

Development of a Physics-Aware Dead Reckoning

Mechanism for Distributed Interactive

Applications

A thesis presented to the National University of Ireland, Maynooth

by

Patrick Joseph Walsh, B. E.

for the degree of Masters of Engineering Science by Research

October 2011

Department of Electronic Engineering

Faculty of Science and Engineering

Supervisor: Dr. Séamus McLoone

Co-supervisor: Dr. Tomás Ward

Head of Department: Dr. Seán McLoone

 i

ABSTRACT

Distributed Interactive Applications (DIAs) are a class of software that allow

geographically remote users to interact within a shared virtual environment.

Many DIAs seek to present a rich and realistic virtual world to users, both on a

visual and behavioural level. A relatively recent addition to virtual environments

(both distributed and single user) to achieve the latter has been the simulation of

realistic physical phenomena between objects in the environment.

However, the application of physics simulation to virtual environments in DIAs

currently lags that of single user environments. This is primarily due to the

unavailability of entity state update mechanisms which can maintain consistency

in such physics-rich environments. The difference is particularly evident in

applications built on a peer-to-peer architecture, as a lack of a single authority

presents additional challenges in synchronising the state of shared objects while

also presenting a responsive simulation.

This thesis proposes a novel state maintenance mechanism for physics-rich

environments in peer-to-peer DIAs composed of two parts: a dynamic authority

scheme for shared objects, and a physics-aware dead reckoning model with an

adaptive error threshold. The first part is intended to place a bound on the

overall inconsistency present in shared objects, while the second is implemented

to minimise the instantaneous inconsistency during users’ interactions with

shared objects. A testbed application is also described, which is used to validate

the performance of the proposed mechanism.

The state maintenance mechanism is implemented for a single type of physics-

aware application, and demonstrates a marked improvement in consistency for

that application. However, several flexible terms are described in its

implementation, as well as their potential relevance to alternative applications.

Finally, it should be noted that the physics-aware dead reckoning model does not

depend on the authority scheme, and can therefore be employed with alternative

authority schemes.

 ii

ACKNOWLEDGEMENTS

Firstly I would like to thank my supervisors, Dr. Séamus McLoone and Dr.

Tomás Ward, for their advice, guidance and support in writing this thesis.

Thanks also to Dr. Aaron McCoy, Dr. Damien Marshall, and all the other

members of the DIA group for the assistance provided over the years. If not for

all of you, this would not have been written.

Thanks also to the staff in the Electronic Engineering department, as friendly and

helpful a group of people as I have ever met.

Thank you also to the Irish Research Council for Science, Engineering &

Technology, who provided the funding to make this possible.

Thanks to all my friends, especially Andrew and Tadhg, who were always there

to talk to, and were always willing to help if I asked, and even when I didn’t.

I would like to thank my mother for all her support and assistance, I’m not sure

she will ever realise how much I appreciate it. I would also like to thank my

brother, Donncha, for shouldering so much work at home; it gave me the

opportunity focus on this.

Finally, thank you, Lorraine. You have always been supportive and patient,

despite having your own thesis and just as much (probably more!) of a workload

to juggle. Your encouragement has helped me at least get this far.

This thesis is dedicated to my parents, Freda Creavin and John Walsh (deceased).

 iii

DECLARATION

I hereby declare that this thesis is my own work and has not been submitted in

any form for another award at any university or institute of tertiary education.

Information derived from published and unpublished work of others has been

acknowledged in the text, and a list of references has been provided.

Signed: ___________________

Date: ______________

 iv

CONTENTS

Chapter 1 Introduction ... 1

1.1 Background .. 1

1.2 Restrictions in Physics-Aware DIA Development 2

1.3 Simulation of Distributed Peer-to-Peer Physics ... 4

1.3.1 Authority ... 4

1.3.2 Responsiveness ... 5

1.3.3 Consistency ... 5

1.4 Aim of Thesis ... 10

1.5 Contributions .. 10

1.6 Layout of Thesis ... 10

Chapter 2 Background.. 12

2.1 DIA History .. 12

2.1.1 Military .. 13

2.1.2 Academic... 14

2.1.3 Industry (Multiplayer games) .. 16

2.2 Categorising DIAs .. 18

2.2.1 Network Architecture .. 18

2.2.2 Time Management .. 22

2.3 Physics Simulation in virtual environments ... 23

2.3.1 Causal and Non-causal simulation .. 25

2.3.2 Determinism in physics simulation ... 26

2.3.3 Networked Physics Simulation ... 27

2.4 Immersion in DIAs and Games .. 30

2.5 Consistency in Distributed Interactive Applications.................................. 31

2.5.1 Metrics of Consistency .. 34

2.6 Traffic Reduction techniques and their implications for physics-rich

environments .. 36

2.6.1 Compression .. 36

2.6.2 Packet Aggregation ... 37

2.6.3 Dead Reckoning .. 37

2.7 Summary .. 39

 v

Chapter 3 Physics-aware state management in a P2P DIA 40

3.1 Physics-consistency-cost .. 40

3.1.1 Anticipation of Physics-consistency-costs .. 43

3.2 Authority in Physics-aware DIAs .. 44

3.2.1 Static Authority ... 45

3.2.2 Dynamic Authority.. 46

3.3 Updating state for physics-aware entities .. 48

3.3.1 Collisions by proxy ... 51

3.4 Minimising physics-consistency costs ... 53

3.5 Adaptive threshold DR with Authority .. 54

3.6 Testbed Application ... 56

3.6.1 Code Development .. 56

3.6.2 Tools and Middleware... 56

3.6.3 Testbed Structure .. 57

3.7 Summary .. 59

Chapter 4 Results and Performance ... 60

4.1 Testing and Performance Metrics .. 60

4.1.1 Physics-aware inconsistency, and physics-consistency-costs 60

4.1.2 Magnitude of Corrections to Physics-aware Entities 60

4.1.3 Update Rate ... 61

4.2 Motion Data for Testing ... 61

4.2.1 Use of Classified Motion Data .. 61

4.2.2 Use of Recorded Motion Data... 64

4.2.3 Arrangement of simulated physical environment in testing 66

4.3 Authority Scheme with Fixed Threshold ... 67

4.3.1 Requirement for the Authority Scheme .. 67

4.3.2 Authority Scheme with Fixed Thresholds... 69

4.3.3 Conclusions ... 76

4.4 Adaptive Threshold Dead Reckoning .. 79

4.4.1 Zero Latency ... 79

4.4.2 Non-zero Latency and Jitter .. 86

4.4.3 Fixed Latency .. 87

4.4.4 Latency with Jitter ... 88

4.5 Summary .. 89

 vi

Chapter 5 Conclusions and Future Work ... 91

5.1 Algorithm Evaluation ... 91

5.2 Limitations ... 92

5.2.1 Authority Scheme.. 92

5.2.2 Adaptive Threshold Dead Reckoning Model 93

5.3 Future Work ... 94

5.3.1 Cheat prevention ... 94

5.3.2 “N-tier” hierarchy of thresholds .. 94

5.3.3 Reduced traffic prediction model .. 95

5.4 Conclusions .. 95

 1

Chapter 1

Introduction

1.1 Background

Distributed Interactive Applications (DIAs) are an expanding subset of computer

applications. These applications operate over computer networks, and allow

users to interact in real time via graphically rich environments. Many of these

applications take the form of online multiplayer games, in which participant

numbers can reach several thousand. These applications have evolved in

complexity over time, from relatively simple early games like Quakenet, to

modern games like World of Warcraft, Halo, and Call of Duty. Development in

these applications has occurred on various fronts, ranging from scaling the

number of users supported, to increasing the spatial size and richness of the

simulated environment.

While some developments in DIAs relate specifically to their networked multi-

user nature, others (such as improvements in graphical detail and presentation)

have originated in single player applications and games and have then been

applied to DIAs via their multi-user equivalents. Physics simulation, for an

added sense of realism and immersion, has been a relatively recent development

in single player applications, and attempts are ongoing to incorporate this into

equivalent distributed applications.

DIAs, and virtual environments in general, aim to present to users an

environment whose behaviour is consistent with the users’ experience and

perception of the real world. Traditionally the level of realism achievable has

been limited by technological factors such as the availability of processing

power, and simulations have restricted the level of detail presented in the

environment as a result. Over time, however, hardware and software

performance have advanced steadily, which has allowed developers of virtual

environments to increase the level of detail presented. This increase in detail has

varied from improvements in graphical rendering and visual presentation, to the

 2

simulation of more dynamic environments with more true to life behaviour.

Recently this has led to increased incorporation of simulated physics into such

applications. While physics simulation in single user applications is limited only

by the capability of the hardware and software present within a single machine,

such simulation in a distributed environment presents challenges of its own.

These challenges are related to a number of restrictions that the hardware and

underlying network impose on DIAs in general.

1.2 Restrictions in Physics-Aware DIA Development

The distributed nature of DIAs presents several unique restrictions to the field

that must be accounted for in designing and implementing a DIA. Specifically,

the geographical separation of individual users or hosts in DIAs means that

designers have to overcome challenges presented by real world communication

networks, most commonly the Internet. Data traffic transmitted via the Internet

(and indeed other networks) is subject to a number of influences which must be

accounted for or overcome in the implementation of a DIA. These influences,

and their relevance to distributed simulation of physics, are outlined as follows:

Bandwidth – Bandwidth is a metric of the amount of data that may be

transmitted over a communications link per unit of time. The number of

users, and indeed simulated entities or objects that an application can

support, may be limited by bandwidth, as a finite amount of this resource

is required for the synchronisation of each change of state. The

introduction of additional entities for simulation of physics adds state

variables that may potentially require updating in a given simulation tick

and therefore may exhaust the available bandwidth. Such a situation

leads to excessive message queuing and a subsequent increase in latency

which causes divergence of the simulation state across peers. Many

traffic reduction techniques permit approximation errors in the state of

entity state variables in order to reduce the frequency of updates.

Latency – Latency is the time taken for a packet of data to be transmitted

across a network, from the application layer of one host, to the

application layer on another (Blow, 1998). Latency is a dynamic, time-

 3

variant quantity, with variation in latency over time being called jitter.

Latency presents an obstacle in distributed physics simulation as its

presence means that a finite time is required for an update, or change in

state, generated at one host to be apparent at another host. Jitter is a

further complication as it precludes the incorporation or masking of

latency as a constant value in simulations.

Network topology/architecture – The topology of the network

employed influences how state information in DIAs is synchronised

(Smed et al., 2002). For example, in a client-server application, the

server maintains an authoritative copy of world state and all clients

communicate with it, and verify their actions. The server in turn

disseminates appropriate information about all entities in the world to

clients. In some applications this even makes it possible for the server to

send a complete world state update if the local copy is sufficiently in

error (Valve, 2005c). By contrast, this is not an option in peer-to-peer

applications, as traditionally each peer is only authoritative about a subset

of the entities making up the simulation, not the complete set.

Network reliability and ordering – In simulating environmental physics

(as opposed to simple physical laws like gravity acting on a controlled

entity) within a DIA, a reliable network is very important, as packet loss

resulting in retransmission can lead to increased latency (Tanenbaum,

1996). This leads to event synchronisation difficulties in the

simultaneous presentation of an event to all peers in the simulation.

Additionally, where physical simulation takes place, there is potential for

one event to cause another to happen, and lost or delayed transmission of

the first event could lead to an effect preceding its cause.

Each of the limitations listed above presents challenges to the design and

implementation of any DIA when compared to a single user equivalent.

However, in the case of physics-aware DIAs, these influences can present more

specific challenges, due to an increased number of simulated entities, many of

which are not controlled by users.

 4

1.3 Simulation of Distributed Peer-to-Peer Physics

As noted in the previous section, a potential issue of the peer-to-peer networking

architecture in DIAs is the absence of a single authoritative copy of the world

state. While this must be overcome in the design of any DIA, those DIAs that

support the presence of non-user-controlled entities governed by the laws of

physics present specific challenges. In the course of this thesis, such DIAs will

be referred to as “physics-aware” DIAs, and the non-user-controlled entities as

physics-aware entities. The presence of such physics-aware entities will be the

distinction between truly physics-aware DIAs and those where simple constraints

like gravity are applied to user-controlled entities. These physics-aware entities

form an interactive part of the environment from the users’ perspective, and as

such they are shared objects. Examples of physics-aware entities could include

balls, boxes, furniture, etc.

Challenges facing the implementation of such a physics-aware, peer-to-peer DIA

are introduced below.

1.3.1 Authority

Traditional peer-to-peer architectures grant authority to each peer over specific

entities, usually entities controlled by users at that peer. In a physics-aware DIA,

however, there are non-user-controlled entities for which the granting of

authority is more complicated. Indeed to grant permanent authority to a single

peer over some or all of these entities may be inappropriate, and would render

the application more akin to client-server than true peer-to-peer. As an

application architecture, peer-to-peer is generally more fault-tolerant than client-

server, as it lacks the single point of failure at the server. Granting authority over

all physics-aware entities to a single peer would actually create a single point of

failure, which is undesirable.

Alternatively, authority over some entities could be granted to each peer, thus

distributing the simulation load. However in the event of two entities with

different authoritative peers coming into contact, the behaviour of each would be

 5

governed by a different physics simulation. Thus it seems that in physics-aware

DIAs, the authority scheme must also be physics-aware.

1.3.2 Responsiveness

Latency and the challenges it presents to a DIA have already been introduced,

but once again the addition of non-user-controlled entities introduces additional

considerations. These considerations are in part related to the aforementioned

authority concerns. For example, if a user interacts with a physics-aware entity,

they expect to see the result of their interaction promptly, and if they have an

expectation of the result, accurately. However, if the user interacts with an entity

for which its peer is not authoritative, then a delay may be experienced while

their local peer validates the interaction with the remote authoritative peer.

Further, a remote authoritative peer may have a different view of the interaction,

ultimately resulting in the behaviour differing from a user’s expectation.

1.3.3 Consistency

Consistency in a DIA refers to the ability of the DIA to ensure that each user’s

view of the world is identical, or as close to identical as can be achieved for

given conditions. Traditional consistency metrics examine entities on an

individual basis, often giving a measure of the application’s ability to represent a

host’s controlled entities’ states at remote hosts. A basic aspiration for a

distributed simulation is to present entities as being ‘in the right place at the right

time’ and a simple metric to capture this notion are spatially-derived measures of

consistency such as can be calculated using distance measures between the entity

positional state at its local peer, and the representations at remote peers.

In real-time applications, the Consistency-Throughput Tradeoff (Singhal and

Zyda, 1999) acknowledges that true consistency is unachievable. Consequently

most real-time DIAs accept a controlled level of inconsistency, and utilise

approximated models of controlled entity motion as part of traffic reduction

mechanisms, such as the dead reckoning algorithms employed within the

Distributed Interactive Simulation (DIS) standard (Durbach and Fourneau, 1998,

 6

IEEE, 1998). Dead reckoning is a linear extrapolation algorithm which uses

historical entity state to generate a prediction of future entity state. All peers

model all entities, with each peer thus knowing both the modelled and actual

behaviour of local entities. These behaviours are continuously compared for

local entities, with updates being transmitted to remote users when the difference

between the models exceeds a set error threshold.

S
p

a
ti

a
l D

i�
e

re
n

ce
 (

m
)

Time (s)

Sum of spatial inconsistencies

Spatial inconsistency of avatar

Figure 1.1: Controlled entity (avatar) inconsistency compared to all inconsistencies present

in a physics-aware DIA.

By only considering single entities, and those controlled by the host (i.e. first

order generation of inconsistencies by local entities), these metrics are less than

ideal for use in physics-aware DIAs, as they may not present a clear picture of all

the inconsistency in the environment. A qualitative hypothetical example of this

is given in Figure 1.1. The solid line represents the spatial inconsistency

(difference in position between local and remote representations of state) present

in the state of a controlled entity, or avatar, while the dashed line represents the

sum of the spatial inconsistencies present in the state of both the avatar, and

physics-aware environmental entities with which the controlled entity collided.

This added error in the simulation of collisions arises in part from the use of

approximated models of controlled entity motion in traffic reduction

mechanisms, such as the dead reckoning algorithms employed within the

 7

Distributed Interactive Simulation (DIS) standard (Durbach and Fourneau, 1998,

IEEE, 1998). Dead reckoning is a linear extrapolation algorithm which uses

historical entity state to generate a prediction of future entity state. All peers

model all entities, with each peer thus knowing both the modelled and actual

behaviour of local entities. These behaviours are continuously compared for

local entities, with updates being generated to remote users when the difference

between the models exceeds a set error threshold.

In static environments, where controlled entities may only interact with other

controlled entities, this error is limited to only being present in the dead reckoned

models. However, in environments with physics-aware entities, this error can

potentially be communicated, or passed on, to such entities. Consider a scenario

in an application where a physics-aware ball atop a hill is simulated, as illustrated

in Figure 1.2. If an entity as represented by ball A (at its local peer) were to

approach the ball (ball B), but stop with a distance between it and ball B that is

less than or equal to the error threshold of the dead reckoning model, a remote

peer could observe ball A disturbing ball B, and ball B subsequently rolling away

down the hill, resulting in a spatial inconsistency of δ in the state of ball B. This

would manifest as a difference between the solid and dashed lines in Figure 1.1.

This potential for state divergence, and the resulting visual disturbance to the

application required to correct it, can be considered a “physics-consistency-cost”

associated with the entity’s path. The exact means of correcting inconsistency in

physics-aware entities might vary across applications. For example, an entity

with an authoritative peer could be updated by means of a periodic heartbeat

packet similar to controlled entities in the Distributed Interactive Simulation

standard (IEEE, 1998).

 8

B
A

A

B
A

A

B

Local

Remote

δ

Figure 1.2: Local and remote representation of Ball A moving close to, but stopping short

of, Ball B. At the remote peer ball A is incorrectly observed to collide with ball B as the

error threshold of the dead reckoning model is not exceeded until it is close enough to

collide with ball B. δ represents the spatial inconsistency present in the state of ball B.

A similar scenario, but with a potentially much higher cost, can be framed by

considering a row of dominos. As per the previous example, an entity could be

observed at a remote peer to collide with a domino, while its true behaviours is to

closely miss the domino. A specific example of this is presented in Figure 1.3,

where a ball approaches a row of dominos, but stops close to them. However the

dead reckoning model is observed to collide with the first domino, which in turn

topples the row. In this instance, the magnitude of the spatial inconsistency

communicated to the first domino (δ`) may be less than that communicated to the

ball previously, but due to the nature of dominos, a single incorrectly disturbed

domino can in turn disturb its neighbours, resulting in a spatial inconsistency of

approximately N x δ`, for N dominos. The magnitude of the inconsistency

imparted to a single domino, and even the sum imparted to them all, may be

 9

significantly smaller than that of the ball in the previous example, but the number

of entities involved is significantly more. Thus even small spatial inconsistency

in physics-aware entities can result in an appreciable physics-consistency-cost if

complexity (in which N, the number of dominos is a factor) is considered.

Local

Remote
δ`

Figure 1.3: Local and remote representation of a ball moving close to, but stopping short of,

a row of dominos. Due to the error threshold of the dead reckoning model not being

exceeded until after it shows the ball colliding with the first domino, the remote peer

incorrectly observes all the dominos being toppled as a result. δ` represents the

inconsistency present in the state of a single domino.

Both of the previous examples present scenarios with a high susceptibility to

incurring a physics-consistency-cost. Of course not all physics-enabled

interactions lead to such cascades in consistency loss. As a counter example,

consider a scenario where the dead reckoning model of a remote entity is

incorrectly observed to collide with a much larger physics-aware entity, with

large inertia, e.g. a human avatar colliding with a car or a van. Under realistic

physics simulation the modelled avatar may incorrectly impart a spatial

disturbance to the van, but this would be significantly smaller than the

disturbance experienced by the ball in the first example (especially in terms of

relative size) – it may even be imperceptible to the user. Consequently such an

error in state is easier to correct than the dominos in the second example. The

incorrect disturbance is still a physics-consistency-cost, but is significantly

smaller than the previous two examples.

