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ABSTRACT 

 

Distributed Interactive Applications (DIAs) are a class of software that allow 

geographically remote users to interact within a shared virtual environment.  

Many DIAs seek to present a rich and realistic virtual world to users, both on a 

visual and behavioural level.  A relatively recent addition to virtual environments 

(both distributed and single user) to achieve the latter has been the simulation of 

realistic physical phenomena between objects in the environment. 

 

However, the application of physics simulation to virtual environments in DIAs 

currently lags that of single user environments.  This is primarily due to the 

unavailability of entity state update mechanisms which can maintain consistency 

in such physics-rich environments.  The difference is particularly evident in 

applications built on a peer-to-peer architecture, as a lack of a single authority 

presents additional challenges in synchronising the state of shared objects while 

also presenting a responsive simulation. 

 

This thesis proposes a novel state maintenance mechanism for physics-rich 

environments in peer-to-peer DIAs composed of two parts: a dynamic authority 

scheme for shared objects, and a physics-aware dead reckoning model with an 

adaptive error threshold.  The first part is intended to place a bound on the 

overall inconsistency present in shared objects, while the second is implemented 

to minimise the instantaneous inconsistency during users’ interactions with 

shared objects.  A testbed application is also described, which is used to validate 

the performance of the proposed mechanism. 

 

The state maintenance mechanism is implemented for a single type of physics-

aware application, and demonstrates a marked improvement in consistency for 

that application.  However, several flexible terms are described in its 

implementation, as well as their potential relevance to alternative applications.  

Finally, it should be noted that the physics-aware dead reckoning model does not 

depend on the authority scheme, and can therefore be employed with alternative 

authority schemes. 
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Chapter 1  

Introduction 

1.1 Background 

Distributed Interactive Applications (DIAs) are an expanding subset of computer 

applications.  These applications operate over computer networks, and allow 

users to interact in real time via graphically rich environments.  Many of these 

applications take the form of online multiplayer games, in which participant 

numbers can reach several thousand.  These applications have evolved in 

complexity over time, from relatively simple early games like Quakenet, to 

modern games like World of Warcraft, Halo, and Call of Duty.  Development in 

these applications has occurred on various fronts, ranging from scaling the 

number of users supported, to increasing the spatial size and richness of the 

simulated environment. 

 

While some developments in DIAs relate specifically to their networked multi-

user nature, others (such as improvements in graphical detail and presentation) 

have originated in single player applications and games and have then been 

applied to DIAs via their multi-user equivalents.  Physics simulation, for an 

added sense of realism and immersion, has been a relatively recent development 

in single player applications, and attempts are ongoing to incorporate this into 

equivalent distributed applications. 

 

DIAs, and virtual environments in general, aim to present to users an 

environment whose behaviour is consistent with the users’ experience and 

perception of the real world.  Traditionally the level of realism achievable has 

been limited by technological factors such as the availability of processing 

power, and simulations have restricted the level of detail presented in the 

environment as a result.  Over time, however, hardware and software 

performance have advanced steadily, which has allowed developers of virtual 

environments to increase the level of detail presented.  This increase in detail has 

varied from improvements in graphical rendering and visual presentation, to the 
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simulation of more dynamic environments with more true to life behaviour.  

Recently this has led to increased incorporation of simulated physics into such 

applications.  While physics simulation in single user applications is limited only 

by the capability of the hardware and software present within a single machine, 

such simulation in a distributed environment presents challenges of its own.  

These challenges are related to a number of restrictions that the hardware and 

underlying network impose on DIAs in general. 

 

1.2 Restrictions in Physics-Aware DIA Development 

The distributed nature of DIAs presents several unique restrictions to the field 

that must be accounted for in designing and implementing a DIA.  Specifically, 

the geographical separation of individual users or hosts in DIAs means that 

designers have to overcome challenges presented by real world communication 

networks, most commonly the Internet.  Data traffic transmitted via the Internet 

(and indeed other networks) is subject to a number of influences which must be 

accounted for or overcome in the implementation of a DIA.  These influences, 

and their relevance to distributed simulation of physics, are outlined as follows: 

 

Bandwidth – Bandwidth is a metric of the amount of data that may be 

transmitted over a communications link per unit of time.  The number of 

users, and indeed simulated entities or objects that an application can 

support, may be limited by bandwidth, as a finite amount of this resource 

is required for the synchronisation of each change of state.  The 

introduction of additional entities for simulation of physics adds state 

variables that may potentially require updating in a given simulation tick 

and therefore may exhaust the available bandwidth.  Such a situation 

leads to excessive message queuing and a subsequent increase in latency 

which causes divergence of the simulation state across peers.  Many 

traffic reduction techniques permit approximation errors in the state of 

entity state variables in order to reduce the frequency of updates. 

Latency – Latency is the time taken for a packet of data to be transmitted 

across a network, from the application layer of one host, to the 

application layer on another (Blow, 1998).  Latency is a dynamic, time-
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variant quantity, with variation in latency over time being called jitter.  

Latency presents an obstacle in distributed physics simulation as its 

presence means that a finite time is required for an update, or change in 

state, generated at one host to be apparent at another host.  Jitter is a 

further complication as it precludes the incorporation or masking of 

latency as a constant value in simulations. 

Network topology/architecture – The topology of the network 

employed influences how state information in DIAs is synchronised 

(Smed et al., 2002).  For example, in a client-server application, the 

server maintains an authoritative copy of world state and all clients 

communicate with it, and verify their actions.  The server in turn 

disseminates appropriate information about all entities in the world to 

clients.  In some applications this even makes it possible for the server to 

send a complete world state update if the local copy is sufficiently in 

error (Valve, 2005c).  By contrast, this is not an option in peer-to-peer 

applications, as traditionally each peer is only authoritative about a subset 

of the entities making up the simulation, not the complete set. 

Network reliability and ordering – In simulating environmental physics 

(as opposed to simple physical laws like gravity acting on a controlled 

entity) within a DIA, a reliable network is very important, as packet loss 

resulting in retransmission can lead to increased latency (Tanenbaum, 

1996).  This leads to event synchronisation difficulties in the 

simultaneous presentation of an event to all peers in the simulation.  

Additionally, where physical simulation takes place, there is potential for 

one event to cause another to happen, and lost or delayed transmission of 

the first event could lead to an effect preceding its cause. 

 

Each of the limitations listed above presents challenges to the design and 

implementation of any DIA when compared to a single user equivalent.  

However, in the case of physics-aware DIAs, these influences can present more 

specific challenges, due to an increased number of simulated entities, many of 

which are not controlled by users. 
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1.3 Simulation of Distributed Peer-to-Peer Physics 

As noted in the previous section, a potential issue of the peer-to-peer networking 

architecture in DIAs is the absence of a single authoritative copy of the world 

state.  While this must be overcome in the design of any DIA, those DIAs that 

support the presence of non-user-controlled entities governed by the laws of 

physics present specific challenges.  In the course of this thesis, such DIAs will 

be referred to as “physics-aware” DIAs, and the non-user-controlled entities as 

physics-aware entities.  The presence of such physics-aware entities will be the 

distinction between truly physics-aware DIAs and those where simple constraints 

like gravity are applied to user-controlled entities.  These physics-aware entities 

form an interactive part of the environment from the users’ perspective, and as 

such they are shared objects.  Examples of physics-aware entities could include 

balls, boxes, furniture, etc. 

 

Challenges facing the implementation of such a physics-aware, peer-to-peer DIA 

are introduced below. 

 

1.3.1 Authority 

Traditional peer-to-peer architectures grant authority to each peer over specific 

entities, usually entities controlled by users at that peer.  In a physics-aware DIA, 

however, there are non-user-controlled entities for which the granting of 

authority is more complicated.  Indeed to grant permanent authority to a single 

peer over some or all of these entities may be inappropriate, and would render 

the application more akin to client-server than true peer-to-peer.  As an 

application architecture, peer-to-peer is generally more fault-tolerant than client-

server, as it lacks the single point of failure at the server.  Granting authority over 

all physics-aware entities to a single peer would actually create a single point of 

failure, which is undesirable.   

 

Alternatively, authority over some entities could be granted to each peer, thus 

distributing the simulation load.  However in the event of two entities with 

different authoritative peers coming into contact, the behaviour of each would be 
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governed by a different physics simulation.  Thus it seems that in physics-aware 

DIAs, the authority scheme must also be physics-aware. 

 

1.3.2 Responsiveness 

Latency and the challenges it presents to a DIA have already been introduced, 

but once again the addition of non-user-controlled entities introduces additional 

considerations.  These considerations are in part related to the aforementioned 

authority concerns.  For example, if a user interacts with a physics-aware entity, 

they expect to see the result of their interaction promptly, and if they have an 

expectation of the result, accurately.  However, if the user interacts with an entity 

for which its peer is not authoritative, then a delay may be experienced while 

their local peer validates the interaction with the remote authoritative peer.  

Further, a remote authoritative peer may have a different view of the interaction, 

ultimately resulting in the behaviour differing from a user’s expectation. 

 

1.3.3 Consistency 

Consistency in a DIA refers to the ability of the DIA to ensure that each user’s 

view of the world is identical, or as close to identical as can be achieved for 

given conditions.  Traditional consistency metrics examine entities on an 

individual basis, often giving a measure of the application’s ability to represent a 

host’s controlled entities’ states at remote hosts.  A basic aspiration for a 

distributed simulation is to present entities as being ‘in the right place at the right 

time’ and a simple metric to capture this notion are spatially-derived measures of 

consistency such as can be calculated using distance measures between the entity 

positional state at its local peer, and the representations at remote peers. 

 

In real-time applications, the Consistency-Throughput Tradeoff (Singhal and 

Zyda, 1999) acknowledges that true consistency is unachievable.  Consequently 

most real-time DIAs accept a controlled level of inconsistency, and utilise 

approximated models of controlled entity motion as part of traffic reduction 

mechanisms, such as the dead reckoning algorithms employed within the 

Distributed Interactive Simulation (DIS) standard (Durbach and Fourneau, 1998, 
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IEEE, 1998).  Dead reckoning is a linear extrapolation algorithm which uses 

historical entity state to generate a prediction of future entity state.  All peers 

model all entities, with each peer thus knowing both the modelled and actual 

behaviour of local entities.  These behaviours are continuously compared for 

local entities, with updates being transmitted to remote users when the difference 

between the models exceeds a set error threshold. 
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Figure 1.1: Controlled entity (avatar) inconsistency compared to all inconsistencies present 

in a physics-aware DIA. 

 

By only considering single entities, and those controlled by the host (i.e. first 

order generation of inconsistencies by local entities), these metrics are less than 

ideal for use in physics-aware DIAs, as they may not present a clear picture of all 

the inconsistency in the environment.  A qualitative hypothetical example of this 

is given in Figure 1.1.  The solid line represents the spatial inconsistency 

(difference in position between local and remote representations of state) present 

in the state of a controlled entity, or avatar, while the dashed line represents the 

sum of the spatial inconsistencies present in the state of both the avatar, and 

physics-aware environmental entities with which the controlled entity collided. 

 

This added error in the simulation of collisions arises in part from the use of 

approximated models of controlled entity motion in traffic reduction 

mechanisms, such as the dead reckoning algorithms employed within the 
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Distributed Interactive Simulation (DIS) standard (Durbach and Fourneau, 1998, 

IEEE, 1998).  Dead reckoning is a linear extrapolation algorithm which uses 

historical entity state to generate a prediction of future entity state.  All peers 

model all entities, with each peer thus knowing both the modelled and actual 

behaviour of local entities.  These behaviours are continuously compared for 

local entities, with updates being generated to remote users when the difference 

between the models exceeds a set error threshold. 

 

In static environments, where controlled entities may only interact with other 

controlled entities, this error is limited to only being present in the dead reckoned 

models.  However, in environments with physics-aware entities, this error can 

potentially be communicated, or passed on, to such entities.  Consider a scenario 

in an application where a physics-aware ball atop a hill is simulated, as illustrated 

in Figure 1.2.  If an entity as represented by ball A (at its local peer) were to 

approach the ball (ball B), but stop with a distance between it and ball B that is 

less than or equal to the error threshold of the dead reckoning model, a remote 

peer could observe ball A disturbing ball B, and ball B subsequently rolling away 

down the hill, resulting in a spatial inconsistency of δ in the state of ball B.  This 

would manifest as a difference between the solid and dashed lines in Figure 1.1.  

This potential for state divergence, and the resulting visual disturbance to the 

application required to correct it, can be considered a “physics-consistency-cost” 

associated with the entity’s path.  The exact means of correcting inconsistency in 

physics-aware entities might vary across applications.  For example, an entity 

with an authoritative peer could be updated by means of a periodic heartbeat 

packet similar to controlled entities in the Distributed Interactive Simulation 

standard (IEEE, 1998). 
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Figure 1.2: Local and remote representation of Ball A moving close to, but stopping short 

of, Ball B.  At the remote peer ball A is incorrectly observed to collide with ball B as the 

error threshold of the dead reckoning model is not exceeded until it is close enough to 

collide with ball B.  δ represents the spatial inconsistency present in the state of ball B. 

 

A similar scenario, but with a potentially much higher cost, can be framed by 

considering a row of dominos.  As per the previous example, an entity could be 

observed at a remote peer to collide with a domino, while its true behaviours is to 

closely miss the domino.  A specific example of this is presented in Figure 1.3, 

where a ball approaches a row of dominos, but stops close to them.  However the 

dead reckoning model is observed to collide with the first domino, which in turn 

topples the row.  In this instance, the magnitude of the spatial inconsistency 

communicated to the first domino (δ`) may be less than that communicated to the 

ball previously, but due to the nature of dominos, a single incorrectly disturbed 

domino can in turn disturb its neighbours, resulting in a spatial inconsistency of 

approximately N x δ`, for N dominos.  The magnitude of the inconsistency 

imparted to a single domino, and even the sum imparted to them all, may be 
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significantly smaller than that of the ball in the previous example, but the number 

of entities involved is significantly more.  Thus even small spatial inconsistency 

in physics-aware entities can result in an appreciable physics-consistency-cost if 

complexity (in which N, the number of dominos is a factor) is considered. 

 

Local

Remote
δ`

 
Figure 1.3: Local and remote representation of a ball moving close to, but stopping short of, 

a row of dominos.  Due to the error threshold of the dead reckoning model not being 

exceeded until after it shows the ball colliding with the first domino, the remote peer 

incorrectly observes all the dominos being toppled as a result.  δ` represents the 

inconsistency present in the state of a single domino.  

 

Both of the previous examples present scenarios with a high susceptibility to 

incurring a physics-consistency-cost.  Of course not all physics-enabled 

interactions lead to such cascades in consistency loss.  As a counter example, 

consider a scenario where the dead reckoning model of a remote entity is 

incorrectly observed to collide with a much larger physics-aware entity, with 

large inertia, e.g. a human avatar colliding with a car or a van.  Under realistic 

physics simulation the modelled avatar may incorrectly impart a spatial 

disturbance to the van, but this would be significantly smaller than the 

disturbance experienced by the ball in the first example (especially in terms of 

relative size) – it may even be imperceptible to the user.  Consequently such an 

error in state is easier to correct than the dominos in the second example.  The 

incorrect disturbance is still a physics-consistency-cost, but is significantly 

smaller than the previous two examples. 

 

Currently entity state update protocols for peer-to-peer distributed simulations 

such as dead reckoning do not explicitly take into account these higher-order 
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inconsistency effects for physics-enabled environments.  Therefore the ability of 

these techniques to regulate consistency in such situations is not optimal and 

improvements may be possible by incorporating information about the local 

physics environment.  Each of the above examples will be referred to as the “ball 

example”, the “domino example” and the “large inertia example” later in this 

thesis. 

1.4 Aim of Thesis 

This thesis aims to implement a physics-aware mechanism for synchronisation of 

entity state within a peer-to-peer, physics-aware DIA employing dead reckoning 

algorithms for the purposes of traffic reduction.  It builds on previous work 

relating to DIAs and simulation of physics in virtual environments. 

 

1.5 Contributions 

The main contribution of this thesis is the development of an adaptive-threshold, 

physics-aware algorithm for consistency maintenance in peer-to-peer, physics-

aware DIAs that utilise dead-reckoning algorithms.  Additionally, a proposed 

means of identifying physics-consistency-costs is described.  Finally, a testbed 

application supporting two-dimensional physics simulation in environments 

synchronised via a simulated network connection is described.  Using this 

testbed, results are presented which illustrate the efficacy of the proposed 

identification mechanism for physics-consistency-costs. 

