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We consider the spherical boundary, a conformal boundary using a special class of conformal
distortions. We prove that certain bounds on volume growth of suitable metric measure spaces
imply that the spherical boundary is “small” (in cardinality or dimension) and give examples to
show that the reverse implications fail. We also show that the spherical boundary of an annular
convex proper length space consists of a single point. This result applies to l2-products of length
spaces, since we prove that a natural metric, generalizing such “norm-like” product metrics on a
(possibly infinite) product of unbounded length spaces, is annular convex.

1. Introduction

There are various notions of “boundaries at infinity” of metric spaces in the literature. One
of these is the spherical boundary ∂SX of certain unbounded metric spaces, as introduced
in [1]. This is defined in detail in Section 2, but let us mention here that it is a byproduct
of the concept of sphericalization, which replaces an unbounded metric l by a conformally
distorted bounded metric σ. This allows one to interpret results in [2] concerning the
quasihyperbolizations of bounded length spaces in the context of certain unbounded spaces.
To this end, the relationship between l and σ, together with the relationship between their
associated quasihyperbolizations, was studied in [1].

The spherical boundary ∂SX is a key ingredient in studying the invertibility of the
sphericalization process as is clear from the results in [1], but no detailed study of the links
between features of X and features of ∂SX was carried out there. The current paper aims to
throw more light on one such link by proving results of the following type: if the spherical
boundary of a suitable metric measure space is sufficiently large, then X has rapid volume
growth. For instance, contrast Euclidean space R

n whose spherical boundary is a singleton
set (if n > 1) with the hyperbolic plane whose spherical boundary has infinite Minkowski
dimension.
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After some preliminaries in Section 2, Section 3 examines annular convexity and
conditions under which the spherical boundary is a singleton set and annular convexity, and
Section 4 contains the main results.

2. Preliminaries

We denote by a ∧ b and a ∨ b the minimum and maximum, respectively, of numbers a, b.

2.1. Metric Spaces and Paths

Below, (X, d) is always a metric space which may have additional properties as specified.
We denote by Xd the metric closure of (X, d) and, viewing X as a subset of Xd, we write
∂Xd = Xd \ X. Given x, y ∈ Xd, Γ(x, y) denotes the class of rectifiable paths λ : [0, T] → Xd

for which λ|(0,T) is a rectifiable path in X, λ(0) = x, and λ(T) = y. We also define Γd(x, y) to
be the subset of Γ(x, y) consisting of paths that are parametrized by d-arclength. We write
Γ(x, y;X) or Γd(x, y;X) if the space needs to be specified.

Suppose (X, d) is rectifiably connected and, only for this paragraph, let us write
d′(x, y) = infγ∈Γd(x,y)lend(γ), x, y ∈ Xd. When restricted to X × X, d′ defines the inner
metric associated with d. We say that d is a length metric, and that (X, d) is a length space, if
d(x, y) = d′(x, y), for all x, y ∈ X; this equality clearly extends to points x, y ∈ Xd. More
generally, we say that a rectifiably connected metric space (X, d) is a local length space if
d(x, y) = d′(x, y) whenever x ∈ X, y ∈ Xd, and d(x, y) ≤ d(x, ∂Xd). (X, d) is a geodesic
space if, for all x, y ∈ X, there exists a path γ ∈ Γd(x, y) of length d(x, y).

Every domainΩ ⊂ R
n is a local length spacewhen equippedwith the Euclideanmetric,

and a slit disk in the Euclidean plane is a simple example of a local length space that is not a
length space.

Given a local length space (X, d), we define the length boundary of (X, d), ∂0Xd, to be
the set of all points y ∈ ∂Xd for which Γd(x, y) is nonempty for some (and hence all) x ∈ X.
Equivalently ∂0Xd is the set of all y ∈ Xd whose inner distance from some (and hence all)
x ∈ X is finite. If d is a length metric, then ∂0Xd = ∂Xd, but equality may fail if d is merely a
local length space. For instance, if d is the Euclidean metric on a domainΩ ⊂ R

n which spirals
sufficiently tightly near some point y ∈ ∂Ωd, then y /∈ ∂0Ωd.

The rest of our notation is quite standard. We denote by Bd(x, r), Bd(x, r), and Sd(x, r),
the open ball, closed ball, and sphere of radius r about x ∈ X; we omit the d-subscript if the metric
is understood. If r ≤ 0, Bd(x, r) is the empty set. A metric space is proper if all its closed balls
are compact.

An arc in X is an injective path γ : I → X. We do not distinguish notationally between
paths and their images. If γ is an arc inX, and u, v ∈ γ , γ[u, v] is the subarc of γ with endpoints
u, v. Given two d-rectifiable arcs γ, γ ′ in metric spaces (X, d) and (X′, d′) with lend(γ) ≤
lend′(γ ′), we define the initial length map f : γ → γ ′ by the requirement that f maps each
initial segment γ[u, v] of γ to the initial segment γ ′[u′, v′] of γ ′ that satisfies lend′(γ ′[u′, v′]) =
lend(γ[u, v]).