Currently entity state update protocols for peer-to-peer distributed simulations

such as dead reckoning do not explicitly take into account these higher-order

 10

inconsistency effects for physics-enabled environments. Therefore the ability of

these techniques to regulate consistency in such situations is not optimal and

improvements may be possible by incorporating information about the local

physics environment. Each of the above examples will be referred to as the “ball

example”, the “domino example” and the “large inertia example” later in this

thesis.

1.4 Aim of Thesis

This thesis aims to implement a physics-aware mechanism for synchronisation of

entity state within a peer-to-peer, physics-aware DIA employing dead reckoning

algorithms for the purposes of traffic reduction. It builds on previous work

relating to DIAs and simulation of physics in virtual environments.

1.5 Contributions

The main contribution of this thesis is the development of an adaptive-threshold,

physics-aware algorithm for consistency maintenance in peer-to-peer, physics-

aware DIAs that utilise dead-reckoning algorithms. Additionally, a proposed

means of identifying physics-consistency-costs is described. Finally, a testbed

application supporting two-dimensional physics simulation in environments

synchronised via a simulated network connection is described. Using this

testbed, results are presented which illustrate the efficacy of the proposed

identification mechanism for physics-consistency-costs.

1.6 Layout of Thesis

The remainder of this thesis is laid out as follows:

Chapter 2 – In this chapter, a brief background to the subject area is

provided. Simulation of physics in virtual environments, both distributed

and local is introduced, and the challenges of supporting physics

simulation in distributed interactive applications are identified.

Chapter 3 – At this point, the development of the state management

algorithm for physics-aware entities is outlined, as well as some

 11

alternatives considered during the course of this development. The

structure of the testbed application is also explained.

Chapter 4 – Here the performance of the state management algorithm as

proposed is analysed via implementation in the testbed.

Chapter 6 – To conclude, the potential for future work based on this

algorithm and testbed is discussed, along with conclusions drawn from

the results collected from testing of the algorithm.

 12

Chapter 2

Background

In this chapter the background to the research area is outlined. Firstly an

introduction to the history of Distributed Interactive Applications (DIAs) is

given, as well a means of categorising different types of DIAs. Following this,

the advent of physics-simulation in virtual worlds, both single user and

distributed, is explored and the developments in the field are outlined.

Immersion in simulated worlds is then introduced, and the role that physics

simulation plays in achieving immersion is explained. The concept of

consistency in DIAs is then explained, and the implications of physics-awareness

in this area examined. Some commonly used traffic reduction mechanisms in

DIAs are then outlined, and their impact on a physics-aware DIA is examined.

2.1 DIA History

DIAs have been undergoing active development for approximately 25 to 30 years

and have seen many refinements and improvements in that time. These

improvements have been driven by a number of factors, including (but not

limited to):

• Developments and advances in communications networks,

• Improvements in processing power,

• Competition between developers of commercial DIAs and games,

• Requirements and demands of end users, and

• Improvements in similar single-user, local applications.

Development of DIAs has taken place primarily in three domains, specifically

military, academia, and industry (Delaney et al., 2003, Marshall et al., 2004).

The motivations, and thus ultimate aims, in each of these domains have

traditionally differed, resulting in a variety of both experimental and production

platforms and architectures in each domain. However, developments in one field

have been applied to, and proven beneficial, in other fields. An example of this

would be the dead reckoning algorithm, a traffic reduction mechanism used in a

 13

number of modern DIAs (Hardt and White, 1998, IEEE, 1998) which was

developed as part of military simulations, but is now used in multiplayer games.

2.1.1 Military

Historically the Department of Defence (DoD) has been a significant force in the

development of DIAs, having constructed a series of platforms, each refining and

improving upon the previous. Their interest in the area of DIAs stemmed from a

need to be able to simulate wartime scenarios in a safe and cost-effective manner,

thus minimising both expense and loss of life in real deployments. The DIA

platforms developed by the military are outlined below.

SIMNET

The Simulation Network (SIMNET) (Calvin et al., 1993) was the first major

contribution from the US DoD to the field of DIAs. Development of SIMNET

commenced in 1983, with the United States Army receiving a production

package in 1990. The primary aims of SIMNET were to provide high quality

simulators at a low cost, and to network multiple simulators together, in order

that multiple simulators could make up one single DIA.

The networking architecture underlying SIMNET is a peer-to-peer one, whereby

each player is responsible for their own state, and for notifying other participants

of changes in their state. By multiple players taking this approach, each of them

is able to use the updates they receive to maintain a local model, or view, of the

world including the state of remote players by making appropriate changes in

response to each update. As a mechanism to reduce the network traffic generated

and received by each peer, SIMNET utilises dead reckoning mechanisms, which

allow peers to model the positions of remote entities by means of extrapolation

from instantaneous state. Each peer maintains both the true and modelled state

of its own entities, and transmits updates of state to other peers when the

modelled state differs from the true state by more than a preset threshold value.

This is explained in more detail in Section 2.6.3.

 14

DIS

Ultimately the protocol used by SIMNET proved too simulation specific, and an

improved system was needed. Hence the Distributed Interactive Simulation

Network (DIS) platform was developed, with a view to providing a more general,

and therefore flexible and extensible, protocol (Hardt and White, 1998).

In order to meet its requirements, the DIS architecture implements the protocol

data unit (PDU). PDUs are messages that are generated to inform of an event

occurring, e.g. a missile being launched. There is a finite set of PDUs, but each

one is designed to be generic enough that updates from all types of participants

can be handled. The DIS architecture also extends SIMNET’s dead-reckoning

mechanisms by defining nine additional algorithms. These algorithms include

both higher order models (incorporating acceleration as well as velocity), and

models for orientation of entities, i.e. angular state.

High Level Architecture

Research within the military at present is focussed on the High Level

Architecture (HLA) (Dahmann et al., 1997). Interoperability and extensibility

are at the heart of the HLA, by contrast to DIS which, while versatile, still

requires the development of application specific components. During the design

of the HLA, it was recognised that no single simulation is capable of meeting

every potential user requirement, due to the vast range of potential requirements.

Consequently it is designed to allow for interoperability between current and

future simulations within the DoD, as well as the reuse of simulation

components, and complete simulations. By ensuring such flexibility and

compatibility, it is hoped that time and money can be saved in the long term.

2.1.2 Academic

Concurrently to the development of DIAs by the US DoD within the military,

there was also significant interest among the academic community. Several of

the key DIAs developed in academia are now discussed.

 15

NPSNET

One of the earliest academic research teams in the area of DIAs also had a

connection to the military, in the form of the Naval Postgraduate School

Research Group (NRG), who developed the NPSNET project (Capps et al.,

2000). There have been five iterative versions of NPSNET to date, with the

current being NPSNET-V. The goal of the NPSNET-V design reflects the broad

range of research already conducted by the NRG (including consistency,

extensibility, scalability and interoperability) in aiming to provide an architecture

that allows for research to be conducted into all aspects of DIAs. The previous

incarnation, NPSNET-IV, utilised an IP multicast protocol alongside the DIS

application protocols previously mentioned (Macedonia et al., 1994).

Spline

Scalable Platform for Large Interactive Network Environments (Spline) is a peer-

to-peer DIA that was developed at the Mitsubishi Research Laboratories (Waters

et al., 1996). Spline was developed with scalability as a key concern, and as such

is designed to accommodate large numbers of users. An important means in

achieving this scalability is the division of the environment into smaller areas

called locales (Barrus et al., 1996). Information from each locale is only

disseminated to users that are interested in it, rather than all users, for whom it

may be irrelevant.

CAVERNsoft

The CAVE Research Network (CAVERN) is a group of institutions with virtual

reality technology (e.g. CAVEs (Jones, 1998) and Immersadesks), and

CAVERNsoft (Leigh et al., 1997) is the architecture they have developed to

facilitate collaborative virtual reality (VR) between geographically separate

locations. It facilitates the use of a variety of network architectures, including

peer-to-peer and client-server, depending on the nature and requirements of the

specific application.

 16

DIVE

DIVE is a DIA utilising a peer-to-peer architecture that was developed by the

Swedish Institute of Computer Science (Frécon and Stenius, 1998). DIVE shares

some features with the previously described Spline, such as replicating

subsections of the environment only to those with an interest in that area, and

scalability for large numbers of users. However, a significant difference between

the two is the use of a shared world database in DIVE, whereby each peer

maintains a copy of the world, and changes are actively replicated to other peers.

This prioritises interactivity, while tolerating slight differences between world

copies.

MASSIVE

MASSIVE is another project that, like DIVE and Spline, employs the concept of

locales to improve scalability (Greenhalgh et al., 2000). Locales also have

boundaries between them, which serve as inter-locale links, and can be used to

create relationships between locales. Another feature of MASSIVE is that it

allows “aspects” of varying fidelity for each locale, so that peers with fewer

resources may join the simulation.

2.1.3 Industry (Multiplayer games)

DIAs have always been a popular class of application in industry, but in contrast

to the military and academia as previously outlined, most industrial DIAs are

developed as products to be sold to end users, rather than for the organisations

own use. In many instances, studios traditionally developing single player games

expanded into multiplayer games to meet user demand, and to access additional

markets. Multiplayer games can be very varied in the forms that they take, and

the nature of the simulation (e.g. first-person shooter (FPS), real time strategy

(RTS), and flight simulations all present a different user experience) may mean

that different demands are made of the underlying architecture. While

multiplayer games have existed since the 1970s, e.g. Spasim and Maze War, they

have seen much more intensive development since the 1990’s.

 17

id Software

id Software (www.idsoftware.com) have been a driving force in the development

of both multiplayer and single player games for many years, having created both

the Doom and Quake series, and more importantly the underlying engines,

including idTech 1-5. These game engines would be in turn used in other

applications, developed both by id Software, and other companies.

The first id Software title to feature multiplayer gameplay was the original

Quake, though the popularity of this element was limited until the release of

QuakeWorld. This was a free update that implemented a Client Side Prediction

algorithm to mask latency, and thus allowed users on slower connections to

enjoy a responsive gaming experience.

Tribes Engine

In 1998, a game studio named Dynamix released the first game in the Tribes

series. The first game was unusual for its time in being solely a multiplayer

game, with no singleplayer campaign or experience. The Tribes engine

employed novel networking code and algorithms (Frohnmayer and Gift, 2000),

which would in turn be used in the Torque game engine and OpenTNL network

engine, both released by former employees of Dynamix under the Garage Games

moniker. The significance of the networking model employed by the Tribes

Engine is evidenced by its use as the basis for multiplayer games released over

10 years later, such as Halo: Reach (Aldridge, 2011).

Valve/Source Engine

Valve Software (www.valvesoftware.com) were one such company who licensed

the Quake engine as above in order to develop a game of their own, namely Half-

Life. In and of itself, this is unremarkable, but the success of this game prompted

Valve to develop a sequel, and as part of this, they developed the Source game

engine (Valve, 2005b). The Source engine was designed to be modular and

easily upgradeable, and as such it has been available for seven years without a

conventional change in version number.

 18

In addition to this, and continuing to provide multiplayer gameplay over

networks, the Source engine also provided detailed physics simulation by

integrating a fully featured physics engine, an important development in the

context of this thesis. This was utilised in Half-Life 2 upon release and later in

Portal, another Valve Software title in which players were required to solve

physics-based puzzles.

Frostbite Engine

The Frostbite engine was developed by an Electronic Arts Studio named DICE

(www.dice.se) in 2008, with an update released in 2009. While not

implementing significant advances in terms of networking, a significant feature

of this engine in the context of this thesis was the addition of dynamically

destructible environments. Initially this was limited to individual walls, but the

2009 update allowed for destruction of entire buildings. This was significant in

so far as the game engine utilises an underlying physics engine to simulate this

destruction dynamically, in contrast to previous games, which accomplish this

through pre-scripted and rendered animations.

In the next section, criteria for classifying DIAs according to their mechanisms

of operation is introduced and explained.

2.2 Categorising DIAs

2.2.1 Network Architecture

There is a wide variety of network architectures available to designers of DIAs at

present. The architecture of a DIA in this context refers to both the path(s) that

network traffic used for synchronisation follows between users, and the manner

in which the world state is stored.

Traditionally there have been two main architecture types: client-server, and

peer-to-peer. Figure 2.1 below illustrates the difference in structure between the

two. In the client-server architecture, there is one central server that maintains an

 19

authoritative copy of the world, and each client communicates with that. There

is no direct communication between clients. Updates are sent by the clients to

the server, and the server processes these, and disseminates any resulting changes

in state to clients as necessary. In a peer-to-peer architecture, by contrast, there

is no central authority, and all peers communicate with each other.

Figure 2.1: Comparison of the structure of Client-Server architectures and Peer-to-Peer

architectures

Each of these architectures traditionally has its own advantages over the other,

with selection of one to use often being related to the requirements of the

application. For example, latency with a peer-to-peer architecture can be less

than client-server, as data does not have to be relayed through an intermediate

computer, i.e. the server. Additionally, the scalability of a client-server

application depends heavily on the processing power and bandwidth available at

the server, as it has to have both sufficient bandwidth to receive from and send to

all clients, as well as simulating the entire world, where clients may only

simulate an area of interest for performance reasons. Conversely, the scalability

of peer-to-peer applications may be limited by the networking capability of a

single peer, as each peer has to handle updates from all other peers in a similar

way to the server in a client-server deployment (Fiedler, 2010b).

In recent years, hybrid architectures have been developed for applications, an

example of which is shown in Figure 2.2. In this example, each user’s machine

behaves like a client in a client-server scenario, but there are multiple servers

arranged in a peer-to-peer architecture. In this manner each server could, for

 20

instance, be responsible for simulating a particular area of the world, and a client

communicates with the appropriate server for the area of the world in which they

reside (Assiotis and Tzanov, 2006).

Figure 2.2: Example of an architecture implementing a hybridisation of the client-server

and peer-to-peer architectures

There is no consensus among commercial game developers at present as to a

single ideal architecture to employ for every application, with that decision being

made on a per-application basis (Davis, 2008). For example, the recently

released Gears of War 3 shooter utilises client-server networking with dedicated

servers for its multiplayer features (Watts, 2010), whereas real time strategy

games (RTS) may often employ a peer-to-peer architecture (Bettner and Terrano,

2001). Yet another alternative, in the form of a hybrid architecture, has been

suggested for use in Massively Multiplayer Online Role Playing Games

(MMORPGs) (Assiotis and Tzanov, 2006).

 21

Entity Replication in Peer-to-Peer DIAs

Figure 2.3 illustrates how peers maintain ownership and authority over entities

local to them, while modelling entities owned by other peers. These models of

remote entities at each host or peer are based on the updates received by that

peer, and are, at best, only an approximation to those entities’ true states.

Figure 2.3: Ownership and modelling of local and remote entities respectively, in peer-to-

peer architecture

A flaw with peer-to-peer for competitive applications that has been identified in

the literature is a lack of a single, central authority, which can leave the

application more susceptible to cheating by players (Webb et al., 2007, Yan and

Randell, 2005). The reason for this susceptibility is that without an authority to

validate the information sent by each peer, a peer could send false information in

its updates to gain an advantage over other peers. For example, a user could

modify their local program to allow them to move faster, or to have greater

manoeuvrability than others. However, modifications to the basic peer-to-peer

application structure have been proposed to counter such cheating, one of these

being the Referee Anti-Cheat Scheme (RACS) (Webb et al., 2007). Under this

 22

scheme, peers send updates to other peers as normal, as well as to a referee

process. This referee process runs on a trusted host, and is able to validate

updates (in order to detect cheating), and resolve any conflicts arising between

peers. It does not send updates to peers unless conflict resolution is necessary, or

cheating is detected, and correction deemed necessary. A further proposed

extension of this scheme, for scalability purposes, is the implementation of

distributed referees.

2.2.2 Time Management

A further quality by which DIAs may be categorised is the mechanisms

employed to manage the simulation of time within the environment. This is an

important categorisation as it restricts the types of behaviour that are possible

within the DIA. Time management mechanisms in DIAs can be divided into two

key categories:

1. Logical Time – Passage of time occurs only in response to the generation

of events within the simulation (Lamport, 1978). If no events occur, then

no time is considered to have elapsed, and time does not increment. This

has also been referred to as causal time.

2. Real Time – Passage of time occurs regardless of simulation events,

similar to the passage of real world time. Consequently it is also referred

to as physical time, or wall-clock time.

Applications whose execution is driven by logical time can be described as

logical time applications (Page and Smith, 1998). Turn-based games, such as

chess, or collaborative document editing environments would be examples of

such logical time applications. In contrast to this, games such as Doom and

Quake, as mentioned earlier, are examples of DIAs utilising real time

management. In this thesis, we will focus on real time applications, as

simulation of physical systems is ill-suited to the logical, or causal, time.

 23

The next section will provide a background to physics simulation in both local

and distributed virtual environments, as well as examining the motivations

behind such simulation.

2.3 Physics Simulation in virtual environments

As already stated, DIAs have become more complex as computational hardware

has become more powerful, and more efficient. The same is true of video games

in general, both in the multiplayer games that fall within the realm of DIAs, and

single player games which do not. These advances have taken place in the

realms of artificial intelligence (AI), graphical and visual rendering, and

environmental detail and complexity, to name a few. Improvements in physics

simulation have been driven in part by the latter two areas, as well as a desire for

increased realism in games.

Games offering physics simulation in one form or another have been available

for over 25 years, but the level of detail and complexity has increased

significantly over time (Hecker, 2000). Early games, such as Tetris, Super

Mario, or even Pong, employed simple simulation of physical laws to simulate

movement in two dimensions, and to ensure that objects could collide with each

other, as opposed to passing through each other. With limited processing time

available in many computers at the time, this was all that could be achieved

while still being able to execute all other aspects of the game. An added issue for

developers was that these physics simulations often had to be constructed on a

per game basis, due to each game having differing requirements, and

optimisation and minimisation of program code being required due to hardware

constraints, as already alluded to.

As computational platforms became more powerful, however, physics simulation

within games advanced. Initially this took the form of more detailed simulation

within two-dimensional games (e.g. Sonic the Hedgehog, Micro Machines), but

with the advent of three-dimensional game environments, with six degrees of

freedom (e.g. Quake, Half-Life) scope for further advances was soon available.

In the 1990’s, a shift took place in the way in which physics simulations were

implemented in games. Where previously physics simulations were tailor made

 24

for each game, a new type of middleware called physics engines emerged

(Millington, 2007). A physics engine is a piece of reusable software that can be

integrated into a larger application to simulate the physics of the virtual

environment.

In general, physics engines provide collision detection functionality, and

implement Newtonian mechanics, with early engines being limited to rigid body

dynamics. As before, however, availability of increased processing power, and

refinement of simulation techniques led to more complex and flexible engines,

with fuller feature sets. The advent of techniques such as ragdoll physics

(Glimberg and Engel, 2007, Mulley and Bittarelli, 2007) allowed developers to

replace scripted animations with real time simulations that responded to unique

instantaneous inputs. From a game perspective, this allowed for the presentation

of a more realistic, and hence believable, world.

As developers began to realise the potential of accurate physics simulation, and

by extension physics engines, efforts emerged attempting to make more

processing power available to simulations. This included the development of

Physics Processing Units (PPUs), devices (Yardi et al., 2006, Yeh et al., 2007,

Bishop et al., 2000) which were optimised for the typical calculations arising in

physics simulations. In 2005, AGEIA Technologies released the first

commercial PPU with support for their PhysX SDK (Ageia, 2005a, Ageia,

2005b). Ultimately this approach was superseded by the development of

technologies for General Purpose Computing on Graphics Processing Units

(GPGPU) (Enhua and Youquan, 2008), whereby GPUs already present in

computers could be used as coprocessors for physics calculations. Nvidia’s

CUDA (www.nvidia.com/object/cuda_home_new.html) and AMD’s Stream

(www.amd.com/stream) are examples of language libraries facilitating this, with

Nvidia currently owning and developing the PhysX brand and technologies.