 

1.6 Layout of Thesis 

The remainder of this thesis is laid out as follows: 

 

Chapter 2 – In this chapter, a brief background to the subject area is 

provided.  Simulation of physics in virtual environments, both distributed 

and local is introduced, and the challenges of supporting physics 

simulation in distributed interactive applications are identified.     

Chapter 3 – At this point, the development of the state management 

algorithm for physics-aware entities is outlined, as well as some 



 11 

alternatives considered during the course of this development.  The 

structure of the testbed application is also explained. 

Chapter 4 – Here the performance of the state management algorithm as 

proposed is analysed via implementation in the testbed. 

Chapter 6 – To conclude, the potential for future work based on this 

algorithm and testbed is discussed, along with conclusions drawn from 

the results collected from testing of the algorithm. 



 12 

Chapter 2  

Background 

In this chapter the background to the research area is outlined.  Firstly an 

introduction to the history of Distributed Interactive Applications (DIAs) is 

given, as well a means of categorising different types of DIAs.  Following this, 

the advent of physics-simulation in virtual worlds, both single user and 

distributed, is explored and the developments in the field are outlined.  

Immersion in simulated worlds is then introduced, and the role that physics 

simulation plays in achieving immersion is explained.  The concept of 

consistency in DIAs is then explained, and the implications of physics-awareness 

in this area examined.  Some commonly used traffic reduction mechanisms in 

DIAs are then outlined, and their impact on a physics-aware DIA is examined.   

2.1 DIA History 

DIAs have been undergoing active development for approximately 25 to 30 years 

and have seen many refinements and improvements in that time.  These 

improvements have been driven by a number of factors, including (but not 

limited to): 

• Developments and advances in communications networks, 

• Improvements in processing power, 

• Competition between developers of commercial DIAs and games, 

• Requirements and demands of end users, and 

• Improvements in similar single-user, local applications. 

 

Development of DIAs has taken place primarily in three domains, specifically 

military, academia, and industry (Delaney et al., 2003, Marshall et al., 2004).  

The motivations, and thus ultimate aims, in each of these domains have 

traditionally differed, resulting in a variety of both experimental and production 

platforms and architectures in each domain.  However, developments in one field 

have been applied to, and proven beneficial, in other fields.  An example of this 

would be the dead reckoning algorithm, a traffic reduction mechanism used in a 
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number of modern DIAs (Hardt and White, 1998, IEEE, 1998) which was 

developed as part of military simulations, but is now used in multiplayer games. 

2.1.1 Military 

Historically the Department of Defence (DoD) has been a significant force in the 

development of DIAs, having constructed a series of platforms, each refining and 

improving upon the previous.  Their interest in the area of DIAs stemmed from a 

need to be able to simulate wartime scenarios in a safe and cost-effective manner, 

thus minimising both expense and loss of life in real deployments.  The DIA 

platforms developed by the military are outlined below. 

 

SIMNET 

The Simulation Network (SIMNET) (Calvin et al., 1993) was the first major 

contribution from the US DoD to the field of DIAs.  Development of SIMNET 

commenced in 1983, with the United States Army receiving a production 

package in 1990.  The primary aims of SIMNET were to provide high quality 

simulators at a low cost, and to network multiple simulators together, in order 

that multiple simulators could make up one single DIA. 

 

The networking architecture underlying SIMNET is a peer-to-peer one, whereby 

each player is responsible for their own state, and for notifying other participants 

of changes in their state.  By multiple players taking this approach, each of them 

is able to use the updates they receive to maintain a local model, or view, of the 

world including the state of remote players by making appropriate changes in 

response to each update.  As a mechanism to reduce the network traffic generated 

and received by each peer, SIMNET utilises dead reckoning mechanisms, which 

allow peers to model the positions of remote entities by means of extrapolation 

from instantaneous state.  Each peer maintains both the true and modelled state 

of its own entities, and transmits updates of state to other peers when the 

modelled state differs from the true state by more than a preset threshold value.  

This is explained in more detail in Section 2.6.3. 
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DIS 

Ultimately the protocol used by SIMNET proved too simulation specific, and an 

improved system was needed.  Hence the Distributed Interactive Simulation 

Network (DIS) platform was developed, with a view to providing a more general, 

and therefore flexible and extensible, protocol (Hardt and White, 1998).  

 

In order to meet its requirements, the DIS architecture implements the protocol 

data unit (PDU).  PDUs are messages that are generated to inform of an event 

occurring, e.g. a missile being launched.  There is a finite set of PDUs, but each 

one is designed to be generic enough that updates from all types of participants 

can be handled.  The DIS architecture also extends SIMNET’s dead-reckoning 

mechanisms by defining nine additional algorithms.  These algorithms include 

both higher order models (incorporating acceleration as well as velocity), and 

models for orientation of entities, i.e. angular state. 

 

High Level Architecture 

Research within the military at present is focussed on the High Level 

Architecture (HLA) (Dahmann et al., 1997).  Interoperability and extensibility 

are at the heart of the HLA, by contrast to DIS which, while versatile, still 

requires the development of application specific components.  During the design 

of the HLA, it was recognised that no single simulation is capable of meeting 

every potential user requirement, due to the vast range of potential requirements.  

Consequently it is designed to allow for interoperability between current and 

future simulations within the DoD, as well as the reuse of simulation 

components, and complete simulations.  By ensuring such flexibility and 

compatibility, it is hoped that time and money can be saved in the long term. 

 

2.1.2 Academic 

Concurrently to the development of DIAs by the US DoD within the military, 

there was also significant interest among the academic community.  Several of 

the key DIAs developed in academia are now discussed. 
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NPSNET 

One of the earliest academic research teams in the area of DIAs also had a 

connection to the military, in the form of the Naval Postgraduate School 

Research Group (NRG), who developed the NPSNET project (Capps et al., 

2000).  There have been five iterative versions of NPSNET to date, with the 

current being NPSNET-V.  The goal of the NPSNET-V design reflects the broad 

range of research already conducted by the NRG (including consistency, 

extensibility, scalability and interoperability) in aiming to provide an architecture 

that allows for research to be conducted into all aspects of DIAs.  The previous 

incarnation, NPSNET-IV, utilised an IP multicast protocol alongside the DIS 

application protocols previously mentioned (Macedonia et al., 1994). 

Spline 

Scalable Platform for Large Interactive Network Environments (Spline) is a peer-

to-peer DIA that was developed at the Mitsubishi Research Laboratories (Waters 

et al., 1996). Spline was developed with scalability as a key concern, and as such 

is designed to accommodate large numbers of users.  An important means in 

achieving this scalability is the division of the environment into smaller areas 

called locales (Barrus et al., 1996).  Information from each locale is only 

disseminated to users that are interested in it, rather than all users, for whom it 

may be irrelevant. 

 

CAVERNsoft 

The CAVE Research Network (CAVERN) is a group of institutions with virtual 

reality technology (e.g. CAVEs (Jones, 1998) and Immersadesks), and 

CAVERNsoft (Leigh et al., 1997) is the architecture they have developed to 

facilitate collaborative virtual reality (VR) between geographically separate 

locations.  It facilitates the use of a variety of network architectures, including 

peer-to-peer and client-server, depending on the nature and requirements of the 

specific application.   
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DIVE 

DIVE is a DIA utilising a peer-to-peer architecture that was developed by the 

Swedish Institute of Computer Science (Frécon and Stenius, 1998).  DIVE shares 

some features with the previously described Spline, such as replicating 

subsections of the environment only to those with an interest in that area, and 

scalability for large numbers of users.  However, a significant difference between 

the two is the use of a shared world database in DIVE, whereby each peer 

maintains a copy of the world, and changes are actively replicated to other peers.  

This prioritises interactivity, while tolerating slight differences between world 

copies.  

 

MASSIVE 

MASSIVE is another project that, like DIVE and Spline, employs the concept of 

locales to improve scalability (Greenhalgh et al., 2000).  Locales also have 

boundaries between them, which serve as inter-locale links, and can be used to 

create relationships between locales.  Another feature of MASSIVE is that it 

allows “aspects” of varying fidelity for each locale, so that peers with fewer 

resources may join the simulation. 

 

2.1.3 Industry (Multiplayer games) 

DIAs have always been a popular class of application in industry, but in contrast 

to the military and academia as previously outlined, most industrial DIAs are 

developed as products to be sold to end users, rather than for the organisations 

own use.  In many instances, studios traditionally developing single player games 

expanded into multiplayer games to meet user demand, and to access additional 

markets.  Multiplayer games can be very varied in the forms that they take, and 

the nature of the simulation (e.g. first-person shooter (FPS), real time strategy 

(RTS), and flight simulations all present a different user experience) may mean 

that different demands are made of the underlying architecture.  While 

multiplayer games have existed since the 1970s, e.g. Spasim and Maze War, they 

have seen much more intensive development since the 1990’s. 
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id Software 

id Software (www.idsoftware.com) have been a driving force in the development 

of both multiplayer and single player games for many years, having created both 

the Doom and Quake series, and more importantly the underlying engines, 

including idTech 1-5.  These game engines would be in turn used in other 

applications, developed both by id Software, and other companies. 

 

The first id Software title to feature multiplayer gameplay was the original 

Quake, though the popularity of this element was limited until the release of 

QuakeWorld.  This was a free update that implemented a Client Side Prediction 

algorithm to mask latency, and thus allowed users on slower connections to 

enjoy a responsive gaming experience. 

 

Tribes Engine 

In 1998, a game studio named Dynamix released the first game in the Tribes 

series.  The first game was unusual for its time in being solely a multiplayer 

game, with no singleplayer campaign or experience.  The Tribes engine 

employed novel networking code and algorithms (Frohnmayer and Gift, 2000), 

which would in turn be used in the Torque game engine and OpenTNL network 

engine, both released by former employees of Dynamix under the Garage Games 

moniker.  The significance of the networking model employed by the Tribes 

Engine is evidenced by its use as the basis for multiplayer games released over 

10 years later, such as Halo: Reach (Aldridge, 2011). 

 

Valve/Source Engine 

Valve Software (www.valvesoftware.com) were one such company who licensed 

the Quake engine as above in order to develop a game of their own, namely Half-

Life.  In and of itself, this is unremarkable, but the success of this game prompted 

Valve to develop a sequel, and as part of this, they developed the Source game 

engine (Valve, 2005b).  The Source engine was designed to be modular and 

easily upgradeable, and as such it has been available for seven years without a 

conventional change in version number. 
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In addition to this, and continuing to provide multiplayer gameplay over 

networks, the Source engine also provided detailed physics simulation by 

integrating a fully featured physics engine, an important development in the 

context of this thesis.  This was utilised in Half-Life 2 upon release and later in 

Portal, another Valve Software title in which players were required to solve 

physics-based puzzles. 

Frostbite Engine 

The Frostbite engine was developed by an Electronic Arts Studio named DICE 

(www.dice.se) in 2008, with an update released in 2009.  While not 

implementing significant advances in terms of networking, a significant feature 

of this engine in the context of this thesis was the addition of dynamically 

destructible environments.  Initially this was limited to individual walls, but the 

2009 update allowed for destruction of entire buildings.  This was significant in 

so far as the game engine utilises an underlying physics engine to simulate this 

destruction dynamically, in contrast to previous games, which accomplish this 

through pre-scripted and rendered animations. 

 

In the next section, criteria for classifying DIAs according to their mechanisms 

of operation is introduced and explained. 

 

2.2 Categorising DIAs 

2.2.1 Network Architecture 

There is a wide variety of network architectures available to designers of DIAs at 

present.  The architecture of a DIA in this context refers to both the path(s) that 

network traffic used for synchronisation follows between users, and the manner 

in which the world state is stored. 

 

Traditionally there have been two main architecture types: client-server, and 

peer-to-peer.  Figure 2.1 below illustrates the difference in structure between the 

two.  In the client-server architecture, there is one central server that maintains an 
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authoritative copy of the world, and each client communicates with that.  There 

is no direct communication between clients.  Updates are sent by the clients to 

the server, and the server processes these, and disseminates any resulting changes 

in state to clients as necessary.  In a peer-to-peer architecture, by contrast, there 

is no central authority, and all peers communicate with each other. 

 

 
Figure 2.1: Comparison of the structure of Client-Server architectures and Peer-to-Peer 

architectures 

 

Each of these architectures traditionally has its own advantages over the other, 

with selection of one to use often being related to the requirements of the 

application.  For example, latency with a peer-to-peer architecture can be less 

than client-server, as data does not have to be relayed through an intermediate 

computer, i.e. the server.  Additionally, the scalability of a client-server 

application depends heavily on the processing power and bandwidth available at 

the server, as it has to have both sufficient bandwidth to receive from and send to 

all clients, as well as simulating the entire world, where clients may only 

simulate an area of interest for performance reasons.  Conversely, the scalability 

of peer-to-peer applications may be limited by the networking capability of a 

single peer, as each peer has to handle updates from all other peers in a similar 

way to the server in a client-server deployment (Fiedler, 2010b). 

 

In recent years, hybrid architectures have been developed for applications, an 

example of which is shown in Figure 2.2.  In this example, each user’s machine 

behaves like a client in a client-server scenario, but there are multiple servers 

arranged in a peer-to-peer architecture.  In this manner each server could, for 
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instance, be responsible for simulating a particular area of the world, and a client 

communicates with the appropriate server for the area of the world in which they 

reside (Assiotis and Tzanov, 2006). 

 

 
Figure 2.2: Example of an architecture implementing a hybridisation of the client-server 

and peer-to-peer architectures 

 

There is no consensus among commercial game developers at present as to a 

single ideal architecture to employ for every application, with that decision being 

made on a per-application basis (Davis, 2008).  For example, the recently 

released Gears of War 3 shooter utilises client-server networking with dedicated 

servers for its multiplayer features (Watts, 2010), whereas real time strategy 

games (RTS) may often employ a peer-to-peer architecture (Bettner and Terrano, 

2001).  Yet another alternative, in the form of a hybrid architecture, has been 

suggested for use in Massively Multiplayer Online Role Playing Games 

(MMORPGs) (Assiotis and Tzanov, 2006). 
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Entity Replication in Peer-to-Peer DIAs 

Figure 2.3 illustrates how peers maintain ownership and authority over entities 

local to them, while modelling entities owned by other peers.  These models of 

remote entities at each host or peer are based on the updates received by that 

peer, and are, at best, only an approximation to those entities’ true states.   

 

 
Figure 2.3: Ownership and modelling of local and remote entities respectively, in peer-to-

peer architecture 

 

A flaw with peer-to-peer for competitive applications that has been identified in 

the literature is a lack of a single, central authority, which can leave the 

application more susceptible to cheating by players (Webb et al., 2007, Yan and 

Randell, 2005).  The reason for this susceptibility is that without an authority to 

validate the information sent by each peer, a peer could send false information in 

its updates to gain an advantage over other peers.  For example, a user could 

modify their local program to allow them to move faster, or to have greater 

manoeuvrability than others.  However, modifications to the basic peer-to-peer 

application structure have been proposed to counter such cheating, one of these 

being the Referee Anti-Cheat Scheme (RACS) (Webb et al., 2007).  Under this 
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scheme, peers send updates to other peers as normal, as well as to a referee 

process.  This referee process runs on a trusted host, and is able to validate 

updates (in order to detect cheating), and resolve any conflicts arising between 

peers.  It does not send updates to peers unless conflict resolution is necessary, or 

cheating is detected, and correction deemed necessary.  A further proposed 

extension of this scheme, for scalability purposes, is the implementation of 

distributed referees. 

 

2.2.2 Time Management 

A further quality by which DIAs may be categorised is the mechanisms 

employed to manage the simulation of time within the environment.  This is an 

important categorisation as it restricts the types of behaviour that are possible 

within the DIA.  Time management mechanisms in DIAs can be divided into two 

key categories: 

 

1. Logical Time – Passage of time occurs only in response to the generation 

of events within the simulation (Lamport, 1978).  If no events occur, then 

no time is considered to have elapsed, and time does not increment.  This 

has also been referred to as causal time. 

