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Abstract. Given a group G, the conjugacy problem in G is the problem of giving
an effective procedure for determining whether or not two given elements f, g ∈ G
are conjugate, i. e., whether there exists h ∈ G with fh = hg. This paper is about
the conjugacy problem in the group Diffeo(I) of all diffeomorphisms of an interval
I ⊂ R.

There is much classical work on the subject, solving the conjugacy problem for
special classes of maps. Unfortunately, it is also true that many results and arguments
known to the experts are difficult to find in the literature, or simply absent. We try to
repair these lacunae, by giving a systematic review, and we also include new results
about the conjugacy classification in the general case.

§1. Informal introduction

1.1. Objective. We are going to work with diffeomorphisms defined just on various
intervals (open, closed, or half-open, bounded or unbounded). Let Diffeo(I) denote the
group of (infinitely differentiable) diffeomorphisms of the interval I ⊂ R, under the oper-
ation of composition. We denote the (normal) subgroup of orientation-preserving diffeo-
morphisms of the interval by Diffeo+(I). If an endpoint c belongs to I, then statements
about derivatives at c should be interpreted as referring to one-sided derivatives.

Our objective is to classify the conjugacy classes, i.e., to determine when two given
maps f and g are conjugate in Diffeo(I).

The reason this problem is important is that conjugate elements correspond to one
another under a “change of variables”. For most applications, a change of variables will
not alter anything essential, so only the conjugacy class of an element is significant. From
the viewpoint of group theorists, it is also usual to regard only the conjugacy classes as
having “real” meaning in a group.

Throughout the paper, we will use the term smooth to mean infinitely differentiable.
There is a good deal of valuable and delicate work on conjugacy problems for functions
that are merely Ck, but we will not delve into this (apart from an occasional remark),
in order to keep the discussion within bounds.

Apart from its intrinsic interest, the conjugacy problem has applications to the ho-
lonomy theory of codimension-one foliations. Mather established a connection between
the homotopy of Haefliger’s classifying space for foliations and the cohomology of the
group G of compactly supported diffeomorphisms of the line [15, 16]. Mather also used a
conjugacy classification of a subset of the group G in order to establish that G is perfect.
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2 A. G. O’FARRELL AND M. ROGINSKAYA

It follows from a result of Epstein that G is simple. Our own study of the conjugacy
problem arose independently from our interest in reversible maps (maps conjugate to
their own inverses) [24].

We should make it clear that we are not here discussing an example of the classical
Dehn conjugacy problem of combinatorial group theory. The group Diffeo+(I) is not
countably presented. It has the cardinality of the continuum. Its family of conjugacy
classes also has the cardinality of the continuum. To classify conjugacy classes is a matter
of identifying suitable conjugacy invariants which separate the classes. To be of practical
use, the invariants should be reasonably “computable”, in some sense, but the sense has
to be more lax than standard Turing-machine computability. For a start, we assume
that we have available a “real computer”, that can do real arithmetic and decide the
equality of two suitably specified real numbers. We include as suitable specifications
things such as the value of an integral of a suitably explicit function, and the limit of
a suitably explicit sequence. In practice, the kind of problem one wishes to solve is
this: given a prescription for two diffeomorphisms f and g, sufficiently explicit that we
may compute the images of any suitably specified point, decide whether or not they are
conjugate. This may seem quite modest (especially as we have not made explicit what
is meant by “suitably explicit”) but, as we shall see, it is rather too much to hope for.
A less demanding task would be to come up with a procedure that will confirm that
two nonconjugate diffeomorphisms are in fact nonconjugate, but may go on forever if
presented with two conjugates. Even this is too much, except in special cases. What one
can do is provide a collection of classifying invariants that provide a significant conceptual
simplification of the conjugacy problem.

The conjugacy problem in Diffeo(I) may be reduced to the corresponding problem
in the subgroup Diffeo+(I) of orientation-preserving maps of I. This recent result is
described in §9. A crucial case of the latter problem is the special case in which the
diffeomorphisms f, g ∈ Diffeo+(I) are fixed-point-free on the interior J of I. The problem
is trivial if I is open (Proposition 2.1). A new result (Theorem 2.5) provides an effective
way to approach it when I is half-open. We establish that it suffices to search for a
conjugacy h among the solutions of a first-order ordinary differential equation. This also
helps with the case of compact I. For special (“flowable”) diffeomorphisms of a compact
I, the conjugacy classification can be achieved using the so-called “functional moduli”,
similar in character to the Écalle–Voronin moduli for the conjugacy classification of
biholomorphic germs [31]. In the general case, this cannot be done.

There has been much work on this problem. Important steps in the story we describe
below are the work of Sternberg, Takens, Sergeraert, Robbin, Mather, Young, and Kopell,
among others. There is a useful summary survey of progress up to 1995 by Ahern and
Rosay [2]. See also references [[18, 25, 27, 28, 30]; [13, Chapter 8]; [12, Chapter 2];
[1, 3, 8, 19, 29, 33, 34]]. There are some parallels with the conjugacy problem for complex
analytic germs, for which see [5].

1.2. Notation. We shall use Diffeo as an abbreviation for Diffeo(I), and Diffeo+ for
Diffeo+(I), whenever there is no danger of confusion.

For f ∈ Diffeo(I), we denote the set of fixed points of f by fix(f).
We use the symbol f◦n for the nth iterate of f (i.e., the nth power in the group

Diffeo(I)). We also use it for negative n = −m to denote the mth iterate of the inverse
function f◦−1. The notation f◦0 denotes the identity map �.

We use similar notation for compositional powers and inverses in the group F of
formally invertible formal power series (with real coefficients) in the indeterminate X.
The identity X + 0X2 + 0X3 + · · · is denoted simply by X.
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CONJUGACY OF REAL DIFFEOMORPHISMS. A SURVEY 3

We denote gh = h◦−1 ◦ g ◦ h, whenever g, h ∈ Diffeo(I). We say that h conjugates f
to g if f = gh.

We use the notation degf for the degree of the diffeomorphism f ∈ Diffeo(I) (= ±1,
depending on whether or not f preserves the order on I). Thus

Diffeo+(I) = {f ∈ Diffeo(I) : deg f = +1}.
Given a closed set E ⊂ I, we set

Diffeo+E = Diffeo+E(I) = {f ∈ Diffeo+(I) : f(x) = x, ∀x ∈ E},
the subgroup of those direction-preserving maps that fix each point of E.

We denote the map x �→ −x on R by −.
When we come to discuss conjugation for elements having complicated fixed-point

sets, we will need notation for the available conjugacies on particular subintervals. So
we make a definition.

Definition. Let f, g ∈ Diffeo+(I). Given an open interval J ⊂ I that is mapped onto
itself by f and by g, we say that a map φ ∈ Diffeo(clos(J)) is a J-conjugation from f to g
if fφ = g on clos(J). We denote the set of all J-conjugations from f to g by Conj(f, g; J),
or just Conj(J), if the context is clear.

1.3. Remarks about topological conjugacy. A necessary condition for the conju-
gacy of two elements f, g ∈ Diffeo(I) is that they be topologically conjugate, i.e., conju-
gate in the homeomorphism group Homeo(I).

The homeomorphism problem is strictly easier than the diffeomorphism problem, be-
cause it is included as part of it: (1) One can show that each conjugacy class of home-
omorphisms has an element that is a diffeomorphism. (2) Thus, if one knows how to
classify diffeomorphisms up to topological conjugacy, then one knows how to classify
homeomorphisms also. (3) The topological conjugacy classification is coarser than the
diffeomorphic one.

As we shall now explain, the topological conjugacy problem is already intractable, in
computational terms, so it follows that the same is true for smooth conjugacy.

Let us consider the case I = R.
The conjugacy problem in the homeomorphism group Homeo(R) has a classical so-

lution in terms of a “symbol” invariant. This goes back, essentially, to Sternberg [28],
who in 1957 described the conjugacy classes in the group of germs of homeomorphisms of
neighborhoods of a point on the line. For an exposition of the classification in Homeo(R),
see [21]. Mere topological conjugacy of two direction-preserving diffeomorphisms f and
g is determined by the existence of a homeomorphism of R mapping fix(f) onto fix(g)
and coincidence of the “pattern of signs” of f(x)−x and g(x)−x off the fixed-point sets.
(The pattern of signs of f(x)− x is called the “signature” of f .)

Suppose f = gh. Then h carries F1 = fix(f) onto F2 = fix(g), so the pairs (R, fix(f))
and (R, fix(g)) are homeomorphic. An order-isomorphism between two partially ordered
sets is an order-preserving bijection. Two partially ordered sets are order-isomorphic if
there exists an order-isomorphism between them. Order-isomorphism is an equivalence
relation on the family of partially ordered sets, and the equivalence classes are called order
classes. The homeomorphism class of a pair (R, F ) (with F closed) is determined by the
order class of F (with the usual total order inherited from R). Every closed subset of R
is the fixed-point set of some homeomorphism (and even of some diffeomorphism), so the
set fix(f) may be quite general. Thus there are two obstacles to finding an algorithmic
solution to the topological conjugacy problem.

(1) The problem of determining whether two closed subsets of R are order-equivalent
does not appear to be amenable to an algorithmic solution. For subsets of a simple
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4 A. G. O’FARRELL AND M. ROGINSKAYA

structure it may be resolved by noting that an order-isomorphism will induce a bijection
of the derived set, the second derived set, and so on through the ordinals, a bijection of
the relative complements of each of these, a bijection of the condensation set, a bijection
of each interval subset, and of the ends of such intervals, and of derived sets of ends, etc.
But a general algorithm is another matter.

(2) There may be a large collection of order-isomorphisms between fix(f) and fix(g),
and we then need some systematic way to check for the existence of one order-isomorphism
that gives a coincidence of signatures on the corresponding complementary intervals.

Returning to the problem of C∞ conjugacy, we have additional complications, as the
following observations indicate.

1.4. Smooth conjugacy of pairs. Suppose f, g, h ∈ Diffeo(I) and f = gh. Then
h carries F1 = fix(f) onto F2 = fix(g), so the pairs (R, fix(f)) and (R, fix(g)) are dif-
feomorphic. This necessary condition is more complex to check than the corresponding
topological condition. To determine whether two homeomorphic pairs belong to the same
diffeomorphism class, it is necessary to search among all the order-isomorphisms of the
Fi’s for one having a diffeomorphic extension. The existence of a diffeomorphic extension
may be checked using a theorem of Whitney. Whitney’s condition [32] for the existence
of a C∞ extension of a function h from F1 to R may be stated as follows: For each k ∈ N,
the kth Newton divided difference of h is uniformly continuous on bounded subsets of

{
(x1, . . . , xk+1) ∈ F1 × · · · × F1 : xi �= xj , ∀i �= j

}

(i. e., extends continuously to the full product F1×· · ·×F1). In fact, an order-isomorphism
has a diffeomorphic extension if and only if it has an infinitely differentiable extension,
and the (uniquely determined) first derivative of such an extension is nonzero at each
accumulation point.

1.5. Orbits, multipliers, and Taylor series. The (two-sided) orbit of a point a ∈ R

under a diffeomorphism f is the set {f◦n(a) : n ∈ Z} of all forward and backward
images of a under the action of f . If f, g, h ∈ Diffeo(R) and f = gh, then for each a ∈ R,
the map h carries the orbit O1 of a under f onto a corresponding orbit O2 under g, so
the pairs (R, O1) and (R, O2) are diffeomorphic. An implication is that these pairs are
equivalent under locally bi-Lipschitzian maps. Thus, for instance, one sees (by estimating
the number of points in orbits in intervals of comparable length) that the maps defined
by

f(x) = x+ exp(−1/x2)

and

g(x) = x+ exp(−2/x2)

are not conjugate, although they have identical signatures.
It is straightforward (using Whitney’s result) to check whether two orbit pairs (R, O1)

and (R, O2) are diffeomorphic, but a difficulty is that one must check that for each orbit
of f there exists some orbit of g that gives a diffeomorphic pair. This is not a constructive
condition, as it stands.

Further, if f = gh, then for each a ∈ fix(f), letting b = h(a), we have

g′(b) = f ′(a);

i.e., f and g have the same “multipliers” at corresponding points. This necessary condi-
tion actually follows from the previous one about orbits when a is a boundary point of
fix(f), but it is easier to check when it fails. It is trivial at accumulation points of fix(f).
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CONJUGACY OF REAL DIFFEOMORPHISMS. A SURVEY 5

There is a more elaborate necessary condition involving higher derivatives, best ex-
pressed in terms of Taylor series: Let Taf denote the truncated Taylor series of f about a:

Taf =

∞∑

n=1

f (n)(a)

n!
Xn

(regarded as a formal power series in an indeterminate X). One then has

Taf = (Tah)
◦−1 ◦ (Tbg) ◦ (Tah),

where ◦ denotes the formal composition, and p◦−1 denotes the formal compositional
inverse. This condition is weaker than the one about orbits, since the Taylor series at a
point is determined by the values of the function at any sequence tending to the point.

However, there is a straightforward algorithm for checking whether or not two formal
power series are formally conjugate. In fact, each series is conjugate to one of λX (λ ∈ R),
or one of ±X ± Xp+1 + αX2p+1, and in each case the correct class can be determined
by a terminating computation. This fact is well known (cf. [2, p. 546]; [6, 11, 22]) and
is routine to check. The main point to note is that the group of invertible formal power
series (with its product topology) is topologically generated by the maps x �→ λX (λ �= 0)
and x �→ x+ αxp+1 (p ∈ N) [22, Lemma 1, p. 5].

For example:

(1) 3X+X2 is conjugate to 3X+2X2, and to any other series that begins with 3X,
but is not conjugate to any series that begins with 2X.

(2) X +X2 +X3 is conjugate to X +2X2 +4X3 +8X4 + · · · , but not to any series
beginning with X + 3X2 + 6X3 or X + 2X3.

(3) Each series beginning with X +X4 + 2X7 is conjugate to each series beginning
with X + 5X4 + 50X7.

We will see below that there is more to conjugacy than the diffeomorphism of pairs,
correspondence of signatures, and the orbit conditions, but that the problem can nev-
ertheless be reduced to manageable proportions, provided one does not try to do the
impossible.

1.6. Centralizers. Typically, if f and g are conjugate diffeomorphisms, then the fam-
ily Φ of diffeomorphisms φ such that f = φ◦−1 ◦ g ◦ φ has more than one element. In
fact Φ is a left coset of the centralizer Cf of f (and a right coset of Cg). For this reason,
it is important for us to understand the structure of these centralizers. The problem of
describing Cf is a special conjugacy problem: Which maps conjugate f to itself?

Historically, there has been a good deal more work on the problem of centralizers than
on the general conjugacy problem.

There may be a great many conjugacies between two given conjugate diffeomorphisms.
In the open-interval case, the centralizer of a fixed-point-free diffeomorphism is very large
and is not Abelian.