2.2. Metric Measure Spaces

A metric measure space (X, d, μ) is a metric space with an attached positive Borel measure
μ which gives positive finite measure to all balls; if (X, d) is a (local) length space we call
(X, d, μ) a (local) length measure space.
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Suppose (X, d, μ) is a metric measure space and C ≥ 1. We say that (X, d, μ) is C-
doubling if μ(2B) ≤ Cμ(B) whenever tB = B(x, tr) for fixed but arbitrary x ∈ X, r > 0. We say
that (X, d, μ) is C-translate doubling if instead μ(B′) ≤ Cμ(B) whenever B, B′ are overlapping
balls of the same radius or weak C-translate doubling if we merely have μ(B′) ≤ C(1 + r)μ(B)
whenever B, B′ are overlapping balls of radius r.

A measure is doubling if and only if it is translate doubling and the underlying
space has finite Assouad dimension (equivalently, all balls can be covered by a bounded
number of balls of half the radius). Thus, doubling and translate doubling are (quantitatively)
equivalent in Euclidean space and examples of length spaces with translate doubling
measures that fail to be doubling including Hausdorff n-measure on hyperbolic n-space and
arclength measure on the Cayley graph of an n-generator free-group.

The lower Minkowski dimension dimME of a subset E of a metric space (X, d) is defined
by

dimM(E) = lim inf
ε→ 0+

logN(E, ε)
log(1/ε)

, (2.1)

where N(E, ε) is the maximum cardinality of a collection of disjoint open balls of radius ε
and centers in E.

2.3. The Spherical Boundary

A Borel function g : [0,∞) → (0,∞) is said to be a C-sphericalizing function, C > 2, if it has
the following properties:

(S1) g(r) ≤ Cg(s)whenever r, s ≥ 0, r ≤ 2s + 1, and s ≤ 2r + 1;

(S2)
∫∞
r g(t)dt ≤ Crg(r), r ≥ 1.

We recall the following property of a sphericalizing function, taken from [1].

Lemma 2.1. If g : [0,∞) → (0,∞) is a C-sphericalizing function then

(S3) g(s)/g(r) ≤ C2(r/s)1+1/C, for all 1 ≤ r ≤ s.

In particular, tg(t) → 0 as t → ∞.

Suppose (X, l, o) is an unbounded pointed local length space, and let us write |x| =
l(x, o), x ∈ Xl. Given a sphericalizing function g : [0,∞) → (0,∞), we define a new metric
S(l, o, g) on X by the equation:

S
(
l, o, g

)(
x, y

)
= inf

γ∈Γ(x,y)

∫

γ

g(|z|)dl(z), x, y ∈ X. (2.2)

We usually write σ in place of S(l, o, g).
If γ ∈ Γl(x, y), x ∈ X, y ∈ ∂Xl, then it is clear that γ is also of finite σ-length, so the

length boundary ∂0Xl can be viewed as a subset of ∂Xσ . We define the spherical boundary of
X, ∂SX to be ∂Xσ \∂0Xl, and the spherical closure of X to beXσ . Since any point in x ∈ X∪∂0Xl

is at a finite l-distance from o, and since g is bounded away from zero on bounded intervals,
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it follows that a sequence in X is σ-convergent to a point in X ∪ ∂0Xl if and only if it is
l-convergent. It also follows that if x ∈ X, y ∈ ∂SX, and γ ∈ Γσ(x, y), then γ cannot be
contained in any ball Bl(o, r).

We record some useful elementary estimates involving the two metrics l and σ =
S(l, o, g). Below, G(t) ≡ (1 + t)g(t), |x| ≡ l(x, o), δ∞(x) = σ(x, ∂S(X)), and Cg is the
sphericalization constant of g. It follows by standard analysis (as in [1, Proposition 2.14])
that δ∞(x) ≥

∫∞
|x| g(t)dt, for all x ∈ X. Using (S2) and (S3), we readily deduce that

δ∞(x) ≥ C−2
g G(|x|), x ∈ X. (2.3)

Suppose γ ∈ Γl(o, x) for some x ∈ X, with lenl(γ) = L < |x| + 1, and let ν = γ |[s,L], where
γ(s) = v, |v| ≥ 1. Then |γ(t)| ∈ (t − 1, t), 0 ≤ t ≤ L, and so using (S1) and (S2), we deduce that

lenσ(ν) =
∫L

s

g
(∣∣γ(t)

∣∣)dt ≤ C2
g

∫L

|v|
g(t)dt ≤ C3

gG(|v|). (2.4)

3. Spherical Boundaries and Annular Convexity

A metric space (X, d) is said to be C-annular convex for some C ≥ 2 if for every o ∈ X, r > 0,
and every pair of points x1, x2 ∈ B(o, r) \ B(o, r/2) there exists a path γ from x1 to x2 in the
annulus B(o,Cr) \ B(o, r/C) of length at most Cd(x1, x2).

Annular convex spaces, introduced by Herron et al. in [3], form a large class of spaces
that include all Banach spaces (with the exception of one-dimensional real Banach spaces)
and most spaces equipped with a doubling measure that supports a Poincaré inequality (as
follows from the results in [4]).

In this section, we show that finite and countable l2 products of metric spaces are
annular convex. This is of interest to us because of the following simple result.

