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Abstract This paper presents multiple kernel learning

(MKL) regression as an exploratory spatial data analysis

and modelling tool. The MKL approach is introduced as an

extension of support vector regression, where MKL uses

dedicated kernels to divide a given task into sub-problems

and to treat them separately in an effective way. It provides

better interpretability to non-linear robust kernel regression

at the cost of a more complex numerical optimization. In

particular, we investigate the use of MKL as a tool that

allows us to avoid using ad-hoc topographic indices as

covariables in statistical models in complex terrains.

Instead, MKL learns these relationships from the data in a

non-parametric fashion. A study on data simulated from

real terrain features confirms the ability of MKL to enhance

the interpretability of data-driven models and to aid feature

selection without degrading predictive performances. Here

we examine the stability of the MKL algorithm with

respect to the number of training data samples and to the

presence of noise. The results of a real case study are also

presented, where MKL is able to exploit a large set of

terrain features computed at multiple spatial scales, when

predicting mean wind speed in an Alpine region.

Keywords Multiple kernel learning � Support vector

regression � Feature selection � Wind resource estimation �
Topographic features/indices extraction

1 Introduction

In recent years, machine learning algorithms (Bishop 2006;

Hastie et al. 2009) have gained significant importance as a

set of tools for modeling geo- and environmental spatio-

temporal data (Kanevski 2008). These algorithms derive

functional dependencies directly from observations thus

allowing the data to speak for themselves without having

recourse to physical models. Physical models are often

computationally heavy to run, difficult to calibrate and they

need complex schemes for assimilating the growing

amounts of empirical data (Evensen 2006). Meanwhile,

machine learning algorithms are applicable to a wide range

of situations and problems when the exploration of

empirical dependencies hidden in data is needed to infer a

computational model. Due to the increased accessibility of

real-time data, data-driven techniques provide an interest-

ing way to approach these challenges.

The present research explores the use of a contemporary

data-driven machine learning method applied to the spatial

predictions of the long term average wind speed. Wind

speed mapping is a fundamental task for natural resources

evaluation, optimal allocation of wind farms and single

turbines, climatological analysis in general and, particu-

larly, for understanding the local topography-related

patterns of wind speeds (Whiteman 2000). The complex

non-linear relations with topography make wind speed

prediction mapping in rough terrains a challenging problem

for physical models and an interesting case study for data-

driven statistical methods.
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Most state-of-the-art models for evaluating long term

wind speeds are based on physical-dynamical equations

(Ayotte 2008; Ayotte et al. 2001; Baines 1997; Eidsvik 2005,

Eidsvik et al. 2004; Franck et al. 2001; Gravdahl 1998;

Palma et al. 2008). However, statistical data-driven models

are rapidly emerging thanks to the increased data availability

(Beccali et al. in press; Cellura et al. 2008; Liston and Elder

2006; Pozdnoukhov et al. 2007; Schaffner and Remund

2005). The choice of the nature of the model is driven by the

quantity and the quality of data, the complexity of topogra-

phy and the scale of analysis. Physical-dynamical models are

often used for meso-scale modeling and statistical ones for

micro-scale modeling to account for topographic influences

(Petersen et al. 1998). An overview of different approaches

to wind speed mapping is given by Landberg (2003).

Topographic information is of crucial importance for both

statistical and physical models used to spatialize wind fields,

especially in mountainous regions. The state-of-the-art sta-

tistical model developed for the Alpine region takes into

account the contribution of topographic indices (Schaffner

and Remund 2005). Relying on prior physical knowledge,

the effects of terrain curvature and slope, the presence of

lakes or canyons, are introduced in the model by adding ad

hoc corrections. A linear regression model is calibrated then

to introduce the mutual impact of these correction terms to

the observed mean wind speed. In operational modeling of

wind-related phenomena at regional scales (such as snow

deposition and redistribution) topographic corrections are

widely accepted as a baseline factor to account for (Liston

and Elder 2006). It is interesting to note that even more

complicated situations such as channeling and deflection can

be approached by generating specific terrain indices/features

related to these effects (Lindsay and Rothwell 2008).

In this paper, we propose a strategy based on automatic

data-driven generation of terrain features for their use in

statistical regression techniques adopted from machine

learning. In this framework, topographic features are com-

puted from the digital elevation models (DEM) of the terrain

and are directly used in predictive regression models for

mapping of environmental variables such as temperature

(Pozdnoukhov et al. 2009), wind speed (Pozdnoukhov et al.

2009) or precipitation (Foresti et al., in press). In these

studies, non-parametric data driven models such as artificial

neural networks (ANN, Haykin 1999) and support vector

regression (SVR, Smola and Schölkopf 1998) have shown

excellent performances. However, the dimensionality of the

input space of predictors composed of the extensive set of

topographic features can become very large. Even though

using more information may seem appealing and potentially

useful, it also poses some hard problems and new challenges.

The high number of redundant features induces collinearity

problems and provokes the well-known overfitting phe-

nomenon (Hughes 1968).

To avoid these undesired effects, an application of fea-

ture selection techniques (Guyon et al. 2006) can be fore-

seen. Feature selection allows the reduction of data

dimensionality and gives insights about the phenomenon

thanks to the analysis of the relevance of each contributing

factor. Moreover, by the automatic relevance determination

these techniques hopefully enhance performance as a

consequence of the reduction of noise in data. Finally, if

applied operationally, the model with a reduced set of

features is computationally faster.