Kopell [10] showed that when I has one of its endpoints as a member, then the
centralizer of an f that is fixed-point-free on the interior of I must be quite small; it is a
subgroup of a one-parameter Abelian group, and it may consist just of the iterates of f .
An example was given by Sergeraert [27]; probably this behavior is “generic”. Kopell [10]
showed that it is generic for maps that fix only the two endpoints of I. These phenomena
tell us that in many cases the search for a conjugating map h from f to g may be confined
to a 1-parameter search space. Our main new theorem gives a specific way to locate this
search space, in the case of a half-open interval. (See Subsection 2.11 and §6.)
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6 A. G. O’FARRELL AND M. ROGINSKAYA

1.7. Outline. The paper is organized as follows.
First, we consider various special cases of the full conjugacy problem, and related

simpler problems, and then we use these cases and problems as building blocks in con-
structing a solution to the full problem.

The results are summarized formally in §2. The remaining sections provide proofs,
elaboration, and examples.

In less formal terms, we proceed as follows.
We start with the simple and classical case of fixed-point-free maps of an open interval,

where there is just one conjugacy class of diffeomorphisms. (The details are in §3.)
Then we study conjugacy in half-open intervals, starting with diffeomorphisms of the

interval [0,+∞) that fix only 0. First, we review the classical results based on normal
forms that exist when the diffeomorphism is not tangent to the identity to infinite order.
In these special cases the conditions simplify. If the multiplier at 0 is not 1 (i.e., 0 is a
hyperbolic fixed point), then Sternberg [28] identified the multiplier as the sole conjugacy
invariant. If the multiplier is 1, but f is not “infinitesimally tangent to the identity” (i.e.,
T0f �= X — we find it less of a mouthful to express this condition as “f −x is not flat at
p”), then Takens [30] identified the conjugacy class of the Taylor series T0f (in the group
of formally-invertible power series) as the sole conjugacy invariant. We show that the
general problem cannot be tackled using normal forms. We identify an infinite product
condition that is necessary for conjugacy. We then base our approach to characterizing
conjugacy on a certain differential equation that may be formulated when the product
condition holds. (The details are in §§4, 5 and 6.)

Next, we study conjugacy in Diffeo+(I), for closed bounded intervals I, for maps that
are fixed-point-free on the interior J of I. In the “Axiom A” case, in which both fixed
points are hyperbolic, Robbin characterized conjugacy in terms of the multipliers and
a “modulus” (a smooth function on (0,+∞); details below). The results of Young [34]
relate to other cases in which f −x is not flat at either end of I, particularly the “saddle-
node” case, in which T0f −X is zero mod X2, but not zero mod X3, for both endpoints
p. He used so-called “formal multipliers” (certain diffeomorphisms from J to (0,+∞))
to construct a substitute for the Robbin modulus, which, when taken together with the
conjugacy classes of the Taylor series at the ends, characterizes conjugacy classes. There
is a more general treatment of functional moduli ideas in unpublished work of Mather
[15]. We give a necessary and sufficient condition for conjugacy that builds on the result
for half-open intervals. We also review functional moduli in the special Mather case, and
a useful new necessary condition expressed in terms of the “shape” of a graph associated
to the pair of maps (f, g). (The details are in §7.)

Then we move on to general direction-preserving diffeomorphisms, on any interval I,
with possibly complicated fixed-point sets. We take this in two stages.

(1) We reduce the conjugacy problem in Diffeo(I)+ to one in Diffeo+bdyE(I), for a fixed

closed E. (The details are in Subsection 2.12.)
(2) We address the conjugacy problem in Diffeo+bdyE(I) for maps that belong to

Diffeo+E(I) and are fixed-point-free off E. (The details are in Subsection 2.13.)
The final theoretical step is the reduction of the conjugacy problem in Diffeo(I) to the

conjugacy problem in Diffeo(I)+. (The details are in §9.)
By a flow on an interval I, we mean a continuous homomorphism t �→ Φt from the

additive topological group (R,+) into Diffeo+(I), endowed with its usual topology (the
topology of simultaneous convergence of functions and their inverses, together with all
their derivatives, uniformly on I).

We say that f ∈ Diffeo+(I) is flowable if there exists a flow Φt, with f = Φ1 (i.e., f is
the “time 1” map of the flow (Φt)t∈R).
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There is a connection between our subject and the question of when an f ∈ Diffeo+(I)
is flowable. For this, see also [27]. We shall make some remarks about flowability as we
go along (cf. Subsection 2.11).

Along the way, we present some conjectures and problems that, if true or solved, as
the case may be, would improve our understanding of one-dimensional conjugacy.

§2. Overview and statement of main results

2.1. Open intervals. A fixed-point-free diffeomorphism of an open interval I must
preserve orientation. There is just one conjugacy class of fixed-point-free diffeomorphisms
in Diffeo(I), which splits into just two conjugacy classes with respect to Diffeo+(I):

Proposition 2.1 (Sternberg [28]). Suppose I is an open interval and f and g are fixed-
point-free elements of Diffeo(I). Then f and g are conjugate in Diffeo+(I) if and only if
their graphs lie on the same side of the diagonal.

This is proved in §3 below.

2.2. The interval [0,+∞). Note that Diffeo(I) = Diffeo+(I) whenever I is a half-open
interval, because all the elements of Diffeo(I) have to fix the endpoint that belongs to
the interval.

Consider f, g ∈ Diffeo([0,∞)), fixed-point-free on (0,∞). Under what circumstances
does there exist an h ∈ Diffeo([0,∞)) with f = gh?

The set of all f ∈ Diffeo([0,∞)) that fix only 0 is the disjoint union of the two subsets

S+ = {f : f(x) > x on (0,∞)},
S− = {f : f(x) < x on (0,∞)},

each of which is a subsemigroup of Diffeo([0,∞)). Each of these semigroups is preserved
by conjugacy, i.e., is a union of conjugacy classes. Thus, for f to be conjugated to g it
is necessary that they belong to the same semigroup, S+ or S−. We call this the “sign
condition”.

Remark. In later sections, where the context changes, the meaning of the “sign condi-
tion” will change as well. So the above defines the sign condition just for the case of
Diffeo([0,+∞)).

Note that f ∈ S+ is equivalent to f◦−1 ∈ S−, so that to characterize conjugacy it
suffices to consider f ∈ S−.

We review some special cases and then look at the general case.

2.3. [0,+∞): Hyperbolic case. The result for the case f ′(0) �= 1 is known as Stern-
berg’s Linearization Theorem. It was essentially proved in [28]. It may be regarded as
the smooth equivalent of Schroeder’s theorem [5, Chapter II] about complex analytic
germs in one variable.

Theorem 2.2. Let f, g ∈ S− and f ′(0) �= 1. Then the following are equivalent:

(1) f ′(0) = g′(0);
(2) there exists h ∈ Diffeo+([0,∞)) with f = gh;
(3) for each λ > 0 the sequence hn = g◦−n(λf◦n) converges (pointwise) to a diffeo-

morphism h on [0,∞);
(4) the sequence hn = g◦−n ◦ f◦n converges to a diffeomorphism h on [0,∞);
(5) there exists λ > 0 such that the sequence hn = g◦−n(λf◦n) converges to a diffeo-

morphism h on [0,∞).

The details are in Subsection 4.1.
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8 A. G. O’FARRELL AND M. ROGINSKAYA

Corollary 2.3. If f ∈ S and f ′(0) �= 1, then the centralizer Cf of f in Diffeo([0,+∞))
is a one-parameter group and f is flowable.

Proof. In fact, Cf is the image under an inner automorphism of Diffeo([0,+∞))+ of the
centralizer of x �→ f ′(0)x, and this consists precisely of the maps x �→ μx with μ > 0.

Also, the map x �→ f ′(0) is the time 1 map of the flow t �→ ft, where

ft(x) = et ln f ′(0)x. �

2.4. [0,+∞): Taylor series. Since all the elements fix 0, we see that if f = gh in
Diffeo+([0,+∞)),

T0f = (T0h)
◦−1 ◦ (T0g) ◦ (T0h).

Thus T0f and T0g are conjugate in the group of formally-invertible series. We call this
Condition (T).

In case f ′(0) �= 1, Condition (T) just says that f ′(0) = g′(0). In the nonhyperbolic
case, it imposes conditions on some higher derivatives.

For the nonflat case, Takens [30, Theorem 2] proved the following theorem.1

Theorem 2.4 (Takens). Suppose that f, g ∈ S− and that f − x is not flat at 0. Then
the following are equivalent:

(1) Condition (T) holds;
(2) there exists h ∈ Diffeo([0,+∞)) such that f = gh.

Note that this generalizes the equivalence of (1) and (2) in Theorem 2.2, since the
multiplier determines the conjugacy class of the series when it is not 1.

See Subsection 4.2 for the details.

2.5. [0,+∞): The case of f −x flat at 0. If f −x is flat at 0, Condition (T) just says
that g − x is also flat at 0. This is not enough.

Example 2.1. Let f(x) = x− e−
1
x and g(x) = x− e−

1
x2 . The functions f and g are not

conjugate in Diffeo([0,+∞)).

Proof. Suppose h ∈ Diffeo([0,+∞)), with Taylor series T0h = aX + bX2 + · · · , is a
conjugation. Then it maps the interval

[
x
2 , x

]
to the interval

[
ax
2 + o(x), ax+ o(x)

]
. For

small positive x, the first interval has no more than x exp(2/x) iterates of x under f ,
whereas the second has at least (x/2) exp(1/4a2x2)) iterations of h(x) under g, a much
greater number. But the conjugacy condition requires that the two intervals contain
equal numbers of iterates of x and h(x), respectively. �

So we need another idea, in order to deal with two general elements f, g ∈ S−. If
you think about it, the main difficulty of the conjugacy problem of the present section
involves the functions with f − x flat at 0. When endowed with the relative topology
from the usual Fréchet-space topology on C∞([0,+∞), the group Diffeo+([0,+∞)) is
separable and metrisable, so has the cardinality of the continuum, and hence (since
Sternberg gives us a continuum of conjugacy classes) the family of conjugacy classes has
the same cardinality. From this point of view, Sternberg’s family is a substantial family
of conjugacy classes.

However, cardinality is a very crude way to measure size. Another way is to use
dimension. The map D : f �→ f ′ is a continuous bijection between Diffeo([0,+∞)) and

1There is folklore that says that Mather independently found this result, but we checked with Mather,
who said he definitely did not.
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CONJUGACY OF REAL DIFFEOMORPHISMS. A SURVEY 9

the cone of all smooth positive functions h on [0,+∞) that have
∫ ∞

0

h(x) dx = +∞.

This gives a way to embed our group as a convex subset in a Fréchet space and talk
about the linear dimension and codimension of subvarieties. Sternberg’s family is the
complement of a codimension 1 variety, and so is a large part of the group. But consider
the conjugacy classes. Conjugacy does not respect the convex structure of the cone
(i.e., it does not commute with convex combinations), so we cannot induce a manifold
structure on the conjugacy classes. What we can do is to measure the size of a family F of
conjugacy classes in terms of the minimal dimension of R, where R ranges over varieties
that have at least one representative of each element of F . Let’s call this cardinal the
conjugacy dimension of the family. From this point of view, Sternberg’s family has
conjugacy dimension 1.

If we take G0 = Diffeo+([0,+∞)) and denote by Gn the subgroup consisting of those
f ∈ G0 such that f − x = o(xn) at 0, then we have a countable nested chain of closed
normal subgroups

· · · ⊂ Gn ⊂ Gn−1 ⊂ · · · ⊂ G2 ⊂ G1 ⊂ G0

and each difference set Gn ∼ Gn−1 has a naturally parametrized one-parameter family of
conjugacy classes, so has conjugacy dimension one. Moreover, each difference is an open
dense subset of the next group Gn−1, so it looks as though we have a nice stratification
of the conjugacy classes, with just a trivial collection left at the core. But the fun really
starts when we move inside the intersection G∞ of the chain. For instance, to each
element φ ∈ G∞ ∩ S+ we may associate a normal subgroup

Gφ = {f ∈ G0 : f(x)− x = O(φ(x))}.
One sees that the intersection of each countable family of groups Gφ is nontrivial, so
by transfinite induction one can construct uncountable chains of Gφ’s. From the purely
algebraic point of view, this is no different from what one can do inside the Sternberg
family, because one can construct uncountable chains of normal subgroups by restricting
the multiplier to subfields of the reals. But from the analytic point of view the Gφ

are quite different groups, because their images under D are cones and invariant under
multiplication by positive reals. This makes it clear that there is no hope of tackling the
conjugacy problem by reducing to explicit normal forms, since the set-theoretic difference
of two normal subgroups is a union of conjugacy classes.

Neither is it possible to reduce it to the temptingly straightforward task of comparing
vector fields whose exponentials are the given functions, for the simple reason that the
exponential map is not surjective [27]. It is easy to check if two flows are related by a
smooth change of variables, but not all diffeomorphisms are flowable.

The only way to come at it is to take two functions and compare them directly with
one another, rather than with some collection of templates.

We find such a procedure by using a suitable infinite product and differential equation.
Arising from this discussion, we state a conjecture.

Conjecture. The conjugacy dimension of the diffeomorphism group of [0,+∞) is un-
countable.

2.6. [0,+∞): The product. Let us begin again, with general f, g ∈ S−. For x > 0
and ξ > 0, let

(1) H1(x, ξ) = H1(f, g;x, ξ) =
∞∏

n=0

f ′(f◦n(x))

g′(g◦n(ξ))
.
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10 A. G. O’FARRELL AND M. ROGINSKAYA

We say that f and g satisfy Condition (P) if there exist x > 0 and ξ > 0 such that the
product H1(x, ξ) converges (to a nonzero limit).

The product H1(x, ξ) appears already in Sternberg’s paper [28], in the special case
g(x) = λx, and in Kopell’s paper [10] in the case f = g. We have not seen it used in the
literature for general f and g.

We shall show (Corollary 5.4) that if Condition (P) holds, then H1(x, ξ) exists for all
x > 0 and ξ > 0, and (Lemma 6.1) is infinitely differentiable and positive. We may then
consider the three-parameter initial-value problem

(2) D1(a, α, λ) :

{
dφ
dx = H1(x, φ(x))λ, ∀x > 0,

φ(a) = α

depending on λ > 0, a > 0 and α > 0. We shall show that for each given a > 0 and
α > 0, there exists (Lemma 6.11) exactly one λ > 0 for which the (unique) solution φ to
problem D1(a, α, λ) has f(a) = gφ(a), and (Lemma 6.9) that this φ conjugates f to g in
Diffeo((0,+∞)), and (Lemma 6.10) extends in C1([0,+∞)), with φ′(0) = λ. We denote
this unique λ by Λ+(a, α), and the unique φ by Φ+(a, α).

Thus, subject to Condition (P), there is a 1-parameter family of C1 conjugations from
f to g on [0,+∞).2 This immediately gives us a result about C∞ conjugacy on [0,+∞).

Theorem 2.5 (Main Theorem). Suppose f, g ∈ S−. The elements f and g are conjugate
in Diffeo([0,+∞) if and only if Condition (P) holds and there exists some a > 0 and
α > 0 for which Φ+(a, α) is C∞ at 0.

