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Abstract

To enable the benefits of a truly condition-based maintenance philosophy to be realised,

robust, accurate and reliable algorithms, which provide maintenance personnel with

the necessary information to make informed maintenance decisions, will be key. This

thesis focuses on the development of such algorithms, with a focus on semiconductor

manufacturing and wind turbines.

An introduction to condition-based maintenance is presented which reviews different

types of maintenance philosophies and describes the potential benefits which a condition-

based maintenance philosophy will deliver to operators of critical plant and machinery.

The issues and challenges involved in developing condition-based maintenance solutions

are discussed and a review of previous approaches and techniques in fault diagnostics

and prognostics is presented.

The development of a condition monitoring system for dry vacuum pumps used in semi-

conductor manufacturing is presented. A notable feature is that upstream process mea-

surements from the wafer processing chamber were incorporated in the development of a

solution. In general, semiconductor manufacturers do not make such information avail-

able and this study identifies the benefits of information sharing in the development of

condition monitoring solutions, within the semiconductor manufacturing domain. The

developed solution provides maintenance personnel with the ability to identify, quantify,

track and predict the remaining useful life of pumps suffering from degradation caused

by pumping large volumes of corrosive fluorine gas.

A comprehensive condition monitoring solution for thermal abatement systems is also

presented. As part of this work, a multiple model particle filtering algorithm for prog-

nostics is developed and tested. The capabilities of the proposed prognostic solution for

addressing the uncertainty challenges in predicting the remaining useful life of abatement

systems, subject to uncertain future operating loads and conditions, is demonstrated.

Finally, a condition monitoring algorithm for the main bearing on large utility scale

wind turbines is developed. The developed solution exploits data collected by onboard

supervisory control and data acquisition (SCADA) systems in wind turbines. As a

result, the developed solution can be integrated into existing monitoring systems, at no

additional cost. The potential for the application of multiple model particle filtering

algorithm to wind turbine prognostics is also demonstrated.
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Chapter 1

Introduction

1.1 Background and Motivation

The maintenance of critical plant and machinery is a major expense for manufacturers

and operators. Maintenance practices have traditionally employed one of two philoso-

phies; preventative or corrective. Preventative maintenance involves performing regular

scheduled maintenance to maintain equipment in good health and avoid in-service equip-

ment failures. Corrective maintenance involves running equipment until it fails and then

taking remedial action. Both approaches have drawbacks. Preventative maintenance is

expensive to perform and the serviceable life of equipment and components is not max-

imised. Corrective maintenance maximises the serviceable life of equipment but risks

damage to other equipment when failures occur. Regardless of which approach is taken,

unexpected equipment failures result in equipment downtime, and thus the necessary

maintenance will always be reactive. Consequently, the resulting equipment downtime

will be prolonged while the necessary spare parts, personnel, and equipment, necessary

to carry out the required maintenance, are organised.

Condition-based maintenance (CBM) is a new maintenance philosophy involving the

real-time analysis of equipment sensor data to infer maintenance condition, or health.

Maintenance activities are then performed on the basis of necessity, as identified by

a condition-based maintenance system. In comparison with traditional maintenance

philosophies, CBM offers the potential for minimising instances of equipment failures,

a reduction in scheduled maintenance activities, maximisation of the serviceable life of

life-limited components, and increased equipment availability. Critical to the success

of implementing a condition-based maintenance philosophy however, are the necessary
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technical capabilities to infer equipment condition from real-time process measurements,

so that informed maintenance decisions can be made.

The development of the technical capabilities to implement a condition-based mainte-

nance philosophy, including the development of real predictive prognostics which es-

timate the remaining useful life of degrading equipment, are of major interest across

almost all industrial environments in which the availability, reliability and performance

of machinery is critical. However, developing such capabilities is a significant technical

challenge. In this thesis, two industrial environments, namely semiconductor manu-

facturing and wind turbine power generation, are investigated in an effort to develop

appropriate condition monitoring solutions.

1.1.1 CBM for Semiconductor Manufacturing

The International Technology Roadmap for Semiconductors (ITRS) is an industry group-

ing that identifies critical challenges and provides assessments of the semiconductor in-

dustrys future technology requirements. The future needs identified are used to direct

research and development efforts among manufacturers, research facilities, universities,

and national labs worldwide. In the latest ITRS annual report (2012), the importance

of developing predictive maintenance capabilities for the semiconductor industry, and

the associated challenges, is a topic which receives significant focus. This report de-

scribes how “a key challenge in the migration from reactive to predictive (maintenance)

is the ability to establish accurate, robust, reconfigurable, real-time updateable and un-

derstandable models that are the basis for prediction. A key focus for prediction will

be techniques for improving prediction accuracy and for utilising prediction accuracy

information (along with the prediction itself) to optimise prediction systems.” [10].

Addressing exactly these challenges is the primary topic of this thesis.

1.1.2 CBM for Wind Turbines

The economic exploitation of wind energy is largely dependent upon the high reliability

of wind turbines and their components. Wind turbines operate in harsh environments

which generate large loads on wind turbine blades, which can lead to faults and failures

in wind turbine components. In addition, with wind farms increasingly being located

offshore, the costs of performing both scheduled and unscheduled maintenance are even

greater. Studies have suggested that maintenance costs can consume up to 20 to 25% of

the total income generated, and that a considerable percentage of these costs are due to
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unexpected equipment failure, which require corrective maintenance [11]. As a result,

wind farm operators are keen to exploit condition-based maintenance in an effort to

reduce overall maintenance costs.

1.2 Objectives

The main objectives of this thesis are to develop condition monitoring and prognostic

capabilities for high-value critical equipment within the domains of semiconductor man-

ufacturing and wind turbine power generation. The thesis aims to exploit system data

which is already collected as part of regular data collection and monitoring activities

within the semiconductor manufacturing environment or, in the case of wind turbines,

data currently collected as part of supervisory control and data acquisition (SCADA)

systems, which are installed as standard on most modern wind turbines. The primary

theme in achieving these objectives is that all the data utilised was collected from real-

world operational environments. As a result, the developed solutions have demonstrated

capabilities and applicability to real world condition monitoring applications.

Within the semiconductor manufacturing environment, a wide variety of different equip-

ment is used during each manufacturing process. Historically, for condition monitoring

purposes, the data recorded by each piece of equipment is usually monitored in isolation.

However, analysis of the data recorded by different equipment, such as semiconductor

wafer processing tools and dry vacuum pumps, has identified potential benefits which

might be realised by incorporating different signal data from different equipment in the

development of condition monitoring solutions. As a result, the first objective in this

thesis is to demonstrate the benefits of incorporating upstream process measurements in

the development of a condition monitoring and fault prediction algorithm for dry vac-

uum pumps used in semiconductor manufacturing. The solution is developed exclusively

on data collected from a large semiconductor manufacturing facility.

The second objective of the thesis is to develop a complete prognostic and health man-

agement (PHM) system for thermal abatement systems used in semiconductor manu-

facturing, in particular the ceramic liner component used within the thermal abatement

system. Studies of available historical data has identified recurring issues with the ther-

mal abatement ceramic liner. The development of a PHM system for thermal abatement

systems has the potential to deliver major benefits including reduced maintenance costs,

reduced in-service failures and increased equipment uptime. The dataset utilised in
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achieving this objective was again collected from a large semiconductor manufacturing

facility.