There are three groups of feature selection methods:

filter methods ranking the features according to predefined

relevance criteria such as correlation coefficient, wrapper

methods involving the predictor as a part of the selection

process by scoring the predictive power of features (for

example, recursive feature elimination is a particularly

popular method for support vector machines (SVM, Guyon

et al. 2002)) and embedded methods, which are algorithm-

specific, performing feature selection as a part of the

training process.

In this paper we present a solution combining the effi-

ciency of kernel methods (Schölkopf et al. 2002), which

are among the most successful machine learning algo-

rithms, and feature selection through the use of multiple

kernel learning (MKL, Bach et al. 2004; Lanckriet et al.

2004). The method consists in building a kernel as a con-

vex combination of basis kernels built using a single fea-

ture or meaningful sets of features. By attributing a single

feature (or features subset) to a dedicated kernel, the gen-

eral problem can thus be divided into a set of sub-problems

which are expected to be simpler. Since a large number of

parameters is involved, exhaustive search is computation-

ally heavy and therefore several efficient optimization

schemes have been proposed in the machine learning lit-

erature (Gönen and Alpaydin 2008; Sonnenburg et al.

2006; Zien and Ong 2007).

In this study, an efficient optimization scheme based

on the recently proposed SimpleMKL algorithm (Rak-

otomamonjy et al. 2008) is used with support vector

regression as a wrapper method for finding the optimal

weighting of M basis kernels. First applications of this

scheme have been recently proposed for remote sensing

images (Tuia et al., in press), wind speed mapping (Foresti

et al. 2009) and speaker verification (Longworth and Gales

2008) with promising results. Moreover, prior to the

development of the SimpleMKL scheme, the MKL

framework was already applied to the extraction of relevant

genes from biological sequences (Rätsch et al. 2006;

Sonnenburg et al. 2006). A related kernel-based model was

investigated in Pozdnoukhov and Kanevski (2008) for

modeling multiscale environmental data. There, an indi-

vidual weight was assigned to each kernel for all the N

samples, resulting in an optimization problem of NM
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weights. This allows considering spatially-varying mix-

tures of kernels, but the optimization problem becomes

intractable for large number of features and large data sets.

In the current study, weights are assigned to each kernel for

all the samples that is, N ? M weights in total. Although

by using this approach one can not introduce a multi-scale

model where the scales vary spatially, the computational

load in training is reduced significantly.

In the present research performances of the conventional

SVR and its MKL extension are compared on both simu-

lated and real data, and the use of MKL is analyzed as a

feature exploratory tool.

The scheme in Fig. 1 summarizes the applied modeling

methodology. The framework proposed has a twofold

objective: first, the generation of supplementary data using

expert knowledge, and second the modeling of high-

dimensional data via nonparametric data-driven approa-

ches accounting for the relevance of input information.

The paper is organized as follows. After a brief intro-

duction to statistical learning from data, Sect. 2 discusses

the methods and the algorithms, with particular emphasis

on the proposed MKL-based scheme. Section 3 describes

the computation of topographic features from DEM used in

this study. The experiments are then presented in the two

following sections, first considering simulated topographic

patterns (Sect. 4) and then using real data (Sect. 5). Finally,

Sects. 6 and 7 summarize the main findings and conclude

the paper.

2 Machine learning algorithms

This section presents some basic concepts of machine

learning and focuses on the support vector regression

method used in the experiments. Afterwards, the general

framework of multiple kernel learning and the optimization

scheme used in this study are presented.

2.1 Statistical learning theory

Statistical learning theory (SLT) is a framework developed

by Vapnik (1995) in order to assess and control the gen-

eralization capability of a statistical predictive model. SLT

introduces the principle of structural risk minimization,

which provides a constructive way for selecting models

capable to generalize the observed dependence from

empirical data. It consists in minimizing the bound on the

(unknown) expected risk

RexpectedðhÞ�RempðhÞ þ Rconf ðhÞ ð1Þ

where Remp is the empirical risk (computed using a loss

function such as the mean squared error over training data),

and Rconf is the confidence interval which penalizes

excessively complex models. The generalization skills on

new data are reached by controlling the model’s com-

plexity h. SLT has been introduced to work with finite

datasets and does not need to take restrictive assumptions

on the statistical distribution of data.

The aim of SLT is to find an optimum fit to training

data and generalization capabilities (Fig. 2). Simple

models (left side of Fig. 2) provide high empirical risk

(they cannot fit to training data) but because of their

simplicity they are not penalized. This situation is referred

to as undertraining or underfitting. On the contrary, too

complex models (right side of Fig. 2) result in low

empirical risk. However, their expected risk will be high

since they rely too much on the noisy and incomplete

training set used resulting in a high generalization error.

This situation is called overfitting or overtraining. Both

overfitting and underfitting are not desirable because of

their low generalization abilities. The optimal model lies

in the middle of these two limit cases and corresponds to

a compromise between model complexity and training

error. A related notion depicting this situation is the bias-

variance dilemma (Hastie et al. 2009).

2.2 Support vector regression

Support vector regression is a non-linear robust method for

regression estimation (Smola and Schölkopf 1998). SVR

intrinsically controls the complexity of the model accord-

ing to SLT and provides accurate results when dealing with

high-dimensional and noisy data.

Monitoring network Other sources

Supplementary 
data

Available data

Exploratory data
 analysis

Feature selection

Modeling

Predictions
Model testing

Fig. 1 Schematic outline of the proposed methodology
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Given a set of N training data fðxi; yiÞgi¼1;...;N where xi 2
RD is the input feature vector and yi 2 R is the output, or

target, SVR maps the data into a higher dimensional space

where a linear regression f(x) = w>x ? b can be found.