The value of this result is that it narrows the search for a conjugating map φ to the
1-parameter family of solutions of an explicit ordinary differential equation.

We repeat (for emphasis) the fact already noted that when f −x is not flat at 0, then
Condition (T) implies that f is conjugate to g. Thus, since Condition (T) is easier to
check than Condition (P); the theorem is only interesting when f − x is flat at 0.

2.7. General half-open intervals. All the above results about [0,+∞) carry over to
diffeomorphisms of an arbitrary half-open interval that fix only the endpoint that belongs
to the interval. Each such interval is diffeomorphic to [0,+∞).

For a general half-open interval I = [d, c) or I = (c, d], we take J = int(I) and
define S− as the semigroup of diffeomorphisms f ∈ Diffeo(I) which iterate all points of
J towards the endpoint d, and S+ as the semigroup of those that iterate all points of J
towards c. In order to adapt the above results about f, g ∈ S− to the interval J ∪ {d},
one should replace (0,+∞) by J , and 0 by d. Then, for f, g ∈ S−, the product Condition
(P) takes precisely the same form (1), and the differential equation also, except that its
domain is the interior J . The theorem yields, by conjugating I to [0,+∞), a precisely
similar result for f, g ∈ S− on I.

For future reference, we formulate the condition (for two f, g ∈ S− satisfying Condi-
tion (P)).

Condition (E). There exist a, α ∈ J , for which the C1 extension of the solution φ =
Φ+(a, α; •) from J to the point d is actually C∞.

It is equivalent to replace “there exist a, α” by “for each a there exists α”.
In these terms, we may state the following.

Corollary 2.6. Let I be half-open. Two elements f, g ∈ S− are conjugate in Diffeo(I)
if and only if they satisfy Conditions (P) and (E).

2{Φ+(a, α) : a > 0, α > 0} is a 1-parameter family, because Φ+(a, α) = Φ+(b,Φ+(a, α)(b)) for each
b > 0.
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Proof. This is immediate from Theorem 2.5. �

For f, g ∈ S+, one applies this result to f◦−1 and g◦−1, which lie in S−. Unwinding
the definitions, we see that Condition (P) for elements of S+ involves the infinite
product

(3) H2(x, ξ) =
∞∏

n=1

g′(g◦−n(ξ))

f ′(f◦−n(x))

(for x, ξ ∈ J) and the differential equation takes the form:

(4) D2(a, α, μ) :

{
dφ
dx = H2(x, φ(x))μ, on J ,

φ(a) = α,

for a, α ∈ J and μ > 0.
Assuming Condition (P), one has, for each for a, α ∈ J , the existence of a unique

μ > 0 (denoted Λ−(a, α)) for which the unique solution φ = Φ−(a, α) has a C1 extension
to d, with φ′(d) = μ. The version of Condition (E) for elements of S+ then says:

There exists a, α ∈ J , for which the C1 extension of the solution φ = Φ−(a, α; •) from
J to the point d is actually C∞.

With this terminology, the previous corollary yields:

Corollary 2.7. Let I be half-open. Two elements f, g ∈ S+ are conjugate in Diffeo(I)
if and only if they satisfy the S+ versions of Conditions (P) and (E).

2.8. Compact intervals. Now we consider the question of conjugacy for orientation-
preserving diffeomorphisms of a compact interval I, which are fixed-point-free on the
interior J .

Let f and g be two such diffeomorphisms.
The first necessary condition is the same as before:

The sign condition. sign(f(x)− x) = sign(g(x)− x), ∀x ∈ J .

This means that f and g are topologically conjugate, and have similar dynamics on I.
Forward iteration from any point of J converges monotonically to one end of I, and
backward iteration leads to the other end. So the map f induces a direction on J —
upward if f(x) > x on J , downward if f(x) < x on J . We label the ends of J accordingly:

d = d(J) = lim
n→∞

f◦n,

c = c(J) = lim
n→∞

f◦−n.

We call c the “initial endpoint” of J , and d its “final endpoint”. We call the direction
towards d the “forward direction” on J , and the other the “backward direction”.

For a compact interval I = [c, d], with nonempty interior J , we define S−(I) as the
semigroup of homeomorphisms that iterate each element of J towards d.

In order that two given f, g ∈ S− be conjugate in Diffeo([c, d]), it is necessary that
they be conjugate in Diffeo([c, d)) and in Diffeo((c, d])). Thus Corollaries 2.6 and 2.7
apply and tell us that the two-sided product

(5) H(x, ξ) = H(f, g, x, ξ) = H1(x, ξ)/H2(x, ξ) =

∞∏

n=−∞

f ′(f◦n(x))

g′(g◦n(ξ))

must converge for some (or equivalently all) x, ξ ∈ J . This is the appropriate version of
Condition (P), for compact intervals.

Assuming Condition (P), we may form two initial-value problems, corresponding to
equations (2) and (4). Given a ∈ J and α ∈ J , there are unique λ and μ, respectively,
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12 A. G. O’FARRELL AND M. ROGINSKAYA

such that the solutions Φ+(a, α) and Φ−(a, α), respectively, to these equations conjugate
f to g on J and have C1 extensions to (c, d] and [c, d), respectively. We may then
formulate a solution to the conjugacy problem, as follows:

Theorem 2.8. Let I be a compact interval and let f, g ∈ Diffeo(I), both fixed-point-free
on J , both in S−. Then the following conditions are equivalent:

(1) f is conjugate to g in Diffeo(I);
(2) the product H(x, ξ) converges for some (and hence for all) x > 0 and ξ > 0, and

there exists some a > 0 and α > 0 such that the solution Φ+(a, α) extends C∞ to both
ends of I;

(3) there exist a > 0 and α > 0 such that H(a, α) converges, and Φ+(a, α) = Φ−(a, α)
extends in Diffeo(I).

The details are in §7.

2.9. Compact I: Functional moduli. For some problems of classification, a solution
is available in terms of a finite-dimensional space of invariants, or “moduli”. But if the
class structure is very rich, this may not be possible, and only infinite-dimensional spaces
of moduli are natural. This is the genesis of the idea of functional moduli (cf. [31]).

In special cases, the conjugacy problem on a compact interval can be reduced to
Condition (T) at both ends, plus the identity of a suitable modulus (a conjugacy invariant
that is a diffeomorphism on some interval). See Robbin [25], Afraimovitch, Liu and Young
[1], and Young [34]. All these results are subsumed in an unpublished lemma of Mather
[15], subsequently and independently found by Young, which covers the case in which the
germs of f at both ends of the interval are the exponentials of smooth vector fields, and
for which the modulus is a double coset RkR of the rotation group R = SO(2,R) in the
group Diffeo+(S1) of circle diffeomorphisms, and the conjugacy class of f is determined
by the smooth conjugacy classes of the two vector field germs and the modulus.

See Subsection 7.4 for more details on the moduli.

2.10. Compact I: Shape. Obviously, it is rather unlikely that two given maps f and
g will be smoothly conjugate on I, even assuming they satisfy the sign condition and
Condition (P).

The conditions of Theorem 2.8 are necessary and sufficient, but are tedious to check.
It is worth noting a necessary condition (the “shape” condition) that is easier to check

in the compact case. This will often suffice to show that two maps are not conjugate.
First we define

Fa(x) = H(f, f ;x, a) =

∞∏

n=−∞

f ′(f◦n(x))

f ′(f◦n(a))

and

Gα(ξ) = H(g, g; ξ, α) =

∞∏

n=−∞

g′(g◦n(ξ))

g′(g◦n(α))

whenever x, ξ, a, α ∈ J . Note that

(6) H(x, ξ) ·Gα(ξ) = Fa(x) ·H(a, α),

whenever all the terms make sense.

Proposition 2.9. Suppose f, g, h ∈ Diffeo(I), f is fixed-point-free on J , and f = gh.
Then H(x, h(x)) is constant on J . Thus, given any a, α ∈ J , there is some κ > 0 such
that

Fa(x) = κGα(h(x)), ∀x ∈ J.
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Proof. Suppose I is compact, f ∈ S−, and f = gh in Diffeo(I). Applying the results
about half-open intervals to both [c, d) and (c, d], we see that the product H1(x, h(x))
converges to h′(x)/h′(d) for each x ∈ J , and H2(x, h(x)) converges to h′(x)/h′(c) for
each x ∈ J . Thus the two-sided product

H(x, h(x)) = H1/H2 =

∞∏

n=−∞

f ′(f◦n(x))

g′(g◦n(h(x)))

is independent of x ∈ J , and equals the ratio h′(c)/h′(d) of the derivatives of the conju-
gating map at the ends.

This immediately tells us that H(x, h(x)) is constant. The rest then follows from
equation (6). �

This means that the graphs of each Fa and of each Gα have the same “shape”. If
they are not monotone, then the relative diffeomorphism class of the critical set and the
pattern of maxima and minima must be the same for both functions. The pattern for
Fa is determined by the pattern on the segment Ia = [a, f(a)], because it repeats itself
on successive images of Ia under f . Similarly, the pattern for Gα is determined by the
pattern on [α, g(α)]. Apart from this quasiperiodic feature, the patterns may be pretty
complicated.

Note that if the condition of the proposition fails, then this can be determined by a
computation.

2.11. Compact I: Flowability. We note applications to existence of a smooth flow
on a compact interval I = [c, d], for which f is the time-1 step.

Applying Theorem 2.8 to the case g = f , we see that the centralizer Cf is the inter-
section of two at-most-one-parameter groups, containing the (nontrivial, discrete) group
of all iterates of f . (It may well be that only the compositional powers of f belong to
Cf .)

We deduce a method for deciding whether or not f is the time 1 map of a flow.

Proposition 2.10. A diffeomorphism f ∈ Diffeo+(I) is flowable if and only if the cen-
tralizers of f in Diffeo({c} ∪ J) and Diffeo(J ∪ {d}) are both connected, and coincide
(when restricted to J).

Applying the shape result, Proposition 2.11, we identify a special case in which a
necessary condition for flowability may be checked by plotting a graph.

Proposition 2.11. Suppose that f ∈ Diffeo(I) is fixed-point-free on J and f is flowable.
Then for each a ∈ J , Fa is either strictly monotone on J or constant on J .

Proof. Suppose that Fa is neither strictly monotone on J nor constant on J . Each
conjugacy of f to itself must permute the maximal open intervals of strict monotonicity of
Fa. Since Fa is smooth and not strictly monotone or constant, there exist at least two such
intervals, and since the pattern repeats, there are in fact infinitely many. But the number
is countable, since they are pairwise disjoint open sets, and conjugacy must permute the
countable set of endpoints of these intervals of monotonicity and is determined uniquely
by the image of one endpoint. Hence the centralizer of f is a countable group, so f
cannot be flowable. �

We can do better when the graph of f is tangent to the diagonal at the ends of I.

Corollary 2.12. Suppose f ∈ Diffeo(I) is fixed-point-free on J and is flowable. Then
the following are equivalent:

(1) f ′(c) = f ′(d);
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14 A. G. O’FARRELL AND M. ROGINSKAYA

(2) f ′(c) = f ′(d) = 1;
(3) Fa is constant on J , for each (or any one) a ∈ J .

Proof. The implication (1) =⇒ (2) follows from the fact that 1 is always trapped
between f ′(c) and f ′(d).

Next, note that we have the formula

(7) Fa(f(x)) = Fa(x)
f ′(d)

f ′(c)
,

whenever a, x ∈ J .
Suppose (2) holds. Fix a ∈ J . The formula (7) implies that Fa(f(x)) = Fa(x) for all

x ∈ J . Since f is flowable, Proposition 2.11 tells us that Fa is constant on each interval
[f(x), x]. But for any fixed x0 = x, the iterates xn = f◦n(x) converge monotonically
to one end of J as n ↑ +∞, and monotonically to the other end as n ↓ −∞; hence the
intervals [xn+1, xn] pave J , and, since Fa is constant on each, it is constant on the whole
interval J . Thus (2) =⇒ (3).

Finally, suppose (3) holds. Then equation (7), applied to any x ∈ J , yields f ′(d) =
f ′(c), since Fa(x) never vanishes. �

We note that these results depend only on the assumption that f ∈ C2(I).

2.12. Conjugacy in Diffeo+(I). Now we move on to the general orientation-preserving
case on an arbitrary interval I ⊂ R.

Each interval is diffeomorphic to one of the closed intervals R, [0,+∞) or [−1, 1], so
there is no loss in generality in supposing that I is a closed interval. (If I is not closed,
fix some diffeomorphism h of I onto a closed interval. Then f and g are conjugate in
Diffeo+(I) if and only if hf and hg are conjugate in Diffeo+(h(I)).)

We can reduce the problem to the conjugacy problem in Diffeo+B = Diffeo+B(I), with
B = bdyE and E ⊂ I closed.

Proposition 2.13. Suppose I is a closed interval. Let f, g ∈ Diffeo+. Then there exists
h ∈ Diffeo+ such that f = gh if and only if there exists h1 ∈ Diffeo+ such that the
following three conditions hold:

(1) h1(fix(f)) = fix(g);

(2) letting f1 = fh◦−1
1 and E = fix(g), we have

sign(f1(x)− x) = sign(g(x)− x), ∀x ∈ I ∼ E;

(3) there exists h2 ∈ Diffeo+bdyE such that f1 = gh2 .

Proof. “Only if”: Suppose there exists h ∈ Diffeo+ such that f = gh.
Taking h1 = h, we have condition (1). Also, in that case f1 = g, so condition (2)

holds. Taking h2 = Id, we have condition (3).
“if”: Suppose there exist h1 and h2 satisfying conditions (1), (2) and (3). Then

h = h2 ◦ h1 has f = gh. �

As already remarked, the existence of an h with condition (1) is not amenable to
algorithmic checking, so we shall just treat it as a primitive condition.

Given the existence of such an h, there may exist many. Condition (2) cuts down
the collection of eligible h. One then has to check condition (3) for each eligible h.
In this sense, we have reduced the conjugacy problem in Diffeo+ to the problem of
characterizing conjugacy in Diffeo+bdyE , for two elements of Diffeo+E (see Example 2.2).
It is worth remarking that the condition that Taf and Th(a)g be conjugate Taylor series
reduces the collection of eligible h considerably. See further remarks in Subsection 10.1.
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Obviously, the reduction achieved here is not deep. However it is useful. If we replace
bdyE by E in condition (3), then the restated proposition remains true, but is less useful.
To explain this point, consider this example:

Example 2.2. Take I = R and set

g(x) =

{
x, x ≤ 0,

x+ e−1/x, x > 0,

and f(x) = 1
2 (1 + g(2x− 1)). Then x �→ 2x− 1 conjugates f to g in Diffeo+.