Currently, there are many different physics engines available to game developers,

ranging from open source projects providing rigid body simulations in two

dimensions, such as Chipmunk Physics (code.google.com/p/chipmunk-physics),

to the industry standard Havok Physics (www.havok.com) that has been used in

 25

over 150 published games to date, as well as having been incorporated into a

number of game engines.

Physics simulation and physics engines have also come to be of interest to

developers of virtual worlds outside the domain of games, with academics

observing that many of the physics engines available for games are not general

enough for use in every type of application (Nourian et al., 2006). For example,

highly detailed flight simulations, and first-person shooters might place different

priorities on aerodynamics and collision mechanics respectively. The xPheve

project designed an extensible physics engine with this in mind, where each

physical law to be simulated is implemented as a component, and appropriate

priority and precision can be configured for each law. The versatility of this

engine can be seen from its use in both a military simulation, and a separate

surgery simulation (Nourian et al., 2005), by means of different configurations of

physical laws.

2.3.1 Causal and Non-causal simulation

As already stated, physics simulation has been used for a variety of purposes,

including addition of realism to rigid bodies, and animation. One such area of

animation has been the simulation and rendering of particles, such as dust clouds.

In light of this varied application, it is necessary in the context of this thesis to

distinguish between these purposes, and the effects that they have on the

simulation. This gives rise to the definition of causal and non-causal events.

Causality refers to the relationship between two events, the first being the cause,

and the second being the effect, where the effect is brought about as a

consequence of the first. Extrapolating from this definition, in the context of the

simulation of virtual environments, it is possible to classify events and

interactions as either causal, or non-causal. A causal event is one which brings

about a corresponding effect, with a non-causal event having no quantifiable or

discernible effect. An example of a causal event would be a collision with

another entity, and the state of that entity being altered, while a non-causal event

would be typified by either a collision with a simulated wall whereby the wall

 26

was undisturbed, or simply the exact motion of particles in a simulated dust

cloud.

This distinction is important, as it suggests a way to prioritise events and

associated data for replication, as well as to avoid unnecessary traffic generation.

It may also provide a criterion for allowing data compression by means of

approximation of state variables in certain instances.

2.3.2 Determinism in physics simulation

Determinism is a quality of an algorithm, system, or by extension, a simulation.

In a mathematical or computer science context, determinism of an algorithm or

system refers to the ability of that algorithm or system to reliably and

consistently produce the same output(s) for a given set of inputs and initial

conditions (Bullet, 2008, Fiedler, 2010a, Qvist, 2009). A further clarification, in

terms of systems, is that the system must always pass through the same set of

states in going from the input(s) to the output(s).

In terms of a physics simulation or engine, determinism can be considered to be

the ability of a simulation to produce the same final state in response to a given

set of initial conditions and inputs. This is an important quality of a physics

engine as a form of middleware, as developers utilising the engine need to be

satisfied that their application will behave similarly, and produce reliable and

consistent results across varied platforms. This is of extra importance when

platforms with varied hardware are used to simulate the same world

concurrently, as is often, or even usually, the case with multiplayer games, for

example PC gamers with different CPUs and GPUs.

However, one potential exception to a requirement for precise determinism could

be those events classified as non-causal in the previous section. Here if any

discrepancy arising will have no further (causal) influence on later events, it may

make no material difference to users or their simulations, and will consequently

resolve itself. Therefore, if possible, deterministic simulation should be

prioritised for causal events and elements, in the event of both deterministic

 27

simulation and non-deterministic simulation being available. A caveat to this,

however, is that any discrepancies arising from such non-deterministic

simulation should still be reasonably small, such that two users do not observe a

radically different view of the same environment as a consequence. For

example, the exact motion of particle effects in a cloud does not need to be

simulated deterministically, as the particles have no causal influence on the

simulation. It is sufficient to ensure that the cloud as a whole is accurately

replicated in position, size and density.

2.3.3 Networked Physics Simulation

Client-Server

As already mentioned in Section 2.1.3, the Source engine developed by Valve

was one of the first engines to incorporate physics simulation into a game engine

that also provided facility for multiplayer sessions over a network. The Source

engine utilises a client-server architecture for multiplayer games (Valve, 2005c),

where the server may either be a dedicated server, or one of the users may host

the session, whereby one computer serves as both client and server. The Source

engine utilises compression, interpolation, prediction and lag compensation to

accommodate the issues introduced by networked games. The engine also takes

advantage of the presence of an authoritative server in the client-server

architecture, by distributing updates to clients in the form of snapshots and “delta

snapshots” (changes in world state since the last snapshot) of the world state, by

default at a rate of 20 snapshots per second. In order to make this transparent to

people developing with the Source engine and SDK, base classes are provided to

create both server-side, and client-side versions of an entity, and specific

variables within the entities can be configured for replication (Valve, 2005a).

A notable difference in many multiplayer games based on the Source engine

when compared to single player titles, however, is the quantity of environmental

objects subject to the laws of physics. While there are such entities, they tend to

be fewer in number. For example, Counter-Strike Source has less physics-aware

objects than Half-Life 2, to compare two games based on the engine that were

 28

released at similar times, and both developed by Valve Software themselves.

There is no established literature, or official information from Valve Software to

explain why this might be the case. However, there have been indications from

other developers that instead of trying to make the network work more

effectively to replicate physics-aware bodies, there is a trend towards altering the

gameplay to accommodate the network (Aldridge, 2011). This approach is far

from invalid, but fails to solve the issues of physics simulations in multiplayer

games, preferring to remove, or at least minimise this element. This may explain

the aforementioned discrepancy between singleplayer and multiplayer

applications.

Peer-to-Peer

As already explained, client-server is one of two basic architectures available to

application developers, and even alternative architectures are typically

constructed as a hybrid or combination of these two basic arrangements. Thus,

while Valve’s solution as implemented in the Source engine may be appropriate

for client-server architectures, it is not directly transferable or applicable to a

peer-to-peer structure. For example, in a peer-to-peer application, there is no

central authority analogous to a server to replicate snapshots of the entire world

state.

Thus far there has been limited success with the development of physics-aware

entity state management techniques for peer-to-peer applications. The key

hurdles for such algorithms are issues of authority, and scalability (Fiedler,

2010b). One such algorithm has proposed a local authority scheme, whereby

peers can assume authority over physics-aware entities, in addition to already

being responsible for those local entities that they control. This algorithm as

proposed, however, does not utilise dead reckoning models. Instead it employs a

constant update rate, whereby each peer sends a preset number of update packets

to remote peers every second. These updates all share a common structure,

outlined below:

Sequence Number – The first section of the packet (16 bits proposed for

a 30 packets per second example) consist of a sequence number for

 29

ordering purposes, so that if packets arrive out of order, entities are only

updated with the most recent state.

Input – The user’s input is then described so that remote peers can

simulate the user-controlled entity’s behaviour. Note that Fiedler’s

proposal assumes only one user-controlled entity per peer.

Rigid Bodies’ State – Finally, the remaining space in the packet is filled

with the compressed state of as many rigid bodies, or physics-aware

entities, as possible for which the peer is the authority. The specific

bodies to include in a given update are determined by means of a

“priority accumulator” which considers the time since an entity was last

updated, and a weighting factor which allocates greater importance to the

updating of some entities.

In the event of two players’ areas overlapping, the lowest player ID becomes the

authority. However, in the event of a player interacting with an object, they

become the authority for that object, until that entity comes to rest again. In the

case of multiple peers observing physics-aware entities that are not controlled by

an interaction authority, the peer with the lowest player ID is authoritative in the

event of conflicting views. Fiedler (2010b) acknowledges that this approach of

granting authority renders games susceptible to cheating, and cautions that it only

be used in cooperative games.

A potential disadvantage of this approach in a general sense is that peers

providing state updates for entities until they come to rest may generate

unnecessary data; if the physics engine in use is deterministic the motion of

physics-aware entities is therefore predictable provided that no other player

interacts with the entity before it comes to rest. However, this is less of a

concern in an application using a constant update rate, as in Fiedler’s example,

than it might be for a dead reckoning application, where update rates can

fluctuate.

In the next section, the concept of immersion in interactive applications is

introduced, and its influence as a motivation behind the addition of physics-

awareness to virtual environments is discussed.

 30

2.4 Immersion in DIAs and Games

Immersion is a term and concept that has been applied to virtual worlds and

users’ experiences of them for a number of years now. As a term, there have

been varying interpretations and understandings of what it means, but most

commonly it is used to describe the degree of involvement with a game (Brown

and Cairns, 2004) or virtual world. Varying levels of immersion have been

described, with one scale classifying these as being engagement, engrossment,

and total immersion. A wide range of factors can influence the level of

immersion achievable by a user in a virtual world, including the user’s

preference towards the application type (e.g. game genre, in the context of

games), the quality of the construction of the application, and the scenario

presented to the user (Jennett et al., 2008). The disconnection from the real

world brought about by immersion has also been shown to take a measurable and

quantifiable amount of time to be overcome upon stopping interaction with the

environment (Cairns et al., 2006). Given that the objective of such games, as

recreational applications, is to engage with the virtual world, and arguably to

draw some of the user’s focus from the real world, this exhibits just how

powerful and successful applications can be in terms of developing immersion.

Immersion is not solely applied to the domain of games however, and can be

used to describe more general virtual worlds, and by extension, DIAs beyond the

field of multiplayer games (Swing, 2000). While research suggests that poor

coherence in games and applications can be overcome if immersion has already

been achieved, the same research indicated that a lack of coherence can be a

barrier to the initial development of immersion (Cheng and Cairns, 2005). Thus

presenting a coherent and realistic environment to the user from the outset can

aid the development of immersion, and simulation of realistic physics should

serve to facilitate this in appropriate applications. For example, some games,

such as Battlefield Heroes, (www.battlefieldheroes.com), deliberately present a

less realistic environment, and the simulation of “true-to-life” physics might in

fact be inappropriate.

 31

Consistency in DIAs can be thought of as the ability of an application to ensure

that an entity is ‘in the right place at the right time’ for all users. Thus if

inconsistency is present in a DIA, each user may have a differing view of the

environment. This in itself would be unrealistic behaviour, which could serve as

a barrier to immersion, especially if users can speak to each other, or

communicate otherwise, as in many DIAs.

In the next section, the concept of consistency in DIAs is introduced, and the

information outlined so far in this chapter is built upon in relating consistency to

physics-aware DIAs specifically.

2.5 Consistency in Distributed Interactive Applications

An important element of any DIA is the ability of the application to maintain a

consistent representation of the state variables stored in each host’s version of the

shared world database. Each host in a DIA transmits synchronisation messages

containing the latest values of the relevant state variables across the network

connecting hosts to maintain the consistency of this database. Three distinct

elements of consistency in DIAs have been identified in the literature (Bouillot

and Gressier-Soudan, 2004, Roberts, 2004):

1. Synchronisation – Guarantees that all hosts’ versions of the state

variables are equal within the constraints of real-time simulation.

2. Concurrency Control – Participants on different hosts are allowed to

make changes to the shared world databases concurrently, with the results

of these changes being the same as if made by a single host.

3. Causal Ordering – Ensures the maintenance of the causal relationships

(cause and effect) between related changes to the shared world database.

For many modern DIAs, the underlying communications network between the

hosts is the Internet, and the Internet in its current form thus poses two major

obstacles to DIAs. Specifically, these obstacles are network latency (and jitter),

and limited network bandwidth.

 32

Network latency is the time taken from the start of exchange of a

synchronisation message at the application layer of one participating node to the

end of exchange of the same message at the application layer of a second

participating node (Pullen and Wood, 1995), while jitter is defined as the

variation of latency with time (Blow, 1998).

A network link’s bandwidth is a measure of the maximum throughput of traffic

on that link. In the event that the data being transmitted over a link exceeds the

available bandwidth, messages will need to be buffered or dropped until the flow

of data decreases to being within the available bandwidth again (Roehle, 1997).

For real-time DIAs, complete and exact consistency of the state variables stored

within the shared world database is impossible to achieve, due to the limitations

of the network connecting the participating hosts. The Consistency-Throughput

Tradeoff (Singhal and Zyda, 1999) describes this issue:

 It is impossible to allow dynamic shared state to change

frequently and guarantee that all hosts simultaneously

access identical versions of that state.

(2.1)

In simple terms, this statement means that a DIA can be either consistent, or real-

time, but not both (Bhola et al., 1998). For example, modern DIAs operate at an

update rate of 30-60Hz. In the case of an application with an update rate of

50Hz, each host updates their local state every 20ms. Thus if the latency

incurred by an update is greater than 20ms, as would typically be the case with

latency on the Internet, the local state of the variable(s) being updated may have

already changed before the update is even received.

If the application were to operate at a lower frequency such as 5Hz, then the

variables could only be changed every 200ms, and consistency could be achieved

for latencies less than 200ms. However, a 5Hz simulation is far less interactive

in real time than the 50Hz simulation.

 33

In more general terms, Singhal and Zyda (1999) propose that equation (2.2) can

be used to evaluate the scalability of, or amount of resources required by, an

application.

 Resources M H B T P= × × × × (2.2)

where:

M is the number of messages exchanged;

H is the average number of destination hosts for each message;

B is the bandwidth required for a message;

T represents the timeliness with which the packets must be delivered to

each destination;

P is the number of processor cycles required to receive and process each

message.

In equation (2.2) the M, H, and B terms refer to the communications bandwidth

required by the DIA, and thus influence the impact that network bandwidth has

on the scalability of an application. Reducing the size of one or more of these

terms has the overall effect of reducing the network bandwidth required by an

application. Several techniques that have been employed to accomplish this are

described in Section 2.6.

The impact of network limitations on consistency can manifest itself in a number

of ways, which vary depending on the nature of the simulation. The effects can

be categorised into one of three groups (Sun et al., 1998):

1. Divergence – Events arrive and are executed at hosts in different orders

at different hosts, leading to differing final results.

2. Causality Violation – Due to non-deterministic network latency,

changed to state variables arrive out of their natural cause-effect order.

3. Expectation / Intention Violation – Due to concurrent generation of

updates on different hosts, the actual effect of an event at its time of

execution may differ from the intended or expected effect of the event at

its time of execution.

 34

For the purposes of this thesis, the following definition of consistency, which

takes into account the real-time nature of modern DIAs (Delaney, 2004), is

adopted:

 Consistency is the maintenance of a uniform dynamic

shared state across all participants in a DIA.

Def. (2.3)

2.5.1 Metrics of Consistency

Many DIAs are state driven applications, and thus a common metric for

divergence is spatial inconsistency, or drift distance, defined in the literature as a

measure that represents absolute spatial difference between representations of the

same entity on different hosts (Diot and Gautier, 1999). When using this metric,

the state of the DIA is judged to be inconsistent if the drift distance measured is

large when compared to some threshold value.

A contrasting measure of consistency is that of temporal consistency, or phase

difference, which measures the impact of network latency by measuring the

length of time between generation of an event to a state variable, and the same

event’s application to the remote version of that variable (Lui, 2001). In using

this metric, a threshold is defined in relation to the phase difference, and the goal

of the DIA is to keep the absolute value of the phase difference less than or equal

to this threshold.

More recently, Zhou et al. (2004) has observed that a limitation with both of

these metrics is their failure to consider other concerns and influences. For

example, spatial inconsistency does not consider the duration for which an

inconsistency persists, while temporal inconsistency does not consider the effect

of the inconsistency on the world state. Arising from this, Zhou et al. (2004)

have proposed a measure that combines both time and spatial measures into a

single metric of inconsistency for a continuous variable

 35

0

0

0, if ()

() , if ()
t

t

t

t dt t
τ

ε

ε
+

 ∆ <
Ω = 

∆ ∆ ≥∫

(2.4)

where:

∆ (t) is the spatial difference between entity representations on different hosts;

ε is the minimum perceivable error (from a human-user perspective);

t0 is the time at which the difference starts;

τ is the duration for which the difference persists.

From this definition, it can be observed that Ω refers to the area under the graph

of spatial consistency with respect to a particular entity trajectory over a specific

duration of time. When Ω = 0 absolute consistency has been achieved to within

the limits of user perception, and the presentation element of inconsistency is

minimised (Vaghi et al., 1999). Due to limitations of any network connecting

participants, a true zero value for inconsistency is never actually achievable in a

real-time DIA, as per the Consistency-Throughput Tradeoff. To account for this,

Zhou includes the ε term as a minimum perceptual value in equation (2.4) above.

This allows a system to be considered consistent if the inconsistency is below

human perceptual limits.

Physics-aware inconsistency measurement

As the algorithms proposed within this thesis pertain to synchronisation of state

variables rather than latency masking or other temporal concerns, for the

purposes of this work, a spatial metric of consistency will be employed when

presenting and considering results. Due to the simulation of non-peer-controlled

entities, and a need to consider their effect on the environment as a whole, drift

distance as defined above is insufficient in measuring the total inconsistency in a

physics-aware environment. The term physics-aware inconsistency will be used

to refer to the sum of the spatial inconsistencies of all entities between one host

originating stage changes, and another receiving them. This is represented by

equation (2.5).

 36

1

N

i

i

eφ
=

=∑

(2.5)

where:

ei is the spatial inconsistency of the ith entity in the environment;

N is the number of entities present in the environment;

φ is the “physics-aware” inconsistency in the environment.

The next section introduces a number of mechanisms commonly used in DIAs to

reduce the amount of network traffic, thus increasing the scalability of

applications. The specific impact and relevance of these mechanisms in the area

of physics-aware DIAs are also outlined in each case.

2.6 Traffic Reduction techniques and their implications for

physics-rich environments

In order to improve the scalability of DIAs, a number of techniques have been

developed, and the implementation of some of these techniques can have specific

relevance to physics-aware DIAs. A number of these techniques are outlined in

the following section, as well as the implications of using these techniques in

such applications.

2.6.1 Compression

Compression is used to reduce the volume of traffic generated by reducing the

size of network packets. There are various compression schemes available for

use in DIAs, all of which can be categorised as either lossless or lossy. Lossless

compression techniques, as the name suggests, are those which still result in fully

precise information being exchanged. An example of a lossless compression

scheme is bit packing, as used in the Torque and Tribes engine (Frohnmayer and

Gift, 2000), which involves including only the bits necessary to represent the

contents of a variable, as opposed to all the bits in the variable. For example,

 37

many integer values can be represented with far less than 32 bits, despite

occupying 32 bits in memory.

Conversely, lossy compression algorithms operate on the principle that fully

precise information is not necessary. Truncation or rounding of floating point

values would be an example of one such approach, and dead-reckoning, as

outlined below, is also analogous to lossy compression. The use of such

compression schemes may be undesirable in physics-aware simulations, as it

potentially negates the determinism of an engine to send state updates with lossy

compression due to initial conditions differing. It may be possible to avoid this

discrepancy by applying the same compression to internal variables within the

engine at the time of updating, but blindly modifying state in this manner has the

potential to introduce unpredictable behaviour, e.g. two bodies being brought

into contact/overlap.

2.6.2 Packet Aggregation

Packet aggregation refers to a process by which multiple packets are combined

into a single larger packet in order to reduce network bandwidth (Bassiouni et al.,

1997). This reduction is accomplished by each smaller packet sharing the single

header of the larger packet, thus reducing the overall number of headers

transmitted. A drawback of the approach in all simulations, particularly physics-

aware applications which may be particularly time sensitive, is the potential for

latency to be introduced by delaying transmission of packets, for the sake of

aggregation.

2.6.3 Dead Reckoning

An already mentioned but as yet unexplained algorithm for traffic reduction,

dead reckoning is a short-term client side prediction mechanism (Durbach and

Fourneau, 1998, IEEE, 1998). This is an approach which utilises information

relating to the dynamics of an entity’s state and motion, such as position and

velocity, to model and predict future behaviour. The operation of the mechanism

is as follows:

 38

(i) All users model all entities, including those local to the user.

(ii) Thus each user knows both the local and modelled behaviour of local

entities, and can compare them at all times.