2. Real Time – Passage of time occurs regardless of simulation events, 

similar to the passage of real world time.  Consequently it is also referred 

to as physical time, or wall-clock time. 

 

Applications whose execution is driven by logical time can be described as 

logical time applications (Page and Smith, 1998).  Turn-based games, such as 

chess, or collaborative document editing environments would be examples of 

such logical time applications.  In contrast to this, games such as Doom and 

Quake, as mentioned earlier, are examples of DIAs utilising real time 

management.  In this thesis, we will focus on real time applications, as 

simulation of physical systems is ill-suited to the logical, or causal, time. 
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The next section will provide a background to physics simulation in both local 

and distributed virtual environments, as well as examining the motivations 

behind such simulation. 

2.3 Physics Simulation in virtual environments 

As already stated, DIAs have become more complex as computational hardware 

has become more powerful, and more efficient.  The same is true of video games 

in general, both in the multiplayer games that fall within the realm of DIAs, and 

single player games which do not.  These advances have taken place in the 

realms of artificial intelligence (AI), graphical and visual rendering, and 

environmental detail and complexity, to name a few.  Improvements in physics 

simulation have been driven in part by the latter two areas, as well as a desire for 

increased realism in games. 

 

Games offering physics simulation in one form or another have been available 

for over 25 years, but the level of detail and complexity has increased 

significantly over time (Hecker, 2000).  Early games, such as Tetris, Super 

Mario, or even Pong, employed simple simulation of physical laws to simulate 

movement in two dimensions, and to ensure that objects could collide with each 

other, as opposed to passing through each other.  With limited processing time 

available in many computers at the time, this was all that could be achieved 

while still being able to execute all other aspects of the game.  An added issue for 

developers was that these physics simulations often had to be constructed on a 

per game basis, due to each game having differing requirements, and 

optimisation and minimisation of program code being required due to hardware 

constraints, as already alluded to. 

 

As computational platforms became more powerful, however, physics simulation 

within games advanced.  Initially this took the form of more detailed simulation 

within two-dimensional games (e.g. Sonic the Hedgehog, Micro Machines), but 

with the advent of three-dimensional game environments, with six degrees of 

freedom (e.g. Quake, Half-Life) scope for further advances was soon available.  

In the 1990’s, a shift took place in the way in which physics simulations were 

implemented in games.  Where previously physics simulations were tailor made 
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for each game, a new type of middleware called physics engines emerged 

(Millington, 2007).  A physics engine is a piece of reusable software that can be 

integrated into a larger application to simulate the physics of the virtual 

environment. 

 

In general, physics engines provide collision detection functionality, and 

implement Newtonian mechanics, with early engines being limited to rigid body 

dynamics.  As before, however, availability of increased processing power, and 

refinement of simulation techniques led to more complex and flexible engines, 

with fuller feature sets.  The advent of techniques such as ragdoll physics 

(Glimberg and Engel, 2007, Mulley and Bittarelli, 2007) allowed developers to 

replace scripted animations with real time simulations that responded to unique 

instantaneous inputs.  From a game perspective, this allowed for the presentation 

of a more realistic, and hence believable, world. 

 

As developers began to realise the potential of accurate physics simulation, and 

by extension physics engines, efforts emerged attempting to make more 

processing power available to simulations.  This included the development of 

Physics Processing Units (PPUs), devices (Yardi et al., 2006, Yeh et al., 2007, 

Bishop et al., 2000) which were optimised for the typical calculations arising in 

physics simulations.  In 2005, AGEIA Technologies released the first 

commercial PPU with support for their PhysX SDK (Ageia, 2005a, Ageia, 

2005b).  Ultimately this approach was superseded by the development of 

technologies for General Purpose Computing on Graphics Processing Units 

(GPGPU) (Enhua and Youquan, 2008), whereby GPUs already present in 

computers could be used as coprocessors for physics calculations.  Nvidia’s 

CUDA (www.nvidia.com/object/cuda_home_new.html) and AMD’s Stream 

(www.amd.com/stream) are examples of language libraries facilitating this, with 

Nvidia currently owning and developing the PhysX brand and technologies. 

 

Currently, there are many different physics engines available to game developers, 

ranging from open source projects providing rigid body simulations in two 

dimensions, such as Chipmunk Physics (code.google.com/p/chipmunk-physics), 

to the industry standard Havok Physics (www.havok.com) that has been used in 
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over 150 published games to date, as well as having been incorporated into a 

number of game engines.   

 

Physics simulation and physics engines have also come to be of interest to 

developers of virtual worlds outside the domain of games, with academics 

observing that many of the physics engines available for games are not general 

enough for use in every type of application (Nourian et al., 2006).  For example, 

highly detailed flight simulations, and first-person shooters might place different 

priorities on aerodynamics and collision mechanics respectively.  The xPheve 

project designed an extensible physics engine with this in mind, where each 

physical law to be simulated is implemented as a component, and appropriate 

priority and precision can be configured for each law.  The versatility of this 

engine can be seen from its use in both a military simulation, and a separate 

surgery simulation (Nourian et al., 2005), by means of different configurations of 

physical laws. 

 

2.3.1 Causal and Non-causal simulation 

As already stated, physics simulation has been used for a variety of purposes, 

including addition of realism to rigid bodies, and animation.  One such area of 

animation has been the simulation and rendering of particles, such as dust clouds.  

In light of this varied application, it is necessary in the context of this thesis to 

distinguish between these purposes, and the effects that they have on the 

simulation.  This gives rise to the definition of causal and non-causal events. 

 

Causality refers to the relationship between two events, the first being the cause, 

and the second being the effect, where the effect is brought about as a 

consequence of the first.  Extrapolating from this definition, in the context of the 

simulation of virtual environments, it is possible to classify events and 

interactions as either causal, or non-causal.  A causal event is one which brings 

about a corresponding effect, with a non-causal event having no quantifiable or 

discernible effect.  An example of a causal event would be a collision with 

another entity, and the state of that entity being altered, while a non-causal event 

would be typified by either a collision with a simulated wall whereby the wall 
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was undisturbed, or simply the exact motion of particles in a simulated dust 

cloud. 

 

This distinction is important, as it suggests a way to prioritise events and 

associated data for replication, as well as to avoid unnecessary traffic generation.  

It may also provide a criterion for allowing data compression by means of 

approximation of state variables in certain instances.   

 

2.3.2 Determinism in physics simulation 

Determinism is a quality of an algorithm, system, or by extension, a simulation.  

In a mathematical or computer science context, determinism of an algorithm or 

system refers to the ability of that algorithm or system to reliably and 

consistently produce the same output(s) for a given set of inputs and initial 

conditions (Bullet, 2008, Fiedler, 2010a, Qvist, 2009).  A further clarification, in 

terms of systems, is that the system must always pass through the same set of 

states in going from the input(s) to the output(s). 

 

In terms of a physics simulation or engine, determinism can be considered to be 

the ability of a simulation to produce the same final state in response to a given 

set of initial conditions and inputs.  This is an important quality of a physics 

engine as a form of middleware, as developers utilising the engine need to be 

satisfied that their application will behave similarly, and produce reliable and 

consistent results across varied platforms.  This is of extra importance when 

platforms with varied hardware are used to simulate the same world 

concurrently, as is often, or even usually, the case with multiplayer games, for 

example PC gamers with different CPUs and GPUs. 

 

However, one potential exception to a requirement for precise determinism could 

be those events classified as non-causal in the previous section.  Here if any 

discrepancy arising will have no further (causal) influence on later events, it may 

make no material difference to users or their simulations, and will consequently 

resolve itself.  Therefore, if possible, deterministic simulation should be 

prioritised for causal events and elements, in the event of both deterministic 
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simulation and non-deterministic simulation being available.  A caveat to this, 

however, is that any discrepancies arising from such non-deterministic 

simulation should still be reasonably small, such that two users do not observe a 

radically different view of the same environment as a consequence.  For 

example, the exact motion of particle effects in a cloud does not need to be 

simulated deterministically, as the particles have no causal influence on the 

simulation.  It is sufficient to ensure that the cloud as a whole is accurately 

replicated in position, size and density. 

 

2.3.3 Networked Physics Simulation 

Client-Server 

As already mentioned in Section 2.1.3, the Source engine developed by Valve 

was one of the first engines to incorporate physics simulation into a game engine 

that also provided facility for multiplayer sessions over a network.  The Source 

engine utilises a client-server architecture for multiplayer games (Valve, 2005c), 

where the server may either be a dedicated server, or one of the users may host 

the session, whereby one computer serves as both client and server.  The Source 

engine utilises compression, interpolation, prediction and lag compensation to 

accommodate the issues introduced by networked games.  The engine also takes 

advantage of the presence of an authoritative server in the client-server 

architecture, by distributing updates to clients in the form of snapshots and “delta 

snapshots” (changes in world state since the last snapshot) of the world state, by 

default at a rate of 20 snapshots per second.  In order to make this transparent to 

people developing with the Source engine and SDK, base classes are provided to 

create both server-side, and client-side versions of an entity, and specific 

variables within the entities can be configured for replication (Valve, 2005a).   

 

A notable difference in many multiplayer games based on the Source engine 

when compared to single player titles, however, is the quantity of environmental 

objects subject to the laws of physics.  While there are such entities, they tend to 

be fewer in number.  For example, Counter-Strike Source has less physics-aware 

objects than Half-Life 2, to compare two games based on the engine that were 
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released at similar times, and both developed by Valve Software themselves.  

There is no established literature, or official information from Valve Software to 

explain why this might be the case.  However, there have been indications from 

other developers that instead of trying to make the network work more 

effectively to replicate physics-aware bodies, there is a trend towards altering the 

gameplay to accommodate the network (Aldridge, 2011).  This approach is far 

from invalid, but fails to solve the issues of physics simulations in multiplayer 

games, preferring to remove, or at least minimise this element.  This may explain 

the aforementioned discrepancy between singleplayer and multiplayer 

applications. 

 

Peer-to-Peer 

As already explained, client-server is one of two basic architectures available to 

application developers, and even alternative architectures are typically 

constructed as a hybrid or combination of these two basic arrangements.  Thus, 

while Valve’s solution as implemented in the Source engine may be appropriate 

for client-server architectures, it is not directly transferable or applicable to a 

peer-to-peer structure.  For example, in a peer-to-peer application, there is no 

central authority analogous to a server to replicate snapshots of the entire world 

state. 

 

Thus far there has been limited success with the development of physics-aware 

entity state management techniques for peer-to-peer applications.  The key 

hurdles for such algorithms are issues of authority, and scalability (Fiedler, 

2010b).  One such algorithm has proposed a local authority scheme, whereby 

peers can assume authority over physics-aware entities, in addition to already 

being responsible for those local entities that they control.  This algorithm as 

proposed, however, does not utilise dead reckoning models.  Instead it employs a 

constant update rate, whereby each peer sends a preset number of update packets 

to remote peers every second.  These updates all share a common structure, 

outlined below: 

Sequence Number – The first section of the packet (16 bits proposed for 

a 30 packets per second example) consist of a sequence number for 
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ordering purposes, so that if packets arrive out of order, entities are only 

updated with the most recent state. 

Input – The user’s input is then described so that remote peers can 

simulate the user-controlled entity’s behaviour.  Note that Fiedler’s 

proposal assumes only one user-controlled entity per peer. 

Rigid Bodies’ State – Finally, the remaining space in the packet is filled 

with the compressed state of as many rigid bodies, or physics-aware 

entities, as possible for which the peer is the authority.  The specific 

bodies to include in a given update are determined by means of a 

“priority accumulator” which considers the time since an entity was last 

updated, and a weighting factor which allocates greater importance to the 

updating of some entities. 

 

In the event of two players’ areas overlapping, the lowest player ID becomes the 

authority.  However, in the event of a player interacting with an object, they 

become the authority for that object, until that entity comes to rest again.  In the 

case of multiple peers observing physics-aware entities that are not controlled by 

an interaction authority, the peer with the lowest player ID is authoritative in the 

event of conflicting views.  Fiedler (2010b) acknowledges that this approach of 

granting authority renders games susceptible to cheating, and cautions that it only 

be used in cooperative games.   

 

A potential disadvantage of this approach in a general sense is that peers 

providing state updates for entities until they come to rest may generate 

unnecessary data; if the physics engine in use is deterministic the motion of 

physics-aware entities is therefore predictable provided that no other player 

interacts with the entity before it comes to rest.  However, this is less of a 

concern in an application using a constant update rate, as in Fiedler’s example, 

than it might be for a dead reckoning application, where update rates can 

fluctuate. 

 

In the next section, the concept of immersion in interactive applications is 

introduced, and its influence as a motivation behind the addition of physics-

awareness to virtual environments is discussed. 
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2.4 Immersion in DIAs and Games 

Immersion is a term and concept that has been applied to virtual worlds and 

users’ experiences of them for a number of years now.  As a term, there have 

been varying interpretations and understandings of what it means, but most 

commonly it is used to describe the degree of involvement with a game (Brown 

and Cairns, 2004) or virtual world.  Varying levels of immersion have been 

described, with one scale classifying these as being engagement, engrossment, 

and total immersion.  A wide range of factors can influence the level of 

immersion achievable by a user in a virtual world, including the user’s 

preference towards the application type (e.g. game genre, in the context of 

games), the quality of the construction of the application, and the scenario 

presented to the user (Jennett et al., 2008).  The disconnection from the real 

world brought about by immersion has also been shown to take a measurable and 

quantifiable amount of time to be overcome upon stopping interaction with the 

environment (Cairns et al., 2006).  Given that the objective of such games, as 

recreational applications, is to engage with the virtual world, and arguably to 

draw some of the user’s focus from the real world, this exhibits just how 

powerful and successful applications can be in terms of developing immersion. 

 

Immersion is not solely applied to the domain of games however, and can be 

used to describe more general virtual worlds, and by extension, DIAs beyond the 

field of multiplayer games (Swing, 2000).  While research suggests that poor 

coherence in games and applications can be overcome if immersion has already 

been achieved, the same research indicated that a lack of coherence can be a 

barrier to the initial development of immersion (Cheng and Cairns, 2005).  Thus 

presenting a coherent and realistic environment to the user from the outset can 

aid the development of immersion, and simulation of realistic physics should 

serve to facilitate this in appropriate applications.  For example, some games, 

such as Battlefield Heroes, (www.battlefieldheroes.com), deliberately present a 

less realistic environment, and the simulation of “true-to-life” physics might in 

fact be inappropriate. 
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Consistency in DIAs can be thought of as the ability of an application to ensure 

that an entity is ‘in the right place at the right time’ for all users.  Thus if 

inconsistency is present in a DIA, each user may have a differing view of the 

environment.  This in itself would be unrealistic behaviour, which could serve as 

a barrier to immersion, especially if users can speak to each other, or 

communicate otherwise, as in many DIAs. 

 

In the next section, the concept of consistency in DIAs is introduced, and the 

information outlined so far in this chapter is built upon in relating consistency to 

physics-aware DIAs specifically. 

 

2.5 Consistency in Distributed Interactive Applications 

An important element of any DIA is the ability of the application to maintain a 

consistent representation of the state variables stored in each host’s version of the 

shared world database.  Each host in a DIA transmits synchronisation messages 

containing the latest values of the relevant state variables across the network 

connecting hosts to maintain the consistency of this database.  Three distinct 

elements of consistency in DIAs have been identified in the literature (Bouillot 

and Gressier-Soudan, 2004, Roberts, 2004): 

 

1. Synchronisation – Guarantees that all hosts’ versions of the state 

variables are equal within the constraints of real-time simulation. 

2. Concurrency Control – Participants on different hosts are allowed to 

make changes to the shared world databases concurrently, with the results 

of these changes being the same as if made by a single host. 

3. Causal Ordering – Ensures the maintenance of the causal relationships 

(cause and effect) between related changes to the shared world database. 

 

For many modern DIAs, the underlying communications network between the 

hosts is the Internet, and the Internet in its current form thus poses two major 

obstacles to DIAs.  Specifically, these obstacles are network latency (and jitter), 

and limited network bandwidth. 
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Network latency is the time taken from the start of exchange of a 

synchronisation message at the application layer of one participating node to the 

end of exchange of the same message at the application layer of a second 

participating node (Pullen and Wood, 1995), while jitter is defined as the 

variation of latency with time (Blow, 1998).   