The linear regression problem is solved by defining the

minimal width hyperplane that contains most of the

observations within its margin (Fig. 3, right). This plane is

uniquely defined by w and b and is determined geometri-

cally by the samples lying on the borders of the margin.

These points are called support vectors and are important

training samples which are expected to give the most

valuable information to solve the problem.

The mapping x 7!uðxÞ into a higher dimensional space

is achieved implicitly by applying a kernel function. These

are symmetric positive-definite functions (Mercer 1905;

Schölkopf 2001) representing dot products (a measure of

similarity) between training pairs in a reproducing kernel

Hilbert space (RKHS, feature space). This implicit map-

ping allows to find the SVR solution without computing the

explicit mapping of data points. For an appropriately

chosen kernel function there exists a linear regression in

the related RKHS which translates into a non-linear solu-

tion in the original input space.

Since real data often contain outliers and highly noisy

measurements, a ‘‘soft margin’’ version of SVR exists.

During the optimization of the SVR weights, points far (at

a distance of ni) from the e-tube can be penalized,

providing a final regularized solution. The parameter which

controls the degree of penalization of the solution is the C

parameter. A high C means that the user is confident with

the data and SVR will find complex solutions staying close

to the observations. On the contrary, a low C leads to a

function which remains as simple as possible and ignores

data points that are far outside the e-tube.

The soft margin SVR can be formulated as a constrained

minimization problem:

minf ;b;ni

1

2
fk k2þC

X

i

ðni þ n�i Þ

s:t: yi � f ðxiÞ� �þ ni 8i;
f ðxiÞ � yi� �þ n�i 8i;
ni� 0; n�i � 0 8i:

ð2Þ

The minimum is found by minimizing the squared norm

fk k2
of the regression function and the penalization term

for data
P

iðni þ n�i Þ lying outside the e-tube (Fig. 3). The

primal problem of Eq. 2 is solved in its dual form using

Lagrangian multipliers. We present it directly substituting

the dot products with a kernel function:

maxa;b

X

i

ðbi � aiÞyi � �
X

i

ðbi þ aiÞ

� 1

2

X

i;j

ðbi � aiÞðbj � ajÞKðxi; xjÞ

s:t:
X

i

ðbi � aiÞ ¼ 0;

0� ai�C; 0� bi�C 8i:

ð3Þ

Finally, the SVR decision function is provided by the linear

expansion of kernel functions K(x, xi):

f ðxÞ ¼
XN

i¼1

ðai � biÞ � Kðx; xiÞ þ b; ð4Þ

where a and b are Lagrangian coefficients, nonzero only

for support vectors. This way, the solution is sparse,

because it does not depend on all the available training

data, but only on important samples. Due to the convexity

of the problem, as the kernel function is positive definite,

the SVR solution is unique.
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Fig. 2 Structural risk minimization: the optimal model is the one that

minimizes the sum of the empirical risk and the confidence term

Fig. 3 SVR scheme. Support

vectors are represented with

dots; the noisy data inside the

e-tube (crosses) are not involved

during the prediction part

54 Stoch Environ Res Risk Assess (2011) 25:51–66

123



Sparseness is a key feature of SVR and comes from the

use of an e-insensitive loss function (see Fig. 3). This

property, together with linearity of the loss function, is

partly responsible for the robustness of SVR model (Huber

1964) as only a reduced part of available data composed of

support vectors is used.

To find the best function to model the data, at least three

parameters have to be optimized: C, e and the hyperpa-

rameters of the kernel. When large datasets are available,

data can be split into training, validation and testing subsets.

Training data are used to build the model, validation data

are used to find optimal hyper-parameters (model selection)

and testing data serve for a final evaluation of the general-

ization ability of the model (model assessment). Whenever

data are scarce, cross-validation leave-k-out techniques are

preferable in order to avoid problems of representativity.

2.3 Learning with multiple kernels

Often, the SVR problem of Eq. 3 is solved using closed

form kernels such as the polynomial K(x, x0) = (x�x0 ? 1)p

or the Gaussian (radial basis function, RBF) kernel

Kðx; x0Þ ¼ e�
x�x0k k2

2r2 which maps the data into a potentially

infinite dimensional space (Schölkopf et al. 2002). Such

kernels are rigid representations of the data and may be

replaced by more flexible and data-adapted kernels. The

use of multiple kernels can enhance the performance of

the model (described by Eq. 4) and, more importantly, the

interpretability of the results. A multiple kernel in the sense

of Lanckriet et al. (2004) is built by using a convex com-

bination of basis kernels. In this case the kernel function

K(x, x0) can be replaced by a convex linear combination of

kernels

Kðx; x0Þ ¼
XM

m¼1

dmKmðx; x0Þ with dm� 0 and
XM

m¼1

dm ¼ 1

ð5Þ

where dm are the weights associated to each kernel. For a

given weight vector d, the associated feature space is the

sum of all feature spaces H1; . . .;HM for which dm [ 0.

Multiple kernel learning aims at optimizing simultaneously

the SVR coefficients a and b and the weights d.

This formulation is very flexible and can be used in a

variety of situations. For example, each kernel Km can

operate on the particular features predefined by the user, or

a combination of features accounting for different proper-

ties of the dataset. Moreover kernels accounting for the

same features, but using different kernel parameters, can be

considered in order to model different length scales. When

kernels are associated to single features MKL provides a

basis for feature/kernel selection.