The final objective of this thesis is to demonstrate how existing supervisory control

and data acquisition (SCADA) systems can be exploited to detect and monitor the

development of fault conditions within the main bearing of a large wind turbines. In

addition, prognostic capabilities for wind turbines are developed which provide operators

with an estimate of remaining useful life. The data utilised for this task was collected

from a large operational windfarm.
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1.3 Contributions of this Thesis

This thesis claims the following original contributions:

1. The development of a condition monitoring algorithm to detect, track, and predict

the development of fluorine gas induced degradation in mechanical dry vacuum

pumps used in semiconductor manufacturing. The notable feature of this algorithm

is that, for the first time, upstream process measurement have been incorporated,

in the form of foreline pressure measurement, which provide a means to quantify

and model the relationships between pump process variable changes and the actual

level of pump degradation. A comparison between multiple linear regression and

artificial neural networks is demonstrated, and a double-exponential smoothing

technique is applied to predicting the remaining useful life of a degrading pump.

2. The development of a multi-modal signal tracking algorithm for tracking changes in

the signal distribution of the temperature signal generated by thermal abatement

system used in semiconductor manufacturing. The proposed solution incorporates

a novel approach to tracking changes in the non-Gaussian distribution of the gen-

erated signal. The non-Gaussian, multi-modal distribution of the monitored signal

is tracked over time using a moving-window, whereby at each iteration a Gaussian

mixture model is fit to the signal values within the bounds of the moving window.

To the best of the authors knowledge, such an approach to tracking a non-Gaussian

signal has not been demonstrated previously.

3. The development of a comprehensive multiple model particle filtering approach

for predicting the remaining useful life of the ceramic liner used in thermal abate-

ment systems for semiconductor manufacturing. This is the first demonstrated

application of a multiple model particle filtering approach for prognostics.

4. A novel model weighting scheme for use within the multiple model particle filtering

framework is developed which is demonstrated to improve both the accuracy and

precision of long term predictions generated by the multiple model particle filtering

framework for thermal abatement systems.

5. The development of a condition monitoring and prognostic capabilities for the main

bearing on a large utility scale wind turbine. The main feature of this contribution

is that the capabilities are developed exclusively using already installed onboard

supervisory control and data acquisition systems. No previous work has considered

the application of such data to main bearing condition monitoring. The demon-

stration of a prognostic solution for the main bearing on a wind turbine is also
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presented. Prognostics for wind turbines has not previously been demonstrated in

the relevant literature and the proposed solution, using the multiple model particle

filtering framework, provides the necessary capabilities for addressing and repre-

senting the uncertainty regarding how a turbine fault will evolve, considering the

uncertainty in future operating load.

A final notable feature of the work developed within this thesis is that the software and

algorithms developed relating to dry vacuum pumps and thermal abatement systems

was successfully commercialised and licensed to a large semiconductor equipment man-

ufacturer, Edwards Vacuum (formerly BOC Edwards). Edwards are a major supplier

of both vacuum and abatement systems to semiconductor, flat panel display, and solar

panel manufacturers worldwide, with an annual turnover of almost $1 billion. The ob-

jective of the commercialisation agreement was that the technologies developed as part

of this thesis will eventually be incorporated within Edwards existing condition monitor-

ing software, FabWorks. As a result, there is the potential that the relevant algorithms

developed within this thesis will, sometime in the future, be installed and operating in

semiconductor manufacturing facilities worldwide. Another point to note is that the

commercial agreements with Edwards Vacuum did not result in any major constraints

regarding publishing the results of the work undertaken.

1.4 List of Publications

1. Butler, S., Ringwood, J.V., and MacGearailt, N., “Prediction of Vacuum Pump

Degradation in Semiconductor Processing”, IFAC Symposium SAFEPROCESS:

Fault Detection, Supervision and Safety for Technical Processes, oral presentation,

Barcelona, Spain, June/July 2009, pp. 1635–1640.

2. Butler, S. and Ringwood, J.V., “Particle filters for remaining useful life estimation

of abatement equipment used in semiconductor manufacturing”, IEEE Conf. on

Control and Fault-Tolerant Systems, oral presentation, Nice, France, Oct. 2010,

pp. 436-441.

3. Butler, S., Ringwood, J.V., “Particle Filtering for Prognostics of Thermal Abate-

ment Systems”, Intel European Research & Innovation Conference, oral presenta-

tion, Leixlip, Ireland, Oct. 2011.

4. Butler, S., Ringwood, J.V., and Mooney, M., “Multiple Model Particle Filtering for

Prognostics of a Thermal Abatement System”, Reliability Engineering & System

Safety, submitted for publication Jan. 2012.
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1.5 Thesis Layout

The layout of this thesis is as follows:

Chapter 2 provides an introduction to condition-based maintenance. The objective

of this chapter is to provide the unfamiliar reader with a comprehensive overview

of the main issues, benefits, challenges, and techniques involved in developing

condition-based maintenance systems.

Chapter 3 introduces the mathematical techniques used in the development of condi-

tion monitoring and prognostic algorithms in this thesis.

Chapter 4 describes the development of a condition monitoring solution for dry vac-

uum pumps used in semiconductor manufacturing.

Chapter 5 describes the development of a Gaussian mixture model based condition

monitoring solution for thermal abatement devices used in semiconductor man-

ufacturing. The application of Gaussian mixture models for multi-mode pump

tracking and condition monitoring in dry vacuum pumps is also presented.

Chapter 6 presents the development of a prognostic solution for thermal abatement

devices. The developed solution uses a multiple model particle filtering approach

to address the uncertainty challenges involved in predicting the remaining useful

life of thermal abatement devices, where future operating loads and conditions are

uncertain.

Chapter 7 describes the development of a condition monitoring solution for the main

bearing on large utility scale wind turbines. The adaptability of the multiple model

particle filtering approach developed in Chapter 6 is demonstrated for predicting

the remaining useful life of a degrading main bearing.

Chapter 8 presents the general conclusions which can be drawn from the body of

research presented in this thesis and briefly discusses potential future work arising

from this research.
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Chapter 2

Background

2.1 Background

Maintenance activities on critical equipment and systems have traditionally employed

one of two maintenance philosophies; preventative or corrective. Preventative (or schedule-

based) maintenance approaches use time-based intervals, or derived statistics such as

mean-time-between-failures (MTBF), to schedule maintenance activities. An example

of a preventative maintenance approach would be the performance of maintenance in-

spections and overhauls on aircraft engines, once the engines have been operated for

a certain number of flight hours. Alternatively, the corrective maintenance approach

entails operating equipment until it fails and then restoring it to good health. However,

the corrective approach can only be applied to certain types of equipment, where system

failure does not risk human safety.

Both preventative and corrective maintenance approaches have financial implications

associated with them. The use of worst-case failure rate statistics to determine main-

tenance scheduling often results in conservative estimates regarding the likelihood of

equipment failure. This can result in components regularly being replaced long before

they have reached the end of their serviceable life. Alternatively, the use of a correc-

tive maintenance approach ensures that the serviceable life of components is maximised.