Proposition 3.1. The spherical boundary of an unbounded proper annular convex pointed length
space (X, l, o) is a singleton set.

Proof. Since X is proper, it follows from [5, Theorem 2.4] that ∂SX is nonempty. We write
|a| = l(a, o), a ∈ X, and let σ = S(l, o, g), where g is a given Cg-sphericalizing function.

Fixing a fix a pair of points z,w ∈ ∂SX, we pick sequences (zn) and (wn) in X
converging to z and w, respectively. Since necessarily |zn| → ∞ and |wn| → ∞, we may
assume that |zn| > n and |wn| > n, n ∈ N.

Joining zn to o by a path of length at most |zn| + 1, and picking a point z′n on this
path with the property that |z′n| = n, it follows from (2.4) that σ(zn, z′n) ≤ C3

gng(n). Using
Lemma 2.1, we deduce that σ(zn, z′n) → 0 as n → ∞. We similarly find points w′

n such that
|w′

n| = n and σ(wn,w
′
n) → 0 as n → ∞.

But by annular convexity and the properties of sphericalizing functions, it is easy to see
that σ(z′n,w

′
n) ≤ C′ng(n), where C′ = C′(C,Cg) and so σ(z′n,w

′
n) → 0. Thus σ(zn,wn) → 0

and so z = w, as required.

Note that the assumption that X is proper in Proposition 3.1 was needed only to show
that the spherical boundary is nonempty. Some such condition is needed to deduce this fact:
for instance if X is a bouquet of line segments of length n for each n ∈ N, joined together by
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identifying with each other the left endpoints of all such intervals, then it is easy to show that
∂SX is empty.

It is clear from the proof of Proposition 3.1 that C-annular convexity can be replaced
by the following formally weaker condition: a metric space (X, d) is weakly C-annular convex,
where C ≥ 1, if for every o ∈ X, r > 0, and every pair of points x1, x2 ∈ X such that d(o, xi) =
r, i = 1, 2, there exists a path γ from x1 to x2 in X \B(o, r/C) of length at most 2Cr. However,
replacing annular convexity byweak annular convexity is of no real benefit in Proposition 3.1,
since for length spaces the two conditions are quantitatively equivalent. We record the simple
argument for completeness.

Proposition 3.2. If a length space is weak C-annular convex, then it is (3C)-annular convex.

Proof. Consider distinct points x1, x2 ∈ B(o, r) \ B(o, r/2). Let di := d(o, xi), i = 1, 2. Join
x1, x2 by a path λ of length less than d(x1, x2) + ε, where ε > 0 is so small that d(x1, x2) +
ε < 2d(x1, x2). Clearly λ remains inside B(o, 3Cr), so it certainly verifies the (3C)-annular
convexity condition if it remains outside B(o, r/3). Assume therefore that λ ventures inside
this ball. Let z1, z2 be the first and last points z on λ such that d(z, o) = r/3, let γ1 be the
initial segment of λ from x1 to z1, let γ2 be the final segment of λ from z2 to x2, and let γ3 be
a path given by weak annular convexity for the pair z1, z2 and center point o. Let γ be the
concatenation of γ1, γ3, and γ2.

Then lend(γ1) + lend(γ2) ≤ ε + d(x1, x2) and weak annular convexity gives lend(γ3) ≤
2Cr/3, so lend(γ) ≤ ε+d(x1, x2) + 2Cr/3. The path λ intersects B(o, r/3) and its endpoints lie
outside B(o, r/2), so r/3 = 2(r/2 − r/3) < d(x1, x2) + ε. Thus

lend

(
γ
)
< (2C + 1)(d(x1, x2) + ε) ≤ 3Cd(x1, x2), (3.1)

when ε > 0 is sufficiently small. By construction, γ remains outside B(o, r/3C) and, since
λ ⊂ B(o, 3Cr), it suffices to verify that γ3 also lies in this ball. But len(γ3) ≤ 2Cr/3, and the
endpoints of γ3 are a distance r/3 from o, so

γ3 ⊂ B

(
o,

(C + 1)r
3

)
⊂ B(o, 3Cr), (3.2)

as required.

It turns out that product spaces are annular convex.

Proposition 3.3. Let (X, d) be the Cartesian product of unbounded length spaces (X1, d1) and
(X2, d2), with d being the l2 product of d1 and d2. Then (X, d) is a 4-annular convex length space.

We get the following immediate corollary of Propositions 3.1 and 3.3.

Corollary 3.4. Let (X, d) be the Cartesian product of unbounded length spaces (X1, d1) and (X2, d2),
with d being the l2 product of d1 and d2. Then the spherical boundary of (X, d) is a singleton set.

Rather than proving Proposition 3.3, we prove a much more general result that is
modeled on the previously mentioned fact that Banach spaces of dimension at least 2 are
annular convex. We will generalize this to a large class of what could roughly be termed
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normed spaces with values in unbounded length spaces (which can vary from point to point).
More precisely, we look at metrics constructed in the following manner.

We begin with a real normed vector space (V, ‖ · ‖) which we assume to consist of
functions defined on an index set I. We say that the norm ‖ · ‖ on V is monotonic on I if

(a) V is a space of real-valued functions on I, that is, V ⊆ R
I .