2.4 SimpleMKL for support vector regression

SimpleMKL (Rakotomamonjy et al. 2008) is a recently

proposed efficient method for optimizing the weighted

combination of kernels of Eq. 5. Similarly to Sonnenburg

et al. (2006), SimpleMKL wraps an SVR solver consider-

ing the kernel of Eq. 5 as a fixed single kernel. A gradient

descent on the SVR’s objective function J(d) in the space

of kernel coefficients d is then iterated. The multiple kernel

adaptation of the primal SVR problem Eq. 2 is:

min
d

JðdÞ such that
XM

m¼1

dm ¼ 1 and dm� 0 8m

ð6Þ

JðdÞ ¼

minf ;b;ni

1
2

P
m

1
dm

fmk k2
Hm
þC

P
iðniþ n�i Þ

s:t: yi�
P

m fmðxiÞ� b��þ ni 8i;
P

m fmðxiÞþ b� yi��þ n�i 8i;
ni�0;n�i �0 8i

8
>>>>><

>>>>>:

ð7Þ

This is basically the usual formulation of the SVR,

except the function f(x) which has been replaced by the

linear combination of basis functions
P

m fmðxÞ. MKL

optimization is done on two levels. The outer level

optimizes the weights vector d (Eq. 6) while the inner level

optimizes the SVR model function (Eq. 7). Sparseness of the

final d vector is due to the l1-norm regularization of the

weights dm which enhances feature/kernel selection skills.

The dual formulation of Eq. 7 can be derived and is

similar to the dual formulation of the SVR problem in Eq.

3. The difference between the two formulations lies in the

use of the linear combination of kernels
P

m dmKmðxi; xjÞ .

The update of the weights vector d to minimize J(d) at the

outer level is goverened by:

oJ

odm
¼ �1

2

X

i;j

ðb�i � a�i Þðb
�
j � a�j ÞKmðxi; xjÞ: ð8Þ

Using the per-component derivatives, a gradient direction is

found for each component of the d vector. The final updating

scheme for d is d dþ cD , where c is the step size and D is

the descent direction computed using the reduced gradient

algorithm (Faure 1965; Freund 2004). The reduced gradient

used in Rakotomamonjy et al. (2008) allows to respect the

equality and positiveness constraints of Eq. 6. The flowchart

in Fig. 4 resumes the main SimpleMKL steps.

The magnitude of the coefficients dm provides a criterion

for feature selection and enhances the interpretability of the

model. In the case where the basis kernels Km(xi, xj)

operate only on predefined subsets or even individual input

features, kernels with small (or null) dms, do not contribute

to the solution. Then, in the sense of feature selection, the

corresponding features can be omitted from the analysis.
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SVR and simpleMKL codes are freely available1 (Canu

et al. 2005).

3 Topographic feature extraction

The experiments presented in this paper deal with spatial

predictions based on a small number of observations.

Geostatistics provides a set of well-developed tools to

approach such a task (Cressie 1993). However, X and Y

coordinates2 can fail at describing such complex phenom-

ena. The dependencies to topography and the inherent

nonlinearity of the phenomenon force an analyst to add

knowledge to the model. This is usually done by intro-

ducing some primary (directly computed from digital ele-

vation models) or secondary (process-specific values

combining two or more primary attributes) topographic

indices (Wilson and Gallant 2000) as predictors in a sta-

tistical regression model. A small number of fixed ad-hoc

attributes are usually computed at the chosen spatial scale.

In this paper, we considered such information by adding

topographic features extracted from the real terrain of the

Swiss Alps. The DEM of Switzerland used in this study is

available from the Swiss Federal Office of Topography. It

has the resolution of 250 m. Topography-related features

were computed from DEM using convolutional filters

(Freeman and Adelson 1991) and stacked into a single

vector following the three available features X, Y (coor-

dinates) and Z (altitude). Three sets of features have been

considered:

1. Gaussian smoothing filters. By subtracting two

smoothed DEM surfaces obtained with different

smoothing bandwidths, the ridges and canyons of

different characteristic length scales are highlighted

(Fig. 5). These features are referred to as Differences

of Gaussians, DoG. The set of DoGs is generated by

gradually increasing the widths of the smoothing

kernels. The resulting set of features describes terrain

convexity at different spatial scales.

2. Terrain slopes. The norm of the terrain gradient, which

is proportional to slope, is computed at different scales

on smoothed DEM surfaces.

3. Directional derivatives. The gradient is evaluated as

for the slope, but only along specific directions.

One feature from each group is shown in Fig. 6. The

resulting dataset is composed of 57 input features and 1

target variable: [X, Y, Z | 17 DoG | 21 Directional

Derivatives | 16 Slopes | Wind Speed]. Consec-

utive features are correlated within each group since they

are computed at close spatial scales.

4 Multiple kernel learning with simulated data

In the following section several experiments on simulated

patterns providing a data-rich situation are led to highlight

the properties of SimpleMKL and its behavior in different

limit conditions. This study was aimed at investigating a

simulated but realistic example of an environmental phe-

nomenon hardly influenced by topographic features.

4.1 Preparation of the simulated datasets

The simulated patterns have been constructed by combin-

ing 3 among the 57 real terrain features described in

Sect. 3. The particular features shown in Fig. 6 were used

to compute the simulated target functions that reproduce an

idealized topographic pattern useful for the MKL

experiments.

