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Abstract: This thesis contains two papers. In the first paper, we provide a general 

overview of the most popular term structure of interest rate models. In order to 

understand different features of each model, we classify by means of general 

characteristics, from single-factor to multi-factor and forward rate based models. Each 

of these existing term structure models has its own advantages and disadvantages. We 

also highlight the recently advocated models in the literature: the Nelson-Siegel model, 

the affine and the quadratic arbitrage-free model. In the second paper we extend the 

affine arbitrage-free Nelson-Siegel model to a two-currency (3+1) factor structure 

model that incorporates the properties of interest rate term structure and foreign 

exchange rates simultaneously within one arbitrage-free framework by decomposing 

the pricing kernel into two independent portions: one portion contains three factors that 

model the affine Nelson-Siegel term structure of interest rate, the other portion contains 

one factor that captures the effect of the currency movement, which is independent of 

the term structure. 
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Abstract 

Term structure modeling has enjoyed rapid growth during the last two decades. Given a 

large number of existing term structure models and a vast array of issues in the field, we 

attempt to provide a general overview of the most popular term structure of interest rate 

models. In order to understand different features of each model we classify by means of 

general characteristics from single-factor to multi-factor and forward rate based models. 

Each of these existing term structure models has its own advantages and disadvantages. 

We also highlight the recent advocated models in the literature: the Nelson-Siegel 

model, the affine and the quadratic arbitrage-free model.  
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Introduction 

The term structure of interest rates, also known as the yield curve, plays a central role 

both theoretically and practically in the economy. It gives the relationship between the 

yield on an investment and the term maturity of the investment. Yield curve modeling 

literature has at the origin the need of explaining interest rate behavior. Both short term 

and long term interest rates have an important role in financial markets, for different 

reasons and purposes. They are used for the price of borrowing or lending money; they 

are needed to price bonds and to price derivatives on bonds and other fixed income 

instruments. Thus understanding and modeling the term structure of interest rates has 

been one of the most challenging topics of financial research. 

The characteristic features of interest rate models can be generally categorized into 

eight types: continuous or discrete models, single or multi-factor models, fitted (to the 

initial term structure) or non-fitted models and arbitrage-free or equilibrium model. 

In order to keep the scope manageable, the aim of this paper is to provide an analysis 

of the most popular term structure models of interest rates that are applicable to the 

default-free zero-coupon bonds. We propose these models in a common framework and 

explain their merits and drawbacks from an overview perspective.  

  This paper is organized as follows: section 1 introduces the definitions and notations 

will be used throughout the paper; section 2 reviews simple factor interest rate models 

in the literature with both time-invariant and time varying parameters; section 3 

considers the extension of the single factor model to multi-factor model. Section 4 

reviews the forward rate based Heath, Jarrow and Morton (1992) model which models 

the entire term structure and provides a richer volatility pattern for predicting and 

controlling future volatilities. We highlight the most recent three advocated term 

structure models for bond yields in section 5 and conclude in section 6. 

 

1. Definitions and notations 

 The models will generally be set up in a filtered probability space ( , ,P) tF , where 

Ω is the sample space, tF is the sigma-field generated by a standard Brownian motion 
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W(t). P indicates the historical (physical) probability measure on the sample space Ω. 

We denote ( , )P t T as the price at time t of a default-free zero-coupon bond with 

principal one dollar maturing at time T. It follows that ( , ) 1P T T . At time t, the yield to 

maturity ( , )y t T of the zero-coupon bond is the continuously compounded rate of return 

that causes the bond price to rise to one at time T. Yields are solved 

by
ln ( , )

( , ) -
-


P t T

y t T
T t

.  

For a fixed time t, the shape of the yield ( , )y t T as T increases determines the term 

structure of interest rates. Since we only work with the zero-coupon bonds, the yield 

curve is the same as the term structure of interest rates. 

The instantaneous risk-free rate also called short rate/short term rate is denoted as 

( )r t and ( ) lim ( , )



t T

r t y t T .  

Define ),,( 21 TTtf as the forward rate at time t for the period between time 1T  and 2T . 

The relationship between forward rate and zero-coupon bond is given by: 

                                          1 2
1 2

2 1

ln ( , ) ln ( , )
( , , )






P t T P t T
f t T T

T T
                                 (1) 

The instantaneous forward rate is the rate that one contracts at time t for a loan 

starting at time T for an instantaneous period of time ( , ) ( , , )f t T f t T T . 

  The bond price can be defined in terms of forward rate as  

 
( , )

( , )


T

t
f t s du

P t T e
                                              

(2) 

The relationship between short rate and forward rate is given by ( ) ( , )r t f t t , so the 

short rate is a specific forward rate. 

 

2. Single factor models 

Factor models assume that the term structure of interest rates is driven by a set of 
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state variables or factors. A principle component analysis
1
 can be used to decompose 

the motion of the interest rate term structure into three independent factors: shift, twist 

and butterfly of the term structure (Wilson, 1994). As the first principle component 

(shift) explains a large fraction of the yield curve movement, it is tempting to reduce the 

problem to a single factor model.  

Single factor models assume that all information about the term structure at any point 

in time can be summarized by one single factor – the short rate ( )r t . As a consequence, 

only the short rate and time to maturity will affect the price of the zero-coupon bonds. 

There are two basic methodologies for pricing interest rate contingent claims in a single 

factor framework, the partial differential equation and the martingale approach. The 

former creates an instantaneous risk-free portfolio to obtain a second order partial 

differential equation that interest rate contingent claim must satisfy. The latter proposed 

by Harrison and Kreps (1979) and extended by Heath, Jarrow and Morton (1992) uses 

the result that in a complete market, in the absence of arbitrage, there exists an 

equivalent martingale measure under which asset prices can be computed as an 

expectation. These two approaches are equivalent by the theorem of Feynman-Kac.  

There are three particular versions of the single factor models: the affine class 

models, the Gaussian models and the lognormal models.  

The affine models named by Duffie and Kan (1996) have the following exponential 

affine form of the zero-coupon bond price 

                                      
 ( , ) exp ( , ) ( ) ( , ) P t T a t T r t b t T

                                    
(3) 

where ( , )a t T  and ( , )b t T  are deterministic functions that can be calculated via Riccati 

ordinary differential equation (obtained from the partial differential equation of the 

bond pricing). The term structure of interest rates is an affine function of the short rate: 

    

( , ) ( , )
( , ) ( )

- -


 

a t T b t T
y t T r t

T t T t
                                          (4) 

                                                 
1
 A principal component analysis is a statistical technique that identifies the best factors from historical yields, where the term best 

is in the sense of the two conditions: 1) the factors ought to explain a very large proportion of the variation of the yields of bonds at 
various horizons; 2) the factors should be independent of each other. 
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If under the risk-neutral probability, the mean and volatility are affine in ( )r t , then we 

say that the model has an affine version. 

A short term interest rate model is said to be Gaussian if it can be written as the 

following linear stochastic differential equation (SDE): 

  
( ) ( , ( )) ( , ( )) ( )  r rdr t t r t dt t r t dW t

                               
 (5) 

where r
and  r

are the drift and the volatility/standard deviation of the short rate, 

respectively. Gaussian model is a particular class of affine models, and ( )r t is normally 

distributed.  

A short term interest rate model is said to be lognormal if and only if ln ( )r t is 

Gaussian. The advantage of lognormal models over Gaussian is that by definition, 

lognormal rate models cannot generate negative interest rates. However, they generally 

lack analytical tractability.  

So far we have discussed the versions of the single factor models, now we turn to 

some examples of the single factor models in the literature. 

