Environment and Planning B: Planning and Design 2011, volume 38, pages 945951

doi:10.1068/b3806com

Commentary

The programmable city
[TThe city itself is turning into a constellation of computers: Batty (1995)

“The modern city exists as a haze of software instructions. Nearly every urban
practice is becoming mediated by code. Amin and Thrift (2002, page 125)

Software is essential to the functioning of cities. It is deeply and pervasively embedded
into the systems and infrastructure of the built environment and in the management
and governance of urban societies. Software mediates how we understand and plan
cities, how we manage urban services and utilities, and how we live urban lives. As
a result, across a diverse set of everyday tasks—domestic chores, work, shopping,
travelling, communicating, governing, and policing—software makes a difference to
how social, spatial, and economic life takes place. Such is software’s capacities and
growing pervasiveness that some analysts predict that we are entering a new phase
of ‘everyware’ (Greenfield, 2006); that is, computational power will be distributed and
available at any point on the planet.

The phenomenal growth in software creation and use is due to its emergent and
executable properties: how it codifies the world into rules, routines, algorithms,
and databases, and then uses these to do work in the world to render aspects of
everyday life programmable. Whilst it is not fully sentient and conscious, software
can exhibit some of the characteristics of ‘being alive’ (Thrift and French, 2002). This
property is significant because code enables technologies to do work in the world in
an autonomous fashion—that is, it can process data, evaluate situations, and make
decisions without human oversight or authorisation. In other words, it possesses what
Mackenzie (2006) terms ‘secondary agency’. However, because software is embedded
into objects and systems in often subtle and invisible ways, it largely forms a ‘techno-
logical unconscious’ that is only noticed when it performs incorrectly or fails (Thrift,
2004). As a consequence, software often appears to be ‘automagical’ in nature, in that
it works in ways that are not clear and visible, and it produces complex outcomes
that are not easily accounted for by people’s everyday experiences (Kitchin and Dodge,
2011).

And yet, despite its importance, software, the assemblages that support and pro-
mote its production and adoption, and the work that it does in the world are barely
theorised and empirically studied from a social sciences perspective. Instead, software
has been understood from a technical, instrumental perspective that treats it as largely
an immaterial, stable, neutral product, rather than as a complex, multifaceted, mutable
set of relations created through diverse sets of discursive, economic, and material
practices. Where the role of software has been acknowledged, the focus of analysis
has been the technologies and infrastructures that software enables, rather than the
underlying nature of software that powers such technologies. The consequence is to
study how telematic networks shape, for example, traffic management, but to largely
ignore how such effects are manifestly the result of the rules and procedures formalised
within the code of management software. The way the discourses and practices of
traffic management are translated into the routines and algorithms of code is vitally



946 Commentary

important to how the traffic system operates and yet we know hardly anything about
how such translations occur: traffic system into code; code reshaping the traffic system.

Indeed, we know very little about the ways in which software is socially created; the
nature of software itself; how discourse, practices, and knowledge get translated into
algorithms and code; the geographies and political economy of software development;
how software is embedded into various social systems; how software applications work
with each other to create complex assemblages that work within and across scales; the
power wielded through software’s ‘secondary agency’; and how software alternatively
modulates the production of space and transforms the nature of governance. Nor do
we have a good understanding of the social implications of a number of different forms
of computing (pervasive, ubiquitous, sentient, tangible, wearable) that are presently
being developed and rolled out.

My argument in this commentary is about the need for a sustained programme
of research on the nature of software and contemporary urbanism, and in particular
an analysis of the two core interrelated aspects of the emerging programmable city:
(a) translation: how cities are translated into code; and (b) transduction: how code
reshapes city life (see figure 1). One productive way to organise these analyses might be
to frame them with respect to key urban practices. Such an initial analytic framework
is outlined in table 1, focusing on understanding, managing, working, and living in the
city, which is elaborated in the rest of the commentary.

Discourses, practices, knowledges, models

/ Translation: city into code \

Software The city

\ Transduction: code reshapes city /

Mediation, augmentation, facilitation, regulation

Figure 1. The programmable city.

Table 1. A proposed analytical framework for investigating the programmable city.

Translation: city into code Transduction: code reshapes city

Understanding the city How are digital data generated @~ How does software drive public
and processed about cities and policy development and

their citizens? implementation?

Managing the city How are discourses and practices How is software used to regulate
of city governance translated and govern city life?
into code?

Working in the city How does the geography and How does software alter the
political economy of software nature of work?
production shape coding
practices?

Living in the city How is software discursively How does software transform the
produced and legitimated by spatiality of sites?

vested interests?