However, once a component does fail, it may cause damage to other parts of a system,

resulting in significant repair costs with associated downtime and loss of revenue. The

common factor to both of these approaches is that the “actual” condition of the equip-

ment, before failure, is generally not taken into account when planning maintenance

activities.
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As systems and equipment become more complex and expensive, and increasing compe-

tition drives industries to become more lean and efficient, industrial and military com-

munities are becoming increasingly concerned about system reliability and availability

[3]. In many industries using complex machinery, the need to reduce maintenance costs,

minimise the risk of catastrophic failures, and maximise system availability is leading a

drive toward a new maintenance philosophy. Condition-based maintenance (CBM), or

predictive maintenance, represents a new maintenance philosophy, whereby maintenance

activities are only performed when there is objective evidence of an impending fault or

failure condition, whilst also ensuring safety, reliability, and reducing overall total life

costs [1],

The goal of a CBM approach is to optimise the availability of high-value critical assets,

whilst also reducing overall maintenance and logistics costs. By performing mainte-

nance only when there is evidence of abnormal behaviour, CBM programs aim to reduce

maintenance costs by minimising the number of scheduled preventative maintenance

actions, thus minimising the requirement, and cost, of maintaining a large inventory of

spare parts, whilst also avoiding, potentially catastrophic, in-service equipment failures.

The promise of reduced maintenance costs and increased availability is leading a change

in maintenance philosophies, away from the traditional preventative and corrective ap-

proaches, toward a more condition-based approach.

2.2 Condition-Based Maintenance

Condition-based maintenance entails continuous monitoring of system data to provide

an accurate assessment of the health, or status, of a component/system and performing

maintenance based on its observed health. It involves using real-time system monitoring

and data processing. Another capability that may form part of a CBM system is an

ability to provide an estimate of the remaining useful life (RUL) of the system or com-

ponent being monitored. This type of functionality is known as prognostics, as opposed

to diagnostics which is used to assess the current condition of a monitored system.

A condition-based maintenance approach promises a range of improvements over existing

approaches, with a potential reduction in overall maintenance costs being one of the

primary drivers for developing such approaches. The cost associated with each of the

various maintenance approaches is depicted in Figure 2.1. A corrective maintenance

approach has a relatively low maintenance cost (minimal preventative actions), but high

performance costs associated with the high cost of operational failures. In contrast,
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preventative maintenance generally has a low operating cost, associated with reduced

instances of in-service failures, but often uses very conservative estimates regarding the

probability of component failures and so has a high maintenance cost, associated with the

removal of components before they have reached the end of their useful lives. It would

seem, therefore, that the most cost efficient approach is to undertake maintenance when

there is objective evidence of need, i.e. condition-based maintenance.

Figure 2.1: Costs associated with different maintenance approaches [1]

The development of CBM approaches has been enabled by developments and advance-

ments in sensor technologies, data collection, storage and processing capabilities, and

continuous improvements in algorithms and data analysis techniques. CBM systems

are founded upon the ability to infer equipment condition using data collected from

monitored systems. Ideally, a complete CBM system will incorporate both diagnostic

and prognostic capabilities. The distinguishing factor between diagnostic and prognostic

capabilities is the nature of the analysis. Diagnostics involves posterior event analysis

(i.e. identifying the occurrence of an event which has already happened), while prog-

nostics is concerned with prior event analysis (i.e. predicting the future behaviour of a

system under observation) [12]. Sections 2.2.1 and 2.2.2 present an introduction to the

principles of fault diagnostics and prognostics.

2.2.1 Diagnostics

The foundation of any CBM approach are robust and reliable fault diagnostic capabil-

ities. Fault diagnostic algorithms are designed to detect system performance, monitor

degradation levels, and identify faults (failures) based on physical property changes,

through detectable phenomena [3]. Ideally, such systems will also identify the specific
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subsystem and/or component that is failing, as well as the specific failure mechanism

that has occurred.

Fault diagnostic capabilities have been in development for over 50 years in various ap-

plication domains. Some of the earliest fault diagnostic capabilities were developed in

the form of built-in test (BIT) equipment for early generation aircraft [3]. In the inter-

vening period, continuous developments and improvements in computer power and data

storage capabilities have been reflected in the continuing development of more complex

and capable fault diagnostic capabilities. Such capabilities have continued to improve

such that, in many application domains, it is often possible to identify the presence

of incipient fault conditions, which occur prior to equipment failure. Such capabilities

enable maintenance personnel to potentially avoid catastrophic failures and reduce over-

all equipment downtime. In addition, such capabilities have driven efforts to develop

capabilities beyond fault diagnostic capabilities, namely prognostic capabilities.

The term fault diagnostics is typically used to describe a broad range of tasks and

capabilities. Well defined and accepted definitions for the various tasks covered by the

term fault diagnostics have not yet become standardised, however, within the CBM

community the following terms are becoming accepted definitions [3]:

• Fault diagnosis is concerned with detecting, isolating, and identifying an impend-

ing, or incipient, failure condition in a system. The term fault implies that the

system under observation is still operational, but cannot continue operating indef-

initely without maintenance intervention.

• Failure diagnosis is concerned with detecting, isolating, and identifying a system

that has ceased to operate.

In the descriptions provided above, the terms fault detection, isolation, and identification

generally imply the following meaning:

• Fault (failure) detection involves identifying the occurrence of a fault, or failure,

in a monitored system, or the identification of abnormal behaviour which may be

indicative of a fault condition.

• Fault (failure) isolation involves identifying which component/subsystem/system

has a fault condition, or has failed

• Fault (failure) identification involves determining the nature and extent of a system

fault condition or failure
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2.2.2 Prognostics

To enable the benefits of a truly condition-based maintenance philosophy additional

capabilities, beyond the realm of diagnostics, are required. Prognostics capabilities

are designed to provide maintenance personnel with insight into the future health of a

monitored system. To understand the realm of diagnostic and prognostic capabilities

consider Figure 2.2, which illustrates the failure progression timeline of a typical system

component. At the start of the components life, it is considered to be in proper working

order and, after some time, an incipient fault condition develops in the component.

As time progresses, the severity of the fault condition increases until the component

eventually fails. If the system is permitted to continue operating, there is the potential

that further damage may be caused to other secondary components or systems.

Figure 2.2: Failure progression timeline [2]

The application domain of diagnostics has typically occurred at the point of component

failure, or on the interval between component failure and eventual system-wide failure.

However, if a fault condition can be detected at an early incipient stage, then main-

tenance actions can be delayed until the fault progresses to a more severe state, but

before failure occurs. This interval, between the detection of an incipient fault condition

and the occurrence of failure, defines the realm of prognostics. Provided a sufficient

interval, commonly referred to as the lead-time interval (LTI) exists, between incipient

fault detection and system failure, this enables a range of operational and maintenance

benefits to be realised. With sufficient warning of upcoming maintenance events, re-

medial maintenance work can be planned in advance, with the necessary resources and
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personnel allocated as necessary. This capability is key to reaping the benefits of a truly

condition based maintenance and delivering major costs savings.

From a high-level perspective, prognostics has the potential to deliver major improve-

ments over more traditional maintenance approaches, including both reduced operational

and support (O&S) costs and complete life-cyle total ownership costs (TOC), whilst also

improving the safety of operating complex machinery and processes [3]. With the pro-

vision of a sufficient lead-time between the detection of an incipient fault condition and

the occurrence of equipment failure, maintenance actions can become proactive instead

of reactive, allowing necessary remedial maintenance work to be planned in advance.

This is in stark contrast to more traditional maintenance approaches, in which equip-

ment failure typically occurs without prior notice, leading to delays in organising the

necessary personnel, spares, and tools, necessary to return the equipment to good health.