(iii) Local users send updates to remote users when they determine that the

error between modelled and actual behaviour has exceeded a preset

threshold. A first order example of this is shown in Figure 2.4.

DR

Threshold

True Path

Dead Reckoned Path

Error Bound
Figure 2.4: Calculation of a first order dead reckoning model from true motion of an entity

Depending on the error threshold employed, it is possible, and indeed likely, that

the actual and modelled entity positions will differ somewhat. As a result, when

updates are received, modelled remote entities may appear to jump, or “snap” to

the updated position. Convergence mechanisms have consequently been

employed to smooth this jump (Singhal and Zyda, 1999), with a good

convergence algorithm being capable of correcting the modelled behaviour

quickly, without presenting too distorted a world view to the user. Equation (2.6)

gives an example of how a first-order dead reckoning update can be calculated

0 0 01t t t τ+ = +p p v

(2.6)

where:

pt+τ is the position of an entity at time t0+τ;

pt is the position of an entity at time t0;

vt is the velocity of an entity at time t0;

τ is the timestep of the simulation;

The error permitted by dead reckoning for remote entities presents an issue in

physics-aware applications as if an error is present when a modelled remote

 39

entity collides with an environmental entity there is automatically an error

present within the collision simulation, and potentially in the path followed by

the environmental entity before coming to rest.

2.7 Summary

In this chapter, previous work in the areas of DIAs, real-time physics simulation

and immersion in games and interactive applications was detailed. The

developments in incorporating physics simulation into DIAs were also outlined,

as well as the motivations behind this. In the next chapter the development of

algorithms for supporting distributed simulation of physics in a peer-to-peer

application utilising dead reckoning traffic reduction mechanisms is discussed.

 40

Chapter 3

Physics-aware state management in a P2P DIA

In this chapter a mechanism for synchronisation of entity state in a physics-

aware, peer-to-peer DIA is outlined. The development of this algorithm both

draws on past work in the field, and incorporates a novel means of minimising

physics-consistency-cost. Further, the development of a testbed application for

validation of this algorithm is described.

3.1 Physics-consistency-cost

As already mentioned in earlier chapters, physics-aware DIAs introduce a new

element to consistency, by the simulation of physics-aware entities. Such entities

are capable of having the inconsistency present in peer-controlled entities

communicated or transferred to them if the controlled entity’s state is

inconsistent when they interact, or collide.

Figure 3.1 (a)-(c) illustrates the means by which the inconsistency present in the

state of an entity modelled by dead reckoning may be communicated to a

physics-aware entity by means of a collision between the two entities. Broadly

speaking, such inaccuracies fall into one of the following three categories:

• collisions detected by both local and remote hosts, but simulated

inaccurately at the remote host due to incorrect velocities and points of

contact as illustrated in Figure 3.1 (a),

• collisions occurring in local world that did not occur remotely (Figure 3.1

(b)), and

• collisions that did not occur locally, but were observed remotely (Figure

3.1 (c)).

 41

A

B

A

B

A B

True (Local) Paths

DR (Remotely Observed) Paths

(a) Collision simulated inaccurately by remote host due to incorrect point of contact

(b) Collision simulated locally that was undetected at remote host

(c) Collision simulated at remote host that never occurred locally

Figure 3.1 (a)-(c): Examples of collisions between controlled entity (A) and physics-aware

entity (B) simulated inaccurately at a remote host due to error in dead reckoning model of

controlled entity's motion. Solid shapes represent starting positions, and shaded shapes

represent projected positions.

In a similar manner, in a physics-rich environment with densely clustered

entities, these inconsistent physics-aware entities can in turn communicate their

inconsistency to other such entities. This communicable inconsistency is the

source of the difference between the solid and dashed lines in the graphs

presented in Figure 3.2, and this difference is what is meant by the term

“physics-consistency-cost” in the context of this thesis. At certain times this is

 42

zero (when the two lines are overlaid), but when collisions occur, it typically

becomes non-zero (when the two lines diverge).

S

p
a

ti
a

l D
i�

e
re

n
ce

 (
m

)

Time (s)

Sum of spatial inconsistencies

Spatial inconsistency of avatar

Figure 3.2: Controlled entity (avatar) inconsistency compared to all inconsistencies present

in a physics-aware DIA.

While this thesis limits the definition of physics-consistency-cost to this

discrepancy, there is scope to consider further factors. To consider the ball and

domino examples presented in Chapter 1; in calculating physics-consistency-cost

as a sum of spatial inconsistencies as outlined above, the ball example could

generate a significantly larger physics-consistency-cost than the domino

example, due to the distances involved. However, the domino example requires

the correction of more entities if they are simulated inaccurately as falling. To

account for this, a complexity factor could be introduced to the calculation of

physics-consistency-costs.

Yet a further variation in calculating this could be to consider the relative

magnitude of a physics-aware entity’s inconsistency compared to its size.

Considering the ball example and the large inertia example (also in Chapter 1)

previously presented; if the physics-aware entity in each example had a similar

inconsistency in their states, the physics-consistency-cost of the latter would be

less under these terms, as the difference in positions might be less noticeable for

a larger entity.

 43

The above list of potential physics-consistency-costs is not exhaustive, but rather

seeks to highlight the generality of the concept, and to point out that the exact

means of calculation may need to be chosen according to the requirements or

priorities of a particular application.

3.1.1 Anticipation of Physics-consistency-costs

Having identified the source of these physics-consistency-costs, it is now

possible to try to identify criteria for predicting, or more accurately anticipating,

times at which they may arise. This distinction is made as many, if not most,

collisions, are impossible to predict with both 100% certainty (that they will

occur, and when) and accuracy (what changes of state will result from the

collision).

One means of anticipating collisions between a locally-controlled entity and a

physics-aware entity is inspired by the dead reckoning algorithm as outlined

earlier. Specifically, this would be accomplished by trying to predict the future

states of the environment based on current and/or past states, and then checking

for collisions between the locally controlled entity and any physics-aware entities

in each future state. This could be accomplished by copying the environment

within a certain radius of the controlled entity, and advancing the copied

simulation a set number of steps, checking for collisions between steps. This is

referred to as a “forecasting” method in the context of this thesis.

An alternative means would be to consider the density of entities either in the

immediate vicinity of a controlled entity, or along its projected path. In general

the likelihood of physics-consistency-costs arising (i.e. collisions occurring) is

dependent on the number of entities in the environment. It should be intuitive

that for two environments, identical in every way except for the number of

physics-aware entities present, there is a greater likelihood of colliding with a

physics-aware entity in the environment with more entities. Similarly, if a user is

in a region of an environment that is densely populated with physics-aware

entities, they are more likely to collide with such an entity than another user in a

region that is sparsely populated with, or empty of, physics-aware entities. In

 44

this thesis, approaches that examine the controlled entity’s surroundings for

physics-aware entities in this manner are categorised as being based on “entity-

density.”

3.2 Authority in Physics-aware DIAs

In non-physics-aware, peer-to-peer DIAs, each peer maintains the authoritative

copy of state for the entity or entities that are controlled by that peer, i.e. those

entities that are local to that peer. These entities could be controlled by users at

that peer, by an artificial intelligence process running at that peer, or some

similar mechanism.

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000
Graph of Inconsistency Development Over Time

Time(s)

In
co

n
si

st
e

n
cy

 (
m

)

Loose Threshold (0.8m)

Medium Threshold (0.5m)

Tight Threshold (0.3m)

Figure 3.3: Uncontrolled inconsistency developing in a peer-to-peer physics application with

no authority for physics-aware entities

In the case of physics-aware DIAs, however, authority is less clear-cut for

physics-aware entities. Each peer needs to be able to present a realistic view of

physics-governed interactions to its users, and due to the dynamic nature of

physical interactions, this imposes a requirement of responsiveness on the

 45

application. A truly responsive simulation could be achieved by giving each peer

responsibility and authority over its own copies of physics-aware entities.

However, this would lead to quickly developing inconsistency, due to the factors

outlined in Figure 3.1. While each peer could accurately simulate the interaction

of their local entity or entities with physics-aware entities, the error in the dead

reckoning models they provide to remote peers would lead to inaccurate

calculation of the resulting state of the physics-aware entities. Such a

development of physics-aware inconsistency is demonstrated in Figure 3.3. This

graph was generated by running a set of simulations with no explicit

synchronisation of the state of physics-aware entities, and recording the

development of physics-aware inconsistency. Note also that the size of the error

threshold used in the dead reckoning has no bearing on the rate at which the

physics-aware inconsistency develops.

Thus it is clear that an explicit means of synchronising the state of these entities

is required, and in order to synchronise state, an authority scheme is required. In

the context of peer-to-peer DIAs, Fiedler (2010b) describes authority as “like

being the server for an object” whereby a peer having authority over an object

means that it can inform other players of the object’s state. Authority is

necessary for two reasons:

1. To determine which peers have an inconsistent state representation, and

2. To correct the state of the inconsistent entities at these peers.

3.2.1 Static Authority

In traditional peer-to-peer DIAs, each peer is authoritative on the state of its local

entities. This authority can be considered as being a “static” authority, in that it

is assigned when the peer joins the DIA, and is not changed or reassigned after

this point. Conversely, if the authoritative peer for a given entity can be changed

while a DIA is running, that could be considered dynamic authority.

As noted earlier in this thesis, in DIAs using client-server architectures the server

acts as a single, central authority, with clients (the equivalents of peers) receiving

 46

appropriate state updates from it. Hypothetically, authority over physics-aware

entities could be granted to a single peer, with all other peers having to validate

or seek approval for interactions between their local entities and physics-aware

entities. This would, however, place a significant burden on that one peer,

effectively turning it into a server for physics simulation. Additionally, with a

single peer being authoritative over all physics-aware entities in the environment,

the application becomes less fault-tolerant as the entire physics simulation is

dependent on that peer.

The flaws of the previously outlined approach could be mitigated somewhat

while still maintaining a static authority scheme by allocating authority over

particular entities to particular peers. In essence, this would mean the division of

physics-aware entities among the peers, with each peer managing the entities

allocated to it as local entities, according to its own physics simulation, and dead

reckoning models being used by peers for other physics-aware entities. This

static distribution of authority presents issues of its own, however. If a user-

controlled entity interacts with a physics-aware entity whose authority is held

remotely, their interaction or collision must be “approved” by the remote

authority peer. In the presence of latency, this can present unrealistic behaviour

to a user, whereby they observe a visible delay between their collision (cause)

and the physics-aware entity’s resulting movement (effect). Note that this would

also apply to the previous scenario of a single authoritative peer. Additionally if

the physics-aware entity contains modelling error, the result of an interaction

may also differ from the user’s expectation.

3.2.2 Dynamic Authority

To reiterate the earlier distinction, dynamic authority refers to being able to

change which peer provides authoritative state for an entity while the application

is running. Motivated by the earlier work of Fiedler (2010b), this thesis proposes

a dynamic authority scheme whereby a peer assumes authority over entities with

which it interacts. This removes the need for a peer to remotely validate

interactions of its entities with physics-aware entities who might otherwise have

had remote authoritative peers.

 47

Under such an authority scheme, each peer would be responsible for notifying

other remote peers of the resulting state from interactions between their local

entities, and physics-aware entities. Under the authority scheme proposed by

Fiedler (2010b), each peer takes authority of entities with which their local

entities interact, and remain as the authority for that peer until it comes to rest

again following the collision. By the author’s own admission, a goal of this

mechanism is to mitigate the effects of non-deterministic physics simulation, and

its utilisation in an application with constant update rate also means that it does

not cause an increase in bandwidth, as each entity’s state updates are simply

transmitted when the peer can accommodate them.

In contrast to this previously detailed approach, this thesis is distinct in utilising

dead reckoning models for controlled entities, rather than a constant update rate.

A requirement for the use of a deterministic physics engine or simulation at each

peer is also imposed. In light of this difference, an alternative approach to

providing updates of entity state is employed:

1. Controlled entities are simulated using dead reckoning models as

previously outlined.

2. In the event of a controlled entity interacting or colliding with a physics-

aware entity, the resulting state of both the controlled entity and the

physics-aware entity is supplied by the local peer to all remote peers.

Deterministic physics simulation at each peer means that once supplied

with the state immediately after the collision (i.e. initial conditions), the

simulation of the playout at each peer will result in the same final state.

3. Collisions between modelled remote entities and physics-aware entities

are ignored unless a collision notification, or state update, for the physics-

aware entity is received. Figure 3.4 shows an example of how the dead

reckoned model of an entity, as observed by a remote user, can appear to

collide with an entity while the true path of the entity avoids it.

 48

Figure 3.4: Spherical avatar (opaque) passing close to row of dominoes moves along black

dashed path. Shaded circles represent the model’s maximum divergence at each point.

This approach depends on updates of physics-aware entity state being sent by

reliable means, but Fiedler (2010b) acknowledges that packet loss in modern

Internet applications is in fact quite rare, and schemes do exist that can be used to

add an element of reliability to data sent using the User Datagram Protocol

(UDP) (Fiedler, 2008). An alternative approach to point 3 above would be to

record collisions that have been simulated with no notification, and restore the

state of any environmental body disturbed in the event of a collision update not

being received. However this approach risks implementing corrections with

significant visual impact in the environment, especially if disturbed entities

collide with other entities. Ultimately this is the difference between adopting a

pessimistic/conservative approach to consistency (the former), and an optimistic

or aggressive approach (the latter) (Bhola et al., 1998, Cronin et al., 2002,

Greenberg and Marwood, 1994, Jefferson, 1990, Vaghi et al., 1999), with the

conservative approach being proposed in this thesis.

3.3 Updating state for physics-aware entities

Initially the possibility of providing a single update at the instant of contact was

investigated, with some success. However, this still proved to be unreliable and

insufficient, with inconsistency manifesting after collisions. Upon further

investigation, it was determined that many collisions “persisted” beyond a single

simulation frame. Consequently, the potential for user input over the course of

 49

the collision meant that the playout was not guaranteed to be deterministic after

the initial contact. If a user were to change their speed or direction slightly

during the collision, they could potentially remain within the threshold of the

dead-reckoned model, and thus not generate an update. Traditionally this would

not be an issue in peer-to-peer simulation, but with the sensitivity of physics

engines to variation in initial conditions such slight changes were still a source of

significant inconsistency.

At this point, three further options were identified to try to resolve this issue:

• Allow and require peers to update their controlled entity and the colliding

body for all simulation ticks during the collision.

• Allow and require peers to update the state of their avatar and the

colliding body once the collision has ceased, i.e. the bodies are no longer

in contact.

• A hybrid of both of the above.

The theoretical merits and flaws of all three systems were identified, and are

outlined below.

Updates throughout collision

A system whereby a peer transmits state updates for the physics-aware entity for

all simulation ticks that they are in contact would result in a very accurate

simulation of the collision, but could potentially result in a large volume of

unnecessary traffic. Consider a scenario where a user is required to push an

object to an arbitrary location in an application with an update rate of 50Hz, a

common update rate in a modern DIA. This could result in up to fifty updates

being generated each second, depending on the simulation frequency, with many

potentially being sufficiently small as to be imperceptible to a user, and hence

unnecessary. This is less of a concern in applications than it has been

historically, with increased availability of bandwidth, but still needs to be

considered as an influence on the scalability of an application. Additionally, if

updates are only transmitted while contact persists, the outcome of the contact

 50

may still be simulated inaccurately, depending on the user input sampled during

the final step, when the bodies move apart.

Updates at beginning and end of collision

This method could be considered to have almost the opposite emphasis of the

above, with less priority placed on precision in the course of the collision, in

favour of ensuring consistency in the aftermath, as well as limiting network

traffic. Essentially the collision as an event would be “framed” by two state

updates of both the avatar and the environmental body involved. The first is

generated at the moment of contact, to ensure a reasonably accurate initial

simulation of the collision. Once the collision has ended, any inconsistency

introduced in the course of the collision would be corrected by an update

generated in the following simulation frame, as the motion of the environmental

body will be deterministic once the user’s influence has ceased, and this update

has been applied. Despite there not being explicit updates made to the state of

the environmental body in the course of the collision under this system, there is

still a means of controlling the inconsistency which may arise, as standard dead

reckoning techniques will still be applied to the avatar.

Hybrid system

As the description suggests, this system would combine elements of both of the

previous methods, specifically by utilising the framing updates of the second

system, in conjunction with the constant updates of the first. This would provide

for accurate simulation of collisions from start to finish, as well as accurate

environmental playout when the bodies have moved away from each other.

However, this approach also presents the same drawbacks as the first one of

generating more traffic than may be necessary, or indeed manageable in larger

applications. Due to an inherent assumption here that the simulation will always

“play out” the same way for a set of conditions, this approach is highly

dependent on the determinism of the physics engine utilised in the application, as

described in Section 2.3.2.

Under all three of these systems hosts should not model collisions of modelled

remote entities with environmental objects without notification of that collision

 51

having occurred. Were a host to model without such notification, it would risk

simulating a collision that had not occurred, and only appeared to do so due to

the error present in the dead reckoning model. Many physics engines provide a

means of collision filtering which can be used to implement this, whereby

detected collisions of modelled remote entities are ignored so that the physics-

aware entity remains undisturbed.

An alternate approach (not implemented here) to this would be to record

collisions that have been simulated with no notification, and restore or “roll

back” the state of any physics-aware entity disturbed in the event of a collision

update not being received. However this approach risks implementing

corrections with significant visual impact in the environment, especially if

disturbed entities collide with other entities.

Preliminary experiments with the testbed as described in Section 3.6 were

conducted to record the duration of collisions in the two-dimensional

environment supported by the testbed, and it was found that the majority of them

lasted only a short time, typically less than 6 simulation ticks, or 120ms. With

this being the case, it was observed that with an update being provided at the start

of each collision, any given collision would only be capable of introducing a

minute inconsistency (related to the velocities, inertias, and potential for

acceleration of the bodies involved) before the collision ceased, and another

update was generated. Thus it should be expected that for the authority scheme

as proposed with no latency, the inconsistency relating to environmental bodies

should be limited to a series of small “blips” or peaks that arise while collisions

are taking place.

3.3.1 Collisions by proxy

A shortcoming of the peer updating entities with which its controlled entity

collides directly has been identified. Specifically, in the case of “collisions by

proxy”, the collision was not necessarily modelled correctly. Figure 3.5 below

illustrates a collision by proxy, where in the course of the user’s (circle A)

collision with an environmental body (circle B), the body in turn touches a

 52

second environmental body (circle C). In this instance, the ultimate path of body

C will be inaccurately modelled, as during the collision, the bodies A and B’s

paths are approximated. The motion of the latter two bodies will be corrected

once they separate, but at this point the remote state of body C will be inaccurate,

and will remain inconsistent.

Figure 3.5: In a collision by proxy, entity A (user-controlled) collides with entity B (physics-

aware), and during this collision, entity B contacts entity C (also physics-aware)

A proposed and intuitive solution to this is to recursively check both the

algorithm and bodies that it is in contact with for collisions. That is to say that

on each tick, if the controlled entity is in contact with another body, that body is

checked for contacts, and if any are found, the other bodies in the collision are

checked, and so forth. A record is kept of these contacts, and if a contact ends,

then any bodies no longer in contact are updated. If the controlled entity loses its

contact with the first object, then all objects can be updated, as the playout will

be deterministic with the possibility of user input having been removed from the

system.

 53

3.4 Minimising physics-consistency costs

With an authority scheme for physics-aware entities in a DIA with dead

reckoning models of controlled entities, variation of physics-aware inconsistency

similar to that illustrated in Figure 3.2 is achievable. The next step was to try to

minimise the difference between the two measures of inconsistency in this graph,

specifically by minimising the amount by which the physics-aware inconsistency

increases.

It has already been observed that this discrepancy, or physics-consistency-cost,

develops as a result of the inconsistency in controlled entities being transferred to

physics-aware entities. An authority scheme as outlined above ensures that the

two different measures of inconsistency reconverge, and that the inconsistency

introduced to the physics-aware entities is controlled, in the same manner that

dead reckoning permits a controlled level of inconsistency in entities.