The general formula used to compute the target function

t is:

t ¼ sðX; YÞ 5� 2 � sigðf 1Þ � 2 � sigðf 2Þ þ 2 � sigðf 3Þ½ �

where sig(f) is a sigmoid transformation of the feature

values applied in order to have comparable value ranges

and to reduce the effect of very high feature values.

s(X, Y) is a function of X and Y coordinates accounting

to the spatial variation of the magnitude of topography-

induced relations. Four patterns of increasing complexity

have been generated using the following s:

Fig. 4 Flow-chart of the SimpleMKL optimization

1 http://asi.insa-rouen.fr/enseignants/*arakotom/code/mklindex.html.
2 We refer to spatial coordinates when using uppercase X and Y; on

the other hand, x is the input vector and y is the output.
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sconstðX; YÞ ¼ 1

slinðX; YÞ ¼
8þ X

10

squadðX; YÞ ¼ 1� ðX
2 þ Y2Þ
15

swaveðX; YÞ ¼
ð2þ ðX þ YÞe�ðX2þY2ÞÞ

2

The first pattern does not show variations in space, the

second presents a linear trend in the East-West direction

(X coordinate), the third one is characterized by a quadratic

trend in both the X and Y coordinates and the fourth by a

more complex non-linear trend. The aim of generating

several patterns is to test MKL with increasing complexity

of the input-output relationship. For the sake of conve-

nience, we call the resulting patterns Ptrconst, Ptrlin, Ptrquad

and Ptrwave respectively. Figure 7 illustrates them.

A random spatial sampling is performed to extract

training, validation and test (1000 samples) data subsets. In

order to study the stability of MKL with respect to dataset

size, training and validation sets of increasing size (10, 20,

50, 100 and 200 points) have been extracted. All the results

report mean and standard deviation of testing performances

based on 5 different splits of the training and validation

sets.

In order to investigate the feature selection skills of

MKL, three noisy features (Gaussian noise N(0, 1)) are

added to the datasets. The final feature sets are detailed in

Table 1. A total of M = 8 kernels applied on individual

features are used in each experiment.

Four models are considered for each pattern. First, SVR

with single linear (SVRlin) and RBF (SVRRBF) kernels and,

secondly, MKL with linear (MKLlin) and RBF (MKLRBF)

kernels. The corresponding kernels are:

KSVR�linðx; xiÞ ¼ ðx � xiÞ

KSVR�RBFðx; xiÞ ¼ e�
x�xik k2

2r2

KMKL�linðx; xiÞ ¼
XM

m¼1

dmðxm � xm
i Þ

KMKL�RBFðx; xiÞ ¼
XM

m¼1

dme�
xm�xm

ik k2

2r2

where xi
m is the mth component (feature) of the sample xi.

For the last pattern, an additional experiment named

MKLrXY has been carried out: taking advantage of

DoG Small Scale DoG Large Scale
Fig. 5 Example of features

computed at different scales

(differences of Gaussians)

SlopeDifference of Gaussians 

Directional Derivative

Fig. 6 Three topographic

features that are combined to

build the target function; top left
(DoG, f1), top right (slope, f2),

bottom left (directional

derivative, f3). Bottom-right:
Digital elevation model with

country boundaries
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knowledge about the pattern Ptrwave, that depends jointly on

the XY coordinates, this experiment optimizes a XY kernel.

This kernel was built using both the spatial coordinates and

encodes target dependencies on both the X and Y features:

KMKLrXY
ðx; xiÞ ¼ dXY e

�ðX�XiÞ2þðY�YiÞ2

2r2
XY

þ
PM

m¼3

dme�
xm�xm

ik k2

2r2

As explained in Sect. 2.2, model hyperparameters C, e
and r for RBF kernel are optimized by minimizing the

validation error.

4.2 MKL with increasing pattern complexity

Results obtained for the four simulated patterns are shown

in Table 2. The decrease of performance with respect to

increasing pattern complexity is clearly observable for all

the models studied. Linear models perform well for the

Ptrconst and Ptrlin patterns, since they show no intrinsic

nonlinearity. The improvements observed when using RBF

kernels can be explained by a small level of non-linearity

related to the sigmoid transformation applied to create the

patterns. For the Ptrquad pattern, models using RBF kernels

clearly outperform linear models, but MKL improves the

SVR solution only slightly. The Ptrwave pattern shows

the most interesting results: SVRRBF fails at describing the

pattern, while the MKLRBF solution results in both lower

RMSE and higher correlation. The MKLr XY experiment

provides the best results for this pattern: although the

striking result, we recall that this experiment is based on

the integration of prior knowledge about the phenomenon

that is not always available.

Table 3 shows the weights dm after optimizing MKL

algorithm, that is, it illustrates the features selected by the

MKLRBF. It selects the correct features (in Table 1) in

every experiment: it ignores spatial coordinates for the

Ptrconst pattern, uses only the X coordinate for the Ptrlin

and excludes noisy features in all the experiments.
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Fig. 7 Simulated patterns. Top left: Ptrconst, top right: Ptrlin, bottom left: Ptrquad and bottom right: Ptrwave

Table 1 Feature set considered in the simulated examples

Feature # Description Const Lin Quad Wave

1 X –
p p p

2 Y – –
p p

3 Noise – – – –

4 DoG
p p p p

5 Noise – – – –

6 Slope
p p p p

7 Noise – – – –

8 Dir. derivative
p p p p

Features # 3, 5 and 7 are noisy features that must be removed by

MKL.
p

= have to be selected by the MKL algorithm
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Therefore, MKL is able to select the relevant features and

to adapt the resulting kernel function to the specific

problem.