Commentary 947

Whilst an examination of the relationship between software and cities needs to
build on theoretical ideas and established literatures from geography, urban studies,
and sociology it is critical that the analysis of programmable urbanism draws strongly
from the perspective of the fledgling field of software studies (Berry, 2011; Fuller, 2008;
Galloway, 2004; Kitchin and Dodge, 2011; Mackenzie, 2006; Manovich, 2000; 2008). In
broad terms, this means focusing on software per se—its nature, composition, coding
practices, political economy, spatialities—and not simply the technologies it enables.
This shift in focus is equivalent to the difference between studying the underlying
epidemiology of ill health and the effects of ill health on the world. Whilst one can
understand the relationship between health and society by studying how ill health
affects social relations, one can gain deeper insights by considering the specifics of
different diseases, their aetiology, and how these manifest themselves in shaping social
relations. Software studies then focuses on the aetiology of code, and how code makes
digital technologies what they are, and shapes what they do. It seeks to open the ‘black
box’ of processors and algorithms to understand how software—its lines and routines
of code—does work in the world by instructing technologies and people how to act.
More specifically, it means conceptualising software as both a product of people in
time and space and a transducer of time and space.

The city into code

How are digital data generated and processed about cities and their citizens?

Societies have always generated information about their citizens and environments for
the purposes of monitoring and managing them. With the advent of software-enabled
technologies, more and more data about individuals, their lives and lifestyles, city
infrastructure and services, and the built environment are being generated, stored,
and analysed in new ways. First, there have been significant advances in the ‘tagging’
of people, objects, information, transactions, and territories to make them more
amenable to capture by making them machine readable and to increase the granularity
of capture. Second, the technologies to record data have been widened to include
a range of scanning and sensing devices with associated increases in accuracy, sophis-
tication, distribution, and form. The recording of data is thus more effective and
efficient, often recorded on a continuous basis, with measurement often mobile,
dynamic, in real time, networked, and distributed (Dodge and Kitchin 2005a). Third,
there have been significant advances in the virtual and physical storage of data, along
with a decline in size and cost overheads. Whilst there has been a substantial amount
of work examining the production and analysis of data in the digital age, there is still
the need for a comprehensive, critical, cross-sectoral, and spatial analysis of how cities
and their citizens are ontologically framed, categorised, and captured. Such an analysis
is important because such data provide the raw materials that code works upon, and
thus structure the kinds of analysis and actions that can take place.

How are discourses and practices of city governance translated into code?

Code is the manifestation of a system of thought—an expression of how the world can
be captured, represented, processed, and modelled computationally. Programming
captures and enacts knowledge about the world—practices, ideas, rules, measurements,
locations, equations, images—abstracting the world into defined, stable ontologies of
data and sequences of commands that define relations between data, and details how
those data should be processed. The production of such software is not simply a
technical exercise, as framed by much of computer science. Rather it is a complex
and contingent process, shaped by the abilities and worldviews of programmers and
system designers working in companies situated in social, political, and economic
contexts (Rosenburg, 2007). At present, we have little understanding of how the



948 Commentary

discourses, legalities, and practices of urban life and regulation are translated into
software both with respect to how software developers work to effect such a translation
and how data about the world are conceptualised within the framework of program-
ming beyond a software engineering approach which focuses solely on the technical
aspects of such a translation. There is a critical need, then, for detailed studies of how
developers produce code and the life of software projects in order that we can build
a better understanding of the ways in which software is diversely created.

How does the geography and political economy of software production shape coding
practices?

Software development, like any industry, has a particular space economy to its produc-
tion (Boschma and Weterings, 2005). Its operations are organised and structured both
sectorally and spatially to enable efficient production and minimise costs and maximise
profit. Whilst software creation takes place across the world, it is concentrated in key
sites (for example, Silicon Valley, Bangalore, and Ireland), where there is an agglomera-
tion of skilled labour, entreprencurship, technologies, venture capital, and tax and
development regimes. At these sites, software is the product of a complex interplay of
social, political, and economic processes operating within and across scales. For other
kinds of software production, such as open-source projects, development is often more
dispersed and distributed. Indeed, as Mackenzie (2003, page 3) notes, software is
produced through “complex interactions involving the commodity production, organi-
zational life, technoscientific knowledges and enterprises, the organization of work,
manifold identities and geo-political-technological zones of contact.” The creation of
software is thus placed both with respect to the local milieu and also scaled into
regional and global networks. To date, there has been little research examining how
the creation of software is shaped and scaled by economic and spatial processes.
Rather, research has been directed from a business and computing perspective, often
focusing on organisational matters but lacking a wider contextual framing.