In Section 3.1.1 the subject of anticipating physics-consistency-costs is

discussed, and suggestions as to how to achieve this are detailed. In this thesis, a

forecasting method will be utilised to try to anticipate the occurrence of physics-

consistency-costs. Since physics-consistency-costs arise as a result of the error

in the dead reckoning model of entities, it is proposed that peers should attempt

to minimise the error present in these models at the time of collisions. As has

previously been explained, any dead reckoning model has an error threshold, and

when the error present in the model compared to the true state exceeds this

threshold, an update is generated. Consequently a model with a variable, or

adaptive, threshold is proposed. Adaptive threshold dead reckoning models have

been described in the literature previously (Cai et al., 1999, Lee et al., 2000), but

in this instance it is specified that the threshold be varied in response to physics

considerations (i.e. a physics-aware adaptive threshold algorithm) where

previous applications have sought to reduce the number of updates generated by

an application. The combination of this adaptive-threshold model with an

authority scheme for physics-aware entities is the main proposal of this thesis,

and the function of such a combined algorithm is detailed in the following

section.

 54

3.5 Adaptive threshold DR with Authority

In this section, the combination of a dynamic authority scheme for control of

physics-aware entities, and the use of a physics-aware, adaptive threshold dead

reckoning model for peer-controlled entities are proposed. In implementing this,

the physics-awareness of the model threshold comes from the use of a

forecasting method to anticipate physics-consistency-costs.

Figure 3.6: Flow of execution for proposed authority scheme with adaptive threshold dead

reckoning and a forecasting mechanism for anticipating physics-consistency-costs.

Figure 3.6 illustrates the process followed by each peer for the purposes of state

management under the proposed state management mechanism. Considering

each loop to commence at the “Sample User Input” block, the sequence of steps

would be as follows:

• Sample the user’s input from their input device(s) (e.g. keyboard/mouse),

and apply these inputs to the user’s controlled entity.

 55

• Check the network connection for state updates from other peers yet to be

applied to the local world database.

• Advance the local world simulation by one frame based on existing state,

and the newly applied information (inputs and updates).

• Check the controlled entity’s list of contacts to see if it has begun a new

collision, or ended an existing collision.

1. If it has, send a state update for both the controlled entity, and the

entity that it collided with. Then return to the beginning of the

loop.

• Check whether the tight or the loose threshold should be applied for this

simulation tick. If the forecast mechanism is to look N ticks ahead then

1. Tight threshold should be applied if:

� the forecast mechanism detects either a future collision, or

� the forecast mechanism detects a disagreement between

forecasts based on true and dead reckoned state, or

� either of the above occurred within the previous N

simulation ticks.

2. Loose threshold should be used if no collision or disagreement is

forecast, and N simulation ticks have elapsed since one was last

forecast.

• If the error threshold in use for dead reckoning in this simulation tick has

been exceeded, send a state update for the controlled entity to remote

peers.

• Return to the beginning of the loop and start again.

For clarity and simplicity of presentation, Figure 3.6 does not include such tasks

as rendering the world to the user.

Having outlined a state management algorithm incorporating dead-reckoning

models for controlled entities, and a dynamic authority scheme for physics-aware

entities, the next section outlines the development of a testbed application used in

the testing and validation of the techniques outlined so far.

 56

3.6 Testbed Application

3.6.1 Code Development

Code::Blocks

Code::Blocks (www.codeblocks.org) is a cross-platform IDE for C and C++,

with support for multiple compilers, including GCC, Microsoft’s Visual C++ and

the Intel C++ compiler. The software is available and officially supported for

Windows, Linux, and Mac OS X. In addition to code editing and compilation,

the IDE provides access to debugging functionality to monitor internal variables

during execution. It also serves to organise and manage source files, libraries,

and other resources needed for compiling programs.

MATLAB

MATLAB (www.mathworks.co.uk/products/matlab/) is a numerical computing

environment that was used to develop functions and scripts for analysis of

simulation output. These were used to calculate performance metrics to compare

algorithms, as well as to trace the loci of entities over the course of the

simulation based on logged traces of their positions and velocities.

3.6.2 Tools and Middleware

Box2D

Box2D is an open-source, two-dimensional physics simulation engine that can be

integrated into applications as middleware (Catto, 2007). It is written in C++,

and has been ported to a number of other languages and environments including

Java, Adobe Flash and C#. In its native form, it has also been incorporated into

the Torque 2D game engine, and is used in a number of successful two-

dimensional games, including Angry Birds (Kumparak, 2011), and Crayon

Physics Deluxe (Catto, 2011). It provides facility for simulation of rigid body

dynamics with bodies of various shapes, including convex polygons and circles,

as well as applying gravity, friction and restitution forces to the bodies.

 57

3.6.3 Testbed Structure

As a means to both frame the problem, and to measure and compare the

performance of algorithms, a testbed application was developed to simulate the

function of a physics-aware, peer-to-peer DIA. It was determined that the

testbed would have to contain two separate “copies” or instances of a single

world, with entity state being shared from one (the “local” environment) to the

other (“remote”). The facility to simulate latency and jitter in the connection

between these two environments would also be necessary, as these are real world

scenarios and problems affecting DIAs.

With this in mind, a packetPipe class was implemented, which could be

extended and modified, depending on the nature of the updates being transmitted.

This class would serve as a link between the two simulation instances, and be

capable of simulating the previously mentioned network conditions of latency

and jitter.

Figure 3.7: Basic structure of testbed for simulating dead reckoning scenarios and

algorithms.

For simulation of a controlled entity’s motion in the environment, a path was

read from comma-separated values (CSV) files, with a force being applied to the

controlled entity in order to move it to the next point along its path.

 58

In applying updates to the state of the entity in the simulated remote world, the

decision was made to “snap” the avatar to the correct state, with the potential for

convergence by means of visual smoothing to be applied at a rendering level

(Fiedler, 2006). An alternative approach used in some dead reckoned

applications is to utilise a convergence algorithm on the actual entity state

(Singhal and Zyda, 1999), but in the context of physics simulation, this was

judged to be unsuitable, as it would preserve an error in the simulation, which

could cause additional “knock on” effects.

Figure 3.8 illustrates an example of an environment which could be simulated in

the testbed application. An arrangement of physics-aware entities (squares) and

a single controlled entity (circle) are enclosed within a bounded area, and the

controlled entity moved along a path. The physics state resulting from the

controlled entity’s motion is then simulated by the Box2D engine.

 59

Figure 3.8: Example arrangement of physics-aware entities (squares), and a controlled

entity (circle) in a “walled-in” world within the testbed application.

3.7 Summary

In this chapter the development of the algorithms contributed by this thesis was

outlined, as well as the development of a testbed for validating and comparing

the performance of these algorithms. The specific problems facing a peer-to-peer

application utilising dead reckoning were also further detailed.

In the following chapter, the actual testing and validation of these algorithms is

described, as well as the performance of these algorithms under both ideal and

real-world conditions.

 60

Chapter 4

Results and Performance

Having proposed a physics-aware state management algorithm in the previous

chapter, a means of testing and validating this algorithm is now necessary. An

application for this has already been described in Chapter 3, but it is now

necessary to establish performance criteria for the algorithm. Additionally, the

data to be used in the testing is introduced and explained.

Initially all algorithms are compared for performance under the ideal network

conditions of zero latency, and consequently zero jitter, with these influences

being included in later analyses. The reason for this is to ascertain a limit on the

best performance achievable by each method, as a frame of reference when later

comparing performance under more realistic conditions.

Both classified types of motion (Lee et al., 2000), and recorded paths from past

experiments (McCoy, 2007) will be used in this testing process. Further

information about both the classified and recorded motion is given in Section 4.2.

Before that, the criteria and metrics for testing are outlined.

4.1 Testing and Performance Metrics

4.1.1 Physics-aware inconsistency, and physics-consistency-costs

Since a goal of the proposed mechanisms is to reduce the physics-aware

inconsistency in the application, the first metric examined will be the variation of

physics-aware inconsistency (i.e. the inconsistency present in both the user-

controlled entity, and the physics-aware entities) over time in the application.

4.1.2 Magnitude of Corrections to Physics-aware Entities

An indirect, but potentially more relevant, means of examining the effectiveness

of the mechanism in reducing the physics-inconsistency-costs is to consider the

magnitude of the corrections that must be applied to physics-aware entities by the

 61

authority scheme. It has already been stated that physics-consistency-cost is

defined for the purposes of this thesis as the sum of the inconsistency present in

the states of physics-aware entities. Thus the means of removing, or correcting,

these inconsistencies, and the physics-consistency-cost, is the application of

updates to physics-aware entities by the authority scheme.

It can be inferred from this that the magnitude of the change in state, or

correction, induced in a physics-aware entity is related to the inconsistency

present in that entity. In fact, it is the instantaneous inconsistency present in the

entity’s state at the time that the correction is applied. Thus, the magnitude of

corrections applied to physics-aware entities provides a metric of the physics-

aware inconsistency present in an application, and consequently the physics-

consistency-costs incurred by each interaction or collision.

4.1.3 Update Rate

The update rate of a DIA has already been explained in Chapter 2 as having a

bearing on the scalability of the application. Thus the effect of any algorithm on

the update rate of an application must be considered. It could be argued that

bandwidth has become less of a concern in recent years, as networking hardware

has improved, and higher capacity connections to the Internet are provided to

users, however, the proliferation of internet-ready devices in homes is again

putting pressure on bandwidth requirements. The update rates were calculated by

recording the generation of updates in the testbed, and using a sliding window

filter to examine the number of updates generated for each simulation tick.

4.2 Motion Data for Testing

4.2.1 Use of Classified Motion Data

From the literature, entity motion in DIAs can be classified according to three

descriptive types (Lee et al., 2000): smooth, bounce, and jolt. Each of these

types of motions characterises different rates of change of entity state, as well as

the nature of the change of the state, e.g. continuous or abrupt. Both of these

 62

elements of an entity’s motion are relevant to the generation of a dead reckoning

model, as they can affect the frequency and promptness of the generation of state

updates. Thus as part of the testing of the algorithms outlined in the previous

chapter, simulations were executed for an entity exhibiting each of the three

classes of motion individually, in order to identify issues arising in the

algorithms from the presence of any single type.

Two-dimensional examples of each of these types of motions are illustrated in

Figure 4.1 (a)-(c), to accompany the descriptions, below.

Smooth Motion

Part (a) of Figure 4.1 illustrates an example of smooth motion. Such a two-

dimensional example can be produced by an entity moving in a circle of fixed

radius with constant angular velocity (Lee et al., 2000). The stated example

utilises a period of 32 seconds, and amplitude (i.e. circle radius) of 50 metres,

with the circle being centred at the origin, (0,0). In general terms, smooth motion

occurs when the entity’s velocity may change continuously, but with no sudden,

or jump, variation.

Bounce Motion

Figure 4.1 part (b) shows a two-dimensional example of bounce motion. This

example is produced by a hypothetical entity moving back and forth through a 90

degree arc traced around a fixed centre at the origin, (0,0). The radius of the arc

is again 50m, and the period of the motion is 16s. Bounce motion, in general

terms, is a motion with sawtooth features as might occur when an entity is

involved in a collision.

Jolt Motion

Finally, part (c) of Figure 4.1 shows an example of jolt motion. This trajectory

was produced by an entity spinning itself in a circle while moving in a larger

circle around a fixed point within the two-dimensional environment (Lee et al.,

 63

2000). The radius and period of the larger circle were 50m and 32s respectively,

with the smaller circle having a radius of 10m, and a period of 4s. This is

representative of motion with frequent sudden changes of direction.

In general an entity’s motion will not be classifiable as being excusively of one

type, but rather it will contain elements of each. For example, were an entity

with smooth motion to be involved in a collision, its motion could exhibit a

bounce characteristic as a result of rebounding from the collision. Figure 4.1 (d)

shows an example of how the x-value of an entity’s position vector might vary

over time as it exhibits a mixture of motion types, generated similarly to the the

individual traces in Figure 4.1 (a)-(c). However, since each of these classes of

motion may present different challenges to a given DIA, it is important to

consider each type in isolation.

0 10 20 30 40 50 60 70

−50

−25

0

25

50

Time (s)

X
 P

o
si

ti
o

n
 (

m
)

Smooth Motion − Position Plot

0 10 20 30 40 50 60 70

−50

−25

0

25

50

Time (s)

Y
 P

o
si

ti
o

n
 (

m
)

0 10 20 30 40 50 60 70

−50

−25

0

25

50

Time (s)

X
 P

o
si

ti
o

n
 (

m
)

Bounce Motion − Position Plot

0 10 20 30 40 50 60 70

−50

−25

0

25

50

Time (s)

Y
 P

o
si

ti
o

n
 (

m
)

0 10 20 30 40 50 60 70
−75

−50

−25

0

25

50

75

Time (s)

X
 P

o
si

ti
o

n
 (

m
)

Jolt Motion − Position Plot

0 10 20 30 40 50 60 70
−75

−50

−25

0

25

50

75

Time (s)

Y
 P

o
si

ti
o

n
 (

m
)

(a) Smooth Motion (Simulation time = 64s, period = 32s,

amplitude = 50m).

(b) Bounce Motion (Simulation time = 64s, period = 16s,

amplitude = 50m).

(c) Jolt Motion (Simulation time = 64s, period = 32s / 4s,

amplitude = 50m / 10m)

0 10 20 30 40 50
−80

−60

−40

−20

0

20

40

60

Time (s)

X
 P

o
si

ti
o

n
 (

m
)

Mixed Motion − X Position Plot

(d) X component of the position vector of an entity exhibitin

a mix of smooth, bounce and jolt motion
Figure 4.1 (a)-(d): Examples of the three distinct classifications of entity motion (Lee et al.,

2000). Simulations were performed at a rate of 50Hz over a time of 50s.

 64

4.2.2 Use of Recorded Motion Data

As already mentioned, the application was also tested for datasets of real motion.

These datasets were gathered from previous experiments in the Distributed

Applications Group in NUI, Maynooth (McCoy, 2007) using the Torque Game

Engine.

The Torque engine is a three-dimensional simulation engine, originally

developed by Dynamix for the Tribes series of games. It was later purchased and

released by Garage Games (www.garagegames.com), a company founded by ex-

employees of Dynamix. Licensees of the engine get access to both the engine’s

source code and scripting language (Torque Script), allowing them to modify and

adapt how the engine functions which facilitates the implementation and testing

of algorithms. Additionally, the engine provides access to content creation tools,

and implements networking and rendering, reducing the development workload

on licensees. Because of the comprehensive functionality outlined above, as well

as the availability of source code to licensees, the engine has been used for a

number of experiments within the Distributed Interactive Applications Group in

NUI, Maynooth in the past (Delaney, 2004, Marshall, 2004, Marshall, 2008,

McCoy, 2007).

The datasets utilised in this set of experiments originally represented motion in

three dimensions in a first person shooter application, but for use in the two-

dimensional application being tested, the third “Z” dimension was removed.

These sets of data were collected for four different environments, or “missions”,

with several trials of data collected for each mission.

These sets of data, or paths, were stored in comma separated variable (CSV)

files, and read by the application at run time. Movement between each point was

accomplished by a force being applied to the locally-controlled entity. Three

separate paths will be considered in detail, and these are named paths A, B and

C. Figure 4.2 illustrates the course that each of these paths follows through the

world.

 65

-200 -150 -100 -50 0 50 100 150
-250

-200

-150

-100

-50

0

X Dimension (m)

Y
 D

im
e

n
si

o
n

 (
m

)

Path locus for an entity following "Path A"

-200 -150 -100 -50 0 50 100 150
-240

-220

-200

-180

-160

-140

-120

-100

-80

-60

-40

X Dimension (m)

Y
 D

im
e

n
si

o
n

 (
m

)

Path locus for an entity following "Path B"

-200 -150 -100 -50 0 50 100 150
-300

-250

-200

-150

-100

-50

0

50

X Dimension (m)

Y
 D

im
e

n
si

o
n

 (
m

)

Path locus for an entity following "Path C"

(a) Movement through environment described by Path A

(b) Movement through environment described by Path B

(c) Movement through environment described by Path C

Figure 4.2 (a)-(c): Routes traced through an environment by each of Paths A, B and C

 66

4.2.3 Arrangement of simulated physical environment in testing

For the purposes of comprehensive testing, a variety of arrangements of

environmental objects were utilised, but all environment configurations shared a

common basis, as outlined:

• The world was a square of side 800m with immovable and non-

deformable walls. This was done to contain entities within a finite

environment, as would usually be the case in a DIA.

• The locally controlled entity was represented as a circle (two-dimensional

representation of a sphere) of radius 2.5m. The modelled motion in the

remote environment was also represented by a similar circle.

• The environmental objects were boxes or squares (two-dimensional

representation of a cube) of side 6m. For the experiments presented,

there were 180 such boxes in the 800m x 800m environment. Taking into

account the area of each box, approximately 1% of the environment was

occupied by physics-aware entities.

Beyond this, environmental entities (those not owned or controlled by a specific

peer and whose mechanics are simulated according to physical laws) were placed

in the environment in random positions. To ensure that these random

arrangements were identical in the local and remote environments at the

beginning of the simulation, the random number generator was seeded before

populating the local environment, and then reseeded with the same value for

populating the remote environment. Additionally it was possible for this seed to

be passed as an argument to the testbed at runtime to run multiple algorithms and

entity paths for a single arrangement.

For each of the examples considered in detail here, the same arrangement of

physics-aware entities will be used in order to ensure that different sets of data

remain comparable.

Having introduced and explained the data, environments and criteria for testing

of the algorithm, the next section examines the performance of the authority

 67

scheme alone in conjunction with a fixed threshold. This will serve the purpose

of verifying the ability of an authority scheme to control the inconsistency

present in the environment, as well as providing a baseline for later comparison

of the dead reckoning model with an adaptive threshold.

4.3 Authority Scheme with Fixed Threshold

4.3.1 Requirement for the Authority Scheme

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

Graph of Inconsistency Development Over Time

Time(s)

In
co

n
si

st
e

n
cy

 (
m

)

Loose Threshold (0.4m)

Medium Threshold (0.25m)

Tight Threshold (0.15m)

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Graph of Inconsistency Development Over Time

Time(s)

In
co

n
si

st
e

n
cy

 (
m

)

Loose Threshold (0.4m)

Medium Threshold (0.25m)

Tight Threshold (0.15m)

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800
Graph of Inconsistency Development Over Time

Time(s)

In
co

n
si

st
e

n
cy

 (
m

)

Loose Threshold (0.4m)

Medium Threshold (0.25m)

Tight Threshold (0.15m)

Bounce Motion Jolt Motion

Smooth Motion
Figure 4.3: Graphs illustrating that collisions occurred for each classification of motion

(bounce, jolt and smooth) and that inconsistency would be uncontrolled without an

authority scheme

In order to verify the effectiveness of the authority scheme, it is first necessary to

prove that the examples being examined have a need of the authority scheme, i.e.

that the examples involve the controlled entity colliding with physics-aware

entities. This meant that the first set of simulations were run for a variety of

fixed thresholds, but with only dead reckoning models of the controlled entity

 68

being supplied to the simulated remote peer. Figure 4.3 and Figure 4.4 show the

inconsistency graphs for the classifications of motion, and the recorded paths

respectively, and it can be observed that in all cases uncontrollable inconsistency

occurs in the absence of an authority scheme. The tendency of these plots to

show an increase over time reflects the fact that physics aware entities which

have been disturbed are not corrected and therefore errors tend to accumulate.

The data gathered from this set of simulations is not considered or examined in

detail, as it represents an unrealistic scenario, whereby entities would go

uncorrected, and remain inconsistent. Instead it is presented to illustrate the need

for, and scope for improvement by, an authority scheme in the examples to be

considered.

