

we have A(Ck, Cl) = 0; that is, if

A ∼=



0 A11

. . . . . .

. . . Ap−1,p

Ap1 0


where the diagonal 0-blocks are square and the unspecified blocks are 0, then the

Markov chain associated with X is periodic.
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It is known that the following are equivalent, given that X and its transition

matrix A are irreducible:

1. The Markov chain X is periodic.

2. The matrix A has an eigenvalue λ 6= 1 such that |λ| = 1.

3. There is k ≥ 2 such that Ak is reducible.

4. There is a nonnegative vector v such that the sequence

vT , vTA , vTA2 , . . .

fails to converge.

The above set of statements is derived from theorems found in [12, Chapter 8], [14,

Chapter 8] and [23, Chapter 4]. We refer to X as aperiodic if it is not periodic.

Let X be an aperiodic irreducible Markov chain on the state space S, let A be

the associated stochastic matrix and let v be the initial distribution:

vi = P [x0 = i] .

In contrast to item number 4, above, the fact that X is aperiodic implies that

lim
t→∞

vTAt = πT .

That is, for sufficiently large t,
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Pv [xt = i] ≈ πi = Pπ [xt = i] .

This may be used as a method to approximate the stationary distribution of a given

stochastic matrix. One chooses an arbitrary nonnegative vector v = v(0) and then

iterates (v(t+1))T = (v(t))TA. When the value ‖v(t)−v(t−1)‖ becomes sufficiently small,

v(t) is an approximation of the stationary distribution (usually utilising the euclidean

2-norm or the ∞-norm). However, in general, other methods are typically employed

– for example, Gaussian elimination or various factorisations of the matrix A.

This method can be used even if the Markov chain is periodic. An irreducible

stochastic matrix A with a nonzero diagonal entry must be associated with an aperi-

odic Markov chain (above we noted that a periodic stochastic matrix is permutation-

similar to one where the diagonal blocks are 0). So, if X is periodic and irreducible

and has transition matrix A, the Markov chain X̃ associated with Ã = (1−a)I+aA,

where 0 < a < 1, is aperiodic and irreducible. Moreover, Ã has the same stationary

distribution as A.

If the Markov chain is nearly uncoupled with respect to ε, this convergence to

the stationary distribution can be very irregular. Suppose that A is an irreducible

reversible stochastic matrix and that A is nearly uncoupled with respect to ε. Let

λsup = max
λ∈σ(A)\1

{|λ|}

91



(where σ(A) is the set of eigenvalues of A). As in the discussion concerning the

Perron cluster approach, we note that A has an eigenvalue λ with 1− 2ε ≤ λ < 1; so,

λsup ≥ 1− 2ε. Let π be the stationary distribution of A and let

α =
max{√πi}
min{√πi}

.

We note that α ≥ 1 and, without any further assumptions concerning A, there is no

upper bound on the value of α.

Let v be a nonnegative vector with vT1 = 1 and, for each t ≥ 1, let v(t) = (vTAt)T .

In [4, Section 1.5], it is shown that

∥∥v(t) − π
∥∥

2
≤ λtsα.

This bound on the convergence can be insufficient for practical purposes. We have

λtsα ≥ (1− 2ε)tα;

for small values of ε, the convergence (1− 2ε)t → 0 is slow (and it is entirely possible

that the value α is very large).

In [23, Chapter 4], it is shown that if A is not reversible, a similar bound can be

produced. We will focus on the reversible case here because the estimates for α and

λsup in the nonreversible case are more involved and less precise.

When the value λsup, described above, is very small, the Markov chain is referred

to as fast-mixing. In a fast-mixing Markov chain, the convergence of the sequence
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{vTAt} to the stationary distribution is very rapid. A fast-mixing Markov chain is

necessarily aperiodic and cannot be nearly uncoupled, as every eigenvalue λ 6= 1 of

the transition matrix has |λ| small.

In the research concerning the Perron cluster approach, the authors assume that

even though the Markov chain itself is not fast-mixing, it is fast-mixing within each

almost invariant aggregate. (As we noted above, in [7, 8], it is assumed that the

number of eigenvalues near to 1 is exactly equal to the number of almost invariant

aggregates and that the remaining eigenvalues are bounded in absolute value.)

A behaviour of nearly uncoupled Markov chains that can further complicate the

convergence to the stationary distribution is examined in [19]. We summarise only

the primary result, referred to as short-run stabilisation; see [19] for a full exposition.

Let

A =


A11 Aij

. . .

Amm


be an irreducible, reversible and aperiodic stochastic matrix where γAkk ≤ ε1 for all k;

let S be the associated state space and, for each k, let Ek be the states corresponding

to Akk. For k = 1, . . . ,m, let

Sk = S(Ek) = A \ (S \ Ek)

be the stochastic complement of Ek. (That is, Sk is obtained by removing each i /∈ Ek
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via a stochastic complement.) Let

µsup = max
1≤k≤m

max
λ∈σ(Sk)\1

{|λ|}

be the maximum absolute value among the eigenvalues λ 6= 1 of of the stochastic

complements Sk. Let

πT =

[
a1π̂

T
1 · · · amπ̂

T
m

]
be the stationary distribution of A, expressed so that akπ̂k = π(Ek) and ak = π(Ek)T1.

Thus, for all k, π̂Tk 1 = 1. Let v be a nonnegative vector such that vT1 = 1. For t ≥ 1,

let v(t) = (vTAt)T ; we express

vT =

[
b1v

T
1 · · · bmv

T
m

]
and (v(t))T =

[
b

(t)
1 (v

(t)
1 )T · · · b

(t)
m (v

(t)
m )T

]
,

again, so that vTk 1 = 1 and (v
(t)
k )T1 = 1 for all k and t. Finally, let

π̃T =

[
b1π̂

T
1 · · · bmπ̂

T
m

]
We emphasise that π̃ 6= π (in general).

Now, via our assumptions and previous discussion, we have v(t) → π as t → ∞.

Thus, b
(t)
k → ak and v

(t)
k → π̂k as t→∞, for all k.

The problem that occurs in short-run stabilisation is that the convergence of

v
(t)
k → π̂k can be much faster than the convergence of b

(t)
k → ak. This can cause the

vector π̃ to act as a sort of pseudo-limit for the sequence {v(t)}, for the initial part of

the sequence. Specifically, in [19], it is shown that
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∥∥v(t) − π̃
∥∥
∞ ≤ εt+ αµtsup,

and that this bound can be very close to the actual value of ‖v(t) − π̃‖∞. The

assumption that A is reversible allows us to use the value

α =
max{√πi}
min{√πi}

.

If A is not reversible, a slightly more complicated formula for α, which still satisfies

α ≥ 1, is used.

The function

f(t) = εt+ αµtsup

is unbounded as t→∞. However, if µsup is sufficiently small, f(t) is, correspondingly

small for the initial tail of the sequence (small values of t). Thus, in calculating an

estimate of the stationary distribution via the power method above, one may see the

values ‖v(t) − v(t−1)‖∞ become very small well before the values ‖v(t) − π‖∞ do so.
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Chapter 5

An algorithm for constructing almost

invariant aggregates of a reversible

Markov chain

We present the first of a collection of algorithms that attempt to construct almost

invariant aggregates in the state space of a reversible Markov chain.

5.1 The maximum entry algorithm

Let A be a stochastic matrix on the state space S and let C ⊆ S be such that the

stochastic complement Â = A \ C exists. Recall that the state space of Â is defined

to be S \ C. For example, let S = {1, 2, 3, 4, 5} and C1 = {2, 3}. Then, the matrix

Â = A \ C1 is expressed as
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Â =


â11 â14 â15

â41 â44 â45

â51 â54 â55

 .

In this manner, the entries aij and âij represent the probability of transitioning be-

tween the same two states in two different Markov chains. As well, it allows for a

simpler expression of successive stochastic complements. For example, let S and C1

be as above and let C2 = {1}. Then, the stochastic complement

Ã = A \ (C1 ∪ C2)

is expressed as

Ã =

 ã44 ã45

ã54 ã55


and satisfies Ã = Â \ C2.

Typically, mathematical software (such as MatLab) does not include such a struc-

ture. The indices of a matrix of order m in storage are forced to be the collection

{1, . . . ,m} (or, occasionally, {0, . . . ,m − 1}). It is somewhat straightforward to im-

plement the index assignment described above. Let A be a stochastic matrix of order

n and let

z =

[
1 2 · · · n

]
.

97



Let 1 ≤ i ≤ n and express

A =


A11 v1 A12

wT1 aii wT2

A21 v2 A22

 and z =

[
zT1 i zT2

]
.

Then, we define

Â = A \ i =

 A11 + 1
1−aiiv1w

T
1 A12 + 1

1−aiiv1w
T
2

A21 + 1
1−aiiv2w

T
1 A22 + 1

1−aiiv2w
T
2

 and ẑ = z \ i =

[
zT1 zT2

]
.

Then, the jth state of Â corresponds to the zjth state of A. Similarly, if C ⊆ {1, . . . , n}

is some collection of states such that the stochastic complement Â = A \ C exists, we

define

ẑ = z \ C = [i]i/∈C .

Then, the kth index of Â corresponds to the ẑkth index of A (if we do not alter the

order of the indices z \ C).

The maximum entry algorithm produces as an output a digraph G. We do not

examine any specific implementation of the data structure of a digraph. We will

simply presume that a digraph is stored as a list of ordered pairs,

{(i1, j1), . . . , (ir, jr)},

where the directed arc i → j is present in G if and only if (i, j) = (is, js) for some

s ∈ {1, . . . , r}. We will explore below how this digraph will assist us in constructing

almost invariant aggregates of the Markov chain in question.
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As is usual in writing pseudocode, we will use the convention that commands of

the form x := y are to be interpreted as

1. calculate y, then

2. replace x, in storage, with y.

For example x := x + 1, increases the value of the variable x by 1. If the variable x

has not yet been initialised, the first implementation of a command of the form x := y

initialises x to be equal to y. We will use the symbol = as a Boolean functional; i.e.

the statement x = y returns true if x and y are equal and false otherwise.

The inputs of the maximum entry algorithm are a stochastic matrix A on a finite

state space S and a nonnegative value δ < 1.

Algorithm 3 The maximum entry algorithm

B := A
Let G be the digraph on S that, initially, contains no arcs.
C := ∅
while the order of B is 2 or greater do

Let i, j ∈ S \ C be such that i 6= j and bij = max
j′ 6=i′
{bi′j′}.

if bij ≤ δ then
Exit the while loop.

else
Add the directed arc i→ j to G.
B := B \ i
C := C ∪ {i}

end if
end while
return G

Let A be a stochastic matrix and suppose that we have applied Algorithm 3 to A.
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We refer to each execution of the three commands following the else statement as an

iteration of the algorithm. Let r be the number of iterations of the algorithm before

terminating. For 0 ≤ s ≤ r, we refer to the matrix B, the digraph G and collection

C in storage after s iterations as the stored data after the sth iteration. For s = 0,

the stored data after the sth iteration is simply B = A, C = ∅ and G equal to the

empty graph on S. Let n = |S|; we note that after the sth iteration, B has order

(n− s)× (n− s), C contains s states and G contains s directed arcs.

When the algorithm selects the states i 6= j such that bij is maximal, it is entirely

possible that this maximal value may be attained by multiple off-diagonal entries

of A. The maximum entry algorithm, as presented above, is nondeterministic, in

the sense that if the digraphs G1 and G2 are produced by Algorithm 3 with inputs

A1
∼= A2, it is not necessarily true that G1

∼= G2. We will assume that we have some

deterministic method of selecting the maximal off-diagonal entry; however, we will

not assume that this maximal off-diagonal value is unique or that the entry selected

by the algorithm possesses any other special properties.

Proposition 5.1. Let A be a stochastic matrix of order n and let δ < 1 be non-

negative. Then, Algorithm 3 (with inputs A and δ) will terminate after at most

n− 1 iterations. Moreover, after each iteration, the stored values of B and C satisfy

B = A \ C.

Proof The algorithm begins with B = A and each iteration of the algorithm reduces
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the order of B by 1; the algorithm terminates (without executing another any further

iterations) if the order of B is equal to 1. Thus, we need simply show that an iteration

of the algorithm produces a stochastic complement of A. We proceed by induction

on s, where s is the number of iterations completed by the algorithm.

For s = 0, we have B = A and C = ∅, implying that B ∼= A \ C.

Let s ≥ 0, let B and C be the stored data after s iterations; suppose that B = A\C.

Suppose further that the algorithm executes at least one more iteration after the sth

iteration. We will show that the stored data B′ and C ′ after the (s + 1)th iteration

satisfies B′ = A \ C ′.

Let i, j ∈ S \ C be such that the algorithm identifies bij as maximal at the start

of the (s + 1)th iteration. So, since the algorithm does not terminate at this point,

bij > δ ≥ 0. Thus, the fact that bii + bij ≤ 1 implies that

bii ≤ 1− bij < 1− δ < 1.

So, 1− bii > 0 and the stochastic complement

B \ i = (A \ C) \ i = A \ (C ∪ {i})

exists. The stored data after the (s + 1)th iteration is B′ = B \ i and C ′ = C ∪ {i}

and so the proposition holds.

Let A be a stochastic matrix on the state space S and let δ < 1 be nonnegative;

suppose that we have applied the maximum entry algorithm to A. Let r be the total

101



number of iterations completed by the algorithm before terminating, let s ≤ r and let

C be the stored collection after the sth iteration completes. In light of Proposition 5.1,

we refer to the collection C as the states removed during the first s iterations and the

collection S \ C as the states not yet removed after the sth iteration. For s = r, we

refer to C as the states removed by the algorithm and S \C as the states not removed.

5.2 The output of the maximum entry algorithm

A weakly connected component in the digraph G is an induced subgraph G(E)

such that either E = {i} where i is an isolated vertex, or

1. any directed arc in G that has at least one of its endpoints contained in E in

fact has both endpoints contained in E , and

2. if we partition E into any two nonempty disjoint sets {E1, E2}, there is at least

one directed arc present in G that has one endpoint contained in E1 and the

other endpoint contained in E2.

Equivalently a weakly connected component containing more than one vertex is an

induced subgraph G(E) that satisfies condition 1, above, and is maximal among such

induced subgraphs (it is not a proper subgraph of another induced subgraph satisfying

1). See [12, Section 2.6] for a discussion concerning weak connectivity.
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We propose that the weakly connected components of G, constructed by Algo-

rithm 3 are strong candidates for almost invariant aggregates of the matrix A.

The out-degree of a vertex i contained in a directed graph is the number of directed

arcs for which i is the initial vertex. Recall that we use the notation i ≺G j to represent

the fact that the digraph G contains a directed walk of length greater than or equal

to 1 with initial vertex i and terminal vertex j. A digraph is acyclic if it contains no

closed directed walks (a walk with initial and terminal vertices identical). That is, G

is acyclic if i ⊀G i for every vertex i.

Lemma 5.2. Let G be an acyclic digraph where every vertex has out-degree equal to 1

or 0. Then, for every vertex i with out-degree equal to 1 there is a unique vertex j with

out-degree equal to 0 such that i ≺G j. Further, there is a one-to-one correspondence

between the weakly connected components of G and the vertices with out-degree 0;

namely, every weakly connected component contains a unique vertex with out-degree

0.

Proof Let i be a vertex in G with out-degree equal to 1. So, i is the initial vertex of

at least one directed walk. Given our assumption that G is acyclic, there is an upper

limit to the length of directed walks in G, as no directed walk can contain the same

vertex multiple times. Let

ω = i→ i1 → · · · → il
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be a directed walk in G with maximal length l among the directed walks with i as

an initial vertex. The vertex il must have out-degree equal to 0; otherwise we could

construct a strictly longer walk. Further, every directed walk with initial vertex i

must be a subgraph of ω. (Since every out-degree is one or zero, there is only one

possible choice for i1, and then, if l ≥ 2, only one possible choice for i2, and so forth.)

Thus, the vertex il in ω is the unique vertex in G with out-degree 0 such that i ≺G j.

Now, let E be the vertex set of a weakly connected component in G. The collection

E contains at least one vertex, i. Either i itself has out-degree 0 or there is j with

out-degree 0 such that i ≺G j. When i ≺G j and i ∈ E we must have j ∈ E ; so,

E contains at least one vertex with out-degree 0. Let j1, . . . , jm be the vertices in E

with out-degree 0 and suppose that m ≥ 2. For k = 1, . . . ,m, let

Ek = {i ∈ E : i �G jk}.

Since each i with out-degree 1 cannot precede multiple vertices with out-degree 0,

these collections partition E . Since E is weakly connected, G must contain an arc

i → j where i ∈ Ek, j ∈ El and k 6= l. But this implies that i ≺G jk and i ≺G jl,

which is a contradiction. Thus, each weakly connected component in G contains a

unique vertex with out-degree 0.

Lemma 5.3. Let A be a stochastic matrix on the state space S and let δ < 1 be

nonnegative; suppose that we have applied Algorithm 3 with inputs A and δ. Let r be
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the number of iterations completed before termination, let 0 ≤ s ≤ r and let B, C and

G be the stored data after the sth iteration. Then, G is acyclic and every vertex has

out-degree equal to 1 or 0. Every member of C has out-degree 1 and every member of

S \ C has out-degree 0. Thus, the collection S \ C consists of one member of every

weakly connected component of G.

Proof Let n be the order of A; without loss of generality, we assume that S =

{1, . . . , n}. Relabel the states so that state n was removed at the first iteration of

Algorithm 3, state n−1 was removed second, and so forth. We will show, by induction

on s, that if the stored data after s iterations is C and G, then

1. C = {n, n− 1, . . . , n− s+ 1} (if s = 0, then C = ∅),

2. every member of C has out-degree 1 in G,

3. every member of S \ C has out-degree 0, and

4. every directed arc i→ j present in G has i > j.

(The fourth condition guarantees that G is acyclic.) For s = 0, the algorithm has

completed no iterations; so, the digraph G contains no arcs and C = ∅. The four

conditions clearly hold.

Let 1 ≤ s ≤ r and suppose that the statements hold for s′ = s− 1. We will show

their truth for the stored data C and G after s iterations, as well. Let C ′ and G′ be
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the stored data after s′ iterations. State i = n− s + 1 = n− s′ is the state removed

during the sth iteration; so, the directed arc i→ j added to G′ to form G must have

j ∈ (S \ C ′) \ {i} = S \ {n, n− 1, . . . , n− s+ 1} = {1, . . . , n− s}.

Therefore, the directed i → j added to G′ to form G has i > j. This, together with

the fact that every directed arc i′ → j′ present in G′ has i′ > j′, implies that every

directed arc i′ → j′ in G has i′ > j′.

The addition of the directed arc i → j increases the out-degree of i by one and

leaves every other out-degree fixed. We have C = C ′ ∪ {i} and i ∈ S \ C ′.

Let i′ ∈ C. If i′ = i, then i′ ∈ S \ C ′ implies that i′ has out-degree 0 in G′ and

i′ = i further implies that i′ has out-degree 1 in G. If i′ 6= i, then i′ ∈ C ′ and i′ has

the same out-degree in G as in G′ (namely, 1).

Let i′ ∈ S \ C, then, since S \ C ⊆ S \ C ′ and i′ 6= i, i′ has out-degree 0 in G′ and

equal out-degree in G.

The concluding statement, that S \ C consists of one member of every weakly

connected component of G, is a direct consequence of Lemma 5.2.

Let X be a Markov chain with state space S and transition matrix A; suppose

that X is nearly uncoupled with respect to ε. Recall that an ε-uncoupling of X (and

A) is a partition Ψ = {E1, . . . , Em, E0} of S where

1. m ≥ 2,
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2. for k 6= 0, Ek is a minimal almost invariant aggregate with respect to ε,

3. the collection E0 is allowed to be empty, and

4. when it is nonempty, E0 does not contain any almost invariant aggregates as

subsets.

When E0 is nonempty we refer to its member states as near transient states. Near

transient states are states that are rarely visited by the Markov chain.

Let the digraph G be formed by an application of Algorithm 3 to A; let the arc

i → j be present in G. Then, the maximum entry algorithm, at some iteration,

constructed a stochastic complement A \ C such that the ijth transition probability

was maximal. That is, there is a collection C ′ ⊆ S (namely C ′ = S \ C) such that

whenever the Markov chain visits state i, the member of C ′ that it is most likely to

visit next is j. Suppose that i ∈ E where E is an almost invariant aggregate. It seems

reasonable to conclude that either E ∩ C ′ = {i} or that j ∈ E (the state most likely

to be visited after visiting i should be a member of the almost invariant aggregate

containing i).

The above reasoning suggests the following conclusion: if i ∈ Ek for some k 6= 0,

then j ∈ Ek, as well (simply because transitions that exit an almost invariant aggregate

are relatively rare). Thus, we suspect that for every arc i → j, present in G, either

i ∈ E0 or i, j ∈ Ek for some k 6= 0.
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Moreover, let j1, . . . , jm be the states not removed by the algorithm. Then, during

its final iteration, the maximum entry algorithm constructs the stochastic complement

B = S({j1, . . . , jm})

and the off-diagonal entries of this matrix are found to be each less than or equal to

δ. Thus, if δ is well-chosen, we suspect that any two of these states are not contained

in the same almost invariant aggregate, as transitions between these states seem to

have a small chance of occurring.

Proposition 5.4. Let X be a nearly uncoupled Markov chain on the state space S

and let Ψ = {E1, . . . , Em, E0} be an ε-uncoupling of X. Let G be an acyclic digraph

with vertex set S and suppose that

1. every vertex in G has out-degree equal to 1 or 0,

2. for every directed arc i→ j present in G, either i, j ∈ Ek where k 6= 0, or i ∈ E0,

and

3. if i and j are states with out-degree 0 in G, then there is no Ek where k 6= 0

that contains both i and j.

Let E be the vertex set of a weakly connected component of G and let j ∈ E be the

unique member of E with out-degree equal to 0. Then, either E ⊆ E0 or

Ek ⊆ E ⊆ Ek ∪ E0 and j ∈ Ek
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for a unique k 6= 0.

Proof Let E be the vertex set of a weakly connected component of G. We will show

that if E * E0, then there is a unique k 6= 0 such that

Ek ⊆ E ⊆ Ek ∪ E0.

Suppose that E * E0. Since Ψ forms a partition of S, there is k 6= 0 such that

E ∩ Ek is nonempty; let i ∈ E ∩ Ek. As well, let j be the unique member of E with

out-degree equal to 0 (such a j exists via Lemma 5.2).

Whenever the arc i′ → j′ is present in G, we have either i′, j′ ∈ Ek′ for some k′ 6= 0

or i′ ∈ E0; this implies that whenever i′ ≺G j′ then either i′, j′ ∈ Ek′ for some k′ 6= 0

or i′ ∈ E0.

So, we have i ≺G j (again, via Lemma 5.2) and i ∈ Ek where k 6= 0; thus, j ∈ Ek.

For every other member i′ ∈ E , we have i′ ≺G j and so every member of E is contained

in either Ek or E0. That is,

E ⊆ Ek ∪ E0.

Now, suppose that there is another weakly connected component E ′ of G, distinct

from E , such that E ′ ∩ Ek is nonempty. Then, as above, the unique member j′ ∈ E ′

with out-degree equal to 0 is contained in Ek. So, this supposition implies that Ek

contains two states, j and j′, with out-degree equal to 0. This contradicts the third

assumption in the statement and so the weakly connected component E is the only
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weakly connected component that intersects Ek. The weakly connected components

of a digraph form a partition of its vertices; so, since Ek has a nonempty intersection

with only one weakly connected component, E , it must be that Ek ⊆ E .

So, we have shown that for each weakly connected component E , there is k 6= 0

such that

Ek ⊆ E ⊆ Ek ∪ E0.

Since the collections Ek are disjoint, this must be satisfied for exactly one almost

invariant aggregate Ek.

We emphasise that we are unable to show, in general, that the output of the

Maximum entry algorithm satisfies the assumptions of Proposition 5.4. Below, we

show that this holds for ε = 0; for positive values of ε it is straightforward to construct

examples that “fool” the algorithm (see, for example, Appendix D). However, it seems

entirely reasonable to assume that the assumptions hold for most of the arcs and

states in such an output. Thus, we suspect that, when the input δ is well-chosen, the

weakly connected components of the output of Algorithm 3 consist largely of states

from one almost invariant aggregate together with some collection of near-transient

states. Experiments (see Appendix C) seem to reinforce this supposition.
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5.2.1 Direct calculation of the output aggregates

We have structured our algorithm to output a digraph as this digraph then con-

tains interesting topological information about the related Markov chain. Whenever

there is a directed path i; j of small length in the output digraph, we suspect that

the states i and j are closely linked in the associated Markov chain. In Appendix C

we explore an idea we refer to as recursive subaggregating which attempts to take

advantage of this information to produce a stronger output. However, it may be that

the only information of interest to the user is the vertex sets of the weakly connected

components. It is very simple to alter our pseudocode so that this simpler output is

produced.

We replace the initialisation of the digraph G with the following command

Let B = ({1}, {2}, . . . , {n}) .

Each of the commands to add a directed arc i→ j to G is then replaced with the

command

Bj := Bj ∪ Bi.

Via induction, we can see that after each iteration of the algorithm,

Bj = {i : i �G j}

(if we had been constructing the digraph G as usual).
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Upon termination, the algorithm returns the collection {Bj}j /∈C, where C is the

collection of states removed, via stochastic complements. By Lemma 5.3, these are

the vertex sets of the weakly connected components, had we used the original imple-

mentation.

5.3 Near transient states

We explore the effect that the presence of near transient states can have on the

algorithms which utilise the stochastic complement.

Proposition 5.5. Let A be a nearly uncoupled stochastic matrix with respect to ε and

let Ψ = {E1, . . . , Em, E0} be an ε-uncoupling. Let k 6= 0 and let C be a collection of

states disjoint from Ek such that the stochastic complement Â = A \ C exists. Then,

Ek is an almost invariant aggregate of the Markov chain associated with Â. Thus, if

C ⊆ E0, then for all k 6= 0, Ek is an almost invariant aggregate of the Markov chain

associated with Â.

Proof Let k 6= 0 and express

A ∼=


A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,

where the first position corresponds to Ek, the second to C and the third to the
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remainder of the state space. The principal submatrix of Â = A \ C corresponding to

Ek is

Â(Ek) = A11 + A12(I − A22)−1A21.

The necessary and sufficient condition for Ek to be an almost invariant aggregate is

that the sum of the entries in each row of the principal submatrix corresponding to

Ek is at least 1 − ε. Thus, since Â(Ek) ≥ A11, if A111 ≥ (1 − ε)1 then we also have

Â(Ek)1 ≥ (1− ε)1.

Thus, we consider near transient states to be “safe” to remove, in that their

removal, via stochastic complements does not affect the basic uncoupled structure of

the stochastic matrix involved.

Furthermore, the addition of near transient states to an almost invariant aggregate

does not, in general, alter the fact that transitions into and out of that collection rarely

occur.

For example, consider the reversible stochastic matrix

A =


1− ε 0 ε

0 1− ε2 ε2

1− ε ε 0

 .

The unique stationary distribution of A is

π =
1

2

[
1− ε 1 ε

]T
.
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The unique ε-uncoupling of A is into the almost invariant aggregates E1 = {1} and

E2 = {2} and near transient collection E0 = {3}. The π-coupling measures of E1 and

E2 are 1− ε and 1− ε2, respectively.

We note that a31 > a32 and a13 > a23 – if state 3 is to be associated with either of

states 1 or 2 it seems that it should be with state 1. However, consider the π-coupling

measures associated with the collections C1 = {1, 3} and C2 = {2, 3}:

wπ(C1) =
π1(a11 + a13) + π3(a31 + a33)

π1 + π3

= 1− ε2

and wπ(C2) =
π2(a22 + a23) + π3(a32 + a33)

π2 + π3

=
1 + ε2

1 + ε
= 1− ε+

2ε

1 + ε
.

So, adding the near transient state 3 to the almost invariant aggregate E1 increases

the associated π-coupling measure by ε − ε2, creating a slightly stronger almost in-

variant aggregate. Adding state 3 to the almost invariant aggregate E2 increases the

π-coupling measure by

−ε+ ε2 +
2ε

1 + ε
=
ε+ ε3

1 + ε
,

again slightly strengthening the almost invariant property. The difference between

these two slight increases is, itself, insignificant:∣∣∣∣ε+ ε3

1 + ε
− (ε− ε2)

∣∣∣∣ =
2ε3

1 + ε
.

If the near-transient state 3 is added to either of the almost invariant aggregates it

does not alter the fact that they are almost invariant aggregates, with respect to the
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π-coupling measure, and it makes very little difference which aggregate it is added

to.

So, to a certain extent, we are unconcerned with the assignment of near-transient

states to aggregates by the maximum entry algorithm. As long as members of distinct

almost invariant aggregates are correctly assigned to different weakly connected com-

ponents of the digraph, the long-term predictive power of the produced aggregates

will still be accurate.

5.4 A note concerning Appendices A and B

In Appendix A we prove the following proposition.

Proposition 5.6. Let B be an irreducible reversible substochastic matrix of order m

such that γB ≤ ε1. Let Π be a positive diagonal matrix such that ΠB is symmetric

and let i be such that

πi = max{πj}.

Then,

[α] = B \ {j : j 6= i}

satisfies

α ≥ (1− ε)2

1 + (m− 2)ε
.
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Now, suppose that A is a reversible stochastic matrix on the state space S and

suppose that E ⊆ S is an almost invariant aggregate with respect to ε. Let C ⊆ S be

such that Ã = A \ C is well defined and such that E \ C contains only one state, say

E \ C = {i}. Let B = A(E) and consider the following calculation of ãii. Express

A ∼=



aii vT1 vT2 vT3

w1 A11 A12 A13

w2 A21 A22 A23

w3 A31 A32 A33


where the first position corresponds to i, the second to

C1 = C ∩ E = {j ∈ E : j 6= i},

the third to C2 = C \ E and the fourth to the remainder of the state space. We note

that

B = A(E) ∼=

 aii vT1

w1 A11

 and B \ C1 = [aii + vT1 (I − A11)−1w1].

We form the stochastic complement A \ C by first removing C1 and then removing C2

(Proposition 4.4). We calculate

A \ C1
∼=


aii vT2 vT3

w2 A22 A23

w3 A32 A33

+


vT1

A21

A31

 (I − A11)−1

[
w1 A12 A13

]
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=


aii + vT1 (I − A11)−1w1 ṽT2 ṽT3

w̃2 Ã22 Ã23

w̃3 Ã32 Ã33

 =


α ṽT2 ṽT3

w̃2 Ã22 Ã23

w̃3 Ã32 Ã33

 ,

where

[α] = B \ C1 = B \ {j ∈ E : j 6= i}.

Thus, when we form the stochastic complement Â = A \ C = Ã \ C2, the iith entry of

Â is

âii = α + ṽT2 (I − Ã22)−1w̃2 ≥ α.

So, our above proposition provides a lower bound for the iith entry of A\C, in the case

that i is a member of E with maximal value (among members of E) in the stationary

distribution of A:

âii ≥
(1− ε)2

1 + (m− 2)ε
,

where m = |E|.

We will make extensive use of this lower bound in later sections. In the next

section, we use this lower bound to show that our Maximum Entry Algorithm avoids

a particular type of error, if the input value δ is well-chosen. Later in this chapter,

we make use of this lower bound to produce the Modified Maximum Entry Algorithm
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(Algorithm 4). The Modified Maximum Entry Algorithm attempts to avoid errors

without having to fine-tune the input value δ.

In Appendix B we attempt to find a similar lower bound, concerning the nonre-

versible case. We prove the following proposition.

Proposition 5.7. Let B be an irreducible substochastic matrix on the state space E,

of order m, such that γB ≤ ε1. For each i ∈ E, let

B \ {j : j 6= i} = [α(i)].

Then, there is a positive sequence β(j) on E such that

∑
j∈E

β(j) = 1 and
∑
j∈E

α(j)β(j) ≥ (1− ε)m.

We are unable to characterise those states (in the above proposition) that have

α(i) ≥ (1−ε)m; however, there must be at least one and, on average, the states satisfy

this inequality.

We make use of this lower bound to construct an algorithm for use on nonreversible

Markov chains – the Minimum Column Algorithm (Algorithm 10 in Chapter 6).

We have placed the calculations of these lower bounds in the appendices as the

proofs are somewhat involved.
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5.5 The removal of an almost invariant aggregate

There are a number of errors that the maximum entry algorithm may make in

decoupling a particular matrix A. For example, the digraph G may contain an arc

i→ j where i and j belong to disjoint almost invariant aggregates. We show that if

the input value δ is well-chosen, there is one particular type of error that the algorithm

will not make.

Lemma 5.8. Let 0 ≤ ε < 1. The function

f(m) =
ε(m− ε)

1 + (m− 2)ε
,

where m is a positive integer, is increasing in m. We further note that 0 ≤ f(m),

f(m) ≤ mε and that f(m) < 1, for m ≥ 1.

Proof We simply take the derivative of the function f(z):

df

dz
=
ε (1 + (z − 2)ε)− ε2(z − ε)

(1 + (z − 2)ε)2 =
ε(1− ε)

(1 + (z − 2)ε)2 ≥ 0.

The assumption that m ≥ 1 implies that f(m) is increasing in m.

If ε = 0, then f(m) = 0, and the three inequalities hold. So, suppose that

0 < ε < 1. Then, z ≥ 1 implies that

df

dz
> 0

(since ε(1− ε) > 0). We have
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f(1) =
ε(1− ε)

1− ε
= ε > 0

and

lim
z→∞

ε(z − ε)
1 + (z − 2)ε

= lim
z→∞

εz − ε2

εz + 1− 2ε
= 1.

Thus, for 0 < ε < 1 and m ≥ 1, f(m) is strictly increasing in m, strictly bounded

below by 0 and bounded above by 1, which in turn imply that 0 < f(m) < 1.

Now, we show that if m ≥ 1 and 0 ≤ ε < 1, then

mε ≥ ε(m− ε)
1 + (m− 2)ε

.

First, we consider the case m = 1. Then,

ε(m− ε)
1 + (m− 2)ε

=
ε(1− ε)

1− ε
= ε = mε.

Next, suppose that m ≥ 2. Then, 0 < m− ε ≤ m and 1 ≤ 1 + (m− 2)ε. So,

ε(m− ε)
1 + (m− 2)ε

≤ ε(m− ε) ≤ εm.

Lemma 5.9. Let A be a reversible stochastic matrix on the state space S and suppose

that the digraph G was formed by an application of Algorithm 3. Let π be a stationary

distribution of A. For any i, j ∈ S, if i ≺G j then πi ≤ πj.
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Proof We show that for any directed arc i→ j present in G, we have πi ≤ πj. This

will clearly imply that if i ≺G j then πi ≤ πj.

Suppose that the directed arc i → j was added to G during the sth iteration

of the algorithm. Let C be the states removed during the first s − 1 iterations and

let B ∼= A \ C be the stored stochastic complement after the (s − 1)th iteration.

Since the arc i → j was added at iteration s, bij is maximal among the off-diagonal

entries of B and is not equal to 0. In particular, bij ≥ bji; as well, we note that

since B is reversible, we have bji > 0, thus bij ≥ bji > 0. Via Proposition 2.12 and

Corollary 4.10,

πibij = πjbji.

Thus, we either have πi = πj = 0 or

πi = πj
bji
bij
≤ πj.

Proposition 5.10. Let A be a nearly uncoupled reversible stochastic matrix with re-

spect to ε on the state space S. Let E ⊆ S be an almost invariant aggregate containing

m states. If

δ ≥ ε(m− ε)
1 + (m− 2)ε

,

then the maximum entry algorithm (with input δ) will not remove every member of

E.
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Proof First, suppose that m = 1. Then E = {i′} where ai′i′ ≥ 1− ε. Let Â = A \ C

be a stochastic complement where i′ /∈ C; then, âi′i′ ≥ ai′i′ ≥ 1− ε. As well, we have

δ ≥ ε(m− ε)
1 + (m− 2)ε

=
ε(1− ε)

1− ε
= ε.

Now, suppose that the algorithm has completed s iterations, forming the stochastic

complement Â and suppose further that it has not yet removed i′ (we may have s = 0

and Â = A). The maximum entry algorithm will remove i′ at the (s+ 1)th iteration

only if there is some j′ 6= i′, not yet removed, such that

âi′j′ = max
i 6=j
{âij}

and âi′j′ > δ. However, the fact that âi′i′ ≥ 1 − ε ≥ 1 − δ implies that for all j 6= i′,

we have

âi′j ≤ 1− âi′i′ ≤ δ.

So, no such j′ can exist. Therefore, if m = 1, the single member of E will not be

removed during any iteration of the algorithm.

We next assume that m ≥ 2. Since A is reversible, there is a positive diagonal

matrix Π such that ΠA is symmetric. Let

p = max
i∈E
{πi}

and let
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Emax = {i ∈ E : πi = p}.

Let the digraph G be formed by an application of Algorithm 3 with input

δ ≥ ε(m− ε)
1 + (m− 2)ε

,

where m = |E|.

We will show that any directed arc present in G that has its initial vertex contained

in Emax must also have its terminal vertex contained in Emax. Since G is acyclic, this

will imply that there is at least one member of Emax that has out-degree 0 in G.