Furthermore, the costs associated with in-service equipment failure can often go far

beyond the costs associated with repairing the failed piece of equipment. Consider the

occurrence of equipment failure within a large manufacturing facility or on a commercial

airliner. The failure of critical equipment in a manufacturing facility, such as a semi-

conductor fabrication (fab) plant, can potentially lead to major downtime on a specific

manufacturing process. Such failures can potentially reduce the overall throughput of

a manufacturing facility, resulting in incurred costs which can go far beyond the actual

maintenance repair costs. In the case of a major fault on a commercial airliner, with

passengers waiting at the gate, the costs can also quickly escalate beyond the actual

repair costs. Furthermore, given the high utilisation rates of modern aircraft the effects

of in-service failures can lead to delays for an extended period of time. Considering these

issues, the potential benefits of accurate and reliable prognostic capabilities are obvious.

To enable the benefits of prognostic capabilities to be realised, maintenance staff need

a reliable estimate of how long a system can continue to be operated safely, i.e. the

remaining useful life (RUL) of the system, until a detected fault condition progresses

to a failure condition. The generation of accurate predictions of RUL is the challenge

presented in the development of prognostic algorithms. Since prognostics is associated

with predicting the future, it inherently involves a large degree of uncertainty. Indeed,

the task of prognostics is considered to be significantly more difficult task than diagnos-

tics, since the evolution of equipment fault conditions is subject to stochastic processes

which have not yet happened [13]. Later, in Section 2.5, a review of the main issues,

challenges, and enabling technologies, used in the development of prognostic algorithms

is presented.
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2.3 Prognostics & Health Management

In recent times, the term prognostics & health management (PHM) has emerged, to

describe systems developed to implement a CBM philosophy. The term PHM originated

from the military applications and was the name given to the capability being developed

for the new F-35 Joint-Strike Fighter (JSF) to enable the vision of autonomic logistics

and to meet the overall affordability and supportability goals of the latest military fighter

aircraft [14].

In the development of a PHM system, the term prognostics takes on a much wider defi-

nition than fault prediction and is used to describe a wide variety of activities including

fault/failure detection, fault/failure isolation, enhanced diagnostics, material condition

assessment, performance monitoring, and prognostics [14]. Within a PHM system, the

capability to predict RUL is often termed as ‘real predictive prognostics’ to distinguish

the capability from the more broader description of prognostics within a PHM system

[2]. Figure 2.3 illustrates the typical stages within a CBM/PHM system, from appro-

priate signal pre-processing and feature extraction, fault detection and classification, to

the prediction (prognostics) of RUL and finally, appropriate maintenance scheduling.

Figure 2.3: Stages within a typical PHM system [2]

The development of a comprehensive health management system goes beyond the ability

to perform accurate diagnostics and real-predictive prognostics. Such systems will often

include many types of functional capabilities which are designed to complement each

other and deliver a greatly increased range of maintenance benefits, beyond what is

possible in the application of any single capability. The following list describes some
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of the functionality and capabilities that might be contained within a modern PHM

system, as described by Hess et al. [14].

• Fault detection / isolation

• Advanced diagnostics

• Predictive prognostics

• RUL and time-to-failure predictions

• Component life usage tracking

• Warranty guarantee tracking

• Health reporting and information management

• Utilisation tracking

• Decision support systems

• Fault accommodation

• Information fusion and reasoners

Beyond the obvious direct maintenance benefits of implementing a comprehensive PHM

system, a range of other opportunities are presented from both a cost savings and busi-

ness opportunity perspective, which reflect the original drivers for the development of

PHM capabilities on the JSF. The provision of a lead-time, between detection of an

incipient fault condition and actual system failure, is a key enabler of the concept of

autonomic logistics. In most industries, where equipment uptime and availability is key,

it is common for a large inventory of replacement components and parts to be main-

tained at all times. The procurement and logistics of managing a large inventory of

spare parts is generally undertaken at significant cost. However, with the provision of

a lead-time before failure, this presents an opportunity for improvements in how such

logistic systems are managed. By maintaining a smaller inventory of replacement parts,

PHM systems can be integrated into the logistics system, automatically ordering spare

parts for those systems in which incipient failures are detected. In this way, the prin-

ciple of just-in-time (JIT) manufacturing can be applied to the maintenance of critical

equipment, reducing on-site inventory and the associated costs.

A further opportunity presented by the development of PHM systems are improvements

to the implementation of performance based contracting. In many industries, it is com-

mon for manufacturers, or operators of complex systems, to outsource the maintenance
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of such systems to the original equipment manufacturer (OEM). In this way, operators

can make major costs savings by not having to hire and train their own staff to main-

tain such equipment. Operators can also benefit from the knowledge, expertise, and

worldwide support often offered by OEMs. A high profile example of such maintenance

outsourcing is the “power-by-the-hour” concept offered by Rolls-Royce, in which Rolls-

Royce take full responsibility for all maintenance, spares, and replacements, of aircraft

engines installed on an airliners fleet. Rolls-Royce then receive payment for each hour

an engine is operated [15].

The implementation of performance based contracting provides incentives for OEMs to

make continuing investments in the development of PHM systems. Historically, OEMs

and suppliers would have earned a large portion of their after-sales revenue from sales

of replacement components to equipment operators. In such situations it was in the

interests of OEMs that manufacturers would regularly swap out components at con-

servatively selected intervals as part of a preventative maintenance program. However,

under the new performance-based maintenance contracts, it is now more beneficial for

OEMs to maximise the service-life of systems and components. With the introduction

of performance-based maintenance contracts, PHM technologies have the potential to

drive a new business philosophy regarding after-sales service and revenue, whilst also en-

suring no conflicts of interests between both parties. PHM systems, and, in particular,

real predictive prognostics capabilities, have the potential to dramatically reduce the

costs of providing maintenance contracts to equipment operators, whilst also improving

the OEMs profit margins on such contracts. The sale of developed prognostic technolo-

gies could also provides a new and growing source of after-sales revenue. Equipment

operators would also benefit from increased availability of equipment, ensuring a contin-

uing good relationship between the two parties and potentially driving future business

opportunities. Furthermore, the demonstrated benefits of such technologies can poten-

tially motivate the continuing development of improved PHM technologies by OEMs,

which can drive future after-sales revenues, and also provide OEMs with a competitive

advantage over their competition, when bidding on future contracts.

Whilst the potential benefits of real predictive prognostics are obvious, and help explain

the growth in related research in recent years [16], there are many reasons that such

technologies have not yet become commonplace. The primary difficulty associated with

the development of real predictive prognostics is the large level of uncertainty associated

with the generation of long-term predictions of equipment health. How this uncertainty

is represented and managed is is key to the success of any future prognostic technologies.
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2.4 Fault Diagnostics

For several decades researchers and practitioners have been investigating and developing

different techniques for failure detection, isolation and identification across a wide range

of application domains in science, medicine and engineering. A comprehensive review

of the techniques and methods used in fault diagnostics is beyond the scope of this

document. Indeed, as described by Vachtenvanos et al. [3] “the diversity of application

domains in fault diagnostics is matched only by plurality of enabling technologies that

have surfaced over the years, in attempts to diagnose detrimental events”. For the inter-

ested reader, a series of review publications by Venkatasubramanian et al. [17–19] and

Jardine et al. [12] provide an excellent introduction and reference source to the different

approaches and techniques used in fault diagnostics, and the different applications to

which such techniques have been applied.

In addition to the development of fault diagnostic capabilities for specific application

domains, a number of fault diagnostic related issues are also often considered in the

development of PHM solutions. Two such issues are failure modes and effects criticality

analysis (FMECA) studies and feature extraction techniques. Section 2.4.1 discusses the

issues and objectives in developing FMECA studies, which is followed in Section 2.4.2

by a brief overview of feature extraction methods. Finally, Section 2.4.3 presents a brief

overview of the main approaches and techniques employed in the development of fault

diagnostic capabilities.