 

A network link’s bandwidth is a measure of the maximum throughput of traffic 

on that link.  In the event that the data being transmitted over a link exceeds the 

available bandwidth, messages will need to be buffered or dropped until the flow 

of data decreases to being within the available bandwidth again (Roehle, 1997). 

 

For real-time DIAs, complete and exact consistency of the state variables stored 

within the shared world database is impossible to achieve, due to the limitations 

of the network connecting the participating hosts.  The Consistency-Throughput 

Tradeoff (Singhal and Zyda, 1999) describes this issue: 

 

 It is impossible to allow dynamic shared state to change 

frequently and guarantee that all hosts simultaneously 

access identical versions of that state. 

 

(2.1) 

 

In simple terms, this statement means that a DIA can be either consistent, or real-

time, but not both (Bhola et al., 1998).  For example, modern DIAs operate at an 

update rate of 30-60Hz.  In the case of an application with an update rate of 

50Hz, each host updates their local state every 20ms.  Thus if the latency 

incurred by an update is greater than 20ms, as would typically be the case with 

latency on the Internet, the local state of the variable(s) being updated may have 

already changed before the update is even received. 

 

If the application were to operate at a lower frequency such as 5Hz, then the 

variables could only be changed every 200ms, and consistency could be achieved 

for latencies less than 200ms.  However, a 5Hz simulation is far less interactive 

in real time than the 50Hz simulation. 
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In more general terms, Singhal and Zyda (1999) propose that equation (2.2) can 

be used to evaluate the scalability of, or amount of resources required by, an 

application. 

 

 Resources M H B T P= × × × ×  (2.2) 

 

where: 

M is the number of messages exchanged; 

H is the average number of destination hosts for each message; 

B is the bandwidth required for a message; 

T represents the timeliness with which the packets must be delivered to 

each destination; 

P is the number of processor cycles required to receive and process each 

message. 

 

In equation (2.2) the M, H, and B terms refer to the communications bandwidth 

required by the DIA, and thus influence the impact that network bandwidth has 

on the scalability of an application.  Reducing the size of one or more of these 

terms has the overall effect of reducing the network bandwidth required by an 

application.  Several techniques that have been employed to accomplish this are 

described in Section 2.6. 

 

The impact of network limitations on consistency can manifest itself in a number 

of ways, which vary depending on the nature of the simulation.  The effects can 

be categorised into one of three groups (Sun et al., 1998): 

 

1. Divergence – Events arrive and are executed at hosts in different orders 

at different hosts, leading to differing final results. 

2. Causality Violation – Due to non-deterministic network latency, 

changed to state variables arrive out of their natural cause-effect order. 

3. Expectation / Intention Violation – Due to concurrent generation of 

updates on different hosts, the actual effect of an event at its time of 

execution may differ from the intended or expected effect of the event at 

its time of execution. 
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For the purposes of this thesis, the following definition of consistency, which 

takes into account the real-time nature of modern DIAs (Delaney, 2004), is 

adopted: 

 

 Consistency is the maintenance of a uniform dynamic 

shared state across all participants in a DIA. 

 
Def. (2.3) 

 

2.5.1 Metrics of Consistency 

Many DIAs are state driven applications, and thus a common metric for 

divergence is spatial inconsistency, or drift distance, defined in the literature as a 

measure that represents absolute spatial difference between representations of the 

same entity on different hosts (Diot and Gautier, 1999).  When using this metric, 

the state of the DIA is judged to be inconsistent if the drift distance measured is 

large when compared to some threshold value. 

 

A contrasting measure of consistency is that of temporal consistency, or phase 

difference, which measures the impact of network latency by measuring the 

length of time between generation of an event to a state variable, and the same 

event’s application to the remote version of that variable (Lui, 2001).  In using 

this metric, a threshold is defined in relation to the phase difference, and the goal 

of the DIA is to keep the absolute value of the phase difference less than or equal 

to this threshold. 

 

More recently, Zhou et al. (2004) has observed that a limitation with both of 

these metrics is their failure to consider other concerns and influences.  For 

example, spatial inconsistency does not consider the duration for which an 

inconsistency persists, while temporal inconsistency does not consider the effect 

of the inconsistency on the world state.  Arising from this, Zhou et al. (2004) 

have proposed a measure that combines both time and spatial measures into a 

single metric of inconsistency for a continuous variable 
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where: 

∆ (t) is the spatial difference between entity representations on different hosts; 

ε is the minimum perceivable error (from a human-user perspective); 

t0 is the time at which the difference starts; 

τ is the duration for which the difference persists. 

 

From this definition, it can be observed that Ω refers to the area under the graph 

of spatial consistency with respect to a particular entity trajectory over a specific 

duration of time.  When Ω = 0 absolute consistency has been achieved to within 

the limits of user perception, and the presentation element of inconsistency is 

minimised (Vaghi et al., 1999).  Due to limitations of any network connecting 

participants, a true zero value for inconsistency is never actually achievable in a 

real-time DIA, as per the Consistency-Throughput Tradeoff.  To account for this, 

Zhou includes the ε term as a minimum perceptual value in equation (2.4) above.  

This allows a system to be considered consistent if the inconsistency is below 

human perceptual limits. 

 

Physics-aware inconsistency measurement 

As the algorithms proposed within this thesis pertain to synchronisation of state 

variables rather than latency masking or other temporal concerns, for the 

purposes of this work, a spatial metric of consistency will be employed when 

presenting and considering results.  Due to the simulation of non-peer-controlled 

entities, and a need to consider their effect on the environment as a whole, drift 

distance as defined above is insufficient in measuring the total inconsistency in a 

physics-aware environment.  The term physics-aware inconsistency will be used 

to refer to the sum of the spatial inconsistencies of all entities between one host 

originating stage changes, and another receiving them.  This is represented by 

equation (2.5). 
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where: 

ei is the spatial inconsistency of the ith entity in the environment; 

N is the number of entities present in the environment; 

φ  is the “physics-aware” inconsistency in the environment. 

 

The next section introduces a number of mechanisms commonly used in DIAs to 

reduce the amount of network traffic, thus increasing the scalability of 

applications.  The specific impact and relevance of these mechanisms in the area 

of physics-aware DIAs are also outlined in each case. 

 

2.6 Traffic Reduction techniques and their implications for 

physics-rich environments 

In order to improve the scalability of DIAs, a number of techniques have been 

developed, and the implementation of some of these techniques can have specific 

relevance to physics-aware DIAs.  A number of these techniques are outlined in 

the following section, as well as the implications of using these techniques in 

such applications. 

 

2.6.1 Compression 

Compression is used to reduce the volume of traffic generated by reducing the 

size of network packets.  There are various compression schemes available for 

use in DIAs, all of which can be categorised as either lossless or lossy.  Lossless 

compression techniques, as the name suggests, are those which still result in fully 

precise information being exchanged.  An example of a lossless compression 

scheme is bit packing, as used in the Torque and Tribes engine (Frohnmayer and 

Gift, 2000), which involves including only the bits necessary to represent the 

contents of a variable, as opposed to all the bits in the variable.  For example, 
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many integer values can be represented with far less than 32 bits, despite 

occupying 32 bits in memory. 

 

Conversely, lossy compression algorithms operate on the principle that fully 

precise information is not necessary.  Truncation or rounding of floating point 

values would be an example of one such approach, and dead-reckoning, as 

outlined below, is also analogous to lossy compression.  The use of such 

compression schemes may be undesirable in physics-aware simulations, as it 

potentially negates the determinism of an engine to send state updates with lossy 

compression due to initial conditions differing.  It may be possible to avoid this 

discrepancy by applying the same compression to internal variables within the 

engine at the time of updating, but blindly modifying state in this manner has the 

potential to introduce unpredictable behaviour, e.g. two bodies being brought 

into contact/overlap. 

 

2.6.2 Packet Aggregation 

Packet aggregation refers to a process by which multiple packets are combined 

into a single larger packet in order to reduce network bandwidth (Bassiouni et al., 

1997).  This reduction is accomplished by each smaller packet sharing the single 

header of the larger packet, thus reducing the overall number of headers 

transmitted.  A drawback of the approach in all simulations, particularly physics-

aware applications which may be particularly time sensitive, is the potential for 

latency to be introduced by delaying transmission of packets, for the sake of 

aggregation. 

 

2.6.3 Dead Reckoning 

An already mentioned but as yet unexplained algorithm for traffic reduction, 

dead reckoning is a short-term client side prediction mechanism (Durbach and 

Fourneau, 1998, IEEE, 1998).  This is an approach which utilises information 

relating to the dynamics of an entity’s state and motion, such as position and 

velocity, to model and predict future behaviour.  The operation of the mechanism 

is as follows: 
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(i) All users model all entities, including those local to the user. 

(ii) Thus each user knows both the local and modelled behaviour of local 

entities, and can compare them at all times. 

(iii) Local users send updates to remote users when they determine that the 

error between modelled and actual behaviour has exceeded a preset 

threshold.  A first order example of this is shown in Figure 2.4. 

 

DR

Threshold

True Path

Dead Reckoned Path

Error Bound  
Figure 2.4: Calculation of a first order dead reckoning model from true motion of an entity 

 

Depending on the error threshold employed, it is possible, and indeed likely, that 

the actual and modelled entity positions will differ somewhat.  As a result, when 

updates are received, modelled remote entities may appear to jump, or “snap” to 

the updated position.  Convergence mechanisms have consequently been 

employed to smooth this jump (Singhal and Zyda, 1999), with a good 

convergence algorithm being capable of correcting the modelled behaviour 

quickly, without presenting too distorted a world view to the user.  Equation (2.6) 

gives an example of how a first-order dead reckoning update can be calculated 

 

 
0 0 01t t t τ+ = +p p v  

 
(2.6) 

where: 

pt+τ is the position of an entity at time t0+τ; 

pt is the position of an entity at time t0; 

vt is the velocity of an entity at time t0; 

τ is the timestep of the simulation; 

 

The error permitted by dead reckoning for remote entities presents an issue in 

physics-aware applications as if an error is present when a modelled remote 
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entity collides with an environmental entity there is automatically an error 

present within the collision simulation, and potentially in the path followed by 

the environmental entity before coming to rest. 

 

2.7 Summary 

In this chapter, previous work in the areas of DIAs, real-time physics simulation 

and immersion in games and interactive applications was detailed.  The 

developments in incorporating physics simulation into DIAs were also outlined, 

as well as the motivations behind this.  In the next chapter the development of 

algorithms for supporting distributed simulation of physics in a peer-to-peer 

application utilising dead reckoning traffic reduction mechanisms is discussed. 
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Chapter 3  

Physics-aware state management in a P2P DIA 

In this chapter a mechanism for synchronisation of entity state in a physics-

aware, peer-to-peer DIA is outlined.  The development of this algorithm both 

draws on past work in the field, and incorporates a novel means of minimising 

physics-consistency-cost.  Further, the development of a testbed application for 

validation of this algorithm is described. 

 

3.1 Physics-consistency-cost 

As already mentioned in earlier chapters, physics-aware DIAs introduce a new 

element to consistency, by the simulation of physics-aware entities.  Such entities 

are capable of having the inconsistency present in peer-controlled entities 

communicated or transferred to them if the controlled entity’s state is 

inconsistent when they interact, or collide. 

 

Figure 3.1 (a)-(c) illustrates the means by which the inconsistency present in the 

state of an entity modelled by dead reckoning may be communicated to a 

physics-aware entity by means of a collision between the two entities.  Broadly 

speaking, such inaccuracies fall into one of the following three categories: 

• collisions detected by both local and remote hosts, but simulated 

inaccurately at the remote host due to incorrect velocities and points of 

contact as illustrated in Figure 3.1 (a), 

• collisions occurring in local world that did not occur remotely (Figure 3.1 

(b)), and 

• collisions that did not occur locally, but were observed remotely (Figure 

3.1 (c)). 
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A

B

A

B

A B

True (Local) Paths

DR (Remotely Observed) Paths

(a) Collision simulated inaccurately by remote host due to incorrect point of contact

(b) Collision simulated locally that was undetected at remote host

(c) Collision simulated at remote host that never occurred locally
 

Figure 3.1 (a)-(c): Examples of collisions between controlled entity (A) and physics-aware 

entity (B) simulated inaccurately at a remote host due to error in dead reckoning model of 

controlled entity's motion.  Solid shapes represent starting positions, and shaded shapes 

represent projected positions. 

 

In a similar manner, in a physics-rich environment with densely clustered 

entities, these inconsistent physics-aware entities can in turn communicate their 

inconsistency to other such entities.  This communicable inconsistency is the 

source of the difference between the solid and dashed lines in the graphs 

presented in Figure 3.2, and this difference is what is meant by the term 

“physics-consistency-cost” in the context of this thesis.  At certain times this is 
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zero (when the two lines are overlaid), but when collisions occur, it typically 

becomes non-zero (when the two lines diverge). 
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Figure 3.2: Controlled entity (avatar) inconsistency compared to all inconsistencies present 

in a physics-aware DIA. 

 

While this thesis limits the definition of physics-consistency-cost to this 

discrepancy, there is scope to consider further factors.  To consider the ball and 

domino examples presented in Chapter 1; in calculating physics-consistency-cost 

as a sum of spatial inconsistencies as outlined above, the ball example could 

generate a significantly larger physics-consistency-cost than the domino 

example, due to the distances involved.  However, the domino example requires 

the correction of more entities if they are simulated inaccurately as falling.  To 

account for this, a complexity factor could be introduced to the calculation of 

physics-consistency-costs. 

 

Yet a further variation in calculating this could be to consider the relative 

magnitude of a physics-aware entity’s inconsistency compared to its size.  

Considering the ball example and the large inertia example (also in Chapter 1) 

previously presented; if the physics-aware entity in each example had a similar 

inconsistency in their states, the physics-consistency-cost of the latter would be 

less under these terms, as the difference in positions might be less noticeable for 

a larger entity. 
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The above list of potential physics-consistency-costs is not exhaustive, but rather 

seeks to highlight the generality of the concept, and to point out that the exact 

means of calculation may need to be chosen according to the requirements or 

priorities of a particular application.   

 

3.1.1 Anticipation of Physics-consistency-costs 

Having identified the source of these physics-consistency-costs, it is now 

possible to try to identify criteria for predicting, or more accurately anticipating, 

times at which they may arise.  This distinction is made as many, if not most, 

collisions, are impossible to predict with both 100% certainty (that they will 

occur, and when) and accuracy (what changes of state will result from the 

collision). 

 

One means of anticipating collisions between a locally-controlled entity and a 

physics-aware entity is inspired by the dead reckoning algorithm as outlined 

earlier.  Specifically, this would be accomplished by trying to predict the future 

states of the environment based on current and/or past states, and then checking 

for collisions between the locally controlled entity and any physics-aware entities 

in each future state.  This could be accomplished by copying the environment 

within a certain radius of the controlled entity, and advancing the copied 

simulation a set number of steps, checking for collisions between steps.  This is 

referred to as a “forecasting” method in the context of this thesis. 

 

An alternative means would be to consider the density of entities either in the 

immediate vicinity of a controlled entity, or along its projected path.  In general 

the likelihood of physics-consistency-costs arising (i.e. collisions occurring) is 

dependent on the number of entities in the environment.  It should be intuitive 

that for two environments, identical in every way except for the number of 

physics-aware entities present, there is a greater likelihood of colliding with a 

physics-aware entity in the environment with more entities.  Similarly, if a user is 

in a region of an environment that is densely populated with physics-aware 

entities, they are more likely to collide with such an entity than another user in a 

region that is sparsely populated with, or empty of, physics-aware entities.  In 
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this thesis, approaches that examine the controlled entity’s surroundings for 

physics-aware entities in this manner are categorised as being based on “entity-

density.”  

 

3.2 Authority in Physics-aware DIAs 

In non-physics-aware, peer-to-peer DIAs, each peer maintains the authoritative 

copy of state for the entity or entities that are controlled by that peer, i.e. those 

entities that are local to that peer.  These entities could be controlled by users at 

that peer, by an artificial intelligence process running at that peer, or some 

similar mechanism. 
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Figure 3.3: Uncontrolled inconsistency developing in a peer-to-peer physics application with 

no authority for physics-aware entities 

 

In the case of physics-aware DIAs, however, authority is less clear-cut for 

physics-aware entities.  Each peer needs to be able to present a realistic view of 

physics-governed interactions to its users, and due to the dynamic nature of 

physical interactions, this imposes a requirement of responsiveness on the 
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application.  A truly responsive simulation could be achieved by giving each peer 

responsibility and authority over its own copies of physics-aware entities.  