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

Graph of Inconsistency Development Over Time

Time(s)

In
co

n
si

st
e

n
cy

 (
m

)

Loose Threshold (0.8m)

Medium Threshold (0.5m)

Tight Threshold (0.3m)

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000
Graph of Inconsistency Development Over Time

Time(s)

In
co

n
si

st
e

n
cy

 (
m

)

Loose Threshold (0.8m)

Medium Threshold (0.5m)

Tight Threshold (0.3m)

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Graph of Inconsistency Development Over Time

Time(s)

In
co

n
si

st
e

n
cy

 (
m

)

Loose Threshold (0.8m)

Medium Threshold (0.5m)

Tight Threshold (0.3m)

Path A Path B

Path C
Figure 4.4: Graphs illustrating that collisions occurred for each path and that inconsistency

would be uncontrolled without an authority scheme

Having established that each example to be presented has need of the authority

scheme, the next section examines the performance of the authority scheme when

 69

applied to the examples for fixed threshold dead reckoning models, using a range

of thresholds.

4.3.2 Authority Scheme with Fixed Thresholds

In examining the performance of the authority scheme with fixed thresholds,

each of the metrics listed in Section 4.1 is considered in turn. The same

approach is taken when considering the variable threshold approach later in this

chapter.

Physics-aware Inconsistency

Figure 4.5, Figure 4.6, and Figure 4.7 show the variation of physics-aware

inconsistency over time for experiments with entities exhibiting bounce, smooth,

and jolt classified motions respectively. For each classification of motion, only

the first 20 seconds of the simulation is examined, as each simulation only had a

single collision, which occurred in this timeframe. Due to the periodic and

repeating nature of the motions, it is difficult to ensure multiple interactions, as

the path was generally empty after a single period completed.

In Figure 4.5 (bounce) it can be observed that the peak present in the

inconsistency of physics-aware entities alone is reduced as the threshold is

tightened. This peak is representative of the inconsistency introduced to the state

of a physics-aware body during a collision. The peak in Figure 4.6 (jolt) behaves

similarly, with the implementation of the 0.15m threshold producing the largest

reduction. Finally, Figure 4.7 (smooth) produces the same decrease in magnitude

of the peak as in Figure 4.5. This is because the jolt and smooth motions

followed the same path initially, and no collisions occurred in either simulation

after they diverged. Additionally, the total physics-aware inconsistency present

in the application reduces for tighter thresholds, as the error permitted within the

dead reckoning model of entity motion is reduced.

 70

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Total physics−aware inconsistency (threshold = 0.25m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 5 10 15 20
0

0.2

0.4

0.6

0.8
Physics−aware inconsistency without avatar (threshold = 0.25m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Total physics−aware inconsistency (threshold = 0.15m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 5 10 15 20
0

0.2

0.4

0.6

0.8
Physics−aware inconsistency without avatar (threshold = 0.15m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 5 10 15 20
0

0.5

1

1.5
Total physics−aware inconsistency (threshold = 0.4m)

In
co

ns
is

te
nc

y
(m

)

Time (s)
0 5 10 15 20

0

0.2

0.4

0.6

0.8
Physics−aware inconsistency without avatar (threshold = 0.4m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

Figure 4.5: Physics-aware inconsistency for entity exhibiting bounce motion with three

fixed threshold dead reckoning models, using thresholds of 0.4m, 0.25m and 0.15m

respectively. The left column includes contribution of avatar to overall physics-aware

inconsistency, while the right isolates the contributions of physics-aware entities.

0 5 10 15 20
0

0.2

0.4

0.6

0.8
Total physics−aware inconsistency (threshold = 0.25m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 5 10 15 20
0

0.1

0.2

0.3

0.4
Physics−aware inconsistency without avatar (threshold = 0.25m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 5 10 15 20
0

0.2

0.4

0.6

0.8
Total physics−aware inconsistency (threshold = 0.15m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 5 10 15 20
0

0.1

0.2

0.3

0.4
Physics−aware inconsistency without avatar (threshold = 0.15m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 5 10 15 20
0

0.2

0.4

0.6

0.8
Total physics−aware inconsistency (threshold = 0.4m)

In
co

ns
is

te
nc

y
(m

)

Time (s)
0 5 10 15 20

0

0.1

0.2

0.3

0.4
Physics−aware inconsistency without avatar (threshold = 0.4m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

Figure 4.6: Physics-aware inconsistency for entity exhibiting jolt motion with three fixed

threshold dead reckoning models, using thresholds of 0.4m, 0.25m and 0.15m respectively.

The left column includes contribution of avatar to overall physics-aware inconsistency,

while the right isolates the contributions of physics-aware entities.

 71

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Total physics−aware inconsistency (threshold = 0.25m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 5 10 15 20
0

0.2

0.4

0.6

0.8
Physics−aware inconsistency without avatar (threshold = 0.25m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Total physics−aware inconsistency (threshold = 0.15m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 5 10 15 20
0

0.2

0.4

0.6

0.8
Physics−aware inconsistency without avatar (threshold = 0.15m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 5 10 15 20
0

0.5

1

1.5
Total physics−aware inconsistency (threshold = 0.4m)

In
co

ns
is

te
nc

y
(m

)
Time (s)

0 5 10 15 20
0

0.2

0.4

0.6

0.8
Physics−aware inconsistency without avatar (threshold = 0.4m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

Figure 4.7: Physics-aware inconsistency for entity exhibiting smooth motion with three

fixed threshold dead reckoning models, using thresholds of 0.4m, 0.25m and 0.15m

respectively. The left column includes contribution of avatar to overall physics-aware

inconsistency, while the right isolates the contributions of physics-aware entities.

Figure 4.8, Figure 4.9 and Figure 4.10 show the variation of physics-aware

inconsistency over time for an entity following each of paths A, B and C

respectively, with fixed threshold dead reckoning and the authority scheme in

place. The contributions of physics-aware entities to this inconsistency are also

isolated, and results are presented for three different fixed thresholds: 0.8m, 0.5m

and 0.3m. This can be considered a graph of physics-consistency-cost over time

as per the definition of physics-consistency cost in this thesis.

It can be observed in Figure 4.9 and Figure 4.10 in each of the graphs

considering only the inconsistency present in physics-aware entities that the use

of a tighter threshold produces a reduction in the magnitude of the peaks of

physics-aware inconsistency. This is also exhibited in the graphs that include the

contribution of the controlled entity, or avatar, but it is less clear in many cases

being obscured by the variation in the avatar contribution.

Figure 4.8 is less clear, and indeed appears to present a less favourable result.

For example, in the case of a 0.5m threshold in this instance, an additional peak

 72

is visible in the inconsistency of physics-aware entities. This peak is still present

in the other two graphs, but to a much smaller extent. A more detailed

examination of the results suggested that the reason for the peak in this instance

was the timing of dead reckoning updates; by chance the 0.8m and 0.3m

threshold models both generated an update closer in time to the collision than the

0.5m threshold model, resulting in a lower level of inconsistency being present in

the entity’s state for the 0.8m and 0.3m models. Aside from this aberration,

however, there is an observable trend that utilising a tighter threshold for a dead

reckoning model produces less inconsistency in physics-aware entities at the time

of collisions.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8
Total physics−aware inconsistency (threshold = 0.5m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4
Physics−aware inconsistency without avatar (threshold = 0.5m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4
Total physics−aware inconsistency (threshold = 0.3m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4
Physics−aware inconsistency without avatar (threshold = 0.3m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8
Total physics−aware inconsistency (threshold = 0.8m)

In
co

ns
is

te
nc

y
(m

)

Time (s)
0 20 40 60 80 100

0

0.1

0.2

0.3

0.4
Physics−aware inconsistency without avatar (threshold = 0.8m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

Figure 4.8: Physics-aware inconsistency for entity following path A with three fixed

threshold dead reckoning models, using thresholds of 0.8m, 0.5m and 0.3m respectively.

The left column includes contribution of avatar to overall physics-aware inconsistency,

while the right isolates the contributions of physics-aware entities.

 73

0 20 40 60 80 100 120
0

0.5

1

1.5
Total physics−aware inconsistency (threshold = 0.5m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 20 40 60 80 100 120
0

0.5

1

1.5
Physics−aware inconsistency without avatar (threshold = 0.5m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 20 40 60 80 100 120
0

0.5

1

1.5
Total physics−aware inconsistency (threshold = 0.3m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8
Physics−aware inconsistency without avatar (threshold = 0.3m)

Time (s)
In

co
ns

is
te

nc
y

(m
)

0 20 40 60 80 100 120
0

0.5

1

1.5

2
Total physics−aware inconsistency (threshold = 0.8m)

In
co

ns
is

te
nc

y
(m

)

Time (s)
0 20 40 60 80 100 120

0

0.5

1

1.5
Physics−aware inconsistency without avatar (threshold = 0.8m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

Figure 4.9: Physics-aware inconsistency for entity following path B with three fixed

threshold dead reckoning models, using thresholds of 0.8m, 0.5m and 0.3m respectively.

The left column includes contribution of avatar to overall physics-aware inconsistency,

while the right isolates the contributions of physics-aware entities.

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2
Total physics−aware inconsistency (threshold = 0.5m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 50 100 150 200 250 300 350
0

0.5

1

1.5
Physics−aware inconsistency without avatar (threshold = 0.5m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2
Total physics−aware inconsistency (threshold = 0.3m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1
Physics−aware inconsistency without avatar (threshold = 0.3m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2
Total physics−aware inconsistency (threshold = 0.8m)

In
co

ns
is

te
nc

y
(m

)

Time (s)
0 50 100 150 200 250 300 350

0

0.5

1

1.5
Physics−aware inconsistency without avatar (threshold = 0.8m)

Time (s)

In
co

ns
is

te
nc

y
(m

)

Figure 4.10: Physics-aware inconsistency for entity following path C with three fixed

threshold dead reckoning models, using thresholds of 0.8m, 0.5m and 0.3m respectively.

The left column includes contribution of avatar to overall physics-aware inconsistency,

while the right isolates the contributions of physics-aware entities.

 74

Correction Magnitudes

Figure 4.11 shows the average magnitudes of corrections applied to physics-

aware entities in experiments involving entities exhibiting each of the

classifications of motion, i.e. bounce, jolt and smooth. It is visible in each of

these graphs that a tighter threshold in each case leads to smaller corrections to

the state of physics-aware entities being necessary. It is more pronounced in the

bounce and smooth examples than in the case of jolt motion, but this is likely

related to the proximity of the last update to the collision.

Figure 4.12 presents the same information for each of the recorded path

experiments. An aberration, however, is present in the case of path A, whereby

the medium threshold produces the largest average correction magnitude. This is

as a result of correcting the “extra” peak in Figure 4.8, and is therefore related to

poor timing of updates, rather than disproving the otherwise present trend.

Bounce Motion Jolt Motion Smooth Motion
0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 e
nv

iro
nm

en
ta

l c
or

re
ct

io
n

m
ag

ni
tu

de
 (

m
)

Average magnitude of correction applied to physics−aware entities

Loose Threshold (0.4m)
Medium Threshold (0.25m)
Tight Threshold (0.15m)

Figure 4.11: Average magnitude of corrections (in metres) applied to physics-aware entities

for three fixed threshold dead reckoning models for each of bounce, jolt, and smooth

motions.

 75

Path A Path B Path C
0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 e
nv

iro
nm

en
ta

l c
or

re
ct

io
n

m
ag

ni
tu

de
s

(m
)

Loose Threshold (0.8m)
Medium Threshold (0.5m)
Tight Threshold (0.3m)

Figure 4.12: Average magnitude of corrections (in metres) applied to physics-aware entities

for three fixed thresholds for each of paths A, B and C.

Update Rates

It can be observed from Figure 4.13 and Figure 4.14 that the improved

consistency and accuracy gained by utilising a tighter threshold to calculate the

dead reckoning model comes at a cost, both for the classifications of motion, and

the recorded paths. Specifically, the tighter the threshold employed, the higher

the update rate. This is because tighter error thresholds are violated or exceeded

more frequently, triggering the transmission of a state update each time. Jolt

motion tends to have a markedly higher average update rate for a given threshold

than either of the bounce or smooth classes of motion. This is because the

direction of jolt motion varies much more frequently than in either of the other

classes, meaning that the rate of divergence of the model from the true motion is

higher between updates. A similar characteristic arises periodically in the graph

for bounce motion, where the entity turns back on its path. In Figure 4.13 this

manifests as either the update rate remaining high for additional time (0.4m and

0.15m models), or rising to a higher rate (0.25m model).

 76

In the case of the recorded paths in Figure 4.14, it can be noted that the use of a

0.3m threshold (tightest threshold used in this experimentation) in the recorded

path data causes a particularly high average update rate. The shape of the update

rate curve for each model of a given path remains broadly similar, but as can be

observed from the change in y-axis limits, from 20 updates per second to 50

updates per second, the numerical values involved are significantly higher.

4.3.3 Conclusions

The results so far illustrate that in a simple two dimensional application with zero

latency and collisions between the controlled entity and a single physics-aware

entity, the authority scheme as proposed can control the amount of physics-aware

inconsistency present. Improved levels of peak physics-aware inconsistency can,

in general, be achieved by the use of a tighter error threshold in the calculation of

dead reckoning models. The use of tighter thresholds reduces both the

contributions of the controlled entity and physics-aware entities to the total

physics-aware inconsistency. The cost imposed by utilising tighter thresholds,

however, is an increased update rate, and hence usage of bandwidth.

 77

(b) Rates of update generation by dead-reckoned model of entity exhibiting jolt

motion, with authority scheme for thresholds of 0.4m, 0.25m and 0.15m

0 5 10 15 20 25 30
0

5

10

Update rate over time for loose threshold (0.4m)

U
p

da
te

 R
at

e
(u

p
da

te
s/

s)

Time (s)

0 5 10 15 20 25 30
0

5

10
Update rate over time for loose threshold (0.25m)

U
p

da
te

 R
at

e
(u

p
da

te
s/

s)

Time (s)

0 5 10 15 20 25 30
0

5

10
Update rate over time for loose threshold (0.15m)

U
p

da
te

 R
at

e
(u

p
da

te
s/

s)

Time (s)

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

55

Time (s)

U
p

d
a

te
 R

a
te

 (
u

p
d

a
te

s/
s)

Update rate over time for Path B using dead reckoning with collision updates

Loose Threshold (0.8m)

Medium Threshold (0.5m)

Tight Threshold(0.3m)

(a) Rates of update generation by dead-reckoned model of entity exhibiting

bounce motion, with authority scheme for thresholds of 0.4m, 0.25m and 0.15m

0 5 10 15 20 25 30
0

5

10

Update rate over time for loose threshold (0.4m)

U
p

da
te

 R
at

e
(u

p
da

te
s/

s)

Time (s)

0 5 10 15 20 25 30
0

5

10

Update rate over time for loose threshold (0.25m)

U
p

da
te

 R
at

e
(u

p
da

te
s/

s)

Time (s)

0 5 10 15 20 25 30
0

5

10

Update rate over time for loose threshold (0.15m)

U
p

da
te

 R
at

e
(u

p
da

te
s/

s)

Time (s)

0 5 10 15 20 25 30
0

5

10
Update rate over time for loose threshold (0.4m)

U
p

da
te

 R
at

e
(u

p
da

te
s/

s)

Time (s)

0 5 10 15 20 25 30
0

5

10
Update rate over time for loose threshold (0.25m)

U
p

da
te

 R
at

e
(u

p
da

te
s/

s)

Time (s)

0 5 10 15 20 25 30
0

5

10
Update rate over time for loose threshold (0.15m)

U
p

da
te

 R
at

e
(u

p
da

te
s/

s)

Time (s)

(c) Rates of update generation by dead-reckoned model of entity exhibiting

smooth motion, with authority scheme for thresholds of 0.4m, 0.25m and 0.15m

Figure 4.13: Graphs illustrating update rates in experiments with an entity exhibiting each

of bounce, jolt and smooth motions, and fixed threshold dead reckoning models of entity

motion with authority scheme for thresholds of 0.8m, 0.5m and 0.3m.

 78

0 10 20 30 40 50 60 70 80 90
0

10

20

Time (s)

Up
da

te
 R

at
e

(u
pd

at
es

/s
)

Update rate over time for loose threshold (0.8m)

0 10 20 30 40 50 60 70 80 90
0

10

20

Time (s)

Up
da

te
 R

at
e

(u
pd

at
es

/s
)

Update rate over time for medium threshold (0.5m)

0 10 20 30 40 50 60 70 80 90
0

50

Time (s)

Up
da

te
 R

at
e

(u
pd

at
es

/s
)

Update rate over time for tight threshold (0.3m)

0 20 40 60 80 100 120
0

10

20

Time (s)

Up
da

te
 R

at
e

(u
pd

at
es

/s
)

Update rate over time for loose threshold (0.8m)

0 20 40 60 80 100 120
0

10

20

Time (s)

Up
da

te
 R

at
e

(u
pd

at
es

/s
)

Update rate over time for medium threshold (0.5m)

0 20 40 60 80 100 120
0

50

Time (s)

Up
da

te
 R

at
e

(u
pd

at
es

/s
)

Update rate over time for tight threshold (0.3m)

0 50 100 150 200 250 300 350
0

10

20

Time (s)

Up
da

te
 R

at
e

(u
pd

at
es

/s
)

Update rate over time for loose threshold (0.8m)

0 50 100 150 200 250 300 350
0

10

20

Time (s)

Up
da

te
 R

at
e

(u
pd

at
es

/s
)

Update rate over time for medium threshold (0.5m)

0 50 100 150 200 250 300 350
0

50

Time (s)

Up
da

te
 R

at
e

(u
pd

at
es

/s
)

Update rate over time for tight threshold (0.3m)

(a) Graph showing rate of update generation for entity following sample path A using author-

ity scheme and dead reckoning for three thresholds, 0.8m, 0.5m and 0.3m respectively

(b) Graph showing rate of update generation for entity following sample path B using author-

ity scheme and dead reckoning for three thresholds, 0.8m, 0.5m and 0.3m respectively

(c) Graph showing rate of update generation for entity following sample path C using author-

ity scheme and dead reckoning for three thresholds, 0.8m, 0.5m and 0.3m respectively
Figure 4.14: Graphs illustrating update rates in experiments with an entity following each

of paths A, B and C, and fixed threshold dead reckoning models of entity motion with

authority scheme for thresholds of 0.8m, 0.5m and 0.3m.

 79

4.4 Adaptive Threshold Dead Reckoning

Thus far the function of the authority scheme with fixed threshold dead

reckoning models has been verified, and the broad effects of different threshold

values for calculation of dead reckoning models on the mechanism has also been

established. In this section, the adaptive threshold (in which the threshold is

adapted between two values in response to a forecast of collisions for both the

present entity state and the state of its dead reckoned model as described in detail

in Chapter 3) dead reckoning model is tested, and compared to each of the

previously tested scenarios. It should be noted at this point that due to the

similarities observed in the bounce and smooth classifications of motion (only

differing occasionally in their update rates), these will be considered as one for

the purposes of this section. Thus the classified motion will be presented as

bounce/smooth motion, and jolt motion.

4.4.1 Zero Latency

As in the previous set of tests, the adaptive threshold mechanism is tested first

for performance under “ideal” conditions, i.e. zero latency and, as a result, jitter.

A subsequent section will present an example of performance under such

conditions.

Physics-aware Inconsistency

Figure 4.15 shows the variation of physics-aware inconsistency over time for

entities following paths of classified motions as in Section 4.3.2. The only

exception to this is that, as already noted in the previous section, only bounce

motion is considered in relation to both the smooth and bounce classifications, as

both of them were so similar, and this is labelled “smooth/bounce”.

The noteworthy elements of this set of graphs are as follows:

• In the case of both classifications, the peak in the right hand graphs, i.e.

the inconsistency present in physics-aware entities only, the magnitude of

 80

the peak is the same as that of the tight (0.15m) threshold in the fixed

threshold authority scheme.