If we are handed two functions f and g in Diffeo+, and asked to determine whether
or not they are conjugate, then we would begin by comparing the pairs (R, bdy(fix(f)))
and (R, bdy(fix(g))) to see whether they lie in the same diffeomorphism class. In the
present example, the pairs are (R, { 1

2}) and (R, {0}), and (of course) they do. The next

reasonable step would be to take any h1 ∈ Diffeo+ that maps 1
2 to 0, and replace f

by f1 = fh◦−1
1 , as in condition (2) of the proposition, and proceed to compare f1 and

g, which now have the same fixed point set, namely E = (−∞, 0]. Let’s say we chose
(slightly perversely), h1(x) = 4x − 2. Then we would have f1(x) = g(x) = x for x ≤ 0,
and f1(x) = 2g(x/2) for x > 0. We would then proceed to check that f1 and g are
conjugate, and it would be reasonable to seek a conjugacy on the lines of (3), that fixes
0. We could then use the differential equation, as in Section 4 to “discover” one of the
conjugacies that exist in Diffeo([0,+∞)) (i.e., one of the elements of the coset of Cf to
which x �→ 2x belongs). Now each such conjugacy is C∞ down to 0 and has derivative 2
at 0. Extending it in any way whatsoever to a diffeomorphism of (−∞, 0] gives a global
conjugacy h2 from f1 to g, because both maps are the identity map on the negative axis
and are conjugated by anything. Each h2 found in this way fixes {0} but, and this is the
point, there is no conjugacy of g to f1 that fixes all points of E. In order to attack the
problem in this way it is essential to retain the flexibility to move points inside fix(g).
Otherwise, this approach goes nowhere.

2.13. Conjugacy in Diffeo+B. Throughout this subsection, I will be a fixed closed in-
terval (bounded or not), E will be a fixed closed nonempty subset of I, containing all
endpoints of I, and B will be the boundary of E.

We consider f, g ∈ Diffeo+(I). (Recall that in view of Proposition 2.1 we need not
consider the special case E = ∅.)

As before, we suppress the explicit (I) in Diffeo+(I), Diffeo+E(I), Diffeo+B(I), etc.
I ∼ E is a countable union of open intervals. The following is trivial.

Proposition 2.14. Let f, g ∈ Diffeo+, fixing precisely E. Then f is conjugate to g in
Diffeo+B if and only if there is a global function h ∈ Diffeo+ such that, for each connected
component J of I ∼ E, the restriction to each clos(J) belongs to Conj(f, g; J).

So, necessary conditions for the conjugacy are as follows.
(1) If J is an unbounded component of I ∼ E, then the restrictions of f and g to

the closure of J satisfy the conditions of Corollary 2.6 or Corollary 2.7, as appropriate
(i.e., depending on whether or not f iterates points towards or away from the (finite)
end of J).

(2) If J is a bounded component of I ∼ E, then the restrictions of f and g to the
closure of J satisfy the conditions of Theorem 2.8.

(3) If an endpoint p = c(J) or d(J) is not isolated in B, then some conjugating
h ∈ Diffeo+B must have h− x flat at p.

Condition (3) actually implies that all elements of Conj(f, g; J) must be flat at p.
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16 A. G. O’FARRELL AND M. ROGINSKAYA

Lemma 2.15. Suppose f is conjugate to g in Diffeo+B. Then whenever an end c(J)
or d(J) of a component J is an accumulation point of B, it follows that each φ ∈
Diffeo+(clos(J)) that conjugates f to g on I has φ(x)− x flat there.

The proof is in §8.
So we formulate this version of condition (3).

Condition (F). If J is a connected component of I ∼ E and an endpoint p = c(J) or
d(J) is not isolated in B, then each conjugating h ∈ Diffeo+B must have h− x flat at p.

But the conditions (1)–(3) will not always guarantee the existence of a global con-
jugation, even when E is finite, or, more generally, discrete. The family Conj(J) =
Conj(f, g; J) is mapped by h �→ Tph to a set M(p, J) = M(f, g; p, J) of Taylor series,
whenever p is a finite end of J . This set M(p, J) is a coset of a subgroup of the invert-
ible Taylor series, and is, generically, discrete. Whenever two intervals J and J ′ have a
common endpoint p, we are snookered unless M(p, J) and M(p, J ′) intersect. This gives
us a necessary condition.

Condition (M1). If p is an isolated point of B, and J and J ′ are the components of
R ∼ E to the left and right of p, then M(p, J) ∩M(p, J ′) �= ∅.

In case p is a hyperbolic fixed point, Condition (M1) is equivalent to the simpler
condition that the multiplier cosets {h′(p) : h ∈ Conj(f, g, J)} intersect. (These are
cosets of a subgroup of the multiplicative group (0,∞).) For suppose we take conjugating
maps h and k on clos J and closJ ′, respectively, with the same multiplier at p. Then
Tph conjugates Tpf to Tpg, and so does Tpk, so (Tph) ◦ (Tpk)

◦−1 commutes with Tpf
and has multiplier 1. Now a hyperbolic series is conjugate to its linear part, and the
centralizer of a linear series is the set of all linear series, so an element of the centralizer
of a hyperbolic series is determined uniquely by its multiplier. Hence (Tph) ◦ (Tpk)

◦−1

equals X.
A similar argument shows that if Tpf = X mod Xp, but Tpf �= X mod Xp+1, then

Condition (M1) simplifies to the condition that the quotients modXp+1 intersect:
(
M(p, J) mod Xp+1

)
∩

(
M(p, J ′) mod Xp+1

)
�= ∅.

Example 2.3. Take f and g, fixing only 0, with f−x and g−x flat at 0, such that f is con-
jugated to g on J1 = [0,+∞) by x �→ 2x, and f = g on J2 = (−∞, 0]. Then Conj(f, g, J1)
is nonempty, but only has maps with derivative 2 at 0, whereas Conj(f, g, J2) has only
maps with derivative 1 at 0, so Condition (M1) fails.

Assuming Condition (M1), we have a further problem if there is a chain of successive
isolated points in E. We then have a chain J1, . . . , Jk of successive components of I ∼ E.
To find a conjugation, we must patch together elements of the Conj(f, g; Ji) to make
a single smooth conjugation on the closure of the union of the Ji. If we begin with
one element of Conj(f, g; J1), and work along, trying to match its Taylor series at each
common endpoint, then it becomes increasingly improbable that we will succeed. If there
is any chain of intervals for which it cannot be done, then there is no global conjugation.

The key to further progress is to focus on B′, the set of accumulation points of B.
The connected components of I ∼ B′ include the connected components J of the interior
of E, and on these J every diffeomorphism conjugates f to g. This makes it reasonable
to define Conj(f, g; J) = Diffeo+(closJ) for such a J .

We formulate a stronger version of Condition (M1).

Condition (M2). Given any connected component L of R ∼ B′, there exists a function
h ∈ Diffeo+(L) whose restriction to each component J of L ∼ B belongs to Conj(f, g; J).
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Each set L ∩ B is empty, or finite, or forms a sequence tending to one end of L, or a
two-sided sequence accumulating at both ends of L.

If the condition fails, then it can be disproved by starting in any one J , and working
left and right, cutting down the set of eligible conjugations until at some stage it is found
that the set is empty.

However, it may be that all the functions that thread together conjugations on the
various J wiggle too much to extend smoothly to the accumulation points at the ends.
So we formulate:

Condition (M). Given any connected component L of I ∼ B′, there exists a func-
tion h ∈ Diffeo+(closL) whose restriction to each component J of L ∼ B belongs to
Conj(f, g; J).

Note that this implies conditions (1) and (2).
It may seem that we are heading into a jungle as complex as that involved in the

order-equivalence problem and that higher derived sets are about to appear. But the
situation is not so bad. We do not have to look at B′′.

Theorem 2.16. Let I be a closed interval. Let f, g ∈ Diffeo+(I) both fix precisely E ⊂ I.
Then f is conjugate to g in Diffeo+(I) (or, equivalently, in Diffeo+B(I)) if and only if both
Conditions (M) and (F) hold.

The proof is in §8.

2.14. Reducing from Diffeo(I) to Diffeo+(I). In §9 we discuss the reduction of the
conjugacy problem in the full diffeomorphism group to the conjugacy problem in the
subgroup of direction-preserving maps.

We close with some examples in §10.

§3. The fixed-point-free case

In this section our main purpose is to prove Proposition 2.1: Some of the elements of
the proof will be useful later, for other purposes.

So suppose f and g are fixed-point-free elements of Diffeo+(R), and both move all
points up, or both move all points down. Then we have to show that f and g are
conjugate in Diffeo+(R).

The proof depends on a well-known result due to É. Borel (cf. [18], or [26, Chapter
19].

Theorem 3.1. For each a ∈ R, each formal power series is the power series at a of
some smooth function.

Corollary 3.2. Given a point a ∈ R, any value λ ∈ R, and a power series P = a1X+· · ·
with a1 > 0, there exists f ∈ Diffeo+ with truncated Taylor series Taf = P , and with
f(a) = λ.

Proof. First, pick a smooth function h1 with Taylor series at a equal to the term-by-term
derivative P ′ of P . Then h1 will be positive near a, so by modifying it off a neighborhood
of a one may construct an everywhere-positive smooth function h2 with the Taylor series
P ′ at a. Now take

f(x) = λ+

∫ x

a

h2(t) dt, ∀x ∈ R. �

Corollary 3.3. Given real numbers a < b and formal series

P = a1X + · · · , Q = b1X + · · ·
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18 A. G. O’FARRELL AND M. ROGINSKAYA

with a1 > 0, b1 > 0, there exists f ∈ Diffeo with

f(a) = a, f(b) = b, Taf = P, and Tbf = Q.

Proof. Applying the previous corollary twice, choose diffeomorphisms r and s such that

r(a) = a, Tar = P,
s(b) = b, Tbs = Q.

Since r′(a) > 0 and s′(b) > 0, we may choose η > 0 such that r maps [a, a + 2η]
diffeomorphically onto [a, r(a+2η)], s maps [b−2η, b] diffeomorphically onto [s(b−2η), b],
and

max{a+ 2η, r(a+ 2η)} < min{b− 2η, s(b− 2η)}.
Choose a monotonically nonincreasing smooth function t that is identically 1 on

(−∞, a+ η] and is identically 0 on [a+ 2η,+∞).
Choose a monotonically nondecreasing smooth function u that is identically 0 on

(−∞, b− 2η] and is identically 1 on [b− η,+∞).
Choose another smooth function v that is nonnegative, is not identically zero, but is

zero off [a+ η, b− η].
For each λ > 0, let

hλ(x) = t(x) · r′(x) + u(x) · s′(x) + λ · v(x), ∀x ∈ R.

Then hλ(x) > 0 for all x ∈ R, hλ(x) = r′(x) whenever x < a + η, hλ(x) = s′(x)
whenever x > b− η.

Define

fλ(x) = a+

∫ x

a

hλ(z) dz, ∀x ∈ R.

Then fλ is a diffeomorphism and fixes a. Also fλ has truncated Taylor series P at a
and Q at b. To finish, we just need to pick λ > 0 so that fλ(b) = b. This can be done,
because it amounts to solving

λ

∫ b

a

v(z) dz = b− a−
∫ a+2η

a

t(z)r′(z) dz −
∫ b

b−2η

u(z)s′(z) dz

and the right-hand side is positive, since it exceeds

b− a−
∫ a+2η

a

r′(z) dz −
∫ b

b−2η

s′(z) dz = s(b− 2η)− r(a+ 2η) > 0.
�

Now we can give the proof of Proposition 2.1.

Proof. Since R is diffeomorphic to each nonempty open interval I ⊂ R, it suffices to
prove Proposition 2.1 for the case I = R.

By means of a preliminary conjugation with a linear map, we may assume that g(0) =
f(0). Let b = f(0).

Pick a smooth increasing map ϕ of the interval [0, b] onto itself such that

(Tbϕ) ◦ (T0f) = (T0g) ◦ (T0ϕ).

(For instance, one could take T0ϕ ≡ X and let the above equation define Tbϕ; the
existence of a ϕ matching these Taylor series follows from the last corollary.)

The conjugacy equation then forces a unique extension of ϕ up to an element of the
set Diffeo+(R). �
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We see that there are a great many conjugacies between two given conjugate diffeo-
morphisms. In particular, the centralizer of a fixed-point-free diffeomorphism is very
large and is not Abelian. We shall see below that the presence of even a single fixed
point produces a drastic reduction in the size of the centralizer. It becomes at most a
one-parameter Abelian group.

§4. [0,+∞): Necessary conditions

4.1. Proof of Theorem 2.2.

Proof. Obviously, (2) implies (1).
(1) implies (3): Let f ′(0) = g′(0) = a. Observe that, as f ∈ S−, 0 < a < 1. By

Sternberg there exist φ, ψ ∈ Diffeo+([0,∞)) such that φ−1◦f ◦φ(x) = ax = ψ−1◦g◦ψ(x).
Now, if τa(x) = ax, the functions of the sequence can be presented as hn = ψ ◦ τ−n

a ◦
ψ−1 ◦ τλ ◦ φ ◦ τna ◦ φ−1. As both φ and ψ are diffeomorphisms, φ(x) = φ′(0)x + O(x2),
and ψ−1(x) = (ψ−1)′(0)x+ O(x2). This means that φ ◦ τna ◦ φ−1(x) = φ′(0)anφ−1(x) +
O((anφ−1(x))2), and ψ−1◦τλ◦φ◦τna ◦φ−1 = (ψ−1)′(0)λφ′(0)anφ−1(x)+O((anφ−1(x))2).
Placing this expression in the formula for hn we get hn(x) = ψ((ψ−1)′(0)λφ′(0)φ−1(x)+
O(anφ−1(x))). For a fixed x we see that hn(x) → ψ((ψ−1)′(0)λφ′(0)φ−1(x)), when
n → ∞, which is a diffeomorphism.

Obviously, (3) implies (4), and (4) implies (5).
(5) implies (2): We have g ◦ h(x) = g(lim(hn(x))) = lim g(hn(x)) = limhn−1(f(x)) =

h ◦ f(x), and h ∈ Diffeo+([0,∞)). �

The nice thing about this is that (3)–(5) give us a construction for conjugacy maps.
Ahern and Rosay call the construction (4) “the basic trick”.

4.2. Proof of Theorem 2.4. Any two elements of S− that agree on a neighborhood
of 0 are smoothly conjugate. This is easy to see: one just uses the conjugacy equation to
extend the trivial conjugation given by the identity function near 0 to a smooth conjugacy
on the whole of [0,+∞).

So, to prove Taken’s conjugacy theorem we must show that if f ∈ Diffeo([0,+∞)) and
the series T0f is conjugate to X − Xp+1 + αX2p+1, then f is smoothly conjugate to a
diffeomorphism that coincides with g = x− xp+1 + αx2p+1 for small enough x > 0. �

However, the constructive method of the proof of Theorem 2.2 cannot be used directly
in this case, in order to find a conjugacy.

Example 4.1. Consider

f(x) = x+ x2, ∀x ≥ 0.