2.4.1 FMECA Studies

A common first stage in the development of a PHM systems is a comprehensive FMECA

study. The objective of FMECA studies is to relate failure events to root causes [3]. As

part of this objective, FMECA studies investigate all relevant issues regarding potential

failure modes of monitored systems including: the severity of different failure modes,

their frequency of occurrence, their testability, the fault symptoms which are suggestive

of a systems behaviour under different fault conditions, and the sensors and monitoring

equipment required to monitor and track fault symptomatic behaviour.

In addition, advanced FMECA studies may also try to identify appropriate methods for

identifying optimal features, or indicators, which can be used for detecting and isolating

different fault conditions. FMECA studies are also often used as the starting tem-

plate for the development of fault diagnostic capabilities, focusing efforts on addressing

those issues which will provide the greatest maintenance benefits. The development
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of a FMECA study typically requires input from a diverse variety of sources including

domain experts, maintenance personnel, equipment specialists, and designers. An excel-

lent overview of the principle of FMECA studies and an example of a developed study

is presented in [3].

2.4.2 Feature Extraction

The first stage in any PHM system typically involves appropriate preprocessing of equip-

ment sensor data. This stage is often referred to as feature extraction. Feature extraction

is the process of extracting useful information from raw signal data [12]. The feature

extraction stage within a PHM system is designed to generate a vector of data features,

which can be used to infer the current fault status of a monitored system.

The generation of an appropriate feature vector is typically application dependent and

is one of the most important stages in a PHM system. For example, in the case of

a vibration monitoring system, the feature extraction stage may be used to identify

critical values relating to the magnitude of a vibration signal at critical values such

as the gear-mesh frequency in a gearbox. Other examples of feature extraction could

include identifying the parameters of a signal distribution for the purposes of tracking

changes in such distribution which relate to developing fault conditions.
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2.4.3 Fault Diagnosis Methods

From the highest level, fault diagnosis methods can be classified into one of two types of

approaches, model-based and data-based [3]. Sections 2.4.3.1 and 2.4.3.2 present a brief

review of both approaches.

2.4.3.1 Model-based approaches

Model-based fault diagnostic approaches employ a mathematical model of the system

under observation. Using such a model, estimates of system/process outputs are gen-

erated which are then compared with the actual process outputs to generate a residual

signal, or innovation. Based upon a comparison of the model outputs and the actual

system outputs, potential fault conditions are identified on the basis of the values and

properties of the generated residual signal. Figure 2.4 illustrates the basic concepts of a

typical model-based approach to fault diagnostics.

Figure 2.4: Model-based diagnostic approach

As indicated in Figure 2.4, a comparison between the actual system output and a model

estimate are used to generate a residual signal. This process is known as residual gener-

ation. During fault-free operation, the value of residual signal should be approximately

zero, indicating that the model, which describes fault-free behaviour, accurately de-

scribes the current behaviour of the system under observation. In the situation where

the value of the residual signal deviates from zero, appropriate processing and analysis

is applied to the residual signal. The appropriately processed residual signal is then

forwarded to a decision logic routine which is used to map the behaviour of the residual

signal onto a specific fault condition. This process is described as residual evaluation.
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Whilst Figure 2.4 illustrates the general principle of model-based fault diagnostics, clas-

sical model-based fault diagnostic techniques can be further categorised. Isserman and

Balle [20] categorise specific approaches into one of three types: parameter identifica-

tion-based methods, parity equation-based methods and observer -based methods. Each

of these approaches are briefly described.

Parameter identification based methods employ a dynamic model of the system

under observation in which input/output data is used to estimate the values of the

model parameters, using appropriate system identification techniques. Deviations

in the values of the identified parameter values, over time, are used to identify the

presence of a fault condition.

State and output observer based methods also employ a model of fault-free be-

haviour. In this case, system inputs are used to estimate system state variables,

using state estimation techniques such as the Kalman filter. The estimated state

variables are then used to reconstruct the system outputs which are then com-

pared with the actual system outputs to generate a residual, which can be used to

indicate faults.

Parity equation based methods compare the behaviour of an observed system with

a process model which describes normal, non-faulty, behaviour. The basic princi-

ple is to check the parity (consistency) of the mathematical equations describing

the observed system, also described as the analytical redundancy relations, using

the actual system measurements. A fault is declared once the preassigned error

bounds are surpassed. This approach has close similarities with the observer-based

approaches [21].

The key feature of a model-based approach to fault diagnostics is the requirement for an

accurate and robust mathematical model of the system under observation. Such models

are usually derived from first principles, using ordinary differential equations, so that the

different elements of the model relate to actual physical properties. Physical models of

systems under observation are usually converted into state-space format, before applying

the techniques described above.

A major benefit of model-based fault diagnostic approaches is the capability of detecting

unanticipated faults [3], since the models employed are usually based upon the physics of

failure. This is in contrast to data-driven approaches, which typically require historical
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examples of each fault condition they are designed to detect. However, in many real-

world situations, it is not possible to apply model-based diagnostic approaches, since

many processes are to complex to develop accurate mathematical models for.

2.4.3.2 Data-driven approaches

The general principle of data-driven approaches to fault diagnostics is to utilise pattern

recognition techniques to map data in the measurement, or feature, space, to equipment

faults within the fault space [12]. A wide variety of techniques have been applied to fault

diagnostic problems. Jardine et al. [12] categorises data-driven approaches into two

types; statistical approaches and artificial intelligence (AI) based approaches. Within

these categorisations, a diverse range of techniques have been applied to a wide variety

of fault diagnostic problems. In the following sections, a brief overview of methods and

applications is presented.

Statistical Approaches A widely applied data-driven technique in fault diagnostics,

taken from the domain of control theory, is statistical process control (SPC). SPC is

used to measure deviations in signal behaviour about a predefined range or distribution.

If a signal deviates outside the defined control limits this may be indicative of a fault

condition. An example of multivariate SPC applied to fault detection in a semiconductor

etch chamber is presented in [22].

Another commonly employed statistical approach is principal component analysis (PCA)

and partial least squares (PLS). PCA is often applied to high-dimensional datasets to

transform a number of related variables to a smaller set of uncorrelated variables, i.e.

dimensionality reduction. The basic principle of PCA for fault diagnostics is to derive a

PCA model using a dataset of normal fault-free behaviour. Future observations are then

compared with this model using statistical measures such as the T 2 and Q statistics [19].

If the measured statistics exceed a defined limit, a potential fault condition is flagged.

PLS is a multivariate regression algorithm based upon PCA. Whilst PCA is concerned

with decomposing an input matrix X into its principal components, PLS is concerned

with developing a linear regression model by first projecting the input matrix X and

output matrix Y onto a lower dimensional space. A comprehensive overview of PCA/-

PLS applied to fault diagnostic problems can be found in [23]. A more contemporary

review of applications of PCA/PLS to fault diagnostics can be found in [24].
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Classification techniques Data classification techniques, using both statistical meth-

ods and AI based methods, are some of the most widely applied techniques in data-driven

fault diagnostics. The application of classification techniques relies upon the availabil-

ity of a fault pattern library, or database, of historical failure examples, which relate

extracted features from monitored systems to specific fault conditions. The objective

in applying classification based techniques is to model the relationships between fault

features, or fault indicator measurements, and fault classes [3]. Such approaches do not

have the capability of model-based approaches which employ models, based upon the

physics of failure, which are capable of detecting even unanticipated fault conditions.