• The total physics-aware inconsistency, which is usually dominated by the

controlled entity’s inconsistency, is mostly the same as for the loose

(0.4m) threshold in a fixed threshold scheme. This is acceptable, and in

fact desired, as it means that the looser threshold, which would be

determined as sufficient for times when the controlled entity is not

interacting with a physics-aware entity, is in use most of time

• The threshold can be observed as tightening at the time of collision, when

the total physics-aware inconsistency drops briefly to a lower value,

before rising to the previous value after the threshold is relaxed again.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

In
co

ns
is

te
nc

y
(m

)

Time (s)

Total physics−aware inconsistency for adaptive threshold
(0.4m/0.15m) DR model of bounce/smooth motion

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Physics−aware inconsistency without avatar for adaptive
threshold (0.4m/0.15m) DR model of bounce/smooth motion

Time (s)

In
co

ns
is

te
nc

y
(m

)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Total physics−aware inconsistency for adaptive threshold
(0.4m/0.15m) DR model of jolt motion

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Physics−aware inconsistency without avatar for adaptive
threshold (0.4m/0.15m) DR model of jolt motion

Time (s)

In
co

ns
is

te
nc

y
(m

)

Figure 4.15: Variation of physics-aware inconsistency over time for entities exhibiting

smooth/bounce motion, and jolt motion respectively, with models utilising physics-aware

adaptive dead reckoning. Thresholds employed are 0.4m and 0.15m.

Figure 4.16 presents a similar set of experiments for the recorded paths A, B and

C, and similar observations can be made for each of these:

• In the right column of graphs for each motion, where the contribution to

inconsistency of the controlled entity has been removed, the profiles of

the peaks of inconsistency present in physics-aware entities match those

 81

of the tight threshold (0.3m) presented in Figure 4.8, Figure 4.9, and

Figure 4.10. Specifically, the largest peak for path B is approximately

0.7m, and for Path C it is approximately 1m.

• While the total physics-aware inconsistency (left column of graphs) for

each path is less regular than that presented in Figure 4.15, and indeed in

the fixed threshold scheme earlier (Figure 4.8, Figure 4.9, and Figure

4.10), it can be seen to fluctuate between 0.8m and 0.3m at different

times, aside from peaks when collisions arise.

• Similar to the graphs in Figure 4.15, the physics-aware inconsistency is

seen to fall as the threshold tightens due to predicted collisions. There

are, however, more visible instances where the threshold tightens, and no

collision actually takes place. This may lead to wasted bandwidth or

network traffic when considering the performance of the mechanism in

terms of its update rate.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Total physics-aware inconsistency for adaptive threshold
(0.8m/0.3m) DR model of Path A

In
co

n
si

st
e

n
cy

 (
m

)

Time (s)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Physics-aware inconsistency without avatar for adaptive
threshold (0.8m/0.3m) DR model of Path A

In
co

n
si

st
e

n
cy

 (
m

)

Time (s)

0 20 40 60 80 100 120
0

0.5

1

1.5

Total physics-aware inconsistency for adaptive threshold
(0.8m/0.3m) DR model of Path B

In
co

n
si

st
e

n
cy

 (
m

)

Time (s)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

Physics-aware inconsistency without avatar for adaptive
threshold (0.8m/0.3m) DR model of Path B

In
co

n
si

st
e

n
cy

 (
m

)

Time (s)

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

Total physics-aware inconsistency for adaptive threshold
(0.8m/0.3m) DR model of Path C

In
co

n
si

st
e

n
cy

 (
m

)

Time (s)

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Physics-aware inconsistency without avatar for adaptive
threshold (0.8m/0.3m) DR model of Path C

In
co

n
si

st
e

n
cy

 (
m

)

Time (s)

Figure 4.16: Variation of physics-aware inconsistency over time for an entity following

paths A, B and C respectively, with models utilising physics-aware adaptive dead

reckoning. Thresholds employed are 0.8m and 0.3m.

 82

Correction Magnitudes

Figure 4.17 shows the average magnitude of the corrections applied to physics-

aware entities in simulations for both bounce/smooth motion, and jolt motion.

For reference, the average magnitudes of the equivalent corrections for each of

the fixed threshold models presented earlier are also presented. In the case of

bounce/smooth motion, the adaptive threshold model actually results in a smaller

magnitude correction being applied than even the tight (0.15m) fixed threshold

model.

In contrast to this, however, the adaptive threshold model performs slightly

worse than the tight fixed threshold model for jolt motion. It still results in

smaller corrections to environmental entities than either the 0.4m or 0.25m

thresholds, however. The reason for the variation in this instance appeared to be

the difference in the time elapsed since the last dead reckoning update was

generated before the collision occurred. Previous examination of update rates for

the classified motions has shown relatively low update rates, meaning that

updates of the controlled entity’s model can be as long as 200ms, or 10

simulation steps, apart. This means that a collision could be anywhere between 1

and 10 simulation ticks after a dead reckoning update. Therefore the timing of

the final dead reckoning update before a collision relative to the collision itself

can influence this test. Coupling this with the low sample size (a single collision

and associated updates in each case) means that this influences the graph

significantly.

This influence is less observed in the case of the recorded paths, however, and

the average correction magnitudes applied to physics-aware entities by the

adaptive threshold mechanism are presented in Figure 4.18. In this graph, the

proposed mechanism results in much more similar magnitudes to the tight (0.3m)

threshold, with the corrections of both the adaptive threshold and tight threshold

being consistently similar. These experiments generated updates at a higher rate

than the classified motions, and as can be seen in Figure 4.14, the 0.3m threshold

generated updates at a rate only slightly lower than the simulation update rate of

 83

50Hz. As a result of this frequency of updates, the simulations are less sensitive

to the time at which the final model update before the collision is generated.

Bounce Motion Jolt Motion
0

0.1

0.2

0.3

0.4

0.5

0.6
A

ve
ra

ge
 e

nv
iro

nm
en

ta
l c

or
re

ct
io

n
m

ag
ni

tu
de

 (
m

)
Average magnitude of correction applied to physics−aware entities

Loose Threshold (0.4m)
Medium Threshold (0.25m)
Tight Threshold (0.15m)
Adaptive Threshold (0.4m/0.15m)

Figure 4.17: Average magnitude of corrections applied to physics-aware entities in

experiments for controlled entities exhibiting bounce/smooth motion, and jolt motion

respectively. Three fixed threshold models (0.4m, 0.25m and 0.15m), and an adaptive

threshold (0.4m/0.15m) model are compared.

 84

Path A Path B Path C
0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 e
nv

iro
nm

en
ta

l c
or

re
ct

io
n

m
ag

ni
tu

de
 (

m
)

Average magnitude of correction applied to physics−aware entities

Loose Threshold (0.8m)
Medium Threshold (0.5m)
Tight Threshold (0.3m)
Adaptive Threshold (0.8m/0.3m)

Figure 4.18: Average magnitude of corrections applied to physics-aware entities in

experiments for controlled entities following paths A, B and C respectively. Three fixed

threshold models (0.8m, 0.5m and 0.3m), and an adaptive threshold (0.8m/0.3m) model are

compared.

Update Rates

Figure 4.19 and Figure 4.20 show the variation of update rate over time for the

adaptive threshold dead reckoning models for classified and recorded motion

respectively. To consider Figure 4.19, if the update rate is compared to those

presented in Figure 4.13, it can be seen that for each of the classes of motion, the

rates remain at the value of the loose threshold model most of the time, with the

exception being the times when collisions occur, at which point they rise to

similar heights to the tight threshold. This is to be expected, as the tight

threshold should impose an upper bound on the update rate, with a similar lower

bound being imposed by the looser threshold.

 85

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7
Update rate over time for adaptive threshold (0.4m/0.15m) DR with entity exhibiting bounce or smooth motion

Time (s)

U
pd

at
e

R
at

e
(u

pd
at

es
/s

)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10
Update rate over time for adaptive threshold (0.4m/0.15m) DR with entity exhibiting jolt motion

Time (s)

U
pd

at
e

R
at

e
(u

pd
at

es
/s

)

Figure 4.19: Update rates for adaptive threshold (0.4m/0.15m) dead reckoning for entity

exhibiting bounce (or smooth) and jolt motions respectively.

In examining Figure 4.20, it is to be compared to Figure 4.14. Similar to the

above classified motion examples, it can be observed for each path that the tight

and loose threshold models already examined provide an upper and lower bound

respectively on the update rate of the adaptive threshold mechanism. In this set

of graphs, the update rate varies significantly more often than in the case of the

simulated classified motions, but this is also consistent with the graphs already

examined for the fixed threshold models.

Just as the inconsistencies in Figure 4.16 were observed to vary and the

thresholds tighten in the absence of collisions, so too do the update rates

presented here. This is due to the prediction mechanism perhaps predicting too

far ahead, and observing collisions that the entity motion will in fact avoid, but

tightening the threshold regardless. This suggests that the parameters of the

anticipation, or forecasting, mechanism need further adjustment. For example, a

mechanism that predicted ahead for a shorter time would not anticipate collisions

until closer to the time of occurrence, at which point they may have a greater

likelihood of occurring.

 86

0 10 20 30 40 50 60 70 80 90
0

20

40

60
Update rate over time for adaptive threshold (0.8m/0.3m) DR with entity following Path A

Time (s)

U
pd

at
e

R
at

e
(u

pd
at

es
/s

)

0 20 40 60 80 100 120
0

20

40

60
Update rate over time for adaptive threshold (0.8m/0.3m) DR with entity following Path B

U
pd

at
e

R
at

e
(u

pd
at

es
/s

)

Time (s)

0 50 100 150 200 250 300 350
0

20

40

60
Update rate over time for adaptive threshold (0.8m/0.3m) DR with entity following Path C

U
pd

at
e

R
at

e
(u

pd
at

es
/s

)

Time (s)

Figure 4.20: Update rates for adaptive threshold (0.8m/0.3m) dead reckoning for entity

exhibiting bounce (or smooth) and jolt motions respectively.

Having examined this mechanism in detail for the ideal conditions of zero

latency, in the next section, the same simulations as have been examined are

conducted for both constant latency, and latency with jitter, or variation.

4.4.2 Non-zero Latency and Jitter

The final test applied to this algorithm is to analyse how it responds to real-world

network influences such as latency and jitter, in contrast to previous experiments

which have featured “ideal” conditions, i.e. zero latency and jitter. In order to

achieve this, latency and jitter was applied to the simulated connection between

the local and remote environments in the testbed, and results recorded as in the

previous experiments. The three previously used sample paths will be examined

in detail for the purposes of this section, with classified motion omitted, as the

low numbers of interactions, and periodic nature of the motion limit the insight

that can be gained from them.

Due to the absence of any feedback mechanism between the local and remote

peers in the algorithm and testbed, inconsistency is the only quantity examined in

 87

this section. Update generation rates have a similar profile to those acquired

during the previous experiments, and so are omitted from this section.

4.4.3 Fixed Latency

Figure 4.21 shows graphs of remote inconsistency for paths A, B and C. For the

purposes of this experiment, a fixed latency of 100ms was incorporated into the

simulation. The graphs illustrate that inconsistency levels in the presence of

latency are higher than in previous sections, but this is to be expected, as the

delay in application of updates to the remote peer means that the remote view of

the dead reckoning model, and of the interactions “lags” the local view. In spite

of this increased inconsistency being present, it is still limited, or controlled

when taken in comparison to the absence of an authority scheme, as in Figure

4.4.

In the case of path A, inconsistency is reasonably constant, experiencing

reductions occasionally. Between 70 and 80 seconds the average inconsistency

seems to increase, likely due to a collision occurring at this point, and another

physics-aware entity set in motion means that the remote simulation experiences

a delayed view of this entity as well.

Similar increases in inconsistency are evident in the graphs for paths B and C at

the times of collisions, suggesting that each physics-aware entity set in motion

makes a measurable contribution to the overall inconsistency. At some instances

in all three simulations the inconsistency drops to zero, or near zero, associated

with times where the recorded motion indicates that the player stopped moving.

This allows the remote peer’s model to “catch up” with the local peer’s state.

 88

0 50 100 150 200 250 300 350
0

10

20

Time (s)

In
co

n
si

st
e

n
cy

(m
)

Variation of Inconsistency over time for adaptive threshold (Path C) with latency

0 20 40 60 80 100 120
0

10

20

Time (s)

In
co

n
si

st
e

n
cy

(m
)

Variation of Inconsistency over time for adaptive threshold (Path B) with latency

0 10 20 30 40 50 60 70 80 90
0

5

10

Time (s)

In
co

n
si

st
e

n
cy

(m
)

Variation of Inconsistency over time for adaptive threshold (Path A) with latency

Figure 4.21: Graphs of inconsistency variation over time with constant latency of 100ms

present between local and remote simulated peers for entities following paths A, B and C

respectively. An adaptive threshold (0.8m/0.3m) is employed for the dead reckoning model.

4.4.4 Latency with Jitter

Figure 4.22 illustrates the inconsistency observed for 3 simulations of entities

following paths A, B and C respectively, with average latency of 100ms, and

jitter of 10ms simulated between the local and remote peers. Similar to the

previous section dealing with constant latency simulation, we can observe that

the collision notification algorithm still provides a bound on the inconsistency

present in the view observed by a remote peer. Figure 4.22 presents a broadly

similar performance to that of Figure 4.21, suggesting that the algorithm is

reasonably robust to the presence of a moderate amount of jitter or variation in

latency, provided out of order packets are discarded appropriately.

 89

0 50 100 150 200 250 300 350
0

10

20

Time (s)

In
co

ns
ist

en
cy

(m
)

Variation of Inconsistency over time for Adaptive Threshold DR (Path C)

0 20 40 60 80 100 120
0

10

20

Time (s)

In
co

ns
ist

en
cy

(m
)

Variation of Inconsistency over time for Adaptive Threshold DR (Path B)

0 10 20 30 40 50 60 70 80 90
0

5

10

Time (s)
In

co
ns

ist
en

cy
(m

)

Variation of Inconsistency over time for Adaptive Threshold DR (Path A)

Figure 4.22: Graphs of inconsistency variation over time with latency of 100ms and jitter of

10ms present between local and remote simulated peers for entities following paths A, B

and C respectively. An adaptive threshold (0.8m/0.3m) is employed for the dead reckoning

model.

4.5 Summary

In this chapter, a series of tests have been outlined to evaluate the performance of

both a notification scheme, and a physics-aware, adaptive threshold dead

reckoning model. The results have indicated that adapting the dead reckoning

model to utilise a tighter threshold for the motion of controlled entities in

advance of collisions can lead to more accurate simulation of those collisions.

This was measured by considering the overall physics-aware inconsistency

present in the application, or the sum of the spatial inconsistencies in both the

local peer’s controlled entity and all physics-aware entities.

The inconsistency present in the states of physics-aware entities with the

controlled entity removed was also considered, so that the effects of the

mechanism on these entities alone could be determined. In this analysis, peaks in

the inconsistency present in these entities (as a result of collisions) were observed

to be reduced by the use of an adaptive threshold algorithm, similar to the

manner in which the same peaks were reduced by using a tighter fixed threshold.

 90

In order to verify the accuracy with which collisions and contacts between the

controlled entity and physics-aware entities were simulated, the magnitudes of

the state corrections induced at the remote peer by applying updates were

measured. It was found that generally the adaptive threshold model produced

similar performance in this metric to the tighter of the two thresholds employed.

However, if the update rate of the tighter threshold is sufficiently low, then the

relationship between the magnitudes of corrections applied to physics-aware

entities under the adaptive threshold model and the tight fixed threshold model

appeared to be less consistent. This was observed to be due to the error in the

model assuming a greater range of values between zero and the error threshold,

as it approached the threshold.

The improvements in physics-aware consistency granted by the adaptive

threshold model come at a cost, however. Depending on the choice of thresholds

in the application, the update rate associated with the tighter threshold can

approach the simulation frequency of the application. Thus if the bandwidth

available to an application is a concern, this must be taken into account at the

design phase, when selecting the thresholds to be used in the adaptive model.

Upper and lower bounds for the update rate of an adaptive threshold model can

be ascertained by considering the two thresholds in use, as the update rate

becomes a mix of these, and varies between the two.

Finally, the performance of the adaptive threshold model and authority scheme

under a realistic set of network conditions was evaluated, and it was observed

that while greater physics-aware inconsistency developed in the application than

under ideal conditions, a bound on this inconsistency was still imposed.

 91

Chapter 5

Conclusions and Future Work

In this thesis a state management mechanism for physics-rich, peer-to-peer DIAs

using dead reckoning modelling of controlled entities was proposed.

Additionally, the design and implementation of a testbed application for testing

the effectiveness of that algorithm was described. The development of this

mechanism was motivated by a lack of published physics-aware or “physics-

friendly” DIAs and state management algorithms, specifically for peer-to-peer

DIAs utilising dead reckoning to model remote entities.

5.1 Algorithm Evaluation

The state maintenance mechanism as outlined in Chapter 3 consisted of two main

elements, or components; an authority scheme for physics-aware entities, and a

physics-aware, adaptive threshold dead reckoning model. Each of these

components was intended to serve a different purpose. The goal of the authority

scheme was to ensure an overall bound on the level of inconsistency in physics-

aware entities by facilitating corrections to the state of such entities at remote

peers, while also providing a responsive simulation to a local peer. The adaptive

threshold dead reckoning model extended this idea in an attempt to minimise the

physics-consistency-cost of collisions or interactions. Physics-consistency-cost

was introduced in this thesis as a flexible concept to describe the loss of

consistency induced in such interactions. While the state management

mechanism considered it as a sum of spatial inconsistencies, it can also be

adapted to consider the complexity of, or number of bodies involved in, a

physics-aware inconsistency.

For the scenarios examined in Chapter 4, the authority scheme was successful in

ensuring that physics-aware inconsistency in the environment is controlled, and

resulted in a situation where, for zero latency, peaks in physics-aware

inconsistency were observed, but the inconsistency quickly settled to the

previously observed levels.

 92

Similarly, the adaptive threshold dead reckoning model was successful in

providing a more accurate model of the motion of the controlled entity prior to

and during collisions. In the model utilising two thresholds, a level of accuracy

similar to that of the tighter threshold could be achieved in the simulation of

collisions at remote peers.

5.2 Limitations

While the state synchronisation mechanism presented in this thesis has addressed

a number of the challenges associated with designing and implementing a

physics-aware DIA, both components of the mechanism have limitations and

consequently scope for improvement.

5.2.1 Authority Scheme

The authority scheme as detailed in Chapter 3 stipulates that it can only account

for collisions whereby the controlled entity collides directly with a physics-aware

entity. In the same chapter, it is explained that collisions-by-proxy, whereby the

controlled entity causes the physics-aware entity to touch a second physics-aware

entity at the same time as the controlled entity, can result in the second physics-

aware entity becoming inconsistent. This may not be sufficient in some

applications with high densities of physics-aware entities, and wider ranging

authority may be necessary. A suggested implementation for this, in the form of

recursive authority, is included in the same chapter.

The authority scheme is also dependent on state updates to physics-aware entities

being reliably transmitted. The underlying UDP protocol used for data

transmission in many DIAs does not guarantee delivery however, which means

that this must be manually handled within the application, or by networking

middleware. Retransmission of such updates (in the event of one being lost) can

introduce additional latency, and thus jitter to that update. As a consequence of

this, an update to the dead reckoning model of the controlled entity that was sent

after an update regarding a collision could in fact be received and applied before

 93

the physics-aware entity has been updated. Thus the movement of the physics-

aware entity could be observed to occur after the dead reckoned model of the

controlled entity has moved past the collision. By contrast, an ordered series of

unreliable state updates for the physics-aware entity could see the lost update

ignored, and a slightly later one applied before a reliable update would have been

retransmitted.

It was stipulated in Chapter 3 that the authority scheme as outlined depends on

the deterministic simulation of physics at all peers. While many physics engines

guarantee deterministic results and outputs, this is still a limitation of the scheme

should an application be unable to ensure determinism. Both this and the

previous issue of reliability could potentially be improved by further adapting the

authority scheme proposed by Fiedler (2010b), whereby peers maintain dead

reckoning models for physics-aware entities that they have authority over, and

transmit updates to this model until the entities come to rest.