 

2.1 One-factor time invariant/ equilibrium models 

2.1.1 Merton (1973) was the first to propose a general stochastic process as a model for 

the short rate. Under the historical probability measure P, the short rate has the 

following SDE:                 

 ( ) ( )  dr t dt dW t
                                           

 (6) 

where  and  are constant. 

The short rate is solved by ( ) ( ) ( )    
t

s
r t r s t dW s for any t s .  

Given the set of information at time s, the short term rate ( )r t is normally distributed 

with mean ( ) ( ) r s t s and variance
2( )t s . The unboundedness of the first and 

second moment of the distribution allows the rate to become negative or infinite. 
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2.1.2 Vasicek (1977) proposes to model the short term interest rate as a Gaussian 

Ornstein-Uhlenbeck (mean-reverting) process: 

                                                 
 ( ) ( ) ( )    dr t r t dt dW t                                     (7) 

where ,  and are constants. This model incorporates mean reversion. The short rate 

is pulled to a level  at the mean reversion rate . 

The explicit solution to the SDE in (7) gives us the short term 

rate   ( ) ( )( ) ( ) ( )          
t

t s t s

s
r t r s e e dW u  for any t s .  

Given the set of information at time s, the short term rate ( )r t is normally distributed 

with mean   ( )( )      t sr s e and variance  
2

2 ( )1
2





  t se . Again, the short term 

interest rate can become negative. 

 

2.1.3 Cox, Ingersoll and Ross (1985) have developed an alternative model where rates 

are always non-negative. The short term rate satisfies the following SDE: 

                                     
 ( ) ( ) ( ) ( )    dr t r t dt r t dW t                                     (8) 

where ,  and are constants. This model has the same mean-reverting drift as the 

Vasicek model, but the variance of the change in the short rate in a short period of time 

is proportional to the short rate r rather than constant. This means that, as the short term 

interest rate increases, its standard deviation increases. 

The positive short term rate is obtained by solving the SDE in (8), 

  ( ) ( ) ( )( ) ( ) ( ) ( )            
t

t s t s u s

s
r t r s e e e r u dW u  for any t s .  

Given the set of information at time s, the short term rate ( )r t is distributed as a 

non-central chi-squared (Feller, 1951). 

The one-factor time-invariant/equilibrium models we have reviewed above have the 

disadvantage that they do not automatically fit today’s term structure of interest rates. 

The drift of the short rate as shown above is not usually a function of time. This leads us 

to the one-factor time-varying/arbitrage-free models. The essential difference between 
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these two types of models is that in a time-varying/arbitrage-free model, the drift is, in 

general, dependent on time. This is because the shape of the initial zero curve governs 

the average path taken by the short rate in the future in an arbitrage-free model. In turns 

out that some equilibrium models can be converted to arbitrage-free models by 

including a function of time in the drift of the short rate.  

 

2.2 One-factor time-varying/arbitrage-free models 

2.2.1 Ho and Lee proposed the first arbitrage-free model of the term structure in a 

paper in 1986. They presented the model in the form of binomial tree of bond prices 

with two parameters: the short rate standard deviation and the market price of risk of the 

short rate. It has been shown by Jamshidian (1991a) that the continuous-time limit of 

the short rate is driven under the risk-neutral probability by the SDE: 

                                                ( ) ( ) ( )  dr t t dt dW t                                                   (9) 

where the volatility term  is a constant and the drift term ( ) t is a function of time 

chosen to ensure the model fits the initial term structure.  

 

2.2.2 Hull and White one-factor model (1990) explored an extension of the 

Vasicek(1977) model that provide an exact fit to the initial term structure. 

        

( )
( ) ( ) ( )


 



 
   

 

t
dr t r t dt dW t                                 (10) 

where  and  are constants. It can be characterized as the Ho-Lee model with mean 

reversion at rate   and the Vasicek model with a time-dependent reversion level. At 

time t, the short rate reverts to 
( )



t
at rate . 

 

2.2.3 Hull-White (1993) form a general specification of the short rate             

 ( ) ( ) ( ) ( ) ( )    dr t t r t dt r t dW t                                  (11) 

where  and  are constants, ( ) t is time-varying. There are a few existing models that 

can be extended in this framework. These models are such as the extended Vasicek 
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model with 0  , the extended Cox, Ingersoll and Ross model with 0.5  and the 

extended Brennan and Schwartz (1977) and Courtadon (1982) model with 1  . 

The models we have seen so far (except Cox, Ingersoll and Ross model which has a 

square root process) are modeled as Gaussian processes; the popularity of using the 

Gaussian process is due to its analytical tractability. However, this process implies that 

there is a positive probability of negative rates. This leads to our next subsection of the 

one-factor model with lognormal rates to avoid the negative rates. 

 

2.3 One-factor time-varying lognormal models 

2.3.1 Black, Derman and Toy (1987) propose a one factor binomial model whose 

continuous time version has the form of  

  
 ln ( ) ( ) ln ( ) ( )     rd r t t r t dt dW t                                  (12) 

It assumes a lognormal process for the short rate, which precludes negative value. 

They extended the model to allow for time dependent volatility in the 1990 paper. 

 
 ln ( ) ( ) ln ( ) ( ) ( )     rd r t t r t dt t dW t                          (13) 

The model does not have as much analytical tractability as the Gaussian process model. 

It is not possible to produce formulas for valuing bonds in terms of the short rate using 

the model. 

 

2.3.2 Black and Karasinski (1991) propose an extension of the Black, Derman and 

Toy (1987) model with a time-varying mean reversion rate ( ) t . The model has the 

form of  

                          ln ( ) ( ) ( ) ln ( ) ( ) ( )     rd r t t t r t dt t dW t                      (14)
 

Again, the model lacks analytical properties. 

Modeling lognormally distributed rates is the simplest way to avoid negative rates, 

but no closed form solution to the zero-coupon bonds can be found for these models. 

To close this subsection, we list some other one-factor models that are not as popular 

as the ones we have discussed. These models are Dothan (1978), Brennan and Schwartz 
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(1977, 1980), Courtadon (1982), Rendleman and Bartter (1980) and Cox, Ingersoll and 

Ross (1980).  

 

3. Multi-factor models 

So far we have reviewed the single factor models where the short rate is the only 

explanatory variable. Most of these models are characterized by their analytical 

tractability. However, these models often fail to match observed prices. For an 

economic point of view, it seems unreasonable to assume that the entire term structure 

is governed only by the short rate. So using more than one explanatory factor to model 

the interest rate is quite useful. Most multi-factor models are in fact based on two 

factors. These models are such as Cox, Ingersoll and Ross (1985b), Longstaff and 

Schwartz (1991), Fong and Vasicek (1991), Chen (1994) and Duffie and Kan (1996). In 

this subsection, we exam some popular multi-factor models in more detail. 

 

3.1 Cox, Ingersoll and Ross (1985b) presents a model in which the term structure of 

interest rates is determined by two factors: the real short rate ( )q t and the expected 

instantaneous inflation rate ( ) t . Both factors are assumed to follow independent 

diffusion process: 

                             
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )  

 

  

 

 

q q qdq t t dt t dW t

d t t dt t dW t
                               (15) 

where qW and qW are two independent Brownian motions. They obtain a complicated, 

but analytical solution for the zero-coupon bond price. Similar framework is proposed 

by Brennan and Schwartz (1982), in which the term structure of interest rates depends 

on both the short term rate ( )r t and the long term rate ( )l t . 