By Lemma 5.3, such a state will be a member of E that was not removed by the

algorithm.

Suppose that the directed arc i′ → j′ was added to G during the sth iteration of

the while loop of Algorithm 3 and that i′ ∈ Emax. Via Proposition 2.12, Corollary 4.10

and Lemma 5.9, we have πi′ ≤ πj′ . Thus, if j′ ∈ E , then j′ ∈ Emax; so, we will merely

need to show that j′ ∈ E .

Let C be the collection of states removed during the first s − 1 iterations of the

while loop (if s = 1, C = ∅). If E ∪C = S, that is, if every member of S not contained

in E was removed during the first s− 1 iterations, then we must have j′ ∈ E . So, we

assume that S contains one or more states contained in neither E nor C.

Let CE = C ∩ E and let CẼ = C \ E . Let Â = A \ C be the stored stochastic

complement during the kth iteration and let Ã = A \ CẼ . We note that Â = Ã \ CE .
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We emphasise, at this point, that either (or both) of the collections CE or CẼ may be

empty. Thus, we may have Ã = A and/or Â = Ã.

As in the proof of Proposition 5.5, we have Ã(E) ≥ A(E). Thus, since E is an

almost invariant aggregate with respect to ε, we have

Ã(E)1 ≥ A(E)1 ≥ (1− ε)1.

We now consider two cases.

Case one. The collection CE is empty.

In this case, we have Â = Ã. Thus, the state i′ is the first member of E to be

removed. As noted above, we have

Â(E)1 = Ã(E)1 ≥ (1− ε)1.

Therefore, for all j /∈ E not yet removed by the algorithm, âi′j ≤ ε. Now,

δ ≥ ε(m− ε)
1 + (m− 2)ε

≥ ε(1− ε)
1− ε

= ε

(via Lemma 5.8 and the fact that m > 1). The fact that the directed arc i′ → j′ was

added at the sth iteration implies that âi′j′ > δ; so, we must have j′ ∈ E .

Case two. The collection CE is nonempty.

We will make use of Proposition A.14. This proposition is part of a set of proofs

found in Appendix A.

Let m′ = |CE | and note that m′ ≤ m − 1. Now, the principal submatrix of Â

corresponding to E \ C is
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Â(E \ CA) = Ã(E) \ CE .

Since i′ ∈ Emax, every state j ∈ CE has πj ≤ πi′ . By Proposition 2.12 and Corol-

lary 4.10, left-multiplying Ã(E) by the positive diagonal matrix Π(E) produces a

symmetric matrix. These facts, together with Proposition A.14, imply that the sum

of the entries in the row of

Ã(E) \ CE

corresponding to i′ satisfies

∑
j∈E\CE

âi′j ≥
(1− ε)2

1 + (m′ − 1)ε
.

Since m′ ≤ m− 1,

(1− ε)2

1 + (m′ − 1)ε
≥ (1− ε)2

1 + (m− 2)ε
.

If we suppose that j′ /∈ E , then we must have

âi′j′ ≤ 1−
∑

j∈E\C
âi′j

≤ 1− (1−ε)2
1+(m−2)ε

= ε(m−ε)
1+(m−2)ε

≤ δ.

As in case one, the assumption that the directed arc i′ → j′ was added during the

sth iteration implies that âi′j′ > δ. This contradicts the above conclusion – so, we

must have j′ ∈ E .
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Corollary 5.11. Let A be a reversible stochastic matrix that is nearly uncoupled with

respect to ε. Let Π be a positive diagonal matrix such that ΠA is symmetric. Let E be

an almost invariant aggregate of order m contained in the associated state space and

suppose that πi is constant for i ∈ E. Let δ < 1 satisfy

δ ≥ ε(m− ε)
1 + (m− 2)ε

and let the digraph G be formed by an application of the maximum entry algorithm with

inputs A and δ. Then, the algorithm will not remove every member of E. Moreover,

for any i ∈ E that is removed by the algorithm, the directed arc i → j present in G

has j ∈ E. That is, any states in E that are selected for removal by the algorithm will

be correctly associated with other members of E.

5.6 Continuity conditions concerning the maximum entry al-

gorithm

We present two results concerning the robustness of the maximum entry algo-

rithm. The results in this section are also true of the other stochastic complement

based algorithms we present in later sections; only slight modifications to the proofs

are required to show that the statements herein are true of all of our proposed al-

gorithms. This is in contrast to the results in the previous section – proving that

Proposition 5.10, or some similar statement, holds for our other algorithms does not
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seem possible without extensive further assumptions on the matrix involved.

5.6.1 Uncoupled stochastic matrices and the maximum entry

algorithm

First, we show that if the maximum entry algorithm is run on a stochastic matrix A

with input value δ = 0, then there is a one-to-one correspondence between the weakly

connected components of the output digraph and the essential classes of states of the

associated Markov chain.

Proposition 5.12. Let A be a stochastic matrix on the state space S. Let E1, . . . , Em

be the essential classes of states contained in the associated state space and let E0 be

the the collection of transient states. Let the digraph G be formed by an application

of Algorithm 3 with inputs A and δ = 0. Let E ⊆ S be a weakly connected component

of the digraph G; then, there is a unique k 6= 0 such that

Ek ⊆ E ⊆ Ek ∪ E0.

Remark. Let A, G, S and Ψ = {E1, . . . , Em, E0} be as above. The vertex sets of

the weakly connected components of G form a partition of S. The above proposition

informs us that there is a partition of E0 into {C1, . . . , Cm}, where the members Ck

may be empty, such that the weakly connected components of G are the induced

subgraphs on the collections Ek ∪ Ck.
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Proof In light of Proposition 5.4, we simply need to show that

1. for every directed arc i → j present in G, either i is transient or i and j are

contained in the same essential class of states, and

2. any two states with out-degree equal to 0 in G are contained in distinct essential

classes of states.

The second condition implicitly implies that any vertex with out-degree equal to 0 in

G is not a member of E0. When it holds, the unique member of a weakly connected

component E with out-degree 0 will not be contained in E0 and thus the vertex set of

a weakly connected component is not a subset of E0.

Let X be the Markov chain on S with transition matrix A. Recall that for i, j ∈ S,

we use the notation i ≺ j to represent that it is possible for the Markov chain to visit

first i and then, after 1 one or more transitions, j.

First suppose that the arc i→ j is present in G. Then, the algorithm constructed,

after some iteration, a stochastic complement of A with the ijth entry not equal to

0. By Proposition 4.3, we must have i ≺ j. If state i is recurrent, then i and j are

contained in the same essential class of states (see the proof of Theorem 1.7). So,

either i is transient (not recurrent) or i and j are contained in the same essential class

of states.

Now, let j1, . . . , jm′ be the members of S that have out-degree equal to 0. During

its final iteration, the algorithm constructed the stochastic complement
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B = S({j1, . . . , jm′})

and then terminated. Either B = [1] or every off-diagonal entry of B is less than or

equal to the input value δ. Since we are considering δ = 0, in either case

S({j1, . . . , jm′}) = I.

By Proposition 4.11, the collection {j1, . . . , jm′} consists of one member from each

essential class.

This result is, in a sense, the motivation for utilising the stochastic complement in

such a manner. Let A be a stochastic matrix on the state space S. An almost invariant

aggregate is a collection of states that is nearly essential. When the algorithm is run

with input δ = 0, it reduces A, via successive stochastic complements, to the identity

and produces a digraph on G where each directed arc represents a transition within

an essential class or beginning with a transient. When run with input δ > 0, but still

sufficiently small, the algorithm reduces A to a stochastic complement that is near

the identity. We then look to the digraph to construct candidate membership classes

for almost invariant aggregates.
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5.6.2 A continuity result concerning the maximum entry al-

gorithm

We show that if a Markov chain is sufficiently uncoupled, the Maximum Entry

Algorithm will produce accurate results.

We will make use of the ∞-norm on a matrix: given A ∈ Cm×n,

‖A‖∞ = max
1≤i≤m

{
n∑
j=1

|aij|

}
.

The ∞-norm is often referred to as the maximum absolute row sum. We note that

for all i and j,

|aij| ≤
∑
k

|aik| ≤ ‖A‖∞ .

So, for any two matrices A and B of the same order, |bij − aij| ≤ ‖B −A‖∞, for all i

and j.

Lemma 5.13. Let A be a stochastic matrix and let A \ C be a stochastic complement

of A. Then, there is an open neighbourhood of A over which the map

Ã 7→ Ã \ C

is defined and continuous.

Proof If A = I, then we must have C = ∅; in this case, the statement is trivial as

the described map is the identity.
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Assume that A 6= I and let β be the smallest positive value among the off-diagonal

entries of A. We show that the map

Ã 7→ Ã \ C

is continuous on the open set

B =
{
Ã :
∥∥∥Ã− A∥∥∥

∞
< β

}
.

Let Ã ∈ B. If aij > 0 and i 6= j, then we have aij ≥ β. So, for all i 6= j such that

aij 6= 0,

|ãij − aij| < β ≤ aij,

in which case ãij > 0. In other words, in any off-diagonal position where A is nonzero,

Ã is nonzero as well. Now, let i ∈ C. Since A \ C exists, C does not contain an entire

essential class of states, with respect to A. By Theorem 1.8, there must be a state

j /∈ C and a sequence

i = i0, i1, . . . , il = j

such that is 6= is+1 and aisis+1 > 0 for s = 0, . . . , l − 1. Thus, ãisis+1 > 0 for

s = 0, . . . , l− 1. So, C does not contain an entire essential class of states with respect

to Ã, either. Thus, the map

Ã 7→ Ã \ C
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is defined on the open set B. The entries of Ã \ C are rational functions of the entries

of Ã. A rational function is continuous on any set over which it is defined. Thus,

the given map is entrywise continuous over B. A (finite-dimensional) matrix function

which is entrywise continuous is continuous under the ∞-norm.

Recall that if A is a reversible substochastic matrix, then there is a positive di-

agonal matrix Π such that ΠA is symmetric. Moreover, if A is irreducible, such a

matrix is uniquely determined, up to multiplication by a positive constant.

Lemma 5.14. Let A be an irreducible reversible stochastic matrix and let Π be a

positive diagonal matrix such that ΠA is symmetric. Then, for any positive value ε,

there is a positive value δ such that if

1. Ã is a reversible substochastic matrix of the same order as A,

2. Π̃ is a positive diagonal matrix such that Π̃Ã is symmetric, and

3. ‖Ã− A‖∞ < δ,

then for all i and j,

∣∣∣∣ π̃iπ̃j − πi
πj

∣∣∣∣ < ε.

Proof If A has order 1, then the statement is trivial, as the value

∣∣∣∣ π̃iπ̃j − πi
πj

∣∣∣∣
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is nonzero only in the case that i 6= j. So assume that A is irreducible and of order

2 or greater; let β be the smallest positive value among the off-diagonal entries of A.

Suppose that

1. Ã is a reversible substochastic matrix of the same order as A,

2. Π̃ is a positive diagonal matrix such that Π̃Ã is symmetric, and

3. ‖Ã− A‖∞ < β.

Since Π̃Ã is symmetric, whenever i 6= j and ãij > 0, we have ãji > 0 and

π̃i
π̃j

=
ãji
ãij
.

As in the proof of Lemma 5.13, whenever aij > 0, we have ãij > 0; so, the matrix Ã

is irreducible. Let i 6= j; then, there is a sequence

i = i0, i1, . . . , il = j

such that is 6= is+1 and ãisis+1 > 0 for s = 0, . . . , l − 1. Thus,

π̃i
π̃j

=
π̃i0 π̃i1 · · · π̃il−1

π̃i1 π̃i2 · · · π̃il
=
ãi1i0 ãi2i1 · · · ãilil−1

ãi0i1 ãi1i2 · · · ãil−1il

.

So, the ratios π̃i/π̃j are continuous functions of the entries of Ã. There are only

finitely many such ratios, so for any ε > 0, there is δ ≤ β such that if Ã is reversible

and ‖Ã− A‖∞ < δ then for all i and j,
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∣∣∣∣ π̃iπ̃j − πi
πj

∣∣∣∣ < ε.

Proposition 5.15. Let

A ∼=


B1

. . .

Bm

 ,

where m ≥ 2 and each Bk is an irreducible reversible stochastic matrix. Let S be the

associated state space and for each k let Ek ⊆ S be the collection of states associated

with block Bk.

There are positive values δ and d such that for any reversible stochastic matrix Ã

on S with ‖Ã− A‖∞ < δ, the Maximum Entry Algorithm, with inputs Ã and d, will

return a digraph whose weakly connected components are the m induced subgraphs on

the collections Ek.

Proof If A = I, the claim is true simply by selecting δ = d. Suppose that ‖Ã −

I‖∞ < δ and that the digraph G is formed by an application of the Maximum Entry

Algorithm to Ã with input value δ. Since ‖Ã− I‖∞ < δ, we have ãij < δ for all i 6= j.

Thus, the algorithm terminates without adding a single arc to G.

So, suppose that A 6= I. Let Σ be the collection of subsets C ⊆ S such that
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1. the stochastic complement A \ C exists and

2. A \ C 6= I.

By Propositions 4.2 and 4.11, C ∈ Σ if and only if

1. for all k, Ek * C, and

2. for at least one k, |Ek \ C| ≥ 2.

We note that ∅ ∈ Σ.

Let

β = min
C∈Σ

max
i,j /∈C
3j 6=i

{
(A \ C)ij

}
.

Since A\C 6= I for all C ∈ Σ, β > 0. For all C ∈ Σ, A\C has at least one off-diagonal

entry greater than or equal to β.

For each C ∈ Σ, let δC be such that if Ã is stochastic and ‖Ã − A‖∞ < δC, then

Ã \ C exists and ‖Ã \ C −A \ C‖∞ < β/2. Let δ′ = minC∈Σ{δC}. So, if ‖Ã−A‖∞ < δ′,

then for all C ∈ Σ, Ã\C exists and ‖Ã\C−A\C‖∞ < β/2. We note that this implies

that if ‖Ã − A‖∞ < δ′, then for all C ∈ Σ, the largest off-diagonal entry of Ã \ C is

greater than or equal to β/2.

For k = 1, . . . ,m, let Π(k) be a positive diagonal matrix such that Π(k)Bk is

symmetric. Let

ρ = max
i,j,k
3i,j∈Ek

{
π

(k)
i

π
(k)
j

}
.
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We note that ρ ≥ 1. For each k, let δk be such that if

1. B̃ is a reversible substochastic matrix of order equal to Bk,

2. Π̃ is a positive diagonal matrix such that Π̃B̃ is symmetric and

3. ‖B̃ −Bk‖∞ < δk,

then, for all i, j ∈ Ek, ∣∣∣∣∣ π̃iπ̃j − π
(k)
i

π
(k)
j

∣∣∣∣∣ < ρ.

Note that if Π̃ is as above, the above inequality implies that for any i and j,

π̃ii
π̃jj

< ρ+
π

(k)
ii

π
(k)
jj

≤ 2ρ.

Let δ′′ = min1≤k≤m{δk}.

Finally, let

δ′′′ = min
1≤k≤m

{
β

4p |Ek|

}

and let δ = min{δ′, δ′′, δ′′′}.

Let Ã be a reversible stochastic matrix such that ‖Ã − A‖∞ < δ, and let the

digraph G be formed by an application of the Maximum Entry Algorithm to Ã with

input value d = β/2. We claim that vertex sets of the weakly connected components

of G are the collections {Ek}.
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We will first show that if the directed arc i → j is present in G, then the states

i and j are members of the same aggregate Ek. We will accomplish this by showing

that for each Ek, if C ⊆ S is such that

1. Ã \ C exists and

2. Ek \ C is nonempty,

then

∑
i∈Ek

∑
j /∈Ek∪C

(
Ã \ C

)
ij
<
β

2
.

This is sufficient, because the directed arc i→ j can be present in G only if there is

a stochastic complement Ã \ C such that i, j /∈ C and

(
Ã \ C

)
ij
>
β

2
.

Let Ek be one of the aggregates of A. We note that since aij = 0 for all i ∈ Ek and

j /∈ Ek and ‖Ã− A‖∞ < δ ≤ δ′′′, for every i ∈ Ek,

∑
j /∈Ek

ãij =
∑
j /∈Ek

|ãij − aij| < δ′′′ ≤ β

4p |Ek|
.

First, suppose that C∩Ek = ∅. Then, the principle submatrix of Ã\C corresponding

to Ek is bounded below, entrywise, by the principal submatrix of Ã corresponding to

Ek. Thus,
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∑
i∈Ek

∑
j /∈Ek∪C

(
Ã \ C

)
ij

= |Ek| −
∑
i∈Ek

∑
j∈Ek

(
Ã \ C

)
ij

≤ |Ek| −
∑
i∈Ek

∑
j∈Ek

ãij

=
∑
i∈Ek

∑
j /∈Ek

ãij

≤ |Ek|δ′′′

≤ |Ek|β/(4p|Ek|)

< β/2

(2 < 4p). Now, suppose that C ⊆ Ek. Express

Ã ∼=


A11 A12 F1

A21 A22 F2

∗ ∗ ∗

 ,

where the first position corresponds to Ek \C, the second to C, and the third to S \Ek

(only the first two rows of blocks will appear in our calculations). As we noted above,

for any i ∈ Ek,

∑
j /∈Ek

aij < δ.

So, F11 ≤ δ1 and F21 ≤ δ1. Now,

Ã \ C ∼=

 A11 + A12(I − A22)−1A21 F1 + A12(I − A22)−1F2

∗ ∗

 .
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Let D̃ be a positive diagonal matrix such that D̃Ã is symmetric; let D̃1 and D̃2 be the

principal submatrices corresponding to Ek \C and C, respectively. So, D̃2A22 = AT22D̃2

and D̃1A12 = AT21D̃2.

We note that

∥∥∥Ã(Ek, Ek)−Bk

∥∥∥
∞
≤
∥∥∥Ã− A∥∥∥

∞
< δ′′;

so,

d̃i

d̃j
< 2p,

for all i, j ∈ Ek. As well, if Y as a nonnegative matrix of the appropriate order,

D̃−1
1 Y D̃2 =


(
D̃2

)
jj(

D̃1

)
ii

yij

 < [2pyij] = 2pY.

Since Ã is stochastic, A211+ A221 ≤ 1, further implying that (I − A22)−1A211 ≤ 1.

We rewrite this inequality as

1TAT21

(
I − AT22

)−1 ≤ 1T .

Thus,
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∑
i∈Ek\C

∑
j /∈Ek\C

(
Ã \ C

)
ij

= 1T (F1 + A12(I − A22)−1F2)1

= 1T
(
F1 + D̃−1

1 AT21D̃2(I − A22)−1F2

)
1

= 1T
(
F1 + D̃−1

1 AT21(I − AT22)−1D̃2F2

)
1

< 1T
(
F1 + 2pAT21(I − AT22)−1F2

)
1

= 1TF11+ 2p1TAT21(I − AT22)−1F21

≤ 1TF11+ 2p1TF21

< δ′′ |Ek \ C|+ 2pδ′′ |C|

< 2pδ′′ |Ek \ C|+ 2pδ′′ |C|

= 2pδ′′ |Ek| .

(The second to last inequality is arrived at by noting that p ≥ 1). Now,

δ′′ ≤ β

4p |Ek|
,

implying that

∑
i∈Ek\C

∑
j /∈Ek\C

(
Ã \ C

)
ij

< 2pδ′′ |Ek|

≤ β
2
.

Finally, suppose that C ′ = C ∩ Ek and C ′′ = C \ Ek are both nonempty. By our

above reasoning,

∑
i∈Ek\C′

∑
j /∈Ek

(
Ã \ C ′

)
ij
<
β

2
.

140



Then, using the fact that the principal submatrix of Ã \ C corresponding to Ek \ C

is bounded below, entrywise, by the principal submatrix of Ã \ C ′ corresponding to

Ek \ C, we see that

∑
i∈Ek\C

∑
j /∈Ek∪C

(
Ã \ C

)
ij

= |Ek \ C| −
∑

i∈Ek\C

∑
j∈Ek\C

(
Ã \ C

)
ij

≤ |Ek \ C ′| −
∑

i∈Ek\C′

∑
j∈Ek\C′

(
Ã \ C ′

)
ij

=
∑

i∈Ek\C′

∑
j /∈Ek

(
Ã \ C ′

)
ij

< β
2
.

Therefore, if the directed arc i → j is present in the output digraph G, then the

states i and j are contained in the same aggregate Ek.

Suppose that the Maximum Entry Algorithm, applied to Ã, has executed s itera-

tions and let Gs be the digraph at this point. By Lemma 5.3, the number of weakly

connected components of Gs is n − s, where n is the order of G̃. By our above rea-

soning, each of the weakly connected components of G contains states from exactly

one of the collections E1, . . . , Em. Thus, it is now sufficient to show that the algorithm

executes at least s = n−m iterations.

Suppose that the algorithm has executed s < n − m iterations; let C be the

collection of states removed, via stochastic complements, so far and let Gs be the

current digraph. The digraph Gs is acyclic and i ≺Gs j implies that i, j ∈ Ek for some

k. So, for each k, there is j ∈ Ek such that j /∈ C. Thus, for all k, Ek * C. As well,
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s = |C| =
m∑
k=1

|C ∩ Ek| < n−m =
m∑
k=1

(|Ek| − 1) .

So, for at least one k, |C ∩ Ek| < |Ek| − 1, in which case |Ek \ C| ≥ 2. So, C ∈ Σ

(described above). Since ‖Ã − A‖∞ < δ′, there is an off-diagonal entry of Ã \ C

strictly greater than β/2. Thus, after, with input d = β/2, after executing s < n−m

iterations, the algorithm executes at least one more iteration.

Therefore, if ‖Ã − A‖∞ < δ and the digraph G is obtained by an application

of the Maximum Entry Algorithm with input d = β/2, then each weakly connected

component of G contains states from exactly one of the collections E1, . . . , Em and the

digraph G contains exactly m weakly connected components. The vertex sets of the

weakly connected components of G must be the aggregates Ek.

5.7 The modified maximum entry algorithm

Let A be a reversible stochastic matrix with state space S and let ε be a positive

number strictly less than 1. If we want to test whether A is nearly uncoupled with

respect to ε using the maximum entry algorithm, we need to select an appropriate

input value for δ. If one knows, a priori, the sizes of the almost invariant aggregates,

or at least has an approximate lower bound for their sizes, Proposition 5.10 can be

utilised to select an appropriate δ. Moreover, if an arbitrary lower bound is set, this

can be used.
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Algorithm 4 The modified maximum entry algorithm

B := A
Let G be the digraph on S that, initially, contains no arcs.
C := ∅
m := 1S
while the order of B is 2 or greater do

Let i, j ∈ S \ C be such that i 6= j and bij = max
j′ 6=i′
{bi′j′}.

if bii ≥ (1−ε)2
1+(mi−2)ε

then
Exit the while loop.

else
Add the directed arc i→ j to G.
B := B \ i
mj := mj +mi

C := C ∪ {i}
end if

end while
return G

For example, if one wishes to construct candidate subsets E ⊆ S that have size at

least m and are almost invariant aggregates with respect to ε, then the input value

δ =
ε(m− ε)

1 + (m− 2)ε

(or, more conservatively, δ = εm) may be used.

However, if no such lower bound on the order is known (or desirable) it is difficult

to select an appropriate δ. Thus, we present a modified version of the maximum entry

algorithm.

Rather than selecting a maximal entry bij and then comparing it with δ to decide

whether this entry represents a transition within an almost invariant aggregate, this

algorithm utilises a test to determine whether the state i is “safe” to remove. This
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version takes as inputs a reversible stochastic matrix A on the state space S and a

value ε < 1 and attempts to construct candidate subsets of the state space which are

almost invariant with respect to ε.

The vector 1S utilised within Algorithm 4 is the vector indexed by S that has

every entry equal to 1.

As with Algorithm 3, we refer to execution of the four commands after the else

statement as an iteration of the algorithm.

Proposition 5.16. Let A be a stochastic matrix on the state space S and let 0 ≤

ε < 1; suppose that we have applied Algorithm 4 with inputs A and ε. Let r be the

number of iterations completed by the algorithm and let B, C, G and m be the stored

data after s ≤ r iterations. Then,

1. C contains s states and B ∼= A \ C,

2. G is acyclic and contains s directed arcs,

3. every member of C has out-degree 1 in G and every member of S \ C has out-

degree 0, and

4. for each i ∈ S\C, m(i) is the number of states contained in the weakly connected

component of G which contains i.

Proof The first three statements are shown in the same manner as in Proposition 5.1

and Lemma 5.3. We prove the fourth by induction on s.
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For s = 0, G contains no arcs and so every weakly connected component of G

consists of a single isolated vertex. We have mi = 1, for all i ∈ S, so the statement

holds.

Now, let 1 ≤ s ≤ r and let C ′, C, m′, m, G′ and G be the stored data after

s′ = s− 1 and s iterations, respectively. Let

S \ C ′ = {j1, . . . , jn}

be the states with out-degree 0 in G′. Thus, each jk is contained in a distinct weakly

connected component of G′, say E ′k. So, for k = 1, . . . , n, m′(jk) = |E ′k|.

During the sth iteration, the algorithm selects distinct states jk and jl with out-

degree 0 and forms C, m and G by adding the arc jk → jl to G′, adding jk to C ′ and

replacing m′jl with m′jk +m′jl .

Without loss of generality, we assume that the directed arc jn → jn−1 is added

to G′. This increases the degree of jn from 0 to 1 and merges the weakly connected

components E ′n and E ′n−1. So, the weakly connected components of G are E1, . . . , En−1

where Ek = E ′k if k ≤ n − 2 and En−1 = E ′n−1 ∪ E ′n. The unique member of Ek with

out-degree 0 is jk. So, for k = 1, . . . , n− 1,

mjk =


m′jk if k 6= n− 1

m′jn−1
+m′jn if k = n− 1.

Thus, for all i with out-degree equal to 0 in G, mi is the number of states contained

in the same weakly connected component as i.
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Let G be a reversible stochastic matrix with state space S and let E ⊆ S be an

almost invariant aggregate, with respect to ε > 0, containing m states. Suppose that

the maximum entry algorithm has been applied to A and that, after some number of

iterations, m−1 states contained in E have been removed via stochastic complements.

Let i ∈ E be the state that has not yet been removed and suppose further that all

the members of E removed so far have been correctly associated with other members

of A. That is, suppose that for all i′ ∈ E \ i, the directed arc i′ → j′ present in

the constructed digraph has j′ ∈ E . Then, at this point, we must have mi ≥ m

(some near-transient states may have been associated with members of E). So, using

Lemma 5.9 and Proposition A.14, as in the proof of Proposition 5.10, we have

bii ≥
(1− ε)2

1 + (m− 2)ε
≥ (1− ε)2

1 + (mi − 2)ε
,

where B is the stochastic complement of A currently under consideration.

The reasoning behind the steps of the modified maximum entry algorithm is the

following. At a given iteration, let A be the stochastic complement currently under

consideration.

1. The algorithm identifies the maximal off-diagonal entry bij – this pair of states is

the most likely to be part of the same almost invariant aggregate of the original

Markov chain.

2. If
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bii <
(1− ε)2

1 + (m(i)− 2)ε
,

we suspect that either i is near transient or there are further states, not yet

removed, contained in the same almost invariant aggregate as i. (The above

inequality suggests that i is not the final unremoved member of an almost

invariant aggregate). In either case, it is safe to remove i without disrupting

the uncoupled structure of the matrix; we reason that if i is not near transient,

the most likely candidate for a state contained in the same aggregate as i is j

(identified above).

3. If

bii ≥
(1− ε)2

1 + (m(i)− 2)ε
,

the state i may be the final, not yet removed, member of an almost invariant

aggregate. We cannot be confident that removing i will not disrupt the structure

of the matrix. Moreover, at this point we have identified the very largest off-

diagonal entry in the matrix A and discovered that it may represent a transition

between members of distinct aggregates. If the very largest entry is such, we

reason that all of the entries may represent transitions between aggregates; so,

we terminate the algorithm in this occurrence.
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We emphasise that this line of reasoning relies on the assumption that the largest

entry in the reversible matrix under consideration does identify a transition between

members of the same aggregate (or from a near transient state to another state). This

is not always the case; for instance, see Example 5.17, below. However, in worked

examples, it seems that every correct association the algorithm adds to the digraph

increases the likelihood of further correct associations.

Example 5.17. Let ε be a positive constant very near to 0 and let m ≥ 1/ε be a

positive integer. Consider the reversible stochastic matrix

A =

 1−ε
m
J ε1

ε
m
1T 1− ε

 ,
where J is the m×m matrix and 1 is the column vector of order m with every entry

equal to 1. Since m ≥ 1/ε, we have

m >
1

ε
− 1 =

1− ε
ε

,

further implying that (1 − ε)/m < ε. The partition ({1, . . . ,m}, {m + 1}) is the

unique ε-uncoupling of the state space of A. For any i, j ∈ {1, . . . ,m}, the transition

i→ m+ 1 is more likely than the transition i→ j, even though i and j are contained

in a minimal almost invariant aggregate and i and m+ 1 are not.

148



5.8 Evaluating uncouplings of Markov chains

Let A be a nearly uncoupled stochastic matrix with respect to ε > 0 and let

the digraph G be produced by an application of the maximum entry algorithm. We

present a method for determining whether the algorithm has been successful in its

decoupling of the associated Markov chain.

Let V be the vertex set of a weakly connected component of G. If the algorithm’s

output is correct, then V consists of an almost invariant aggregate together with some

collection of near transient states. Let B = A(V ) and let

γ = γB = (I −B)1.

Simply calculating the value

max
i∈V
{γi}

is not a good indication of the algorithm’s success or failure, as near transient members

of V are as likely to have large values in γ as they are to have small values. We will

instead use the 1-coupling measure

w1(B) =
1TB1

|V |
=
|V | − 1Tγ
|V |

.

The value w1(B) is the mean probability of transitioning from a member of V to

another member of V . That is,
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w1(B) =
1

|V |
∑
i∈V

P [xt+1 ∈ V : xt = i] .

Thus, when 1-coupling measures are each close to 1 (for all weakly connected com-

ponents of the output digraph), we assume that the algorithm has performed well.

This measure of the strength of the produced aggregates was introduced in [10].

In [18, 8, 7], the π-coupling measure is used to evaluate the strength of an ag-

gregate. Let A be a stochastic matrix with stationary distribution π. Let V be a

collection of states and let B = A(V ) and u = π(V ) be the principal submatrix and

subvector, respectively, associated with V . The π-coupling measure is the value

wπ(B) =
uTB1

uT1
=
uT (1− γ)

uT1
=

∑
i∈V

∑
j∈V

πiaij∑
i∈V

πi
.

If the initial distribution is π, that is, if

P [x0 = i] = πi

for all i in the associated state space, then

wπ(B) = P [xt+1 ∈ V |xt ∈ V ] .

A somewhat straightforward application of Theorem 2.2 shows that if A is irreducible

wπ(B) = lim
t→∞

1

t+ 1

t∑
s=0

P [xt+1 ∈ V : xt ∈ V ] ,
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regardless of the initial distribution. Thus, in principle, the π-coupling measure is

a better indicator of whether or not a collection V is decoupled from the remainder

of the state space. However, the very fact that A is nearly uncoupled implies that

the vector π is a difficult quantity to calculate (accurately). In general, we propose

that the 1-coupling measure is a more practical indicator – it is fast and reliable

to calculate. Moreover, it seems that for most matrices produced, w1(B) ≤ wπ(B)

(although this is not necessarily the case); the 1-coupling measure seems to be, in

practise, more conservative.
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Chapter 6

Error-reducing algorithms

We present three algorithms which attempt to construct almost invariant aggre-

gates of a given reversible stochastic matrix. These algorithms attempt to reduce

or limit the growth of error terms (transitions between almost invariant aggregates)

within the constructed stochastic complements.

6.1 Preliminaries

6.1.1 Error reduction in stochastic complements

Let A be a nearly uncoupled stochastic matrix on the state space S and let

Ψ = (E1, . . . , Em, E0) be an ε-uncoupling of A. That is, for k 6= 0, Ek is a minimal

almost invariant aggregate and, when it is nonempty, E0 does not contain any almost

invariant aggregates as subsets.
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We express A ∼= [Aij] where Aij = A(Ei, Ej). For each k, let Bk = Akk; for k 6= 0,

the substochastic matrix Bk is irreducible and

γBk = (I −Bk)1 =
∑
j 6=k

Akj1 ≤ ε1.

For k 6= 0, the total error at Ek is the number

η(Bk) = 1TγBk = 1T (I −Bk)1.

If i ∈ Ek, where k 6= 0, j /∈ Ek and aij > 0, we refer to aij as an error term. Thus, the

total error at Ek is the sum of the error terms contained in the rows corresponding to

Ek. Whenever the entry aij is particularly large, we suspect that aij is not an error

term, in which case either i, j ∈ Ek for some k 6= 0, or i ∈ E0.

Let C ⊆ S be such that for all k 6= 0, Ek * C. Then, A \ C exists, as any essential

class of states must contain at least one of the collections Ek as a subset. Let Â = A\C

and for each k 6= 0, let Êk = Ek \ C and B̂k = Â(Êk).

We refer to the stochastic complement Â = A \C as error-reducing with respect to

Ψ if, for all k 6= 0, η(B̂k) ≤ η(Bk). If Â is an error-reducing stochastic complement

and âij is relatively large, we suspect that either i and j are members of the same

almost invariant aggregate Ek or i ∈ E0.

We present Algorithm 5, which will be fleshed out into three implementable ver-

sions. The input for this base code is a stochastic matrix A on the state space S.

Now, suppose that A is a nearly uncoupled stochastic matrix on the state space S
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Algorithm 5 Error-reducing base code

B := A
Let G be the digraph on S that contains no arcs.
C := ∅
while the order of B is 2 or greater do

Select i ∈ S \ C such that the stochastic complement B \ i is error-reducing with
respect to some ε-uncoupling of A.
if no such i ∈ S \ C exists then

Exit the while loop.
else
C := C ∪ {i}
Select j ∈ S \ C such that bij = max

j′∈S\C
{bi′j′}.

Add the directed arc i→ j to G.
B := B \ i

end if
end while
return G

and that the digraph G has been constructed via an application of an error-reducing

algorithm. Then, whenever the directed arc i → j is present in G, there is an error-

reducing complement Â of A where the entry âij is the largest off-diagonal entry in

the ith row of Â. As discussed above, we suspect that âij is not an error term (a

transition between almost invariant aggregates), but represents a regularly occurring

transition. Thus, if i ≺G j, we suspect that either i is near transient or that i and

j are contained in the same almost invariant aggregate. As in Proposition 5.4, the

weakly connected components of the output digraph G are strong candidates for

almost invariant aggregates of the Markov chain associated with A.
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6.1.2 Diagonal bounds

Let A be a nearly uncoupled stochastic matrix on the state space S, let Ψ =

(E1, . . . , Em, E0) be an ε-uncoupling and let A \ C be an error-reducing stochastic

complement. Suppose that we have associated each state i ∈ C with a unique state

j ∈ S \ C, with the association denoted by i ∼ j. Suppose further that if i ∼ j where

i ∈ C and j ∈ S \C, then either i ∈ E0 or i, j ∈ Ek for some k 6= 0. For each j ∈ S \C,

let

mj = |{i ∈ C : i ∼ j}|+ 1.

Suppose that there is k 6= 0 such that Ek \ C = {i}. We note that mi ≥ |Ek|. Now,

because the stochastic complement is error reducing, and Â(Ek \ C) = âii, we have

1− âii ≤ η(A(Ek)) ≤ |Ek|ε ≤ miε.

Thus, âii ≥ 1−miε.

So, we may use the following as test when applying Algorithm 5 to determine

whether or not a given i ∈ S \C is the final unremoved member of an almost invariant

aggregate.

1. If âii ≥ 1 − miε, state i may be the final unremoved member of an almost

invariant aggregate, in which case the stochastic complement Â \ i is not error

reducing.
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2. If âii < 1−miε, state i is a candidate for removal.

We note that in case 2, above, we need to select i carefully to ensure that Â \ i is also

error-reducing – the fact that âii is not close to 1 is not, in itself, sufficient to ensure

that state i is safe to remove.

However, we supsect that the criterion âii < 1 − miε (to determine if i is safe

to remove) is, in general, too conservative. For example, if E is an almost invariant

aggregate such that |E|ε > 1, it is impossible for an implementation that uses this

criterion to correctly associate all the members of E .

We instead use the bounds calculated in Appendices A and B (the bound in

Appendix B has already been utilised for the Modified Maximum Entry Algorithm).

Let A be a nearly uncoupled stochastic matrix on the state space S and let

Â = A \ C be a stochastic complement where we have associated each member of

C with a unique member of S \ C. Let i ∈ S \ C and let mi − 1 be the number of

states contained in C which have been associated with i. Then,

1. if A is reversible and

âii <
(1− ε)2

1 + (mi − 2)ε
,

the state i is a candidate for removal; and

2. if A is nonreversible and
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âii < (1− ε)mi ,

the state i is a candidate for removal.