5.2.2 Adaptive Threshold Dead Reckoning Model

In introducing the physics-aware, adaptive threshold dead reckoning model, it

was stated that a forecasting method would be used to determine when to adapt,

or tighten, the threshold in anticipation of a collision. An alternative approach

based on “entity population density” was also suggested, which may be more

suitable for some applications or scenarios. A forecasting method as proposed

depends on an entity having a certain amount of inertia or momentum, in that it

should not be able to deviate significantly from its predicted path by the end of

the prediction. This may not be applicable in all applications, such as first-

person shooters where users can change either the speed or direction of their

velocity very quickly and suddenly. Examining the density of physics-aware

entities nearby, or simply the proximity of the user to any physics-aware entity,

may be more reliable for such applications.

The model is also sensitive to choices in the size of error thresholds, and in the

number of steps to predict ahead when anticipating collisions. If an excessively

tight threshold is used in calculating the model at any point (i.e. less than or

 94

equal to the distance that a user can move in a single simulation tick), then the

rate at which updates are sent to remote peers may equal the simulation rate at

times. Similarly a collision forecasting mechanism predicting too far ahead in

time increases the risk of unnecessary tightening of the model threshold, as the

likelihood of the collisions actually occurring (i.e. the accuracy of the forecast)

decreases with each timestep.

5.3 Future Work

5.3.1 Cheat prevention

As already referred to in Section 2.2.1, peer-to-peer applications are susceptible

to cheating due to the lack of a single central authority. As the algorithm

presented in this thesis makes no special provisions to prevent such cheating, it is

equally vulnerable, and potentially more so, as allowing peers to update the state

of entities not owned by any peer grants them a limited form of authority. A

rudimentary mechanism to improve the robustness would be for peers to only

accept state updates to an environmental entity when their model of the

originating peer is within a certain distance of that entity (so as to ascertain some

measure of the genuine need for this authority transfer), but this could still be

abused.

Consequently, a preferred approach would be to integrate this algorithm with one

of the established anti-cheat systems for peer-to-peer DIAs, such as the Referee

Anti Cheat System (RACS) (Webb et al., 2007).

5.3.2 “N-tier” hierarchy of thresholds

In this thesis, an adaptive dead-reckoning algorithm was proposed that varied its

model between two thresholds. An observed issue with this is that the change in

update rate when a collision may occur can be significant if the thresholds

employed are sufficiently different in magnitude. This can create a significant

increase in the overall traffic generated by the application, which can lead to

scalability issues. Thus there is scope to develop a more bandwidth efficient

 95

algorithm. Specifically this work could extend the algorithm to select the

threshold to be used from a range of available values, based on a physics-

consistency-cost anticipation mechanism returning one of a range of values. This

would allow a host to provide a variety of models of differing fidelities, and only

employ the most bandwidth intensive one when the entity is very close to a

collision or discrepancy, and thus it is more likely to arise, necessitating the most

accurate model.

5.3.3 Reduced traffic prediction model

In the adaptive threshold model proposed, it was suggested that the error

threshold of the model be tightened in the event of either

1. A disagreement between collisions occurring for forecasts of true state

and remote state, or

2. A collision being forecast for the true state.

This potentially induces periods with a high rate of update generation even

though no collision may actually occur. An alternative implementation to be

considered in the future is to

1. Use a tighter threshold if a collision is forecast when considering true

state, regardless of the forecast for the state of the dead reckoning model.

2. Send a single update of controlled entity state if a forecast using dead

reckoning state predicts a collision, while the forecast for true motion

does not.

This modification would mean that periods of higher traffic are reserved for

instances where the controlled entity’s true state leads to a collision being

forecast, further optimising the use of bandwidth for physics-awareness.

5.4 Conclusions

The authority scheme and physics-aware dead reckoning model proposed in this

thesis are two components of a state management mechanism that may be useful

for physics aware distributed interactive peer-to-peer applications. An authority

 96

scheme of some form is necessary in any physics-aware, peer-to-peer DIA to

ensure that the physics-aware inconsistency present is bounded. The scheme as

proposed, or other similar schemes, can function with either a fixed threshold or

adaptive threshold dead reckoning model. Similarly, the physics-aware dead

reckoning model as proposed operates independent of the specific authority

scheme, to improve the accuracy of the dead reckoning model in the area around

collisions.

While the exact authority scheme and implementation of a physics-aware dead

reckoning model as outlined in this thesis are limited in their functionality and

effectiveness, the general concepts introduced are more flexible. Physics-

consistency-costs can consider a simple sum of spatial inconsistencies, but it can

also be generalised to consider the complexity of the collision. Similarly, the

criteria for varying the threshold of a physics-aware dead reckoning model are

flexible, and can be chosen to suit the specific application.

In summary, while this thesis demonstrated a specific authority scheme in use

alongside a forecast-based adaptive threshold dead reckoning model, these two

concepts, along with physics-aware inconsistency, are flexible components and

considerations in physics-aware DIAs, with scope for tailoring to an individual

application.

 97

REFERENCES

Ageia (2005a). Advanced Gaming Physics: Defining the New Reality in PC

Hardware http://www.ageia.com/pdf/wp_advanced_gaming_physics.pdf

Ageia (2005b). Physics, Gameplay and the Physics Processing Unit

http://www.datasheetarchive.com/indexdl/Datasheet-

029/DSA00514337.pdf

Aldridge, D. I Shot You First! Gameplay Networking in Halo Reach. Game

Developers Conference, February 28th - March 4th 2011 San Francisco,

CA.

Assiotis, M. & Tzanov, V. (2006). A distributed architecture for MMORPG.

Proceedings of 5th ACM SIGCOMM workshop on Network and system

support for games. Singapore: ACM.

Barrus, J. W., Waters, R. C. & Anderson, D. B. Locales and beacons: efficient

and precise support for large multi-user virtual environments. Virtual

Reality Annual International Symposium, 1996., Proceedings of the IEEE

1996, 30 Mar-3 Apr 1996 1996. 204-213, 268.

Bassiouni, M. A., Chiu, M.-H., Loper, M., Garnsey, M. & Williams, J. (1997).

Performance and reliability analysis of relevance filtering for scalable

distributed interactive simulation. ACM Trans. Model. Comput. Simul., 7,

293-331.

Bettner, P. & Terrano, M. (2001). 1500 Archers on a 28.8: Network

Programming in Age of Empires and Beyond [Online]. Gamasutra.

Available:

http://www.gamasutra.com/view/feature/3094/1500_archers_on_a_288_n

etwork_.php [Accessed September 26th 2011].

Bhola, S., Banavar, G. & Ahamad, M. (1998). Responsiveness and consistency

tradeoffs in interactive groupware. Proceedings of the 1998 ACM

 98

conference on Computer supported cooperative work. Seattle,

Washington, United States: ACM.

Bishop, B., Kelliher, T. P. & Irwin, M. J. (2000). SPARTA: Simulation of

Physics on a Real-Time Architecture. Proceedings of the 10th Great

Lakes symposium on VLSI. Chicago, Illinois, United States: ACM.

Blow, J. (1998). A Look at Latency in Networked Games. Game Developer, 5,

28-40.

Bouillot, N. & Gressier-Soudan, E. (2004). Consistency models for distributed

interactive multimedia applications. SIGOPS Oper. Syst. Rev., 38, 20-32.

Brown, E. & Cairns, P. (2004). A grounded investigation of game immersion.

Extended abstracts of the 2004 conference on Human factors and

computing systems - CHI '04, 1297.

Bullet (2008). Determinism [Online]. Available:

http://bulletphysics.org/mediawiki-1.5.8/index.php/Determinism

[Accessed 26/09 2011].

Cai, W., Lee, F. B. S. & Chen, L. (1999). An auto-adaptive dead reckoning

algorithm for distributed interactive simulation. Proceedings of the

thirteenth workshop on Parallel and distributed simulation. Atlanta,

Georgia, United States: IEEE Computer Society.

Cairns, P., Cox, A., Berthouze, N., Dhoparee, S. & Jennett, C. (2006).

Quantifying the experience of immersion in games. Proc Cognitive

Science of Games and Gameplay workshop at Cognitive Science 2006, 7.

Calvin, J., Dickens, A., Gaines, B., Metzger, P., Miller, D. & Owen, D. The

SIMNET virtual world architecture. Virtual Reality Annual International

Symposium, 1993., 1993 IEEE, 18-22 Sep 1993 1993. 450-455.

Capps, M., Mcgregor, D., Brutzman, D. & Zyda, M. (2000). NPSNET-V: A New

Beginning for Dynamically Extensible Virtual Environments. IEEE

Comput. Graph. Appl., 20, 12-15.

 99

Catto, E. (2007). Box2D User Manual [Online]. Available:

http://www.box2d.org/manual.html [Accessed September 23rd 2011].

Catto, E. (2011). Box2D FAQ [Online]. Available:

http://code.google.com/p/box2d/wiki/FAQ [Accessed September 26th

2011].

Cheng, K. & Cairns, P. A. (2005). Behaviour, realism and immersion in games.

CHI '05 extended abstracts on Human factors in computing systems.

Portland, OR, USA: ACM.

Cronin, E., Filstrup, B., Kurc, A. R. & Jamin, S. (2002). An efficient

synchronization mechanism for mirrored game architectures. Proceedings

of the 1st workshop on Network and system support for games.

Braunschweig, Germany: ACM.

Dahmann, J. S., Fujimoto, R. M. & Weatherly, R. M. (1997). The Department of

Defense High Level Architecture. Proceedings of the 29th conference on

Winter simulation. Atlanta, Georgia, United States: IEEE Computer

Society.

Davis, T. (2008). Dedicated Or Peer, That Is The Question [Online]. Available:

http://www.thebitbag.com/2008/09/03/dedicated-or-peer-that-is-the-

question/ [Accessed September 30th 2011].

Delaney, D. (2004). Latency Reduction in Distributed Interactive Applications

using Hybrid Strategy-Based Models. Ph.D. Dissertation, NUI,

Maynooth.

Delaney, D., Ward, T. & Mcloone, S. Reducing Update Packets in Distributed

Interactive Applications using a Hybrid Approach. In Proceedings of

16th International Conference on Parallel and Distributed Computing

Systems, 2003. 417-422.

Diot, C. & Gautier, L. (1999). A distributed architecture for multiplayer

interactive applications on the Internet. Network, IEEE, 13, 6-15.

 100

Durbach, C. & Fourneau, J. M. Performance evaluation of a dead reckoning

mechanism. Distributed Interactive Simulation and Real-Time

Applications, 1998. Proceedings. 2nd International Workshop on, 19-20

Jul 1998 1998. 23-29.

Enhua, W. & Youquan, L. Emerging technology about GPGPU. Circuits and

Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conference on, Nov.

30 2008-Dec. 3 2008 2008. 618-622.

Fiedler, G. (2006). Networked Physics [Online]. Available:

http://gafferongames.com/game-physics/networked-physics/ [Accessed

September 20th 2011].

Fiedler, G. (2008). Reliability and Flow Control [Online]. Available:

http://gafferongames.com/networking-for-game-programmers/reliability-

and-flow-control/ [Accessed September 26th 2011].

Fiedler, G. (2010a). Floating Point Determinism [Online]. Available:

http://gafferongames.com/networking-for-game-programmers/floating-

point-determinism/ [Accessed September 26th 2011].

Fiedler, G. Networking for Physics Programmers. Game Developers

Conference, March 9th - 13th 2010b San Francisco, CA.

Frécon, E. & Stenius, M. (1998). DIVE: A Scalable Network Architecture for

Distributed Virtual Environments. Distributed Systems Engeneering

Journal, 5, 91-100.

Frohnmayer, M. & Gift, T. (2000). The TRIBES Engine Networking Model.

Game Developers Conference. San Jose, CA.

Glimberg, S. & Engel, M. (2007). Comparison of ragdoll methods - Physics-

based animation.

Greenberg, S. & Marwood, D. (1994). Real time groupware as a distributed

system: concurrency control and its effect on the interface. Proceedings

 101

of the 1994 ACM conference on Computer supported cooperative work.

Chapel Hill, North Carolina, United States: ACM.

Greenhalgh, C., Purbrick, J. & Snowdon, D. (2000). Inside MASSIVE-3: flexible

support for data consistency and world structuring. Proceedings of the

third international conference on Collaborative virtual environments. San

Francisco, California, United States: ACM.

Hardt, J. & White, K. (1998). Distributed Interactive Simulation (DIS) [Online].

Available: http://www-

ece.engr.ucf.edu/~jza/classes/4781/DIS/project.html.

Hecker, C. (2000). Physics in computer games. Communications of the ACM, 43,

34-39.

IEEE (1998). IEEE Standard for Distributed Interactive Simulation - Application

Protocols. IEEE Std 1278.1a-1998.

Jefferson, D. (1990). Virtual time II: storage management in conservative and

optimistic systems. Proceedings of the ninth annual ACM symposium on

Principles of distributed computing. Quebec City, Quebec, Canada:

ACM.

Jennett, C., Cox, A., Cairns, P., Dhoparee, S., Epps, A., Tijs, T. & Walton, A.

(2008). Measuring and defining the experience of immersion in games.

International Journal of Human-Computer Studies, 66, 641-661.

Jones, D. (1998). What is a CAVE? [Online]. Available:

http://www.sv.vt.edu/future/vt-cave/whatis/ [Accessed September 21st

2011].

Kumparak, G. (2011). Creator of Angry Birds' Physics Engine Calls Out Rovio

For Not Giving Him Credit [Online]. Available:

http://techcrunch.com/2011/02/28/creator-of-angry-birds-physics-engine-

calls-out-rovio-for-not-giving-him-credit/ [Accessed September 26th

2011].

 102

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed

system. Commun. ACM, 21, 558-565.

Lee, B.-S., Cai, W., Turner, S. J. & Chen, L. (2000). Adaptive Dead Reckoning

Algorithms for Distributed Interactive Simulation. International Journal

of Simulation: Systems, Science & Technology, 1, 21-34.

Leigh, J., Johnson, A. & Defanti, T. (1997). CAVERN: A Distributed

Architecture for Supporting Scalable Persistence and Interoperability in

Collaborative Virtual Environments. Virtual Reality: Research,

Development and Applications, 2, 217-237.

Lui, J. C. S. (2001). Constructing communication subgraphs and deriving an

optimal synchronization interval for distributed virtual environment

systems. Knowledge and Data Engineering, IEEE Transactions on, 13,

778-792.

Macedonia, M. R., Zyda, M. J., Pratt, D. R., Barham, P. T. & Zeswitz, S. (1994).

NPSNET: A Network Software Architecture for Large Scale Virtual

Environment. Presence Teleoperators and Virtual Environments, 3, 265-

287.

Marshall, D. (2004). A Platform for Testing Consistency Maintenance Methods

in Highly Interactive Distributed Applications. M. Sc Thesis, NUI,

Maynooth.

Marshall, D. (2008). Improving Consistency in Distributed Interactive

Applications. PhD Thesis, NUI, Maynooth.

Marshall, D., Delaney, D., Mcloone, S. & Ward, T. (2004). Challenges in

modern Distributed Interactive Application design (NUIM-CS-TR-2004-

02). Technical Report Series 2004.

McCoy, A. (2007). Data-Driven Modelling Approaches to Network Traffic

Reduction in Distributed Interactive Applications. PhD Thesis, NUI

Maynooth.

 103

Millington, I. (2007). Game Physics Engine Development, San Francisco,

Morgan Kaufmann.

Mulley, G. & Bittarelli, M. (2007). Ragdoll Physics

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S07/final_project

s/mulley_bittarelli.pdf

Nourian, S., Shen, X. & Georganas, N. (2006). XPHEVE: An Extensible Physics

Engine for Virtual Environments, IEEE.

Nourian, S., Xiaojun, S. & Georganas, N. D. Role of extensible physics engine in

surgery simulations. Haptic Audio Visual Environments and their

Applications, 2005. IEEE International Workshop on, 1-2 Oct. 2005. 6

pp.

Page, E. H. & Smith, R. (1998). Introduction to military training simulation: a

guide for discrete event simulationists. Proceedings of the 30th

conference on Winter simulation. Washington, D.C., United States: IEEE

Computer Society Press.

Pullen, J. M. & Wood, D. C. (1995). Networking technology and DIS.

Proceedings of the IEEE, 83, 1156-1167.

Qvist, I. (2009). Simulators And Determinism [Online]. Available:

http://ianqvist.blogspot.com/2009/08/simulators-and-determinism.html

[Accessed September 25th 2011].

Roberts, D. (2004). Communication Infrastructures for Inhabited Information

Spaces

Inhabited Information Spaces. In: SNOWDON, D., CHURCHILL, E. &

FRÉCON, E. (eds.). Springer London.

Roehle, B. (1997). Channeling the data flood. Spectrum, IEEE, 34, 32-38.

Singhal, S. & Zyda, M. (1999). Networked virtual environments: design and

implementation, ACM Press/Addison-Wesley Publishing Co.

 104

Smed, J., Kaukoranta, T. & Hakonen, H. (2002). Aspects of networking in

multiplayer computer games. The Electronic Library, 20, 87-97.

Sun, C., Jia, X., Zhang, Y., Yang, Y. & Chen, D. (1998). Achieving

convergence, causality preservation, and intention preservation in real-

time cooperative editing systems. ACM Trans. Comput.-Hum. Interact.,

5, 63-108.

Swing, E. (2000). Adding immersion to collaborative tools. Proceedings of the

fifth symposium on Virtual reality modeling language (Web3D-VRML).

Monterey, California, United States: ACM.

Tanenbaum, A. S. (1996). Computer Networks, Prentice Hall.

Vaghi, I., Greenhalgh, C. & Benford, S. (1999). Coping with inconsistency due

to network delays in collaborative virtual environments. Proceedings of

the ACM symposium on Virtual reality software and technology. London,

United Kingdom: ACM.

Valve (2005a). Networking Entities [Online]. Valve Software. Available:

http://developer.valvesoftware.com/wiki/Networking_Entities [Accessed

September 23rd 2011].

Valve (2005b). Source Engine Features [Online]. Valve Software. Available:

http://developer.valvesoftware.com/wiki/Source_Engine_Features

[Accessed September 23rd 2011].

Valve (2005c). Source Multiplayer Networking [Online]. Valve Software.

Available:

http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networkin

g [Accessed September 23rd 2011].

Waters, R., Anderson, D., Barrus, J., Brogan, D., Casey, M., Mckeown, S., Nitta,

T., Sterns, I. & Yerazunis, W. (1996). Diamond Park and Spline: A

Social Virtual Reality System with 3D Animation, Spoken Interaction, and

Runtime Modifiability [Online].

 105

Watts, S. (2010). Gears of War 3 Multiplayer Beta, Dedicated Servers Coming in

2011 [Online]. Available: http://www.1up.com/news/gears-3-multiplayer-

beta-dedicated-servers [Accessed September 30th 2011].

Webb, S. D., Soh, S. & Lau, W. (2007). RACS: A Referee Anti-Cheat Scheme

for P2P Gaming. 17th International workshop on Network and Operating

Systems Support for Digital Audio & Video (NOSSDAV'07). Urbana-

Champaign, IL, USA Association for Computing Machinery (ACM).

Yan, J. & Randell, B. (2005). A systematic classification of cheating in online

games. Proceedings of 4th ACM SIGCOMM workshop on Network and

system support for games. Hawthorne, NY: ACM.

Yardi, S., Bishop, B. & Kelliher, T. (2006). HELLAS: a specialized architecture

for interactive deformable object modeling. Proceedings of the 44th

annual Southeast regional conference. Melbourne, Florida: ACM.

Yeh, T. Y., Faloutsos, P., Patel, S. J. & Reinman, G. (2007). ParallAX: an

architecture for real-time physics. SIGARCH Comput. Archit. News, 35,

232-243.

Zhou, S., Cai, W., Lee, B.-S. & Turner, S. J. (2004). Time-space consistency in

large-scale distributed virtual environments. ACM Trans. Model. Comput.

Simul., 14, 31-47.