This function belongs to S+ and is conjugate to

g(x) = x+ 2x2 =
1

2
f(2x),

and hence the conjugating map h : x �→ 1
2x conjugates f◦−1 ∈ S− to g◦−1. But the

conjugation functions in general cannot be recovered as in condition 3 of Theorem 2.2.
For instance, taking λ = 2, we find that

g◦n(2f◦−n(x)) → ∞
and does not converge at all. One can see this by observing that

g◦n(2f◦−n(x)) =
1

2
f◦n(4f◦−n(x)),

due to the conjugation. On the other hand given a small number x, the first number N
for which f◦N (x) ≥ 4x is at least 3x

(4x)2 = 3
16x , and as the functions are monotone, we
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see that f◦n(4f◦−n(x)) ≥ f◦(Nn)(x), where Nn = � 3
16f◦−n(x)� → ∞ when n → ∞. Thus

g◦n(2f◦−n(x)) ≥ 1
2f

◦(Nn)(x) → ∞.
Takens proceeds in two steps.
(1) He shows that f is conjugate to a diffeomorphism f1(x) = x−xp+1+αx2p+1+g1(x),

where g1 is a C∞ function flat at 0. We can see this at once from Corollary 3.2. The
Taylor series of f is conjugate to X −Xp+1 + αX2p+1, so choose an invertible series H
that has

H◦−1T0fH = X −Xp+1 + αX2p+1.

Then choose h ∈ Diffeo(R)i, fixing 0, with T0h = H, and let f1 = fh.
(2) He defines Ψ : R2 → R

2 by

Ψ(x, t) = (x− xp+1 + αx2p+1 + tg1(x), t)

and shows that there is a vector field

Z̃ = Z(x, t)
∂

∂x
+

∂

∂t

with Z flat at all points where x = 0, and Ψ∗(Z̃) = Z̃ on a neighborhood of the segment
{(x, t) : x = 0, 0 ≤ t ≤ 1}. The proof of the existence of such a vector field (which is a
fixed-point theorem) requires a substantial argument [30, pp. 177–189], and we omit the
details. Once he has it, the conjugacy of f1 to g is obtained by taking φ(x) so that, for

small x > 0, the points (x, 1) and (φ(x), 0) lie on the same integral curve of Z̃.

Ahern and Rosay [2, pp. 549–551] give another proof of his theorem. They show
that, in fact, if Condition (T) holds, then the “basic trick” construction of Theorem 2.2,
condition (4) may be used, with caution, on a neighborhood of 0, to get a conjugacy
started.

§5. [0,+∞): The product condition

Fix arbitrary f, g ∈ S−.

Lemma 5.1. Suppose f and g are conjugate in Diffeo([0,∞)). Then for any x > 0 there
exists ξ > 0 such that the product (1) converges.

Proof. Pick h ∈ Diffeo([0,∞)) with f = gh, and set ξ = h(x). We observe that h ◦ f◦n =
g◦n ◦ h. Hence equating derivatives we get

h′(f◦n(x))
df◦n

dx
(x) =

dg◦n

dξ
(ξ)h′(x);

hence
n−1∏

j=0

f ′(f◦j(x))

g′(g◦j(ξ))
=

h′(x)

h′(f◦n(x))
,

so the product converges to the limit h′(x)/h′(0). �

The correspondence between x and ξ, referred to in the lemma, is not essential, for
we have the following, which is due to Kopell [10]. (We give the proof for convenience.)

Lemma 5.2. Let x, y ∈ [0,∞) and denote xn = f◦n(x), yn = f◦n(y). Then the infinite
product

(8)

∞∏

n=0

f ′(xn)

f ′(yn)

converges.
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Proof. First, assume that y0 is between x1 and x0. The convergence of the product is

equivalent to the convergence of the series of logarithms
∑∞

n=0 ln
( f ′(xn)
f ′(yn)

)
, which in turn

is equivalent to that of
∑∞

n=0

(
1− f ′(xn)

f ′(yn)

)
. Now

∣
∣∣
∣
f ′(xn)− f ′(yn)

f ′(yn)

∣
∣∣
∣ ≤

(
sup |f ′′|
inf |f ′|

)
· |xn − yn|

(where the sup and inf are taken on [0, x]; note that the inf is positive since f is a
diffeomorphism), and so the convergence follows from

∑∞
n=0 |xn − yn| ≤ |x0|, which

holds because the intervals from xn to yn are pairwise-disjoint subintervals of that from
0 to x0.

So the result holds when y0 is between x1 and x0.
For general y, choose k ∈ Z such that y0 is between xk and xk+1. Then

m∏

n=0

f ′(xn)

f ′(yn)
=

f ′(x0) · · · f ′(xk−1)

f ′(ym−k+1) · · · f ′(ym)
·
m−k∏

n=0

f ′(xn+k)

f ′(yn)
,

so the series ∞∏

n=0

f ′(xn)

f ′(yn)
and

∞∏

n=0

f ′(xn+k)

f ′(yn)

converge or diverge together, with
∞∏

n=0

f ′(xn)

f ′(yn)
=

f ′(x0) · · · f ′(xk−1)

f ′(0)k
·

∞∏

n=0

f ′(xn+k)

f ′(yn)
.

Thus we obtain the general result by replacing xn by xn+k. �
Corollary 5.3. (1) In case x1 < y < x0, and T0f = X + bXp+1 + · · · for some p ∈ N,
the product (8) is 1 +O(xp) as x ↓ 0, uniformly for y between x1 and x0.

(2) In case T0f = X the product is 1 + o(xn), for any n.

Proof. (1) Just use the estimate f ′′(x) = O(xp−1).
(2) follows from (1). �

Corollary 5.4. If the product (1) converges for some x, ξ > 0, then it converges for any
choice of x, ξ > 0.

Corollary 5.5. Suppose f and g are conjugate in Diffeo([0,∞)). Then for any x > 0
and ξ > 0 the product (1) converges.

Corollary 5.6. The convergence or divergence of the product (1) is not affected if the
functions f and g are replaced by conjugates.

Condition (P) is actually a consequence of Condition (T) in the nonflat cases.

Proposition 5.7. (1) If f ′(0) �= 1 or g′(0) �= 1, then Condition (P) is equivalent to
f ′(0) = g′(0).

(2) If f and g have conjugate nonidentity Taylor series, then Condition (P) is satisfied.

Proof. (1) To prove the first assertion, assume that f ′(0) = α < 1. Choose α′ with
α < α′ < 1. Then, for sufficiently small x we have f(x) < α′x. Consider the product
∏∞

n=0
f ′(f◦n(x))

α . The product converges if and only if
∑∞

n=0

(
1 − f ′(f◦n(x))

α

)
converges.

But the second derivative of f is bounded near 0, so the sum is dominated by a constant
times

∑∞
n=0 f

◦n(x) ≤
∑∞

n=0(α
′)n < ∞, and hence is indeed convergent.

Now consider the similar product for g. The product in Condition (P) is the quotient
of the products if f ′(0) = g′(0), and hence converges as well, and (for the same reason)
it does not converge (to a nonzero limit) if f ′(0) �= g′(0).
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(2) By replacing g with a conjugate which has the same Taylor series as f we reduce
to the case in which f and g have coincident Taylor series. The result then follows from
the next, more general lemma, which we will also use again later. �

Lemma 5.8. Let T0(f) = T0(g) = X + bXp+1 + · · · (mod X2p+1), where p ∈ N and
b �= 0. Then

∞∏

n=0

f ′(f◦n(x))

g′(g◦n(x))
= 1 +O(xp).

Proof. Without loss in generality, we take b < 0, and write c = −b. We use C for a
positive constant that may differ at each occurrence. We may assume that the x > 0
under consideration are so small, that |f(x)− x+ cxp+1| ≤ Cxp+2 and |Cx| < 1

2c. This

means that cxp+1
n − Cxp+2

n < xn − xn+1 < cxp+1
n + Cxp+2

n , where xn = f◦n(x). So, for
0 < α < 1 between x and αx there are no more than

(1− α)x

(c(αx)p+1 − Cxp+2)
=

(1− α)α−(p+1)

cxp(1− α−(p+1)Cx)

and no fewer than
(1− α)x

(cxp+1 + Cxp+2)
=

1− α

cxp(1 + Cx)

points from the f -orbit of x.
Let us start by reformulating the claim: It is enough to prove that

log

( ∞∏

n=0

f ′(f◦n(x))

g′(g◦n(x))

)
=

∞∑

n=0

log

(
f ′(f◦n(x))

g′(g◦n(x))

)
= O(xp).

As f ′(0) = g′(0) = 1 and | log(t)| ∼ |1− t| is close to t = 1, it is enough to prove that

∞∑

n=0

|g′(g◦n(x))− f ′(f◦n(x))| = O(xp).

Since T0f = T0g, we may also assume that x is so small that |f ′(x)− g′(x)| < Cx2p. We
then observe that, since |xn − xn+1| > (c/2)xp+1

n , we have the estimate

(9)

∞∑

k=0

xp+1
k ≤ 2

c

∞∑

k=0

|xk − xk+1| =
2x0

c
.

As |f ′(x)− g′(x)| < Cx2p for all x in question, we have

∞∑

k=0

|f ′(xk)− g′(xk)| ≤ C
∞∑

k=0

x2p
k ≤ Cxp−1

0

∞∑

k=0

xp+1
k = O(xp

0),

and the estimate can be reduced to estimating
∑

|g′(xn) − g′(g◦n(x))|. Since g′′ =
O(xp−1) we have |g′(r)− g′(s)| ≤ O(sp−1)|r − s| for r < s, and it remains to show that∑

|f◦n(x)− g◦n(x)| < Cx.
Let us now consider only points so close to the origin that |f(x) − g(x)| < Cx2p+1.

For those points we have the estimate

|f◦n(x)− g◦n(x)| ≤ |f◦n(x)− f(g◦(n−1)(x))|+ |f(g◦(n−1))(x)− g◦n(x)|
≤ Mx|f◦(n−1)(x)− g◦(n−1)(x)|+ C(g◦(n−1)(x))2p+1

≤ C(Mn
x + · · ·+ 1)x2p+1,

where Mx is the maximum of f ′ on the interval [0, x] and thus can (for small x) be
estimated from above by 1 (since b < 0). This gives us |f◦n(x)− g◦n(x)| ≤ Cnx2p+1.
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Let us consider the first point in the orbit of x with respect to f which is less than αx.
Let it be f◦n1(x). Then by the observation at the beginning of the proof, for α > 1

2 , and
x sufficiently small, n1 < (1 − α)C/xp, where the constant depends only on the Taylor
expansion. By the previous paragraph, for any k ≤ n1,

|f◦k(x)− g◦k(x)| ≤ (1− α)Cx2p+1

xp
= (1− α)Cxp+1.

As |f(y) − y| > c
2y

p+1, we see that for a choice of α < 1 sufficiently close to 1,

we have 1
2 (f

◦(k+1)(x) + f◦k(x)) < g◦k(x) < 1
2 (f

◦k(x) + f◦(k−1)(x)). Thus the in-

tervals [f◦k(x), g◦k(x)] are disjoint and
∑n1

k=0 |f◦k(x) − g◦k(x)| ≤ (1 − α)x + Cxp+1.

On the other hand, in the particular case, k = n1, if g◦(n1+1)(x) = x(1), we have∑∞
m=0 |f◦(n1+1+m)(x) − f◦m(x(1))| ≤ αx, as the sum of lengths of disjoint intervals.

This means that
∞∑

n=0

|f◦n(x)− g◦n(x)| ≤
n1∑

n=0

|f◦n(x)− g◦n(x)|+
∞∑

m=0

|f◦m(x(1))− g◦m(x(1))|

+

∞∑

m=0

|f◦(n1+1+m)(x)− f◦m(x(1))|+ Cxp+1

≤ (1− α)x+

∞∑

m=0

|f◦m(x(1))− g◦m(x(1))|+ αx+ Cxp+1

≤ 2x+
∞∑

m=0

|f◦m(x(1))− g◦m(x(1))|.

Using this argument inductively we deduce that

∞∑

n=0

|f◦n(x)− g◦n(x)| ≤ 2x+ 2x(1) + · · · ≤ 2

∞∑

j=0

αjx = Cx,

and we are done. �

Example 5.1. Notice that for the particular case p = 1 this lemma says that the
Condition (P) is satisfied for f(x) = x+ x2 and g(x) = x+ x2 + x3. On the other hand,
the Taylor series X + X2 and X + X2 + X3 are not conjugate, which shows that the
Condition (P) is strictly weaker than Condition (T) in the nonflat case.

We shall see shortly that Condition (P) guarantees the existence of a C1 diffeomor-
phism conjugating f to g. Thus the existence of a C1 conjugacy is strictly weaker than
the existence of a C∞ conjugacy.

We mention here the observations of Young [34]. He considered C2 diffeomorphisms
f on [0,+∞) with T0f = x + ax2 (mod x3), and with a �= 0. A result of Szekeres (cf.
[13, Theorem 8.4.5]) implies that all such C2 diffeomorphisms (having a of one sign) are
C1-conjugate. Young showed that they are in fact C2-conjugate.

§6. [0,+∞): Sufficient conditions

6.1. The differential equation. Suppose f, g ∈ Diffeo([0,+∞)) fix only 0, both belong
to S− and satisfy Condition (P).

We define

F1a(x) = H1(f, f ;x, a) =
∞∏

n=0

f ′(f◦n(x))

f ′(f◦n(a))
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whenever a, x > 0. Note that

F1a(x) = lim
n↑∞

(f◦n)′(x)

(f◦n)′(a)
.

We define

G1α(ξ) = H1(g, g; ξ, α) =

∞∏

n=0

g′(g◦n(ξ))

g′(g◦n(α))

whenever α, ξ > 0.

Lemma 6.1. Fix a > 0, α > 0. The functions x �→ F1a(x) and ξ �→ G1α(ξ) are infinitely
differentiable and positive on (0 +∞), and hence

(x, ξ) �→ H1(x, y) = H1(a, α)F1a(x)/G1α(ξ)

is infinitely differentiable and positive on (0,+∞)× (0,+∞).

Proof. It suffices to show that x �→ F1a(x) is infinitely differentiable on (0,+∞) for each
a > 0. The argument for ξ �→ G1α(ξ) is precisely analogous.

Fix a ∈ (0,+∞). Let Ja denote the closed interval from 0 to a. Let an = f◦n(a), for
all n ∈ Z. Let Ia denote the closed interval from a1 to a. Let

Dj = max
Ja

|f (j)|, ∀j ∈ Z.

(Note that min
Ja

|f ′| = (D−1)
−1.)

For x ∈ (0,+∞), let xn = f◦n(x), for all n ∈ Z. For ease of notation, we abbreviate
d
dxf

◦n(x) = f ′(x)f ′(x1) · · · f ′(xn−1) to x′
n, and similarly denote dk

dxk f
◦n(x) by x

(k)
n . We

use x′′
n for x

(2)
n , etc. �

Before continuing the proof, we pause to note a couple of lemmas that follow from
Lemma 5.2.

In what follows, unless otherwise specified, we useK to denote a constant that depends
at most on f , and a, and that may be different at each occurrence.

Lemma 6.2.
K−1|(f◦n)′(a)| ≤ |x′

n| ≤ K|(f◦n)′(a)|
whenever x ∈ Ia.