Proposition 6.1. Let m be a positive integer and let 0 ≤ ε < 1. Then,

1−mε ≤ (1− ε)m ≤ (1− ε)2

1 + (m− 2)ε
≤ 1.

Moreover,

1. 1−mε = (1− ε)m if and only if m = 1 or ε = 0,

2. (1− ε)m = (1−ε)2
1+(m−2)ε

if and only if m = 1, m = 2, or ε = 0, and

3. (1−ε)2
1+(m−2)ε

= 1 if and only if ε = 0.

Proof Clearly, for ε = 0 we have equality of all four terms involved; so, we assume

that 0 < ε < 1.

We first show that 1 − mε ≤ (1 − ε)m with equality if and only if m = 1. We

proceed by induction on m. For m = 1, 1 −mε = (1 − ε)m = 1 − ε. Suppose that

m ≥ 1 and that 1−mε ≤ (1− ε)m. Then,

(1− ε)m+1 = (1− ε)(1− ε)m

≥ (1− ε)(1−mε)

= 1− (m+ 1)ε+mε2

> 1− (m+ 1)ε.
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We now show that

(1− ε)m ≤ (1− ε)2

1 + (m− 2)ε
,

with equality if and only if m = 1 or m = 2. For m = 1

(1− ε)2

1 + (m− 2)ε
=

(1− ε)2

1− ε
= 1− ε,

and for m = 2

(1− ε)2

1 + (m− 2)ε
= (1− ε)2.

So, assume that m ≥ 3. We note that

1− (1− ε)2

1 + (m− 2)ε
=

ε(m− ε)
1 + (m− 2)ε

.

So, we will prove that

1− (1− ε)m > 1− (1− ε)2

1 + (m− 2)ε
=

ε(m− ε)
1 + (m− 2)ε

,

by proving that

(1− (1− ε)m) (1 + (m− 2)ε)

ε
> m− ε.

We make use of the well-known formula 1 − zm = (1 − z)(1 + z + · · · + zm−1).

This, together with the facts that m ≥ 3 and 0 < 1− ε < 1, implies that

1−(1−ε)m
ε

=
(1−(1−ε))(1+(1−ε)+···+(1−ε)m−1)

ε

= 1 + (1− ε) + · · ·+ (1− ε)m−1

> 1 + (1− ε) + (m− 2)(1− ε)m.
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So,

(1−(1−ε)m)(1+(m−2)ε)
ε

= (1−(1−ε)m)
ε

+ (m− 2) (1− (1− ε)m)

> 1 + (1− ε) + (m− 2)(1− ε)m + (m− 2) (1− (1− ε)m)

= m− ε.

Finally, we note that (1− ε)2 < 1− ε and 1 + (m− 2)ε ≥ 1− ε imply that

(1− ε)2

1 + (m− 2)ε
< 1.

In the analysis of power series and other continuous functions, big Θ notation is

used to describe the behaviours of functions as they approach a specific limit. Let f

and g be real functions and let α be a real number. We say that

f(x) = Θ(g(x)) as x→ α

if there are positive constants c, d and δ such that if |x− α| < δ, then

cg(x) ≤ f(x) ≤ dg(x).

The notation

f(x) = g(x) + Θ(h(x))

is used to represent the fact that
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f(x)− g(x) = Θ(h(x)) as x→ α.

When f(x) = g(x) + Θ(h(x)) as x→ α and

lim
x→α

h(x) = 0,

the function g(x) is seen to be a good approximation of f(x), near x = α. We use

the same big Θ notation for functions on vector spaces.

In addition to the results in Proposition 6.1, we note that for m ≥ 1 and 0 < ε < 1,

(1− ε)m = 1−mε+

(
m

2

)
ε2 − . . .+ (−ε)m = 1−mε+ Θ(m2ε2)

and

(1− ε)2

1 + (m− 2)ε
= 1−mε+

(m− 1)2ε2

1 + (m− 2)ε
= 1−mε+ Θ(m2ε2)

as mε → 0. Thus, if the value n2ε2 is insignificant (where n is the order of the

stochastic matrix in question), the three criteria presented here are substantially the

same.

6.2 The Lower Weighted Algorithm

We present an algorithm, intended for use with reversible stochastic matrices,

which attempts to construct almost invariant aggregates of a reversible Markov chain

via subsequent error-reducing complements.
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6.2.1 Reordering reversible stochastic matrices

Let A be a reversible substochastic matrix on the state space S. Throughout

the remainder of this section, we will typically assume that S = {1, . . . , n} for some

n ≥ 1. This allows us to assume that there is a natural, transitive ordering of the set

S, denoted by the symbol <.

Let (k1, . . . , km) be a sequence of distinct members of S. We define A(k1, . . . , km)

to be the m×m substochastic matrix on the state space {1, . . . ,m} whose ijth entry

is equal to akikj . That is, A(k1, . . . , km) is the principal submatrix of A corresponding

to the collection {k1, . . . , km} and the states have been reordered via the sequence

indices of (k1, . . . , km). If A is m×m, we refer to A(k1, . . . , km) as a reordering of A.

Let A be a reversible substochastic matrix on the ordered state space S (typically

S is some finite subset of the positive integers). We refer to A as lower-weighted if

for all i, j ∈ S with i < j, we have aij ≤ aji.

As usual, we use the abbreviation πi to represent the ith diagonal entry of a

diagonal matrix Π.

Proposition 6.2. Let A be a reversible substochastic matrix on the ordered state

space S. Then, there is a reordering of A that is lower-weighted.

Proof Without loss of generality, we assume that S = {1, . . . , n}. Let Π be a positive

diagonal matrix such that ΠA is symmetric. Let f : S 7→ S be a permutation such

that if i < j, then πf(i) ≥ πf(j). Via Proposition 2.12,
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πiaij = πjaji,

for all i, j ∈ S. If πi ≥ πj, we have aij ≤ aji. Thus, for all i, j ∈ S, if i < j, then

πf(i) ≥ πf(j) and af(i)f(j) ≤ af(j)f(i). So, the matrix

A(f(1), . . . , f(n))

is a lower-weighted reordering of A.

The Reorder Algorithm produces a lower-weighted reordering of an input re-

versible substochastic matrix. The input of Algorithm 6 is a reversible substochas-

tic matrix A on the state space {1, . . . , n}; the output is an ordering of the states

into (f(1), . . . , f(n)) such that A(f(1), . . . , f(n)) is lower-weighted. We assume that

n ≥ 2, as we consider any 1× 1 stochastic matrix to be lower-weighted, trivially.

When the substochastic matrix A has state space S = {i1, . . . , in} 6= {1, . . . , n},

the reorder algorithm can still be applied. One must simply replace the opening

command f := (1, . . . , n) with f := (i1, . . . , in).

We have based the Reorder Algorithm on a graph searching algorithm known as

Depth-First Search [5, Section 22.3].

Lemma 6.3. Let A be a reversible substochastic matrix on the states {1, . . . , n} where

n ≥ 2. Then, Algorithm 6, applied to A, will terminate after a finite number of
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Algorithm 6 Reorder

f := (1, . . . , n)
r := 1
s := 2
while s ≤ n do

if af(r)f(t) ≤ af(t)f(r) for t = s, . . . , n then
r := r + 1
if r = s then
s := s+ 1

end if
else

Let t be such that s ≤ t ≤ n and af(r)f(t) > af(t)f(r).
(f(r), f(r + 1), . . . , f(t)) := (f(t), f(r), f(r + 1), . . . , f(t− 1)
s := s+ 1

end if
end while
return f

iterations of its internal while loop. Furthermore, after any number of iterations of

the while loop, the stored data r and s satisfies 1 ≤ r < s.

Proof The algorithm begins with r = 1 and s = 2. Every iteration of the algorithm

increases one or both of r and s by 1. Thus, at any iteration r ≥ 1, s ≥ 2 and r and s

are positive integers. The while continues only if s ≤ n, so the algorithm terminates

only if it achieves s = n+ 1.

We see that at any point r < s because the initial data r = 1 and s = 2 has r < s,

and whenever the algorithm encounters the command r := r+ 1, this is immediately

followed by the command if r = s then s := s+ 1.

As we noted above, each iteration of the while loop increases one or both of r and

s by 1; thus, after k iterations of the while loop, r + s ≥ 3 + k. So, after k = 2n− 3
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iterations, since r < s, we have

2s > r + s ≥ 3 + k = 2n,

further implying that s ≥ n+ 1. Thus, the algorithm terminates after 2n−3 or fewer

iterations.

Proposition 6.4. Let A be a reversible substochastic matrix of order n ≥ 2 and

suppose that we have applied Algorithm 6 to A. Then, the output f corresponds to a

lower-weighted reordering of A.

Proof Each iteration of the algorithm either leaves the sequence f fixed or it per-

mutes a subsequence of f (before altering the values of the stored variables r and

s):

(f(r), f(r + 1), . . . , f(t)) := (f(t), f(r), f(r + 1), . . . , f(t− 1)).

When this operation occurs we have t ≥ s; by Lemma 6.3, we always have r < s, so

this is indeed a permutation of f . Thus, after any number of iterations of the while

loop of Algorithm 6, the stored sequence f is a permutation of the initial sequence

(1, . . . , n).

Let Π be a positive diagonal matrix such that ΠA is symmetric. Via Lemma 6.3,

after any number of iterations of the while loop, we have 1 ≤ r < s. Moreover, either

s ≤ n or s = n+ 1 and the algorithm terminates without executing another iteration.
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We will show, by induction on the number of completed iterations of the while loop,

that the stored data r, s and f (after any number of iterations) satisfies each of the

following statements:

1. If 1 ≤ i < j < s, then af(i)f(j) ≤ af(j)f(i).

2. If 1 ≤ i < r and i < j ≤ n, then af(i)f(j) ≤ af(j)f(i).

3. The values πf(r) > πf(r+1) > . . . > πf(s−1) are strictly decreasing.

The algorithm terminates with s = n + 1; thus, at termination, statement 1 implies

that A(f(1), . . . , f(n)) is a lower-weighted reordering of A. (The other two statements

are necessary for the inductive reasoning.)

At initialisation we have r = 1 and s = 2; there are no integer values i and/or j

which satisfy 1 ≤ i < j < s = 2 or 1 ≤ i < r = 1, so the first two statements trivially

hold. Moreover, r = s − 1 at initialisation, so the sequence in the fourth statement

contains one element and so is (trivially) strictly decreasing.

Now, suppose that the data r, s, and f satisfies the three statements above;

suppose further that s ≤ n and let r′, s′ and f ′ be the new stored data after one

further iteration of the while loop. We will show that the three statements above

hold for r′, s′ and f ′. We will refer to the values r, s and f as the previous data and

the values r′, s′ and f ′ as the current data.

Case one: af(r)f(t) ≤ af(t)f(r) for t := s, . . . , n.
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In this case, we have r′ = r + 1, f ′ = f , and either r < s − 1 and s′ = s, or

r = s− 1 and s′ = s+ 1.

We first show that statement 2 holds true for the new data. Suppose that 1 ≤

i < r′ and that i < j ≤ n. Since r′ = r + 1 we either have i < r or i = r. If i < r,

then af(i)f(j) ≤ af(j)f(i), as statement 2 holds true for the previous data. So, we need

merely show that if r < j ≤ n, then af(r)f(j) ≤ af(j)f(r).

First, suppose that j ≤ s − 1. Then, statement 1, applied to the previous data,

implies that af(r)f(j) ≤ af(j)f(r). Secondly, if j ≥ s, the fact that af(r)f(j) ≤ af(j)f(r) is

the base assumption of this case.

Now, we show that statements 1 and 3 hold true for the current data.

Suppose that r < s − 1; then, s′ = s. Thus, statement 1 holds true for the

current data, as it holds true for the previous data and only concerns s′ = s and

f ′ = f . The third statement holds true for the current data because the sequence

(f(r′), . . . , f(s′−1)) = (f(r+1), . . . , f(s−1)) is a subsequence of (f(r), . . . , f(s−1)).

Suppose that r = s−1; then, s′ = s+1. In this case, statement 1 is a consequence

of statement 2 (which we have shown to hold for the current data): if 1 ≤ i < j < s′,

then i < s′ − 1 = r′, so we have af(i)f(j) ≤ af(j)f(i). As well, the sequence involved in

statement 3, πf(r′), . . . , πf(s′−1), contains only one element, since r′ = s = s′ − 1, and

so is strictly decreasing.

Case two: The algorithm has selected an index t is such that s ≤ t ≤ n and
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af(r)f(t) > af(t)f(r).

In this case r′ = r, s′ = s+ 1,

f ′(r) = f(t),

f ′(r + 1) = f(r),

f ′(r + 2) = f(r + 1),

...

f ′(t) = f(t− 1),

and for i < r or i > t, f ′(i) = f(i).

We first show that statements 2 and 3 hold for the current data.

Statement 2 is the claim that if 1 ≤ i < r′ and i < j ≤ n, then af ′(i)f ′(j) ≤ af ′(j)f ′(i).

Let 1 ≤ i < r′ and i < j ≤ n. Note that since r′ = r, f ′(i) = f(i). First, suppose

that j < r; then f ′(j) = f(j). Thus, since statement 2 holds for the previous data,

we have

af ′(i)f ′(j) = af(i)f(j) ≤ af(j)f(i) = af ′(j)f ′(i).

Second, suppose that j ≥ r; since the permutation that transforms f into f ′ fixes

the first r − 1 elements, there is j′ ≥ r such that f ′(j) = f(j′). Again, the fact that

statement 2 holds for the previous data implies that

af ′(i)f ′(j) = af(i)f(j′) ≤ af(j′)f(i) = af ′(j)f ′(i).

The sequence in question in statement 3 is
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(f ′(r′), f ′(r′ + 1), . . . , f ′(s′ − 1)) = (f(t), f(r), f(r + 1), . . . , f(s− 1)).

Since statement 3 applies to the previous data, we have πf(r) > . . . > πf(s−1). Thus,

we only need to show that πf(t) > πf(r). Since ΠA is symmetric, this is a direct

consequence of the fact that af(r)f(t) > af(t)f(r).

Now, we show that statement 1 holds true for the current data. That is, we show

that if 1 ≤ i < j < s′, then af ′(i)f ′(j) ≤ af ′(j)f ′(i). If i < r′, this is true via the fact

that statement 2 holds for the current data. If i ≥ r′, then the fact that statement

3 holds for the current data implies that πf ′(i) > πf ′(j); this in turn implies that

af ′(i)f ′(j) ≤ af ′(j)f ′(i) (again, since A is reversible).

6.2.2 Error reduction in lower-weighted matrices

We explore the effect that removing states from reversible stochastic matrices can

have on the error values of almost invariant aggregates.

Proposition 6.5. Let A be a stochastic matrix on the state space S and let E ⊆ S.

Let i ∈ S \ E be such that the stochastic complement Â = A \ i exists. Let B = A(E)

and B̂ = Â(E). Then, η(B̂) ≤ η(B).

Proof For i′, j′ ∈ S \ i,

âi′j′ = ai′j′ +
ai′iaij′

1− aii
≥ ai′j′ .
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Thus, since i /∈ E , B̂ ≥ B, further implying that

η(B̂) = 1T (I − B̂)1 ≤ 1T (I −B)1 = η(B).

Proposition 6.6. Let A be a reversible stochastic matrix on the state space S =

{1, . . . , n}, let E ⊆ S contain 2 or more states and let B = A(E). Suppose that

A(f(1), . . . , f(n)) is a lower-weighted reordering of A and let

k = max
1≤k′≤n

{k′ : f(k′) ∈ E}.

Suppose further that the stochastic complement Â = A \ f(k) exists and let B̂ =

B \ f(k) = Â(E \ f(k)). Then, η(B̂) ≤ η(B).

Proof Without loss of generality, we will show that the result holds for A lower-

weighted (the function f above is the identity).

Express E = {k1, . . . , km} where m ≥ 2 and k1 < . . . < km; then

km = max
1≤k′≤n

{k′ : k′ ∈ E}.

Let i = km and express

A(E) = B =

 B̃ v

wT bii

 ,
where the final position corresponds to state i = km. Because A is lower-weighted, B

is lower-weighted, as well. This implies that v ≤ w. We calculate
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η(B) = 1T (I −B)1 = m− 1T B̃1− 1Tv − wT1− bii,

B̂ = B \ i = B̃ +
1

1− bii
vwT

and

η(B̂) = 1T (I − B̂)1 = m− 1− 1T B̃1− 1

1− bii
1TvwT1.

We aim to show that η(B̂) ≤ η(B), which occurs only if

1Tv − 1
TvwT1

1− bii
≤ 1− bii − wT1.

Now, since wT1 ≤ 1− bii (B is substochastic) and v ≤ w,

1Tv

1− bii
≤ 1Tw

1− bii
≤ 1.

Therefore,

1Tv − 1
TvwT1

1− bii
=

1Tv

1− bii
(
1− bii − wT1

)
≤ 1− bii − wT1.

Corollary 6.7. Let A be a nearly uncoupled reversible stochastic matrix on the state

space S and let Â = A \ C be an error-reducing complement, with respect to some

ε-uncoupling Ψ. Let Â(f(1), . . . , f(n)) be a lower-weighted reordering of Â and let k
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be the largest index less than or equal n such that C ∪ {f(k)} does not contain an

almost invariant aggregate. Then, Â \ f(k) is an error-reducing complement, with

respect to Ψ.

Proof Let E ⊆ S be an almost invariant aggregate in the uncoupling Ψ and let

E ′ = E \ C; since A \ C is error-reducing E ′ is nonempty. Let Â, f and k be as

described above and let

Ã = Â \ f(k) = A \ (C ∪ {f(k)}).

First, suppose that f(k) /∈ E . Let B = A(E), B̂ = Â(E ′) and B̃ = Ã(E ′) (since

f(k) /∈ E , E \ (C ∪ {f(k)} = E \ C = E ′). By Proposition 6.4, η(B̃) ≤ η(B̂) and, since

A \ C is error-reducing, η(B̂) ≤ η(B).

Now, suppose that f(k) ∈ E ; since E * C ∪ {f(k)} (by assumption), E ′ = E \ C

contains two or more states. Let E ′′ = E ′\f(k). For any k′ 6= k such that f(k′) ∈ E , we

then have E * C∪{f(k′)}, implying, via the definition of k, that k′ < k. Thus, k is the

largest integer less than or equal to n such that f(k) ∈ E . Let B = A(E), B̂ = Â(E ′)

and B̃ = Ã(E ′′). By Proposition 6.5, η(B̃) ≤ η(B̂) and, as above, η(B̂) ≤ η(B).

Thus, for any almost invariant aggregate E in Ψ, the error-inflation at E induced

by removing f(k) is less than or equal to 1.

6.2.3 The Lower-Weighted Algorithm
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Algorithm 7 Choose

p := max
j 6=i
{aij}

K := {j 6= i : aij = p}
q := min

j∈K
{aji}

if q > p or p = 0 then
return 0

else
Choose a state j ∈ K that has aji = q.
return j

end if

We present the Lower-Weighted Algorithm, which attempts to construct almost

invariant aggregates of a given reversible stochastic matrix. We first present a sub-

algorithm, which will be of use in the main pseudocode, below. The inputs of the

Choose Algorithm are a reversible stochastic matrix A on the state space S and a

single state i ∈ S. The Choose Algorithm implicitly assumes that 0 /∈ S. If 0 ∈ S,

we need to utilise some other symbol, not contained in S, in its place. The output of

the Choose Algorithm is

1. a state j ∈ S, distinct from i, such that

aij = max
j′ 6=i
{aij′}

and πj ≥ πi for any stationary distribution π of A, or

2. 0, if no such j exists.

The inputs of the Lower-Weighted Algorithm are a stochastic matrix A on the

state space S = {1, . . . , n} and a small nonnegative value ε < 1.
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Algorithm 8 The lower-Weighted Algorithm

B := A
Let G be the digraph on S that contains no arcs.
m := 1S
f := Reorder(B)
n := |S|
while n ≥ 2 do

if for k = 1, . . . , n, bf(k)f(k) ≥ (1−ε)2
1+(mf(k)−2)ε

or Choose(B, f(k)) = 0 then

Exit the while loop.
else
k := max

1≤k′≤n
{k′ : bf(k′)f(k′) <

(1−ε)2
1+(mf(k′)−2)ε

and Choose(B, f(k′)) 6= 0}
L := {(l1, l2) : l1 6= l2, bf(l1)f(l2) = 0 and bf(l1)f(k)af(k)f(l2) 6= 0}
j := Choose(B, f(k))
Add the directed arc f(k)→ j to G.
mj := mj +mf(k)

B := B \ f(k)
f := (f(1), . . . , f(k − 1), f(k + 1), . . . , f(n))
n := n− 1
if L is nonempty then
lmin := min

(l1,l2)∈L
{l1}

if lmin > k then
lmin := lmin − 1

end if
lmax := max

(l1,l2)∈L
{l1}

if lmax > k then
lmax := lmax − 1

end if
g := Reorder(B(f(lmin), . . . , f(lmax)))
(f(lmin), . . . , f(lmax)) := (f(lmin−1+g(1)), . . . , f(lmin−1+g(lmax− lmin +1))

end if
end if

end while
return G
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Proposition 6.8. Let A be a reversible stochastic matrix and suppose that Algo-

rithm 8 has been applied to A. Let B, f , l, G and m be the stored data after any

number of iterations of the algorithm’s while loop. Let Π be a positive diagonal matrix

such that ΠA is symmetric, let F = {f(1), . . . , f(l)} and let C = S \ F . Then,

1. B = A \ C;

2. B(f(1), . . . , f(l)) is a lower-weighted reordering of B;

3. G is acyclic, every member of C has out-degree 1 in G and every member of F

has out-degree 0;

4. if the directed arc i→ j is present in G, then πi ≤ πj; and

5. for each i ∈ F , the weakly connected component of G containing i contains

exactly mi states.

Proof Statements 1, 3 and 5 are shown in the same manner as in Proposition 5.1

and Lemma 5.3.

Statement 4 is a consequence of the workings of the Choose Algorithm. Suppose

that the directed arc i → j is present in G; then, there is a stochastic complement

B = A \ C such that Choose(B, i) = j, which implies that π(j) ≥ π(i).

We now show statement 2. In Proposition 6.4, we have shown that the reorder al-

gorithm produces a lower-weighted reordering of a reversible stochastic matrix; thus,
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the matrix B and the permutation f := Reorder(B), at initialisation, satisfy state-

ment 2. We show that if f corresponds to a lower-weighted reordering of B, one

further iteration of the algorithm does not alter this fact.

Let B, f and l be the stored data after some number of iterations and suppose

that B(f(1), . . . , f(n)) is a lower-weighted reordering of B. Suppose further that the

algorithm executes at least one more iteration before terminating and let B′, f ′ and

n′ = n− 1 be the stored data after one more iteration. Let f(k) be the state selected

for removal and let

L := {(l1, l2) : l1 6= l2, bf(l1)f(l2) = 0 and bf(l1)f(k)af(k)f(l2) 6= 0}.

Case one: L is empty.

Then, we have

f ′ = (f(1), . . . , f(k − 1), f(k + 1), . . . , f(n)).

So, we need to show that if 1 ≤ i < j ≤ n and i, j 6= k, then b′f(i)f(j) ≤ b′f(j)f(i). We

note that

b′f(i)f(j) =
bf(i)f(k)bf(k)f(j)

1− bf(k)f(k)

and b′f(j)f(i) =
bf(j)f(k)bf(k)f(i)

1− bf(k)f(k)

.

Let 1 ≤ i < j ≤ n and i, j 6= k. Since L is empty, we have either bf(i)f(j) 6= 0 or

bf(i)f(k)bf(k)f(j) = 0.

Suppose that bf(i)f(j) 6= 0. Let Π be a positive diagonal matrix such that ΠA is

symmetric. Then, via Propositions 2.12 and 4.6,
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πf(i)bf(i)f(j) = πf(j)bf(j)f(i) and πf(i)b
′
f(i)f(j) = πf(j)b

′
f(j)f(i).

Since bf(i)f(j) ≤ bf(j)f(i) and bf(i)f(j) 6= 0, we must have πf(i) ≥ πf(j), which in turn

implies that b′f(i)f(j) ≤ b′f(j)f(i).

Suppose that bf(i)f(k)bf(k)f(j) = 0. Then, either bf(i)f(k) = 0 or bf(k)f(j) = 0,

implying (as B is reversible) that either bf(k)f(i) = 0 or bf(j)f(k) = 0. Thus, b′f(i)f(j) =

bf(i)f(j) and b′f(j)f(i) = bf(j)f(i). So, since bf(i)f(j) ≤ bf(j)f(i), we have b′f(i)f(j) ≤ b′f(j)f(i).

Case two: L is nonempty.

Let

Lmin = min
(l1,l2)∈L

{l1} and Lmax = max
(l1,l2)∈L

{l1};

let

lmin =


Lmin if Lmin < k

Lmin − 1 otherwise,

and lmax =


Lmax if Lmax < k

Lmax − 1 otherwise.

We note that (k, l′) /∈ L, for any index l′. If we suppose that (k, l′) ∈ L, then

bf(k)f(l′) = 0 and bf(k)f(k)bf(k)f(l′) 6= 0,

which is a contradiction. We further note that there are no elements of the form (l′, l′)

contained in L; so, lmin < lmax. Let g = Reorder(B′(lmin, . . . , lmax)); we note that g is

a permutation of the indices 1, . . . , lmax − lmin + 1.
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The permutation f ′ is formed by first removing the kth element of f , forming

f̂ = (f(1), . . . , f(k − 1), f(k + 1), . . . , f(l)),

and then permuting the subsequence consisting of the lminth through lmaxth elements,

f ′ = (f̂(1), . . . , f̂(lmin − 1), f ′(lmin), . . . , f ′(lmax), f̂(lmax + 1), . . . , f̂(n− 1)),

where

f ′(lmin) = f̂(lmin − 1 + g(1)),

f ′(lmin + 1) = f̂(lmin − 1 + g(2)),

...

f ′(lmax)) = f̂(lmin − 1 + g(lmax − lmin + 1)).

Now, suppose that 1 ≤ i < j ≤ l − 1. We aim to show that bf ′(i)f ′(j) ≤ bf ′(j)f ′(i).

First, assume that i < lmin. Then, f ′(i) = f̂(i) = f(i′) where i′ = i if i < k and

i′ = i + 1 if i ≥ k. If i ≥ k, then lmin ≥ k and so lmin = Lmin − 1, implying that

i′ < Lmin. If i < k, then i < lmin ≤ Lmin. In either case f ′(i) = f(i′) where i′ < Lmin.

We further note that the construction of f ′ implies that f ′(j) = f(j′) where j′ > i′.

Thus,

bf ′(i)f ′(j) = bf(i′)f(j′) ≤ bf(j′)f(i′) = bf ′(j)f ′(i).

Now, since (i′, j′) /∈ L, we have either

bf(i′)f(j′) 6= 0 or bf(i′)f(k)bf(k)f(j′) = 0.

177



As in the proof of case 1, if the first possibility holds we have πf(i′) ≥ πf(j′), for any

positive diagonal Π which symmetrises A, and if the second possibility holds we have

bf(i′)f(j′) = b′f(i′)f(j′) and bf(j′)f(i′) = b′f(j′)f(i′).

Both possibilities imply that

b′f ′(i)f ′(j) = b′f(i′)f(j′) ≤ b′f(i′)f(j′) = b′f ′(i)f(j).

The case j > lmax is very similar to that of i < lmin. This assumption implies, as

before, that f ′(j) = f(j′) and f ′(i) = f(i′) where i′ < j′ and (i′, j′) /∈ L. Thus, in

this case we again have

b′f ′(i)f ′(j) = b′f(i′)f(j′) ≤ b′f(i′)f(j′) = b′f ′(i)f(j).

So, we simply need to consider the case that lmin ≤ i < j ≤ lmax. The sequence

(g(1), . . . , g(lmax − lmin + 1)) is obtained by the reorder algorithm with input

B̂ = B′(f̂(lmin), . . . , f̂(lmax)).

Thus, for i < j, b̂g(i)g(j) ≤ b̂g(j)g(i). Then, we note that the i′j′th entry of B̂ is the

f̂(lmin − 1 + i′)f̂(lmin − 1 + j′)th entry of B′. As well, if lmin ≤ i′ ≤ lmax,

f ′(i′) = f̂(lmin − 1 + g(i′ − lmin + 1)).

So, let lmin ≤ i < j ≤ lmax, let i′ = i− lmin + 1 and let j′ = j − lmin + 1. Then,
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b′f ′(i)f ′(j) = b′
f̂(lmin−1+g(i−lmin+1))f̂(lmin−1+g(j−lmin+1))

= b′
f̂(lmin−1+g(i′))f̂(lmin−1+g(j′))

= b̂g(i′)g(j′)

≤ b̂g(j′)g(j′)

= b′
f̂(lmin−1+g(j′))f̂(lmin−1+g(j′))

= b′
f̂(lmin−1+g(j−lmin+1))f̂(lmin−1+g(i−lmin+1))

= bf ′(j)f ′(i).

The procedure behind the lower-weighted algorithm is the following. Let A be

a nearly uncoupled stochastic matrix. Suppose that the algorithm has proceeded

through some number of iterations of its internal while loop; let B, G, m, f and l be

the current stored data and let k be the index selected by the algorithm (supposing

that the algorithm will proceed through at least one more iteration). We assume that

B is error-reducing; as well, B(f(1), . . . , f(l)) is lower-weighted and k is the largest

index such that

1. bf(k)f(k) <
(1−ε)2

1+(mf(k)−2)ε
, and

2. the state f(k) can be associated with a state j that has a higher relative fre-

quency (in the associated Markov chain).
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That is, the first condition leads us to suspect that k is the largest index such

that f(k) is not the sole remaining member of an almost invariant aggregate. We

insist upon the second condition, as well, because the property that if i �G j then

π(i) ≤ π(j) is one of the base assumptions used to obtain the

(1− ε)2

1 + (mf(k) − 2)ε

bound in Appendix B. Thus, we assume that the stochastic complement B \ f(k) is

error-reducing as well.

Within the lower-weighted algorithm, it is not necessary to identify the collection L

and then reorder the submatrix B(f(lmin), . . . , f(lmax)). One could simply re-calculate

f := reorder(B) at every iteration. However, we have found that, in practise, this

makes the algorithm much less efficient.

Suppose that the matrix B is a lower-weighted reversible stochastic matrix on the

ordered state space S and let B̂ = B \ i′ be a stochastic complement. Let

L = {(i, j) : i 6= j, bij = 0 and bii′bi′j 6= 0}.

As we saw in the above proposition, if (i, j) /∈ L and i < j, then b̂ij ≤ b̂ji. Thus,

only the submatrix that contains all of the ijth entries where (i, j) ∈ L needs to be

reordered.

Moreover, as the algorithm proceeds, the successive stochastic complements have
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significantly fewer 0-entries (the collection L becomes smaller with successive com-

plements). For example, suppose that the reversible stochastic matrix

B =

 B̃ v

wT b


has x nonzero off-diagonal entries. Let x1 be the number of nonzero off-diagonal

entries in the matrix B̃ and let x2 be the number of nonzero entries in the vector v.

Since B is reversible, the vectors v and w have identical zero-nonzero patterns; so,

there are also x2 nonzero entries in w and we have x = x1 + 2x2. The number of

nonzero off-diagonal entries in the matrix

1

1− b
vwT

is x2
2−x2 (there is one nonzero entry for each pair of distinct i and j with vi, wj 6= 0).

So, the number of nonzero off-diagonal entries in the stochastic complement

B̃ +
1

1− b
vwT

is bounded above by x1 + x2
2 − x2 = x + x2(x2 − 3). The number of nonzero off-

diagonal entries of B can grow quite rapidly as we implement successive stochastic

complements. Thus, the sizes of the submatrices that actually need to be reordered

at each iteration can shrink equally rapidly.
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6.3 The Perron-ordered algorithm

In some applications, the stationary distribution of a given stochastic matrix A

may be known. For example, let X be the random walk on the weighted graph G,

where the weight of the edge ij is the ijth entry of the matrix W . Then, the vector

W1 is a scalar multiple of the stationary distribution of the transition matrix of X.

As well, if the transition matrix has been obtained via a Markov chain Monte Carlo

method, the stationary distribution is known (see Appendix C for an example of

Markov chain Monte Carlo).

We present a simpler variation of the lower-weighted algorithm which includes the

stationary distribution as an input; the inputs for the Perron-ordered algorithm are

a reversible stochastic Matrix A on the state space S, the stationary distribution π

of A and a nonnegative value ε < 1.

If the original matrix A is reversible, after any number of iterations of the algo-

rithm, the matrix B(f(1), . . . , f(n)) is lower-weighted, as f is obtained from the sta-

tionary distribution (see the proof of Proposition 6.2). Thus, as applied to reversible

matrices, the Perron-ordered algorithm is simply the lower-weighted algorithm with

the calls to the reorder algorithm removed.

It may seem that the lower-weighted algorithm, applied to a reversible matrix

A, is superfluous – one could simply calculate the stationary distribution π of A

and then apply the Perron-ordered algorithm. However, we do not recommend this
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Algorithm 9 The Perron-ordered algorithm

B := A
Let G be the digraph on S that contains no arcs.
m := 1S
n := |S|
Let f := (f(1), . . . , f(n)) be a bijection {1, . . . , n} 7→ S such that for 1 ≤ i < j ≤ n,
πf(i) ≥ πf(j).
while n ≥ 2 do

if for k = 1, . . . , n, bf(k)f(k) ≥ (1−ε)2
1+(mf(k)−2)ε

or Choose(B, f(k)) = 0 then

Exit the while loop.
else
k := max

1≤k′≤n

{
k′ : bf(k′)f(k′) <

(1−ε)2
1+(mf(k′)−2)ε

and Choose(B, f(k′)) 6= 0
}

j := Choose(B, f(k))
Add the directed arc f(k)→ j to G.
mj := mj +mf(k)

B := B \ f(k)
f := (f(1), . . . , f(k − 1), f(k + 1), . . . , f(n))
n := n− 1

end if
end while
return G
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approach. The stationary distribution π is the unique solution to the eigenvalue

problem vTA = vT . If the matrix A is nearly uncoupled, it has a cluster of eigenvalues

very near to 1, in which case the eigenvalue problem is referred to as badly conditioned.

The output to a badly conditioned problem is very sensitive to measurement and

round-off error, and, in principle, may be unreliable. For example, see [19] for an in

depth discussion concerning the convergence of iterative techniques applied to nearly

uncoupled Markov chains.

Thus, any potential vector produced as a solution to the eigenproblem vTA = vT

is possibly inaccurate, and may not be a reliable input to the Perron-ordered algo-

rithm. The lower-weighted algorithm attempts to remove states with lower relative

frequencies first, without actually calculating these frequencies.

The following line of reasoning suggests that if A is not reversible, then the Perron-

ordered algorithm is still reliable. Let A be a nearly uncoupled stochastic matrix with

stationary distribution π on the state space S and let E ⊆ S be an almost invariant

aggregate; let B = A(E) and let u = π(E). Let γ = (I −B)1, so that for each i ∈ E ,

Pi [x1 /∈ E ] = γi.

Consider the Markov chain X with initial distribution equal to π. Thus, for any t ≥ 0

and i ∈ S

P [xt = i] = (πTAt)i = πi.
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So,

uTγ

uT1
=
∑
i∈E

P[xt = i]

P[xt ∈ E ]
P[xt+1 /∈ E : xt = i] = P[xt+1 /∈ E : xt ∈ E ].

Definition 6.9. Let B be a substochastic matrix and let u be a positive vector such

that uTB ≤ uT . We define the u-weighted error of B to be the value

ηu(B) =
uTγB
uT1

=
uT (I −B)1

uT1
.

We note that for any substochastic matrix B, η(B) = η1(B). As well, let A be

an irreducible stochastic matrix with state space S and stationary distribution π, let

E ⊆ S, let B = A(E) and let π̂ = π(E). Then, ηπ̂(B) = 1 − wπ(B), the π-coupling

measure of B (and E).

Lemma 6.10. Let B be a substochastic matrix on the state space S and let i ∈ S be

such that the stochastic complement B̂ = B \ i exists. Let u be a positive vector such

that uTB ≤ u and suppose further that the subvector û = u(S \ i) satisfies ûT B̂ ≤ ûT .

Then,

ηû(B̂) ≤ ηu(B)

1− ui
.

Proof Without loss of generality, we assume that uT1 = 1 (multiplying u by a

positive scalar leaves ηu(B) fixed). Let γ = (I −B)1 and γ̂ = (I − B̂)1. So,

ηu(B) = uTγ.
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Now, since uTB ≤ u, we have

∑
j∈S

ujbji ≤ ui,

further implying that

∑
j 6=i

ujbji ≤ ui(1− bii).

From the definition of the stochastic complement, it is straightforward to show that

for each j ∈ S \ i,

γ̂j = γj +
bji

1− bii
γi.

So, we have

ûT γ̂ =
∑
j 6=i

uj γ̂j

=
∑
j 6=i

uj(γj +
bji

1−biiγi)

=

(∑
j 6=i

ujγj

)
+ γi

1−bii

(∑
j 6=i

ujbji

)

≤

(∑
j 6=i

ujγj

)
+ γi

1−biiui(1− bii)

=
∑
j∈S

ujγj

= ηu(B).