(b) If f ∈ V , g : I → R, and |g(i)| ≤ |f(i)| for i ∈ I, then g ∈ V and ‖g‖ ≤ ‖f‖.
Assume now that (Xi, di), i ∈ I are metric spaces and let P :=

∏
i∈IXi. We define as

follows the metric subproduct (X, d) of (Xi, di), i ∈ I, relative to some fixed a ∈ P and the
norm ‖ · ‖, which is monotonic on I: if x = (xi)i∈I ∈ P , then x ∈ X whenever f(i) := di(ai, xi)
defines a function f ∈ V , and we define d(x, y) = ‖i �→ di(xi, yi)‖, which makes sense by
monotonicity of the norm. We write (X, d) =

∏V ;a
i∈I (Xi, di).

Theorem 3.5. Suppose V is a normed vector space of dimension at least 2 which is monotonic on I,
and suppose (X, d) =

∏V ;a
i∈I (Xi, di), where each (Xi, di) is an unbounded length space. Then (X, d) is

4-annular convex.

Before proving Theorem 3.5, we discuss metric subproducts X and give some
examples. If x, x′ ∈ X, it is clear that d(x, x′) ≤ d(x, a) + d(a, x′), so certainly d(x, x′) < ∞. It
is routine to verify that d is a metric on X. Although X is defined with respect to some a ∈ P ,
it is clear that we get the same metric space (X, d) if a is replaced by any b ∈ X. However, we
get a metric subproduct disjoint from our original X if we replace a by any b ∈ P \X.

Lemma 3.6. Suppose V is a normed vector space of dimension at least 2 which is monotonic on I, and
suppose (Xi, di) is a length space for all i ∈ I. Then (X, d) =

∏V ;a
i∈I (Xi, di) is also a length space.

Proof. Suppose x, x′ ∈ X and let ε > 0 be fixed but arbitrary. We define a path λ : [0, 1] → X
such that λ(t) = (λi(t))i∈I , 0 ≤ t ≤ 1, with the following important properties which we record
for later reference:

λi : [0, 1] −→ Xi is a constant speed path from xi to x′
i, i ∈ I,

lend(λi) ≤ (1 + ε)di

(
xi, x

′
i

)
, i ∈ I,

(3.3)

d(λ(s), λ(t)) ≤ (1 + ε)(t − s)d
(
x, x′), 0 ≤ s ≤ t ≤ 1. (3.4)

In fact this is quite easy to do: since Xi is a length space, we can certainly pick λi satisfying
(3.3). Then

di(λi(s), λi(t)) ≤ lendi

(
λi|[s,t]

)
= (t − s)lendi(λi) ≤ (1 + ε)(t − s)di

(
x′
i, y

′
i

)
, (3.5)

for all i ∈ I and 0 ≤ s ≤ t ≤ 1. Assembling together these paths λi to get a path λ : [0, 1] → X,
(3.4) follows from the last estimate and the fact that d is defined via a monotone norm. In
particular, (3.4) implies that lend(λ) ≤ (1+ε)d(x, x′). Since x, x′ ∈ X and ε > 0 are all arbitrary,
the result follows.

Suppose we fix o ∈ X, where o = (oi)i∈I . For every i ∈ I and R > 0 we can find a point
zi(R) ∈ Xi such that di(oi, zi(R)) = R: in fact the unboundedness of Xi ensures that there
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exists z ∈ Xi such that di(oi, z) ≥ R, and then we use continuity to pick the required zi(R) on
a path from z to oi. It follows that if v ∈ V , we can find a point xv = (xv

i )i∈I ∈ X such that
di(xv

i , oi) = |vi| and so d(xv, o) = ‖v‖.
We use function notation f(i) for V versus subscript notation xi for X to emphasize

the difference between the normed space (V, ‖ · ‖) and the subproduct (X, d).
The simplest examples of monotonic normed spaces are lp spaces associatedwith finite

or countably infinite I, for 1 ≤ p ≤ ∞. In the case of finite I, the subproduct X coincides as a
set with the full Cartesian product

∏
i∈IXi. In the special case where I has cardinality 2 and

p = 2, we deduce Proposition 3.3.
Beyond the above lp spaces, other examples of monotonic-normed spaces include

lp sums over uncountable index sets, but more interesting examples are normed sequence
spaces of Orlicz or variable exponent lp(·) type.

Note that if I = N and eachXi is the real line, then the subproduct is merely the normed
space V translated by a sequence a ∈ R

N: thus these subproducts are all cosets of V , and any
two such subproducts for different choices of a can be put into a natural 1-1 correspondence.

However, there is not always such a natural 1-1 correspondence. Consider for instance
the case whereXi is the metric subspace of the real line given byXi = {0}∪(⋃n∈N

{n, 1/n}) for
each i ∈ N and V = l2. If a = (0)i∈N

, then it is readily verified that the metric subproduct X :=
∏V ;a

n∈N
Xi has the cardinality of the continuum, whereas if a = (c)i∈N

for any fixed c ∈ Xi \ {0},
then X is a countable space.