Proof. We have

(f◦n)′(a)

(f◦n)′(x)
=

n−1∏

j=0

f ′(aj)

f ′(xj)
,

so the result follows from the uniform convergence of
∏∞

j=0
f ′(aj)
f ′(xj)

, for x ∈ Ia. �

Lemma 6.3.

|x′
n| ≤ K

∣
∣∣
∣
xn+1 − xn

x1 − x0

∣
∣∣
∣

whenever x ∈ Ia.

Proof. By the Law of the Mean,

xn+1 − xn

x1 − x0
= (f◦n)′(y)

for some y between x and x1, so the result follows from a few applications of the previous
lemma. �
Lemma 6.4. |x1 − x| ≥ K|a1 − a|, for all x ∈ Ia.
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Proof. For x ∈ Ia, f(a) ≤ x ≤ a, so f(x) ≤ f(a) ≤ x, so |f(x) − x| = |f(x) − f(a)| +
|x− f(a)| ≥ (D−1)

−1|x− a|+ |x− a1| ≥ min{1, (D−1)
−1}|a− a1|. �

Proof of Lemma 6.1. It suffices to show that the logarithm

logF1a(x, ξ) =
+∞∑

n=0

{log f ′(xn)− log f ′(an)}

is infinitely differentiable.
The term by term derivative with respect to x is the series

+∞∑

n=0

f ′′(xn)x
′
n

f ′(xn)
,

and it will be convenient to denote the nth term by

Tn(x) =
f ′′(xn)x

′
n

f ′(xn)
,

and the nth partial sum by

Sn(x) =

n−1∑

j=0

Tj(x).

It will suffice to show that for each nonnegative integer k, S
(k)
n (x) converges uniformly

on Ia.
For any smooth function ρ : (0,+∞) → (0,+∞), and k ∈ N, let us define Ak(ρ) as

the function

Ak(ρ) =
dk

dxk

(
f ′′(ρ)ρ′

f ′(ρ)

)
− f ′′(ρ)ρ(k+1)

f ′(ρ)
.

Then a straightforward induction establishes that Ak(ρ)(x) is the sum of Mk terms
(where the integer Mk depends on k, but not on ρ), each of which is a finite product

γ
∏

i f
(rj)(ρ(x))

∏
j ρ

(tj)(x)

(f ′(ρ(x)))k+1
,

where the coefficients γ are fixed integers independent of f , where each ri ≤ k + 2, each
tj ≤ k, and at least one tj is present.

The term T
(k)
n takes the form

Ak(xn) +
f ′′(xn)x

(k+1)
n

f ′(xn)
.

To begin with, we observe that by the last two lemmas,
∣
∣∣
∣
f ′′(xn)x

′
n

f ′(xn)

∣
∣∣
∣ ≤ KD2D−1|xn+1 − xn|, ∀x ∈ Ia;

hence {Sn(x)} itself converges uniformly on Ia, with the error in Sn(x) bounded by
KD2D−1an, where an = f◦n(a).

Now we will proceed by induction on k, and we first consider the first derivatives T ′
n(x)

and note that
T ′
n(x) = A1(xn) +B1(xn),

where

A1(xn) =

{
f ′′′(xn)(x

′
n)

2

f ′(xn)
− (f ′′(xn)x

′
n)

2

(f ′(xn))2

}

and

B1(xn) =
f ′′(xn)x

′′
n

f ′(xn)
.
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Estimating each of its terms by its maximum, we see that A1(xn) is dominated by

K2(D3D−1 +D2
2D

2
−1)|xn+1 − xn| ≤ K|xn+1 − xn|,

for a (different) constant K.
A calculation yields x′′

n = x′
nSn, so the term B1(xn) is dominated by

K2D2D−1|xn+1 − xn|,
and we conclude that S′

n(x) also converges uniformly on Ia, with error bounded by Kxn.
We also observe that |S′

n(x)| ≤ Kx.
Now we formulate an induction hypothesis Pk:
There exist a constant K, depending only on f , a, and k, such that
(a) for 0 ≤ j ≤ k − 1 and each n ≥ 0,

|T (j)
n (x)| ≤ K|xn+1 − xn| and |S(j)

n (x)| ≤ K, and

(b) for 1 ≤ j ≤ k,

|x(j)
n | ≤ K|xn+1 − xn|.

We have established P2.
Suppose Pk holds, for some k ≥ 2. Differentiating the formula x′′

n = x′
nSn k− 1 times

we get

x(k+1)
n =

k−1∑

j=0

(
k − 1

j

)
x(j+1)
n S(k−j−1)

n ,

so conditions (a) and (b) of the hypothesis yield

|x(k+1)
n | ≤

k−1∑

j=0

(
k − 1

j

)
K|xn+1 − xn| = K|xn+1 − xn|

(with a new K), and condition (b) of Pk+1 is proven.

Condition (a) then follows because of the form of T
(k)
n .

Thus, by induction, Pk holds for each k ≥ 2.

Thus S
(k)
n =

∑
T

(k)
m converges uniformly for all k, and Lemma 6.1 is proved. �

We now consider the three-parameter initial-value problem D1(a, α, λ) (cf. equation
(2)).

It follows from Lemma 6.1 and standard results about ordinary differential equa-
tions [4, p. 22] that problem D1(a, α, λ) has a unique infinitely differentiable solution
φ(a, α, λ;x) near x = a whenever (P) holds, a, α > 0, and λ > 0. Obviously, the solution
is a strictly increasing function of x and its domain is an open subinterval of (0,+∞),
containing a.

Note that
m∏

j=n

f ′(xj) = (f◦(m−n))′(xn) ≈
xm+1 − xm

xn+1 − xn
,

so the product tends to 0 as m → +∞. It follows that the product H1(x, y) does not
extend continuously to the closed quadrant [0,+∞) × [0,+∞), nor even to the corner
(0, 0), so there is no point in considering the differential equations at the endpoint. In
fact, a moment’s thought reveals that H1(x, y) tends to ∞ as x → 0 for fixed y > 0, and
tends to 0 as y → 0 for fixed x > 0, so all positive numbers may be obtained as limits of
H1(x, y) for a suitable approach to (0, 0) from inside J × J .

Lemma 6.5. Assume f, g ∈ S− and Condition (P) holds. Then for each a, α > 0 and
each λ > 0 the domain of the solution to problem D1(a, α, λ) is (0,+∞).
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Proof. The domain U of the solution φ is a nonempty connected subset of J = (0,+∞),
and one sees easily that it is open. In fact, if either end (say c) of U lies inside J , then
since φ′ is bounded on (a, c), φ has a continuous extension to c, and by uniqueness φ is
the solution to D1(c, φ(c), λ), so φ extends to a neighborhood of c, a contradiction. Thus
U = J , and φ conjugates f to g on the whole of J . �

The following lemma reformulates the information in the proof of Lemma 5.1 in other
language.

Lemma 6.6. Suppose f, g, h ∈ Diffeo([0,+∞)) and f = gh. Then φ = h is the solution
to problem D1(a, h(a), h

′(0)), whenever a > 0.

Not all solutions to the initial-value problems D1(a, α, λ) will be conjugating maps.
For a start, we would need to ensure the condition φ(f(a)) = g(α). This leads us to the
following.

Lemma 6.7. Assume Condition (P), with f, g ∈ S−. Then for each a > 0, and each
α > 0, there exists λ > 0 such that the solution φ(a, α, λ) to problem D1(a, α, λ) has
φ(f(a)) = g(α).

Proof. Given a and α, we could start by trying λ = 1. If the solution φ1 to D1(a, α, 1)
has φ1(f(a)) = g(α), we take λ = 1 and are done. If φ1(f(a)) < g(α), then decreasing
λ eventually reduces φ′ to very small values on the interval [a, f(a)], and hence pulls
φ(f(a)) above g(α). Thus, since φ(f(a)) varies continuously with λ, there exists some λ
with φ(a, α, λ)(f(a)) = g(α), and we are done. If φ1(f(a)) > g(α), then we can attain a
similar result by increasing λ instead, because this increases φ′ to very large values. More
precisely, H1(x, y) is bounded below by a positive constant, say κ, on [f(a), a]× [g(α), α],
so if φ(f(a)) ≥ g(α), then φ′ > κλ on [f(a), a]; hence

α− g(α) ≥ φ(a)− φ(f(a)) ≥ λκ(a− f(a)),

which is impossible for large λ. Thus for large enough λ, we have φ(f(a)) < g(α), so
another application of the intermediate value theorem tells us that there exists some λ
with φ(a, α, λ)(f(a)) = g(α). �

Now we proceed to show that the solution φ of Lemma (6.7) conjugates f to g on
(0,+∞).

Lemma 6.8. Suppose that u is a differentiable real-valued function on an open interval
U , and for some constant κ > 0 we have

|u′(x)| ≤ κ · |u(x)|, ∀x ∈ U.

Suppose that u has a zero in U . Then u is identically zero on U .

Proof. The set Z = u◦−1(0) of zeros of u in U is relatively closed, and nonempty, so it
suffices to show that it is open. Fix a ∈ Z, and choose ε > 0 so that a ± ε ∈ U and
εκ < 1. Let M be the maximum of |u| on the closed interval J = [a− ε, a+ ε].

If M > 0, then choose b ∈ J with |u(b)| = M . By the Law of the Mean, we may
choose c between a and b with |u(b)| = |u′(c)| · |b− a|. But then

M = |u(b)| ≤ κM · ε < M,

which is impossible.
Thus M = 0, so a is an interior point of Z.
Thus Z is open, and we are done. �
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Lemma 6.9. Suppose (P). Fix a, α > 0. Choose λ > 0 such that the solution h(x) =
φ(a, α, λ;x) to problem D1(a, α, λ) has h(f(a)) = g(α). Then the domain of the solution
is J = (0,+∞), h maps J onto J and g ◦ h = h ◦ f on J .

Proof. We establish that on each compact subinterval of J we have an inequality |u′| ≤
κ · |u|, where

u(x) = g(φ(x))− φ(f(x)).

In detail, one calculates (by fiddling with products) that

u′(x) = λ{H1(x, φ(x)) · g′(φ(x))−H1(x, g
−1(φ(f(x)))) · g′(g−1(φ(f(x))))},

and (using the Law of the Mean) estimates this (on a compact subinterval of J) by

κ1 × |g−1(φ(f(x)))− φ(x)| ≤ κ2|φ(f(x))− g(φ(x))| = κ2|u(x)|.
Then we apply Lemma 6.8 and the fact that u(a) = g(α)− φ(f(a)) = 0. This tells us

that u(x) = 0 on the domain of φ, which is J . �
These results tell us that the initial-value problem together with the conjugation

equation at one point are enough to guarantee the conjugation equation on the whole
interval J = (0,+∞).

Lemma 6.10. Suppose Condition (P) holds. If φ : [0,+∞) → [0,+∞) satisfies

φ(f(x)) = g(φ(x)),
φ′(x) = H1(x, φ(x))λ

}
∀x ∈ J,

then limx→d φ
′(x) = λ and φ has a one-sided derivative at d, equal to λ.

Proof. Fix some a ∈ J and denote Ia = [f(a), a].
For fixed x ∈ Ia, letting xn = f◦n(x), we have

φ(f◦n(x)) = g◦n(φ(x)),

φ′(xn) · x′
n = (g◦n)′(φ(x)) · φ′(x),

φ′(xn) =

n−1∏

j=0

(
g′(g◦j(φ(x)))

f ′(xj)

)
· φ′(x).

Since the product converges to H1(x, φ(x))
−1, the right-hand side converges to λ, so the

derivative φ′ extends continuously from J to 0 if φ is given the value 0 there. This is
enough to force the rest of the conclusions. �

Finally, we show that the λ is unique.

Lemma 6.11. Suppose Condition (P) holds. Then, for each given a, α ∈ J , there is
exactly one λ > 0 for which the solution φ = h to problem D1(a, α, λ) has h(f(a)) =
g(α).

Proof. Suppose this fails, and there are λ1 < λ2 such that the solutions φi to problems
D1(a, α, λi) (i = 1, 2) both have φi(f(a)) = g(φi(a)).

Then by Lemma 6.9 both solutions have φi(f(x)) = g(φi(x)) on J , both map J onto
J , and both derivatives extend continuously to 0.

Since, initially, φ1(a) = φ2(a) and φ′
1(a) < φ′

2(a), we have φ1(x) > φ2(x) for some
distance to the left of a. Since φ1(0) = φ2(0)(= 0), there exists a first point e < a at which
φ1(e) = φ2(e). Just to the right of e, we have φ1(x) > φ2(x), and hence φ′

1(e) ≥ φ′
2(e).

But this contradicts the differential equation, because (since φ1(e) = φ2(e)) we have

φ′
1(e) = λ1H(e, φ1(e)) < λ2H(e, φ2(e)) = φ′

2(e).

This contradiction establishes the result. �
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At this stage, we have completed the proof of Theorem 2.5.

Corollary 6.12. Suppose Condition (P) holds. Then there is precisely a one-parameter
family of C1 conjugations from f to g on [0,+∞).

Proof. In fact, if we fix a, there is precisely one conjugation φ = Φ+(a, α) for each
α ∈ (0,+∞). �

Thus there is at most a one-parameter family of C∞ conjugations from f to g. (One
could recover Kopell’s Lemma (cf. Subsection 6.3) from this. However, it can be proved
directly without all this apparatus (cf. [20, 4.1.1]). One should also remark that the
corollary may be obtained directly from Kopell’s Lemma, and holds for C2 conjugations.)

6.2. Remarks about φ′(0). Assume Condition (P) holds.
If 0 is a hyperbolic point for f , then the family of conjugating maps is parametrized

by the multiplier at 0. This is so, because f is conjugate to λ· for λ = f ′(0), which has
centralizer consisting of all the maps μ·, with μ �= 0. If two maps h and k that conjugate
λ· to g have the same multiplier, then k−1h commutes with λ· and has multiplier 1, and
hence h′(0) = k′(0).

If f ′(0) = 1, but f − x is not flat at 0, then it follows from Lubin’s theorem about
the centralizer of a formal power series [6, 22] that the centralizer of f in Diffeo([0,+∞))
consists of maps that have derivative 1 at 0, and for general g the family of conjugating
maps from f to g is a coset of this centralizer. Thus all the diffeomorphic conjugations
of f to g have the same derivative at 0.

This does not tell us anything about merely C1 conjugations, nor about what happens
when f − x is flat at 0, but it is possible to see that again the conjugating C1 maps all
have the same derivative at 0. The essential point is the following, which can be proved
more simply now than Lemma 5.8.

Proposition 6.13. Suppose f ∈ S−, f ′(0) = 1, and φ is a C1 diffeomorphism of
[0,+∞), commuting with f . Then φ′(0) = 1.

Proof. Fix a > 0, and let α = φ(a). Then φ is Φ+(a, α). Let ak = f◦k(a) whenever
k ∈ Z. There is a unique k such that

ak+1 ≤ α < ak.