However, this would lead to quickly developing inconsistency, due to the factors 

outlined in Figure 3.1.  While each peer could accurately simulate the interaction 

of their local entity or entities with physics-aware entities, the error in the dead 

reckoning models they provide to remote peers would lead to inaccurate 

calculation of the resulting state of the physics-aware entities.  Such a 

development of physics-aware inconsistency is demonstrated in Figure 3.3.  This 

graph was generated by running a set of simulations with no explicit 

synchronisation of the state of physics-aware entities, and recording the 

development of physics-aware inconsistency.  Note also that the size of the error 

threshold used in the dead reckoning has no bearing on the rate at which the 

physics-aware inconsistency develops. 

 

Thus it is clear that an explicit means of synchronising the state of these entities 

is required, and in order to synchronise state, an authority scheme is required.  In 

the context of peer-to-peer DIAs, Fiedler (2010b) describes authority as “like 

being the server for an object” whereby a peer having authority over an object 

means that it can inform other players of the object’s state.  Authority is 

necessary for two reasons: 

 

1. To determine which peers have an inconsistent state representation, and 

2. To correct the state of the inconsistent entities at these peers. 

 

3.2.1 Static Authority 

In traditional peer-to-peer DIAs, each peer is authoritative on the state of its local 

entities.  This authority can be considered as being a “static” authority, in that it 

is assigned when the peer joins the DIA, and is not changed or reassigned after 

this point.  Conversely, if the authoritative peer for a given entity can be changed 

while a DIA is running, that could be considered dynamic authority. 

 

As noted earlier in this thesis, in DIAs using client-server architectures the server 

acts as a single, central authority, with clients (the equivalents of peers) receiving 
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appropriate state updates from it.  Hypothetically, authority over physics-aware 

entities could be granted to a single peer, with all other peers having to validate 

or seek approval for interactions between their local entities and physics-aware 

entities.  This would, however, place a significant burden on that one peer, 

effectively turning it into a server for physics simulation.  Additionally, with a 

single peer being authoritative over all physics-aware entities in the environment, 

the application becomes less fault-tolerant as the entire physics simulation is 

dependent on that peer. 

 

The flaws of the previously outlined approach could be mitigated somewhat 

while still maintaining a static authority scheme by allocating authority over 

particular entities to particular peers.  In essence, this would mean the division of 

physics-aware entities among the peers, with each peer managing the entities 

allocated to it as local entities, according to its own physics simulation, and dead 

reckoning models being used by peers for other physics-aware entities.  This 

static distribution of authority presents issues of its own, however.  If a user-

controlled entity interacts with a physics-aware entity whose authority is held 

remotely, their interaction or collision must be “approved” by the remote 

authority peer.  In the presence of latency, this can present unrealistic behaviour 

to a user, whereby they observe a visible delay between their collision (cause) 

and the physics-aware entity’s resulting movement (effect).  Note that this would 

also apply to the previous scenario of a single authoritative peer.  Additionally if 

the physics-aware entity contains modelling error, the result of an interaction 

may also differ from the user’s expectation. 

 

3.2.2 Dynamic Authority 

To reiterate the earlier distinction, dynamic authority refers to being able to 

change which peer provides authoritative state for an entity while the application 

is running.  Motivated by the earlier work of Fiedler (2010b), this thesis proposes 

a dynamic authority scheme whereby a peer assumes authority over entities with 

which it interacts. This removes the need for a peer to remotely validate 

interactions of its entities with physics-aware entities who might otherwise have 

had remote authoritative peers. 
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Under such an authority scheme, each peer would be responsible for notifying 

other remote peers of the resulting state from interactions between their local 

entities, and physics-aware entities.  Under the authority scheme proposed by 

Fiedler (2010b), each peer takes authority of entities with which their local 

entities interact, and remain as the authority for that peer until it comes to rest 

again following the collision.  By the author’s own admission, a goal of this 

mechanism is to mitigate the effects of non-deterministic physics simulation, and 

its utilisation in an application with constant update rate also means that it does 

not cause an increase in bandwidth, as each entity’s state updates are simply 

transmitted when the peer can accommodate them. 

 

In contrast to this previously detailed approach, this thesis is distinct in utilising 

dead reckoning models for controlled entities, rather than a constant update rate.  

A requirement for the use of a deterministic physics engine or simulation at each 

peer is also imposed.  In light of this difference, an alternative approach to 

providing updates of entity state is employed: 

1. Controlled entities are simulated using dead reckoning models as 

previously outlined.   

2. In the event of a controlled entity interacting or colliding with a physics-

aware entity, the resulting state of both the controlled entity and the 

physics-aware entity is supplied by the local peer to all remote peers.  

Deterministic physics simulation at each peer means that once supplied 

with the state immediately after the collision (i.e. initial conditions), the 

simulation of the playout at each peer will result in the same final state. 

3. Collisions between modelled remote entities and physics-aware entities 

are ignored unless a collision notification, or state update, for the physics-

aware entity is received.  Figure 3.4 shows an example of how the dead 

reckoned model of an entity, as observed by a remote user, can appear to 

collide with an entity while the true path of the entity avoids it. 
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Figure 3.4: Spherical avatar (opaque) passing close to row of dominoes moves along black 

dashed path.  Shaded circles represent the model’s maximum divergence at each point. 

 

This approach depends on updates of physics-aware entity state being sent by 

reliable means, but Fiedler (2010b) acknowledges that packet loss in modern 

Internet applications is in fact quite rare, and schemes do exist that can be used to 

add an element of reliability to data sent using the User Datagram Protocol 

(UDP) (Fiedler, 2008).  An alternative approach to point 3 above would be to 

record collisions that have been simulated with no notification, and restore the 

state of any environmental body disturbed in the event of a collision update not 

being received.  However this approach risks implementing corrections with 

significant visual impact in the environment, especially if disturbed entities 

collide with other entities.  Ultimately this is the difference between adopting a 

pessimistic/conservative approach to consistency (the former), and an optimistic 

or aggressive approach (the latter) (Bhola et al., 1998, Cronin et al., 2002, 

Greenberg and Marwood, 1994, Jefferson, 1990, Vaghi et al., 1999), with the 

conservative approach being proposed in this thesis. 

 

3.3 Updating state for physics-aware entities 

Initially the possibility of providing a single update at the instant of contact was 

investigated, with some success.  However, this still proved to be unreliable and 

insufficient, with inconsistency manifesting after collisions.  Upon further 

investigation, it was determined that many collisions “persisted” beyond a single 

simulation frame.  Consequently, the potential for user input over the course of 
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the collision meant that the playout was not guaranteed to be deterministic after 

the initial contact.  If a user were to change their speed or direction slightly 

during the collision, they could potentially remain within the threshold of the 

dead-reckoned model, and thus not generate an update.  Traditionally this would 

not be an issue in peer-to-peer simulation, but with the sensitivity of physics 

engines to variation in initial conditions such slight changes were still a source of 

significant inconsistency. 

 

At this point, three further options were identified to try to resolve this issue: 

• Allow and require peers to update their controlled entity and the colliding 

body for all simulation ticks during the collision. 

• Allow and require peers to update the state of their avatar and the 

colliding body once the collision has ceased, i.e. the bodies are no longer 

in contact. 

• A hybrid of both of the above. 

 

The theoretical merits and flaws of all three systems were identified, and are 

outlined below. 

 

Updates throughout collision 

A system whereby a peer transmits state updates for the physics-aware entity for 

all simulation ticks that they are in contact would result in a very accurate 

simulation of the collision, but could potentially result in a large volume of 

unnecessary traffic.  Consider a scenario where a user is required to push an 

object to an arbitrary location in an application with an update rate of 50Hz, a 

common update rate in a modern DIA.  This could result in up to fifty updates 

being generated each second, depending on the simulation frequency, with many 

potentially being sufficiently small as to be imperceptible to a user, and hence 

unnecessary.  This is less of a concern in applications than it has been 

historically, with increased availability of bandwidth, but still needs to be 

considered as an influence on the scalability of an application.  Additionally, if 

updates are only transmitted while contact persists, the outcome of the contact 
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may still be simulated inaccurately, depending on the user input sampled during 

the final step, when the bodies move apart. 

 

Updates at beginning and end of collision 

This method could be considered to have almost the opposite emphasis of the 

above, with less priority placed on precision in the course of the collision, in 

favour of ensuring consistency in the aftermath, as well as limiting network 

traffic.  Essentially the collision as an event would be “framed” by two state 

updates of both the avatar and the environmental body involved.  The first is 

generated at the moment of contact, to ensure a reasonably accurate initial 

simulation of the collision.  Once the collision has ended, any inconsistency 

introduced in the course of the collision would be corrected by an update 

generated in the following simulation frame, as the motion of the environmental 

body will be deterministic once the user’s influence has ceased, and this update 

has been applied.  Despite there not being explicit updates made to the state of 

the environmental body in the course of the collision under this system, there is 

still a means of controlling the inconsistency which may arise, as standard dead 

reckoning techniques will still be applied to the avatar. 

 

Hybrid system 

As the description suggests, this system would combine elements of both of the 

previous methods, specifically by utilising the framing updates of the second 

system, in conjunction with the constant updates of the first.  This would provide 

for accurate simulation of collisions from start to finish, as well as accurate 

environmental playout when the bodies have moved away from each other.  

However, this approach also presents the same drawbacks as the first one of 

generating more traffic than may be necessary, or indeed manageable in larger 

applications.  Due to an inherent assumption here that the simulation will always 

“play out” the same way for a set of conditions, this approach is highly 

dependent on the determinism of the physics engine utilised in the application, as 

described in Section 2.3.2. 

 

Under all three of these systems hosts should not model collisions of modelled 

remote entities with environmental objects without notification of that collision 
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having occurred.  Were a host to model without such notification, it would risk 

simulating a collision that had not occurred, and only appeared to do so due to 

the error present in the dead reckoning model.  Many physics engines provide a 

means of collision filtering which can be used to implement this, whereby 

detected collisions of modelled remote entities are ignored so that the physics-

aware entity remains undisturbed. 

 

An alternate approach (not implemented here) to this would be to record 

collisions that have been simulated with no notification, and restore or “roll 

back” the state of any physics-aware entity disturbed in the event of a collision 

update not being received.  However this approach risks implementing 

corrections with significant visual impact in the environment, especially if 

disturbed entities collide with other entities. 

 

Preliminary experiments with the testbed as described in Section 3.6 were 

conducted to record the duration of collisions in the two-dimensional 

environment supported by the testbed, and it was found that the majority of them 

lasted only a short time, typically less than 6 simulation ticks, or 120ms.  With 

this being the case, it was observed that with an update being provided at the start 

of each collision, any given collision would only be capable of introducing a 

minute inconsistency (related to the velocities, inertias, and potential for 

acceleration of the bodies involved) before the collision ceased, and another 

update was generated.  Thus it should be expected that for the authority scheme 

as proposed with no latency, the inconsistency relating to environmental bodies 

should be limited to a series of small “blips” or peaks that arise while collisions 

are taking place. 

 

3.3.1 Collisions by proxy 

A shortcoming of the peer updating entities with which its controlled entity 

collides directly has been identified.  Specifically, in the case of “collisions by 

proxy”, the collision was not necessarily modelled correctly.  Figure 3.5 below 

illustrates a collision by proxy, where in the course of the user’s (circle A) 

collision with an environmental body (circle B), the body in turn touches a 
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second environmental body (circle C).  In this instance, the ultimate path of body 

C will be inaccurately modelled, as during the collision, the bodies A and B’s 

paths are approximated.  The motion of the latter two bodies will be corrected 

once they separate, but at this point the remote state of body C will be inaccurate, 

and will remain inconsistent.   

 

 
Figure 3.5: In a collision by proxy, entity A (user-controlled) collides with entity B (physics-

aware), and during this collision, entity B contacts entity C (also physics-aware) 

 

A proposed and intuitive solution to this is to recursively check both the 

algorithm and bodies that it is in contact with for collisions.  That is to say that 

on each tick, if the controlled entity is in contact with another body, that body is 

checked for contacts, and if any are found, the other bodies in the collision are 

checked, and so forth.  A record is kept of these contacts, and if a contact ends, 

then any bodies no longer in contact are updated.  If the controlled entity loses its 

contact with the first object, then all objects can be updated, as the playout will 

be deterministic with the possibility of user input having been removed from the 

system. 
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3.4 Minimising physics-consistency costs 

With an authority scheme for physics-aware entities in a DIA with dead 

reckoning models of controlled entities, variation of physics-aware inconsistency 

similar to that illustrated in Figure 3.2 is achievable.  The next step was to try to 

minimise the difference between the two measures of inconsistency in this graph, 

specifically by minimising the amount by which the physics-aware inconsistency 

increases. 

 

It has already been observed that this discrepancy, or physics-consistency-cost, 

develops as a result of the inconsistency in controlled entities being transferred to 

physics-aware entities.  An authority scheme as outlined above ensures that the 

two different measures of inconsistency reconverge, and that the inconsistency 

introduced to the physics-aware entities is controlled, in the same manner that 

dead reckoning permits a controlled level of inconsistency in entities.  

 

In Section 3.1.1 the subject of anticipating physics-consistency-costs is 

discussed, and suggestions as to how to achieve this are detailed.  In this thesis, a 

forecasting method will be utilised to try to anticipate the occurrence of physics-

consistency-costs.  Since physics-consistency-costs arise as a result of the error 

in the dead reckoning model of entities, it is proposed that peers should attempt 

to minimise the error present in these models at the time of collisions.  As has 

previously been explained, any dead reckoning model has an error threshold, and 

when the error present in the model compared to the true state exceeds this 

threshold, an update is generated.  Consequently a model with a variable, or 

adaptive, threshold is proposed.  Adaptive threshold dead reckoning models have 

been described in the literature previously (Cai et al., 1999, Lee et al., 2000), but 

in this instance it is specified that the threshold be varied in response to physics 

considerations (i.e. a physics-aware adaptive threshold algorithm) where 

previous applications have sought to reduce the number of updates generated by 

an application.  The combination of this adaptive-threshold model with an 

authority scheme for physics-aware entities is the main proposal of this thesis, 

and the function of such a combined algorithm is detailed in the following 

section. 
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3.5 Adaptive threshold DR with Authority 

In this section, the combination of a dynamic authority scheme for control of 

physics-aware entities, and the use of a physics-aware, adaptive threshold dead 

reckoning model for peer-controlled entities are proposed.  In implementing this, 

the physics-awareness of the model threshold comes from the use of a 

forecasting method to anticipate physics-consistency-costs. 

 

 
Figure 3.6: Flow of execution for proposed authority scheme with adaptive threshold dead 

reckoning and a forecasting mechanism for anticipating physics-consistency-costs. 

 

Figure 3.6 illustrates the process followed by each peer for the purposes of state 

management under the proposed state management mechanism.  Considering 

each loop to commence at the “Sample User Input” block, the sequence of steps 

would be as follows: 

• Sample the user’s input from their input device(s) (e.g. keyboard/mouse), 

and apply these inputs to the user’s controlled entity. 
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• Check the network connection for state updates from other peers yet to be 

applied to the local world database. 

• Advance the local world simulation by one frame based on existing state, 

and the newly applied information (inputs and updates). 

• Check the controlled entity’s list of contacts to see if it has begun a new 

collision, or ended an existing collision. 

1. If it has, send a state update for both the controlled entity, and the 

entity that it collided with.  Then return to the beginning of the 

loop. 

• Check whether the tight or the loose threshold should be applied for this 

simulation tick.  If the forecast mechanism is to look N ticks ahead then 

1. Tight threshold should be applied if: 

� the forecast mechanism detects either a future collision, or  

� the forecast mechanism detects a disagreement between 

forecasts based on true and dead reckoned state, or  

� either of the above occurred within the previous N 

simulation ticks. 

2. Loose threshold should be used if no collision or disagreement is 

forecast, and N simulation ticks have elapsed since one was last 

forecast. 

• If the error threshold in use for dead reckoning in this simulation tick has 

been exceeded, send a state update for the controlled entity to remote 

peers. 