4.3 MKL robustness to noise

In the previous section, the ability of MKL to perform

feature selection was studied through the insertion of noisy

features that the model should ignore. However, the three

useful features in the dataset were noise free and the

selection task was therefore facilitated. In the experiments

presented below, noise has been added in the three features

of Fig. 6. Three experiments accounting for increasing

amounts of artificially generated noise have been

considered: each variable has been contaminated with zero-

mean Gaussian noise with standard deviation of 0.001, 0.01

and 0.1 respectively. Table 4 illustrates the numerical

results. To avoid redundant tables, only the results of two

patterns, the least (Ptrconst) and the most (Ptrwave) complex,

are presented. The numerical results of Table 2 are con-

firmed for both patterns, and the increasing noise does not

strongly influence the test error. Thus, both SVR and MKL

show a resistant behavior to noise.

Regarding feature selection, the first row of Fig. 8 shows

the variability of feature weights for the three experiments

using MKLRBF: while an increase in the variance of the

weights can be observed for higher levels of noise (dark

boxes in the figure), MKLRBF always selects the correct

features for both patterns.

4.4 Dependence on dataset size

The quality and stability of the solution depends heavily on

the number of training examples. This is important when

MKL optimizes the weight vector d by gradient descent on

the SVM decision function. Figure 9 illustrates the

behavior of MKL trained on sets of different sizes for the

Table 2 Test RMSE and correlation (q) for the four simulated pat-

terns considered (training set size = 100)

Pattern Method Test RMSE Test q

Mean SD Mean SD

Ptrconst SVRlin 0.117 0.004 0.985 0.001

SVRRBF 0.074 0.006 0.994 0.001

MKLlin 0.115 0.006 0.986 0.002

MKLRBF 0.019 0.001 0.9996 3.8e-05

Ptrlin SVRlin 0.124 0.004 0.980 0.001

SVRRBF 0.076 0.011 0.992 0.002

MKLlin 0.126 0.007 0.979 0.002

MKLRBF 0.075 0.013 0.993 0.002

Ptrquad SVRlin 0.361 0.015 0.838 0.009

SVRRBF 0.084 0.010 0.991 0.002

MKLlin 0.354 0.013 0.842 0.007

MKLRBF 0.072 0.010 0.994 0.002

Ptrwave SVRlin 0.475 0.013 0.851 0.006

SVRRBF 0.438 0.019 0.870 0.012

MKLlin 0.470 0.020 0.851 0.009

MKLRBF 0.342 0.028 0.921 0.014

MKLrXY 0.159 0.019 0.984 0.004

Table 3 Kernel weights for the const, lin, quad and wave experiments using the MKLRBF approach (training set size = 100)

Pattern Features

1 2 3 4 5 6 7 8

Ptrconst Mean 0.0002 0.0004 0.0006 0.3574 0.0003 0.2949 0.0004 0.3457

SD 0.0001 0.0002 0.0004 0.0145 0.0001 0.0130 0.0002 0.0038

Ptrlin Mean 0.2753 0.0191 0.0059 0.2420 0.0054 0.2015 0.0110 0.2399

SD 0.0198 0.0154 0.0058 0.0155 0.0055 0.0202 0.0129 0.0059

Ptrquad Mean 0.2252 0.2427 0.0056 0.1795 0.0072 0.1519 0.0099 0.1779

SD 0.0222 0.0208 0.0028 0.0055 0.0051 0.0121 0.0061 0.0088

Ptrwave Mean 0.2378 0.2543 0.0313 0.1687 0.0097 0.1072 0.0274 0.1635

SD 0.0367 0.0487 0.0279 0.0294 0.0066 0.0121 0.0168 0.0488

In bold the features selected by SimpleMKL. Feature numbers are detailed in Table 1

Table 4 Test RMSE for the experiments with simulated noise

(training set size = 100)

Pattern Method Noise = 0.001 Noise = 0.01 Noise = 0.1

Mean SD Mean SD Mean SD

Ptrconst SVRlin 0.131 0.010 0.143 0.007 0.137 0.004

SVRRBF 0.073 0.004 0.084 0.007 0.123 0.004

MKLlin 0.127 0.006 0.141 0.008 0.133 0.002

MKLRBF 0.032 0.012 0.038 0.011 0.084 0.001

Ptrwave SVRlin 0.449 0.010 0.451 0.011 0.432 0.015

SVRRBF 0.435 0.008 0.439 0.008 0.419 0.005

MKLlin 0.445 0.012 0.452 0.011 0.425 0.005

MKLRBF 0.343 0.013 0.340 0.017 0.360 0.034
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Ptrconst (Fig. 9a) and Ptrwave (Fig. 9b) patterns. For the two

patterns considered, the mean RMSE of the five experi-

ments decreases proportionally to the size of the training

set. For both cases, 10 training points are not sufficient to

obtain a stable solution and the observed standard deviation

is very large. When using a larger training set, the problem

is alleviated and from 100 training points on the solution

becomes stable.

Considering the feature weights (second row of Fig. 8),

the previous observations are confirmed: for 10 training

points (light bars) the variance of the weights is stronger. If

that does not affect the solution for the pattern Ptrconst, a

strong confusion can be seen for the Ptrwave, at the point

that the algorithm starts selecting the noisy features. By

increasing the number of training pixels (darker bars) the

variance of the weights decreases and the solution is sta-

bilized to the desired result.

5 MKL application to wind speed data

In this section, MKL is applied to the problem of spatial

prediction of the mean wind speed in Switzerland. Data

and exploratory data analysis are briefly presented in Sects.

5.1 and 5.2 respectively. The experiments are described in

the following sections.