We note that since uT1 = 1 and û is obtained by deleting the ith entry from u, we

have ûT1 = 1− ui. Thus,

ηû(B̂) =
ûT γ̂

ûT1
≤ ηu(B)

1− ui
.
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Let A be a nearly uncoupled stochastic matrix with stationary distribution π and

state space S; let E ⊆ S be an almost invariant aggregate. Lemma 6.10 informs us

that if we remove the state i ∈ E via a stochastic complement, the probability of

exiting E has been scaled upwards by a factor of at most 1/(1− πi). Thus, choosing

i such that πi is minimal produces the best bound on this error inflation.

When the Perron Ordered Algorithm is applied to a nonreversible matrix A, any

appearances of the expression

(1− ε)2

1 + (m− 2)ε

(within the pseudocode) should be replaced with (1− ε)m.

6.4 The minimum column algorithm

We present an algorithm similar in spirit to the previous versions, which is intended

for use with nearly uncoupled matrices A which are not reversible and for which the

stationary distribution is unknown.

Let B be a substochastic matrix on the state space S containing 2 or more states

and let i ∈ S be such that bii < 1. We define the ith modified column sum of B to

be the number

cB(i) =
1

1− bii

∑
j 6=i

bji.
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That is, the ith modified column sum is the sum of the off-diagonal entries in the ith

column divided by 1− bii.

Proposition 6.11. Let B be an irreducible substochastic matrix on the state space S

containing two or more states; let i ∈ S be such that cB(i) is minimal among states

in S and let B̂ = B \ i. Then,

η(B̂) ≤ η(B).

Proof Let m ≥ 2 be the order of B. Since 1TB1 ≤ m, there is at least one i′ ∈ S

such that the sum of the entries in the i′th column of B is less than or equal to 1.

Then, for such a state i′,

∑
j∈S

bji′ ≤ 1 implies that
∑
j 6=i′

bji′ ≤ 1− bi′i′ ,

further implying that cB(i′) ≤ 1. Thus, since cB(i) is minimal, cB(i) ≤ 1. Express

B ∼=

 B̃ v

wT bii


where the final row and column correspond to i. So,

cB(i) =
1Tv

1− bii
≤ 1.

The statement can then be shown in the exact same manner as in Proposition 6.5 –

in the proof there, the fact that η(B \ i) ≤ η(B) was deduced solely from the fact

that 1Tv ≤ 1− bii.
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Algorithm 10 The minimum column algorithm

B := A
Let G be the digraph on S that contains no arcs.
m := 1S
K := {i ∈ S : bii < 1− ε}
C := ∅
while |K| ≥ 1 do

Let i ∈ K be such that cB(i) = min
i′∈K
{cB(i′)}.

C := C ∪ {i}
Let j ∈ S \ C be such that bij = max

j′∈S\C
{bij′}.

B := B \ i
Add the directed arc i→ j to G.
mj := mj +mi

K := {k ∈ K \ i : bkk < (1− ε)mk}
end while
return G

Proposition 6.12. Let A be a stochastic matrix on the state space S and suppose

that we have applied Algorithm 10 to A. Let B, K, C, m and G be the stored data

after any number of iterations of the while loop. Then,

1. B = A \ C,

2. G is acyclic, every member of C has out-degree 1 in G and every member of

S \ C has out-degree 0 in G,

3. for each i ∈ S \ C, mi is the order of the weakly connected component of the G

which contains i, and

4. K = {i ∈ S \ C : bii < (1− ε)mk}.
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The first three statements in Proposition 6.12 are shown as in Proposition 5.1 and

Lemma 5.3. The fourth can be shown via a proof by induction.

Let A be a nearly uncoupled stochastic matrix on the state space S and let

0 ≤ ε < 1. Suppose that we have applied Algorithm 10 to A and let B, K, C,

m and G be the stored data after some number of iterations of the while loop;

suppose further that B is error reducing. In order to be sure that the next stochastic

complement formed, B \ i, is error-reducing, we need to ensure that cB′(i) is minimal,

for some unknown principal submatrix B′ of B. Since this matrix is unknown, we

instead minimise cB(i), since cB′(i) ≤ cB(i) whenever B′ is a principal submatrix of

B.

6.5 An algorithm for identifying near transient states

Let A be a nearly uncoupled reversible stochastic matrix and let the digraph G

be formed by an application of one of our decoupling algorithms (Algorithms 3, 4, 8,

9 and 10). Let V1, . . . , Vm be the vertex sets of the weakly connected components of

G.

Recall that an ε-uncoupling of A is a partition Ψ = (E1, . . . , Em, E0), where E0 is

possibly empty and, for k 6= 0, each Ek is an almost invariant aggregate with respect

to ε.

In this section we present a method for constructing a potential ε-uncoupling out
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of the partition (V1, . . . , Vm).

Definition 6.13. Let A be a stochastic matrix on the state space S and let E ⊆ S

be nonempty. The stochastic restriction of E is the stochastic matrix R(E) on the

state space E defined via

rij =


aij if i 6= j

1−
∑
k∈E\i

aik if i = j.

The stochastic restriction is easily seen to be a stochastic matrix. First, its off-

diagonal entries are nonnegative. Then, we note that its diagonal entries are nonneg-

ative as well by observing that for each i ∈ E

∑
k∈E\i

aik ≤
∑
k∈S

aik = 1.

Then, for each i ∈ E ,

∑
k∈E

rik = rii +
∑
k∈E\i

rik = 1−
∑
k∈E\i

aik +
∑
k∈E\i

aik = 1.

So, the sum of the entries in each row of R(E) is 1.

The stochastic restriction of a subspace E models the following Markov chain. We

observe the Markov chain associated with the original stochastic matrix A subject to

the constraint x0 ∈ E . We add the further constraint that the Markov chain is “not

allowed” to exit E . We can imagine that every time a transition i → j where i ∈ E

and j /∈ E might occur, we replace this with the transition i→ i.
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Proposition 6.14. Let A be an irreducible reversible stochastic matrix on the state

space S; let E ⊆ S be such that B = A(E) is irreducible and let B̂ = R(E) be the

stochastic restriction of E. Let π be the stationary distribution of A and let π̂ be

the stationary distribution of B̂. Then, π̂ is a scalar multiple of the subvector π(E)

corresponding to E.

Proof Since B is irreducible and the off-diagonal entries of B and B̂ are equal,

the matrix B̂ is an irreducible stochastic matrix and so has a unique stationary

distribution π̂. Moreover, the facts that A is reversible and that aij = âij for all pairs

of distinct i and j contained in E imply that

πib̂ij = πj b̂ji

for all i, j ∈ E . By proposition 2.12, the vector π(E) is a scalar multiple of π̂. Since

A is irreducible, every entry of π is positive and the statement holds.

Let A be a nearly uncoupled reversible stochastic matrix on the state space S and

let the digraph G be formed by an application of one of our uncoupling algorithms.

Let V ⊆ S be the vertex set of a weakly connected component of G. As in the dis-

cussion concerning Proposition 5.4, we suspect that V consists of an almost invariant

aggregate together with some number of near transient states.

Further, for each directed arc i→ j present in G, there is a stochastic complement

Â of A that has the ijth entry large. So, transitions within V are very likely, whereas
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transitions from V to S \ V are less so. As well, since such a stochastic complement

Â is reversible, whenever âij 6= 0 we also have âji 6= 0. Thus, it seems reasonable to

assume that A(V ) is irreducible.

Let π be a stationary distribution of A that is nonzero on the states contained in

V and label V = {i1, . . . , im} so that

πi1 ≥ πi2 ≥ . . . ≥ πim .

Near transient states are states that the associated Markov chain visits only rarely.

For each i, j ∈ V , the ratio πj/πi measures the relative frequency of visits to i and

j – that is, the Markov chain visits state j πj/πi times as often as it visits state i.

Thus, we will assume that either V contains no near transient states or that for some

k with 2 ≤ k ≤ m, the near transient states contained in V are ik, ik+1, . . . , im. That

is, we assume that the near transient members of V are those that have the smallest

stationary weights.

Utilising this idea and Proposition 6.14, we propose the following algorithm for

refining the output of our uncoupling algorithms.

We note that the following algorithm does not calculate the stationary distribution

of the entire matrix A – it calculates stationary distributions of stochastic restrictions

of A which we suspect are irreducible and “well-coupled”. Therefore, even though the

eigenvalue equation vTA = vT is badly conditioned, we suspect that the eigenproblems

we are solving, wTR(V ) = wT , are well-conditioned.
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Within the refining algorithm, we will use the 1-coupling measure previously in-

troduced to evaluate the “strength” an aggregate. Let A be a stochastic matrix on

the state space S and let B = A(C) be a principal submatrix of order m ≥ 1; then,

w1(B) =
1TB1

m
=

1

m

∑
i,j∈C

bij.

As usual, when w1(B) is close to 1, we suspect that C forms an almost invariant

aggregate.

The inputs of the refining algorithm are a reversible stochastic matrix A on

the state space S and a partition (V1, . . . , Vm) of S. The output is a partition

(E1, . . . , Em, E0) such that Ek ⊆ Vk (for k 6= 0),

E0 =
m⋃
k=1

Vk \ Ek

and each w1(A(Ek)) is maximal, within a certain class of submatrices of A(Vk).

Let A be a nearly uncoupled reversible stochastic matrix on the state space S and

let the digraph G be formed by an application of one of the uncoupling algorithms.

Let V ⊆ S be the vertex set of a weakly connected component of G. The refining algo-

rithm sorts the states in V into descending under, under their weights in a stationary

distribution of A. As we discussed above, the near transient states in V should form

the tail of this sequence. So, the refining algorithm simply calculates which leading

portion of the sequence forms the strongest aggregate, under the 1-coupling measure.

We prefer the more conservative 1-coupling measure. However, the algorithm is
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Algorithm 11 The aggregate refining algorithm

for t = 1, . . . , s do
m := |Vt|
Calculate a stationary distribution π̂ of the stochastic restriction R(Vt).
Let f be a bijection {1, . . . ,m} 7→ Vt such that

π̂f(1) ≥ π̂f(2) ≥ . . . ≥ π̂f(m).

for k = 1, . . . ,m do

wk := 1
k

k∑
i=1

k∑
j=1

af(i)f(j)

end for
Let k ∈ {1, . . . ,m} be such that wk = max{w1, . . . , wm}.
Et := {f(1), . . . , f(k)}

end for

E0 := S \
s⋃
t=1

Et
return (E1, . . . , Es, E0)

already calculating subvectors of the stationary distribution; so, it is very straightfor-

ward to modify it to utilise the π-coupling measure instead. In this case, we simply

replace the command

wk :=
1

k

k∑
i=1

k∑
j=1

af(i)f(k)

with the command

wk :=

k∑
i=1

k∑
j=1

π̂f(i)af(i)f(k)

k∑
i=1

πf(i)

.

However, we note that the π-coupling measure already undervalues near transient

states – thus the improvement to the strengths of the aggregates tends to be minimal

when utilising the π-coupling measure.
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Chapter 7

Conclusions and directions for future

research

The stochastic complement based algorithms presented here are an efficient and

effective tool for the construction of almost invariant aggregates of a given Markov

chain. The three strengths of the approach are its efficiency, in terms of computation

time required, its independence of spectral methods and the level of detail in its

output. There are a number of unsolved problems regarding the application of these

ideas; as well, we present sketches of potential future directions of this research.

7.1 Advantages of the approach

The speed at which the stochastic complement based algorithms operate is a

definite point in their favour. Given a single stochastic matrix, even of relatively
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large order, it is a straightforward computation task to compute many outputs (using

alternate input values or more than one of our algorithms).

As we show in Appendix E, each of algorithms has a complexity bounded by n3,

where n is the order of the input matrix. It is known that this the complexity of

Gauss-Jordan Elimination (and many other important matrix-related algorithms).

For example, in Appendix C, we present a summary of the Lower Weighted Al-

gorithm’s performance when applied to a collection of randomly generated matrices.

We generated 180 matrices of order 1000, and applied the Lower Weighted Algorithm

to each matrix. This entire procedure took 87 minutes to execute, using MatLab 7

on a PC with a 2 GHz dual-core processor.

We suggest that the stochastic complement based algorithms’ independence from

spectral methods is another strength of the approach. Consider the following very

simple example. Let

A1 =

 1− ε ε

ε 1− ε

 and A2 =

 1− ε2 ε2

ε 1− ε

 ,
where ε < 1 is some small positive constant. Now,

‖A2 − A1‖∞ =

∥∥∥∥∥∥∥∥
 ε− ε2 ε2 − ε

0 0


∥∥∥∥∥∥∥∥
∞

= 2(ε− ε2).

The matrix A2 can be viewed as a small perturbation of A1. However, we find that

this small perturbation of A1 corresponds to a large perturbation of one of its right
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eigenvectors. The Perron values of A1 and A2 are both ρ = 1 and the (right) Perron

vector (of both matrices) is

vρ =
1

2

 1

1

 .
The second right eigenpairs of A1 and A2 are given by A1v1 = (1− 2ε)v1 and A2v2 =

(1− ε− ε2)v2, where

v1 =

 1

−1

 and v2 =

 ε

−1

 .
We have normalised all of the above vectors so that each has a ∞-norm of 1. We

calculate

‖v2 − v1‖∞ =

∥∥∥∥∥∥∥∥
 ε− 1

0


∥∥∥∥∥∥∥∥
∞

= 1− ε.

Even though the value of ‖A2 − A1‖∞ is on the order of ε, the value ‖v2 − v1‖∞ is

close to 1 (a significant difference for normalised vectors).

The collections C1 = {vρ, v1} and C2 = {vρ, v2} are the basis upon which the

Perron cluster approach partitions the state spaces of A1 and A2 (if it were to be

applied to these matrices). That is, a small perturbation of the matrix A1 results in

a large perturbation of the eigenvectors associated with the Perron cluster.

We produce this example to show that when a stochastic matrix is nearly uncou-

pled, its spectral properties (and thus, the information upon which spectral based
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algorithms operate) can be wildly sensitive to perturbation. In the example above,

the collections C1 and C2 induce identical (and correct) decompositions of the state

space. However, for matrices that are of much larger order, and which possess less

straightforward nearly uncoupled structure, it is unclear what effect such tiny per-

turbations may have on the vectors associated with the Perron cluster. We propose

that an approach that does not rely on such sensitive structures is desirable.

The final point which we raise, in our approach’s support, is the level of detail

of its output. Other approaches (for example, the Perron cluster and SVD based

algorithms) use a partitioning approach. One begins with the state space S, and

then partitions it into steadily smaller subsets until an ε-uncoupling is achieved.

We use an aggregating approach – one begins with the collection of singleton

sets, Ψ = ({i})i∈S , and then takes unions, forming larger and larger sets, until an

uncoupling is constructed. The advantage of this method is that if we “save our

work”, it is straightforward to construct subaggregates of the produced collections –

we simply use elements of the previously constructed partitions. Other uses for this

hierarchical structure can be constructed – for example, the recursive subaggregating

procedure we present in Appendix C.
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7.2 Improvement of the bound in Appendix B

In Appendix A we show the following. Let A be an irreducible reversible stochastic

matrix and let E ⊆ S be an almost invariant aggregate, containing 2 or more states,

with respect to ε. Let Π be a positive diagonal matrix such that ΠA is symmetric,

let i ∈ E be such that

πi = max
j∈E
{πj}

and let Ã = A \ {j ∈ E : j 6= i}. Then,

ãii ≥
(1− ε)2

1 + (|E| − 2)ε
.

This is our motivation for using

ãii ≥
(1− ε)2

1 + (mi − 2)ε

as the test for whether or not it is safe to remove state i in the Modified Maximum

Entry, Lower Weighted and Perron Ordered Algorithms. These algorithms have been

specifically constructed so that they do not remove states with maximal Π-values.

Let A be a stochastic matrix on the state space S and let E ⊆ S be an almost

invariant aggregate of m states with respect to ε. In Appendix B we show that there

is at least one index i ∈ E of such that Ã = A \ {j ∈ E : j 6= i} has

ãii ≥ (1− ε)m.
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However, we have not yet identified necessary or sufficient conditions that identify

such a state i. It is unknown, at this point, if the Minimum Column Algorithm, or

any of our stochastic complement based algorithms, will fail to remove such states

first.

We believe that the following conjecture holds. Let B = B(0) be an irreducible

substochastic matrix of order m ≥ 2 such that B1 ≥ (1 − ε)1. Let B(1), . . . , B(m−1)

be a sequence of stochastic complements such that B(k+1) = B(k) \ i where the ith

column sum of B(k) has minimal sum. Then, B(m−1) = [α] where α ≥ (1 − ε)m.

Moreover, we suspect that equality occurs if and only if B = (1 − ε)P where P is a

cyclic permutation matrix (as in Proposition B.12).

This conjecture is very simple to prove for m = 2. However, it seems to be

challenging to show that it holds in general, or even for the m = 3 case. If this

conjecture can be shown to be true, we would have a stronger basis for utilising the

bound described in Appendix B.

7.3 Mean first passage times

Each of our stochastic complement based algorithms uses the following idea in its

implementation.

Let A be a stochastic matrix and let Ã = A\C be a stochastic complement formed

after some number of iterations of one of the complement based algorithms. Suppose
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that state i is the next state the algorithm will remove. Let state j /∈ C, distinct from

i, be such that

ãij = max
k/∈C
3k 6=i

{ãik}.

Then, states i and j (and all other states already associated with i and j) will be

connected by the algorithm. That is, a directed arc i→ j, where j satisfies the above

equality, will be added to the output digraph.

An important open problem remaining is the following. If the Markov chain

associated with A is nearly uncoupled and ãij is as above, under what circumstances

can we be sure that i and j belong to a minimal almost invariant aggregate? It is

fairly straightforward to construct examples where i and j belong to distinct almost

invariant aggregates. For example, in Appendix D we produce a characterisation of

block homogeneous stochastic matrices which identifies exactly when this condition

holds and when it fails.

We consider this problem, briefly. Let X be a Markov chain on the state space S

with transition matrix A. As before, the random variable

Ti = inf{t ≥ 1 : xt = i}

(with the convention that inf ∅ = ∞) is the stopping time referred to as the first

passage time into i. For each i, j ∈ S, we refer to the value

tij = E [Tj|x0 = i]
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as the mean first passage time from i to j. That is, given x0 = i, tij is the expected

value of the smallest positive t with xt = j. We note that tij ≥ 1, and that it is

entirely possible that tij =∞.

Proposition 7.1 appears in [16, Lemma 2.2].

Proposition 7.1. Let X be a Markov chain on the state space S with transition

matrix A and suppose that A is irreducible. Let j ∈ S and express

A ∼=

 ajj wT

v B

 .
For each i 6= j, tij is equal to the ith entry of (I −B)−11.

Proposition 7.2. Let ε < 1 be positive and let A be a stochastic matrix of the form

A =

 B1 B12

B21 B2


where B11 ≥ (1 − ε)1 and B21 ≥ (1 − ε)1. Let E1 and E2 be the collections of

states corresponding to the block expression of A. Suppose that whenever i and j are

contained in the same member of {E1, E2} we have tij < 1/ε. Then, each of B1 and

B2 either has at least one off-diagonal entry strictly greater than ε or is 1× 1.

Proof We proceed by contradiction. Suppose that B1 is of order 2 or greater and

that every off-diagonal entry of B1 is less than or equal to ε. Express

A =

 a11 wT

v A′

 .
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For each i ∈ E1 \ 1, we have ai1 ≤ ε, by assumption (for any i ∈ E1, the entry ai1

is contained in the block B1). For each j ∈ E2, the entry aj1 is contained in the

block B21, and so is less than or equal to ε. Thus, v ≤ ε1, further implying that

A′1 ≥ (1− ε)1. This implies that

(I − A′)1 ≤ ε1,

and so we see that

1

ε
1 ≤ (I − A′)−11.

By Proposition 7.1, we must have ti1 ≥ 1/ε for all i 6= 1. Thus, if tij < 1/ε for all

distinct pairs i, j ∈ E1, either there are no such pairs (B1 is 1 × 1) or there is at

least one off-diagonal entry of B1 strictly greater than ε. The same is true of B2, via

similarity of the argument.

Using Proposition 7.2, we can prove the following. Let A be a nearly uncoupled

stochastic matrix and suppose that there is an ε-uncoupling Ψ = (E1, . . . , Em, E0) such

that for each k 6= 0, if i, j ∈ Ek, then tij < 1/ε. Then, the very first directed arc i→ j

with i /∈ E0 added to the output digraph by the Maximum Entry Algorithm (with

input ε) has i, j ∈ Ek for some k 6= 0.

As we stated above, a problem remaining in the study of these stochastic com-

plement based algorithms is to find conditions that guarantee that further iterations

of the Maximum Entry Algorithm, or any iterations of our other algorithms, are
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also correct. We hypothesise that some set of assumptions concerning the mean first

transition times and the sizes of the minimal aggregates will be sufficient. However,

it seems to be a very challenging problem to find such conditions that still retain a

useful degree of generality.

7.4 Recommender systems

An interesting application of matrix theory is to so-called recommender systems.

Put simply, a recommender system is an algorithm or method which recommends

entries of a database to its users. Generally, these recommendations are based on

the users’ past histories of interactions with the database – a recommender system

attempts to guess which entries are appropriate or desirable to each of its users. A

survey of such systems is found in [1].

As an example, we provide a sketch of the system used by Amazon.com to make

product recommendations to users browsing its online store; see [17] for an introduc-

tion to the company’s algorithm. Let P be the collection of products offered; for

each x ∈ P , let n(x) be the number of customers who have purchased product x and

for each pair of distinct x, y ∈ P , let n(x, y) be the number of customers who have

purchased both products. For any pair of distinct products x, y ∈ P , the similarity

between x and y is the value

sim(x, y) =
n(x, y)√
n(x)n(y)

.
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For any two products x, y ∈ P ,

1. 0 ≤ sim(x, y) ≤ 1,

2. sim(x, y) = 1 if and only if any customer which purchased one of x or y pur-

chased both of x and y, and

3. sim(x, y) = 0 if and only if no customer purchased both x and y.

The similarity between two products is an attempt to measure how likely a customer

who has purchased one is to have purchased both.

Now, suppose that a customer is browsing Amazon.com; let V be the collection of

products which the customer has purchased or viewed (including the product the cus-

tomer is currently viewing). The Amazon.com system simply recommends products

y /∈ V such that for one or more x ∈ V , sim(x, y) is relatively high.

The stochastic complement can be used to enhance such a system in two ways.

We illustrate both using Amazon.com’s recommender system.

Let G be the weighted graph with vertices equal to P (as above) where the weight

of edge xy is equal to sim(x, y). (We may or may not include loops at the vertices – for

the purposes of this sketch, this choice is not relevant.) Let A be the transition matrix

of the random walk on G. Then, given V as above, the Amazon.com is recommending

products y /∈ V such that for one or more x ∈ V , axy is close to

max
x′∈V,y′ /∈V

{ax′y′}.
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A first use for the stochastic complement based approach is to run one of our

algorithms in order to detect almost invariant subsets of P (with respect to A). It

seems likely that such collections would occur – the Amazon.com graph of products

is known to be large and sparse. Suppose that a customer is browsing the online store

and let V be as above. Then, if there is an almost invariant aggregate E such that

|V ∩ E|/|V | is significant, it would seem prudent to recommend members of E to the

customer, especially products y ∈ E that have been purchased by large numbers of

customers.

A second way in which the stochastic complement may supplement such a rec-

ommender system is the following. Suppose that a customer is browsing the online

store and let V be as above. Let V ′ ⊆ V be such that V \ V ′ = {z}. (That is, let V ′

contain every member of V except for one, which we label z.) Let A be as above and

let Ã = A \ V ′. Rather than selecting products y /∈ V where axy is close to

max
x′∈V,y′ /∈V

{ax′y′}

(for some x ∈ V ), we suggest that it could useful to recommend products y /∈ V such

that ãzy is relatively close to

max
y′ /∈V
{ãzy′}.

This allows a customer’s history of purchases and views to be more fully incorporated

into the recommendations.
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It may be that there are products y /∈ V such that sim(x, y) is small for all x ∈ V ,

but the value

∑
x∈V

sim(x, y)

is relatively large. Such products seems like good candidates to be recommended to

the customer. The stochastic complement tends to preserve such structures – such

recommendations may be made more likely than with Amazon.com’s method.

Candidates for the product z ∈ V (described above) are the product the customer

is currently viewing or a product included in the customer’s most recent purchase.

Such a system attempts to anticipate the customer’s next purchase, incorporating

their full purchasing and viewing history.

We note that the second suggestion partially implements the first, at least implic-

itly. If there is an almost invariant aggregate E from which the customer is making

large numbers of purchases, the values ãzy, where y ∈ E and z is as above seem likely

to become large.

In future works we aim to flesh out such ideas more fully and explore the properties

of specific implementations of the stochastic complement to recommender systems

(and other data mining concepts).
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Appendix A

A lower bound concerning stochastic

complements of reversible Markov chains

We construct a lower bound on a specific term relating to stochastic complements

of reversible substochastic matrices.

A.1 Definitions and problem statement

Definition A.1. Let B be a properly substochastic matrix and let C be the associated

state space. If the order of B is 1, that is, if C = {i} and B = [bii], we define

αB(i) = bii. If C contains two or more states, then for each i ∈ C we express

B ∼=

 bii vT

w A

 ,
and define
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αB(i) = bii + vT (I − A)−1w.

An alternate way to define αB(i) is the following. Let B and C be as in Defini-

tion A.1 and let i ∈ C. Let B̂ be the stochastic complement that removes every state

aside from i; that is, B̂ = B \ {j : j 6= i}. Then, B̂ is the 1× 1 substochastic matrix

B̂ = [αB(i)].

Let X be a Markov chain on the state space S. Recall that, for C ⊆ S, we define

EC = inf
t≥1
{t : xt /∈ C} .

If x0 ∈ C, we refer to t = EC as the first exit time out of C and we say that the Markov

chain exits C at time t. As well, for each i ∈ S,

Ti = inf
t≥1
{t : xt = i}

is the first passage time into i.

Proposition A.2. Let X be an irreducible Markov chain with state space S and

transition matrix A. Let C ⊆ S and let B = A(C). For each i ∈ C, αB(i) is the

probability of transitioning from i to i, in one or more steps, without first exiting C.

That is,

αB(i) = Pi [Ti < EC] .
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Proof First we consider the case that C = {i}. In this case, we simply have αB(i) =

bii = aii. Clearly, αB(i) is the probability of transitioning from i to i without first

visiting any other state.

So, assume that |C| = m ≥ 2. Without loss of generality, we assume that i = 1

and that C = {1, . . . ,m} where 2 ≤ m ≤ |S|. Let C ′ = C \ 1 = {2, . . . ,m}. Express

A =


a11 vT1 vT2

w1 B1 B12

w2 B21 B2

 ,

where the second row and column of blocks corresponds to states C ′ and the third

corresponds to states S \ C = {m + 1, . . . , n} (where n is the order of A). The final

column and row of blocks may be null; i.e. we may have C = S. However, our

calculations will not include any of these terms, and so the presence or absence of

these blocks is irrelevant.

Now,

B =

 a11 vT1

w1 B1


and αB(1) = a11 + vT1 (I −B1)−1w1. We have

A \ C ′ =

 a11 vT2

w2 B2

+

 vT1

B21

 (I −B1)−1

[
w1 B12

]
=

 αB(1) ∗

∗ ∗

 .
(Only the (1, 1)th entry is relevant to our discussion.) By Proposition 4.3, αB(1) is

the probability that, given x0 = 1, there is some positive integer t′ ≥ 1 such that
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{xt : 1 ≤ t ≤ t′ − 1} ⊆ C ′

and xt′ = 1. We show that this occurs if and only if T1 < EC.

Suppose that x0 = 1,

{xt : 1 ≤ t ≤ t′ − 1} ⊆ C ′

and xt′ = 1. Then, T1 = t′, since xt′ = 1 and if 1 ≤ t ≤ t′ − 1 then xt 6= 1. As well,

EC > t′, since x1, . . . , xt′ ∈ C. Thus, if the positive integer t′ satisfies these conditions,

then t′ = T1 < EC.

Now, suppose that T1 < EC. This implies that T1 6=∞, as EC ≤ ∞. Let t′ = T1,

so that xt′ = 1 and xt 6= 1 whenever 1 ≤ t ≤ t′ − 1. As well, if 1 ≤ t ≤ t′ − 1 then

1 ≤ t < EC, implying that xt ∈ C. Thus, if x0 = 1 and T1 < EC then there is t′ ≥ 1

such that

{xt : 1 ≤ t ≤ t′ − 1} ⊆ C ′

and xt′ = 1.

We recall that we refer to the substochastic matrix B as reversible if there is a

positive diagonal matrix Π where ΠB is symmetric. As before, we use πi to represent

the ith diagonal entry of the diagonal matrix Π.
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Lemma A.3. Let B be an irreducible reversible substochastic matrix. Then, the pos-

itive diagonal matrices that symmetrise B via left-multiplication are uniquely defined,

up to multiplication by a positive constant.

Proof We aim to show that if Π and Π′ are positive diagonal matrices such that ΠB

and Π′B are symmetric, then Π′ = pΠ, for some positive scalar p. If B is a 1 × 1

matrix, this is trivial; so, we assume that the order of B is 2 or more. Thus, the

digraph G associated with B is strongly connected.

Let Π be a positive diagonal matrix such that ΠB is symmetric. Let

Q =
1

π1

Π;

so, QB is symmetric, as well. Thus, for all i and j,

qibij = qjbji.

This implies that if bij 6= 0, then bji 6= 0 and the ratio qi/qj = bji/bij is uniquely

determined by B. Let i 6= j be any two distinct indices of B. Since the digraph of B

is strongly connected, there is directed walk from i to j,

i = i0 → i1 → · · · → ik = j,

present in G. So, if 0 ≤ s ≤ k − 1, then bisis+1 6= 0. The above observation implies

that each ratio qis/qis+1 is a positive scalar which is uniquely determined by B. This

in turn implies that the ratio qi/qj is positive and is uniquely determined by the
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substochastic matrix B. Since q1 = 1, each of the numbers qi = qi/q1 is uniquely

determined by B. Thus, if Π′ is a second positive diagonal matrix such that Π′B is

symmetric, then

1

π1

Π = Q =
1

π′1
Π′.

We use this lemma to uniquely identify the positive diagonal matrices associated

with reversible substochastic matrices. Let B be an irreducible reversible substochas-

tic matrix with states C; we define Π = ΠB to be the unique positive diagonal matrix

such that ΠB is symmetric and the largest diagonal entry of Π is 1:

max
i∈C
{πi} = 1.

Definition A.4. Let n ≥ 1 be a positive integer and ε < 1 be a positive real number.

We define B(n, ε) = {B} to be the collection of n× n substochastic matrices B such

that

1. B is irreducible and reversible, and

2. γB = (I −B)1 ≤ ε1.

We note that for all B ∈ B(n, ε), B1 ≥ (1− ε)1.

Definition A.5. Let n ≥ 1 and let ε < 1 be a positive real number. Let B ∈ B(n, ε)

and let Π = ΠB. We define α(B) to be the minimum value of αB(i) subject to πi = 1:
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α(B) = min
i3πi=1

{αB(i)}.

We note that if B ∈ B(n, ε) and Π = ΠB, then for every index i of B, either πi < 1

or αB(i) ≥ α(B).

The problem we solve is the following. Given positive integer n ≥ 2 and positive

real number ε < 1, we calculate the number

α(B) = inf
B∈B
{α(B)}

and characterise those reversible substochastic matrices B ∈ B that have α(B) =

α(B).

A.2 Preliminaries

Lemma A.6. Let B ∈ B(n, ε) where n ≥ 2. Then, we can express

B ∼=

 a vT

w A


where, in addition to the fact that B is irreducible and substochastic,

1. a+ vT1 ≥ 1− ε,

2. A1+ w ≥ (1− ε)1,

3. α(B) = a+ vT (I −B)−1w, and
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4. there is a positive diagonal matrix Q, such that Q ≤ I, QA = ATQ and Qw = v.

Proof Let Π = ΠB. Since

α(B) = min
i3πi=1

{αB(i)},

there is an index i such that πi = 1 and α(B) = αB(i). Express

B ∼=

 bii vT

w A


where the first row and column corresponds to such a state i and the principal sub-

matrix A corresponds to the remainder of the state space. The first two claims are

direct consequences of the fact that

γB = (I −B)1 ≤ ε1.

The third claim is simply a restatement of the fact that αB(i) = α(B).

Finally, since πi = 1 and πj ≤ 1 for all j ∈ C, we have

ΠB
∼=

 1 0

0 Q

 ,
where Q ≤ I, via the same correspondence as B. The fourth claim is a consequence

of the fact that ΠBB = BTΠB.

Lemma A.7. Let X, Y and Z be nonnegative square matrices of order m ≥ 1 such

that
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1. Z is irreducible,

2. X and Y are positive diagonal matrices,

3. X ≤ Y , with strict inequality in at least one diagonal entry, and

4. Z1 ≤ X1, with strict inequality in at least one position.

Then, the matrices (X − Z)−1 and (Y − Z)−1 are defined and satisfy

0 < (Y − Z)−1 < (X − Z)−1

(entrywise).

Proof A matrix is irreducible if its associated digraph is strongly connected or if it

is the 0-matrix of order 1. If Z = [0], we then have X = [x] and Y = [y] where

0 < x < y. Then, (X − Z)−1 = [1/x] and (Y − Z)−1 = [1/y], where 0 < 1/y < 1/x.

So, we assume that the digraph G associated with Z is strongly connected.

Since Z is irreducible and Z1 ≤ X1 ≤ Y 1, with each inequality strict in at least

one position, X−1Z and Y −1Z are irreducible properly substochastic matrices. Thus,

(I −X−1Z)−1 =
∑
s≥0

(X−1Z)s and (I − Y −1Z)−1 =
∑
s≥0

(Y −1Z)s

exist and are entrywise nonnegative (Lemma 2.8). So,

(X − Z)−1 = (I −X−1Z)−1X−1 =
∑
s≥0

(X−1Z)sX−1
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and (Y − Z)−1 = (I − Y −1Z)−1Y −1 =
∑
s≥0

(Y −1Z)sY −1

are entrywise nonnegative. Let G be the directed graph induced by Z. We will use

the abbreviations xi = xii and yi = yii to refer to the diagonal entries of X and Y .

For each directed walk

ω = i0 → i1 → . . .→ il

of length l ≥ 1 in G we define

x(ω) =
zi0i1zi1i2 · · · zil−1il

xi0xi1 · · ·xil
and y(ω) =

zi0i1zi1i2 · · · zil−1il

yi0yi1 · · · yil
.

For the directed walk ω = i of length 0 (the walk consisting of i and no directed arcs),

we define

x(ω) =
1

xi
and y(ω) =

1

yi
.

By our above formulation, we have

[
(X − Z)−1

]
ij

=
∑
ω:i;j

x(ω) and
[
(Y − Z)−1

]
ij

=
∑
ω:i;j

y(ω).

We note that, since X ≤ Y , 0 < y(ω) ≤ x(ω) for all directed walks ω in G. Let k

be such that xk < yk; let i and j be any two indices (possibly identical to each other

and/or to k). Since Z is irreducible, there is a directed walk ω′ in G from i to j that
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visits k at least once. Such a walk has 0 < y(ω′) < x(ω′). We see that for any i and

j,

0 <
∑
ω:i;j

y(ω) <
∑
ω:i;j

x(ω).

Therefore,

0 <
[
(Y − Z)−1

]
ij
<
[
(X − Z)−1

]
ij

for any i and j.

Lemma A.8. Let z 7→ A(z) be a matrix-valued function R 7→ Rn×n where each aij(z)

is a differentiable function of z. At points z0 where A(z0) is nonsingular, we denote

the inverse (A(z0))−1 = A−1(z0). Let

d

dz
A(z) =

[
d

dz
aij(z)

]
.

If A(z0) is nonsingular, then

d

dz
A−1(z)

∣∣∣∣
z=z0

= −A−1(z)

(
d

dz
A(z)

)
A−1(z)

∣∣∣∣
z=z0

.

Proof When A(z0) is nonsingular, there is a nonempty open neighbourhood of z0

over which A−1(z) is an entrywise differentiable function. Over this neighbourhood

we have

A−1(z)A(z) = I,
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and so (
d

dz
A−1(z)

)
A(z) + A−1(z)

(
d

dz
A(z)

)
= 0.

Therefore,

d

dz
A−1(z) = −A−1(z)

(
d

dz
A(z)

)
A−1(z)

at all points z where A(z) is nonsingular.

A real matrix A is positive definite if it is symmetric and every eigenvalue of A is

positive. We note that real positive definite matrices are nonsingular.

Lemma A.9. Let A be a real positive definite matrix and let v be a nonzero real

vector. Then,

(
vTAv

) (
vTA−1v

)
≥
(
vTv
)2

= ‖v‖4 ,

with equality if and only if v is an eigenvector of A.

Proof We make use of some well-known facts from linear algebra.

First, the Cauchy-Schwarz inequality (as it applies to real spaces of column vec-

tors) is the following proposition: Let v and w be nonzero real column vectors, then,

vTw ≤ ‖v‖ ‖w‖ = (vTv)1/2(wTw)1/2,

with equality if and only if v = βw for some nonzero real number β.