It can be shown that this dependence of the cardinality of X on our choice of a does
not occur when the spaces (Xi, di), i ∈ N are length spaces (essentially because its cardinality
is at least that of the continuum if V is nontrivial). However, the above example suggests that
there is in general no natural map from one metric subproduct to another.

Example 3.7. The constant 4 cannot be improved in Theorem 3.5. For instance ifX is the closed
first quadrant of the l1-plane; this choice of X corresponds to taking V to be the l1 plane,
with X1 = X2 being the Euclidean half line [0,∞). Let r = 4, x = (0, 0), y = (2, 0), and
o = (1 + δ, 1 + δ) where 0 < δ < 1. Then every path from x to y intersects B(o, cr) for any
c > 1/4, as long as δ < 4c − 1.

We now move on to the proof of Theorem 3.5.

Proof of Theorem 3.5. Let x, y ∈ B(o, r) \ B(o, r/2) be the pair of points for which we want to
verify the 4-annular convexity condition (with other data r, o as usual), and let S := d(x, o) +
d(y, o), so that S > r. As in the proof of Proposition 3.2, a path γ connecting x and y of
length at most (1 + ε)d(x, y), where ε > 0, verifies the 4-annular convexity condition for data
(x, y, o, r) unless γ intersects B(o, r/4). We may therefore assume that this intersection occurs
and so

(1 + ε)d
(
x, y

) ≥ lend

(
γ
)
>
(
d(x, o) − r

4

)
+
(
d
(
y, o

) − r

4

)
. (3.6)

Taking a limit as ε → 0 we get d(x, y) ≥ S − r/2. In particular, d(x, y) > S/2.
Let us write eA ∈ {0, 1}I for the characteristic function of any A ⊂ I: thus eA(i) = 1 if

and only if i ∈ A. For x ∈ X and A ⊂ I, let xA ∈ X be defined by xA
i = xi if i ∈ A, and xA

i = oi
if i /∈ A. For convenience, we write ei := e{i} and xi := x{i} for any i ∈ I.

Since V has dimension at least 2, monotonicity readily implies that there are distinct
indices j, k ∈ I such that the basic functions ej , ek lie in V .
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We now define “scalar multiplication” on X, restricted to scalar values 0 ≤ α ≤ 1.
Choosing λ : [0, 1] → X to be as in the proof of Lemma 3.6, with (x, x′, ε) = (x, o, ε) and
0 < ε ≤ 1/3, we let α · x := λ(s), where s is the minimal s′ ∈ [0, 1] such that d(λ(s′), o) =
αd(x, o). This definition is typically not unique since λ is not unique, but note that if xi = oi
then (α · x)i = oi for all 0 ≤ α ≤ 1.

Suppose first that we can find some such as A such that d(xA, o) ≥ r/4 and d(yB, o) ≥
r/4, where B := I \A. Let zx := α ·xA and zy := β ·yB for α = r/4d(xA, o) and β = r/4d(yB, o),
so that d(zx, o) = d(zy, o) = r/4. Let λi, i ∈ A, and s be the associated coordinate paths and
argument for α · xA, as in the last paragraph.

Now join x and y by a path γ defined in the following piecewise manner by
concatenating, in the natural order, paths γm : [0, 1] → X, 1 ≤ m ≤ 4. First γ1 is a path
from x to zx which has component paths γ1i : [0, 1] → Xi, where γ1i is a rescaled copy of
λi|[0,s] if i ∈ A (and λ = (λi), s are as above), while γ1i is a constant speed path from xi to oi of
length at most (1 + ε)di(xi, oi) if i ∈ B. Thus, each γi is a constant speed path of length at most
(1 + ε)di(xi, oi), and so lend(γ1) ≤ (1 + ε)d(x, o).

Next let zxy = (zxyi )i∈I , z
xy

i = zxi for i ∈ A, and zi = z
y

i for i ∈ B. Then d(zx, zxy) =
d(zy, zxy) = r/4. Let γ2 : [0, 1] → X be any path zx to z such that the coordinate paths γ2i are
stationary paths for i ∈ A and are of di-length at most (1 + ε)di(zxi , z

xy

i ) for i ∈ B. Since ‖ · ‖ is
a monotonic norm, we deduce that lend(γ2) ≤ (1 + ε)r/4.

Finally γ3 and γ4 are analogues of γ2 and γ1, respectively, but with (x,A, B) replaced
by (y, B,A), and with the directions of the paths reversed. It follows that the d-length of our
concatenated path γ is at most (1+ ε)(S+ r/2) ≤ 3(1+ ε)S/2. Since d(x, y) ≥ S/2 and ε ≤ 1/3,
we deduce that len(γ) ≤ 4d(x, y), as required.

We next need to show that γm, 1 ≤ m ≤ 4, stays outside B(o, r/4). It follows from the
definition of α · x that d(λ1(t), o) ≥ r/4 for all 0 ≤ t ≤ 1, the same estimate follows for γ2 by
monotonicity of the norm and symmetry with γ2 and γ1 then gives the same estimates for γ3

and γ4, respectively.
Finally we need to show that each γm is contained in B(o, 4r). The triangle inequality

ensures that d(γ1(t), o) < r + (ε/2)r < 4r and d(γ2(t), o) < (r/4) + (1 + ε)(r/4) < 4r for all
0 ≤ t ≤ 1. The same estimates for γ3 and γ4 follow by symmetry.