So at a, φ lies between f◦k and f◦(k+1).
If φ(a) = f◦k(a), then by Lemma 6.11, φ coincides with f◦k on J , and hence has

derivative 1 at 0, and we are done.
Otherwise, Lemma 6.11 tells us that φ never has the same value as f◦k or f◦(k+1) at

any point, so its graph lies sandwiched between their graphs.
Thus, since f(0) = φ(0) = 0,

f◦k(x) > φ(x)− φ(0) > f◦(k+1)(x)− f◦(k+1)(0)

for all x > 0, and hence, dividing by x and taking limits we get φ′(0) = 1. �

We remark that this result becomes trivial for C2 conjugations. If we assume that the
conjugating map is C∞ to 0, then Corollary 5.3 provides a much easier way to a stronger
conclusion.

Proposition 6.14 (Kopell). If φ ∈ Diffeo([0,+∞)) commutes with f , and f is flat at
0, then so is φ.

Proof. From Corollary 5.3, φ(x)−x tends to zero more rapidly than any power of x, and
hence given that φ(x)− x is smooth, all its derivatives vanish at 0. �
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6.3. Remark about centralizers. The special case f = g of the foregoing corresponds
to results of Kopell [10, pp. 167–171] about centralizers. Indeed, Kopell made use of the
f = g version of the differential equation of problem D1 in order to obtain her results.
See also [13, Section 8.6, pp. 353–355]. (We have not seen the differential equation for
general f and g used in the literature.)

The elements of the centralizer Cf of f in Diffeo([0,+∞)) (where f fixes only 0)
are exactly the elements that conjugate f to f , so applying the foregoing to the case
g = f , we have Kopell’s result that the centralizer is at most a one-parameter group.
The centralizer is never trivial, since it has all iterates f◦n (n ∈ Z) as elements. However,
it may fail to be connected. Sergeraert [27] gave an example in which f has no smooth
compositional square root, and hence its centralizer is discrete.

Sergeraert also gave a useful sufficient condition for the centralizer of an element
f ∈ S− to be connected. His condition is the existence of constants κ > 0 and δ > 0
such that

sup
0≤y≤x

(y − f(y)) ≤ κ(x− f(x)),

whenever 0 < x < δ. In particular, it always works if x− f(x) is monotone.
The homomorphism h �→ h′(0) maps the centralizer of a given f to a multiplicative

subgroup of (0,+∞), but (as we’ve seen) the subgroup in question is just {1}, as soon
as f ′(0) = 1.

In a rather similar way, the homomorphism Π : h �→ T0h maps Cf onto a subgroup of
the group of invertible formal power series, and the image must have T0f as an element.

We have seen in Proposition 6.14 that if f − x is flat at 0, then all elements of its
centralizer have the same property, so Π is trivial.

Generally, the image of Cf under Π is a subgroup of the centralizer of T0f in the
power series group. In case T0f = X mod Xp+1 but T0f �= X mod Xp+2, it is a purely
algebraic fact (cf. [10, p. 170]; [6] or [13, pp. 355ff]) that the latter centralizer is a one-
parameter group, and indeed the map to the coefficient of Xp+1 is an isomorphism to
(R,+).

It is interesting to note in passing that the differential equation provides a way to
construct smooth compositional kth roots of a diffeomorphism f ∈ S− of [0,+∞) that
has a connected centralizer: One takes f = g, fixes a > 0, and considers the initial-
value problem D1(a, α,Λ+(a, α)) for α between a and f(a). The solution φα that has
φ◦k(a) = f(a) is the desired root. Since φ◦k(a) moves continuously and monotonically
away from a as α moves towards f(a) from a, and passes f(a) before α reaches f(a),
there must exist a unique α with the above property.

In general, if f does not have roots in the diffeomorphism group, this will construct
C1 roots.

6.4. Sufficiency of (P) and (T): Counterexample. The Conditions (P) and (T)
together are not sufficient for C∞ conjugacy, and the following example will demonstrate
this.

We have noted that in the nonflat case the existence of a C1 conjugacy is strictly
weaker than the existence of a C∞ conjugacy. The example will show that it is also
weaker in the flat case.

Example 6.1. Consider the diffeomorphisms of [0,+∞) defined on the interior by

f(x) = x+ e−1/x2

,

φ(x) = x+ x3/2,

g = fφ.
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One finds that φ is only C1 on [0,+∞), but that f and g are smooth: In fact, letting
ψ = φ◦−1, we calculate

ψ′(φ)φ′ = 1,

ψ′(φ)φ′′ + ψ′′(φ)(φ′)2 = 0.
(10)

Thus

g′ = ψ′(f ◦ φ)f ′(φ)φ′,

g′′ = ψ′(f ◦ φ)f ′(φ)φ′′ + ψ′(f ◦ φ)f ′′(φ)(φ′)2 + ψ′′(f ◦ φ){f ′(φ)φ′}2.

The second term in the expression for g′′ is continuous, and the other two add to

(11) f ′(φ){ψ′(f ◦ φ)φ′′ + ψ′′(f ◦ φ)f ′(φ)(φ′)2}.

The only problem is to see continuity at 0, and the point is that for small positive x we
have φ′(x) ≈ 1, ψ′(x) ≈ 1,

φ(k)(x) = O(x
3
2−k), ∀k ≥ 2,

and for some sequence of integers pk,

ψ(k)(x) = O(x−pk), ∀k ≥ 2

(as is verified inductively by differentiating (10)). Thus, since f(x) − x is flat at 0,
f ′(φ(x)) may be replaced by 1 and f ◦ φ by φ, in the expression (11), with an error that
is O(xN ) for all N ∈ N. But when this is done we just get 0, by (10), so g′′ → 0 as
x → 0.

It now becomes clear that when we continue to differentiate g, and express g(k) in
terms of ψ, f , and φ, we get an expression involving derivatives of ψ (at f ◦ φ), f (at φ),
and φ, and that when f is replaced by � in this expression we get zero (the kth derivative
of ψ ◦ φ). Moreover, for small x, the error involved in replacing f(φ) by φ, f ′(φ) by 1,
f ′′(φ) by 0, and all higher derivatives f (k)(φ) by 0, is O(xN) for all N . Thus g(k) → 0 as
x → 0 for all k ≥ 3, as well. It follows that g is C∞, and g(x)−x is flat at 0, as required.

Now any other C1 conjugation of f and g will differ from φ by composition with an ele-
ment of the centralizer of f . Since f(x)−x is monotone, it satisfies Sergeraert’s condition
[27, p. 259, Theorem 3.1], and hence the centralizer of f consists of C∞ diffeomorphisms,
and hence no conjugation of f to g is better than C1.

This shows that Conditions (P) and (T) are not sufficient, by themselves, to guarantee
conjugacy, in general.

Question. Since not all C1 conjugacies between given f and g in Diffeo([0,∞)) are C∞

to zero, it would be interesting to know whether or not the set of parameters α for which
the solution Φ+(a, α) is C∞ to zero is always a relatively closed subset of (0,∞). We
were not able to resolve this question.3

§7. Compact intervals

Recall from Subsection 2.8 that in the context of a compact interval the meaning of
Condition (P) must now be modified and that it now involves a two-sided product.

3The question has now been answered by H. Eynard [35], who constructed an element f ∈
Diffeo([0,∞)) whose C2 centralizer is an uncounted proper subset of its C1 centralizer. Taking g = f ,
we see that this implies that the set of parameters α for which Φ+(a, α) is C∞ to zero is not relatively
closed in (0,∞).
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7.1. The sign condition and Condition (P). Let I = [d, c] be a compact interval
with interior J . Let f and g belong to Diffeo+(I). The sign condition is, as before,
necessary for conjugacy of f and g.

Applying Lemma 5.2 and Corollary 5.4 to the inverse maps f◦−1 and g◦−1 on the
half-open interval J ∪ {c}, we see that similar results hold for the products

∞∏

n=1

f ′(x−n)

f ′(y−n)
and

∞∏

n=1

f ′(f◦−n(x))

g′(g◦−n(ξ))
.

Thus we obtain:

Lemma 7.1. Suppose I is compact and f and g are conjugate in Diffeo+(I). Then

(12)
∞∏

n=0

f ′(f◦n(x))

g′(g◦n(ξ))

converges for each x, ξ ∈ J , and

(13)
∞∏

n=1

f ′(f◦−n(x))

g′(g◦−n(ξ))

converges for each x, ξ ∈ J .

The proof of Lemma 5.1 gives:

Corollary 7.2. If f = gh, then the two-sided product

∞∏

n=−∞

f ′(f◦n(x))

g′(g◦n(h(x)))

is independent of x ∈ J and equals the ratio h′(c)/h′(d) of the derivatives of the conju-
gating map at the ends.

7.2. The differential equation. Suppose f, g ∈ Diffeo+(I) satisfy the sign condition
and Condition (P).

Definition. We define

F1a(x) = H1(f, f, x, a) =

∞∏

n=0

f ′(f◦n(x))

f ′(f◦n(a))
,

G1α(ξ) = H1(g, g, ξ, α) =
∞∏

n=0

g′(g◦n(ξ))

g′(g◦n(α))
,

F2a(x) = H2(f, f, a, x) =
∞∏

n=1

f ′(f◦−n(x))

f ′(f◦−n(a))
,

G2α(ξ) = H2(g, g, α, ξ) =
∞∏

n=1

g′(g◦−n(ξ))

g′(g◦−n(α))

whenever x, ξ, a, α ∈ J .
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Applying Lemma 6.1 to the original maps and to their inverses, we obtain:

Lemma 7.3. Let the sign condition and (P) hold, and fix a, α ∈ J . Then
(1) the functions F1a, G1α, F2a, and G2α are infinitely differentiable and positive on

J , and hence
(2) H1(x, ξ) = H1(a, α) · F1a(x)/G1α(ξ) and H2(x, ξ) = H2(a, α) ·G2α(ξ)/F2a(x) are

infinitely differentiable and positive on J × J .

We now consider two three-parameter initial-value problems (2) and (4):

D1(a, α, λ) :

{
dφ
dx = H1(x, φ(x))λ,

φ(a) = α,

D2(a, α, μ) :

{
dφ
dx = H2(x, φ(x))μ,

φ(a) = α.

Applying Lemma 5.2 and Corollary 5.2 twice, we obtain:

Lemma 7.4. Suppose f, g, h ∈ Diffeo+(I) and f = gh. Then
(1) the restriction φ = h|J is the solution to problem D1(a, h(a), h

′(d)), whenever
a ∈ J ;

(2) the same φ is the solution to problem D2(a, h(a), h
′(c)−1), whenever a ∈ J ;

(3) the function a �→ H(a, h(a)) is constant on J , equal to h′(c)/h′(d).

To characterize the existence of a conjugating h, we need to formulate the conditions
of this lemma in a way that does not refer explicitly to h. As before, we can do this by
using the differential equations. The following is a consequence of the series of lemmas
from the last section.

Lemma 7.5. Assume the sign condition and Condition (P).
(1) For each a ∈ J , and each α ∈ J , there exists a unique λ > 0 such that the unique

solution φ to problem D1(a, α, λ) has φ(f(a)) = g(α). This φ is a bijection of J onto J ,
and has a one-sided derivative at d, with

lim
x→d

φ′(x) = φ′(d) = λ.

(2) For each a ∈ J , and each α ∈ J , there exists a unique μ > 0 such that the unique
solution ψ to problem D2(a, α, μ) has ψ(f(a)) = g(α). This ψ is a bijection of J onto J ,
and has a one-sided derivative at c, with

lim
x→c

ψ′(x) = ψ′(c) = μ.

So either initial-value problem together with the conjugation equation at one point is
enough to guarantee the conjugation equation on the whole interior J .

With the notation of the last lemma, recall that we denote the unique λ of part (1)
by Λ+(a, α), and the corresponding φ(x) by Φ+(a, α;x). Similarly, we denote the μ of
part (2) by Λ−(a, α) and the ψ by Φ−(a, α;x).

7.3. Extending a conjugation to ends of I. Assuming the sign condition and (P),
we consider the following condition.

Condition (E). There exist a, α ∈ J , for which the solution φ = Φ+(a, α; ·) has a C∞

extension to I (and hence agrees with the solution Φ−(a, α; ·)).
It is clearly equivalent to replace “there exist a, α” by “for each a there exists α” in

the formulation of Condition (E).
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We note the following:

Lemma 7.6. Suppose the sign Condition, (P), and (E). Then if h = φ is a solution to
problem D1(a, α, λ) with g(α) = φ(f(a)) and extends smoothly to the ends of J , it follows
that

(1) h′(d) = λ;
(2) f = gh on clos J ;
(3) h is a solution to problem D2(a, α, h

′(c));
(4) h′(c) = H(a, α)h′(d).

The proof of Theorem 2.8 is now complete.

7.4. Functional moduli. Robbin [25, p. 424] described the solution to the conjugacy
problem on a compact interval, subject to the sign condition, in the case when both
ends are hyperbolic fixed points, i.e., when f ′(c) �= 1 �= f ′(d). (See also [3] and [12,
Chapter 2].)

In that case, Condition (P) reduces to the two equations f ′(c) = g′(c) and f ′(d) =
g′(d), and conjugacy may be characterized in terms of a modulus. Robbin’s modulus
is a diffeomorphism of (0,+∞). He constructs the modulus for f by linearizing the
restrictions of f to {c} ∪ J and to J ∪ {d}, i.e., choosing the (unique) αf : {c} ∪ J →
[0,+∞) and βf : J ∪ {d} → [0,+∞) such that

α(f(x)) = f ′(c) · α(x),
β(f(x)) = f ′(d) · β(x),

whenever x ∈ J , and α′(c) = β′(d) = 1. His modulus is γf = β ◦ α◦−1. The two maps
f and g are conjugate if and only if γf = γg. Thus Robbin’s modulus serves to label
the elements of the uncountable family of conjugacy classes with respect to the group
Diffeo+(I) on the compact interval into which each single conjugacy class with respect
to the group Diffeo+(J ∪ {c}) on one of the half-open intervals splits.

One could try to construct an invariant composed of Taylor series conjugacy classes
and a modulus, for the general nonflat cases. In fact, Young [34] has shown that the
conventional multiplier introduced by Afraimovitch, Liu and Young [1] can be used to
make a modulus for the “saddle-node” case (in which f(x) − f(p) vanishes to precisely
second order at the ends p of I. We expect that this works as soon as f − x is not flat
at either end.

Afraimovitch et al. associated with a suitable diffeomorphism f ∈ S and any fixed
a ∈ J the functions

u+(x) = lim
n↑+∞

f◦n(x)− f◦n(a)

f◦(n+1)(a)− f◦n(a)
,

u−(x) = lim
n↓−∞

f◦n(x)− f◦n(a)

f◦(n+1)(a)− f◦n(a)
,

defined for each x ∈ J . They showed that the limits exist when f − x is not flat at 0.
Also, in that case, each of u± is a smooth bijection of J onto R, and one thinks of u± as
“new coordinates” on J , adapted to f .