Second, we make use of the following propositions, taken from [14, Chapter 7]:

Let A be a real positive definite matrix, then

220



1. there is a unique real positive definite matrix, labelled A1/2, and referred to as

the square root of A, such that

(A1/2)2 = A;

2. the matrix A−1 is itself real and positive definite; and

3. the square root of A−1 is the inverse of the square root of A,

(A−1)1/2 = (A1/2)−1,

and we label this matrix A−1/2.

(We have modified the results in [14] slightly, as we are only interested in the real

case).

Now, let A be a real positive definite matrix and let v be a nonzero real vector.

Then,

vTv = vTA1/2A−1/2v = (A1/2v)T (A−1/2v).

So, via the Cauchy-Schwarz inequality,

vTv ≤
∥∥A1/2v

∥∥∥∥A−1/2v
∥∥ = (vTAv)1/2(vTA−1v)1/2.

Squaring every term in this expression obtains the expression in the above statement.

Further, we note that equality holds if and only if
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A1/2v = βA−1/2v,

for some real number β. When this occurs, multiplying both sides of this equality by

A1/2 obtains Av = βv.

Let B ∈ B(n, ε) and let Π = ΠB. We note that ΠB = I if and only if B is

symmetric. If B is symmetric, then

α(B) = min
i3πi=1

{αB(i)} = min{αB(i)}

and we have αB(i) ≥ α(B) for all i. As well, if B is symmetric, the expression of B

found in Lemma A.6 is

B ∼=

 a vT

v A

 ,
where A is symmetric and α(B) = a+ vT (I − A)−1v.

Lemma A.10. Let B ∈ B(n, ε). If B is not symmetric, then there is a symmetric

substochastic matrix B̂ ∈ B(n, ε) such that α(B̂) < α(B).

Proof Suppose that B ∈ B(n, ε) is not symmetric. Express

B ∼=

 a vT

w A

 and Π = ΠB
∼=

 1 0

0 Q

 ,
as in Lemma A.6. So, Q ≤ I, Qw = v and QA is symmetric. The assumption that

B is not symmetric implies that Q 6= I. We note that since B ∈ B(n, ε), we have

222



1. B is irreducible,

2. 1− ε ≤ a+ vT1 ≤ 1, and

3. (1− ε)1 ≤ A1+ w ≤ 1,

Let

B̂ =

 a vT

v Â

 ,
where

Â = QA+ (1− ε)(I −Q).

We claim that B̂ is a symmetric member of B(n, ε) and α(B̂) < α(B). Since

0 ≤ Q ≤ I, B̂ is nonnegative. For every i 6= j, we have b̂ij = πibij; so, the fact that

B is irreducible implies that B̂ is irreducible. As well, the fact that QA is symmetric

implies that B̂ is symmetric. So, we next need to show that B̂ is substochastic and

γB̂ ≤ ε1.

By assumption, 1− ε ≤ a+ vT1 ≤ 1.

Next, A1+ w ≥ (1− ε)1 implies that

Â1+ v = (QA+ (1− ε)(I −Q))1+Qw

= Q(A1+ w) + (1− ε)(I −Q)1

≥ Q ((1− ε)1) + (1− ε)(I −Q)1

= (1− ε)1.
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As well, A1+ w ≤ 1 and 0 ≤ Q ≤ I imply that

Â1+ v = Q(A1+ w) + (1− ε)(I −Q)1

≤ Q1+ (1− ε)(I −Q)1

= (1− ε)1+ εQ1

≤ (1− ε)1+ ε1

= 1.

So, (1− ε)1 ≤ B̂1 ≤ 1.

Thus, B̂ is a symmetric member of B(n, ε). We now show that α(B̂) < α(B).

Since B̂ is symmetric, ΠB̂ = I. So, αB̂(1) ≥ α(B̂). We note that Qw = v; thus,

w = Q−1v. We calculate

α(B) = a+ vT (I − A)−1w

= a+ vT (I − A)−1Q−1v

= a+ vT (Q−QA)−1 v

and

αB̂(1) = a+ vT
(
I − Â

)−1

v

= a+ vT (I − (QA+ (1− ε)(I −Q)))−1 v

= a+ vT (Q+ ε(I −Q)−QA)−1 v.

Permute the indices (if necessary) so that

A ∼=


A1 0

. . .

0 Al

 , Q
∼=


Q1 0

. . .

0 Ql

 and v ∼=


v1

...

vl

 ,
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where each Ak is irreducible. We expand our above formulae for α(B) and αB̂(1):

α(B) = a+
l∑

k=1

vTk (Qk −QkAk)
−1vk

and αB̂(1) = a+
l∑

k=1

vTk (Qk + ε(I −Qk)−QkAk)
−1 vk.

If Qk = I, the kth terms from the two sums are equal. If Qk 6= I, we apply

Lemma A.7 with X = Qk, Y = Qk + ε(I −Qk) and Z = QkAk to see that, entrywise,

0 < (Qk + ε(I −Qk)−QkAk)
−1 < (Qk −QkAk)

−1.

Since B is irreducible, every vk has at least one positive term. Thus, if Qk 6= I,

vTk (Qk + ε(I −Qk)−QkAk)
−1 vk < vTk (Qk −QkAk)

−1vk.

Since Q 6= I, there is at least one Qk 6= I and so

α(B̂) ≤ αB̂(1) < α(B).

Lemma A.11. Let B ∈ B(n, ε) be symmetric. Suppose that there is an index i such

that αB(i) = α(B) and γB(i) < ε. Then, there is a symmetric substochastic matrix

B̂ ∈ B(n, ε) such that

1. α(B) > α(B̂),
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2. γB̂(i) = ε, and

3. for all j 6= i, γB̂(j) = γB(j).

Proof Let state i be such that αB(i) = α(B) and γB(i) < ε. Without loss of

generality, we assume that i = 1. By assumption, B is symmetric; via Lemma A.6,

we express

B =

 a vT

v A


where A is symmetric and α(B) = αB(1) = a+ vT (I − A)−1v. Now,

γB(1) = 1− a− vT1.

So, γB(1) < ε implies that a+ vT1 > 1− ε.

First, suppose that vT1 ≤ 1− ε. Then, a > 1− ε− vT1 ≥ 0. Let

B̂ =

 1− ε− vT1 vT

v A

 .
We have

α(B̂) ≤ αB̂(1)

= 1− ε− vT1+ vT (I − A)−1v

< a+ vT (I − A)−1v

= α(B).
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So, we next assume that vT1 > 1−ε. Let R be the diagonal matrix with ri = v(i);

thus, R1 = v. For real numbers z with 0 ≤ z < 1, let v(z) = (1 − z)v and let

A(z) = A + zR. As long as z < 1, the matrix A(z) is properly substochastic, so

(1− A(z))−1 is nonnegative. We will first show that the function

f(z) = v(z)T (I − A(z))−1v(z) = (1− z)2vT (I − A(z))−1v

is strictly decreasing in z over the interval z ∈ [0, 1). We note that

d

dz
v(z) = −v and

d

dz
A(z) = R.

Using Lemma A.8, we calculate

df
dz

= (1− z)2vT
(
d
dz

(I − A(z))−1
)
v

+
(
d
dz

(1− z)2
)
vT (I − A(z))−1v

= (1− z)2vT (I − A(z))−1
(
− d
dz

(I − A(z))
)

(I − A(z))−1v

+
(
d
dz

(1− z)2
)
vT (I − A(z))−1v

= (1− z)2vT (I − A(z))−1R(I − A(z))−1v

−2(1− z)vT (I − A(z))−1v

= v(z)T (I − A(z))−1R(I − A(z))−1v(z)

−2v(z)T (I − A(z))−1v

= v(z)T (I − A(z))−1R(I − A(z))−1v(z)

−2v(z)T (I − A(z))−1R1

= v(z)T (I − A(z))−1R ((I − A(z))−1v(z))− 21) .
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An application of Lemma A.7, together with the fact that B is irreducible shows

that the vector

v(z)T (I − A(z))−1R

is entrywise nonnegative with at least one positive entry (as long as 0 ≤ z < 1). We

will show that the vector

(I − A(z))−1v(z)− 21

has every entry negative. We note that

A(z)1+ v(z) = A1+ zR1+ (1− z)v

= A1+ zv + (1− z)v

= A1+ v

≤ 1.

Thus, v(z) ≤ 1− A(z)1 = (I − A(z))1. This implies that

(I − A(z))−1v(z) ≤ (I − A(z))−1(I − A(z))1 = 1 < 21,

and so

(I − A(z))−1v(z)− 21 < 0.

So, we have shown that f(z) < f(0) as long as 0 < z < 1. Let z0 be such that

v(z0)T1 = (1− z0)vT1 = 1− ε.
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Since 1− ε < vT1 ≤ 1, we have 0 < z0 ≤ ε < 1. Let

B̂ =

 0 v(z0)T

v(z0) A(z0)

 .
Since v(z0) is a positive scalar multiple of v and A(z0) is equal to the sum of A

and a nonnegative diagonal matrix, B̂ is an irreducible nonnegative matrix. The sum

of the entries in the first row of B̂ is 1 − ε and the sum of the entries in any other

row is equal to the sum of the entries in the corresponding row of B. Thus,

(1− ε)1 ≤ B̂1 ≤ 1.

Finally, A(z0) is symmetric, since A is symmetric. Thus, B̂ is a symmetric member

of B(n, ε) and QB̂ = I. Then, we note that

α(B̂) ≤ αB̂(1) = f(z0)

and

f(z0) < a+ f(0) = a+ bvT (I − A)−1v = α(B).

Let B = B(n, ε). In calculating the value

α(B) = inf
B∈B
{α(B)} ,

it is sufficient to find a lower bound for α(B) where B is a symmetric member of B

(Lemma A.10), and α(B) = αB(i) where γB(i) = ε (Lemma A.11).
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A.3 A lower bound concerning stochastic complements of

reversible substochastic matrices

We now calculate the value of

α(B) = inf
B∈B
{α(B)} ,

where B = B(n, ε). For n = 1, the problem is trivial. In this case B = {[b] : 1 − ε ≤

b ≤ 1}. For B = [b] ∈ B, we have α(B) = b; so, in this case,

α(B) = inf
B∈B
{α(B)} = 1− ε.

Proposition A.12. Let n be a positive integer greater than or equal to 2 and ε be a

positive real number strictly less than 1; let B = B(n, ε). Then,

α(B) =
(1− ε)2

1 + (n− 2)ε
.

Moreover, a matrix B ∈ B has α(B) = α(B) if and only if

B ∼=

 0 1−ε
n−1
1T

1−ε
n−1
1 A

 ,
where A is an (n− 1)× (n− 1) symmetric nonnegative matrix such that

A1 = (1− ε)1− 1− ε
n− 1

1 =
(1− ε)(n− 2)

n− 1
1.

Proof By Lemmas A.6, A.10 and A.11, we simply have to calculate a lower bound

for a+ vT (I − A)−1v where
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1. the matrix A is symmetric, nonnegative and has order n− 1,

2. the vector v is nonnegative, has order n− 1 and satisfies vT1 ≤ 1− ε,

3. the matrix

B =

 a vT

v A

 ,
is substochastic and irreducible,

4. a+ vT1 = 1− ε, and

5. A1+ v ≥ (1− ε)1.

Let A, v and a satisfy the above and let m = n− 1 ≥ 1 be the order of A and v.

Let

r = A1+ v − (1− ε)1;

we note that r ≥ 0. Let R be the diagonal matrix of order m with ith diagonal entry

equal to ri. As in the proof of Lemma A.10, express

A ∼=


A1 0

. . .

0 Al

 , R
∼=


R1 0

. . .

0 Rl

 and v ∼=


v1

...

vl

 ,
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where each Ak is irreducible. As B is irreducible, each vk has at least one positive

entry. An application of Lemma A.7, with Y = I + Rk, X = I and Z = Ak shows

that if Rk 6= 0, then the matrix (I +Rk − Ak)−1 exists and, entrywise,

0 < (I +Rk − Ak)−1 < (I − Ak)−1 .

Thus, the matrix (I +R− A)−1 is entrywise nonnegative. Let

α′ = a+ vT (I +R− A)−1v.

Then,

α′ = a+ vT (I +R− A)−1v

= a+
k∑
i=1

vTi (I +Ri − Ai)−1vi

≤ a+
k∑
i=1

vTi (I − Ai)−1vi

= α(B),

with equality if and only if R = 0. We note that R = 0 if and only if B1 = (1− ε)1.

Now, let A′ = A−R, so that

α′ = a+ vT (I − A′)−1v.

Although the matrix A′ may have negative entries, the matrix (I −A′)−1 = (I +R−

A)−1 is entrywise nonnegative (as noted above). Since R1 = A1 + v − (1 − ε)1, we

have A′1+ v = (1− ε)1, implying that

v = (1− ε)1− A′1 = (I − A′)1− ε1.
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Thus,

vT (I − A′)−1v =
(
1T (I − A′)− ε1T

)
(I − A′)−1 ((I − A′)1− ε1)

= 1T (I − A′)1− 2ε1T1+ ε21T (I − A′)−11.

As well,

a = 1− ε− vT1

= 1− ε−
(
1T (I − A′)− ε1T

)
1

= 1− ε− 1T (I − A′)1+ ε1T1.

So,

α′ = a+ vT (I − A′)−1v

= 1− ε− 1T (I − A′)1+ ε1T1

+1T (I − A′)1− 2ε1T1+ ε21T (I − A′)−11

= 1− ε− ε1T1+ ε21T (I − A′)−11

= 1− (m+ 1)ε+ ε21T (I − A′)−11.

(The vector 1 in the above expression has order m and so 1T1 = m). Thus, in

order to calculate a lower bound for α′ we simply need to calculate a lower bound for

1T (I − A′)−11.

Now, A and A′ are symmetric and A−A′ = R, where R is a positive semidefinite

matrix (R is a nonnegative diagonal matrix). The largest positive eigenvalue of A′

is less than or equal to the largest positive eigenvalue of A (see [14, Corollary 7.7.4],

for example). The matrix A is properly substochastic, as it is a principal submatrix
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of an irreducible substochastic matrix. The largest positive eigenvalue of A is thus

strictly less than 1. Altogether, A′ is a symmetric real matrix whose eigenvalues are

strictly less than 1, further implying that I − A′ is a positive definite real matrix.

By Lemma A.9, we have

(
1T (I − A′)−11

) (
1T (I − A′)1

)
≥
(
1T1

)2
,

with equality if and only if 1 is an eigenvector of A′. Note that A′1 + v = (1 − ε)1

implies that 1 is an eigenvector of A′ if and only if v is a scalar multiple of 1; so,

1T (I − A′)−11 ≥ (1T1)2

1T (I − A′)1
=

m2

1T (I − A′)1
,

with equality if and only if v is a scalar multiple of 1. As well, 1T1 = m and

1T (I − A′)1 = 1T1− 1TA′1 = 1T1− 1T ((1− ε)1− v)

= ε1T1+ vT1 = mε+ vT1

≤ mε+ (1− ε) = 1 + (m− 1)ε.

(Recall that vT1 ≤ 1− ε.) Thus,

1T (I − A′)−11 ≥ m2

1 + (m− 1)ε
,

with equality if and only if v is a scalar multiple of 1 and vT1 = 1 − ε. These two

conditions uniquely identify v: when they both hold we have

v =
1− ε
m

1.
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So, in total, we have

α(B) ≥ α′

= 1− (m+ 1)ε+ ε21T (I − A′)−11

≥ 1− (m+ 1)ε+ ε2 m2

1+(m−1)ε

= (1−(m+1)ε)(1+(m−1)ε)+m2ε2

1+(m−1)ε

= (1−ε)2
1+(m−1)ε

,

with equality if and only if the matrix

B =

 a vT

v A


satisfies

1. a+ vT1 = 1− ε,

2. v = 1−ε
m
1, and

3. A1+ v = (1− ε)1.

These three conditions together imply that a = 0 and A1 = (1−ε)(m−1)
m

1. Substi-

tuting m = n− 1 obtains the formulae in the statement of the proposition.

Let n ≥ 1, ε < 1 and let B = B(n, ε). We note that the above formula for α(B)

agrees with the case n = 1. As noted, when n = 1,

α(B) = 1− ε =
(1− ε)2

1− ε
=

(1− ε)2

1 + (n− 2)ε
.
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For n = 1 or 2, the matrices B ∈ B that have

α(B) = α(B) =
(1− ε)2

1 + (n− 2)ε
= (1− ε)2

are unique; they are

B = [1− ε] or B =

 0 1− ε

1− ε 0

 ,
respectively.

However, this minimum for α(B) is not uniquely attained for n ≥ 3. For example,

the matrices

B1 =


0 1−ε

2
1−ε

2

1−ε
2

1−ε
2

0

1−ε
2

0 1−ε
2



and B2 =


0 1−ε

2
1−ε

2

1−ε
2

0 1−ε
2

1−ε
2

1−ε
2

0


satisfy

α(B1) = α(B2) = α(B) =
(1− ε)2

1 + ε
.

However, we can uniquely characterise those matrices that attain this value at

every state.
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Proposition A.13. Let B be an n × n substochastic matrix such that γB ≤ ε and

such that there is a positive diagonal matrix Π with ΠB symmetric. Let

p = max
1≤j≤n

{πj}.

If πi = p, then

αB(i) ≥ (1− ε)2

1 + (n− 2)ε
.

Further,

αB(j) =
(1− ε)2

1 + (n− 2)ε

for all j if and only if n = 1 and B = [1− ε], or n ≥ 2 and

B =
1− ε
n− 1

(J − I) =



0 1−ε
n−1

· · · 1−ε
n−1

1−ε
n−1

. . . . . .
...

...
. . . . . . 1−ε

n−1

1−ε
n−1

· · · 1−ε
n−1

0


.

Proof Let Π be a positive diagonal matrix such that ΠB is symmetric and let i be

such that πi is maximal among the diagonal entries of Π.

First suppose that [bii] is an irreducible block of B. This implies that the off-

diagonal entries in the ith row and column of B are 0. Since the sum of the entries

in each row of B is greater than or equal to 1− ε, we have bii ≥ 1− ε. So,

αB(i) = bii ≥ 1− ε =
(1− ε)2

1− ε
≥ (1− ε)2

1 + (n− 2)ε
,
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with equality if and only n = 1 and bii = 1− ε.

Now, suppose that the ith row and column intersect an irreducible block of B of

order n′ ≥ 2. Let

Π′ =
1

πi
Π

and express

B ∼=


bii vT 0

w B1 0

0 0 B2

 and Π′ ∼=


1 0 0

0 Π1 0

0 0 Π2

 ,

via the same similarity, where  bii vT

w B1


is irreducible. By Proposition A.12,

bii + vT (I −B1)w ≥ (1− ε)2

1 + (n′ − 2)ε
.

We note that

αB(i) = bii +

[
vT 0

] I −B1 0

0 I −B2


−1  w

0

 = bii + vT (I −B1)−1w.

Thus, since n′ ≤ n,

αB(i) ≥ (1− ε)2

1 + (n′ − 2)ε
≥ (1− ε)2

1 + (n− 2)ε
.
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We note that we have equality if and only if B is symmetric, n′ = n, γB = ε1 and

v = w =
1− ε
n− 1

1.

These conditions imply that Π is a scalar multiple of the identity.

Suppose that we have

αB(j) =
(1− ε)2

1 + (n− 2)ε

for every j. Let i be such that πi is maximal (among the diagonal of Π). Since

αB(i) =
(1− ε)2

1 + (n− 2)ε
,

our above reasoning implies that Π is a scalar multiple of the identity and for all

j 6= i, we have

bij = bji =
1− ε
n− 1

.

Thus, every index j has πj maximal and so every off-diagonal entry of B is equal to

1− ε
n− 1

.

The following proposition concerns the problem of finding a lower bound on the

sum of the entries in a particular row of B \ C, where B ∈ B(n, ε).
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Proposition A.14. Let B be a reversible substochastic matrix of order n ≥ 2 such

that γB ≤ ε1. Let E be the state space of B and let C be a nonempty subset of E

containing m ≤ n− 1 states such that B̂ = B \ C exists. Let Π be a positive diagonal

matrix such that ΠB is symmetric and let

p = max
j∈C
{πj}.

Then, for all i ∈ E \ C such that πi ≥ p,

∑
j∈E\C

b̂ij ≥
(1− ε)2

1 + (m− 1)ε
.

Proof If m = n − 1, then this is simply a restatement of Proposition A.12; so, we

assume that m ≤ n− 2. Let i ∈ E \ C be such that πi ≥ πj for all j ∈ C. Express

B ∼=


bii vT1 vT2

w1 A1 A12

w2 A21 A2

 ,

where the first row and column correspond to state i, the second row and column of

blocks corresponds to E \(C∪{i}) and the third row and column of blocks corresponds

to C. Without loss of generality, we assume that πi = 1; so,

Π ∼=


1 0 0

0 Q1 0

0 0 Q2

 ,
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via the same permutation-similarity as B, and we have Q2 ≤ I.

The ith row of B \ C is equal to

[
bii + vT2 (I − A2)−1w2 vT1 + vT2 (I − A2)−1A21

]
.

So, we aim to show that

bii + vT2 (I − A2)−1w2 + vT1 1+ vT2 (I − A2)−1A211

= bii + vT1 1+ vT2 (I − A2)−1(w2 + A211) ≥ (1− ε)2

1 + (m− 1)ε
.

Let R be the nonnegative diagonal matrix of order m that satisfies R1 = A211.

(The matrix A21 has order m× (n−m− 1).) Consider the matrix

B′ ∼=

 bii + vT1 1 vT2

w2 A2 +R

 .
The matrix B′ is symmetrised by left-multiplication by the matrix 1 0

0 Q2

 .
Moreover, since B1 ≥ (1− ε)1, we have

bii + vT1 1+ vT2 1 ≥ 1− ε and w2 + A211+ A21 ≥ (1− ε)J.

By defining R1 = A211, we have B′1 ≥ (1 − ε)1. So, by Proposition A.13 (and the

fact that the order of B′ is m+ 1), we have
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bii + vT1 1+ vT2 (I − A2 −R)−1w2 ≥
(1− ε)2

1 + (m− 1)ε
.

So, it is sufficient to show that

vT2 (I − A2)−1(w2 + A211) ≥ vT2 (I − A2 −R)−1w2.

Let

γ2 = 1− A21− A211− w2.

Since B is substochastic, γ ≥ 0. Further, since R1 = A211, we have

w2 = (I − A2 −R)1− γ2 and w2 + A211 = (I − A2)1− γ2.

Now, the fact that R is nonnegative implies that

(I − A2)−1 =
∞∑
r=0

Ar2 ≤
∞∑
r=0

(A2 +R)r = (I − A2 −R)−1.

So,

vT2 (I − A2 −R)−1w2 = vT2 (I − A2 −R)−1 ((I − A2 −R)1− γ2)

= vT2 1− vT2 (I − A2 −R)−1γ2

≤ vT2 1− vT2 (I − A2)−1γ2

= vT2 (I − A2)−1 ((I − A2)1− γ2)

= vT2 (I − A2)−1(w2 + A211).
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Appendix B

A lower bound concerning stochastic

complements of nonreversible Markov

chains

B.1 Preliminaries

Let B be an irreducible substochastic matrix with state space E such that γB ≤ ε1.

Let i ∈ E and express

B ∼=

 bii vT

w A


(as in Definition A.1). As in Appendix A, we aim to produce a lower bound on the

term

αB(i) = bii + vT (I − A)−1w;
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however, in this appendix, we do not assume that B is reversible.

Let X be a Markov chain with transition matrix C and state space S; let E ⊆ S

and B = C(E). Recall that for i ∈ S,

Ti = inf{t ≥ 1 : xt = i}

is the first passage time into i and that

EE = inf{t ≥ 1 : xt /∈ E}.

Let X be a Markov chain with transition matrix A and let B = A(E) be a

principal submatrix corresponding to some proper subcollection of the state space;

Proposition A.2 states that

αB(i) = Pi [Ti < EE ]

(when αB(i) is defined). That is, αB(i) is the probability that the Markov chain will

transition from i to i (in 1 or more steps) without first exiting E .

Definition B.1. Let B be an irreducible substochastic matrix with state space E . If

E contains exactly two states, i and j, we define

αB(i, j) =
bij

1− bii
and αB(j, i) =

bji
1− bjj

.

Suppose that E contains three or more states and let i, j ∈ E be distinct. Express
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B ∼=


bii bij vTi

bji bjj vTj

wi wj B̃

 ,

where the first two positions correspond to i and j respectively and the remainder

correspond to E \ {i, j}. Then, we define

αB(i, j) =
bij + vTi (I − B̃)−1wj

1− bii − vTi (I − B̃)−1wi
.

An alternate way to express the above definition is the following. Let B be

irreducible and substochastic with state space E and let i, j ∈ E be distinct; let

B̂ = B \ {k : k 6= i or j}. (If E = {i, j}, then B̂ = B \ ∅ = B.) Then,

αB(i, j) =
b̂ij

1− b̂ii
.

Proposition B.2. Let X be an irreducible Markov chain with transition matrix A

and state space S. Let E ⊆ S contain two or more states, let B = A(E) and let

i, j ∈ E be distinct. Then,

αB(i, j) = Pi [Tj < EE ] .

Remark. That is, for distinct i, j ∈ E , αB(i, j) is the probability that after visiting

state i the Markov chain will visit state j at least once before exiting E .
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Proof Let i and j be distinct members of E and let E ′ = E \{i, j}. Let Â = A\E ′ and

B̂ = B \ E ′. We note that B̂ ∼= Â({i, j}). In the same manner as in Proposition A.2,

an application of Proposition 4.3 shows that

âii = b̂ii = Pi [Ti < Tj and Ti < EE ]

is the probability of transitioning from i to i without first exiting E or visiting j. As

well,

âij = b̂ij = Pi [Tj < Ti and Tj < EE ]

is the probability of transitioning from i to j (in one or more steps) without transi-

tioning into i or exiting E .

Thus, the probability, given x0 = i, of transitioning into i exactly k ≥ 0 times

before transitioning into j for the first time, all without exiting E , is b̂kiib̂ij.

If the Markov chain transitions from i to j without first exiting E , before visiting

j for the first time it has visited i some number k ≥ 0 times. So,

Pi [Tj < EE ] =
∑
k≥0

b̂kiib̂ij =
b̂ij

1− b̂ii
.

Let X be an irreducible Markov chain with state space S and transition matrix

A. Let E ⊆ S and B = A(E); for i, j ∈ E , we will take the value αB(i, j) to be equal
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to the probability that given x0 = i, the Markov chain transitions into state j at least

once before exiting E for the first time:

αB(i, j) = Ei [Tj < EE ] .

Thus, we have αB(i, i) = αB(i), as it appears in Definition A.1, and for j 6= i, αB(i, j)

is as in Definition B.1. Throughout this appendix, if the matrix B is clearly specified,

we will often use the labels α(i, j) and α(i) rather than αB(i, j) and αB(i); as well,

we will use α(i) rather than α(i, i).

Let X be a Markov chain on the state space S. Recall that for each i ∈ S and

T ≥ 1,

Ni(T ) = |{t : 1 ≤ t ≤ T and xt = i}|

is the total number of times the Markov chain has transitioned into i at time T .

Proposition B.3. Let X be an Markov chain with state space S and transition matrix

A. Let E ⊆ S be such that B = A(E) is properly substochastic. Then, for i, j ∈ E

(not necessarily distinct),

Ei [Nj(EE)] =
αB(i, j)

1− αB(j)
.

Remark. That is, for i, j ∈ E , we claim that, given x0 = i, the expected number of

transitions into j before exiting E for the first time is α(i, j)/(1− α(j)).

247



Proof First, suppose that α(j) = 0. Thus, it is impossible for the Markov chain to

transition from j to j without exiting E . So, if we have x0 = i, then the Markov

chain will transition into j either once or no times at all before exiting E . (If there

are k ≥ 2 visits to j before exiting E , then there must necessarily occur a transition

j ; j without exiting E .) The probability of one visit to j before exiting E is α(i, j).

So,

Ei [Nj(EE)] =
∑
k≥1

kPi [Nj(EE) = k]

= Pi [Nj(EE) = 1]

= α(i, j)

= α(i,j)
1−α(j)

(since, by assumption, α(j) = 0).

Now, suppose that α(j) > 0. Since B = A(E) is properly substochastic, we must

have α(j) < 1 (it must be possible for the Markov chain to exit E). As well, since

α(j) = Pj [Tj < EE ] ,

we have

1− α(j) = Pj [EE ≤ Tj] .

The fact that j ∈ E implies that EE = Tj only if EE = Tj = ∞. Since B = A(E) is

properly substochastic, as we noted above, it must be possible for the Markov chain

to exit E ; so, the probability that EE =∞ is 0. Thus,
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1− α(j) = Pj [EE ≤ Tj]

= Pj [EE = Tj =∞] + Pj [EE < Tj]

= Pj [EE < Tj] .

Suppose that x0 = i and that the Markov chain has transitioned into state j

exactly k ≥ 1 times before exiting E for the first time. Then, the Markov chain

1. first transitioned from i to j without exiting E , an event that has a probability

of α(i, j) of occurring;

2. then transitioned from j to j without exiting E exactly k− 1 times, events that

each have a probability of α(j); and

3. the Markov chain then, starting from some xt = j, exits E without visiting j

again – as we saw above, the probability of this occurring is 1− α(j).

So, the probability that, given x0 = i, the Markov chain transitions into j exactly

k ≥ 1 times before exiting E for the first time is

Pi [Nj(EE) = k] = α(i, j)α(j)k−1(1− α(j)).

In our next calculation, we take advantage of the well-known fact that for complex

numbers z with 0 < |z| < 1,

∑
k≥1

kzk−1 =
1

(1− z)2
.
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Therefore, for i, j ∈ E (not necessarily distinct),

Ei [Nj(EE)] =
∑
k≥1

kPi [Nj(EE) = k]

=
∑
k≥1

kα(i, j)α(j)k−1(1− α(j))

= α(i, j)(1− α(j))
∑
k≥1

kα(j)k−1

= α(i, j)(1− α(j)) 1
(1−α(j))2

= α(i,j)
1−α(j)

.

Lemma B.4. Let B and B̂ be substochastic matrices on the same state space E and

suppose that B̂ ≤ B. Then, for all i, j ∈ E, not necessarily distinct, such that αB̂(i, j),

αB(i, j), αB̂(j) and αB(j) are defined,

αB̂(i, j) ≤ αB(i, j) and
αB̂(i, j)

1− αB̂(j)
≤ αB(i, j)

1− αB(j)
.

Proof We first show that αB̂(i) ≤ αB(i). If the matrices in question have order 1,

that is, if B̂ = [b̂ii] and B = [bii], then the statement is trivial: B̂ ≤ B implies that

αB̂(i) = b̂ii ≤ bii = αB(i).

Otherwise, express

B ∼=

 bii vT

w A

 and B̂ ∼=

 b̂ii v̂T

ŵ Â


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via the same permutation-similarity. Thus, b̂ii ≤ bii, v̂ ≤ v, ŵ ≤ w and Â ≤ A. We

note that since Â ≤ A,

(I − Â)−1 =
∑
k≥0

Âk ≤
∑
k≥0

Ak ≤ (I − A)−1.

So,

αB̂(i) = b̂ii + v̂T (I − Â)−1ŵ

≤ bii + vT (I − A)−1w

= αB(i).

For i 6= j, we show that αB̂(i, j) ≤ αB(i, j) in a very similar manner. Express

B ∼=


bii bij vTi

bji bjj vTj

wi wj A

 and B̂ ∼=


b̂ii b̂ij v̂Ti

b̂ji b̂ij v̂Ti

ŵi ŵj Â


via the same permutation-similarity. As before, Â ≤ A implies that (I − Â)−1 ≤

(I − A)−1. So,

b̂ij + v̂Ti (I − Â)−1ŵj ≤ bij + vTi (I − A)−1wj

and

b̂ii + v̂Ti (I − Â)−1ŵi ≤ bii + vTi (I − A)−1wi.

This implies that
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αB̂(i, j) =
b̂ij + v̂Ti (I − Â)−1ŵj

1− b̂ii − v̂Ti (I − Â)−1ŵi
≤ bij + vTi (I − A)−1wj

1− bii − vTi (I − A)−1wi
= αB(i, j).

The second inequality is a direct consequence of the first. The facts αB̂(i, j) ≤

αB(i, j) and αB̂(j) ≤ αB(j) imply that

αB̂(i, j)

1− αB̂(j)
≤ αB(i, j)

1− αB(j)
.

B.2 A lower bound concerning stochastic complements of

substochastic matrices

Let B be a substochastic matrix. Recall that

γB = (I −B)1,

where 1 is the column vector with every entry equal to 1, is a measure of how close

B is to being stochastic. Since

γB = 1−B1,

if γB ≤ ε1 for some positive number ε ≤ 1, we have

B1 ≥ (1− ε)1.
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Proposition B.5. Let ε be a positive number strictly less than 1 and let B be an

irreducible substochastic matrix with state space E satisfying γB = ε1. Then, for all

i ∈ E,

∑
j∈E

α(i, j)

1− α(j)
=

1

ε
− 1 =

1− ε
ε

.

Proof Consider the following stochastic matrix,

C =

 1 0

ε1 B

 .
(Since γB = 1 − B1 = ε1, we have C1 = 1.) We label the additional state not

contained in E as state 0. Let X be the Markov chain associated with C on the state

space S = E ∪{0}. We note that if xt ∈ E , then the probability that xt+1 = 0 is ε and

the probability that xt 6= 0 is 1 − ε. Thus, given x0 ∈ E and t ≥ 1, the probability

that EE = t is (1− ε)t−1ε.

So, for all i ∈ E ,

Ei [EE ] =
∑
t≥1

tPi [EE = t] =
∑
t≥1

t(1− ε)t−1ε

= ε
∑
t≥1

t(1− ε)t−1 = ε
1

(1− (1− ε))2
=

1

ε
.

The random variable EE is the smallest t ≥ 1 such that xt = 0; so, the Markov

chain transitions into states contained in E exactly EE − 1 times before exiting E :
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∑
j∈E

Nj(EE) = EE − 1.

We apply Proposition B.3 to see that for all i ∈ E ,

1
ε
− 1 = Ei [EE − 1]

=
∑
j∈E
Ei [Nj(EE)]

=
∑
j∈E

α(i,j)
1−α(j)

.

Proposition B.6. Let B be an irreducible substochastic matrix on states E such that

γB ≤ ε1. Then, for all i ∈ E, we have

∑
j∈E

α(i, j)

1− α(j)
≥ 1− ε

ε
.

Proof We note that since B is irreducible and substochastic, each principal subma-

trix of B that is not equal to B itself is properly substochastic. Thus, α(i, j) is defined

for any i and j.

Let R be the diagonal matrix whose ith diagonal entry is the sum of the entries

in the ith row of B; so, R1 = B1. Since γB ≤ ε1, we have (1− ε)1 ≤ R1 ≤ 1. Let

B̂ = (1− ε)R−1B.

Since each diagonal entry ri is greater than or equal to 1− ε,

254



b̂ij =
1− ε
ri

bij ≤ bij.

Thus, B̂ ≤ B and

B̂1 = (1− ε)R−1B1 = (1− ε)1.

By Lemma B.4 and Proposition B.5, for all i ∈ E ,

∑
j∈E

αB(i, j)

1− αB(j)
≥
∑
j∈E

αB̂(i, j)

1− αB̂(j)
=

1− ε
ε

.

Corollary B.7. Let X be a nearly uncoupled Markov chain, with respect to ε > 0,

on the state space S and let E ⊆ S be a minimal almost invariant aggregate. Then,

for all i ∈ E,

Ei[EE ] ≥
1

ε
and

∑
j∈E

Ei[Nj(EE)] ≥
1− ε
ε

.

Remark. That is, if E is a minimal almost invariant aggregate, with respect to ε > 0,

of the Markov chain X, then, given x0 ∈ E , the expected value of the first exit time

out of E is greater than or equal to 1/ε and so the expected number of transitions into

states contained in E before exiting E is greater than or equal to 1/ε− 1 = (1− ε)/ε.

A permutation matrix is a square (0, 1)-matrix that has exactly one entry equal

to 1 in each row and column. A cyclic permutation matrix is a permutation matrix P

255



whose associated digraph is a directed cycle. The cyclic permutation matrix of order

1 is simply P = [1]. For n ≥ 2, the cyclic permutation matrices of order n are those

permutation matrices P such that

P ∼=



0 1

. . . . . .

. . . 1

1 0


(where the unspecified entries are zeroes). That is, the square matrix P of order n is

a cyclic permutation matrix if there is an ordering of the integers

{i1, . . . , in} = {1, . . . , n}

such that

pikil =


1 if l ≡ k + 1 (mod n)

0 otherwise.

Proposition B.8. Let B be a substochastic matrix on state space E such that γB =

ε1. Then, for all i ∈ E,

∑
j∈E

αB(i, j) ≤
n∑

m=1

(1− ε)m.