How is software discursively produced and legitimated by vested interests?

The adoption of software and digital technologies, and the systems they underpin, has
been complemented by a broad set of discourses and political mobilisation that have
sought to justify their development and naturalise their use. With respect to the rollout
of software solutions, typical rationales include that software will increase efficiency,
productivity, reliability, flexibility, competitive advantage, profitability, security, and
safety, and will tackle crime and fraud (Dodge and Kitchin, 2005a). Remarkably little
work has examined the ways in which these discourses are bound together in discursive
regimes by a variety of vested interests—government, corporate, and civil—in order
to propagate the adoption of software-enabled technologies. There is a need, then, to
explore how discursive regimes are built through alliances; how they are advanced
through different media such as advertising, press coverage, online media, trade fairs,
staff training, and lobbying; how discursive regimes are supported by legislation and
quasi-legal conventions that legitimate the governmentality that code enacts; how the
discourses promoted are countered by those who question their logic and social
implications; and how the interchange between these sides unfolds to shape how
software is developed, deployed, and received.

Code reshapes the city

How does software drive city policy development and planning?

It is now standard practice that urban information systems and spatial data infra-
structures are used to organise, process, and present data concerning cities and their
citizens in order to provide an evidence and analysis base for public policy development,



Commentary 949

implementation, and monitoring. Such systems form a core part of city management
and foresight exercises related to all aspects of socioeconomic development through
to localised planning and urban design. Indeed, it is now possible to collate and cross-
reference huge quantities of data, to synthesise and analyse such data, model and
simulate potential outcomes, and to output findings in a variety of formats from tables
to charts to maps. As a result, information systems enable more sophisticated and
timely urban analysis, to ask new questions, and to answer those questions in new
ways. Whilst there has been work within fields such as critical GIS on the power
and role of new information systems in shaping public debate and the policy process
(eg, Pickles, 1995), much of this work remains at a fairly abstract and political level,
rather than charting in detail, using empirical studies, how such systems are mobilised
as key discursive resources in shaping policy formulation and implementation.

How is software used to regulate and govern city life?

Over the past two centuries a mode of governmentality has developed in Western
society that is heavily reliant on generating and monitoring systematic information
about individuals by institutions. Software-enabled technologies qualitatively alter
both the depth and the scope of this disciplinary gaze, but also introduce new
forms of governance, because they make the systems and apparatus of governance
more panoptical in nature. At the technical level, software is producing new
machine-readable and software-sorted geographies that are radically altering how
cities are regulated (Dodge and Kitchin, 2005a, Graham, 2005). Software creates
more effective systems of surveillance and creates new capture systems that actively
reshape behaviour by altering the nature of a task. In recent years there has been much
academic attention paid to qualitative changes in surveillance technologies as they have
become digital in nature, leading to the development of a new field of surveillance
studies. That said, there is still much conceptual and empirical work to be done to
understand how forms of governance are being transformed and the role played by
software, and not simply the broader technologies they enable. What are desirable are
in-depth case studies that examine how software is deployed to regulate and govern
city life; how managers of city services understand and use the software at their
disposal; how and why people adopt and submit to forms of management; plots
fully the complex and contingent ways that people understand and react to the
discursive and affective fields of software; and how people use and resist forms of
software-mediated management.

How does software alter the nature of work?

Software has clearly had an impact on how work is performed, workplace culture,
and the structural and spatial organisation of workplaces and companies. Software
mediates all kinds of work tasks across primary, manufacturing, and service sectors,
particularly through the use of software-enabled, information, communication, and
management technologies. Many workers, including academics, are software workers,
using software packages to capture and process data and produce analysis and trans-
mit their work. Software is enabling new work practices, including work on the move.
To a significant degree, code is the structural ‘glue’ that binds distributed and distan-
ciated activities such as logistical chains together. Whilst there has been a vast amount
of research undertaken on how organisations are adopting and utilising software-
enabled technologies, principally from a business and management perspective, it has
little considered the ways in which the software actually functions and sociospatially
structures work practices and processes. There is a need to address this lacuna by
examining in detail how the work at different sites (such as offices, shops, and hospitals)
is being transduced by code; how the sociospatial practices and organisation of work



950 Commentary

in these locales are being reconfigured and rescaled by software; and how software
interfaces, algorithms, and data capture and processing alter the tasks, forms, spaces,
and scales of work.

How does software transform the spatiality of sites?