 

3.2 Longstaff and Schwartz (1992) developed an equilibrium model of the economy 

and derived from there a two-factor term structure model. The two factors are the short 

term rate ( )r t  and the variance of changes in the short term rate ( )v t . 
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In their framework, the representative investor has a logarithmic utility and has the 

choice between investing and consuming the only good available in the economy, 

whose price ( )P t  follows the SDE:  

           
  1

( )
( ) ( ) ( )

( )
    

P t
d X t Y t dt Y dW t

P t
                   (16) 

where ( )X t  and ( )Y t are two specific economic factors. ( )X t is the expected return 

part that is unrelated to the Brownian motion 
1( )W t ; ( )Y t is the factor correlated 

with ( )dP t . The dynamics of the two factors are given by 

 

 

2

3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

  

  

dX t a bX t dt c X t dW t

dY t d eY t dt f Y t dW t
                       

 (17) 

where 
2 ( )W t and

3( )W t are uncorrelated Brownian motions and , , , , , 0a b c d e f . 

Longstaff and Schwartz do not provide any intuitive interpretation for these two 

factors, but they show that ( )X t  and ( )Y t  can be related to observable quantities, as the 

equilibrium instantaneous interest rate ( )r t and the variance of its changes ( )v t are 

given by a weighted sum of these two factors.  

    

 

 

2 2 2

2
2 4 2 4

( ) ( ) ( )

( ) ( ) ( )

  

  

  

  

r t c X t f Y t

v t c X t f Y t
                               

 (18) 

so that ( )r t and ( )v t are non-negative for all feasible values of state variables. 

This model can be seen as an affine two factor model, in which one is the short rate 

and the other one is its volatility. 

In a series of papers, Fong and Vasicek (1991,1992a,1992b) have derived a 

two-factor model using the same factors as this model. In their framework, the short 

rate and its variance evolve under the risk-neutral probability  

       

 

 

1

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )



 

  

  

dr t r r t dt v t dW t

dv t v v t dt v t dW t
                             (19) 
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where r  is the long term mean of the short rate and ( )v t is its instantaneous volatility, 

and v  is the long term mean of the volatility. The two Brownian motions are correlated. 

This model does not preclude the positive probability of negative short term rates. 

 

3.3 Chen (1996) proposed a three factor model of the term structure. In his model, the 

short rate dynamics depends on the current short rate, the stochastic mean of the short 

rate, and the stochastic volatility of the short rate.  

           

 

 

 

2

1

3

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

  

    

     

  

  

  

dr t t r t dt t r t dW t

d v t dt dW t

d t t dt dW t

               (20) 

 

3.4 Duffie and Kan (1996) introduced an N-factor affine term structure model which is 

obtained under the assumptions that the instantaneous short rate ( )r t  is an affine 

function of a vector of unobserved state variables X( )t . 

      
0 0

1

( ) X ( ) 'X( )   


   
n

i i X

i

r t t t                             (21) 

The state variable vector follows an affine diffusion
2
 : 

      
 X( ) X( ) ( ) ( )   d t t dt S t dW t                           (22) 

where W(t) is an N-dimensional independent standard Brownian motion under the 

risk-neutral probability,  and   are N*N matrices, which may be non-diagonal and 

asymmetric, and S(t) is a diagonal matrix with the thi diagonal element given by 

                                              ( ) X( )  i iii
S t t                                                       (23) 

Both the drifts in equation (22) and the conditional variances in equation (23) of the 

state variables are affine in X(t).  

                                                 
2
 Gaussian process and square-root process are the best known examples of affine diffusions. Gaussian process has a constant 

volatility, while the square-root processes introduce conditional heteroskedasticity by allowing the volatility function to depend on 

the state variables. 
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4. The Heath-Jarrow-Morton (1992) Model 

Even with a multi-factor model, the term structure of interest rates has a rather 

limited number of degrees of freedom. An alternative approach to single and 

multi-factor interest rate modeling is to specify the entire term structure/yield curve of 

interest rates. Rather than using a finite number of state variables, some authors use one 

state variable of infinite dimension, namely, the term structure itself. The first 

contribution to this approach was made by the Ho and Lee (1986) binomial model in a 

discrete time. It was the first to model movements in the entire term structure. Heath, 

Jarrow and Morton (1992) have significantly extended the Ho and Lee (1986) model by 

considering forward rates rather than bond prices as their building block; it also 

extended it from one factor model to a multi-factor model.  

Heath, Jarrow and Morton framework firstly developed a class of models that are 

derived by directly modeling the dynamics of instantaneous forward rates. It models the 

entire term structure as a state variable, providing conditions in a general framework 

that incorporates all the principles of arbitrage-free pricing and zero-coupon bond 

dynamics. The Heath, Jarrow and Morton model shows that there is a link between the 

drift and standard deviation of an instantaneous forward rate. The drift of the forward 

rates under the risk-neutral probability is entirely determined by its volatility, which is 

the major contribution of this model. 

        1 1

( , ) ( , ) ( , ) ( , ) ( )    
 

  
n nT

T T
t

i i

df t T t T t d t T dW t                  (24) 

Since the short term rate is a specific forward rate, the short rate in the Heath, Jarrow 

and Morton model can be written in an integral form as 

       0 0 0
( ) (0, ) ( , ) ( , ) ( , ) ( )      

t t t

f f fdr t f t s t s u duds s t dW s      (25) 

Note that the difficulty of estimating the Heath, Jarrow and Morton model will arise 

because of the non-Markovin term in equation (25), which depends on the history of the 

process from time 0 to time t.  
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5. Final remarks 

In this section, we highlight the most recent popular term structure models of bond 

yields advocated in the financial literature.  

The three main classes of term structure models are the affine term structure model; 

the Nelson-Siegel model and the quadratic term structure models: the affine term 

structure model, originally introduced by Duffie and Kan (1996), classified by Dai and 

Singleton 
3
(2000) and extended to the essentially affine specification by Duffee (2002); 

the dynamic Nelson-Siegel model introduced by Diebold and Li (2006), which build on 

Nelson and Siegel (1987); and the class of quadratic term structure models classified by 

Ahn et al.(2002) and Leippold and Wu (2002). 

The Nelson- Siegel model provides an intuitive description of the yield curve at each 

point in time. The dynamic Nelson-Siegel model (Diebold and Li, 2006) is easy to 

estimate and fits yield curve data well in-sample and produces good out-of sample 

forecasts. In contrast to arbitrage-free term structure models, this model class does not 

preclude arbitrage opportunities. However, an extension of the Nelson-Siegel model 

that is arbitrage-free does exist and this is done by Christensen, Diebold and Rudebusch 

(2007, 2008).  

The affine and quadratic term structure models both have the arbitrage-free property; 

they derive the dynamic yield curve under a risk-neutral probability measure. The 

existence of risk-neutral probability measure implies that bond prices are arbitrage-free 

and the observed yield curve evolution is a result of the yield behavior under a historical 

probability measure. The transition from the risk-neutral to the historical measure is 

established via the market price of risk. Dai and Singleton (2000) provide the 

admissibility conditions and suggest a specification for completely affine term structure 

model. Duffee (2002) points out the restriction of the completely affine specification, 

                                                 
3. Within the family of Duffie and Kan affine term structure model, there is a trade-off between flexibility in modeling the 

conditional correlations and volatilities of the risk factors. This trade-off is formalized by their classification of N-factor affine 

family into N + 1 non-nested subfamilies of models. Vasicek (1977), Chen (1996), and Cox, Ingersoll and Ross(1985) models are 

classified into distinct subfamilies of the affine models. 
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and presents a broader class of essentially affine models, in which the market price of 

risk specification is more flexibly formulated. 

Ahn et al. (2002) describe the classification and canonical representation of the 

quadratic term structure models analogously to the classification of affine models in 

Dai and Singleton (2000). They show that the quadratic model specification can capture 

the conditional volatility of yields better than the affine class.  