Moreover, we have equality for one i ∈ E if and only if we have equality for every

i ∈ E, in which case B = (1− ε)P , where P is a cyclic permutation matrix.
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Proof If n = 1, then E = {i} and B = [1− ε]; so,

∑
j∈E

αB(i, j) = αB(i, i) = 1− ε =
n∑

m=1

(1− ε)m.

Thus, we assume that n ≥ 2.

Without loss of generality, we assume that E = {1, . . . , n}. As in the proof of

Proposition B.5, consider the stochastic matrix

C =

 1 0

ε1 B


and the Markov chain X associated with C. The state space of X is S = E ∪ {0},

where we associated state 0 with the first column of C.

For i ∈ E and m = 1, . . . , n, let

q(i,m) = Pi [|{x1, . . . , xEE−1}| ≥ m]

be the probability that, starting from x0 = i, the Markov chain transitions into at

least m distinct members of E before exiting E .

Since B1 = (1− ε)1, for each i ∈ E and T ≥ 1, the probability that

{x1, . . . , xT} ⊆ E

is equal to (1− ε)T . Thus, for all i ∈ E ,

Pi [EC > T ] = (1− ε)T .
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We note that if

|{x1, . . . , xEE−1}| ≥ m,

then we must have EE > m. So, for all i ∈ E and 1 ≤ m ≤ n,

q(i,m) ≤ Pi [EC > m] = (1− ε)m.

We claim that for each i ∈ E ,

∑
j∈E

α(i, j) =
n∑

m=1

q(i,m).

For each state i ∈ E and subset C ⊆ E , let

p(i, C) = Pi [{x1, . . . , xEE−1} = C] .

That is, p(i, C) is the probability that if x0 = i, the members of C are exactly those

states that the Markov chain transitions into at least once before exiting E .

The number α(i, j) is the probability, given x0 = i, of visiting j before exiting E .

Thus,

α(i, j) = Pi [Tj < EE ] = Pi [j ∈ {x1, . . . , xEE−1}] ,

implying that

α(i, j) =
∑
C⊆E
3j∈C

p(i, C).

Thus,
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∑
j∈E

α(i, j) =
∑
j∈E

∑
C⊆E
3j∈C

p(i, C) =
∑
C⊆E

∑
j∈C

p(i, C) =
∑
C⊆E

|C|p(i, C).

As well, it is clear that

q(i,m) = Pi [|{x1, . . . , xEE−1}| ≥ m] =
∑
C⊆S
3|C|≥m

p(i, C).

So,

n∑
m=1

q(i,m) =
n∑

m=1

∑
C⊆S
3|C|≥m

p(i, C) =
∑
C⊆E

|C|∑
m=1

p(i, C) =
∑
C⊆E

|C|p(i, C).

Therefore, for each i ∈ E ,

∑
j∈E

α(i, j) =
∑
C⊆E

|C|p(i, C) =
n∑

m=1

q(i,m).

As we noted above, q(i,m) ≤ (1− ε)m, so, for all i ∈ E ,

∑
j∈E

α(i, j) ≤
n∑

m=1

(1− ε)m.

Now, suppose that for some i ∈ E ,

∑
j∈E

α(i, j) =
n∑

m=1

(1− ε)m.

Via our above reasoning, we must have q(i,m) = (1 − ε)m for m = 1, . . . , n. The

number q(i,m) is the probability that, given x0 = i, the Markov chain transitions into

at least m distinct states in E before exiting E ; the number (1− ε)m is the probability
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that the Markov chain transitions into at least m states in E , not necessarily distinct,

before exiting E . Thus, in this case, whenever the Markov chain begins at x0 = i and

remains in E for m transitions, where 1 ≤ m ≤ n, the states x1, . . . , xm are distinct

members of E .

Let G be the digraph on E associated with B. Since, starting from x0 = i, it is

possible to remain in E for n transitions (namely, the probability of this occurring is

(1− ε)n > 0), there is a directed walk in G of length n with initial vertex i:

ω = i→ i1 → · · · → in.

Our above observations imply that the states i1, . . . , in are distinct, so

{i1, . . . , in} = {1, . . . , n}.

First, we claim that in = i. If we suppose not, then im = i for some m ≤ n − 1.

This would imply the presence of the directed walk

i→ i1 → · · · → im → i1

in G. This directed walk has length m + 1 ≤ n and contains the state i1 twice.

Its presence in G implies that it is possible for the Markov chain to remain in E

for m + 1 ≤ n steps and yet visit m or fewer distinct states. This contradicts our

assumptions and so it must be that in = i. Thus, ω is a directed cycle of length n in

G.
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Now, suppose that G contains a directed cycle with length m ≤ n− 1:

υ = j1 → · · · → jm → j1

(in a directed cycle of length m, the m vertices present are distinct).

We first note that i cannot appear in υ. If i were present in this directed cycle,

it would be possible for the Markov chain to begin at i and then transition into

m + 1 ≤ n members of E but only transition into m distinct members of E (simply

by following the transitions in υ).

Let k be the smallest index such that ik (using the labelling of ω) appears in υ.

Let l be the index of ik in υ; i.e. let l be such that ik = jl. So, since in = i and i does

not appear in υ, we have

{j1, . . . , jm} ⊆ {ik, . . . , in−1},

implying that m ≤ n− k. So, the existence of υ implies the presence of the following

directed walk in G:

i→ i1 → · · · → ik = jl → · · · → jl,

where the transition jl ; jl is achieved by following υ. This directed walk has initial

vertex i, visits the state jl twice and has length k + m ≤ n. This is a contradiction

and so G does not contain any directed cycles of length less than n.

It must be that ω contains every directed arc in G. The subgraph ω is a directed
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cycle on all the vertices of G; if G contains even one more directed arc, it must contain

a directed cycle of length strictly less than n.

So, we find that if there is a state i ∈ E such that

∑
j∈E

α(i, j) =
n∑

m=1

(1− ε)m,

then

B ∼=



0 bi1i2

. . . . . .

. . . bin−1in

bini1 0


,

where every unspecified entry is 0. Since B1 = (1− ε)1, all of the nonzero entries in

B must be equal to 1− ε; thus, B = (1− ε)P , where P is a cyclic permutation, when

equality holds for at least one i ∈ E (in the inequality in the statement).

If we suppose that B = (1−ε)P , where P is a cyclic permutation, then there is an

ordering of C into i1, . . . , in such that bikik+1
= 1− ε for k = 1, . . . , n− 1, bini1 = 1− ε

and every other entry is 0. In a sense, the Markov chain associated with C (above)

is deterministic, if x0 = ik and xt 6= 0, then it must be that xt = il where l ≡ k + t

(mod n). Thus,

α(ik, il) = (1− ε)m

where m is the unique positive integer less than or equal to n such that m ≡ l − k

(mod n). It is clear that for all i ∈ E ,

262



∑
j∈E

α(i, j) =
n∑

m=1

(1− ε)m.

Proposition B.9. Let B be an irreducible substochastic matrix such that γB ≤ ε1,

where 0 < ε < 1. Let E be the associated state space and let n be the order of C (and

B). Then, there is i ∈ E such that

αB(i) ≥ (1− ε)n.

Moreover,

max
i∈E
{αB(i)} = (1− ε)n

if and only if B = (1− ε)P , where P is a cyclic permutation matrix.

Proof We first show that the proposition holds under the assumption that γB = ε1.

Then, in a manner similar to Proposition B.6, we will show that this implies the

proposition for substochastic matrices B with γB ≤ ε1.

Fix a specific state i ∈ E . Via Proposition B.5, we have

∑
j∈E

α(i, j)

1− α(j)
=

1− ε
ε

.

As well, by Proposition B.8,
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∑
j∈E

αB(i, j) ≤
n∑

m=1

(1− ε)m,

with equality if and only if B = (1− ε)P , where P is a cyclic permutation matrix.

We will take advantage of the well-known fact that for any complex number z 6= 0

and positive integer n,

1− zn = (1− z)(1 + z + . . .+ zn−1) = (1− z)
n−1∑
m=0

zm.

This implies that

1−ε
ε

(1− (1− ε)n) = 1−ε
ε

(1− (1− ε))
n−1∑
m=0

(1− ε)m

= (1− ε)
n−1∑
m=0

(1− ε)m

=
n∑

m=1

(1− ε)m.

So, we have

∑
j∈E

α(i, j) (1−(1−ε)n)
1−α(j)

= (1− (1− ε)n)
∑
j∈E

α(i,j)
1−α(j)

= (1− (1− ε)n) 1−ε
ε

=
n∑

m=1

(1− ε)m

≥
∑
j∈E

α(i, j).

It must be that for at least one j ∈ E ,

1− (1− ε)n

1− α(j)
≥ 1,
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which, in turn, implies that for at least one j ∈ E , α(j) ≥ (1− ε)n.

Now, suppose that

max
j∈E
{α(j)} = (1− ε)n.

This implies that

1 ≥ 1− (1− ε)n

1− α(j)

for all j ∈ E . This, in turn, implies that

∑
j∈E

α(i, j) ≥ (1− (1− ε)n)
∑
j∈E

α(i, j)

1− α(j)
=

n∑
m=1

(1− ε)m.

By Proposition B.8, we have

∑
j∈E

α(i, j) ≤
n∑

m=1

(1− ε)m,

with equality if and only if B = (1 − ε)P , where P is a cyclic permutation matrix.

The above two inequalities clearly, together, imply that

∑
j∈E

α(i, j) =
n∑

m=1

(1− ε)m

and thus B = (1− ε)P , where P is a cyclic permutation.

Now, we consider the case that γB ≤ ε1. Let R be the diagonal matrix that

satisfies R1 = B1 and let B̂ = (1 − ε)R−1B. As in the proof of Proposition B.6,

we have B̂ ≤ B and so, via Lemma B.4, for all i, j ∈ E (not necessarily distinct),

αB̂(i, j) ≤ αB(i, j). As we have shown above,
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max
i∈E
{αB̂(i)} ≥ (1− ε)n,

with equality if and only if

(1− ε)R−1B = B̂ = (1− ε)P,

where P is a cyclic permutation matrix. Since

max
i∈E
{αB(i)} ≥ max

i∈E
{αB̂(i)},

we have

max
i∈E
{αB(i)} ≥ (1− ε)n.

If we suppose that equality occurs, then we must also have equality for B̂ and so

it must be that R−1B is a cyclic permutation matrix. This implies that

B ∼=



0 b1

. . . . . .

. . . bn−1

bn 0


.

Then, each bk is greater than or equal to 1− ε (since B1 ≥ (1− ε)1). It is clear that

for all i ∈ E the probability of transitioning from i to i is

αB(i) =
n∏

m=1

bm ≥ (1− ε)n.
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Thus,

max
i∈E
{αB(i)} = (1− ε)n

implies that we have bm = 1 − ε for all m and so implies that B = B̂ = (1 − ε)P ,

where P is a cyclic permutation matrix.

If B = (1 − ε)P where P is a cyclic permutation, then αB(i) = (1 − ε)n for all i

and so

max
i∈E
{αB(i)} = (1− ε)n.

Remark. Let B be an irreducible substochastic matrix with state space E containing

n states; suppose that γB ≤ ε1. We note that Proposition B.9 does not merely imply

that at least one member i ∈ E has α(i) ≥ (1 − ε)n. Within the proof, we see that

there is, in fact, a family of weighted averages of the terms

1− (1− ε)n

1− α(i)

that are each greater than or equal to 1. Namely, for each pair i, j ∈ E , let

β(i, j) =
α(i, j)∑

k∈E
α(i, k)

.

Then, for all i ∈ E ,

∑
j∈E

β(i, j) = 1 and
∑
j∈E

β(i, j)
1− (1− ε)n

1− α(j)
≥ 1.
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Thus, we expect that, on average, randomly chosen members i ∈ E have α(i) ≥

(1− ε)n.

B.3 A lower bound concerning scalar multiples of doubly

stochastic matrices

We examine the problem of finding a lower bound on αB, where B is a scalar

multiple of a doubly stochastic matrix.

A doubly stochastic matrix is a nonnegative square matrix C such that C1 =

CT1 = 1. That is, the sum of the entries in any row or column of a doubly stochastic

matrix is 1.

Let B be substochastic matrix that is a scalar multiple of a doubly stochastic

matrix. Then, we have B1 = BT1 = z1 for some real number z with 0 ≤ z ≤ 1.

We are interested in the case that B is a principal submatrix of a stochastic matrix

corresponding to an almost invariant aggregate; thus, when a substochastic matrix B

has constant row and column sums, we will express B = (1− ε)C where C is doubly

stochastic.

In Lemma B.10, we use the convention that A0 = I, for any real matrix A.

Lemma B.10. Let B = (1−ε)C where 0 < ε < 1 and C is doubly stochastic. Suppose

that B has order n ≥ 2 and let A be a principal submatrix of B of order n− 1. Then,

for k = 0, . . . , n− 2,

268



1TAk1 ≥ (n− k − 1)(1− ε)k.

Proof We proceed by induction on k. For k = 0, the statement is trivial. The vector

of all ones in question, 1, has order n− 1 and so

1TA01 = 1T1 = n− 1 = (n− 0− 1)(1− ε)0.

Express

B ∼=

 a vT

w A

 .
Since B = (1− ε)C, where C is doubly stochastic, we have

A1+ w = (1− ε)J and 1Tw = 1− ε− a ≤ 1− ε.

We assume that 1 ≤ k ≤ n− 2 and that

1TAk−11 ≥ (n− (k − 1)− 1)(1− ε)k−1.

This hypothesis, together with the fact that A1+ w = (1− ε)1, implies that

1TAk1+ 1TAk−1w = 1TAk−1 (A1+ w)

= 1TAk−1 ((1− ε)1)

= (1− ε)1TAk−11

≥ (1− ε)(n− (k − 1)− 1)(1− ε)k−1

= (n− k)(1− ε)k.
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So,

1TAk1 ≥ (n− k)(1− ε)k − 1TAk−1w.

Since 1TA + vT = (1− ε)1T , we have 1TA ≤ (1− ε)1T ; this implies that 1TAk−1 ≤

(1 − ε)k−11T . So, since 1Tw ≤ 1 − ε and the vector 1 in the above inequalities has

order n− 1,

1TAk−1w ≤ (1− ε)k−11Tw ≤ (1− ε)k.

Therefore,

1TAk1 ≥ (n− k)(1− ε)k − 1TAk−1w

≥ (n− k)(1− ε)k − (1− ε)k

= (n− k − 1)(1− ε)k.

Lemma B.11. Let ε be a positive real number strictly less than 1 and let n be a

positive integer greater than or equal to 2. Then,

n−2∑
k=0

(n− k − 1)(1− ε)k =
(1− ε)n − (1− nε)

ε2
.

Proof We will proceed by induction on n. For n = 2, we have

n−2∑
k=0

(n− k − 1)(1− ε)k = (1− ε)0 = 1.

As well
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(1− ε)2 − (1− 2ε)

ε2
=

1− 2ε+ ε2 − 1 + 2ε

ε2
= 1.

So, we assume that n ≥ 2 and that

n−2∑
k=0

(n− k − 1)(1− ε)k =
(1− ε)n − (1− nε)

ε2
.

We aim to show that

n−1∑
k=0

(n− k)(1− ε)k =
(1− ε)n+1 − (1− (n+ 1)ε)

ε2

(thus proving that when the statement holds for n, it also holds for n′ = n+ 1). For

a real number z 6= 0, 1 and a positive integer r ≥ 1,

r−1∑
k=0

zk = 1 + z + . . .+ zr−1 =
1− zr

1− z
.

So, for z = 1− ε and r = n, this implies that

n−1∑
k=0

(1− ε)k =
1− (1− ε)n

1− (1− ε)
=

1− (1− ε)n

ε
.

We calculate

n−1∑
k=0

(n− k)(1− ε)k =
n−1∑
k=0

(n− k − 1)(1− ε)k +
n−1∑
k=0

(1− ε)k

=
n−2∑
k=0

(n− k − 1)(1− ε)k +
n−1∑
k=0

(1− ε)k

= (1−ε)n−(1−nε)
ε2

+ 1−(1−ε)n
ε

= (1−ε)n−(1−nε)+ε−(1−ε)nε
ε2

= (1−ε)n+1−(1−(n+1)ε)
ε2

.
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Proposition B.12. Let B = (1 − ε)C where C is doubly stochastic and 0 < ε < 1.

Let E be the associated state space and let n be the order of B and E. Then, for all

i ∈ E,

αB(i) ≥ (1− ε)n.

Moreover, equality is attained for at least one i ∈ E if and only if C is a cyclic

permutation matrix, in which case equality is attained for every i ∈ E.

Proof We note that if n = 1, the statement is trivial. In this case we have B = [1−ε],

E = {i} and αB(i) = 1− ε. So, we assume that n ≥ 2. Reordering the states E does

not alter the fact that B is a scalar multiple of a doubly stochastic matrix; so, we will

simply show that αB(1) ≥ (1− ε)n with equality if and only C is a cyclic permutation

matrix.

Express

B =

 a vT

w A

 .
The fact that B1 = BT1 = (1− ε)1 implies that

a = 1− ε− vT1, w = (I − A)1− ε1 and v = (I − A)T1− ε1.

So, we calculate
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α(i) = a+ vT (I − A)−1w

= 1− ε− vT1+ vT (I − A)−1w

= 1− ε−
(
(I − A)T1− ε1

)T
1

+
(
(I − A)T1− ε1

)T
(I − A)−1 ((I − A)1− ε1)

= 1− ε− 1T (I − A)1+ ε1T1

+1T (I − A)1− 2ε1T1+ ε21T (I − A)−11

= 1− nε+ ε21T (I − A)−11.

So, to show that α(i) ≥ (1− ε)n, we will show that

1T (I − A)−11 ≥ (1− ε)n − (1− nε)
ε2

,

with equality if and only if

C =
1

1− ε
B

is a cyclic permutation matrix. By Lemma B.11,

n−2∑
k=0

(n− k − 1)(1− ε)k =
(1− ε)n − (1− nε)

ε2
.

So, we need to show that

1T (I − A)−11 ≥
n−2∑
k=0

(n− k − 1)(1− ε)k.

Via Lemma 2.8, we have
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(I − A)−1 =
∞∑
k=0

Ak.

By Lemma B.10, 1TAk1 ≥ (n− k − 1)(1− ε)k whenever 0 ≤ k ≤ n− 2. Therefore,

1T (I − A)−11 = 1T
(
∞∑
k=0

Ak
)
1

=
n−2∑
k=0

1TAk1+ 1T
(

∞∑
k=n−1

Ak
)
1

≥
n−2∑
k=0

1TAk1

≥
n−2∑
k=0

(n− k − 1)(1− ε)k.

We note that equality occurs if and only if 1TAk1 = (n−k−1)(1−ε)k for 0 ≤ k ≤ n−1

and

∞∑
k=n−1

Ak = 0;

the second condition is equivalent to An−1 = 0 (since A is nonnegative).

Thus,

1T (I − A)−11 ≥ (1− ε)n − (1− nε)
ε2

and we see that

α(1) = a+ vT (I − A)−1w

= 1− nε+ ε21T (I − A)−11

≥ 1− nε+ ε2 (1−ε)n−(1−nε)
ε2

= (1− ε)n.
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Suppose that we have equality; that is, suppose that α(1) = (1 − ε)n. As noted

above, this occurs if and only if 1TAk1 = (n− k − 1)(1− ε)k for 0 ≤ k ≤ n− 2 and

An−1 = 0. When the matrix A satisfies An−1 = 0, it is nilpotent. It is well-known

(see [3]) that a nonnegative matrix is nilpotent if and only if it is permutation-similar

to an upper-triangular matrix. That is, since An−1 = 0, there is a permutation matrix

P (of order n− 1) such that

PAP T =



0 ∗ · · · ∗

. . . . . .
...

. . . ∗

0


,

where the entries below the diagonal are zeroes. Now, we label the entries in the first

diagonal as a1, . . . , an−2 (the matrix A has order n− 1). That is, let

PAP T =



0 a1 ∗ · · · ∗

. . . . . . . . .
...

. . . . . . ∗

. . . an−1

0


.

Then,
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PAn−2P T =



0 · · · 0
n−2∏
k=1

ak

. . . 0

. . .
...

0


.

We have 1An−21 = (n− (n− 2)− 1)(1− ε)n−2 = (1− ε)n−2, implying that

n−2∏
k=1

ak = (1− ε)n−2.

Since the matrix B is equal to a stochastic matrix multiplied by the scalar 1− ε, we

have ak ≤ 1− ε for all k. This, together with the above equality, implies that, in fact,

ak = 1− ε for all k. Then, we also have

1TA1 = (n− 1− 1)(1− ε) = (n− 2)ε.

Since the terms ak are each equal to 1− ε and there are n− 2 of them, the remainder

of the entries in A must be 0. So, in fact,

PAP T =



0 1− ε

. . . . . .

. . . 1− ε

0


,

where the unspecified entries are zeroes. Now, we have A1 + w = (1 − ε)1 and

AT1+ v = (1− ε)1. So, since P1 = P T1 = 1, we have
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Pw = (1− ε)1− PAP T1 =



0

...

0

1− ε



and Pv = (1− ε)1− PATP T1 =



1− ε

0

...

0


We also have a = 1 − ε − vT1 = 0 (from the above conclusion concerning v). Thus,

since

B =

 a vT

w A

 ,
we see that if α(1) = (1 − ε)n, then there is a permutation matrix P of order n − 1

such that  1 0

0 P

B
 1 0

0 P T

 =

 0 vTP T

Pw PAP T


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=



0 1− ε

. . . . . .

. . . 1− ε

1− ε 0


,

where the unspecified entries are zeroes. Via Proposition B.9, we see that if B = (1−

ε)C where C is a cyclic permutation matrix, then for all i ∈ E , we have α(i) = (1−ε)n.
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Appendix C

Data analysis

C.1 n-Pentane analysis

We first examine two data sets obtained from experiments concerning the n-

pentane molecule, CH3 − (CH2)3 − CH3. The data is obtained from two hybrid

Markov chain Monte Carlo experiments, using temperature parameters of 300 and

500.

We first summarise, briefly, the concept of a hybrid Markov chain Monte Carlo

experiment (HMCMC). Suppose that X = {xt} is a Markov chain on the state space

S = Rn or Cn. An HMCMC experiment is a manner in which a second Markov chain

Y = {yt} may be realised, via mathematical software, which models or simulates X.

The transition probabilities of X are not utilised in this simulation, and so HMCMC

experiments are useful if these probabilities are unknown or difficult to calculate.

The only inputs required are the stationary distribution π of X and a temperature
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parameter T .

In a Markov chain on a continuous state space, the stationary distribution π is

a probability measure. That is, there is a function µ : S → [0, 1] such that for any

E ⊆ S,

π(E) =

∫
E

µ(x)dx.

The HMCMC method assumes that the Markov chain X is a discretisation, time-

wise, of a process which is continuous in time. That is, it is assumed that if x0 =

i0, x1 = i1, . . . is a realisation of X, then there is a continuous function f : [0,∞)→ S

such that f(t) = xt whenever t is an integer. The process Y is based on Hamiltonian

mechanics – it simulates a particle moving through the state space S with a velocity

which randomly fluctuates, subject to the constraint that for any E ⊆ S, π(E) is

approximately equal to the frequency with which Y visits states in E . Thus, although

the individual stepwise transitions xt → xt+1 and yt → yt+1 may not follow the

same rules, they are both discretisations of continuous processes which have the same

stationary distribution. Thus, Y is seen to be a useful model of X.

The temperature parameter T input into a HMCMC experiment controls the

volatility of the velocity of Y . When T is small, one tends to see yt+1 − yt remain

fairly constant, for long periods of time, and ‖yt+1 − yt‖ remain bounded by a small

value, overall. For large T , the difference vector yt+1 − yt can change more rapidly

(as a function of t) and become larger in norm.
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In a HMCMC experiment (in fact, in all Monte Carlo methods) the simulation

Y is a reversible Markov chain. An introduction to Markov chain Monte Carlo, in

general, appears in [21, Section 5.5]; a detailed explanation of the experiment used

to model the n-pentane molecule appears in [22].

The state of the n-pentane molecule is determined by the two dihedral angles

between the CH3 − CH2 components of the molecule and the remaining CH2 com-

ponent.

CH3

DDDDDDDDDDDDDDDDD CH2

DDDDDDDDDDDDDDDDD CH3

ω1
NN

ω2
==

CH2

zzzzzzzzz

zzzzzzzzz

CH2

zzzzzzzzzzzzzzzzz

The range of attainable angles is discretised into 20 intervals, creating a state space

S of order 202 = 400 which is isomorphic to a subset of R2. As time proceeds,

these angles change randomly and it is assumed this process satisfies the Markov

Property. The stationary distribution is known, based on the molecular properties of

CH3− (CH2)3−CH3. So, the HMCMC method is used to construct a simulation of

the random changes in the molecular states of the n-pentane molecule. (See [7, 22]

for details.)

The authors of [7] construct two distinct sequences

y
(1)
0 , y

(1)
1 , . . . , y(1)

s1
and y

(2)
0 , y

(2)
1 , . . . , y(2)

s2
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Figure C.1: The n-pentane transition matrices

using a hybrid Markov chain Monte Carlo algorithm – the first corresponding to

temperature T = 300 and the second to T = 500. These sequences are then used to

construct two transition matrices Ph300 = A(1) and Ph500 = A(2), defined via

a
(k)
ij =

∣∣∣{t ≤ sk − 1 : y
(k)
t = i and y

(k)
t+1 = j}

∣∣∣∣∣∣{t ≤ sk − 1 : y
(k)
t = i}

∣∣∣ .

A graphic representation of these matrices appears in Figure C.1; lighter pixels repre-

sent significant entries and darker pixels represent entries near 0. Neither experiment

results in all 400 potential states being observed. In the case of temperature 300,

255 distinct states appear and in the case of temperature 500, 307 states are ob-

served. The stationary distributions π(1) and π(2) of these matrices are provided by

the authors. It can be confirmed, using the data provided, that for k = 1 and 2,

∑
i

∑
j

∣∣∣π(k)
j a

(k)
ij − π

(k)
i a

(k)
ij

∣∣∣
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Algorithm ε Agg. π-Min. 1-Min. Refined 1-min. Near Tr. States

MMaxE
0.01 7 0.918 0.803 0.836 163
0.005 5 0.979 0.823 0.907 135

LW
0.01 7 0.921 0.768 0.835 159
0.005 5 0.979 0.768 0.910 116

PO
0.01 7 0.920 0.768 0.852 158
0.005 5 0.979 0.768 0.911 117

MinC
0.01 7 0.919 0.770 0.835 167
0.005 5 0.978 0.770 0.907 134

PCCA
n/a 7 0.918 n/a n/a n/a
n/a 5 0.976 n/a n/a n/a

SVD n/a 7 0.876 0.659 n/a n/a

Table C.1: Stochastic complement based and other algorithms applied to Ph300

is equal to a near-negligible positive number; so the matrices Ph300 and Ph500 are re-

versible with known stationary distributions. The reversible property and the known

stationary distributions allow us to apply every one of our stochastic complement

based algorithms to Ph300 and Ph500; as well, we are able to utilise the π-coupling

measure in evaluating our output.

We first examine the 255 × 255 matrix Ph300. The eight eigenvalues of Ph300

with largest magnitude are

{1, 0.986, 0.984, 0.982, 0.975, 0.941, 0.938, 0.599}.

In [7], the PCCA Algorithm is applied to Ph300 twice, once to decouple the state

space into 5 aggregates and once to decouple the state space into 7 aggregates. The

matrix Ph300 has 4 eigenvalues that are approximately 0.98 and a further 2 that are

approximately 0.94 – when combined with the eigenvalue 1, this suggests a Perron
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cluster of either 5 or 7 eigenvalues.

The authors of [7] use the π-coupling measure to evaluate their obtained aggre-

gates. Given a stochastic matrix A on the state space S with stationary distribution

π, the π-coupling measure of a constructed aggregate E ⊆ S is the value

wπ(E) =
π(E)TA(E , E)1

π(E)T1
=

∑
i∈E

∑
j∈E

πiaij∑
i∈E

πi
.

The authors of [7] evaluate a potential decoupling Ψ = (E1, . . . , Em) of the state

space via the π-coupling measure. If the minimum of the values {wπ(Ek)} is close

to 1, then Ψ is seen to be a good uncoupling. We will follow this convention, and

produce the minimum coupling measure of the outputs of our algorithms.

The weakest π-coupling measure of an aggregate of Ph300 obtained by the PCCA

Algorithm is 0.976 in the case of 5 aggregates and is 0.918 in the case of 7 aggregates

(see [7] for a full analysis of the algorithm’s performance).

In [10] the authors apply the SVD-based algorithm (Algorithm 2) to the matrix

Ph300. As with the PCCA approach, 7 aggregates are obtained. However, the

coupling measures of the obtained aggregates are somewhat lower. The minimum

π-coupling measure of an aggregate obtained is 0.876. As well, the authors examine

the 1-coupling measure,

w1(E) =

∑
i∈E

∑
j∈E

aij

|E|
;

the minimal 1-coupling measure is 0.659.
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(d) followed by the Refinement Algorithm.

Figure C.2: Modified Maximum Entry (MMaxE) and Perron Ordered (PO) Algo-
rithms applied to Ph300, followed by the Refinement Algorithm.
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We apply the Modified Maximum Entry (MMaxE), Lower-weighted (LW), Perron

Ordered (PO) and Minimum Column (MinC) Algorithms with inputs ε = 0.01 and

0.005. (Experiments using a range of values for ε show that these values produce

7 and 5 aggregates, respectively). As the matrix Ph300 is reversible, we use, in all

cases, the criteria

âii <
(1− ε)2

1 + (mi − 2)ε

to determine if the state i is safe to remove via a stochastic complement (where Â

is the stochastic complement under consideration during some iteration of one of our

algorithms). In Table C.1, we show the smallest π-coupling measure and the smallest

1-coupling measure of an obtained aggregate for each application (of our algorithms

and others’).

In addition, after applying each of these four algorithms, we apply the Refine-

ment Algorithm in an attempt to identify a collection of near-transient states. We

show the smallest 1-coupling measure of an almost invariant aggregate after the near

transient states (identified by the Refinement Algorithm) have been removed from

each aggregate, along with the total number of near transient states the algorithm

identified.

As the π-coupling measure significantly reduces the contribution of near tran-

sient states, the π-coupling measures of the aggregates tend to be altered only in-

significantly after applying the Refinement Algorithm; thus, we do not produce the
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Figure C.3: Lower-weighted Algorithm (LW) and Refinement Algorithms applied to
Ph500

π-coupling measures of the refined aggregates.

It is interesting to note that this matrix seems to have a particularly large number

of near transient states (as we noted above, the total order of the matrix is 255). The

outputs for every one of our algorithms compare very favourably to those obtained

in [7] and [10].

We present graphical representations of four of our outputs in Figure C.2. In Fig-

ures C.2b and C.2d, the final diagonal block does not represent an almost invariant

aggregate – it corresponds to the collection of states identified by the Refinement Al-

gorithm as near-transient. The outputs of the modified Maximum Entry and Perron

ordered Algorithms, depicted in Figures C.2a and C.2c, clearly show almost invariant

aggregates of the Markov chain. However, we see many significant entries not con-

tained in the diagonal blocks. After applying the Refinement Algorithm, the structure
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Algorithm ε Agg. π-Min. 1-Min. Refined 1-min. Near Tr. States

MMaxE
0.05 7 0.770 0.659 0.712 198
0.01 5 0.881 0.694 0.782 172

LW
0.05 7 0.786 0.659 0.718 183
0.01 5 0.881 0.659 0.781 170

PO
0.05 7 0.786 0.659 0.718 183
0.01 5 0.881 0.659 0.781 169

MinC
0.05 7 0.787 0.657 0.718 151
0.01 5 0.881 0.675 0.786 168

(a) Stochastic complement based algorithms applied to Ph500

Partition vector Termination Criteria Agg. π-Min. 1-Min.
Left-singular 1-coupling 5 0.584 0.552
Left-singular π-coupling 6 0.584 0.490

Right-singular 1-coupling 6 0.656 0.507

(b) SVD based algorithm applied to Ph500

Table C.2: Stochastic complement and SVD based algorithms applied to Ph500

described in Lemma 3.5 is more apparent.

We next turn to the matrix Ph500 (Figure C.1b). This matrix does not appear

in [7] but is examined in [10].

As stated in the description of the SVD-based algorithm (Algorithm 2), there are

two different choices for each of of two methods within its implementation, resulting

in four different possible implementations. The user may utilise either right or left-

singular vectors and either of the π or 1-coupling measures. In the application of

the SVD-based algorithm to Ph300, left-singular vectors were used and it was noted

that using either coupling measure produced the same output. In the analysis of

Ph500, the SVD-based algorithm is applied three times – the implementation which
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uses right-singular vectors and the π-coupling measure is not applied.

In Table C.2, we examine the outputs of the Modified Maximum Entry, Lower-

weighted, Perron Ordered and Minimum Column Algorithms, in addition to the SVD

based algorithm. We use the input values ε = 0.05 and 0.01. As above, we show the

number of aggregates produced, the minimal coupling measures of an aggregate, the

minimal 1-coupling measure of an aggregate after applying the Refinement Algorithm

and the number of near-Transient states identified by the Refinement Algorithm.

We note that, as above, the Refinement Algorithm has identified a somewhat large

number of near transient states (the total number of states is 307).

C.2 A collaboration network

We discuss a particularly interesting, somewhat problematic example of a nearly

uncoupled Markov chain. This example is taken from [20], where it is used to analyse

network centrality – how “important” a given vertex is within a network. The example

is a collaboration network, given in the form of a weighted graph; each node represents

a researcher (working, specifically, on network-related research) and the (undirected)

edges represent collaborations (papers co-authored) between researchers.

Suppose that researchers i and j have co-authored k papers; let n1, . . . , nk be the

total number of authors of each of these k papers, respectively. Then, the weight of

the ijth edge is
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Figure C.4: The 69 eigenvalues of A(c) closest to 1

wij =
k∑
l=1

(
nl
2

)
.

The weights are chosen so that each paper contributes a total weight of 1 to the edges

of the graph. (Papers with a single author are not considered.)

There are 1589 researchers in total; however, the graph is not connected. We ex-

amine (as in [20]) the largest connected component only, which contains 379 vertices.

We will apply the Maximum Entry Algorithm to the random walk on this weighted

graph. So, we examine the 379×379 reversible stochastic matrix A(c) with ijth entry

defined via

a
(c)
ij =

wij
379∑
k=1

wik

,

where wij is as defined above.
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δ Agg. π-Min. 1-Min. Average 1-coupling Measure
0.20 27 0.745 0.756 0.930
0.15 18 0.745 0.756 0.943
0.10 10 0.867 0.905 0.960
0.05 2 0.993 0.992 0.996

Table C.3: The Maximum Entry Algorithm applied to the collaboration matrix A(c)

Perhaps unsurprisingly, the random walk on this largest connected component is

very much nearly uncoupled. However, its eigenvalues do not clearly identify the

number of potential aggregates. The matrix A(c) has 69 eigenvalues between 0.5 and

1, and they seem to be evenly distributed within this interval (Figure C.4).

First, we apply the Maximum Entry Algorithm to A(c) with inputs δ = 0.20,

0.15, 0.10 and 0.05. We summarise the results of these applications in Table C.3.

As well, we include the average 1-coupling measure of the aggregates obtained. The

Refinement Algorithm identifies only a tiny number of near-transient states (five or

fewer for each output) and so we do not include its output.

The average 1-coupling measures of the produced aggregates are quite high -

significantly higher than the the minimum measures. Closer examination shows that

most of the obtained aggregates have 1-coupling measures that are very close to these

averages; i.e there are only a small number of outliers that have significantly lower

coupling measures.

The output digraph is not necessary for every application – it is straightforward to

modify our algorithms so that only the aggregates themselves are output. However,
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α Agg. Average 1-coupling Measure
0.85 27 0.938
0.90 23 0.947
0.95 12 0.971

Table C.4: Recursive subaggregating applied to the collaboration network

the digraph is a great source of information on the uncoupled structure of the matrix.

We will show one example of how it can be used to produce a hierarchical uncoupling

of the matrix.

We will first show how, given α < 1, we can produce a partition Ψ such that

for every E ∈ Ψ, w1(E) > α (eliminating the possibility we saw above of outlying

aggregates with smaller coupling measures).

We construct the digraph G by applying the Maximum Entry Algorithm to A =

A(c) with δ = 0. As well, we record the order in which the directed arcs were added to

G. Thus, G is weakly connected (since A is irreducible), acyclic and every vertex has

out-degree equal to 0 or 1. The fact that G is weakly connected implies that there is

a unique vertex with out-degree 0.

We note that removing k directed arcs from G results in a digraph that is acyclic

and has every out-degree equal to 0 or 1; as well, the number of vertices with out-

degree 0 is increased by exactly k. Thus, by Lemma 5.2, removing k directed arcs

from G results in an acyclic digraph G′ where every vertex has out-degree equal to 0

or 1 which contains exactly k + 1 weakly connected components.

We apply the following iterative procedure to G.
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1. Let G′ = G.

2. Let G0 be a weakly connected component of G′ (during the first iteration,

G0 = G′ = G) and let V0 be the vertices of G′.