The nascent work of software studies to date has focused on the role of software in
social formation, organisation, and regulation, as if people and things exist in time
only, with space a mere neutral backdrop. What this produces is historically nuanced,
but largely aspatial accounts of the relationship between software and society. Urban
life, however, does not operate independently of space. Software and the work it does
are the products of people and things in time and space, and it has consequences for
people and things in time and space. To date, there have only been a handful of studies
that have examined how software transforms spatiality (eg, Budd and Adey, 2009;
Crang and Graham, 2007; Dodge and Kitchin, 2005b; Graham, 2005; Kitchin and
Dodge, 2011; Thrift and French, 2002). There is, therefore, a paucity of rich empirical
material and there are numerous outstanding questions concerning the relationship
between software and space with respects to different sites—the home, the farm, the
factory, the station, the public plaza, the street, and so on.

Conclusion

In the years since Batty (1995) noted that the city was “turning into a constellation of
computers” there has been much analysis considering the effects of information and
communication technologies on cities and their form and functions. To date, however,
these analyses have focused largely on the effects of software-enabled technologies, but
have little considered software itself in mediating such effects. My argument has been
that such a consideration of the nature, composition, political economy, and spatialities
of software—an unpacking of its aetiology—is important in order to more fully
understand how the world, and its practices, ideas, rules, measurements, locations,
equations, images, and so on, are captured and worked on by software, and how
such software does work in the world in diverse ways by instructing various technol-
ogies and people how to act. In other words, I have made the case that we are entering
a period of programmable urbanism, and that to understand this new form of urban-
ism we need to examine the various components of how the city is translated into code
and how the resulting software is reshaping city life—that we need to understand the
internal workings of the black box in order to better understand its external work.
In so doing we can start to address a series of important lacunae in understanding and
theorising contemporary urbanism, opening up new comprehensions of the city at a
time when urban life is going through profound changes with respect to its organisation,
scaling, and management.

Rob Kitchin
NIRSA, National University of Ireland Maynooth, County Kildare

References

Amin A, Thrift N, 2002 Cities: Reimagining the Urban (Polity, London)

Batty M, 1995, “The computable city” International Planning Studies 2 155173

Berry D M, 2011 The Philosophy of Software: Code and Mediation in the Digital Age (Palgrave
Macmillan, London)

Boschma R, Weterings A, 2005, “The effect of regional differences on the performance of software
firms in the Netherlands” Journal of Economic Geography 5 567 — 588

Budd L, Adey P, 2009, “The software-simulated airworld: anticipatory code and affective
aeromobilities” Environment and Planning A 41 1366 —1385

Crang M, Graham S, 2007, “Sentient cities: ambient intelligence and the politics of urban space”
Information, Communication and Society 10 789 — 817



Commentary 951

Dodge M, Kitchin R, 2005a, “Codes of life: identification codes and the machine-readable world”
Environment and Planning D: Society and Space 23 851 — 881

Dodge M, Kitchin R, 2005b, “Code and the transduction of space” Annals of the Association
of American Geographers 95 162 — 180

Fuller M, 2008 Software Studies: A Lexicon (MIT Press, Cambridge, MA)

Galloway A R, 2004, Protocol: How Control Exists After Decentralization (MIT Press, Cambridge,
MA)

Graham S, 2005, “Software-sorted geographies” Progress in Human Geography 29 562 — 580

Greenfield A, 2006 Everyware: The Dawning Age of Ubiquitous Computing (New Riders,
Boston, MA)

Kitchin R, Dodge M, 2011 Code/Space: Software and Everyday Life (MIT Press, Cambridge, MA)

Mackenzie A, 2003, “Transduction: invention, innovation and collective life”, www.lancs.ac.uk/
staff/mackenza/papers/transduction.pdf

Mackenzie A, 2006 Cutting Code: Software and Sociality (Peter Lang, New York)

Manovich L, 2000 The Language of New Media (MIT Press, Cambridge, MA)

Manovich L, 2008 Software Takes Command, http://lab.softwarestudies.com/2008/11/softoook.html

Pickles J, 1995 Ground Truth: The Social Implications of Geographic Information Systems
(Guilford Press, New York)

Rosenberg S, 2007 Dreaming in Code: Two Dozen Programmers, Three Years, 4,732 Bugs, and One
Quest for Transcendent Software (Three Rivers Press, New York)

Thrift N, 2004, “Remembering the technological unconscious by foregrounding knowledges of
position” Environment and Planning D: Society and Space 22 175-190

Thrift N, French S, 2002, “The automatic production of space” Transactions of the Institute
of British Geographers, New Series 27 309 —335

p © 2011 Pion Ltd and its Licensors



	Commentary
	The programmable city
	Figure 1
	Table 1

	The city into code
	Code reshapes the city
	Conclusion
	References
	CrossRef-enabled references