• Return to the beginning of the loop and start again. 

 

For clarity and simplicity of presentation, Figure 3.6 does not include such tasks 

as rendering the world to the user. 

 

Having outlined a state management algorithm incorporating dead-reckoning 

models for controlled entities, and a dynamic authority scheme for physics-aware 

entities, the next section outlines the development of a testbed application used in 

the testing and validation of the techniques outlined so far. 
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3.6 Testbed Application 

3.6.1 Code Development 

Code::Blocks 

Code::Blocks (www.codeblocks.org) is a cross-platform IDE for C and C++, 

with support for multiple compilers, including GCC, Microsoft’s Visual C++ and 

the Intel C++ compiler.  The software is available and officially supported for 

Windows, Linux, and Mac OS X.  In addition to code editing and compilation, 

the IDE provides access to debugging functionality to monitor internal variables 

during execution.  It also serves to organise and manage source files, libraries, 

and other resources needed for compiling programs. 

  

MATLAB 

MATLAB (www.mathworks.co.uk/products/matlab/) is a numerical computing 

environment that was used to develop functions and scripts for analysis of 

simulation output.  These were used to calculate performance metrics to compare 

algorithms, as well as to trace the loci of entities over the course of the 

simulation based on logged traces of their positions and velocities. 

 

3.6.2 Tools and Middleware 

Box2D 

Box2D is an open-source, two-dimensional physics simulation engine that can be 

integrated into applications as middleware (Catto, 2007).  It is written in C++, 

and has been ported to a number of other languages and environments including 

Java, Adobe Flash and C#.  In its native form, it has also been incorporated into 

the Torque 2D game engine, and is used in a number of successful two-

dimensional games, including Angry Birds (Kumparak, 2011), and Crayon 

Physics Deluxe (Catto, 2011).  It provides facility for simulation of rigid body 

dynamics with bodies of various shapes, including convex polygons and circles, 

as well as applying gravity, friction and restitution forces to the bodies.   
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3.6.3 Testbed Structure 

As a means to both frame the problem, and to measure and compare the 

performance of algorithms, a testbed application was developed to simulate the 

function of a physics-aware, peer-to-peer DIA.  It was determined that the 

testbed would have to contain two separate “copies” or instances of a single 

world, with entity state being shared from one (the “local” environment) to the 

other (“remote”).  The facility to simulate latency and jitter in the connection 

between these two environments would also be necessary, as these are real world 

scenarios and problems affecting DIAs. 

 

With this in mind, a packetPipe class was implemented, which could be 

extended and modified, depending on the nature of the updates being transmitted.  

This class would serve as a link between the two simulation instances, and be 

capable of simulating the previously mentioned network conditions of latency 

and jitter.   

 

 
Figure 3.7: Basic structure of testbed for simulating dead reckoning scenarios and 

algorithms. 

 

For simulation of a controlled entity’s motion in the environment, a path was 

read from comma-separated values (CSV) files, with a force being applied to the 

controlled entity in order to move it to the next point along its path.   
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In applying updates to the state of the entity in the simulated remote world, the 

decision was made to “snap” the avatar to the correct state, with the potential for 

convergence by means of visual smoothing to be applied at a rendering level 

(Fiedler, 2006).  An alternative approach used in some dead reckoned 

applications is to utilise a convergence algorithm on the actual entity state 

(Singhal and Zyda, 1999), but in the context of physics simulation, this was 

judged to be unsuitable, as it would preserve an error in the simulation, which 

could cause additional “knock on” effects. 

 

Figure 3.8 illustrates an example of an environment which could be simulated in 

the testbed application.  An arrangement of physics-aware entities (squares) and 

a single controlled entity (circle) are enclosed within a bounded area, and the 

controlled entity moved along a path.  The physics state resulting from the 

controlled entity’s motion is then simulated by the Box2D engine. 
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Figure 3.8: Example arrangement of physics-aware entities (squares), and a controlled 

entity (circle) in a “walled-in” world within the testbed application. 

 

3.7 Summary 

In this chapter the development of the algorithms contributed by this thesis was 

outlined, as well as the development of a testbed for validating and comparing 

the performance of these algorithms.  The specific problems facing a peer-to-peer 

application utilising dead reckoning were also further detailed.  

 

In the following chapter, the actual testing and validation of these algorithms is 

described, as well as the performance of these algorithms under both ideal and 

real-world conditions. 
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Chapter 4  

Results and Performance 

Having proposed a physics-aware state management algorithm in the previous 

chapter, a means of testing and validating this algorithm is now necessary.  An 

application for this has already been described in Chapter 3, but it is now 

necessary to establish performance criteria for the algorithm.  Additionally, the 

data to be used in the testing is introduced and explained. 

 

Initially all algorithms are compared for performance under the ideal network 

conditions of zero latency, and consequently zero jitter, with these influences 

being included in later analyses.  The reason for this is to ascertain a limit on the 

best performance achievable by each method, as a frame of reference when later 

comparing performance under more realistic conditions. 

 

Both classified types of motion (Lee et al., 2000), and recorded paths from past 

experiments (McCoy, 2007) will be used in this testing process.  Further 

information about both the classified and recorded motion is given in Section 4.2.  

Before that, the criteria and metrics for testing are outlined. 

 

4.1 Testing and Performance Metrics 

4.1.1 Physics-aware inconsistency, and physics-consistency-costs 

Since a goal of the proposed mechanisms is to reduce the physics-aware 

inconsistency in the application, the first metric examined will be the variation of 

physics-aware inconsistency (i.e. the inconsistency present in both the user-

controlled entity, and the physics-aware entities) over time in the application. 

 

4.1.2 Magnitude of Corrections to Physics-aware Entities 

An indirect, but potentially more relevant, means of examining the effectiveness 

of the mechanism in reducing the physics-inconsistency-costs is to consider the 

magnitude of the corrections that must be applied to physics-aware entities by the 
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authority scheme.  It has already been stated that physics-consistency-cost is 

defined for the purposes of this thesis as the sum of the inconsistency present in 

the states of physics-aware entities.  Thus the means of removing, or correcting, 

these inconsistencies, and the physics-consistency-cost, is the application of 

updates to physics-aware entities by the authority scheme. 

 

It can be inferred from this that the magnitude of the change in state, or 

correction, induced in a physics-aware entity is related to the inconsistency 

present in that entity.  In fact, it is the instantaneous inconsistency present in the 

entity’s state at the time that the correction is applied.  Thus, the magnitude of 

corrections applied to physics-aware entities provides a metric of the physics-

aware inconsistency present in an application, and consequently the physics-

consistency-costs incurred by each interaction or collision. 

 

4.1.3 Update Rate 

The update rate of a DIA has already been explained in Chapter 2 as having a 

bearing on the scalability of the application.  Thus the effect of any algorithm on 

the update rate of an application must be considered.  It could be argued that 

bandwidth has become less of a concern in recent years, as networking hardware 

has improved, and higher capacity connections to the Internet are provided to 

users, however, the proliferation of internet-ready devices in homes is again 

putting pressure on bandwidth requirements. The update rates were calculated by 

recording the generation of updates in the testbed, and using a sliding window 

filter to examine the number of updates generated for each simulation tick. 

 

4.2 Motion Data for Testing 

4.2.1 Use of Classified Motion Data 

From the literature, entity motion in DIAs can be classified according to three 

descriptive types (Lee et al., 2000): smooth, bounce, and jolt.  Each of these 

types of motions characterises different rates of change of entity state, as well as 

the nature of the change of the state, e.g. continuous or abrupt.  Both of these 
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elements of an entity’s motion are relevant to the generation of a dead reckoning 

model, as they can affect the frequency and promptness of the generation of state 

updates.  Thus as part of the testing of the algorithms outlined in the previous 

chapter, simulations were executed for an entity exhibiting each of the three 

classes of motion individually, in order to identify issues arising in the 

algorithms from the presence of any single type. 

 

Two-dimensional examples of each of these types of motions are illustrated in 

Figure 4.1 (a)-(c), to accompany the descriptions, below. 

 

Smooth Motion 

Part (a) of Figure 4.1 illustrates an example of smooth motion.  Such a two-

dimensional example can be produced by an entity moving in a circle of fixed 

radius with constant angular velocity (Lee et al., 2000).  The stated example 

utilises a period of 32 seconds, and amplitude (i.e. circle radius) of 50 metres, 

with the circle being centred at the origin, (0,0).  In general terms, smooth motion 

occurs when the entity’s velocity may change continuously, but with no sudden, 

or jump, variation. 

 

Bounce Motion 

Figure 4.1 part (b) shows a two-dimensional example of bounce motion.  This 

example is produced by a hypothetical entity moving back and forth through a 90 

degree arc traced around a fixed centre at the origin, (0,0).  The radius of the arc 

is again 50m, and the period of the motion is 16s.  Bounce motion, in general 

terms, is a motion with sawtooth features as might occur when an entity is 

involved in a collision. 

 

Jolt Motion 

Finally, part (c) of Figure 4.1 shows an example of jolt motion.  This trajectory 

was produced by an entity spinning itself in a circle while moving in a larger 

circle around a fixed point within the two-dimensional environment (Lee et al., 
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2000).  The radius and period of the larger circle were 50m and 32s respectively, 

with the smaller circle having a radius of 10m, and a period of 4s.  This is 

representative of motion with frequent sudden changes of direction. 

 

In general an entity’s motion will not be classifiable as being excusively of one 

type, but rather it will contain elements of each.  For example, were an entity 

with smooth motion to be involved in a collision, its motion could exhibit a 

bounce characteristic as a result of rebounding from the collision.  Figure 4.1 (d) 

shows an example of how the x-value of an entity’s position vector might vary 

over time as it exhibits a mixture of motion types, generated similarly to the the 

individual traces in Figure 4.1 (a)-(c).  However, since each of these classes of 

motion may present different challenges to a given DIA, it is important to 

consider each type in isolation. 
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(a) Smooth Motion (Simulation time = 64s, period = 32s,

amplitude  = 50m).

(b) Bounce Motion (Simulation time = 64s, period = 16s,

amplitude  = 50m).

(c) Jolt Motion (Simulation time = 64s, period = 32s / 4s,

amplitude  = 50m / 10m)
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(d) X component of the position vector of an entity exhibitin

a mix of smooth, bounce and jolt motion  
Figure 4.1 (a)-(d): Examples of the three distinct classifications of entity motion (Lee et al., 

2000).  Simulations were performed at a rate of 50Hz over a time of 50s. 
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4.2.2 Use of Recorded Motion Data 

As already mentioned, the application was also tested for datasets of real motion.  

These datasets were gathered from previous experiments in the Distributed 

Applications Group in NUI, Maynooth (McCoy, 2007) using the Torque Game 

Engine.   

 

The Torque engine is a three-dimensional simulation engine, originally 

developed by Dynamix for the Tribes series of games.  It was later purchased and 

released by Garage Games (www.garagegames.com), a company founded by ex-

employees of Dynamix.  Licensees of the engine get access to both the engine’s 

source code and scripting language (Torque Script), allowing them to modify and 

adapt how the engine functions which facilitates the implementation and testing 

of algorithms.  Additionally, the engine provides access to content creation tools, 

and implements networking and rendering, reducing the development workload 

on licensees.  Because of the comprehensive functionality outlined above, as well 

as the availability of source code to licensees, the engine has been used for a 

number of experiments within the Distributed Interactive Applications Group in 

NUI, Maynooth in the past (Delaney, 2004, Marshall, 2004, Marshall, 2008, 

McCoy, 2007).   

 

The datasets utilised in this set of experiments originally represented motion in 

three dimensions in a first person shooter application, but for use in the two-

dimensional application being tested, the third “Z” dimension was removed.  

These sets of data were collected for four different environments, or “missions”, 

with several trials of data collected for each mission. 

 

These sets of data, or paths, were stored in comma separated variable (CSV) 

files, and read by the application at run time.  Movement between each point was 

accomplished by a force being applied to the locally-controlled entity.  Three 

separate paths will be considered in detail, and these are named paths A, B and 

C.  Figure 4.2 illustrates the course that each of these paths follows through the 

world. 
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(a) Movement through environment described by Path A

(b) Movement through environment described by Path B

(c) Movement through environment described by Path C
 

Figure 4.2 (a)-(c): Routes traced through an environment by each of Paths A, B and C 
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4.2.3 Arrangement of simulated physical environment in testing 

For the purposes of comprehensive testing, a variety of arrangements of 

environmental objects were utilised, but all environment configurations shared a 

common basis, as outlined: 

 

• The world was a square of side 800m with immovable and non-

deformable walls.  This was done to contain entities within a finite 

environment, as would usually be the case in a DIA. 

• The locally controlled entity was represented as a circle (two-dimensional 

representation of a sphere) of radius 2.5m.  The modelled motion in the 

remote environment was also represented by a similar circle. 

• The environmental objects were boxes or squares (two-dimensional 

representation of a cube) of side 6m.  For the experiments presented, 

there were 180 such boxes in the 800m x 800m environment.  Taking into 

account the area of each box, approximately 1% of the environment was 

occupied by physics-aware entities. 

 

Beyond this, environmental entities (those not owned or controlled by a specific 

peer and whose mechanics are simulated according to physical laws) were placed 

in the environment in random positions.  To ensure that these random 

arrangements were identical in the local and remote environments at the 

beginning of the simulation, the random number generator was seeded before 

populating the local environment, and then reseeded with the same value for 

populating the remote environment.  Additionally it was possible for this seed to 

be passed as an argument to the testbed at runtime to run multiple algorithms and 

entity paths for a single arrangement. 

 

For each of the examples considered in detail here, the same arrangement of 

physics-aware entities will be used in order to ensure that different sets of data 

remain comparable.   

 

Having introduced and explained the data, environments and criteria for testing 

of the algorithm, the next section examines the performance of the authority 
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scheme alone in conjunction with a fixed threshold.  This will serve the purpose 

of verifying the ability of an authority scheme to control the inconsistency 

present in the environment, as well as providing a baseline for later comparison 

of the dead reckoning model with an adaptive threshold. 

 

4.3 Authority Scheme with Fixed Threshold 

4.3.1 Requirement for the Authority Scheme 

 

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

Graph of Inconsistency Development Over Time

Time(s)

In
co

n
si

st
e

n
cy

 (
m

)

 

 

Loose Threshold (0.4m)

Medium Threshold (0.25m)

Tight Threshold (0.15m)

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Graph of Inconsistency Development Over Time

Time(s)

In
co

n
si

st
e

n
cy

 (
m

)

 

 

Loose Threshold (0.4m)

Medium Threshold (0.25m)

Tight Threshold (0.15m)

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800
Graph of Inconsistency Development Over Time

Time(s)

In
co

n
si

st
e

n
cy

 (
m

)
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Tight Threshold (0.15m)

Bounce Motion Jolt Motion

Smooth Motion  
Figure 4.3: Graphs illustrating that collisions occurred for each classification of motion 

(bounce, jolt and smooth) and that inconsistency would be uncontrolled without an 

authority scheme 

 

In order to verify the effectiveness of the authority scheme, it is first necessary to 

prove that the examples being examined have a need of the authority scheme, i.e. 

that the examples involve the controlled entity colliding with physics-aware 

entities.  This meant that the first set of simulations were run for a variety of 

fixed thresholds, but with only dead reckoning models of the controlled entity 
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being supplied to the simulated remote peer.  Figure 4.3 and Figure 4.4 show the 

inconsistency graphs for the classifications of motion, and the recorded paths 

respectively, and it can be observed that in all cases uncontrollable inconsistency 

occurs in the absence of an authority scheme. The tendency of these plots to 

show an increase over time reflects the fact that physics aware entities which 

have been disturbed are not corrected and therefore errors tend to accumulate.  

 

The data gathered from this set of simulations is not considered or examined in 

detail, as it represents an unrealistic scenario, whereby entities would go 

uncorrected, and remain inconsistent.  Instead it is presented to illustrate the need 

for, and scope for improvement by, an authority scheme in the examples to be 

considered. 
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Figure 4.4: Graphs illustrating that collisions occurred for each path and that inconsistency 

would be uncontrolled without an authority scheme 

 

Having established that each example to be presented has need of the authority 

scheme, the next section examines the performance of the authority scheme when 
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applied to the examples for fixed threshold dead reckoning models, using a range 

of thresholds. 