Nyholm and Vidova-Koleva (2011) conduct an extensive out-of-sample forecasting 

experiment among quadratic, affine and dynamic Nelson-Siegel models using US 

yields curve monthly data from 1970 to 2000. They found that the quadratic three factor 

models provide the best in-sample-fit; the families of affine three-factor models and 

dynamic Nelson-Siegel models perform equally well in the out-of sample forecasting 

experiment, and that these two models produce better forecast than the quadratic 

model.  

 

6. Conclusion 

In this paper, we have reviewed a number of specifications of diffusion based term 

structure of interest rates models. (A summary of these models is provided in the 

Appendix). We have presented an overview of the most popular models by means of 

some general characteristics. From single factor to multi-factor models, forward rate 

based models and the most recent empirically advocated models; each of these models 

has its own advantages as well as disadvantages. On the whole, an ideal interest rate 

model should be theoretically consistent, flexible, well-specified and realistic; it should 

also provide good in-sample fit (to the data) and out-of-sample forecasting. 
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Appendix 

Table: A partial list of the term structure models  

Model                                                             Model Description 

Merton (1970)                                              ( ) ( )  dr t dt dW t
 

Vasicek (1977)                                              ( ) ( ) ( )    dr t r t dt dW t  

Dothan (1978)                                              ( ) ( ) ( )dr t r t dW t  

Brennan and Schwartz (1979)                     
   

   

1 1 1

2 2 2

( ) , , , , ( )

( ) , , , , ( )

   

    

 

 

dr t r t dt r t dW t

d t r t dt r t dW t
 

Courtadon (1982)                                         ( ) ( ) ( ) ( )    dr t r t dt r t dW t  

Cox, Ingersoll and Ross (1985)                    ( ) ( ) ( ) ( )    dr t r t dt r t dW t  

Cox, Ingersoll and Ross (1985b)                 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )  

 

  

 

 

q q qdq t t dt t dW t

d t t dt t dW t
 

Ho and Lee (1986)                                       ( ) ( ) ( )  dr t t dt dW t  

Nelson and Siegel (1986)                            
1 2 3

1
( )     



   f e e  

Hull and White (1990)                                
( )

( ) ( ) ( )


 


 
   

 

t
dr t r t dt dW t  

Black and Karasinski (1992)                        ln ( ) ( ) ( ) ln ( ) ( ) ( )     rd r t t t r t dt t dW t  

Hull and White (1993)                                 ( ) ( ) ( ) ( ) ( )    dr t t r t dt r t dW t  

Black, Derman and Toy (1990)                    ln ( ) ( ) ln ( ) ( )     rd r t t r t dt dW t  

Heath, Jarrow and Morton (1992)               
1 1

( , ) ( , ) ( , ) ( , ) ( )    
 

  
n nT

T T
t

i i

df t T t T t d t T dW t  

Longstaff and Schwartz (1992)                   
 

 

1

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

  

  

dX t a bX t dt c X t dW t

dY t d eY t dt f Y t dW t
 

and Chen and Scott (1992) 

Fong and Vasicek (1991, 1992a, 1992b)     
 

 

1

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )



 

  

  

dr t r r t dt v t dW t

dv t v v t dt v t dW t
 

Chen (1996)

                                                 

 

 

 

2

1

3

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

  

    

     

  

  

  

dr t t r t dt t r t dW t

d v t dt dW t

d t t dt dW t

 

Duffie and Kan (1996)                               

0

 X( ) ( X( ) ( ) ( )

 ( ) 'X( )

 

 

  

  X

d t t dt S t dW t

r t t
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Ahn et al. (2002)                                       
 X( ) ( X( ) ( )

 ( ) 'X( ) X( ) ' X( )

 

  

  

  

d t t dt dW t

r t t t t
 

Christensen et al. (2007)                           
X( ) ( X( ) ( )

( ) ( ) ( )

   

 

d t t dt dW t

r t L t S t
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A Joint Affine Arbitrage-free Nelson-Siegel (3+1) Factor Model of the Term 

Structure and Exchange Rates  

 

 

 

 

 

Abstract 

This paper extends the three-factor affine arbitrage-free Nelson-Siegel term structure 

model to a two-currency environment by assuming the level factor be the 

currency-specific factor for each country and common slope and curvature factors for 

both countries. The pricing kernel is the building block of theories of fixed-income 

securities, in the sense that a description of the kernel is sufficient to characterize prices 

of risk-free bonds. Therefore, we decompose the pricing kernel into two independent 

portions to join the interest rate term structure and the currency movement in one 

framework. One portion contains three factors that model the affine arbitrage-free 

Nelson-Siegel term structure of interest rate. The other portion contains one factor that 

captures the effect of the currency movement, which is independent of the term 

structure. This paper derives the joint two-currency affine arbitrage-free Nelson-Siegel 

(3+1) factor structure model that incorporates the properties of interest rate term 

structure and foreign exchange rates simultaneously within one arbitrage-free 

framework. 

 

 

 

Key words: affine arbitrage-free Nelson-Siegel model, risk premium, pricing kernel, 

exchange rate 
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Introduction 

The term structure of interest rates measures the relationship among the yields on 

default-free securities that differ only in their term to maturity. Understanding and 

modeling the term structure of interest rates represents one of the most challenging 

topics of financial research. 

The pricing of the bonds is made using the risk-neutral probability measure. Under 

the risk–neutral probability measure, the no-arbitrage condition is satisfied. This is a 

fundamental element, which assures that the model is consistent. The no-arbitrage 

condition provides the foundation for a large literature on arbitrage-free models that 

starts with the models of Vasicek (1977) and Cox, Ingersoll and Ross (1985). These 

frameworks specify the risk-neutral evolution of the underlying yield curve factors and 

provide an explicit definition of the term structure risk premium which reflects the 

relative price of different maturities across time.  

The affine specification of the arbitrage-free term structure models, originally 

introduced by Duffie and Kan (1996), classified by Dai and Singleton (2000) and 

extended to the essentially affine specification by Duffee (2002), stand out as the most 

popular class due to its analytical tractability. Yields are linear functions of underlying 

latent state variables (or latent factors) with factor loadings that can be calculated via 

(Riccati) ordinary differential equations. However, the canonical affine arbitrage-free 

model exhibits very poor empirical time-series performance; especially when 

forecasting future yields (Duffee, 2002). The main reason that causes these empirical 

problems is the over-parameterization of the underlying model.  

In contrast to the arbitrage-free term structure models, the dynamic Nelson-Siegel 

model introduced by Diebold and Li (2006), which builds on Nelson and Siegel (1987), 

provides a parsimonious framework that corresponds to a modern three-factor model of 

time-varying level, slope and curvature. Empirically, the dynamic Nelson-Siegel model 

fits both cross-section and time series of yields remarkably well and performs better in 

out-of-sample forecasting than the random walk and a large set of time series models 

applied directly to yields, as well as slope regression models (Diebold and Li, 2006). 

Unfortunately, this model class theoretically does not preclude arbitrage opportunities. 
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The affine arbitrage-free Nelson-Siegel model developed by Christensen, Diebold 

and Rudebusch (2007) combines the best of both the arbitrage-free and the dynamic 

Nelson-Siegel yield curve traditions. It maintains the affine arbitrage-free modeling 

tradition; the Nelson-Siegel structure helps to identify the latent level, slope and 

curvature factors, so the affine arbitrage-free Nelson-Siegel model can be easily and 

robustly estimated via the Kalman filter. Moreover, the affine arbitrage-free 

Nelson-Siegel model exhibits superior empirical forecasting performance. The 

application of affine arbitrage-free Nelson-Siegel model in the literature is quite limited, 

especially in an international context. Thus, the objective of this paper is to extend the 

affine arbitrage-free Nelson-Siegel model to a foreign currency market.  