We may therefore make the added assumption that there is no way to split I into
complementary subsets A and B such that d(xA, o) ≥ r/4 and d(yB, o) ≥ r/4. Note though
that for any w ∈ X and A ⊂ I, we either have d(wA, o) ≥ d(w, o) − r/4 > r/4 or d(wI\A, o) ≥
r/4. By our added assumption, it follows that for everyA ⊂ I and B := I\A, either d(wA, o) ≥
d(w, o) − r/4 and d(wB, o) < r/4 both hold for w ∈ {x, y} or d(wB, o) ≥ d(w, o) − r/4 and
d(wA, o) < r/4 both hold for w ∈ {x, y}.

In particular, one of these last pairs of conditions holds for a set A that contains j but
not k. By switching the definitions of (A, j) and (B, k) if necessary, we assume that d(wA, o) ≥
d(w, o) − r/4 and d(wB, o) < r/4 both hold for w ∈ {x, y}, and that j ∈ A. We choose w ∈ X
such that wi = oi for i /= k and d(w, o) = r/4.

As in the previous case, we let zx := α · xA for α = r/4d(xA, o), but now we choose
zy := β · yA for β = r/4d(yA, o). As before d(zx, o) = d(zy, o) = r/4. Also let wx,wy be the
points satisfying wx

i = zxi and w
y

i = z
y

i if i /= k, and wx
k
= w

y

k
= wk.

We now join x and y by a path γ defined in the following piecewise manner by
concatenating, in the natural order, paths γm : [0, 1] → X, 1 ≤ m ≤ 5, where γ1 is a
path from x to zx defined as in the previous case, γ2 is a path of length at most (1 + ε)r/4
from zx to wx which is stationary except in coordinate k, γ3 is a path of length at most
(1 + ε)r/2 from wx to wy which is stationary in coordinate k, γ4 is a path of length at most
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(1 + ε)r/4 fromwy to zy which is stationary except in coordinate k, and γ5 is analogous to γ1

in reverse, but from zy to y. As in the previous case, we see that len(γ) ≤ (1 + ε)S + r. Since
d(x, y) > S/2 > r/2, by taking ε to be sufficiently small we get len(γ) ≤ 4d(x, y), as required.
The fact that γ ⊂ B(o, 4r)\B(o, r/4) can be verified as before, so we leave it to the reader.

The examples that we have so far include the cases where V is an lp or related
space, but we cannot handle general Lp spaces because the requirement that the norm is
monotonic restricts us to spaces V where nonnegative functions that are pointwise less than
a given function in V must also lie in V . This is incompatible with spaces of measurable
functions (unless the sigma algebra is the power set), let alone spaces of continuous or smooth
functions. To get similar results for such spaces, the basic problem is getting fine control over
the relationship between di(λi(t), oi) for different values of i ∈ I and fixed 0 < t < 1, where
λ = (λi) is as in Proposition 3.2. One way to get such control is to assume that each (Xi, di)
is a geodesic space, so that we can assume that λi : [0, 1] → Xi is a constant speed geodesic.
Then λ = (λi) is also a constant speed geodesic and d(λ(t), o) = (1 − t)d(x, o), allowing us
to get analogues of Theorem 3.5 for more general spaces. The assumptions of monotonicity
and dimension at least 2 would need to be replaced by assumptions appropriate to the
context.

4. Large Spherical Boundary and Fast Volume Growth

A metric measure space, even a proper one, can have very fast volume growth and small
spherical boundary, in the sense that its spherical boundary is a singleton set. For instance
the product Riemannian manifoldX = H2×H2 has exponential volume growth and constant
negative Ricci curvature, but Corollary 3.4 implies that ∂SX is a one-point space.

However, implications in the reverse direction are possible. Our Guiding Principle is
that for reasonably general classes of pointed length measure spaces (X, l, o, μ), a large spherical
boundary forces (X, l) to have rapid volume growth. By making appropriate choices for the
vague italicized phrases in our Guiding Principle, we get some theorems. We state and prove
three such results in this section and discuss some relevant examples. In all instances, the
reasonably large class of spaces consists of spaces satisfying a doubling condition or some weak
variant thereof.

Throughout this section, (X, l, o) is a pointed length space, g is a Cg-sphericalizing
function, with associated spherical metric σ = S(l, o, g) and spherical boundary ∂SX. Also
G(t) = (1 + t)g(t), |x| = l(x, o), and δ∞(x) = distσ(x, ∂SX).

In our first result, we assume that ourmetric measure space is doubling. This is a rather
strong condition and it implies slow (meaning polynomial rate) volume growth so, without
any explicit mention of volume growth, we deduce that the spherical boundary is quite small
in the sense of having finite cardinality.

Theorem 4.1. Suppose (X, l, μ) isCμ-doubling. Then ∂SX is a finite set whose cardinality is bounded
by a number dependent only on Cg and Cμ.