3. Let i→ j be the final directed arc with i, j ∈ V0 added to G by the algorithm.

4. Let G1 and G2 be the weakly connected subgraphs of G0 that are obtained by

removing the directed arc i → j and let V1 and V2 be their respective vertex

sets.

5. If the 1-coupling measures of V1 and V2 are both strictly greater than α, remove

the directed arc i→ j from G′.

6. We repeat steps 2 through 5 until every weakly connected component G0 of G

is such that removing the final arc with endpoints in V0 added by the Maximum

Entry Algorithm results in at least one of V1 or V2 having 1-coupling measure

less than or equal to α.

We refer to this process as recursive subaggregating. The directed arcs that the

Maximum Entry Algorithm adds first are those that we are most sure represent

transitions within an almost invariant aggregate – they represent maximal transition

probabilities within stochastic complements where very few states have been removed.

Thus, after running the Maximum Entry Algorithm with δ = 0, the directed arc

added last seems most likely to be a transition from one aggregate to another. If the

293



Pajek

(a) The Maximum Entry Algorithm, with δ = 0.2.

Pajek

(b) Recursive Subaggregating, with α = 0.85.

Figure C.5: Both techniques, applied to the collaboration matrix A(c), produce 27
aggregates.

294



two weakly connected components obtained by removing this arc are, indeed, almost

invariant aggregates, we remove this arc and then apply the same reasoning to each

of the two weakly connected components.

This process is guaranteed to produce a collection Ψ of almost invariant aggregates

that each have 1-coupling measure greater than α. Although, it is entirely possible

that recursive subaggregation may return very few (or even just one) such aggregates.

Then, we may select a value α2 such that α2 < α and apply recursive subaggre-

gation with the value α2 to the digraph G′. This returns a partition Ψ2 of S such

that

1. for every E ′ ∈ Ψ2, w1(E ′) > α2, and

2. for every E ′ ∈ Ψ2, there is E ∈ Ψ such that E ′ ⊆ E .

This process may be repeated any number of times, producing a hierarchy of

almost invariant aggregates of A.

We apply this procedure three times to the digraph G obtained from the collabo-

ration network described above (via the Maximum Entry Algorithm with δ = 0). We

present our results in Table C.4. We emphasise that every aggregate obtained has

1-coupling measure greater than the input α. For example, recursive subaggregating

with α = 0.85 returns 27 collections of states which each have a 1-coupling measure

greater than 0.85 and have an average 1-coupling measure of 0.938. This is a signif-

icant improvement of the aggregates obtained from the Maximum Entry Algorithm
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with δ = 0.2 (which each have a 1-coupling measure greater than 0.75 and have an

average 1-coupling measure of 0.930). We show these two outputs in Figures C.5a

and C.5b.

This is just one example of how the output digraph may be utilised. The transi-

tion digraph of a stochastic matrix order n can contain on the order of n2 directed

arcs; it can be computationally difficult to extract any meaningful information from

such a structure. However, the output digraph of our stochastic complement based

algorithms contains approximately n directed arcs, and these arcs can be ranked in

significance by the order in which they were added to the digraph. This is a very rich

source of information on the probabilistic properties of the associated state space.

C.3 Randomly generated examples

We present a summary of the Lower Weighted Algorithm’s performance when

applied to a collection of randomly generated reversible stochastic matrices.

We require a method of generating a random unweighted graph such that the

associated random walk is nearly uncoupled with respect to ε. For our purposes, the

output of Algorithm 12, seems sufficient. The inputs of Algorithm 12 are positive

integers m and n with 2 < m < n and a positive value ε < 1. The output is a graph

on vertices V = {1, . . . , n} and a partition (E1, . . . , Em) of the vertex set. We show

below that if n/m is sufficiently large, each Ek is an almost invariant aggregate of the

296



random walk on the output graph.

Algorithm 12 Random graph generator

Let G be the graph on vertices V = {1, . . . ,m} that contains no edges.
for k = 1, . . . ,m do
Ek := {k}

end for
for i = m+ 1, . . . , n do

Choose k ∈ {1, . . . ,m}, uniformly.
Choose p ∈ (0, 1), uniformly.

Let q = min

{
1, εp|Ek|

(1−ε)
∑
l 6=k
|El|

}
.

Add vertex i to V .
For each j ∈ Ek, the edge ij is added to G with probability p.
For each j ∈

⋃
l 6=k
El, the edge ij is added to G with probability q.

Add vertex i to Ek.
end for
return G and (E1, . . . , Em).

The random choices in Algorithm 12 are assumed to have uniform distributions

– when an element is chosen from a set, every member of that set is equally likely,

when a value p ∈ (0, 1) is chosen, the expected value of p is 1/2, and so forth.

If, after some number of iterations, Ek contains r vertices, and we then add one

more vertex i to Ek, the expected number of new edges ij with j ∈ Ek is rE[p] = r/2.

Thus, after adding s vertices to Ek, the expected number of edges in the induced

subgraph G(Ek) is

s−1∑
r=1

r

2
=
s(s− 1)

4
=

1

2

(
s

2

)
.
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The complete graph on s vertices (the graph which contains every possible edge) con-

tains
(
s
2

)
edges. If the choice of k ∈ {1, . . . ,m} within the algorithm is accomplished

so that each possibility is equally likely, the expected size of each aggregate Ek is n/m.

So, as long as the number n/m is somewhat large, the m induced subgraphs G(Ek)

each contain approximately half of the maximum possible number of edges. This,

together with the fact that the edges are added in a random manner, implies that

(again, if n/m is large) each induced subgraph G(Ek) is well connected.

Now, suppose that at some iteration, we are adding a vertex i to the aggregate

Ek and that the probability p of connecting i to the members of Ek has already been

selected. Let

q = min

1,
εp |Ek|

(1− ε)
∑
l 6=k
|Ek|

 ,

let

a = p |Ek|

be the expected number of edges ij with j ∈ Ek added at this iteration and let

b = q
∑
l 6=k

|El| ≤
εp |Ek|
1− ε

be the expected number number of new edges ij with j /∈ Ek added. Then,

b

a+ b
≤ εp |Ek| /(1− ε)
p |Ek|+ εp |Ek| /(1− ε)

=
ε/(1− ε)

1 + ε/(1− ε)
= ε.
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Thus, the expected value of the ratio of the number of edges with endpoints in different

aggregates to the total number of edges in G is less than or equal to ε. So, as long

as n is large, the probability that a randomly selected edge has endpoints in distinct

aggregates is approximately bounded by ε. Thus, for large values of n and n/m,

the random graph generator proposed above produces a graph whose random walk is

nearly uncoupled with respect to ε′ ≈ ε.

We have specified that p, with the algorithm, be chosen randomly so that there is

some variation in the degrees of the vertices of G.

As an example of our above discussion we have constructed a graph G where

one of the aggregates Ek contains 50 vertices. We calculate the stochastic matrix A

corresponding to the random walk on this induced subgraph G(Ek); the eigenvalue of

A closest, but not equal, to 1 is λ ≈ 0.3093. So, this subgraph is very well-connected

(see Proposition 3.7). The degrees of the vertices in the induced subgraph G(Ek) are

given in Figure C.6.

We apply our Lower Weighted Algorithm to matrices generated by Algorithm 12.

We generate a total of 180 random graphs, calculate the stochastic matrices of their

associated random walks and then apply Algorithm 8. Every graph generated has

n = 1000 vertices.

In a sense, there is a danger to using randomly generated matrices to test al-

gorithms such as ours. It is somewhat easy to “fine-tune” the inputs so that the
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Figure C.6: The vertex degrees within an aggregate output by Algorithm 12.

algorithm will succeed. For example, if the number of almost invariant aggregates is

known, one can force an algorithm to output that exact number of aggregates. So,

as much as possible, we try to apply the Lower Weighted Algorithm without taking

advantage of the known structure of the matrices we generate. In particular, if the

algorithm outputs the wrong number of aggregates, we will simply report the cou-

pling measures of this output without attempting to refine or alter it. We emphasise

that this is not how the algorithms we have presented should be used in practise –

the speed of the algorithms allows many applications to a single data set in a rela-

tively short period of time, so that a particularly optimal output may be chosen or

constructed.

In applying our stochastic complement based algorithms, we have found that the

value δ = 0.05 tends to be a very good first input. If the matrix is genuinely nearly

uncoupled, this fact seems to be apparent in examining the aggregates output with
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this first input value. The cheapness (in speed terms) of the algorithm then allows

us to fine-tune the input δ so that a better collection of aggregates is obtained.

The rule of thumb we have observed is that if the output has very strong (near 1)

coupling measures, one should then try to increase δ (in order to discover possible

subaggregates of those output), and if the output aggregates have weak coupling

measures, δ should be decreased. For this analysis, we will simply use the input

δ = 0.05 every time, and report the coupling measures as they first appear.

We generate our random graphs using Algorithm 12 with inputs n = 1000 vertices,

m = 10, 20 or 50 aggregates and ε = 0.01, 0.05 or 0.1. We generate 180 graphs in

total, 20 with each possible combination of inputs, and then calculate the reversible

transition matrix associated with each graph. As the matrices under consideration

are random walks on graphs, the stationary distribution of each matrix is known (it

is a scalar multiple of the vector of vertex degrees) and so we can make use of the

π-coupling measure in evaluating the outputs.

For each stochastic matrix generated, we calculate the mean and minimum π-

coupling measures of the aggregates output by each application of Algorithm 8 (with

input δ = 0.05); as well, we record the number of aggregates output. Then, we take

the means of these values over all 20 applications with each pair of inputs. We note

that with input ε (into the random graph generator), the π-coupling measures of the

actual aggregates are approximately 1− ε. These values are shown in Table C.5.
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π-Coupling Mean Number of
Aggregates 1− ε Mean Min. Aggregates Output

50 0.99 0.982 0.811 50.2
50 0.95 0.931 0.780 47.2
50 0.90 0.878 0.634 29.2
20 0.99 0.894 0.337 22.2
20 0.95 0.907 0.422 20.7
20 0.90 0.852 0.551 12.2
10 0.99 0.776 0.273 12.9
10 0.95 0.837 0.388 11.4
10 0.90 0.843 0.592 8.9

Table C.5: The Lower Weighted Algorithm Applied to randomly generated stochastic
matrices of order 1000.

We see that with m = 50 or 20 aggregates, the algorithm has performed very well;

the mean π-coupling measures of the output aggregates are close to the expected

π-coupling measure of 1 − ε. As well, the minimum π-coupling measures are signifi-

cantly lower than these mean values; this suggests that the majority of the aggregates

obtained have π-coupling measures very close 1 − ε. So, a closer examination of the

aggregates obtained should allow these outputs to be refined into even stronger ε-

uncouplings. The outputs obtained from the matrices that have 10 almost invariant

aggregates seem to be more problematic. However, in this case we again have the

minimum π-coupling measures significantly lower than the means, suggesting that

many of the aggregates obtained are, indeed, almost invariant aggregates.

We chose this particular random matrix generator because it is, in a sense, prob-

lematic for our algorithms. Let A be the transition matrix of a random walk on a

graph G output by Algorithm 12. For each i, let v(i) be the degree of vertex i in the
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graph G. Then, every entry in the ith row of A is equal to either 0 or 1/v(i). So,

each transition i → j where j is in a separate aggregate from i is as likely as each

transition i → j where j is in the same aggregate. The Lower Weighted Algorithm

(and our other stochastic complement based algorithms) proceeds by assuming that

i and j are in the same aggregate whenever

aij = max
k 6=i
{aik}.

However, this assumption, in this case, is false. We suspect that this is the reason

for the low minimum π-coupling measures, as seen in Table C.5. It seems that some

number of states are being assigned to the wrong almost invariant aggregate. How-

ever, as we noted above, the mean π-coupling measure is significantly higher, implying

that only a small number of aggregates are being affected in each case. We suspect

that the reason for this good performance (on average) is that even though these

“cross-aggregate” transitions have the same magnitudes as the transitions within an

aggregate, there are far fewer of them. Thus, the likelihood of a correct association

being made (in the digraph the algorithm constructs) is quite high. In addition, as

the algorithm removes more and more states via stochastic complements, the tran-

sitions within aggregates are increased more so than those between aggregates. i.e.

Incorrect associations are somewhat unlikely, and become even more unlikely as the

algorithm removes more states.
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Appendix D

A low rank example

We examine a particularly simple nearly uncoupled Markov chain, and determine

the exact conditions under which the Maximum Entry Algorithm will successfully or

unsuccessfully uncouple its associated state space.

Let v and w be entrywise positive column vectors of orders m and n, respectively,

such that the sum of the entries in each of v and w is 1:

vT1 = wT1 = 1.

Let p and q be positive numbers that are close to, but strictly less than, 1 – for now,

we will only assume that p and q are strictly greater than 1/2. Consider the stochastic

matrix

A(v, w, p, q) =

 p1vT (1− p)1wT

(1− q)1vT q1wT

 .
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The all-ones vectors 1 in the first row of blocks have order m and those in the second

row have order n – so, the orders of the (1, 1) and (2, 2)th blocks are m×m and n×n.

The matrix A(v, w, p, q) models the following system. Let S = S1 ∪ S2 where S1

and S2 are disjoint, arbitrarily large sets (possibly even infinite). Consider a Markov

chain X on S that satisfies the properties

P [xt+1 ∈ S1|xt ∈ S1] = p, P [xt+1 ∈ S2|xt ∈ S1] = 1− p,

P [xt+1 ∈ S2|xt ∈ S2] = q and P [xt+1 ∈ S1|xt ∈ S1] = 1− q.

In addition, for any collections C1 ⊆ S1 or C2 ⊆ S2, the probabilities that xt ∈ C1

or C2 are dependent only on whether xt ∈ S1 or S2. For example, given i ∈ S2 and

C1 ⊆ S1,

P [xt+1 ∈ C1|xt = i] = P [xt+1 ∈ C1|xt ∈ S2]

= P [xt+1 ∈ S1|xt ∈ S2]P [xt+1 ∈ C1|xt+1 ∈ S1]

= (1− q)P [xt+1 ∈ C1|xt+1 ∈ S1] .

The vectors v and w are then obtained by discretising or aggregating the collections

S1 and S2 into disjoint unions

S1 =
m⋃
i=1

Ei and S2 =
n⋃
j=1

Fj

and defining

vi = P [xt ∈ Ei|xt ∈ S1] and wj = P [xt ∈ Fj|xt ∈ S2] .

305



The Markov chain associated with A = A(v, w, p, q) is the Markov chain obtained

from X by replacing every member of each of Ei and Fj with a single state. For

i = 1, . . . ,m, state i (of A(v, w, p, q)) corresponds to Ei and for j = m+ 1, . . . ,m+n,

state j corresponds to Fj−m. Given v and w, as above, we define

E = {1, . . . ,m} and F = {m+ 1, . . . ,m+ n} .

Let A = A(v, w, p, q). The collections E and F are clearly almost invariant aggre-

gates – the probability of transitioning from one to the other is 1− p or 1− q, which

we have assumed to be close to 0.

We first define what we mean by a correct output of the Maximum Entry Algo-

rithm. Suppose that A = A(v, w, p, q), E and F are as above. Let G be a digraph

obtained by applying the Maximum Entry Algorithm to A with input δ = 0. Since

A is irreducible, G is weakly connected. Let i→ j be the final directed arc added to

G by the Maximum Entry Algorithm and let G′ be the subgraph of G obtained by

removing the directed arc i → j (that is, G′ is the digraph constructed during the

second to last iteration of the algorithm). The subgraph G′ has exactly two weakly

connected components; we say that G correctly uncouples A if the vertex sets of the

weakly connected components of G′ are E and F .

The outputs of the Maximum Entry Algorithm may differ, depending on its imple-

mentation – if, at some iteration, the maximum value among the off-diagonal entries
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is attained by two or more off-diagonal entries, the exact choice of entry by the algo-

rithm may produce a different output. We say that the Maximum Entry Algorithm

correctly uncouples A if every possible implementation produces a digraph G which

correctly uncouples A.

We have defined the output as correct or incorrect, in this case, for the following

reason. Each of our algorithms constructs associations in its output digraph in the

same manner. Let i → j be a directed arc added to the output digraph (by one of

our algorithms) and let Â be the stochastic complement under consideration when

this directed arc is added. Then,

âij = max
k 6=i
{aik}.

We are concerned that, under some conditions, the states i and j above may not

actually be contained in the same almost invariant aggregate. More importantly, we

are concerned that one of our algorithms may remove a state i and add a directed

arc i→ j where

1. the state i is contained in an almost invariant aggregate E ,

2. j /∈ E , and

3. there some state k 6= i (not yet removed) such that k ∈ E .

If the Maximum Entry Algorithm correctly uncouples the state space of the matrix
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A = A(v, w, p, q), then every time the algorithm associates two states i and j, either

this association is correct or there are no correct associations left to be made.

Investigating this problem provides insight into a fundamental question involved

in using our stochastic complement based algorithms – namely, how uncoupled must

a matrix be in order for the algorithms to produce correct or reliable output? In

Section 5.6.2, we show that if a reversible stochastic matrix is sufficiently near to a

block diagonal matrix (in the∞-norm), the Maximum Entry Algorithm will produce

a correct output. However, this is an existence-style proof only – it provides no

concrete bound or formula. In general, this seems to be a hard problem; however, in

this specific case we are able to produce a complete answer.

As well, we are interested in the effect that the discretisation process has on

our algorithms. If the discretisation utilised is trivial, namely if v = w = [1], it

is impossible to produce an incorrect output. We are interested in seeing if there

are discretisation choices that may fool the algorithm, and obfuscate the uncoupled

structure of the matrix. As we will see below, as long as there is at least one entry in

each of v and w that is sufficiently large (we produce an exact bound), the algorithm

will uncouple A(v, w, p, q) correctly.

We are less concerned with the problem of removing an entire almost invariant

aggregate. The matrix A(v, w, p, q) is reversible; let Πv and Πw be the diagonal

matrices whose ith entries are vi and wi respectively. Left-multiplication of A by the
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matrix

Π =

 (1− q)Πv 0

0 (1− p)Πw


obtains a symmetric matrix. As long as every directed arc added to the output digraph

has both endpoints contained in the same almost invariant aggregate, the results in

Appendix A apply. So, for example, if the order of v is m, once the algorithm has

removed m− 1 states from E = {1, . . . ,m}, leaving one state i ∈ E not yet removed,

the stochastic complement Â, at that iteration, will satisfy

âii ≥
p2

1 + (m− 2)(1− p)
.

Thus, our Maximum Entry Algorithm (with an appropriate choice of the input δ)

can be relied upon to construct stochastic complements that do not remove an entire

aggregate.

For the remainder of this section, A = A(v, w, p, q), E and F are as defined above.

We refer to the submatrices (1−p)1wT and (1−q)1vT of A as the off-diagonal blocks

and the submatrices p1vT and q1wT as the diagonal blocks.

We start with a technical lemma.

Lemma D.1. Let A = A(v, w, p, q) and let C be a collection of states properly con-

tained in E. Let v̂ be the subvector of v corresponding to E \ C, let vC be the subvector

of v corresponding to C and let a = vTC 1. Then,
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(
I − p1vTC

)−1
= I +

p

1− pa
1vTC

and

A \ C =

 p
1−pa1v̂

T 1−p
1−pa1w

T

1−q
1−pa1v̂

T q−(p+q−1)a
1−pa 1wT

 .
Proof We show the first claim by simply multiplying the two matrices together:

(
I − p1vTC

) (
I + p

1−pa1v
T
C

)
= I + p

1−pa1v
T
C − p1vTC −

p2

1−pa1v
T
C 1v

T
C

= I + p−p(1−pa)−p2a
1−pa 1vTC

= I.

(We have p/(1− pa) > 0, as both p and a are positive numbers strictly less than 1.)

Next, we express the matrix A = A(v, w, p, q) as

A ∼=


p1v̂T p1vTC (1− p)1wT

p1v̂T p1vTC (1− p)1wT

(1− q)1v̂T (1− q)1vTC q1wT


Then,

A \ C =

 p1v̂T (1− p)1wT

(1− q)1v̂T q1wT


+

 p1vTC

(1− q)1vTC

(I − p1vTC )−1
[
p1v̂T (1− p)1wT

]
.
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We will calculate the four blocks of the matrix one at a time, making use of the above

formula for (I−p1vTC )−1 and the fact that a = vTC 1. The block in the (1, 1)th position

is

p1v̂T +
(
p1vTC

) (
I − p1vTC

)−1 (
p1v̂T

)

= p1v̂T + p21vTC

(
I + p

1−pa1v
T
C

)
1v̂T

= p1
(

1 + pvTC 1+ p2

1−pa

(
vTC 1

)2
)
v̂T

= p
(

1 + pa+ p2a2

1−pa

)
1v̂T

= p (1+pa)(1−pa)+p2a2

1−pa 1v̂T

= p
1−pa1v̂

T .

The block in the (1, 2)th position is

(1− p)1wT +
(
p1vTC

) (
I − p1vTC

)−1 (
(1− p)1wT

)

= (1− p)1wT + p(1− p)1vTC
(
I + p

1−pa1v
T
C

)
1wT

= (1− p)1
(

1 + pvTC 1+ p2

1−pa

(
vTC 1

)2
)
wT

= (1− p)
(

1 + pa+ p2a2

1−pa

)
1wT

= (1− p) (1+pa)(1−pa)+p2a2

1−pa 1wT

= 1−p
1−pa1w

T .

The block in the (2, 1)th position is

(1− q)1v̂T +
(
(1− q)1vTC

) (
I − p1vTC

)−1 (
p1v̂T

)
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= (1− q)1
(

1 + pvTC 1+ p2

1−pa

(
vTC 1

)2
)
v̂T

= 1−q
1−pa1v̂

T .

(The calculations involved in the (2, 1) case are similar to those involved in the (1, 2)

case – we simply need to replace each (1 − p) term with (1 − q) and each wT with

v̂T .)

Finally, the entry in the (2, 2) position is

q1wT +
(
(1− q)1vTC

) (
I − p1vTC

)−1 (
(1− p)1wT

)

= q1wT + (1− p)(1− q)1vTC
(
I + p

1−pa1v
T
C

)
1wT

= 1
(
q + (1− p)(1− q)a+ (1−p)(1−q)pa2

1−pa

)
wT

=
(
q + (1− p)(1− q)a

(
1 + pa

1−pa

))
1wT

=
(
q + (1−p)(1−q)a

1−pa

)
1wT

= q(1−pa)+(1−p)(1−q)a
1−pa 1wT

= q−(p+q−1)a
1−pa 1wT .
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It is somewhat simple to show that if 0 < a < 1 and 1/2 < p, q < 1, then

q − (p+ q − 1)a > 0. If we hold p and a constant, the function

f = q − (p+ q − 1)a = (1− a)q − (p− 1)a

is strictly increasing in q. So, since q > 1/2,

f >
1

2
−
(
p− 1

2

)
a.

Then, p < 1 implies

f >
1

2
− 1

2
a =

1

2
(1− a).

Now, suppose that A = A(v, w, p, q) where at least one of v or w has order 2 or

greater. In order for the Maximum Entry Algorithm to proceed correctly, no matter

what the implementation, the maximal value among the off-diagonal entries must not

occur in an off-diagonal block. That is, for

A =

 p1vT (1− p)1wT

(1− q)1vT q1wT


and

z = max
i 6=j
{aij},
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we must have every entry of (1 − p)w and (1 − q)v strictly less than z. Otherwise,

the very first step that the algorithm takes could be incorrect (the very first directed

arc that it adds to G may have one endpoint in E and the other in F). We now

show that when this condition is met, the Maximum Entry Algorithm will follow the

correct first iteration with a number of further correct iterations.

Lemma D.2. Let A = A(v, w, p, q) where v and w have orders m and n, respectively.

Let the digraph G be formed by an application of the maximum entry algorithm with

input δ = 0 and suppose that the first directed arc i→ j added to G by the algorithm

has

i, j ∈ E = {1, . . . ,m}.

If the maximal off-diagonal value of A is strictly greater than every entry in the off-

diagonal blocks of A, then the first m−1 directed arcs i→ j added to G have i, j ∈ E.

Proof If the maximal off-diagonal value of A is strictly greater than every entry in

the off-diagonal blocks, then the first directed arc i→ j added to G must have either

i, j ∈ E = {1, . . . ,m} or i, j ∈ F = {m+ 1, . . . ,m+ n}.

Without loss of generality, we assume that the first directed arc added to G has both

endpoints in E . This implies that m ≥ 2. If m = 2, then there is nothing to prove –

we have m− 1 = 1 and the first directed arc added to G has both entries contained

in E . So, suppose that m ≥ 3.
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Let

α = max
1≤i≤n

{vi} and β = max
1≤i≤n

{wi}.

For i, j ∈ S = E ∪ F , the ijth entry of

A =

 p1vT (1− p)1wT

(1− q)1vT q1wT


is

aij =



pvj if i, j ∈ E

(1− p)wj−m if i ∈ E and j ∈ F

qwj−m if i, j ∈ F

(1− q)vj if i ∈ F and j ∈ E .

The largest values in the diagonal blocks are pα and qβ, respectively. The largest

entries in the off-diagonal blocks are (1− p)β and (1− q)α. The assumption that the

first directed arc added by the Maximum Entry Algorithm has endpoints in E implies

that m ≥ 2 and that the largest off-diagonal value of A is pα. So, we have

pα > (1− q)β,

and either n = 1 or pα ≥ qβ.

We first prove the following claim: Let C ⊆ E be such that 1 ≤ |C| ≤ m − 2 and

there is at least one j ∈ E \ C with vj = α. Then, the largest off-diagonal entry âij of

A \ C has i, j ∈ E \ C and vj = α.
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Let v̂ and vC be the subvectors of v corresponding to E \ C and C, respectively,

and let a = vTC 1. Consider

Â = A \ C =

 p
1−pa1v̂

T 1−p
1−pa1w

T

1−q
1−pa1v̂

T q−(p+q−1)a
1−pa 1wT


(via Lemma D.1). The vector v̂ has order 2 or greater and there is at least one j with

v̂j = α. So, the largest off-diagonal entry in the first diagonal block is

p

1− pa
α

and the largest entries in the off-diagonal blocks are

1− p
1− pa

β and
1− q
1− pa

α.

As noted above, pα > (1− p)β; as well, p, q > 1/2 implies that pα > (1− q)α. Thus,

the largest off-diagonal entry in the first diagonal block is strictly greater than every

entry of the off-diagonal blocks. So, if the vector w has order equal to 1, the largest

off-diagonal value appears only within the first diagonal block. Suppose that, instead,

w has order greater than or equal to 2. Above, we noted that pα ≥ qβ. The largest

entry in the second diagonal block of Â is

q − (p+ q − 1)a

1− pa
β <

q

1− pa
β ≤ p

1− pa
α.

Thus, in either case, the largest off-diagonal value of Â appears only in the first

diagonal block. Moreover, any pair i, j ∈ {1, . . . ,m}, not yet removed, with
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âij = max
k 6=l
{âkl}

has vj = α.

We now proceed to show by induction on s, where 1 ≤ s ≤ m− 1, that

1. the first s directed arcs added to G have both endpoints contained in E ,

2. there is j ∈ E with vj = α not removed during the first s iterations.

Let is → js be the directed arc added to G during the sth iteration and let

Cs = {i1, . . . , is}.

By assumption, we have i1 ∈ E and vj1 = α. The state j1 is not removed during the

first iteration, so both of the above statements hold. Suppose that 1 ≤ s ≤ m − 2

and that the two statements hold true for s and let Â be the stochastic complement

formed after the first s iterations. Then, Cs satisfies our claim above, implying that

the largest off-diagonal entry âis+1js+1 of Â has is+1, js+1 ∈ E \ Cs and vjs+1 = α. So,

the first s + 1 directed arcs added to G have both endpoints in E and, after s + 1

iterations, we have js+1 ∈ E \ Cs+1 and vjs+1 = α.

We now characterise a sufficient condition under which the Maximum Entry Al-

gorithm will correctly uncouple a matrix A = A(v, w, p, q).
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Proposition D.3. Let v and w be entrywise positive vectors each of whose entries’

sum is 1, let α and β be the maximum entries in v and w, respectively, let p, q ∈

(1/2, 1) and let A = A(v, w, p, q). If

α >
1− p
p

and β >
1− q
q

,

then the Maximum Entry Algorithm with input δ = 0 will correctly decouple the state

space of A.

Proof We note that the fact that p, q > 1/2 is actually implied by the other assump-

tions and need not be assumed. Since v is entrywise positive and vT1 = 1, we have

0 < α ≤ 1. Thus,

0 ≤ 1− p
p

< α ≤ 1

implies that 1/2 < p ≤ 1. The same reasoning applies to q.

If both v and w have order equal to 1 (that is, if v = w = [1]), there is nothing to

prove.

First suppose that exactly one of the vectors has order 1 – without loss of gener-

ality, we assume that w has order 1 and that v has order m ≥ 2. So, w = [1] implies

that β = 1. The largest off-diagonal entry of

A =

 p1vT (1− p)1wT

(1− q)1vT q1wT

 =

 p1vT (1− p)1

(1− q)vT q


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is one of the values pα, 1− p or (1− q)α. Since p, q > 1/2, p > 1− q, implying that

pα > (1− q)α. As well, the assumption that

α >
1− p
p

implies that pα > 1 − p. The largest off-diagonal entry in A is pα, and this value

does not occur in an off-diagonal block. Via Lemma D.2, the first m−1 directed arcs

added to G will have both endpoints contained in E = {1, . . . ,m}. So, after m − 1

iterations, the weakly connected components of G are E and F = {m + 1}. So, in

this case, the algorithm correctly decouples A (the Maximum Entry Algorithm, with

input δ = 0, adds exactly m directed arcs to G).

Now, suppose that the orders of v and w are m ≥ 2 and n ≥ 2, respectively. The

largest off-diagonal value in the diagonal blocks of

A =

 p1vT (1− p)1wT

(1− q)1vT q1wT


are pα and qβ; the largest entries in the off-diagonal blocks are (1−p)β and (1− q)α.

Without loss of generality, assume that pα ≥ qβ. Since p > 1 − q, pα > (1 − q)α;

since q > 1− p, pα ≥ qβ > (1− p)β. So, the maximal value among the off-diagonal

entries of A does not occur in the off-diagonal blocks.

We assume that the maximal entry identified during the first iteration of the

Maximum Entry Algorithm is contained in the first diagonal block. By Lemma D.2,
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the first m− 1 directed arcs added to G have both endpoints in E = {1, . . . ,m}. By

Lemma D.1, the stochastic complement formed after these m− 1 iterations is

Â = A \ C =

 p
1−p(1−α)

α 1−p
1−p(1−α)

wT

1−q
1−p(1−α)

1α q−(p+q−1)(1−α)
1−p(1−α)

1wT

 .
(Every time the Maximum Entry Algorithm removes a state i ∈ E , there is j ∈ E , not

yet removed, with vi ≤ vj; thus, the final, not yet removed state j ∈ E has vj = α. So,

the vectors v̂ and vC in the statement of Lemma D.2 satisfy v̂ = [α] and vTC 1 = 1−α.)

Now, suppose that the largest off-diagonal value of Â appears in the second diag-

onal block and does not appear in the off-diagonal blocks. We then apply Lemma D.2

to Â to show that the next n − 1 iterations of the algorithm add directed arcs with

both endpoints contained in F = {m + 1, . . . ,m + n}. Thus, we simply need show

that the largest off-diagonal value of Â does not occur in its off-diagonal blocks.

We note that the above formulae for the entries of Â have a common denominator

of 1 − p(1 − α). This number is positive, as p < 1 and 1 − α < 1. Thus, we can

ignore this denominator and simply find the largest numerator among the off-diagonal

entries of Â.

We first show that

(1− q)α < (q − (p+ q − 1)(1− α)) β,

thus showing that the largest off-diagonal entry in the second diagonal block is strictly

larger than any entry in the (2, 1)th off-diagonal block. Since α < 1,
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q−(p+q−1)(1−α)
α

= 1−p+(p+q−1)α
α

= 1−p
α

+ (p+ q − 1)

> (1− p) + (p+ q − 1)

= q.

As well,

β >
1− q
q

implies that qβ > 1− q. So,

(q − (p+ q − 1)(1− α)) β = q−(p+q−1)(1−α)
α

αβ

> qαβ

> (1− q)α.

Thus, it remains to show that

(1− p)β < (q − (p+ q − 1)(1− α)) β.

We note that since p, q > 1/2, p+ q − 1 > 0; so,

q − (p+ q − 1)(1− α) = 1− p+ α(p+ q − 1) > 1− p.

Recall that we have defined an entry aij > 0 of a nearly uncoupled stochastic

matrix to be an error term if i is a member of an almost invariant aggregate and j is

not a member of that same almost invariant aggregate.
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Let A = A(v, w, p, q), α = max{vi} and β = max{wj}. We have

pα = max
i,j∈E
{aij}, and qβ = max

i,j∈F
{aij}.

As well, the probabilities 1 − p and 1 − q are the probabilities of transitioning from

one aggregate to the other. We note that the conditions

α >
1− p
p

and β >
1− q
q

are equivalent to the conditions pα > 1−p and qβ > 1−q. Thus, these two conditions

are met if and only if every row of the matrix A contains a non-error term that is

strictly greater than the sum of the error terms in that row.

The following corollary is direct consequence of Proposition D.3, together with

the fact that if v and w are positive vectors of orders m and n whose entries’ sum is

1, then

α = max{vi} ≥
1

m
and β = max{wj} ≥

1

n
.

Corollary D.4. Let v and w be entrywise positive vectors, each of whose entries’

sum is 1, and let p, q ∈ (1/2, 1). Let m and n be the orders of v and w. If

m <
p

1− p
and n <

q

1− q
,

then the Maximum Entry Algorithm will correctly uncouple the state space of A =

A(v, w, p, q).
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As p and q converge to 1 (from below), the terms p/(1− p) and q/(1− q) become

arbitrarily large. Thus, very well-decoupled systems can contain large numbers of

states, whereas less well-decoupled systems require small numbers of states for a

guarantee of success.
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Appendix E

Complexity

We examine the complexities of some of our algorithms. In particular, we show

that every one of our decoupling algorithms has complexity O(n3), where n is the

order of the input matrix.

The complexity of an algorithm is an approximation of the number of floating

point operations (flops) required to execute it, typically expressed as a function of

the size of the input. A floating point operation is any single binary mathematical

operation, or a Boolean comparison x < y.

As is typical, we will express the complexity of our algorithms as O(f(n)), where

n is the order of the input matrix. The meaning of this notation is the following.

If Algorithm A has complexity O(f(n)), then there is a positive constant a and a

positive integer n′, such that if the matrix M has order n ≥ n′, then Algorithm A,

applied to M , requires at most af(n) floating point operations.
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Lemma E.1. Let A be a stochastic matrix of order n. Constructing a stochastic

complement from A by removing 1 state at a time has complexity O(n3).

Proof First, we consider removing a single state from a matrix Â of order m. We

express

Â ∼=

 B v

wT âii

 .
To form the stochastic complement, we need to construct the matrix

Â \ i = B +
1

1− âii
vwT .

Rather than use the value 1− âii, we will calculate the sum

α =
∑
j 6=i

âij = wT1 = 1− âii.

(As it avoids subtraction, this calculation avoids a certain type of floating-point error.)

This requires at most m − 1 flops. This calculation, and the ones below can require

fewer than this upper bound if the matrices involved contain entries equal to 0. We

then calculate

ŵ =
1

α
w =

1

wT1
w,

which requires another m− 1 or fewer flops. Next, the vector product

C = vŵT
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requires (m− 1)2 or fewer flops. Finally the sum

B + C = B +
1

1− âii
vwT

requires another (m− 1)2 flops. So, in total, the calculation of the stochastic comple-

ment Â \ i requires 2(m− 1) + 2(m− 1)2 or fewer floating point operations. At this

point we note that if we had used the term 1 − âii rather than calculating the sum

above, this would have produced a savings of at most m−2 flops. This is insignificant

(it has a lower polynomial order than the entire task) and so the extra calculation

required by using the sum does not negatively effect performance.

In addition to calculating the stochastic complement itself, we may need to “keep

track” of the correspondence between the indices of the newly formed stochastic

complement and the original matrix. We store the indices of the matrix Â in vector

form:

g =

[
g1 g2 · · · gm

]
.

The indices of Â \ i are then

g \ i =

[
g1 · · · gi−1 gi+1 · · · gm

]
.

The calculation of g \ i from g requires m−1 memory reassignments. We will assume

that a memory reassignment has complexity approximately equal to a single floating

point operation.
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Thus, the calculation of a stochastic complement of a matrix A of order n which

removes k states requires at most

n−k+1∑
m=n

2(m− 1)2 + 3m− 2

flops. We may disregard the 3m−2 term, as this number will be insignificant compared

to the contribution of the 2(m− 1)2 term. We calculate

n−k+1∑
m=n

2(m− 1)2 ≤
n∑

m=2

2(m− 1)2

=
n−1∑
j=1

2j2

= 2n(n−1)(2n−1)
6

< 2n3

3
.

Lemma E.2. Let A be a reversible stochastic matrix of order n. Then, the Reorder

Algorithm (Algorithm 6) has complexity O(n2).