The challenge of international term structure modeling is to incorporate the 

properties of interest rate term structure and foreign exchange rates within an 

arbitrage-free framework. A sizeable research literature has analyzed interest rates 

under the international context. The early version of modeling exchange rates 

movements as diffusion processes are based on geometric Brownian motion with 

constant exchange rate volatility, along with constant interest rates. (Biger and Hull, 

1983) (Garman and Kohlhagen, 1983). The recent literatures often models the interest 

rate and the exchange rate movement with the same set of state variables, the exchange 

rate movement between any two countries is assumed to be controlled by the term 

structure of interest rates in the two countries. These studies are such as Saá-Requejo 

(1993), Dewacher and Maes (2001), Backus, Foresi and Telmer (2001) and Ahn (2004). 

In contrast to these studies, a few studies such as Brandt and Santa-Clara (2001) and 

Han and Hammond (2003) allow independent exchange rates movements. 

Unfortunately, the model either introduces an internal inconsistency (Brandt and 

Santa-Clara 2001) or parametric constraints have to be imposed on the exchange rate 

dynamics to preclude arbitrage opportunities (Han and Hammond, 2003). 

In this paper, we present the affine arbitrage-free Nelson-Siegel term structure model 

in a two-currency environment by allowing an independent currency movement that 

guarantees internal consistency (fundamental asset pricing relation holds) without 

imposing any constraints on the exchange rate dynamics. The independent currency 
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movement factor is captured by a martingale component in the pricing kernel that is 

orthogonal to the pricing of the term structure of interest rate. Thus, the innovations of 

the interest rate and currency movement are uncorrelated with each other. The 

exchange rate risk premium in turn comprises of two independent components, one is 

driven from the interest rate risk and the other one is driven by the currency risk factor. 

Therefore, this joint (3+1) factor structure model releases the tension between the 

exchange rate movement and the term structure of interest rates 

The remainder of the paper is organized as follows: section 1 briefly reviews the 

original affine arbitrage-free Nelson-Siegel framework; section 2 elaborates the 

relation of the pricing kernel to interest rates and exchange rates; section 3 is the 

assumptions of the (3+1) factor structure to join interest rates and exchange rates; we 

derive a two-currency affine arbitrage-free Nelson-Siegel (3+1) factor structure model 

in section 4 and the paper concludes in section 5. 

 

1. The affine arbitrage-free Nelson-Siegel model 

Within the literature on arbitrage-free term structure models, the affine class 

expounded by Duffie and Kan (1996) has become very popular. For models of this 

family, bond yields are affine functions of the driving state variables. This property 

follows from a linear state process and an adequately chosen pricing kernel.  

In this section, we briefly review the dynamic Nelson-Siegel and the affine 

arbitrage-free Nelson-Siegel framework that preserves the Nelson-Siegel factor 

loadings structure. 

 

1.1 The dynamic Nelson-Siegel framework 

The original Nelson-Siegel model provides a parsimonious parameterization of the 

instantaneous forward rate curve given as follows:  

 1 2 3

1
( )     



   f e e  (1) 

where ( )f is the instantaneous forward rate, τ indicates the time to maturity.  
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The model has four parameters: three  s are the state variables and 0   is the 

speed of convergence of the term structure toward the long-horizon rate. 

The zero-coupon yields consistent with the forward rates given by equation (1) and 

solved using the integral form of the instantaneous forward rates:  

 1 2 3

( ) 1 1
( )

 
   

  

 
    

       
   


T

t
f s ds e e

y e  (2) 

The original Nelson-Siegel model is a static representation which is commonly used 

to fit the yield curve at a point in time. However, to understand the evolution of the 

bond market over time, a dynamic version is required. Diebold and Li (2006) suggest 

allowing the  parameters to vary over time. In addition, these three parameters are 

interpreted as time-varying level, slope and curvature factors given their corresponding 

Nelson-Siegel loadings. Rewriting the static Nelson-Siegel framework, equation (2), 

gives us the dynamic Nelson-Siegel model: 

 
1 1

( )
 


 

 
    

      
   

t t t t

e e
y L S C e  (3) 

where , ,t t tL S C represent the time-varying level, slope and curvature factor 

respectively. The level factor with its loading of 1 has the same impact on the whole 

yield curve. The term
1 



 
 
 

e
, which is the loading on the slope factor, captures 

short-term movements that mainly affect yield on the short end of the curve. The 

curvature factor is a medium term factor and its factor loading,
1 






 

 
 

e
e , 

captures how curvy the yield curve is at the medium maturities. 

Since the dynamic Nelson-Siegel model does not preclude arbitrage opportunities, it 

is directly formulated under the empirical physical (also called historical or 

data-generating) probability measure P. The extension of the dynamic Nelson-Siegel 

model that is arbitrage free does exist and that is the affine arbitrage-free Nelson-Siegel 

model which will be elaborated in the next subsection.  
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1.2 The affine arbitrage-free Nelson-Siegel framework 

Christensen, Diebold and Rudebusch (CDR, 2007) develop a class of arbitrage-free 

affine dynamic term structure models that approximate the widely-used Nelson-Siegel 

yield-curve specification. The theoretical analysis relates this model to the standard 

stochastic continuous time affine arbitrage-free (AF, hereafter) framework, originally 

introduced by Duffie and Kan (1996). This affine diffusion process is represented in a 

filtered probability space ( , , ) tF Q , where Ω is the sample space,
tF is the sigma-field 

generated by the set of all possible events up to time t. Q indicates the risk-neutral 

probability measure on the sample space Ω. 

Bonds are usually priced with the help of a so-called ‘risk-neutral probability 

measure Q . Under the risk-neutral probability measure, expected excess returns on 

bonds are zero. Put differently, the expected rate of return on a long bond equals the 

risk-free rate. The big advantage of pricing bonds in continuous time is Ito’s lemma. 

Ito’s lemma allows us to turn the problem of solving the conditional expectation in the 

bond pricing equation into the problem of solving a partial differential equation for the 

bond price. The model for the yield curve is defined through two elements: the change 

of measure from risk-neutral to physical; and the short rate dynamics. 

Here we summarize the structure of the affine term structure with three state 

variables and Gaussian process under the risk-neutral probability measure Q :  

A1. The instantaneous risk-free rate is assumed to be an affine function of the state 

variables
tX : 

                                               
0 1 '  t tr X                                                      (4) 

where 3

0 1,  R R are the parameters,
tX is a vector of state variables. 

A2. The state variables tX follow Gaussian Ornstein-Uhlenbeck processes (also 

called mean-reverting processes) with a constant variance-covariance matrix Σ, they 

can be described by the following system of stochastic differential equations (SDEs):  

( )   t t tdX X dt dW
                                      

(5) 
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where 3*3 R is the mean reversion matrix, 
3 R  is a vector of the long-run mean of 

the interest rates, 
tW is a vector of Brownian motions for the state variables. 3*3R is a 

constant variance-covariance matrix. 

A3. The zero-coupon bond prices in the affine AF framework are exponential affine 

functions of the state variables. This result is proved by Duffie and Kan (1996).  

  
   ( , ) exp exp ( , ) ( , ) '    

  
T

Q

t u t
t

P t T E r du A t T B t T X              (6) 

where A(t,T) and B(t,T) are the solutions to the ordinary differential equations (ODEs) 

           

 
3

0

1

1

( ) ( , ) 1
( ) ' ' ( ) ( ) '

2

( ) ( , )
' ' ( )


    




  





       

    

 i i

i

dA dA t T
B B B

d dt

dB dB t T
B

d dt

            (7) 

where   T t is the time to maturity. 