However, data-driven classification approaches can be constructed without the avail-

ability of a complex mathematical model of the monitored system or process. Some of

the most common techniques applied for fault classification include artificial neural net-

works (ANNs), Bayesian networks, discriminant analysis, support vector classification,

and fuzzy logic.

2.4.4 Novelty Detection

The development of fault diagnostic capabilities, particularly historical data-based ap-

proaches, rely upon the availability of historical failure examples from which the equip-

ment behaviour, associated with fault (failure) conditions, can be “learned”. However,

in many real-world situations, the availability of sufficient historical failure data is of-

ten lacking, especially failure data which captures all the conceivable behaviour which

might be observed in the presence of a fault condition. In contrast, data describing the

fault-free behaviour of equipment is usually plentiful. Novelty detection methods, also

known as anomaly detection, provide an approach for exploting such fault-free data in

the development of fault diagnostic capabilities. The basic principle of novelty detec-

tion algorithms is to construct a model of a system, from collected system data, which

describes its observed behaviour during normal, fault-free, operation. Once such models

have been developed, future data collected is then compared with the model of fault-

free operation and, using a distance metric and a specified threshold, abnormal or novel

events are identified which might indicate the occurrence of a fault condition.

Novelty detection algorithms represent a type of classifier. However, instead of classifying

the input data into a specific class, novelty detection algorithms act as a detector [25], in

which the objective is to determine whether the input data is part of the data on which

the classifier was trained, or if the input data is unknown. Novelty detection methods

have been applied to a wide variety of applications including radar target detection,

hand writing recognition and the detection of pathological features in mammograms.
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In addition, novelty detection methods have seen wide application to fault detection

problems. Similar to the development of fault diagnostic capabilities the variety of

techniques applied in the development of novelty detection methods are vast. Some of the

most commonly approaches involves constructing models which describe the distribution

of fault-free signal behaviour. Such distributions are often multivariate and multi-modal.

A range of parametric, non-parametric, and artificial intelligence based approaches are

often employed to develop such models. An comprehensive review of novelty detection

methods, and applications to which they have been applied, is available in a two part

publication by Markou & Sing [25, 26].
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2.5 Fault Prognostics

To enable the benefits of a truly condition-based maintenance philosophy, real predictive

prognostic capabilities are required. Such capabilities are designed to provide mainte-

nance staff with prior notice of pending equipment failure and ideally provide sufficient

lead-time so that the necessary personnel, equipment and spare parts can be organised

and deployed, thus minimising both equipment downtime and maintenance costs.

Real predictive prognostics is understood to be the generation of long-term predictions,

describing the evolution of a signal of interest, or fault indicator, for the purpose of

estimating the remaining useful life (RUL) of a failing system or component [27]. The

primary difficulty encountered in the development of prognostic technologies is the sig-

nificant uncertainty associated with the generation of long-term predictions of equipment

health. For this reason, real predictive prognostics has been described as the Achilles’

heel in implementing a comprehensive PHM system [3].

The development of prognostic capabilities is a difficult challenge owing to the inherent

uncertainty associated with predicting the future behaviour of a degrading system. As

a result, there are two key issues to consider when selecting appropriate techniques in

the development of prognostics capabilities, uncertainty representation and uncertainty

management. Uncertainty representation implies the ability to model various forms

of uncertainty stemming from a variety of sources, whereas uncertainty management

concerns the methodologies and tools needed to continuously “shrink” the uncertainty

bounds as a fault evolves [3].

In this section, some of the issues involved in the development of prognostic algorithms

are reviewed. Section 2.5.1 introduces the concept of the remaining useful life probability

density function (PDF). Section 2.5.2 then reviews the different techniques which can

be applied to predicting the RUL of systems under observation. The applicability and

capabilities of the different methods are reviewed with reference to application examples

of the different techniques. Finally, Section 2.5.3 presents a brief overview of the metrics

which are available for evaluating and comparing the performance of different prognostic

methods.
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2.5.1 The Remaining Useful Life PDF

One of the key concepts within the prognostics framework is the RUL PDF. The RUL

PDF is the output generated by a prognostic algorithm, describing the distribution in

time of likely equipment failure times. Consider Figure 2.5, which illustrates the key

concepts of a RUL PDF. At time tP , a prediction is made and an estimate of the RUL

PDF is generated. Once the RUL PDF has been generated, the next question is to

decide when to carry out corrective maintenance actions. Ideally, the time chosen for

maintenance action will both avoid equipment failure and maximise the useful-life of the

equipment. However, these are conflicting requirements and, as a consequence, selecting

when to perform maintenance is typically an exercise in risk management.

Figure 2.5: The remaining useful life PDF

In the development of a requirements specification for a prognostic algorithm, a key con-

sideration will be the maximum allowable probability of failure (PoF). This value defines

the maximum acceptable level of risk of equipment failure, beyond which equipment can

no longer be operated as the risk of equipment failure is deemed excessive. Using the de-

fined maximum allowable PoF and the estimated RUL PDF, an important value known

as the just-in-time-point (JITP) can be identified. The JITP defines the latest point in

time before which corrective maintenance actions must be carried out to avoid operating

equipment beyond the maximum allowable PoF. In a real-life application, selecting the

maximum allowable PoF would usually consider a number of factors.

The key factors include safety, criticality and economic considerations. In certain scenar-

ios, where safety considerations are primary, the requirement might be to avoid as many

in-service failures as possible, and thus a conservative value for the maximum allowable

PoF might be chosen. Alternatively, a plant operator may accept a higher maximum
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allowable PoF value in situations where maximising the useful life of expensive equip-

ment/components might be more economical than avoiding an occasional failure. An

example of such a scenario might be the use of a diamond headed cutting tool.

In Figure 2.5, a maximum allowable PoF value of 5% is assumed for illustrative purposes.

Once the JITP has been identified, another key measure can be computed, the lead-time

interval (LTI). The LTI is defined as the time interval between the time the prediction

is generated tP , and the JITP tJITP , so that

tLTI = tJITP − tP (2.1)

The LTI provides a real-time estimate of the remaining time before a system operates

above the maximum allowable PoF. Maintenance actions must be performed before

this time elapses, to avoid operating equipment beyond the maximum allowable PoF.

The RUL PDF and the LTI value represent key information that should be presented to

maintenance staff as part of the human-machine interface (HMI). This information allows

for maintenance staff to make informed operational decisions, regarding when to perform

maintenance and avoid instances of equipment failure. Additionally, the RUL PDF

and LTI values can be used as inputs into an automated maintenance decision support

system. As a failure approaches, the LTI value could be used to automatically generate

maintenance tasks which must be performed to avoid system failure. In addition, both

RUL and LTI estimates could potentially be incorporated into an autonomic logistics

system, as described previously in Section 2.3, whereby replacement components and

parts are ordered automatically when a predicted failure is approaching. This would

allow for a smaller inventory of spare parts and components to be maintained onsite,

further reducing total ownership costs (TOC).
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2.5.2 Prognostic Techniques

In recent times, a wide variety of techniques have been applied to predicting the RUL

of monitored systems, which is reflected in the diverse range of applications. Cate-

gorising the different approaches into different classes is difficult due to the wide va-

riety of techniques which have been applied to prognostic problems. Vachtsevanos et

al. [3] categorise prognostic approaches into one of three classes, experience-based ap-

proaches, trending/data-driven approaches and model-based approaches, as illustrated

in Figure 2.6. The categorisation by Vachtsevanos et al. also relates different prognostic

approaches to capability, applicability and complexity/cost. Figure 2.6 illustrates how,

as we move from experience-based to model-based approaches, with increased capabil-

ities and performance, there is a likewise decrease in the applicability of the different

approaches. The reduction in applicability is a reflection of the increasing complexity/-

cost of the different approaches, as the increased capabilities are achieved by adapting

and tailoring solutions to specific prognostic applications.