Proof The Reorder Algorithm constructs a permutation f such that A(f, f) is lower-

weighted. (A matrix Ã is lower-weighted if ãij ≤ ãji whenever i < j.) The Reorder

Algorithm initialises its data to r = 1, s = 2 and

f =

[
1 2 · · · n

]
.

At each iteration,
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1. if af(r)f(t) ≤ af(t)f(r) for t = s, s + 1, . . . , n, the Reorder Algorithm increases r

by 1; and

2. if there is t ≥ s such that af(r)f(t) > af(t)f(r), the algorithm chooses such a value

t′, increases s by 1, and then permutes the subvector

[
f(r) f(r + 1) · · · f(t′)

]
.

As well, whenever the algorithm increases r, if the new value of r satisfies r = s,

it then increases s by 1. Thus, the algorithm maintains the condition r < s. The

algorithm terminates when it achieves s = n+ 1.

Checking whether or not af(r)f(t) ≤ af(t)f(r) for t = s, s+ 1, . . . , n and, if this does

not hold, selecting an index t′ that violates this condition is accomplished simultane-

ously and requires 3(n − s + 1) < 3n or fewer floating point operations. (We start

with t = s. Calculating af(r)f(t) − af(t)f(r) is one flop, checking whether this value is

negative is another, iterating t if not is a third flop.)

Permuting the subvector f(r), . . . , f(t′) requires t′ − r + 1 < n memory reassign-

ments. We assume that a memory reassignment takes as much calculation power as

a flop.

So, increasing r by one requires fewer than 3n floating point operations and in-

creasing s by one requires few than 4n floating point operations.
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Therefore, the number of floating point operations required by the Reorder Algo-

rithm with an input size of n is bounded above by 7n2.

Proposition E.3. The complexities of the Maximum Entry, Modified Maximum En-

try, Minimum Column, Lower-weighted and Perron-ordered Algorithms are O(n3).

Proof Let A be a stochastic matrix of order n.

Finding the largest off-diagonal entry of stochastic matrix of order m, testing

whether or not this value exceeds the input and then adding a directed arc to a

digraph requires 3m2 or fewer floating point operations. These tasks are executed at

every iteration of the algorithm, of which there are at most n−1. So, the total number

of flops required by Maximum Entry Algorithm to execute these tasks is bounded by

a polynomial of degree 3.

In order to implement the Modified Maximum Entry and Minimum Column Al-

gorithms, we need to keep track of the number of vertices contained in each weakly

connected component of G. The vector m (at initialisation) is the column vector of

order n that has every entry equal to 1. Whenever the directed arc i→ j is added to

G, we replace mj with mj+mi. The extra calculations involved in keeping track of this

vector are insignificant compared to the other operations, so the Modified Maximum

Entry Algorithm has complexity equal to that of the Maximum Entry Algorithm.

The Minimum Column Algorithm is very similar. The only task which has signifi-

cant complexity (of orderm2 wherem is the size of the current stochastic complement)
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is that of finding the index with the smallest column sum, which has complexity equal

to that of finding the largest off-diagonal entry.

The Perron-ordered Algorithm proceeds at each iteration by testing each diagonal

entry, starting with the last, until it finds indices i > j such that

1. âii < (1− ε)2/(1 + (mi − 2)ε), and

2. âij ≥ âik for all k 6= i, j.

The complexity of this task is 3m2 (where m is the order of the current stochastic

complement). It proceeds by checking the first condition, which requires a small

constant number of flops, and then, if this holds, it checks the second which requires

3(m − 1) flops. It may possibly have to check m − 1 of the diagonal entries, thus

requiring approximately 3(m − 1)2 flops. The extra work involved in the Perron-

ordered Algorithm does not increase the order of the complexity.

The Lower-weighted Algorithm has slightly increased complexity. In addition to

all the same calculations required by the Perron-ordered Algorithm, it must execute

the Reorder Algorithm at every iteration. The extra complexity is bounded by

2∑
m=n

3

2
m2 ≈ 1

2
n3.

Each of our proposed algorithms is very efficient. Applying them to a matrix

A is approximately equal, in complexity, to applying Gauss-Jordan elimination with
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pivoting or to solving a well-conditioned eigenproblem on a matrix (see, for example,

[11]). Applying one of our algorithms is no more calculation-intensive than merely

executing the first step of the SVD or Perron cluster algorithms. Moreover, the

eigenproblems that the Perron cluster approach must solve in its first steps are in

general not well-conditioned. By avoiding these spectral methods altogether, our

stochastic complement based algorithms proceed with a finite sequence of simple and

well-defined matrix operations.
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Appendix F

Challenging examples

F.1 Stationary weights and stochastic complements

Let A be an irreducible nearly uncoupled stochastic matrix on the state space

S, let π be the stationary distribution of A and let E ⊆ S be an almost invariant

aggregate. Recall that

wπ(E) =

∑
i∈E

∑
j∈E

πiaij∑
i∈E

πi

is the π-coupling measure of E . We define ηπ(E) = 1 − wπ(E). The value ηπ(E) is

the expected probability of transitioning from a state i ∈ E to a state j /∈ E . If we

assume that E is an almost invariant aggregate, then we may also assume that the

value ηπ(E) is close to 0.

We consider the effects that removing states contained in E can have on the value

ηπ(E).
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Proposition F.1. Let A be an irreducible stochastic matrix on the state space S

and let π be the stationary distribution of A; let E , C ⊆ S be such that E * C. Let

Â = A \ C, η = ηπ(E), with respect to A, and η̂ = ηπ(E \ C), with respect to Â. Let

ν =

∑
i∈E∩C

πi∑
i∈E

πi
;

then,

η̂ ≤ 1

1− ν
η.

Proof First, we show that if E ∩ C is empty, the η̂ ≤ η. We express

A ∼=


C E1 E2

F1 B11 B12

F2 B21 B22

 and πT ∼=
[
πT1 πT2 πT3

]
,

where the first position corresponds to E , the second to C and the third to the re-

mainder S. We calculate

Â = A \ C ∼=

 C + E1(I −B11)−1F1 ∗

∗ ∗


(only the first diagonal block is required in our calculation); so

1− η =
πT1 C1

πT1 1

and
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1− η̂ =
πT1 (C + E1(I −B11)−1F1)1

πT1 1
≥ πT1 C1

πT1 1
= 1− η.

(By Proposition 4.6, the stationary distribution of Â is a scalar multiple of the appro-

priate subvector of π. If we use the stationary distribution of Â, rather than that of

A in the above expression of 1− η̂, this scalar multiple appears in both the numerator

and the denominator, and thus does not affect the value of η̂.)

Next, we show that if C ⊆ E , the inequality holds. Express

A ∼=


C11 C12 E1

C21 C22 E2

F1 F2 B

 and πT ∼=
[
πT1 πT2 πT3

]
,

where the first position corresponds to E \ C, the second to C and the third to S \ E .

We have

η =
πT1 E11+ πT2 E21

πT1 1+ πT2 1
.

We calculate the first row of blocks of the stochastic complement

Â = A \ C ∼=

 C11 + C12(I − C22)−1C21 E1 + C12(I − C22)−1E2

∗ ∗

 ;

this expression implies that

η̂ =
πT1 (E11+ C12(I − C22)−1E21)

πT1 1
=
πT1 E11+ πT1 C12(I − C22)−1E21

πT1 1
.
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Since πTA = πT , we have

πT2 = πT1 C12 + πT2 C22 + πT3 F2,

further implying that

πT1 C12 ≤ πT2 (I − C22).

Therefore,

η̂ ≤ πT1 E11+πT2 (I−C22)(I−C22)−1E21

πT1 1

=
πT1 E11+πT2 E21

πT1 1

=
πT1 1+πT2 1

πT1 1
η.

Finally, we calculate

πT1 1+πT2 1

πT1 1
=

∑
i∈E

πi∑
i∈E\C

πi

=

∑
i∈E

πi∑
i∈E

πi−
∑

i∈E∩C
πi

= 1
1−ν ,

and we can see that if C ⊆ E , then η̂ ≤ η/(1− ν).

Now, suppose that both E ∩ C and C \ E are nonempty. Let C1 = C ∩ E and let

C2 = C \ E . Let A1 = A \ C1 and let η1 = ηπ(E), with respect to A1. Then, via our

conclusions above and the fact that Â = A1 \ C2,

η̂ ≤ η1 ≤
1

1− ν
η.
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Let A be a nearly uncoupled stochastic matrix with stationary distribution π.

By Proposition F.1, if we are to form a stochastic complement of A, then removing

states with smaller stationary weights produces a better bound for the inflation of

the η-value and thus better preserves the nearly uncoupled structure of A.

However, we can construct a matrix that will “fool” the Maximum Entry Algo-

rithm into removing states that have the very highest stationary weights.

Lemma F.2. Let A be an irreducible stochastic matrix with order greater than or

equal to 2 and stationary distribution π. Let i 6= j be such that aij is maximal among

the off-diagonal entries of A. Then,

πi ≤
∑
k 6=i

πk,

with equality if and only if

1. aii = 1− aij, further implying that aik = 0 if k 6= i and k 6= j, and

2. for all k 6= i, aki = aij.

Remark. The stationary distribution π of a Markov chain satisfies πT1 = 1. Thus,

for any index i,

∑
k 6=i

πk = 1− πi.

If we have, as above,
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πi ≤
∑
k 6=i

πk,

then πi ≤ 1− πi, further implying that πi ≤ 1/2.

Proof Since πT = πTA, we have

πi =
∑
k

πkaki,

which implies that

πi =
∑
k 6=i

πk
aki

1− aii
.

(Since A is irreducible, aii 6= 1.) The assumption that aij is maximal among the

off-diagonal entries implies that for all k 6= i,

aki
1− aii

≤ aij
1− aii

≤ 1

(since aij ≤ 1− aii). Therefore,

πi =
∑
k 6=i

πk
aki

1− aii
≤
∑
k 6=i

πk.

Equality occurs if and only if aij = 1− aii and for all k 6= i, aki = aij.

Let A be a nearly uncoupled stochastic matrix with stationary distribution π.

Via Lemma F.2, the best upper bound on the stationary weight of a state i selected

for removal by the Maximum Entry Algorithm is πi ≤ 1/2. So, the inflation of the

337



η-value (discussed in Proposition F.1) induced by removing i is bounded above by 2.

This is a very insufficient bound, as we will see below.

By Lemma F.2, a 2 × 2 stochastic matrix that satisfies aij maximal and πi = πj

is simply any symmetric, irreducible 2× 2 matrix; that is,

A =

 1− a a

a 1− a

 ,
where 0 < a ≤ 1.

We will next examine a class of stochastic matrices that are particularly problem-

atic for our Maximum Entry Algorithm.

Definition F.3. Let 0 < a ≤ 1/2 and let n ≥ 3. We define Fn(a) to be the n × n

stochastic matrix

Fn(a) =



1− a a

a 1− 2a a

a 1− 2a
...

. . . . . .
...

. . . 1− 2a a

a 1− a



,

where every unspecified entry is 0.

For example,
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F4(0.3) =



0.7 0 0 0.3

0.3 0.4 0 0.3

0 0.3 0.4 0.3

0 0 0.3 0.7


and F5(0.2) =



0.8 0 0 0 0.2

0.2 0.6 0 0 0.2

0 0.2 0.6 0 0.2

0 0 0.2 0.6 0.2

0 0 0 0.2 0.8


.

Proposition F.4. Let C be an irreducible stochastic matrix of order n ≥ 3 and

let π be the unique stationary distribution of C. Suppose that the Maximum Entry

Algorithm with input δ = 0 has been applied to C; for k = 1, . . . , n − 1, let in+1−k

be the state removed by the algorithm during its kth iteration; let i1 be the state not

removed by the algorithm (during any iteration). Then, for l = 2, . . . , n,

πil ≤ πi1 + . . .+ πil−1
.

Moreover, we have equality for every l if and only if for some positive number a ≤ 1/2,

we have either C = Fn(a), or permuting indices 1 and 2 of C obtains Fn(a).

Proof Let C and π be as above. Without loss of generality, we assume that the

algorithm removes state n first, state n−1 second, and so forth. Let C(0) = C and let

C(k) be the stochastic complement formed during the kth iteration of the algorithm.

Let π(k) be the stationary distribution of C(k). By Proposition 4.6,

π(k) = α

[
π1 · · · πn−k

]
,
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where α is chosen so that (π(k))T1 = 1. Because the Maximum Entry Algorithm

removes state n + 1 − k during iteration k, the largest off-diagonal value of C(k) is

contained in the bottom ((n − k)th) row. Via Lemma F.2, for k = 0, . . . , n − 2, we

have

π
(k)
n−k ≤ π

(k)
1 + . . .+ π

(k)
n−k−1,

further implying that if 0 ≤ k ≤ n− 2,

πn−k ≤ π1 + . . .+ πn−k−1.

We now show that the statement concerning equality holds for n = 3 and then

proceed by induction on n.

For n = 3, the first directed arc added to the output digraph by the algorithm

must be 3→ 2 or 3→ 1 (since we have assume the algorithm removes state 3 first).

First, suppose that the directed arc 3 → 2 is the first directed arc added and let

a = c32. Thus, by Lemma F.2, we have

C =


c11 c12 a

c21 c22 a

0 a 1− a

 .

This form alone guarantees that π3 = π1 +π2. Moreover, the fact that 3→ 2 is added

first implies that c12, c21 ≤ a. In order to have π2 = π1, the matrix C \ 3 must be

symmetric. We calculate
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C \ 3 =


c11 c12 a

c21 c22 a

0 a 1− a

+
1

1− (1− a)

 a

a

[ 0 a

]
=

 c11 c12 + a

c21 c22 + a

 .

So, π3 = π2 + π1 and π2 = π1, if and only if, in addition to the conditions set forth

in Lemma F.2, we have c12 + a = c21. We note that this implies that c21 ≥ a; since

c32 = a is maximal, we must have c21 = a, in turn implying that c12 = 0. Then, we

simply solve for the diagonal entries and we see that C must be

C =


1− a 0 a

a 1− 2a a

0 a 1− a

 = F3(a).

If we suppose that the first directed arc added by the algorithm is 3 → 1, we

obtain, in a very similar manner,

C =


1− 2a a a

0 1− a a

a 0 1− a


∼= F3(a).

(Permuting indices 1 and 2 of this matrix obtains F3(a).) We note that we must have

0 < a ≤ 1/2, in either case – if a = 0, the matrix is reducible and if a > 1/2, one of

the diagonal entries is negative.

Now, suppose that n ≥ 4; suppose further that
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πn−k = π1 + . . .+ πn−k−1,

for k = 0, . . . , n− 2, and that the statement of the proposition holds for n′ ≤ n− 1.

By assumption (since state n is removed first), the largest value among the off-

diagonal entries occurs in the bottom row of C, say cnj = a is maximal (where j 6= n).

By Lemma F.2, cnn = 1− a and ckn = a for all k 6= n. The matrix C has the form

C =



c11 · · · c1,n−1 a

...
. . .

...
...

cn−1,1 · · · cn−1,n−1 a

cn,1 · · · cn,n−1 1− a


,

where exactly one of the numbers cn1, . . . , cn,n−1 is equal to a and the remainder are

equal to 0.

Let Ĉ = C \ n. By the inductive hypothesis, either Ĉ = Fn−1(a′) or swapping

indices 1 and 2 of Ĉ obtains Fn−1(a′) for some positive a′ ≤ 1/2. In either case,

ckncn,n−1

1− cnn
= ĉk,n−1 = a′,

for all k ≤ n− 2. This implies that, cn,n−1 6= 0, and so we see that for all k ≤ n− 2,

cnk = 0. Thus,

C =

 B a1

aeTn−1 1− a

 ,
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where en−1 is the vector of order n−1 with (n−1)th entry equal to 1 and every other

entry equal to 0. Now, permuting the first and second indices of

Ĉ = B +
1

1− (1− a)
(a1)(aeTn−1) = C + a1eTn−1

leaves the matrix a1eTn−1 fixed, as n− 1 ≥ 4. So, either

B = Fn−1(a′)− a1eTn−1,

or permuting the first and second indices of B obtains this matrix. We calculate

Fn−1(a′)− a1eTn−1 =



1− a′ a′ − a

a′ 1− 2a′ a′ − a

a′ 1− 2a′
...

. . . . . .
...

. . . 1− 2a′ a′ − a

a′ 1− a′ − a



.

The matrix B ∼= Fn−1(a′) − a1eTn−1 is a principal submatrix of C. So, we see that

C has off-diagonal entries equal to a′ − a, implying that a′ ≥ a. As well, C has

off-diagonal entries equal to a′; we have assumed that the value a is maximal among

the off-diagonal entries, so we have a′ ≤ a. Therefore, in fact, a′ = a. Thus, either
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B = Fn−1(a)− a1eTn−1 =



1− a

a 1− 2a

a 1− 2a

. . . . . .

. . . 1− 2a

a 1− 2a



,

or permuting the first two indices of B obtains this matrix. When we insert B into

the formula for C, above, we see that C ∼= Fn(a), either identically or by permuting

positions 1 and 2.

The stationary distribution π of Fn(a) satisfies

πn = π1 + . . .+ πn−1

πn−1 = π1 + . . .+ πn−2

...

π2 = π1.

A very simple proof by induction shows that the stationary distribution π of Fn(a) is

πT =

[
1

2n−1
1

2n−1
1

2n−2 · · · 1
4

1
2

]
.

We note that for 2 ≤ l ≤ n, and π as above,

n∑
k=l

πk =
2l−2 + . . .+ 2n−2

2n−1
=

2n−1 − 2l−1

2n−1
= 1− 1

2n−l
.
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Let A be a nearly uncoupled stochastic matrix on the state space S and let π be

the stationary distribution of A. Suppose that there is an almost invariant aggregate

E ⊆ S such that the principal submatrix C = A(E) is a small perturbation of Fn(a),

where n is large. That is, we assume that ‖C−Fn(a)‖ is small, using some appropriate

matrix norm.

Since C is approximately equal to Fn(a), we assume that the Maximum Entry

Algorithm applied to C, removes states contained in E in approximately the same

order as it would if applied to Fn(a). As well, we assume that the subvector π(E) is

approximately equal to a scalar multiple of the stationary distribution of Fn(a). That

is, it may be that

πi1 ≈
α

2n−1

and, for k ≥ 2,

πik ≈
α

2n+1−k ,

where α = π(E)T1. Moreover, the Maximum Entry Algorithm may remove state in

first, state in−1 second, and so forth. Assume that this is in fact the case. After

removing s members of E , the best upper bound on the inflation of ηπ(E) (discussed

above) is

η̂ ≤ 1

1− ν
η,
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where

ν =

n∑
k=n−s

πik

n∑
k=1

πik

≈ 1− 1

2s

(via our above calculation with l = n− s and the fact that π(E)T1 = α). So,

η̂ ≤ 2sη.

Even if the value η is insignificant, for sufficiently large s, this upper bound can be

become quite large. For example, consider the 31 × 31 nearly uncoupled stochastic

matrix

A =



0.5 ∗ ε

0.5 + δ 0 ∗ ε

0.5 + 2δ 0 ∗ ε

. . . . . .
...

...

. . . 0 ∗ ε

0.5 + 29δ ∗ ε

ε 0 0 · · · · · · 0 1− ε



,

where every unspecified entry is equal to 0, δ = 10−6, ε = 10−7 and the ∗ entries

are chosen so that each row sum is 1. This matrix is very clearly uncoupled, the

probability of transitioning from any member of E = {1, . . . , 30} to state 31, and vice

versa, is
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ε = 0.0000001.

The principal submatrix on states 1 through 30 is a small perturbation of F30(0.5).

We have chosen this exact perturbation so that any implementation of the Max-

imum Entry Algorithm removes state 30 first, state 29 second, and so forth, until it

removes state 2, leaving states 1 and 31. At this point we would hope that the algo-

rithm terminates – every association made so far has been correct and the remaining

states are distinct representatives of the almost invariant aggregates. However, our

calculations below show that unless the input value for Algorithm 3 has been cho-

sen very conservatively (approximately 0.5 or greater), the algorithm will proceed to

remove state 1, making an error.

Calculation using Matlab shows that

A \ {2, . . . , 30} ≈

 0.5046 0.4954

ε 1− ε

 .
This does not attain the inflation by 229, but it is somewhat close. The probability of

transitioning from state 1 to state 31 has been increased by a factor of approximately

4.954 × 106. Thus, the average inflation of this transition probability by these 29

stochastic complements is

29
√

4.954× 106 ≈ 1.7016.
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After 29 stochastic complements, the Maximum Entry Algorithm has failed to pre-

serve the nearly uncoupled structure of the matrix. On average, the η-value has been

inflated by a factor of approximately 1.7 by each successive stochastic complement.

Calculation shows that the Minimum Column Algorithm, applied to the above

matrix C, removes the states 1 through 29 in the order

2, 3, . . . , 16, 1, 17, 18, . . . , 29.

After removing these 29 states, the stochastic complement formed is

C̃ =

 1− z1 z1

z2 1− z2

 ,
where

z1 ≈ 2.0001× 10−7 ≈ 2ε

and

z2 ≈ ε− 2ε2.

The probability of transitioning from state 30 to state 31 is approximately doubled

by these 29 complements and the probability of transitioning from state 31 to state

31 has been fractionally increased; the nearly uncoupled structure of the matrix has

been preserved, more or less.

The Minimum Column Algorithm tries to reduce error (prevent large inflation of

the η-value) by removing states with low column sums, rather than low stationary
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weights; thus, it did not remove the states in the order determined by the vector

π, above. We suspect that small stationary weight is a better choice than small

column sum in attempting to prevent error inflation – however, the Minimum Column

algorithm compares very well with other methods and in this case produces a far

superior output.

We have presented the Maximum Entry Algorithm as it is intuitive, simple and,

in examples based on practical data, performs very well (usually, as well as any other

algorithm we have examined). However, we suggest that care needs to be utilised in

its application, as exotic structures in the matrix or the associated digraph seem to

mislead it. We suspect that the error-reducing algorithms are the most robust.

F.2 Paths and cycles

We examine two classes of substochastic matrices that are problematic for all of

our uncoupling algorithms – namely long paths and cycles.

Let B be a substochastic matrix on the states C; we refer to B as path-like if

B ∼=



∗ ∗

∗ . . . . . .

. . . . . . ∗

∗ ∗


,

where the unspecified entries are zeroes. A path-like matrix is more commonly referred
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to as tridiagonal. We refer to B as cyclic if

B ∼=



∗ ∗ ∗

∗ . . . . . .

. . . . . . . . .

. . . . . . ∗

∗ ∗ ∗


,

where the unspecified entries are 0. That is, B is cyclic if its indices can be ordered

into {i1, . . . , in} such that bikil 6= 0 only if l = k or l ≡ k ± 1 modulo n.

Let A be a nearly uncoupled stochastic matrix on the state space S; suppose

that there is an almost invariant aggregate E ⊆ S such that the principal submatrix

B = A(E) is cyclic or path-like. We claim that constructing the almost invariant

aggregates of such a matrix is very problematic. As well, via continuity, if B = A(E)

is a small perturbation of a cyclic or path-like matrix similar problems arise.

The problem that cyclic or path-like examples poses for our stochastic complement

based algorithms is, in a sense, the opposite of the problem we encountered with the

Fn(a) matrices. Namely, large numbers of stochastic complements on cyclic and path-

like examples can drastically shrink significant entries. (The problem with the Fn(a)

matrices is that large numbers of poorly chosen complements can greatly increase

insignificant entries.)

Lemma F.5. Let n ≥ 1 be a positive integer and let 0 < a < 1/2. Let Pn be the
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n× n matrix

Pn =



1 −a

−a 1
. . .

. . . . . . −a

−a 1


where every unspecified entry is equal to 0 (for n = 1, Pn = [1]). Let ∆n be the

determinant of Pn. Then,

1. the values ∆n are strictly decreasing in n;

2. we have ∆1 = 1, ∆2 = 1− a2 and, for n ≥ 3,

∆n = ∆n−1 − a2∆n−2;

3. for n ≥ 2, the (1, 1)th and (n, n)th entries of P−1
n are both equal to

∆n−1

∆n

and the (1, n)th and (n, 1)th entries of P−1
n are both equal to

an−1

∆n

;

4. moreover, the above entries satisfy

lim
n→∞

∆n−1

∆n

=
1−
√

1− 4a2

2a2
, and lim

n→∞

an−1

∆n

= 0.

351



Proof For any n, the matrix Pn is symmetric and so its eigenvalues are real numbers.

A simple application of the Perron-Frobenius Theorem shows that the Perron value

of I − Pn is less than or equal to 2a – thus, every eigenvalue λ of Pn satisfies

1− λ ≤ |1− λ| ≤ 2a < 1.

This implies that every eigenvalue of Pn is positive; therefore, for all n, ∆n is positive.

The second statement is obtained from a formula for the determinant of a tridi-

agonal matrix found in [14, Section 0.9.10]. The first statement is a consequence of

the second together with the fact that each ∆n is positive.

The third statement can be obtained from the well-known Cramer’s rule; for

example, see [14, Sections 0.8.3 and 0.8.4].

Now, for n ≥ 2, we define

ρn =
∆n−1

∆n

.

Since the terms ∆n are strictly decreasing in n, the terms ρn are strictly increasing

in n.

We note that for n ≥ 3,

1

ρn
=

∆n

∆n−1

=
∆n−1 − a2∆n−2

∆n−1

= 1− a2ρn−1.

First, we use induction on n ≥ 2 to show that ρn < 1/a. For n = 2, we note that

0 < a < 1/2 implies that a < 1− a2; so,

352



ρ2 =
1

1− a2
<

1

a
.

Now, if n ≥ 3 and ρn−1 < 1/a, then

1

ρn
= 1− a2ρn−1 > 1− a > a

(again, via the fact that 0 < a < 1/2). Therefore, for all n ≥ 2, ρn < 1/a.

Since ρn is positive, increasing in n, and bounded above by 1/a, we have

lim
n→∞

ρn = ρ ≤ 1

a
.

for some positive real number ρ. If we apply this limit to the equality

1

ρn
= 1− a2ρn−1,

we see that

1

ρ
= 1− a2ρ,

further implying that

ρ =
1±
√

1− 4a2

2a2
.

We note
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1+
√

1−4a2

2a2
=

1+
√

(1−2a)(1+2a)

2a2

>
1+
√

(1−2a)2

2a2

= 1−a
a2

≥ a
a2

= 1
a
.

As we noted above, ρ ≤ 1/a, so we must have

ρ =
1−
√

1− 4a2

2a2

In fact, ρ < 1/a:

1−
√

1−4a2

2a2
=

1−
√

(1−2a)(1+2a)

2a2

<
1−
√

(1−2a)2

2a2

= 1
a
.

Finally, for n ≥ 2,
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an−1

∆n

=
∆n−1

∆n

an−1

∆n−1

= ρn
an−1

∆n−1

.

Therefore, for all n ≥ 1,

an−1

∆n

=
ρ2 . . . ρna

n−1

∆1

<
(aρ)n−1

∆1

(since ρn is strictly increasing, ρn < ρ for all n). As we noted above, ρ < 1/a and so

aρ < 1; the sequence an−1/∆n converges to 0.

Now, let A be a stochastic matrix that is nearly uncoupled with respect to ε > 0.

Suppose that there is a principal submatrix B of A of the form

B =



1−ε
2

1−ε
2

1−ε
2

0 1−ε
2

. . . . . . . . .

1−ε
2

0 1−ε
2

1−ε
2

1−ε
2


.

Without loss of generality we assume that the states associated with the above ex-

pression of B are {1, . . . , n}; we further suppose that n is very large. The states

associated with B form a minimal almost invariant aggregate. Consider the effects of

removing states 2 through n− 1 via stochastic complements.

B̂ = B \ {j : 2 ≤ j ≤ n− 1} =

 a 0

0 a


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+

 a 0 · · · 0 0

0 0 · · · 0 a





1 −a

−a 1
. . .

. . . . . . −a

−a 1



−1



a 0

0 0

...
...

0 0

0 a


,

where the order of the square matrix in the second term is n− 2 and

a =
1− ε

2
.

Via Lemma F.5,

B̂ =

 a+ a2 ∆n−3

∆n−2
a2 an−3

∆n−2

a2 an−3

∆n−2
a+ a2 ∆n−3

∆n−2

 ,
where ∆k is as defined in Lemma F.5. We note that, again via the above lemma,

for n sufficiently large, the off-diagonal terms of B̂ vanish and the diagonal terms are

approximately equal to

a+ a2 1−
√

1− 4a2

2a2
=

1− ε
2

+
1−
√

2ε− ε2
2

.

When ε is small, the above expression is well approximated by 1 −
√
ε/2. So, our

above assumptions imply that

B̂ ≈

 1−
√
ε/2 0

0 1−
√
ε/2

 .
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The above sequence of complements has not altered the fact that B̂ corresponds to

an almost invariant aggregate, but this aggregate is no longer minimal (with respect

to the Markov chain induced by the stochastic complement).

For example, let n = 60, ε = 0.01 and consider the substochastic matrix B,

as above. We remove all of the interior members of the path through stochastic

complements (the calculation is accomplished with MatLab):

B \ {2, . . . , 59} ≈

 0.8189 1.649× 10−9

1.649× 10−9 0.8189


The off-diagonal terms (which represent transitions within an aggregate) are signifi-

cantly smaller than ε; the diagonal terms are somewhat close to 1−
√
ε/2 ≈ 0.8419.

The cause of this behaviour is intuitively simple to understand. Any two states

within a path-like aggregate are connected by a sequence of significant transitions.

However, if the Markov chain starts near one of the ends of the path, the expected

number of transitions before visiting the other end can be quite large. The Markov

chain tends to wander back and forth along sections of the path, and can take a great

deal of time before it visits two states that are very far apart. Such separated states are

not, in fact, well-connected to each other, and removing large numbers of states from

in-between, via stochastic complements, simply makes this poor connection apparent.

In general, if one of our algorithms removes a large numbers of consecutive states

from a path-like aggregate, it can become unlikely that the algorithm will correctly
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associate the remainder of the path.

Cyclic aggregates are problematic in exactly the same manner. A cycle is a cyclic

sequence of paths; removing large numbers of consecutive states results in the exact

same terms we saw above. For example, suppose that n is very large and let B be

the 3n× 3n cyclic substochastic matrix with

bi,i+1 = bi+1,i = b3n,1 = b1,3n =
1− ε

2
= a

(1 ≤ i ≤ 3n− 1) and all other terms equal to 0. Removing states

C = {2, . . . , n, n+ 2, . . . , 2n, 2n+ 2, . . . , 3n}

(leaving states 1, n+ 1 and 2n+ 1) constructs the stochastic complement

B̂ = B \ C =


2a2 ∆n−2

∆n−1
a2 an−2

∆n−1
a2 an−2

∆n−1

a2 an−2

∆n−1
2a2 ∆n−2

∆n−1
a2 an−2

∆n−1

a2 an−2

∆n−1
a2 an−2

∆n−1
2a2 ∆n−2

∆n−1

 .

As n → ∞, the off-diagonal terms of such a matrix approach 0 and the diagonal

terms approach

2a2 1−
√

1− 4a2

2a2
= 1−

√
2ε− ε2 ≈ 1−

√
2ε.

Suppose that B is a principle submatrix of some larger stochastic matrix A. Evidently,

for n sufficiently large, removing the collection of states C may split the minimal
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almost invariant aggregate into 3. For example, we produce the matrix B̂ for n = 30

and ε = 0.01:

Ĉ =


0.8589 0.0020 0.0020

0.0020 0.8589 0.0020

0.0020 0.0020 0.8589


The off-diagonal terms are again less than ε and the diagonal terms are very close to

1−
√

2ε ≈ 0.8586.

If we apply one of our stochastic complement based algorithms to a nearly uncou-

pled stochastic that has a cyclic almost invariant aggregate, this aggregate is likely

to be “split” into subaggregates, and not correctly linked in the output digraph.

The Perron cluster approach is problematic with regards to long cycles and paths,

in an interestingly similar manner.

Let Qn be the adjacency matrix of the undirected cycle on n ≥ 2 vertices; that is,

Qn is the (0, 1)-matrix

Qn =



0 1 1

1
. . . . . .

. . . . . . 1

1 1 0


of order n. The eigenvalues of Qn are

λk = 2 cos

(
2(k − 1)π

n

)
,
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for k = 1, 2, . . . , n [4, Section 1.2]. When n is particularly large the matrix Qn

possesses multiple eigenvalues that are near 2:

2 cos(0) = 2 and 2 cos(
2π

n
) ≈ 2 cos(0) = 2

(and others). Thus, when n is large, the irreducible, reversible substochastic matrix

B =
1− ε

2
Qn

possesses multiple eigenvalues that are very near to 1 − ε. So, if the stochastic

matrix A is nearly uncoupled and possesses B as a principal submatrix, the submatrix

B may contribute multiple eigenvalues to the Perron cluster. An assumption in

the reasoning behind both the PCCA and PCCA+ Algorithms is that each almost

invariant aggregate has a principal submatrix with exactly one eigenvalue near to 1.

The problem that these specific eigenvalues pose to these approaches is very sim-

ilar to what we saw above; namely, these algorithms can split such an aggregate

into smaller subaggregates. For example, an eigenvector of Qn associated with the

eigenvalue 2 cos(2π/n) is

v =

[
cos(2π/n) cos(4π/n) cos(8π/n) · · · cos(2nπ/n)

]
.

We note that if k ≈ n/2, then cos(2kπ/n) ≈ cos(π) = 1. Moreover, cos(2nπ/n) = −1.

If the stochastic matrix A has B (as above) as a principal submatrix, then the vector

v may appear as a subvector of the one of the eigenvectors utilised by the Perron

cluster approach.
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Let A be as above and let v(1), . . . , v(m) be eigenvectors associated with eigenvalues

near to 1. The PCCA Algorithm attempts to construct a partition

Ψ = (E1, . . . , Em)

of the state space such that if i and j are contained in the same member of Ψ, then for

all l, |v(l)
i −v

(l)
j | is relatively small. The vector v, above, does not satisfy this property –

its entries vary significantly. In a way, such a vector “instructs” the PCCA algorithm

to separate the states within a cyclic aggregate. (The algorithm may or may not

actually separate these states – the influence of the other selected eigenvectors may

overwhelm this incorrect input.)

Paths possess spectra very similar to that of cycles. For example, the eigenvalues

of the n× n stochastic matrix

P =



0 1

1 0 1

. . . . . . . . .

1 0 1

1 0


are

λk = 2 cos

(
(k − 1)π

n− 1

)

for k = 1, . . . , n. When n is large, we see multiple eigenvalues very close to the
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eigenvalue 2, implying that the Perron cluster methods are inappropriate for use with

a matrix that has a small perturbation of (1/2)P as a principal submatrix.
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Appendix G

A summary of the properties of the

stochastic complement

As before, the results below apply only to discrete-time time-homogeneous Markov

chains on finite state spaces.

The existence of the stochastic complement. Let X be a Markov chain on the

state space S with transition matrix A; let C ⊆ S be a nonempty proper subcollection

of S. Then, the following are equivalent:

1. the stochastic complement A \ C is defined;

2. the collection C does not contain an entire essential class of states;

3. the collection S \ C contains at least one member from each essential class of

states; and
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4. the principal submatrix A(C) corresponding to C is properly substochastic.

Moreover, A\C = I if and only if S \C contains exactly one member of each essential

class of states.

The above proposition summarises Corollary 2.7 and Propositions 4.2 and 4.11.

Properties shared by a stochastic matrix and a derived stochastic com-

plement. Let X be a Markov chain on the state space S with transition matrix A;

let C ⊆ S and let Â = A \ C be the stochastic complement which removes C. The

following properties hold:

1. The multiplicity of 1 as an eigenvalue of A is equal to the multiplicity of 1 as

an eigenvalue of Â.

2. The number of distinct essential classes of states with respect to A is equal to

the number of distinct essential classes of states with respect to Â.

3. If E is an essential class of states with respect to A then E \ C is an essential

class of states with respect to Â.

4. A state i ∈ S \C is recurrent with respect to A if and only if it is recurrent with

respect to Â.

5. A state i ∈ S \ C is transient with respect to A if and only if it is transient with

respect to Â.
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6. For any states i, j ∈ S \ C, we have i � j with respect to A if and only if i � j

with respect to Â.

7. Let π be a stationary distribution of A and let

π̂ =
1

π(S \ C)T1
π(S \ C);

then, the vector π̂ is a stationary distribution of Â. Moreover, any stationary

distribution of Â can be obtained in this manner.

Suppose further that the Markov chain X is reversible. Then, the following additional

statements hold:

8. The Markov chain associated with Â is reversible.

9. Suppose that D is a positive diagonal matrix such that DA is symmetric. Then,

the principal submatrix D̂ = D(S \ C) is such that D̂Â is symmetric.

10. Let π be a stationary distribution of A; then, for all i, j ∈ S \ C, πiâij = πj âji.

Statements 1 and 2, above, come from Proposition 4.9; statements 3 through 6

come from Proposition 4.8; statement 7 is derived from Proposition 4.6 and Corol-

lary 4.10; statement 8 is Proposition 4.7; and statements 9 and 10 are derived from

Propositions 2.12, 4.6 and 4.7 and Corollary 4.10.
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