A4. The zero-coupon yields are then obtained by 

     

ln ( ) ( ) ( )  

  
    t t

P B A
y X                                       (8) 

Comparing this affine AF yield to the dynamic Nelson-Siegel yield in equation (3), 

we observe that the key difference between these two equations is an extra and 

unavoidable yield-adjustment term,
( )




A
, which depends only on the maturity in 

equation (8). Thus, it is possible to extend the dynamic Nelson-Siegel to be AF. The 

target is to find the affine AF model with factor loadings
( )



B
 in equation (8) that 

exactly matches the Nelson-Siegel ones in equation (3).  

CDR proposed an assumption that the instantaneous risk-free rate is the sum of the 

level and slope factor to extract the Nelson-Siegel factor loadings from the affine AF 

framework and develop the so-called affine arbitrage-free Nelson-Siegel (AFNS, 

hereafter) model.  
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The framework of the affine AFNS model is described below where B1- B4 are 

corresponding to A1-A4 in the affine AF framework under the risk-neutral probability 

measure and B5-B8 are more specific to the AFNS model. 

B1. The three state variables in the AFNS model are defined as level, slope and 

curvature; they can be denoted in a vector form as ( , , )t t t tX L S C . The instantaneous 

risk-free rate is assumed to be the sum of level and slope factors: 

                                                     t t tr L S                                                             (10) 

where the parameters
0 and 

1  in the affine AF model (A1) are assumed to 

be  0 10, 1,1,0 '   respectively; and ( , )t t tX L S . 

B2. The state variables follow Gaussian Ornstein-Uhlenbeck processes, they are 

assumed to be described by the following system of SDEs:  

1

2

3

0 0 0

0

0 0



  

 

                                                 

L

tt t

S

t t t

C
t t t

dWdL L

dS S dt dW

dC C dW
                     (11) 

( )   t t tdX X dt dW
                                      (11’) 

Equation (11) can be written in short as equation (11’), which is the same form as 

equation (5) in A2, where 

0 0 0

0

0 0

  



 
 

 
 
 
 

is the mean reversion matrix that is 

assumed to contain only zero and parameter . Parameter  is a positive constant, 

namely, the mean reversion rate of the curvature and slope factors as well as the scale 

by which a deviation of the curvature factor from its mean affects the mean of the slope 

factor.  is the variance-covariance matrix, it will be specified in B5. 

B3. The zero-coupon bond prices in the affine AFNS model are exponential affine 

functions of the state variables.  

 1 2 3( , ) exp ( , ) ( , ) ( , ) ( , )   t t tP t T A t T B t T L B t T S B t T C                 (12) 

where ( , )A t T  and ( , )B t T are the solutions to the following ODEs: 
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 
3

1

1
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( ) ' ' ( ) ( ) '

2

( ) ( , )
' ' ( )


   




  





     

    

 i i

i

dA dA t T
B B B

d dt

dB dB t T
B

d dt

                   (13) 

The only parameters in the system of ODEs for ( , )B t T functions are 
1 and , the 

coefficient of 
tr and the mean reversion structure for the state variables under the 

risk-neutral probability measure Q . This explains the crucial assumptions of B1 and B2 

for deriving the AFNS model. With the boundary condition that 

1 2 3( , ) ( , ) ( , ) ( , ) 0   A T T B T T B T T B T T , the unique solution to equation (13) is 

given by   

 

1

2

3

( )

1
( )

1
( )  






 




 







 


 


  

B

e
B

e
B e

 (14) 

 
3

,
1

1
( ) ( ) ' ' ( ) ( ) '

2
  



   
T

i it
i

A B B u B u du                           (15) 

B4. The AFNS zero-coupon yields are then obtained by substituting equation (14) 

into equation (8),  

            

1 1 ( ) 
 

  

 
    

       
   

t t t t

e e A
y L S C e                  (16) 

The factor loadings of each factor are exactly the Nelson-Sigel factor loadings in 

equation (3). The proof of equation (16) is provided in Appendix A. 

B5. Define the value of the yield-adjustment term in the AFNS model.  

From equation (15), we observe that the value of the yield-adjustment term depends on 

the choice of the variance-covariance matrix given the value of factor loadings (Bs) 

obtained in equation (14). CDR identify the AFNS model by fixing 0   under the 

risk-neutral Q -measure. They claim that the maximally flexible AFNS specification 

can be identified as an upper or lower triangular volatility matrix. With the lower 

triangular form of the volatility matrix, this gives the correlated-factor specification of 
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the AFNS model. In this paper, we study another specific case of the volatility matrix, a 

parsimonious diagonal matrix, where  

11

22

33

0 0

0 0  

0 0







 
 

 
 
 
 

                                              (17)

 

 

This gives the independent-factor specification of the AFNS model; the 

yield-adjustment term is given by 

    

2 2
2 2

11 22 2 3 3

2 2 2
2

33 2 2 2 3 3

( ) 1 1 1

6 2 4

1 3 2(1 ) 5(1 )
          

2 4 4 8

 

    

 
 

     




       

 

    

  
    

 

  
      

 

A e e

e e e e e

            

(18) 

So far the dynamics of the AFNS model has been defined under the risk-neutral 

Q -measure. The existence of the risk-neutral probability measure implies that bond 

prices are arbitrage–free and the observed yield curve evolution is a result of the yield 

behavior under a physical P-measure. A transition from the risk-neutral to the physical 

measure is established via the market price of risk (also called the Sharpe ratio, which is 

the excess return per standard deviation).  

B6. The AFNS model under the physical probability measure P is given by the 

following measure change (the Girsanoc theorem)
4
: 

  P

t t tdW dW dt  (19) 

where tW and P

tW  indicate the Brownian motion under the risk-neutral Q -measure and 

physical P-measure, respectively; and t
represents the market price of risk. From 

equation (19) we observe that the change of measure from the risk-neutral to physical 

only affects the drift term of the process byt
, but not the volatility term. 

B7. Define the specification of the market price of risk. 

CDR apply the essentially affine risk premium specification which is introduced by 

Duffee (2002) to preserve the affine dynamics under the physical probability measure. 

Given this specification, the market price of risk follows the essentially affine form as 

                                                 
4 The Girsanov theorem is explained in Appendix B. 
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0 1   t i ij tX                                                (20) 

where 
0 3 1 3*3,  i ijR R .  

B8. The dynamics of the AFNS under the P-measure is then has the following 

general form                                   ( )   P P P

t t tdX X dt dW                              (21)   

where 
1 1 1 0 0, ( ) ,               P P P P

ij ij i i . We can rewrite the market 

price of risk in equation (20) as    

                                            1        P P P

t tX                         (22) 

For the independent-factor specification, the three state variables are independent 

with the diagonal volatility matrix. Equation (21) can be written in a matrix form as  

           

,

11 1 11

,

22 2 22

,

33 3 33

0 0 0 0

0 0 0 0

0 0 0 0

  

  

  

          
          

            
           
           

P P P L P

t t t

P P P S P

t t t

P P P C P

t t t

dL L dW

dS S dt dW

dC C dW
        (23) 

 

2. The pricing kernel 

The pricing kernel plays an important role in both interest rate and exchange rate 

dynamics; therefore we elaborate the relation of the pricing kernel to interest rates and 

exchange rates, respectively under the no-arbitrage condition in this section. 

 

2.1 The pricing kernel and interest rates 

The pricing kernel approach is originally derived by Constantinides (1992). The 

pricing kernel (also called state density deflator, stochastic discount factor),
tM , is 

defined as the unconditional change of measure discounted at the risk-free rate. 