In our other results, we replace doubling by translate doubling or weak translate
doubling. Unlike doubling, (weak) translate doubling puts no real constraint on volume
growth, so volume growth enters the statements of our results explicitly.
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Theorem 4.2. Suppose (X, l, μ) is Cμ-translate doubling. If dimM∂SX > 0, then f(r) ≡ μ(Bl(o, r))
grows faster than any polynomial. In fact,

lim inf
r→∞

log f(r)

log2r
> 0. (4.1)

Theorem 4.3. Suppose (X, l, μ) is weak Cμ-translate doubling. If dimM∂SX > 0, then f(r) :=
μ(Bl(o, r)) grows at a polynomial rate or faster, that is,

lim inf
r→∞

log f(r)
log r

> 0. (4.2)

Proof of Theorem 4.1. Suppose ∂SX has at leastN points z1, . . . , zN . Choose 0 < ε < (δ∞(o)/5)∧
(G(1)/9C3

g) so small that the balls 4Bi ≡ Bσ(zi, 4ε) are all disjoint and choose points ui ∈ Bi.
Suppose δ∞(z) ≤ 3ε. Using (2.3), we get

G(|z|)
C2

g

≤ G(1)
3C3

g

. (4.3)

It now follows from (S1) and the definition of G that |z| ≥ 2.
We carry out the following construction for each index i, 1 ≤ i ≤ N. Choose γi ∈

Γl(o, ui)with lenl(γ) = L < |ui|+ 1, and let B′
i := Bσ(vi, ε), where vi is the first point at which γi

meets 3Bi. Now d∞(vi) ≤ 3ε, and so |vi| ≥ 2. Using (2.3) and (2.4), we see that G(|vi|) ≈ ε. In
view of (S3), we see that the distances |vi| are mutually comparable, so let us choose a pair of
mutually comparable radii r, R such that 2 ≤ r ≤ |vi| ≤ R. By (S1), Bl(vi, t) ⊂ Bσ(vi, Cgtg(t))
for every 0 < t ≤ r. We can therefore fix t ≤ r, t ≈ r, so that B′′

i := Bl(vi, t) ⊂ B′
i.

Every B′′
i is contained in the single ball B0 = Bl(o, R + t) and in turn B0 is contained

in each of the balls sB′′
i , s = (2R + t)/t. Since t and R are comparable, doubling ensures that

μ(B0) ≤ C1μ(B′′
i ), where C1 depends only on Cμ and (2R + t)/t � 1. Since B0 contains N

disjoint balls of measure at least μ(B0)/C1, it follows that N ≤ C1, as required.

Proof of Theorem 4.2. Part of the proof is similar to that of Theorem 4.1, so we will be sketchy.
Since dimM∂SX > 0, there are constants c, Q > 0 such that ∂SX contains cε−Q disjoint σ-balls
Bε,i of radius ε for all 0 < ε ≤ diaσ(X). Taking εj = A−jdiaσ(X) for a fixed number A > 1, we
can associate radii tj such that each of the cε

−Q
j balls Bεj ,i contains an l-ball B′′

j,i whose radius
is tj and whose distance from the origin is contained in the interval [rj , Rj] for some numbers
rj , Rj are comparable with tj ; the constants of comparability can be taken to depend only Cg .
We assume, as we may, that A is chosen so large that cε−Qj ≥ 2j , r1 ≥ 1, and Rj + 2tj < rj+1,
j ∈ N. Note also that the ratios rj+1/rj are uniformly bounded by a constant dependent only
on A and Cg , so that log rj ≈ j.

Translate doubling ensures that the balls B′′
j,i are of comparable measure with Bj ≡

Bl(o, rj), so there exists a constant C > 0 such that f(rj+1) ≥ 2jf(rj)/C for each j ∈ N. Iterating
this, we get that f(rj) ≥ 2j(j−1)/2f(r1)/Cj . Since log rj ≈ j, the result follows.
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We omit the proof of Theorem 4.3 as it is so similar to that of Theorem 4.2. In fact
it differs from it only in the last paragraph above, and the required modifications are
straightforward.

We now consider some examples. All of our examples are either n-dimensional
Riemannian manifolds or one-point joins of a finite number of n-dimensional Riemannian
manifolds (meaning that the distinguished points o in these manifolds are all identified with
each other). In all these cases, the associate measure is the usual measure on a Riemannian
manifold (or equivalently Hausdorff n-measure).

It is easy to give examples relevant to Theorem 4.1. Euclidean space R
n has spherical

boundary of cardinality 2 for n = 1, and 1 for n > 1: the n = 1 case follows easily from the
definition, while the n > 1 case follows for instance from Corollary 3.4. The one-point join at
0 of k ∈ N copies of the half-line [0,∞) is a doubling space whose spherical boundary has
cardinality k.

We do not know whether or not there exists a space (X, l, μ) that satisfies the
assumptions of Theorem 4.2 and has sharp volume growth rate

lim inf
r→∞

logμ(Bl(o, r))

log2r
< ∞. (4.4)

However, hyperbolic space (Hn, l, μ) is an example of a translate doubling space with much
faster volume growth whose spherical boundary has infinite Minkowski dimension, as
follows from the following more precise result.