 

4.3.2 Authority Scheme with Fixed Thresholds 

In examining the performance of the authority scheme with fixed thresholds, 

each of the metrics listed in Section 4.1 is considered in turn.  The same 

approach is taken when considering the variable threshold approach later in this 

chapter. 

Physics-aware Inconsistency 

Figure 4.5, Figure 4.6, and Figure 4.7 show the variation of physics-aware 

inconsistency over time for experiments with entities exhibiting bounce, smooth, 

and jolt classified motions respectively.  For each classification of motion, only 

the first 20 seconds of the simulation is examined, as each simulation only had a 

single collision, which occurred in this timeframe.  Due to the periodic and 

repeating nature of the motions, it is difficult to ensure multiple interactions, as 

the path was generally empty after a single period completed. 

 

In Figure 4.5 (bounce) it can be observed that the peak present in the 

inconsistency of physics-aware entities alone is reduced as the threshold is 

tightened.  This peak is representative of the inconsistency introduced to the state 

of a physics-aware body during a collision.  The peak in Figure 4.6 (jolt) behaves 

similarly, with the implementation of the 0.15m threshold producing the largest 

reduction.  Finally, Figure 4.7 (smooth) produces the same decrease in magnitude 

of the peak as in Figure 4.5.  This is because the jolt and smooth motions 

followed the same path initially, and no collisions occurred in either simulation 

after they diverged.  Additionally, the total physics-aware inconsistency present 

in the application reduces for tighter thresholds, as the error permitted within the 

dead reckoning model of entity motion is reduced.   
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Figure 4.5: Physics-aware inconsistency for entity exhibiting bounce motion with three 

fixed threshold dead reckoning models, using thresholds of 0.4m, 0.25m and 0.15m 

respectively.  The left column includes contribution of avatar to overall physics-aware 

inconsistency, while the right isolates the contributions of physics-aware entities. 
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Figure 4.6: Physics-aware inconsistency for entity exhibiting jolt motion with three fixed 

threshold dead reckoning models, using thresholds of 0.4m, 0.25m and 0.15m respectively.  

The left column includes contribution of avatar to overall physics-aware inconsistency, 

while the right isolates the contributions of physics-aware entities. 
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Figure 4.7: Physics-aware inconsistency for entity exhibiting smooth motion with three 

fixed threshold dead reckoning models, using thresholds of 0.4m, 0.25m and 0.15m 

respectively.  The left column includes contribution of avatar to overall physics-aware 

inconsistency, while the right isolates the contributions of physics-aware entities. 

 

Figure 4.8, Figure 4.9 and Figure 4.10 show the variation of physics-aware 

inconsistency over time for an entity following each of paths A, B and C 

respectively, with fixed threshold dead reckoning and the authority scheme in 

place.  The contributions of physics-aware entities to this inconsistency are also 

isolated, and results are presented for three different fixed thresholds: 0.8m, 0.5m 

and 0.3m.  This can be considered a graph of physics-consistency-cost over time 

as per the definition of physics-consistency cost in this thesis. 

 

It can be observed in Figure 4.9 and Figure 4.10 in each of the graphs 

considering only the inconsistency present in physics-aware entities that the use 

of a tighter threshold produces a reduction in the magnitude of the peaks of 

physics-aware inconsistency. This is also exhibited in the graphs that include the 

contribution of the controlled entity, or avatar, but it is less clear in many cases 

being obscured by the variation in the avatar contribution. 

 

Figure 4.8 is less clear, and indeed appears to present a less favourable result.  

For example, in the case of a 0.5m threshold in this instance, an additional peak 



 72 

is visible in the inconsistency of physics-aware entities.  This peak is still present 

in the other two graphs, but to a much smaller extent.  A more detailed 

examination of the results suggested that the reason for the peak in this instance 

was the timing of dead reckoning updates; by chance the 0.8m and 0.3m 

threshold models both generated an update closer in time to the collision than the 

0.5m threshold model, resulting in a lower level of inconsistency being present in 

the entity’s state for the 0.8m and 0.3m models.  Aside from this aberration, 

however, there is an observable trend that utilising a tighter threshold for a dead 

reckoning model produces less inconsistency in physics-aware entities at the time 

of collisions. 
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Figure 4.8: Physics-aware inconsistency for entity following path A with three fixed 

threshold dead reckoning models, using thresholds of 0.8m, 0.5m and 0.3m respectively.  

The left column includes contribution of avatar to overall physics-aware inconsistency, 

while the right isolates the contributions of physics-aware entities. 
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Figure 4.9: Physics-aware inconsistency for entity following path B with three fixed 

threshold dead reckoning models, using thresholds of 0.8m, 0.5m and 0.3m respectively.  

The left column includes contribution of avatar to overall physics-aware inconsistency, 

while the right isolates the contributions of physics-aware entities. 
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Figure 4.10: Physics-aware inconsistency for entity following path C with three fixed 

threshold dead reckoning models, using thresholds of 0.8m, 0.5m and 0.3m respectively.  

The left column includes contribution of avatar to overall physics-aware inconsistency, 

while the right isolates the contributions of physics-aware entities. 
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Correction Magnitudes 

Figure 4.11 shows the average magnitudes of corrections applied to physics-

aware entities in experiments involving entities exhibiting each of the 

classifications of motion, i.e. bounce, jolt and smooth.  It is visible in each of 

these graphs that a tighter threshold in each case leads to smaller corrections to 

the state of physics-aware entities being necessary.  It is more pronounced in the 

bounce and smooth examples than in the case of jolt motion, but this is likely 

related to the proximity of the last update to the collision. 

 

Figure 4.12 presents the same information for each of the recorded path 

experiments.  An aberration, however, is present in the case of path A, whereby 

the medium threshold produces the largest average correction magnitude.  This is 

as a result of correcting the “extra” peak in Figure 4.8, and is therefore related to 

poor timing of updates, rather than disproving the otherwise present trend.  
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Figure 4.11: Average magnitude of corrections (in metres) applied to physics-aware entities 

for three fixed threshold dead reckoning models for each of bounce, jolt, and smooth 

motions. 
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Figure 4.12: Average magnitude of corrections (in metres) applied to physics-aware entities 

for three fixed thresholds for each of paths A, B and C. 

 

Update Rates 

It can be observed from Figure 4.13 and Figure 4.14 that the improved 

consistency and accuracy gained by utilising a tighter threshold to calculate the 

dead reckoning model comes at a cost, both for the classifications of motion, and 

the recorded paths.  Specifically, the tighter the threshold employed, the higher 

the update rate.  This is because tighter error thresholds are violated or exceeded 

more frequently, triggering the transmission of a state update each time.  Jolt 

motion tends to have a markedly higher average update rate for a given threshold 

than either of the bounce or smooth classes of motion.  This is because the 

direction of jolt motion varies much more frequently than in either of the other 

classes, meaning that the rate of divergence of the model from the true motion is 

higher between updates.  A similar characteristic arises periodically in the graph 

for bounce motion, where the entity turns back on its path.  In Figure 4.13 this 

manifests as either the update rate remaining high for additional time (0.4m and 

0.15m models), or rising to a higher rate (0.25m model). 
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In the case of the recorded paths in Figure 4.14, it can be noted that the use of a 

0.3m threshold (tightest threshold used in this experimentation) in the recorded 

path data causes a particularly high average update rate.  The shape of the update 

rate curve for each model of a given path remains broadly similar, but as can be 

observed from the change in y-axis limits, from 20 updates per second to 50 

updates per second, the numerical values involved are significantly higher. 

 

4.3.3 Conclusions 

The results so far illustrate that in a simple two dimensional application with zero 

latency and collisions between the controlled entity and a single physics-aware 

entity, the authority scheme as proposed can control the amount of physics-aware 

inconsistency present.  Improved levels of peak physics-aware inconsistency can, 

in general, be achieved by the use of a tighter error threshold in the calculation of 

dead reckoning models.  The use of tighter thresholds reduces both the 

contributions of the controlled entity and physics-aware entities to the total 

physics-aware inconsistency.  The cost imposed by utilising tighter thresholds, 

however, is an increased update rate, and hence usage of bandwidth. 
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(b) Rates of update generation by dead-reckoned model of entity exhibiting jolt 

motion, with authority scheme for thresholds of 0.4m, 0.25m and 0.15m
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(a) Rates of update generation by dead-reckoned model of entity exhibiting 

bounce motion, with authority scheme for thresholds of 0.4m, 0.25m and 0.15m
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(c) Rates of update generation by dead-reckoned model of entity exhibiting 

smooth motion, with authority scheme for thresholds of 0.4m, 0.25m and 0.15m
 

Figure 4.13: Graphs illustrating update rates in experiments with an entity exhibiting each 

of bounce, jolt and smooth motions, and fixed threshold dead reckoning models of entity 

motion with authority scheme for thresholds of 0.8m, 0.5m and 0.3m. 
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(a) Graph showing rate of update generation for entity following sample path A using author-

ity scheme and dead reckoning for three thresholds, 0.8m, 0.5m and 0.3m respectively

(b) Graph showing rate of update generation for entity following sample path B using author-

ity scheme and dead reckoning for three thresholds, 0.8m, 0.5m and 0.3m respectively

(c) Graph showing rate of update generation for entity following sample path C using author-

ity scheme and dead reckoning for three thresholds, 0.8m, 0.5m and 0.3m respectively  
Figure 4.14: Graphs illustrating update rates in experiments with an entity following each 

of paths A, B and C, and fixed threshold dead reckoning models of entity motion with 

authority scheme for thresholds of 0.8m, 0.5m and 0.3m. 
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4.4 Adaptive Threshold Dead Reckoning 

Thus far the function of the authority scheme with fixed threshold dead 

reckoning models has been verified, and the broad effects of different threshold 

values for calculation of dead reckoning models on the mechanism has also been 

established.  In this section, the adaptive threshold (in which the threshold is 

adapted between two values in response to a forecast of collisions for both the 

present entity state and the state of its dead reckoned model as described in detail 

in Chapter 3) dead reckoning model is tested, and compared to each of the 

previously tested scenarios.  It should be noted at this point that due to the 

similarities observed in the bounce and smooth classifications of motion (only 

differing occasionally in their update rates), these will be considered as one for 

the purposes of this section.  Thus the classified motion will be presented as 

bounce/smooth motion, and jolt motion. 

 

4.4.1 Zero Latency 

As in the previous set of tests, the adaptive threshold mechanism is tested first 

for performance under “ideal” conditions, i.e. zero latency and, as a result, jitter.  

A subsequent section will present an example of performance under such 

conditions. 

 

Physics-aware Inconsistency 

Figure 4.15 shows the variation of physics-aware inconsistency over time for 

entities following paths of classified motions as in Section 4.3.2.  The only 

exception to this is that, as already noted in the previous section, only bounce 

motion is considered in relation to both the smooth and bounce classifications, as 

both of them were so similar, and this is labelled “smooth/bounce”. 

 

The noteworthy elements of this set of graphs are as follows: 

 

• In the case of both classifications, the peak in the right hand graphs, i.e. 

the inconsistency present in physics-aware entities only, the magnitude of 
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the peak is the same as that of the tight (0.15m) threshold in the fixed 

threshold authority scheme. 

• The total physics-aware inconsistency, which is usually dominated by the 

controlled entity’s inconsistency, is mostly the same as for the loose 

(0.4m) threshold in a fixed threshold scheme.  This is acceptable, and in 

fact desired, as it means that the looser threshold, which would be 

determined as sufficient for times when the controlled entity is not 

interacting with a physics-aware entity, is in use most of time 

• The threshold can be observed as tightening at the time of collision, when 

the total physics-aware inconsistency drops briefly to a lower value, 

before rising to the previous value after the threshold is relaxed again. 
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Figure 4.15: Variation of physics-aware inconsistency over time for entities exhibiting 

smooth/bounce motion, and jolt motion respectively, with models utilising physics-aware 

adaptive dead reckoning.  Thresholds employed are 0.4m and 0.15m. 

 

Figure 4.16 presents a similar set of experiments for the recorded paths A, B and 

C, and similar observations can be made for each of these: 

 

• In the right column of graphs for each motion, where the contribution to 

inconsistency of the controlled entity has been removed, the profiles of 

the peaks of inconsistency present in physics-aware entities match those 
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of the tight threshold (0.3m) presented in Figure 4.8, Figure 4.9, and 

Figure 4.10.  Specifically, the largest peak for path B is approximately 

0.7m, and for Path C it is approximately 1m. 

• While the total physics-aware inconsistency (left column of graphs) for 

each path is less regular than that presented in Figure 4.15, and indeed in 

the fixed threshold scheme earlier (Figure 4.8, Figure 4.9, and Figure 

4.10), it can be seen to fluctuate between 0.8m and 0.3m at different 

times, aside from peaks when collisions arise. 

• Similar to the graphs in Figure 4.15, the physics-aware inconsistency is 

seen to fall as the threshold tightens due to predicted collisions.  There 

are, however, more visible instances where the threshold tightens, and no 

collision actually takes place.  This may lead to wasted bandwidth or 

network traffic when considering the performance of the mechanism in 

terms of its update rate. 
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Figure 4.16: Variation of physics-aware inconsistency over time for an entity following 

paths A, B and C respectively, with models utilising physics-aware adaptive dead 

reckoning.  Thresholds employed are 0.8m and 0.3m. 
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Correction Magnitudes 

Figure 4.17 shows the average magnitude of the corrections applied to physics-

aware entities in simulations for both bounce/smooth motion, and jolt motion.  

For reference, the average magnitudes of the equivalent corrections for each of 

the fixed threshold models presented earlier are also presented.  In the case of 

bounce/smooth motion, the adaptive threshold model actually results in a smaller 

magnitude correction being applied than even the tight (0.15m) fixed threshold 

model. 

 

In contrast to this, however, the adaptive threshold model performs slightly 

worse than the tight fixed threshold model for jolt motion.  It still results in 

smaller corrections to environmental entities than either the 0.4m or 0.25m 

thresholds, however.  The reason for the variation in this instance appeared to be 

the difference in the time elapsed since the last dead reckoning update was 

generated before the collision occurred.  Previous examination of update rates for 

the classified motions has shown relatively low update rates, meaning that 

updates of the  controlled entity’s model can be as long as 200ms, or 10 

simulation steps, apart.  This means that a collision could be anywhere between 1 

and 10 simulation ticks after a dead reckoning update.  Therefore the timing of 

the final dead reckoning update before a collision relative to the collision itself 

can influence this test.  Coupling this with the low sample size (a single collision 

and associated updates in each case) means that this influences the graph 

significantly. 

 

This influence is less observed in the case of the recorded paths, however, and 

the average correction magnitudes applied to physics-aware entities by the 

adaptive threshold mechanism are presented in Figure 4.18.  In this graph, the 

proposed mechanism results in much more similar magnitudes to the tight (0.3m) 

threshold, with the corrections of both the adaptive threshold and tight threshold 

being consistently similar.  These experiments generated updates at a higher rate 

than the classified motions, and as can be seen in Figure 4.14, the 0.3m threshold 

generated updates at a rate only slightly lower than the simulation update rate of 
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50Hz.  As a result of this frequency of updates, the simulations are less sensitive 

to the time at which the final model update before the collision is generated. 
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Figure 4.17: Average magnitude of corrections applied to physics-aware entities in 

experiments for controlled entities exhibiting bounce/smooth motion, and jolt motion 

respectively.  Three fixed threshold models (0.4m, 0.25m and 0.15m), and an adaptive 

threshold (0.4m/0.15m) model are compared. 
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Figure 4.18: Average magnitude of corrections applied to physics-aware entities in 

experiments for controlled entities following paths A, B and C respectively.  Three fixed 

threshold models (0.8m, 0.5m and 0.3m), and an adaptive threshold (0.8m/0.3m) model are 

compared. 

 

Update Rates 

Figure 4.19 and Figure 4.20 show the variation of update rate over time for the 

adaptive threshold dead reckoning models for classified and recorded motion 

respectively.  To consider Figure 4.19, if the update rate is compared to those 

presented in Figure 4.13, it can be seen that for each of the classes of motion, the 

rates remain at the value of the loose threshold model most of the time, with the 

exception being the times when collisions occur, at which point they rise to 

similar heights to the tight threshold.  This is to be expected, as the tight 

threshold should impose an upper bound on the update rate, with a similar lower 

bound being imposed by the looser threshold. 
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Figure 4.19: Update rates for adaptive threshold (0.4m/0.15m) dead reckoning for entity 

exhibiting bounce (or smooth) and jolt motions respectively. 