Mathematically, it can be read as


 t
t

t

m
M , where tm  (also called the Radon-Nikodym 

derivative t

dQ
m

dP
) indicates the unconditional change of measure of the risk-neutral 

probability measure with respective to the physical probability measure, and t  is the 



34 

 

compounded bank account return which has the value of  0
exp 

t

sr ds  and it evolves 

according to  t t td r dt . 

The dynamics of the pricing kernel can be obtained by Ito’s lemma
5
: 

           

   Pt
t t t

t

dM
rdt dW

M
                                              (24) 

2 2 2

2 2

Proof: Let ( , )  , by Ito's formula,
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    From equation (24), we observe that the drift of the pricing kernel is the risk-free 

interest rate and the volatility of the pricing kernel is the market price of risk. A 

no-arbitrage condition restricts the pricing kernel drift to be negative of the 

instantaneous risk-free interest rate and the diffusion coefficient to be negative of the 

market price of risk. 

In complete markets and the absence of arbitrage opportunities, there exists a unique 

positive pricing kernel such that the price at time t of a zero-coupon bond maturing at 

time T and with unit face value under the physical probability measure is: 
 

 ( , )
 

  
 

P T
t

t

M
P t T E

M
 (25) 

Equation (24) and equation (25) imply that modeling the term structure of interest 

rates in an arbitrage-free way can be reduced to modeling the dynamics of the pricing 

kernel, which in turn can be reduced to specifying the dynamics of the risk-free rate and 

                                                 
5 Ito’s formula is the function of a stochastic process under continuous-time setting. The formula is  

      
2 2' ''1

; ( ) ; ( )
2

     t t t t t t t t t t tdX dt dW df X f X dX f X dX Var dX dX  
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the market price of risk. Since we are applying the AFNS framework in this paper, the 

risk-free rate is the sum of level and slope factor (see equation (10)); the market price of 

risk has an essentially affine function of the level, slope and curvature factors (equation 

(20)).  

 

2.2 The pricing kernel and exchange rates  

We assume that it is a two-currency based world, the assets can be denominated in 

either  domestic currency or foreign currency, we further assume that there is a separate 

pricing kernel for each currency, which denotes as d

tM and f

tM , respectively. A 

no-arbitrage condition enforces a consistency of pricing for any security over time. 

According to equation (25), we now have a dynamic international bond pricing model 

as:                      

         ( ) , ( ) 



  



   
    

   

d f
d P f Pt t t

t t t td f

t t t

M M S
P E P E

M M S
                    (26) 

The dynamics of the pricing kernels (equation (24)) with denominating domestic and 

foreign currency have the following SDEs: 

         
   ' , '       

d f
d d dP f f fPt t

t t t t t td f

t t

dM dM
r dt dW r dt dW

M M
        (27) 

The spot exchange rate,
tS , is defined as the number of units of domestic currency 

per unit of foreign currency. As noted by Backus, Foresi and Telmer (2001), in a 

complete market, the exchange rate is uniquely determined by the ratio of the two 

pricing kernels. 

         


f

t
t d

t

M
S

M
                                                       

 (28) 

By Ito’s formula, the dynamic evolution of tS  is given by 

              

     ' '        
 

d f d d f d f Pt
t t t t t t t t

t

dS
r r dt dW

S
            (29) 
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Substitute (27) into (30), we have
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Equation (29) in a logarithm form is given by 
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From equation (31) we observe that the drift of the exchange rate dynamics contains 

two elements: the interest rate differential and a quadratic differential of the risk 

premia     
1

' '
2

    d d f f

t t t t
; the volatility of the exchange rate is the difference 

between the two market prices of risk.
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So far we have shown how the pricing kernel is involved in both interest rates and 

exchange rates; also we have reviewed the AFNS term structure model. We are then 

going to join the AFNS model with the exchange rate through the decomposition of the 

pricing kernel in the next sections. 

 

3. Assumptions for the joint model 

Assumption 1. Assume the vector of state variables has a form of (3+1), denote 

as  ,t t tZ X U , where  , ,t t t tX L S C  is a state variable vector of interest rates in the 

AFNS model, 
tU denotes the currency movement factor, which is a state factor that 

captures the currency movement. , 0t tX U , in other terms, these two sets of state 

variables are independent of each other. Also the state variables are assumed to follow 

Gaussian Ornstein-Uhlenbeck processes which are controlled by the following SDEs:
   

                                             

 

 

 

  

  

  

X X X X

t t t

U X U U

t t t

dX X dt dW

dU U dt dW
                                (32)

 

where superscript X and U indicate the interest rate factors and the currency movement 

factor, respectively. Furthermore, the innovations of interest rates and the currency 

movement are independent of each other. i.e , 0 X U

t tdW dW .  

Assumption 2. Orthogonal decomposition of the pricing kernel 

The pricing kernel is assumed to be expressed as follows:  

                                                ( ) ( ) t t tM X U                                                 (33) 

where ( ) tX and ( ) tU are some deterministic, continuous function in the real space 

R such that ( ), ( ) 0  t tX U , in other words, these two components are orthogonal 

to each other. We simplify the notation by letting ( ) t tX and ( ) t tU hereafter. 

Assumption 3. The independent component of the pricing kernelt is a martingale 

(driftless) under the physical probability measure, it has the following dynamics: 

              

( ) 




   U Ut

t t t t

t

d
U dW dW

                               

(34) 



38 

 

where  t
is the market price of risk of the currency movement, and this is the  diffusion 

(or shock) of the innovation for the currency factor.  

Assumption 4. The currency market price of risk
  t

is assumed to have the following 

essentially affine specification in line with the AFNS market price of risk. 

 
0 1

    t tU
                                                    

(35) 

Under Assumption 3, the martingale componentt
does not enter the pricing of 

zero-coupon bonds, 
 

                                ( , ) ( , )
  

 
  

     
       

     

P P PT T T
t t t t t

t t t

P Z E E E P X              (36) 

The bond price at time t is a function of the state variable vector 
tX only; therefore, 

 t
can be labeled as the term structure pricing kernel. The dynamics of this term 

structure pricing kernel is given by: 

                                                




   Pt

t t t

t

d
rdt dW                                          (37) 

Although t
 does not enter the pricing of the term structure, it will determine the 

exchange rate dynamics between two currencies. 

By Assumption 2, we have the (3+1) factor pricing kernel structure as:  

   

 

 
 t t t

t t t

dM d d

M
                                                (38) 

 

   

Proof: 

By Assumption 2, ( ) ( )

( ) ( )
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X U
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U X
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U X
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d d dW dW

dW r dt dW

M dW r M dt M dW

dM
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M

          
 

 
 t t

t t

d d
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4. The joint two-currency AFNS (3+1) factor model 

4.1 A two-currency AFNS model  

In section 2, we reviewed the AFNS model and this version actually can be viewed as 

a single (domestic) currency yield curve. In this subsection we add a foreign yield curve 

on to the AFNS model and construct a two-currency AFNS term structure model that is 

used to join the independent currency movement in section 4.2. 

The structure of the two-currency AFNS framework is elucidated in line with the 

AFNS framework (B1-B8). 