Figure 2.6: Technical approaches to prognostics [3]

In the following sections, a review of the different technical approaches within these

classes is presented, with reference to relevant applications of the different approaches.
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2.5.2.1 Experience-Based Prognostic Approaches

The simplest prognostic approaches rely upon statistical information collected, which

examines historical failure rates of systems or components. Such data can be used to

develop life-usage models in terms of distributions of failure rates over time. Such ap-

proaches are used to develop preventative maintenance schedules in which maintenance

is performed on the basis of mean time between failures (MBTF), which are derived

from life-usage models. However, such approaches do not have any predictive capability

and cannot be described as truly predictive prognostic techniques. However, such ap-

proaches have wide applicability in systems or components with low criticality or cost,

or in situations where sensor data, which can be used to infer condition, is not available.

2.5.2.2 Model-Based Prognostic Approaches

The most capable prognostic approaches use physics-of-failure models of the system

under observation, derived from first principles. The main application domain of such

approaches, to date, have involved the use of fatigue models for modelling the initiation

and propagation of cracks in structural components [28]. The main benefit of model-

based approaches, using physics-of-failure models, is the ability to incorporate physical

understanding of the process under observation, and additionally, the ability to predict

degradation under different loads and operating conditions. However, model-based prog-

nostic approaches are also limited by the ability to develop such high-fidelity models of

often complex systems and processes. In many situations, where complex first principle

models are not available, it is possible to assume a certain form for a dynamic model

describing the evolution of a degradation process. Then, using observed inputs and

outputs, the model parameters can be identified in a process known as model identifica-

tion [3]. Prognostics approaches using such models are sometimes described as hybrid

approaches, crossing the boundary between model-based and data-based prognostics.

With the availability of sufficiently descriptive models of a degradation process, either

physics of failure models, or models derived to describe the behaviour of historical fail-

ure examples, the development of prognostic algorithms based upon the application

of recursive Bayesian estimation techniques are possible. Dynamic model-based prog-

nostic approaches based upon recursive Bayesian estimation techniques also provide a

framework for addressing various sources of uncertainty in prognostics, and have been

amongst the most successful approaches to prognostics. Recursive Bayesian estimation

techniques combine information from the model, describing the degradation process,

with measurements taken from the system under observation. In this way, the current
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level of degradation is modelled as a random variable, which allows for uncertainty in

the current level of degradation to be quantified. In addition, the current level of uncer-

tainty can then be propagated into the future to better describe the uncertainty in the

predictions generated.

Various recursive Bayesian estimation techniques have been investigated for prognos-

tic problems, such as the Kalman Filter, Extended Kalman filter, and Particle Filter.

The Kalman filter is an optimal recursive Bayesian estimator in the situation where the

process can be modelled by a linear state-space model with Gaussian noise processes.

However, the dynamics of degradation process are typically non-linear, with noise pro-

cesses that are often non-Gaussian [29]. In such situations, the Extended Kalman Filter,

which linearises a non-linear state-space model around the current point, can be used

[28]. However, as described by Saha et al. [30], if the initial estimate of the state is

incorrect, or if the process is modelled incorrectly, the filter may quickly diverge, re-

sulting in poor predictions being generated. In recent times, sequential Monte Carlo

methods, more commonly known as particle filtering, have grown in popularity, due to

their flexibility and ease of design in tackling non-linear filtering problems [29]. Indeed,

particle filtering has been described as the de facto state of the art technique in failure

prognostics [31]. The basic principle of particle filtering is to approximate the degra-

dation state PDF with a set of particles, representing state values, and an associated

set of particle weights, which represent the discrete probability masses of the individual

particles. The particles can be generated and updated recursively using a non-linear

state-transition model, describing the evolution of the process under observation.

The potential of particle filtering for prognostics was first demonstrated in a PhD thesis

by Orchard [27], and since then particle filtering methods have been investigated and

applied to a variety of prognostic applications including lithium ion battery prognostics

[32], fatigue crack growth prediction [29, 33, 34] and pneumatic values [35]. In addition,

particle filtering has been demonstrated to outperform alternative methods such as the

EKF and ARIMA models in predicting the RUL of batteries [30].

2.5.2.3 Data-Based Prognostic Approaches

In many situations the complexity of the systems under observation makes it impossi-

ble to derive robust and accurate models which can be used for prognostic purposes.

However, it is often the case that historical data, which captures the signal behaviour

of measured signals or extracted features from the incipient fault stage to equipment
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failure, is available. In such cases, data-driven methods which model how such signals

and features evolve can be utilised in generating predictions of RUL.

Data-driven prognostic approaches typically follow one of two strategies. The first strat-

egy is a two-stage process. Firstly, appropriate dimensionality reduction, feature extrac-

tion, or pattern matching techniques are employed to map system signals or features

onto a single dimension damage, degradation, or health index. Technically, this first

step falls under the realm of fault diagnostics since it is concerned with posterior event

analysis. Once the current level of degradation is identified, it is then extrapolated into

the future until a predefined critical threshold limit is exceeded. A range of techniques

can be applied in both of these steps. The second strategy is to directly model the

relationship between monitored signals or features, and the remaining life of the system.

In this situation, the remaining life of the system is the output generated by the models.

In the following section, a brief overview of some of the data-based techniques which

have been applied to prognostic problems are presented. More comprehensive reviews

of data-based prognostic techniques can be found in [36–38]

Time Series Approaches The simplest data-driven approaches to prognostics rely

upon projection methods, which project the current level of degradation into the future.

This task is essentially a time series prediction problem and, within the realm of prog-

nostics, has been addressed by a variety of approaches including autoregressive models

[30, 39] and exponential smoothing techniques [40].

The autoregressive integrated moving average model (ARIMA) forms a general class of

linear models that have historically seen wide use in modelling and forecasting time series

[41]. Unsurprisingly, such approaches have also been applied to prognostic problems

which are similar, in many respects, to forecasting problems. ARIMA models are derived

from the more common autoregressive moving average (ARMA) model, which models

a time series using two parts, an autoregressive (AR) part and a moving average (MA)

part. However, since ARMA models can only be used to model stationary processes

ARIMA models are often employed, which can be used to model non-stationary time

series signals. Examples of ARIMA models applied to prognostic problems can be found

in [30, 39].

Artificial Neural Networks Perhaps the most common data-driven technique ap-

plied to prognostic problems are artificial neural networks (ANNs). ANNs model rela-

tionships between input and output variables with a model structure inspired by the
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neural structure of the brain. The network weights and biases, which define the inter-

connections between the neurons, are adapted during a training process to maximise the

fit between the input and output data on which the models are trained.

ANNs have been applied in a number of different ways for prognostics. The most

common use of ANNs is in time series prediction, where the current degradation state is

predicted into the future until it exceeds a threshold value. Typically, in a feed-forward

ANN, previous values of the degradation index are used as the inputs to generate a one-

step ahead prediction. The generated output is then fed back as an input to the next

iteration, to generate long-term predictions. Examples of such applications on ANNs for

prognostics can be found in [42, 43]. ANNs can also employed to estimate the current

degradation index, using system features as inputs. The degradation index can then

be predicted into the future using ANNs again, or via alternative prediction methods.