 

In examining Figure 4.20, it is to be compared to Figure 4.14.  Similar to the 

above classified motion examples, it can be observed for each path that the tight 

and loose threshold models already examined provide an upper and lower bound 

respectively on the update rate of the adaptive threshold mechanism.  In this set 

of graphs, the update rate varies significantly more often than in the case of the 

simulated classified motions, but this is also consistent with the graphs already 

examined for the fixed threshold models. 

 

Just as the inconsistencies in Figure 4.16 were observed to vary and the 

thresholds tighten in the absence of collisions, so too do the update rates 

presented here.  This is due to the prediction mechanism perhaps predicting too 

far ahead, and observing collisions that the entity motion will in fact avoid, but 

tightening the threshold regardless.  This suggests that the parameters of the 

anticipation, or forecasting, mechanism need further adjustment.  For example, a 

mechanism that predicted ahead for a shorter time would not anticipate collisions 

until closer to the time of occurrence, at which point they may have a greater 

likelihood of occurring. 
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Figure 4.20: Update rates for adaptive threshold (0.8m/0.3m) dead reckoning for entity 

exhibiting bounce (or smooth) and jolt motions respectively. 

 

Having examined this mechanism in detail for the ideal conditions of zero 

latency, in the next section, the same simulations as have been examined are 

conducted for both constant latency, and latency with jitter, or variation. 

 

4.4.2 Non-zero Latency and Jitter 

The final test applied to this algorithm is to analyse how it responds to real-world 

network influences such as latency and jitter, in contrast to previous experiments 

which have featured “ideal” conditions, i.e. zero latency and jitter.  In order to 

achieve this, latency and jitter was applied to the simulated connection between 

the local and remote environments in the testbed, and results recorded as in the 

previous experiments.  The three previously used sample paths will be examined 

in detail for the purposes of this section, with classified motion omitted, as the 

low numbers of interactions, and periodic nature of the motion limit the insight 

that can be gained from them. 

 

Due to the absence of any feedback mechanism between the local and remote 

peers in the algorithm and testbed, inconsistency is the only quantity examined in 
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this section.  Update generation rates have a similar profile to those acquired 

during the previous experiments, and so are omitted from this section. 

 

4.4.3 Fixed Latency 

Figure 4.21 shows graphs of remote inconsistency for paths A, B and C.  For the 

purposes of this experiment, a fixed latency of 100ms was incorporated into the 

simulation.  The graphs illustrate that inconsistency levels in the presence of 

latency are higher than in previous sections, but this is to be expected, as the 

delay in application of updates to the remote peer means that the remote view of 

the dead reckoning model, and of the interactions “lags” the local view.  In spite 

of this increased inconsistency being present, it is still limited, or controlled 

when taken in comparison to the absence of an authority scheme, as in Figure 

4.4.   

 

In the case of path A, inconsistency is reasonably constant, experiencing 

reductions occasionally.  Between 70 and 80 seconds the average inconsistency 

seems to increase, likely due to a collision occurring at this point, and another 

physics-aware entity set in motion means that the remote simulation experiences 

a delayed view of this entity as well. 

 

Similar increases in inconsistency are evident in the graphs for paths B and C at 

the times of collisions, suggesting that each physics-aware entity set in motion 

makes a measurable contribution to the overall inconsistency.  At some instances 

in all three simulations the inconsistency drops to zero, or near zero, associated 

with times where the recorded motion indicates that the player stopped moving.  

This allows the remote peer’s model to “catch up” with the local peer’s state. 
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Figure 4.21: Graphs of inconsistency variation over time with constant latency of 100ms 

present between local and remote simulated peers for entities following paths A, B and C 

respectively.  An adaptive threshold (0.8m/0.3m) is employed for the dead reckoning model. 

 

4.4.4 Latency with Jitter 

Figure 4.22 illustrates the inconsistency observed for 3 simulations of entities 

following paths A, B and C respectively, with average latency of 100ms, and 

jitter of 10ms simulated between the local and remote peers.  Similar to the 

previous section dealing with constant latency simulation, we can observe that 

the collision notification algorithm still provides a bound on the inconsistency 

present in the view observed by a remote peer.  Figure 4.22 presents a broadly 

similar performance to that of Figure 4.21, suggesting that the algorithm is 

reasonably robust to the presence of a moderate amount of jitter or variation in 

latency, provided out of order packets are discarded appropriately. 
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Figure 4.22: Graphs of inconsistency variation over time with latency of 100ms and jitter of 

10ms present between local and remote simulated peers for entities following paths A, B 

and C respectively. An adaptive threshold (0.8m/0.3m) is employed for the dead reckoning 

model. 

 

4.5 Summary 

In this chapter, a series of tests have been outlined to evaluate the performance of 

both a notification scheme, and a physics-aware, adaptive threshold dead 

reckoning model.  The results have indicated that adapting the dead reckoning 

model to utilise a tighter threshold for the motion of controlled entities in 

advance of collisions can lead to more accurate simulation of those collisions.  

This was measured by considering the overall physics-aware inconsistency 

present in the application, or the sum of the spatial inconsistencies in both the 

local peer’s controlled entity and all physics-aware entities. 

 

The inconsistency present in the states of physics-aware entities with the 

controlled entity removed was also considered, so that the effects of the 

mechanism on these entities alone could be determined.  In this analysis, peaks in 

the inconsistency present in these entities (as a result of collisions) were observed 

to be reduced by the use of an adaptive threshold algorithm, similar to the 

manner in which the same peaks were reduced by using a tighter fixed threshold. 
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In order to verify the accuracy with which collisions and contacts between the 

controlled entity and physics-aware entities were simulated, the magnitudes of 

the state corrections induced at the remote peer by applying updates were 

measured.  It was found that generally the adaptive threshold model produced 

similar performance in this metric to the tighter of the two thresholds employed.  

However, if the update rate of the tighter threshold is sufficiently low, then the 

relationship between the magnitudes of corrections applied to physics-aware 

entities under the adaptive threshold model and the tight fixed threshold model 

appeared to be less consistent.  This was observed to be due to the error in the 

model assuming a greater range of values between zero and the error threshold, 

as it approached the threshold. 

 

The improvements in physics-aware consistency granted by the adaptive 

threshold model come at a cost, however.  Depending on the choice of thresholds 

in the application, the update rate associated with the tighter threshold can 

approach the simulation frequency of the application.  Thus if the bandwidth 

available to an application is a concern, this must be taken into account at the 

design phase, when selecting the thresholds to be used in the adaptive model.  

Upper and lower bounds for the update rate of an adaptive threshold model can 

be ascertained by considering the two thresholds in use, as the update rate 

becomes a mix of these, and varies between the two. 

 

Finally, the performance of the adaptive threshold model and authority scheme 

under a realistic set of network conditions was evaluated, and it was observed 

that while greater physics-aware inconsistency developed in the application than 

under ideal conditions, a bound on this inconsistency was still imposed.   
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Chapter 5  

Conclusions and Future Work 

In this thesis a state management mechanism for physics-rich, peer-to-peer DIAs 

using dead reckoning modelling of controlled entities was proposed.  

Additionally, the design and implementation of a testbed application for testing 

the effectiveness of that algorithm was described.  The development of this 

mechanism was motivated by a lack of published physics-aware or “physics-

friendly” DIAs and state management algorithms, specifically for peer-to-peer 

DIAs utilising dead reckoning to model remote entities. 

 

5.1 Algorithm Evaluation 

The state maintenance mechanism as outlined in Chapter 3 consisted of two main 

elements, or components; an authority scheme for physics-aware entities, and a 

physics-aware, adaptive threshold dead reckoning model.  Each of these 

components was intended to serve a different purpose.  The goal of the authority 

scheme was to ensure an overall bound on the level of inconsistency in physics-

aware entities by facilitating corrections to the state of such entities at remote 

peers, while also providing a responsive simulation to a local peer.  The adaptive 

threshold dead reckoning model extended this idea in an attempt to minimise the 

physics-consistency-cost of collisions or interactions.  Physics-consistency-cost 

was introduced in this thesis as a flexible concept to describe the loss of 

consistency induced in such interactions.  While the state management 

mechanism considered it as a sum of spatial inconsistencies, it can also be 

adapted to consider the complexity of, or number of bodies involved in, a 

physics-aware inconsistency. 

 

For the scenarios examined in Chapter 4, the authority scheme was successful in 

ensuring that physics-aware inconsistency in the environment is controlled, and 

resulted in a situation where, for zero latency, peaks in physics-aware 

inconsistency were observed, but the inconsistency quickly settled to the 

previously observed levels.  
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Similarly, the adaptive threshold dead reckoning model was successful in 

providing a more accurate model of the motion of the controlled entity prior to 

and during collisions.  In the model utilising two thresholds, a level of accuracy 

similar to that of the tighter threshold could be achieved in the simulation of 

collisions at remote peers. 

 

5.2 Limitations 

While the state synchronisation mechanism presented in this thesis has addressed 

a number of the challenges associated with designing and implementing a 

physics-aware DIA, both components of the mechanism have limitations and 

consequently scope for improvement. 

 

5.2.1 Authority Scheme 

The authority scheme as detailed in Chapter 3 stipulates that it can only account 

for collisions whereby the controlled entity collides directly with a physics-aware 

entity.  In the same chapter, it is explained that collisions-by-proxy, whereby the 

controlled entity causes the physics-aware entity to touch a second physics-aware 

entity at the same time as the controlled entity, can result in the second physics-

aware entity becoming inconsistent.  This may not be sufficient in some 

applications with high densities of physics-aware entities, and wider ranging 

authority may be necessary.  A suggested implementation for this, in the form of 

recursive authority, is included in the same chapter. 

 

The authority scheme is also dependent on state updates to physics-aware entities 

being reliably transmitted.  The underlying UDP protocol used for data 

transmission in many DIAs does not guarantee delivery however, which means 

that this must be manually handled within the application, or by networking 

middleware.  Retransmission of such updates (in the event of one being lost) can 

introduce additional latency, and thus jitter to that update.  As a consequence of 

this, an update to the dead reckoning model of the controlled entity that was sent 

after an update regarding a collision could in fact be received and applied before 
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the physics-aware entity has been updated.  Thus the movement of the physics-

aware entity could be observed to occur after the dead reckoned model of the 

controlled entity has moved past the collision.  By contrast, an ordered series of 

unreliable state updates for the physics-aware entity could see the lost update 

ignored, and a slightly later one applied before a reliable update would have been 

retransmitted. 

 

It was stipulated in Chapter 3 that the authority scheme as outlined depends on 

the deterministic simulation of physics at all peers.  While many physics engines 

guarantee deterministic results and outputs, this is still a limitation of the scheme 

should an application be unable to ensure determinism.  Both this and the 

previous issue of reliability could potentially be improved by further adapting the 

authority scheme proposed by Fiedler (2010b), whereby peers maintain dead 

reckoning models for physics-aware entities that they have authority over, and 

transmit updates to this model until the entities come to rest. 

 

5.2.2 Adaptive Threshold Dead Reckoning Model 

In introducing the physics-aware, adaptive threshold dead reckoning model, it 

was stated that a forecasting method would be used to determine when to adapt, 

or tighten, the threshold in anticipation of a collision.  An alternative approach 

based on “entity population density” was also suggested, which may be more 

suitable for some applications or scenarios.  A forecasting method as proposed 

depends on an entity having a certain amount of inertia or momentum, in that it 

should not be able to deviate significantly from its predicted path by the end of 

the prediction.  This may not be applicable in all applications, such as first-

person shooters where users can change either the speed or direction of their 

velocity very quickly and suddenly.  Examining the density of physics-aware 

entities nearby, or simply the proximity of the user to any physics-aware entity, 

may be more reliable for such applications. 

 

The model is also sensitive to choices in the size of error thresholds, and in the 

number of steps to predict ahead when anticipating collisions.  If an excessively 

tight threshold is used in calculating the model at any point (i.e. less than or 
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equal to the distance that a user can move in a single simulation tick), then the 

rate at which updates are sent to remote peers may equal the simulation rate at 

times. Similarly a collision forecasting mechanism predicting too far ahead in 

time increases the risk of unnecessary tightening of the model threshold, as the 

likelihood of the collisions actually occurring (i.e. the accuracy of the forecast) 

decreases with each timestep. 

 

5.3 Future Work 

5.3.1 Cheat prevention 

As already referred to in Section 2.2.1, peer-to-peer applications are susceptible 

to cheating due to the lack of a single central authority.  As the algorithm 

presented in this thesis makes no special provisions to prevent such cheating, it is 

equally vulnerable, and potentially more so, as allowing peers to update the state 

of entities not owned by any peer grants them a limited form of authority.  A 

rudimentary mechanism to improve the robustness would be for peers to only 

accept state updates to an environmental entity when their model of the 

originating peer is within a certain distance of that entity (so as to ascertain some 

measure of the genuine need for this authority transfer), but this could still be 

abused. 

 

Consequently, a preferred approach would be to integrate this algorithm with one 

of the established anti-cheat systems for peer-to-peer DIAs, such as the Referee 

Anti Cheat System (RACS) (Webb et al., 2007).   

 

5.3.2 “N-tier” hierarchy of thresholds 

In this thesis, an adaptive dead-reckoning algorithm was proposed that varied its 

model between two thresholds.  An observed issue with this is that the change in 

update rate when a collision may occur can be significant if the thresholds 

employed are sufficiently different in magnitude.  This can create a significant 

increase in the overall traffic generated by the application, which can lead to 

scalability issues.  Thus there is scope to develop a more bandwidth efficient 
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algorithm.  Specifically this work could extend the algorithm to select the 

threshold to be used from a range of available values, based on a physics-

consistency-cost anticipation mechanism returning one of a range of values.  This 

would allow a host to provide a variety of models of differing fidelities, and only 

employ the most bandwidth intensive one when the entity is very close to a 

collision or discrepancy, and thus it is more likely to arise, necessitating the most 

accurate model. 

 

5.3.3 Reduced traffic prediction model 

In the adaptive threshold model proposed, it was suggested that the error 

threshold of the model be tightened in the event of either 

1. A disagreement between collisions occurring for forecasts of true state 

and remote state, or  

2. A collision being forecast for the true state. 

 

This potentially induces periods with a high rate of update generation even 

though no collision may actually occur.  An alternative implementation to be 

considered in the future is to 

1. Use a tighter threshold if a collision is forecast when considering true 

state, regardless of the forecast for the state of the dead reckoning model. 

2. Send a single update of controlled entity state if a forecast using dead 

reckoning state predicts a collision, while the forecast for true motion 

does not. 

 

This modification would mean that periods of higher traffic are reserved for 

instances where the controlled entity’s true state leads to a collision being 

forecast, further optimising the use of bandwidth for physics-awareness. 

 

5.4 Conclusions 

The authority scheme and physics-aware dead reckoning model proposed in this 

thesis are two components of a state management mechanism that may be useful 

for physics aware distributed interactive peer-to-peer applications.  An authority 



 96 

scheme of some form is necessary in any physics-aware, peer-to-peer DIA to 

ensure that the physics-aware inconsistency present is bounded.  The scheme as 

proposed, or other similar schemes, can function with either a fixed threshold or 

adaptive threshold dead reckoning model.  Similarly, the physics-aware dead 

reckoning model as proposed operates independent of the specific authority 

scheme, to improve the accuracy of the dead reckoning model in the area around 

collisions. 

 

While the exact authority scheme and implementation of a physics-aware dead 

reckoning model as outlined in this thesis are limited in their functionality and 

effectiveness, the general concepts introduced are more flexible.  Physics-

consistency-costs can consider a simple sum of spatial inconsistencies, but it can 

also be generalised to consider the complexity of the collision.  Similarly, the 

criteria for varying the threshold of a physics-aware dead reckoning model are 

flexible, and can be chosen to suit the specific application. 

 

In summary, while this thesis demonstrated a specific authority scheme in use 

alongside a forecast-based adaptive threshold dead reckoning model, these two 

concepts, along with physics-aware inconsistency, are flexible components and 

considerations in physics-aware DIAs, with scope for tailoring to an individual 

application. 
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