C1. For each yield curve, there are three latent state variables—level, slope and 

curvature. The instantaneous risk-free rates are modeled in nominal terms and are 

assumed to be the sum of a currency-specific (local) level factor for each country and a 

common slope factor for both countries under the risk-neutral probability measure with 

that associated currency. The curvature factor is needed to preserve the Nelson-Siegel 

loadings, so it is assumed to be a common factor as well.  is a scale to measure the 

relative magnitude of the common slope and curvature factors embedded in the foreign 

interest rate. Therefore, the domestic and foreign risk-free interest rates have the 

following form: 

 


 

 

d d

t t t

f f

t t t

r L S

r L S
 (39) 

C2. The state variables follow Gaussian Ornstein-Uhlenbeck processes with a 

constant volatility matrix Σ. The three factors in each yield curve are assumed to be 

orthogonal to each other. Therefore, the variance-covariance matrix is a parsimonious 

diagonal matrix. The state variables of the two-currency AFNS model have the 

following SDEs under the corresponding currency denominated 

risk-neutral Q -measure: 

            

 

 

 

 

  

  

d d d d d d

t t t

f f f f f f

t t t

dX X dt dW

dX X dt dW                                  (40) 

where d and f indicate domestic and foreign currency, respectively. Equation (40) can 

be written in an equivalent matrix form as 
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1 11
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f f

t
t

S

t t

C

t t

dWL

S dt dW

C dW
    

 (41)

 

    C3.The zero-coupon bond prices are exponential affine functions of the state 

variables for each yield which follow the same procedure in B3 (equations (12)-(15)).  

C4. The zero-coupon bond yields for each curve are then given by: 

            

1 1 ( )

1 1 ( )

 

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 
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   

    
       
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t
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d
d d

t t t

f
f f

t t t

e e A
y L S C e

e e A
y L S C e

              

 (42) 

C5. Since we assume the factors in each yield are orthogonal to each other with the 

diagonal variance-covariance matrix, the independent-factor specification of the AFNS 

model applies, the value of the yield-adjustment term for each yield is  

         

   
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2 2
2 2

11 22 2 3 3

2 2 2

33 2 2 2 3 3

2 2
2 2

11 22 2 3 3

( ) 1 1 1

6 2 4

1 3 2(1 ) 5(1 )
            

2 4 4 8

( ) 1 1 1

6 2 4

            

 

    

 

 
 

     




       

 
 

     



 

    

 

  
    

 

  
      

 

  
    

 



d
d

f
f

A e e

e e e e e

A e e

2 2 2

33 2 2 2 3 3

1 3 2(1 ) 5(1 )

2 4 4 8
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        (43) 

C6. The two-currency AFNS model under the physical probability measure is given 

by the measure change, which has the same process as in B6, for each yield 

denominated in domestic and foreign currency, respectively.  

          





 
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d dP d

t t t

f fP f

t t t

dW dW dt

dW dW dt                                               (44)
 

C7. The market price of risk has an essentially affine specification. For each yield 

curve, we have the market price of risk as 
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  
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(45) 

where 
0 3 1 3*3 0 3 1 3*3, , ,      d d f f

i ij i ijR R R R  

C8. The two-currency AFNS term structure model with independent factor 

specification has the dynamics under the physical P-measure in a matrix form as     

,
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0 0

or equivalently,           ( )
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where  ,

 
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dP dP d d fP fP f f

i i

dX X dt dW

    

The two-currency AFNS model has been constructed as two individual yield curves 

with local level factor move along with the common slope and curvatures; the next step 

is to jointly model interest rates and currency movement within one arbitrage-free 

framework. 

 

4.2 Joint two-currency AFNS (3+1) factor model 

In the two-currency AFNS model, there is a separate pricing kernel for each currency,
 

d

tM and f

tM , respectively.  

Given the orthogonal decomposition in the pricing kernel and equation (38), the 

dynamics of the pricing kernel of domestic and foreign currency are in the following 

(3+1) structure:  
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(48) 

where 
f

t indicates the foreign currency shock to the domestic pricing kernel, while 


d

t is the domestic currency shock to the foreign pricing kernel. 

The domestic local (level) factor affects only the asset bonds in the domestic market, 

while the foreign local (level) factor influences only the bond values in the foreign 

market. Any uncertainty associated with the domestic (foreign) local factor does not 

change the values of foreign (domestic) bonds. However, the domestic (foreign) local 

factor appears only in the diffusion terms as  
d

t
and  

f

t
of the SDEs expressed in 

foreign (domestic) currency in equation (48), but not the drift term. This is because of 

that the domestic (foreign) local shocks are martingale (Assumption 3).  

 

4.3 The exchange rate dynamics in the joint AFNS (3+1) factor structure 

framework 

  In section 2.2, we have shown the dynamic evolution of the exchange rate. We apply 

the Ito’s lemma to the joint (3+1) framework and obtain the following new exchange 

rate dynamics 
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Substitute (48) into (30), we have
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Equation (49) in a more familiar logarithmic form is: 
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The new exchange rate dynamics in my joint AFNS (3+1) factor structure 

framework are characterized by a drift term that is the sum of the interest rate 

differential and an exchange rate risk premium. Comparing equation (50) to equation 

(31), the exchange rate risk premium has an extra term     
1

' '
2

       d d f f

t t t t
which 

is captured by the independent currency factor. The diffusion term also contains an 

extra term    d f

t t
that is the differential of the market price of currency risks. In 

addition, the independent currency factor tU  does not influence the pricing of interest 

rate, but it does enter the pricing of the exchange rate between the two countries.  
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When the absolute value of the domestic market price of risk of a factor risk is higher 

in the domestic market than in the foreign market, the exchange rate is expected to 

appreciate and vice versa. This implies that the exchange rate is determined so as to 

equalize the market prices of factor risks in the two markets. The additional currency 

factor plays a crucial role in releasing the tension between interest rate and exchange 

rate movements. 

 

5. Conclusion 

  In this article, we present a two-currency AFNS model with a (3+1) pricing kernel 

factor structure framework. This joint model can simultaneously model the term 

structure of interest rates as well as the exchange rates between them. The AFNS form 

enables us to integrate Gaussian state variables, essentially affine market price of risk 

and exchange rate dynamics into one arbitrage-free framework. While maintaining 

internal consistency, the (3+1) factor structure explicitly accounts for the fact that a 

predominant portion of the currency movement is independent of the movements in the 

term structure of interest rates in either country. 
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Appendix  

A: Proof of the AFNS model 

   ( , ) exp exp ( , ) ( , ) '    
  

T
Q

t u t
t

P t T E r du A t T B t T X

 

The partial differential equation for P(t,T) is given by 

2

2

1
' 0

2


  
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dt dt
 

By the matching principle, we obtain the following ODEs: 

 
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To solve ( )B , the system of ODE for ( )B is given by 
1

( )
' ' ( )


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Imposing the structure of 'and  : ' 0 0 , 1

0 0

0 0 0 0 0 0 0 0 0

we have exp 0 0 exp 0 0 exp 0 0 0 exp( ) exp( )

0 0 0 0 0

 
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e a b

Since '  has the same real eigenvalue 1 and 2 0b which means b is a nilpotent 
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matrix, exp(b) can be calculated directly from the definition of the exponential matrix                    
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Inserting these into the ODEs: 
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The unique solution for this system of ODEs is therefore given by: 
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The zero-coupon bond yields are then have the form of: 
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For the independent- factor AFNS specification, with diagonal variance-covariance 

matrix, the yield-adjustment term is               
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B. The Girsanov theorem 

The Girsanov theorem describes the distribution of the stochastic process under a 

new probability measure. Define this new Ito process QW  as   Q P

t t tdW dt dW . The 

Girsanov theorem claims that  

1) the only measure under which Q

tdW  is a martingale is given by the 

Radon-Nikodym derivative of the risk-neutral measure Q  with respect to the physical 

measure P: T

dQ
m

dP
with 

2

0 0

1
exp

2

 

 

     
           

 
T T

P

T t

r r
m dt dW  



48 

 

2) Q

tW is a Brownian motion under risk-neutral measureQ , that is, ( ) Q Q

t tVar dW dt .  

Note: we use 
tdW  to indicate Q

tdW throughout this paper.  
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