It is possible to continue this process, to develop moduli for more of Takens’ cases,
and for diffeomorphisms that are flat at the ends. However the flat (and semi-flat) cases
offer enormous variety, and Condition (E) as it stands seems the simplest way to express
the obstruction to smooth conjugacy, given C1 conjugacy. The modulus conditions are
computable in principle, but the computations are massive.
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§8. Conjugacy in Diffeo+B

Throughout this section, I will be one of R, [−1,+∞), or [−1, 1]. (Each interval with
nonempty interior is diffeomorphic to one of these, and it will be convenient to have 0 in
the interior of I.)

E will be a fixed closed nonempty subset of I, containing any ends that I has, and B
will be the boundary of E.

8.1. Proof of Lemma 2.15. The end p in question is an accumulation point of E, and
hence f −x and g−x are flat there. By assumption, there exists some φ0 ∈ Diffeo+B that
conjugates g to f on I. Since φ0 fixes each point of B, φ0 − x is flat at p. If φ is another
map that conjugates f to g on I, then φ◦−1

0 ◦ φ belongs to the centralizer Cf of f in

Diffeo+B . Since f − x is flat at p, so is every element of Cf by Proposition 6.14. Thus
φ is the composition of two functions that fix p and have Taylor series X there, and the
result follows. �

8.2. Proof of Theorem 2.16. We need only prove the “if” part.
Assume Conditions (M) and (F).
We define a variation of Conj(f, g, J), corresponding to conjugations that fix each

point of B.

Definition. If L is a connected component of I ∼ B′, we denote the set of all maps that
conjugate f to g in Diffeo+B(clos(L)) by ConjB(f, g;L).

The assumption (M) tells us that each ConjB(f, g;L) is nonempty. We have to show
that we can patch together elements of the various ConjB(f, g;L) to get an element of
Diffeo+(I).

We claim that for each L, we may choose h ∈ ConjB(f, g;L) with h − x flat at each
end of L that is not an end of I.

Let p be an end of L that is not an end of I. Then p ∈ B′. There are three cases.
1. p is an accumulation point of L ∩ B. Then since all elements of ConjB(f, g;L) fix

all points of L ∩B, they all have h− x flat at p.
2. p is isolated in L∩B, and p is an end of some component J ⊂ L of I ∼ E (note that

p must be a limit of points of B that lie on the other side of p from J). Then Condition
(F) tells us that all elements of Conj(f, g; J) have h − x flat at p. Thus all elements of
Conj(f, g;L) also have h− x flat at p.

3. p is isolated in L ∩B, and p is an end of some component J ⊂ L of the interior of
E. Then given any h ∈ Conj(f, g;L), we may modify it on J in any way at all (provided
it remains a diffeomorphism of J onto itself) without disturbing the conjugacy, because
f(x) = g(x) = x on J . Thus we can modify it to make h− x flat at p.

So the claim holds. So if we choose h on each L to have h− x flat at each end in the
interior of I, then they automatically fit together to make the desired conjugation. �

§9. Reducing from Diffeo(I) to Diffeo+(I)

In this section we discuss the reduction of the conjugacy problem in the full diffeo-
morphism group to the conjugacy problem in the subgroup of direction-preserving maps.

There is no issue for half-open intervals, since the two groups coincide, so it suffices
to consider the two cases I = R and I = [−1, 1], which represent all other intervals up
to diffeomorphism. (It is convenient to use representatives that are invariant under −.)

9.1. Reducing to conjugation by elements of Diffeo+. The first (simple) proposi-
tion allows us to restrict attention to conjugation using h ∈ Diffeo+(I).
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Proposition 9.1. Let I = R or [−1, 1]. Let f, g ∈ Diffeo(I). Then the following two
conditions are equivalent:

(1) There exists h ∈ Diffeo(I) such that f = gh.
(2) There exists h ∈ Diffeo+(I) such that f = gh or − ◦ f ◦ − = gh.

Proof. If (1) holds, and deg h = −1, then − ◦ f ◦ − = gk, with

k(x) = h(−x).

The rest is obvious. �

9.2. Reducing to conjugation of elements of Diffeo+. The degree of a diffeomor-
phism is a conjugacy invariant, so to complete the reduction of the conjugacy problem in
Diffeo to the problem in Diffeo+, it suffices to deal with the case when deg f = deg g = −1
and deg h = +1.

Note that fix(f) and fix(g) are singletons and lie in int(I). If f = gh, then h(fix(f)) =
fix(g), and (since Diffeo+ acts transitively on int(I)) we may thus, without loss in gen-
erality, suppose that f(0) = g(0) = h(0) = 0.

If f = gh, then we also have f◦2 = (g◦2)h, f−1 = (g−1)h, and f◦2 ∈ Diffeo+.
We have the following reduction.

Theorem 9.2. Let I = R or [−1, 1]. Suppose f, g ∈ Diffeo−, fixing 0. Then the following
two conditions are equivalent:

1. f = gh for some h ∈ Diffeo+.
2. (a) There exists h1 ∈ Diffeo+0 such that f◦2 = (g◦2)h1 and

(b) letting g1 = gh1 , there exists h2 ∈ Diffeo+, commuting with f◦2 and fixing
0, such that T0f = (T0g1)

T0h2 .

See [23, Proposition 2.1] for details.

9.3. Making the conditions explicit. To complete the project of reducing conju-
gation in Diffeo to conjugation in Diffeo+, we have to find an effective way to check
condition 2(b). In other words, we have to replace the nonconstructive “there exists
h2 ∈ Diffeo+” by some condition that can be checked algorithmically. This is achieved
by the following:

Theorem 9.3. Let I = R or [−1, 1]. Suppose that f, g ∈ Diffeo− both fix 0, and have
f◦2 = g◦2. Then there exists h ∈ Diffeo+, commuting with f◦2, such that T0f = (T0g)

T0h

if and only if one of the following holds:

(1) (T0f)
◦2 �= X;

(2) 0 is an interior point of fix(f◦2);
(3) (T0f)

◦2 = X, 0 is a boundary point of fix(f◦2), and T0f = T0g.

Note that the conditions (1)–(3) are mutually exclusive. We record a couple of corol-
laries.

Corollary 9.4. Suppose that f, g ∈ Diffeo− fix 0, and that (T0f)
◦2 �= X or 0 ∈

int(fix(f)). Then f = gh for some h ∈ Diffeo+ if and only if f◦2 = (g◦2)h for some
h ∈ Diffeo+.

In case (T0f)
◦2 �= X, any h that conjugates f◦2 to g◦2 will also conjugate f to g. In

the other case covered by this corollary, it is usually necessary to modify h near 0.

Corollary 9.5. Suppose that f, g ∈ Diffeo− fix 0, and that (T0f)
◦2 = X and 0 ∈

bdy(fix(f)). Then f = gh for some h ∈ Diffeo+ if and only if f◦2 = (g◦2)h for some
h ∈ Diffeo+ and T0f = T0g.
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The last corollary covers the case where 0 is isolated in fix(f◦2) and T0f is involutive,
as well as the case where 0 is both an accumulation point and a boundary point of fix(f).

The detailed proofs may be found in [23]. They use results about conjugacy and
reversibility for formal power series, together with Kopell’s results about centralizers.

§10. Further examples and remarks

10.1. Reduction to fix(f) = fix(g). In relation to the reduction of Subsection 2.12, it
is not true that each map h conjugating g to f may be factored as any smooth map that
maps fix(f) onto fix(g), followed by a smooth map fixing fix(f).

Example 10.1. Take, for instance f(x) = x+sin(x)/10, and g(x) = x−sin(x)/10. Both
fix precisely πZ. They are conjugated by h : x �→ x − π. The identity map h1 maps
fix(f) onto fix(g), but no map fixing fix(f) conjugates f to g, since the multipliers are
wrong.

In general, in searching for a factor h1 as in Proposition 2.13, we may start by clas-
sifying the points p of bdy(fix(f)) (and bdy(fix(g))) according to the conjugacy class of
Tpf (or Tp(g)). This produces two classifications, the f -classification of fix(f), and the
g-classification of fix(g). Only maps h1 that respect these classifications are eligible as
potential factors. Precisely speaking, the eligible maps h1 must be such that Tpf and
Th1(p)g are conjugate Taylor series, for each p ∈ bdy(fix(f)).

Example 10.2. For instance, if we modified the above example by taking

f(x) = x+
sinx

1 + x4
,

then there is no eligible map at all, so f and g are not conjugate.

Example 10.3. If we modified g as well, taking

g(x) = x+
sin 2x

2 + 8x2

(
=

1

2
f(2x)

)
,

then the only eligible h1 are those that have h1(x) = 2x on fix(f) = πZ.
This prompts the question, whether, assuming the maps f and g are conjugate, ev-

ery h1 ∈ Diffeo+ that respects this Taylor-series classification at the boundary points
will serve as a factor of the kind referred to in Proposition 2.13. That would be very
convenient, as it would characterize the diffeomorphisms h1 that we need to find. Unfor-
tunately, the answer is no.

Example 10.4. Take any f ∈ Diffeo+(R) that fixes precisely Z, has f − x flat at each
integer, and is such that the functions on [0, 1] defined by x �→ f(x + n) − n (n ∈ Z)
represent distinct conjugacy classes of Diffeo+([0, 1]). Take g(x) = 1 + f(x − 1). Then
f and g are conjugate, but the map h1(x) = x + 2 won’t do as a factor of the required
kind, because no map that fixes Z will conjugate g to x �→ 2 + f(x− 2).

It is not essential to use a function f that is flat on the boundary to give an example of
this kind. We know that in the nonflat case, Condition (T) is not enough to characterize
conjugacy in Diffeo+(I), for compact I, so we can modify the example to produce the
same end result without having f − x flat at all. The point is that once we have a C∞

diffeomorphism on each interval [n, n + 1] and the two available Taylor series agree at
each n, then they patch together to make a global diffeomorphism.

So there is a substantial problem, from the constructive point of view, concerning how
to search for suitable h1.

However, we know, from Subsection 7.4 that part (3) of Proposition 2.13 can only
work if f1 and g have the same J-modulus, for each component J . This provides a fine
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filter, to cut down the search, because given the Taylor series at one end, there is at most
a one-parameter coset of diffeomorphisms of J that conjugate f1 to g on J . Generically,
the coset is discrete.

10.2. Finite fix(f). We conclude with a summary of our conclusions about the conju-
gacy problem in the special case when fix(f) = fix(g) = E = B is a finite set of points
p1 < p2 < · · · < pk, so that there is only one way to map E = B to itself, preserving
order.

The case when all the points are hyperbolic is classical and has been discussed previ-
ously by Belitskĭı [3]. We include this case in the discussion, for completeness. The first
necessary condition is that Condition (T) holds at each of the fixed points, i.e., that the
Taylor series of f and g be conjugate. At hyperbolic points for f or g, this amounts to
the identity of the multipliers, and at the remaining points p at which f − x is not flat
(“Takens’ points”), it is determined by examining the coefficients of f and g up as far as
the term in X2p+1, where Tpf −X vanishes to order p, but not to order p + 1. At the
points where f − x is flat, the condition is automatic.

Next, we need the sign condition that the graphs of f and g lie on the same side of the
diagonal on each interval complementary to the fixed-point set. This condition follows
automatically from (T) at the hyperbolic and Takens’ points.

Next, we need Condition (P), the convergence of the products (1). This is automatic
at the hyperbolic and Takens’ points, but imposes restrictions to the right and left of the
points where f − x is flat.

Next, we need Condition (E), to the effect that the C1 conjugacies that now exist
include some that are C∞ when restricted to each of the half-open intervals (−∞, p1],
[p1, p2), (p1, p2], [p2, p3), (p2, p3], . . . , [pk,+∞),4 and that on each of the compact intervals
[p1, p2], . . . , [pk−1, pk] there is at least one of these conjugacies that is smooth to both
ends. Note that this means that the maps f and g share the same Robbin invariant.

At this stage, we have nonempty cosets Conj(J) = Conj(f, g; J) of maps that conjugate
smoothly on each closJ . Next we need Condition (M), that we can match some Taylor
series from Conj(J) and Conj(J ′) whenever J and J ′ are adjacent components. This
may still not be enough to make f and g conjugate.

We distinguish the hyperbolic and Takens’ points from the points where f − x is
flat. At the latter, all smooth J-conjugations share the same Taylor series, as do all
J ′-conjugations, so if any series from Conj(J) coincides with a series from Conj(J ′), then
all do, so we can stop worrying about these fixed points.

Let q1 < · · · < qr be the remaining fixed points, the ones at which f − x is not flat.
Write Li = (−∞, qi], Ji = [qi, qi+1] (i < r − 1) and Jr = [qr,+∞).

If r = 1, we are done; f and g are smoothly conjugate. Otherwise Conj(L2) is already
nonempty. We have to assume that Conj(L2) ∩ Conj(J2) = Conj(L3) is nonempty;
otherwise f and g are not conjugate. Checking this condition is a matter of comparing the
set of multipliers (at hyperbolic points) or the set of (2p+1)-st order Taylor polynomials
(at Takens’ points). Each of these sets is a coset of a group. In the hyperbolic case,
unless one of the sets is the full multiplicative group (0,+∞), we are comparing two sets
of the form

{αλn : n ∈ Z} and {βμn : n ∈ Z}
(i.e., two cosets of discrete subgroups of (0,+∞)). In the Takens case, once we conjugate
the series to canonical form, we are comparing the coefficients of Xp+1, which are two
cosets of the additive group R.

4This much is automatic at the hyperbolic and Takens’ points.
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Continuing, we get a decreasing sequence Conj(L4), . . . , Conj(Lr), and if at any stage
it is empty, there is no conjugacy.

If Conj(Lr) is nonempty, the last step is to see whether Conj(Lr) ∩ Conj(Jr) is
nonempty. If this last condition holds, then there is a smooth conjugacy between f
and g, and otherwise not.
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formal geometry, Trans. Amer. Math. Soc. 16 (1915), 333–349. MR1501016

[12] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia

Math. Appl., vol. 54, Cambridge Univ. Press, Cambridge, 1995. MR1326374 (96c:58055)
[13] M. Kuczma, B. Choczewski, and R. Ger, Iterative functional equations, Encyclopedia Math. Appl.,

vol. 32, Cambridge Univ. Press, Cambridge, 1990. MR1067720 (92f:39002)
[14] J. Mather, Commutators of diffeomorphisms, Comment. Math. Helv. 49 (1974), 512–528.

MR0356129 (50:8600)
[15] , Commutators of Cr diffeomorphisms of the real line (unpublished preprint, privately com-

municated).
[16] , On Haefliger’s classifying space. I, Bull. Amer. Math. Soc. 77 (1971), 1111–1115.

MR0283817 (44:1047)
[17] , Integrability in codimension 1, Comment. Math. Helv. 48 (1973), 195–233. MR0356085

(50:8556)
[18] H. Mirkil, Differentiable functions, formal power series, and moments, Proc. Amer. Math. Soc. 7

(1956), 650–652. MR0079064 (18:23g)
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