5.1 Preparation of the wind dataset

The mean wind speed above ground (period 1987–2006)3

is sensed by 148 weather stations, either permanent or

temporary at different heights above ground. To provide a

coherent dataset, the measurements of the stations are
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Fig. 8 Boxplots of the optimized weights for different levels of noise

(top row, training set size = 100) and different training set sizes

(bottom row, noise level = 0.01) using MKLRBF on Ptrconst (left

column) and Ptrwave (right column). Variance of the weights is

assessed over the 5 splits. Feature numbers are detailed in Table 1

3 More informations can be found on: The Swiss Wind Power Data

Website, http://www.wind-data.ch/index.php.

60 Stoch Environ Res Risk Assess (2011) 25:51–66

123

http://www.wind-data.ch/index.php


extrapolated to the level at 50 m above ground. Such an

extrapolation is obtained using a logarithmic wind profile

according to the roughness length of different soil types

(agricultural land, towns, bare soil, forests, etc). All these

corrections were performed prior to the analysis. An

interested reader can find additional details in Schaffner

and Remund (2005).

The features used are the ones described in Sect. 3:

coordinates, difference of Gaussians, slope and directional

derivatives, for a total of 57 topographic features.

The data were split in two parts: a training set of 100

measurements and a test set of 48 measurements, used to

estimate generalization performances of the model. Hyper-

parameters selection was carried out by 10-fold cross-

validation.

5.2 Exploratory data analysis

Before building a model, the exploratory analysis of data

(Andrienko and Andrienko 2006; Tuia and Kanevski 2008;

Kanevski et al. 2009; Martinez 2004) allows to detect

trends and extreme values, to estimate the amount of noise,

etc. Summary statistics, variograms, dimensionality reduc-

tion techniques are necessary to have a first overview of the

complexity of the data. Since machine learning methods are

data-driven, the choice of the model must be done with

respect to the complexity of the patterns and the size of the

dataset. In the specific case of wind speed mapping, a linear

model may fail because of the high dimensionality and non-

linearity of the problem. Thus, support vector regression is a

more adapted method for this task.

The postplot of wind speed values in the XY space (Fig.

10a) shows complex patterns and some high values, espe-

cially in the North-West regions. A variogram computed in

geographical XY space (Fig. 11a) shows poor spatial

structure, making the use of classical geostatistical and

data-driven models in geographical space difficult. The

introduction of topographic features brings additional

useful structure to the data, as presented in both Figs. 10b

and 11b showing respectively a post-plot and a variogram

using the altitude (Z) and the feature #4 (a small-scale

DoG). For instance, the plot of the data in this feature space

shows a grouping of low wind speed values in the bottom-

right corner (low elevation and positive convexity). Such

structure was not visible using only XY coordinates and

confirms the interest of using topographic features for wind

mapping.

5.3 Mean wind speed prediction

Similarly to the experiments on simulated data, MKL has

been compared to SVR. Models using only X, Y, Z coor-

dinates have been considered in order to estimate a baseline

performance and to compare them with the models built

with the complete 57-dimensional dataset.

5.3.1 Numerical comparison

Numerical results of the experiments are given in Table 5.

Comparison of the results gives rise to three main obser-

vations: first, none of the models using a linear kernel

provide satisfying results. The presence of non-linearities

in the wind-topography relationships can be the reason for

such poor performances. Moreover, the difference

observed when using the RBF kernels is significant. Sec-

ond, the SVR and MKL performances on real data are

almost equivalent: for all the experiments, SVR has per-

formed slightly better than MKL, but the RMSE and q
observed are in the same range for both models. Finally,
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Fig. 9 Performance of SVR and MKL on a Ptrconst and b Ptrwave with

respect to the size of the training set
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the use of topographic features strongly improves the

quality of predictions in all the experiments. This is

coherent with what was observed in Sect. 5.2.

5.3.2 MKL for feature selection

Figure 12 illustrates the mean weights �d averaged over 5

splits for the 57 features considered in the MKLRBF

experiment. A total of 17 features has a mean weight

greater than 0, while only 5 features show mean weights

greater than 0.05. X and Z features are selected by each

experiment, confirming the importance of these features.

Surprisingly, the Y coordinate is never selected by the

MKL algorithm. Among topographic features, the DoG are

the most useful to model mean wind speed: DoG features

are selected at each scale and 9 out of the 17 features with

nonzero mean weights are of this kind. Slopes and direc-

tional derivatives are selected scarcely and at medium/large

scale: these terrain features seem to be useful at the

regional level only, while the DoG are used to model local

relationships.

Two additional experiments, called SVRRBF-0.01 and

SVRRBF-0.05, have been carried out using the features

highlighted by MKLRBF: in these experiments, SVR has

been optimized using the features that received weights

greater than 0.01 and 0.05 respectively after the MKL
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Fig. 11 Variograms in different dimensions. a X and Y dimensions;

b Z and Feature #4 (DoG, small scale). The dashed line represents a-

priori variance. Input data were normalized to N(0,1)

Table 5 Test RMSE and correlation (q) for the wind speed predic-

tion considering different number of features (*= varies according to

the number of features highlighted by MKLRBF in the single experi-

ments). Results are averaged over 5 splits

Method Feat. Test RMSE Test q

Mean Std. dev. Mean Std. dev.