Proposition 4.4. Let σ = S(l, o, g) be the sphericalized metric onHn for the standard sphericalizing
function g(t) = (1+ t)−2. The minimum numberNr of σ-balls of radius r > 0 required to cover ∂SHn

satisfies

C−1
n rn−1 exp

(
(n − 1)

r

)
≤ Nr ≤ Cnr

n−1 exp
(
2(n − 1)

r

)
, (4.5)

where Cn depends only on n. For a general sphericalizing function g, Nr grows faster than
cg · exp((n − 1)/rcg )/Cn, where cg, Cn > 0 depend only on their subscripted parameters.

Proof. We assume that n = 2: this does not change anything essential in the proof but it
simplifies the notation. It suits us to think of H2 as the warped product B ×f F, where
B = [0,∞), F = S1, and the warping function is f(t) = sinh t. We identify ∂SH

2 with F as
a set and view F as the set of points in the complex plane of the form exp(iθ), θ ∈ R. For the
moment, assume that g(t) = (1 + t)−2. Due to the symmetry of H2, to get the lower bound
on Nr , it suffices to show that σ(exp(iθ), 1) ≥ 2r, whenever θ ≈ exp(−1/r)/r, is sufficiently
small.

Suppose we join exp(iθ) with 1 via a path γ whose B-coordinate achieves a minimum
value s ≥ 0. Considering only the horizontal component of arclength, we deduce from that
lenσ(γ) ≥ 2

∫∞
s g(t)dt = 2/(1 + s). Considering only the vertical component of arclength, we

have lenσ(γ) ≥ H(s) := θg(s) sinh s. Thus σ(exp(iθ), 0) ≥ m, where m is the minimum over
all s ≥ 0 ofM(s) := 2/(1+s)∨H(s). Since wemay take θ to be less than θ0 for any θ0 > 0 of our
choice, we may assume that the minimum of M(s) occurs when s > 1. But then m equals the
minimum over all s ≥ 1 of 2(1+s)−1∨(θ(1+s)−2 sinh s), which occurs when 1+s = θ sinh(s)/2.
Taking r = 1/(1 + s) in this last equation gives θ = 2 sinh(1 − 1/r)/r, as required.
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To obtain an upper bound on Nr , it suffices to consider the path γ consisting of a
horizontal segment from exp(iθ) to the point with first coordinate swhere s = θ sinh(s), then
the shorter vertical segment to the point with second coordinate 1, and finally a horizontal
segment to 1 ∈ F = ∂SH

2. Then σ(exp(iθ), 1) ≤ lenσ(γ) = 2/(1 + s) +H(s), where H(s) is as
above. Taking s as above gives the required upper bound for Nr .

For a general sphericalizing function g, we obtain as above that

lenσ

(
γ
)

� G(s) ∨ (
θg(s) sinh s

)
, (4.6)

where G(s) = (1 + s)g(s). This lower bound is minimal when 1 + s = θ sinh s. Using the fact
that G(s) decays at a polynomial rate as s → ∞, it is a routine matter to obtain the desired
conclusion.

Finally we show that Theorem 4.3 is sharp by considering the warped product (X, l),
where X = B ×f F, B = [0,∞), F = S1, the warping function is f(t) = t2, and the
sphericalizing function is g(t) = (1 + t)−2. We take o ∈ X to be the (unique) point with first
coordinate 0.

Proposition 4.5. If (X, l, o) is as above then (∂SX, σ) is bilipschitz equivalent to the arclength metric
on S1. Moreover, (X, l, μ) is weak translate doubling, where μ is Hausdorff 2-measure.

Proof. As in the proof of Proposition 4.4, a lower bound on σ(exp(iθ), 0) is given by the
minimum m over all s ≥ 0 of 2/(1 + s) ∨ H(s), where H(s) = θf(s)g(s). Taking θ > 0 to
be small, we may assume that the minimum occurs when s > 1. But then m is comparable
with the minimum over all s ≥ 1 of s−1 ∨ θ, which occurs when s = 1/θ and equals θ. Thus
σ(exp(iθ), 0) � θ.

On the other hand, as in Proposition 4.4, we see that

σ
(
exp(iθ), 1

) ≤ 2
1 + 1/θ

+ θg

(
1
θ

)
f

(
1
θ

)
≈ θ, 0 < θ ≤ π. (4.7)

The fact that X is weak translate doubling follows from the fact that there exists constants c,
C > 0 such that c(r2 ∧ r3) ≤ μ(Br) ≤ C(r2 ∨ r3) whenever Br is a ball of radius r > 0. We leave
this as an exercise to the reader.

Note that the space X in Proposition 4.5 and Euclidean 3-space have the same volume
growth rate, but ∂SX is topologically S1 (at least for g decaying no faster than the standard
sphericalizing function) whereas ∂SR

3 is a one-point space. This again emphasizes that
although the size of the spherical boundary constrains volume growth (for a large class of
spaces), volume growth does not determine the size of the spherical boundary. We have also
seen that restrictions such as negative Ricci curvature in the case of Riemannian manifolds is
also not sufficient to ensure a nontrivial boundary. We would need more detailed curvature
conditions, like an upper bound on the decay rate of Alexandrov curvature, in order to obtain
results in that direction.
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