SVRRBF X, Y, Z 1.175 0.135 0.693 0.050

MKLRBF X, Y, Z 1.226 0.098 0.624 0.104

SVRlin 57 1.278 0.114 0.651 0.027

SVRRBF 57 0.984 0.106 0.782 0.061

MKLlin 57 1.148 0.102 0.705 0.064

MKLRBF 57 1.028 0.117 0.768 0.079

SVRRBF-0.01
* 1.009 0.139 0.770 0.061

SVRRBF-0.05
* 0.984 0.118 0.789 0.050

62 Stoch Environ Res Risk Assess (2011) 25:51–66

123



optimization. This way, MKL is used as a filter for feature

selection. The aim of such study is to see if the subsets

selected by MKL are indeed coherent to model the com-

plex wind pattern. The mean results over the five runs are

reported in the two last lines of Table 5. The test RMSE of

the SVRRBF-0.01 shows a very small difference in the

performance with respect to the model using the entire

features set. Therefore, MKL has selected the relevant

features that are used by SVR to model the wind pattern.

The SVRRBF-0.05 experiment shows equal performance

and this illustrates that the input space size can be reduced

strongly without degrading the global quality of the pre-

diction if the good features are highlighted.

Prediction map of the mean wind speed by the

SVRRBF-0.01 model is shown in Fig. 13. A qualitative

inspection of the resulting wind patterns provides useful

insights to interpret the final model in terms of its physical

consistency. Wind accelerations over ridges and mountains

are well reproduced in the prediction map. The very low

wind speed in narrow canyons is also visible. However, a

more precise exploration allows to detect less evident wind

patterns such as the wind acceleration in some valleys and

the sheltering effects behind ridges (with respect to the

predominant wind direction which is from west). Another

surprising pattern is the wind acceleration over the west

part of the Leman Lake. The channeling effect of the Swiss
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Plateau is here braced because of the relative approaching

of the Alps and the Jura Chain.

5.3.3 MKL and trade-off parameter C

In the experiments, the C parameter has been optimized by

10-fold cross-validation. The correct choice of this

parameter is crucial for the regularization of the solution,

as shown in Fig. 14a: the error is strongly influenced by the

complexity of the solution that is regularized by this

parameter. Alternatively, it also plays an important role on

the control of the weight vector d. Figure 14b illustrates the

effect of the parameter C on the sparsity of d and thus the

number of features used in the prediction: the number of

features selected by MKL is here plotted against the

entropy of the weights attributed to their respective kernels

and as a function of the value of the parameter C (shown by

the size of the circles). This figure illustrates that the

increase of the C value has a double effect: first, more

variables are included in the final solution and second, the

distribution of their weights tends to become more and

more homogeneous, resulting in a higher entropy of the

distribution of the weights. Thus, the value of C acts as a

controller of the sparsity of the MKL solution, that is de

facto a way of controlling the complexity of the model.

6 Advantages and limitations of multiple kernel

learning

The flexibility of the MKL approach is by far its main

strength. The user is allowed to divide the problem in

several parts (features or feature groups) in order to have a

better understanding about the contribution of each source

of information. The model is efficient for medium-sized

datasets and is resistant to noisy features. Finally, the

biggest advantage of MKL compared with standard support

vector regression is that the first gives insights about the

importance of the features and, at the same time, provides a

model, while the second works more like a black box.

Nonetheless, MKL also presents some limitations: the

slowness in the optimization of the weights with respect to

the size of the training set is the most striking. This is due

to the repeated calls to the SVM solver during optimiza-

tion. This problem can be approached with a more efficient

implementation. Moreover, MKL has shown a tendency to

overfit when only a few training data are available: it

concentrated on short-scale features by missing global

spatial relationships. Finally, the kernel combination pro-

posed in this paper does not consider cross relations

between inputs (cross-kernels) because each feature is

mapped to an independent feature space: therefore, MKL

should work at its best only when the target does not

depend jointly on two or more features. The ideal example

of improvement when using cross-kernels was the model

MKLrXY with simulated data (Ptrwave). In that case, instead

of using two kernels, one for the X dimension and one for

the Y dimension, the cross-kernel XY was used. The

MKLrXY model has shown an increase in performance in

the complex pattern depending simultaneously on X and Y

coordinates.

7 Conclusions

Due to its robustness and suitability for working with

high-dimensional input data for modeling non-linear
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Fig. 14 Behavior of MKL while varying the trade-off parameter C. a
Cross-validation and test RMSE for a single run of MKL; b number of
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dependencies, support vector regression provides good

results in spatial prediction of the wind speed. In this paper

we explored the use of the multiple kernel learning to

enhance the interpretability of this kernel-based predictive

model. MKL wraps an SVR trained with a linear combi-

nation of kernels and finds the optimal combination of

input features. We applied it to the predictive mapping of

wind speed aiming at detecting the optimal characteristic

length scales of different topographic features influencing

the phenomenon.

The empirical studies of the real data provided inter-

esting insights about the use of the proposed approach for

feature selection. MKL scheme was found to be successful

in detecting meaningful features subsets. The sensitivity to

hyper-parameters (particularly, the data fit vs. complexity

trade-off parameter of SVR) in finding the optimal distri-

bution of weights was investigated.

The definition of the optimal set of kernels (currently

based on the prior knowledge) remains an open question

and it is currently one of the limitations of the algorithm.

Irrelevant kernel sets associated with difficult and small

datasets may lead to overfitting as shown empirically in

Lewis et al. (2006). Since the distance metric induced by

real processes is often variable over the input space, the

non-stationarity of kernel functions is also an important

research issue. Future promising perspectives for environ-

mental data modeling concern the use of MKL for inte-

grating multisource data from monitoring networks, both

for the modeling of joint multiscale physical processes and

for automatic feature selection.
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