Wang and Vachtsevanos [44] presented an application for bearing crack size prediction

in which a wavelet neural network (WNN) is used to estimate the current crack size

from extracted vibration signal features. A dynamic wavelet neural network (DWNN) is

then used to predict the fault propagation process into the future and estimate the RUL.

The first ANN used, the WNN, is a static feed-forward neural network used to derive a

static relationship between inputs and ouputs. The second ANN used, the DWNN, is an

example of a recurrent neural network (RNN), which incorporate feedback within the

network structure to predict the timeseries evolution. Other examples of RNNs applied

to prognostic problems can be found in [45, 46]. ANNs have also been used to directly

model the relationship between system features and RUL [45]. ANNs learn by example

and, as such, require sufficient instances of historical failure examples for training, and

are typically data hungry. As a result, ANNs can generate poor prediction performance

when future failure examples, on which the ANN was not trained, do not exhibit similar

behaviour to the examples which formed part of the training set.

Other approaches Beyond time series and ANN based approaches, a range of other

techniques have been applied to prognostic problems. Goebel [47] presented a compari-

son of ANNs against Gaussian process regression (GPR) and a relevance vector machine

(RVM) approach. The intrinsic ability of GPR and RVM to generate confidence limits

on generated predictions make such approaches attractive, whereas ANN approaches, in

general, do not provide confidence limits associated with predictions. The availability

of confidence limits associated with RUL predictions are highly desirable and provide

a means for uncertainty management. Other data-based techniques which have been

applied to prognostic problems include hidden Markov models [48], and Neuro-Fuzzy

networks [49],
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2.5.3 Prognostic performance metrics

The development of both online and offline metrics for evaluating and comparing the

performance of different prognostic approaches has been an area of active research in

recent years. Much of this work has been developed, and documented, in a series of

publications by Saxena et al. [50–52]. These techniques were developed to address the

perceived shortcomings in this area, particulary the unsuitability of standard forecasting

metrics for prognostic problems. Much of the recent research on prognostic performance

metrics has focused on the development of techniques for comparing the performance

of different prognostic algorithms, when applied to the the same prognostic problem. A

brief overview of some of the most useful metrics is provided below [52].

Prognostic Horizon evaluates how far, in advance of system failure, an algorithm can

generate predictions within the desired accuracy range, around the actual failure

time. The accuracy is described in terms of a percentage of the actual life of the

system.

Relative Accuracy evaluates the percentage error of a prediction, relative to the ac-

tual RUL. In this way, a requirement for the algorithm to become more accurate

as failure approaches is built into the metric.

Alpha-Lambda (α− λ) performance evaluates if an algorithms stays within desired

performance levels, relative the actual RUL at a given time.
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Chapter 3

Condition Monitoring and

Prognostic Techniques

This chapter presents a review of the background and theory behind the mathematical

techniques used in later chapters for the development of condition monitoring and prog-

nostic algorithms. The layout of this chapter is as follows. Section 3.1 and Section 3.2

reviews the background and theory behind multiple linear regression models and arti-

ficial neural networks, respectively. These represent two techniques which can be used

for modelling the relationship between input variables and an output variable. Both

techniques are employed in Chapter 4, to model degradation in dry vacuum pumps.

Section 3.3 introduces the background and theory behind Gaussian mixture models,

which are the foundation of the condition monitoring algorithms developed in Chap-

ter 5. Section 3.4 introduces particle filtering, which is a monte-carlo technique for

implementing a recursive Bayesian filter in the presence of non-linear process models

and non-linear noise processes. Particle filters are used in Chapter 6 to develop a prog-

nostic solution for thermal abatement systems used in semiconductor manufacturing.

Finally, in Section 3.5, sparse Bayesian learning for regression is introduced, which is a

relatively recent, state of the art, technique for regression problems. This technique is

used in Chapter 7 to develop a model which describes the fault-free behaviour of the

main bearing temperature signal in a large utility scale wind turbine.
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3.1 Multiple Linear Regression

A multiple linear regression (MLR) model is used to describe a linear relationship be-

tween a number of input variables xi, and an output, or response, variable y. The

subscripts i, where i = 1, 2, ..., p, refer to the individual input variables.

The form of a MLR model is given by

y(k) = β1 + β1x1(k) + β2x2(k) + ...+ βpxp(k) + ε (3.1)

where the model parameters βi, i = 0, 1, ...p, represent the regression coefficients and

ε represents the modelling error term, which should ideally be a random zero-mean

Gaussian distributed variable. The form of the model in (3.1) assumes that a linear

relationship exists between the input and output variables. Given a set of n input-output

pairs of data from a system to be modelled, {x, y}, where n > p, the most common

approach to determining the values of βi is via the method of least squares, resulting in

a least squares regression (LSR) model. If yi denotes the i-th observed response and xij

denote the ith observation of input variable xj , then for the i-th observation, yi is given

by

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi, i = 1, 2, · · · , n. (3.2)

= β0 +

p∑
j=1

βjxij + εi, i = 1, 2, · · · , n. (3.3)

The β0 acts as a bias term which can be removed for notational simplicity if the inputs

and output have been normalised to be zero-mean, prior to LSR modelling. With β0

removed, Equation (3.2) can then be written in matrix form as

y = Xβ + ε (3.4)

where

y =


y1

y2
...

yn

 , X =


x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
. . .

...

xn1 xn2 · · · xnp



β =


β1
...

βp

 , ε =


ε1
...

εn

 .
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where y ∈ Rn×1 is a vector of n observations of the output variable, X ∈ Rn×p is a

matrix of n observations of the p input variables, β ∈ Rp×1 is a vector of the regression

coefficients, and ε ∈ Rn×1 a vector of random errors.

The objective in LSR modelling is to find the vector of least-squares regression coefficient

estimates β̂ that minimises the least-squares cost function, which is given by

S(β) =

n∑
i=1

ε2i = εT ε = (y −Xβ)T (y −Xβ) (3.5)

Equation (3.5) can be expanded as

S(β) = yTy − βTXTy − yTXβ + βTXTXβ (3.6)

Since βTXTy is a scalar, as is its transpose (βTXTy)T , such that yTXβ = βTXTy,

Equation 3.6 can be written as

S(β) = yTy − 2βTXTy + βTXTXβ (3.7)

To identify the minimum solution to Equation (3.7), the regression parameters β must

satisfy
δS

δβ

∣∣∣∣
β̂

= −2XTy + 2XTXβ = 0, (3.8)

which simplifies as

XTXβ̂ = XTy. (3.9)

leading to the least-squares estimate of β is

β̂ = (XTX)−1XTy. (3.10)

Provided X is invertible, then Equation (3.10) yields a unique solution for β̂ [53].
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3.2 Artificial Neural Networks

Artificial neural networks (ANNs) represent a class of flexible nonlinear models, in which

a network of interconnected processing elements, called nodes or neurons, are used for

information processing. ANNs model relationships between input and output variables

with a model structure inspired by the neural structure of the human brain. The original

development of artificial neural networks is credited to McCulloch and Pitts [54], who

developed the theory regarding how knowledge is learned by neurons within the brain.

Since the original work by McCulloch and Pitts, the development of ANNs has con-

tinued. In recent decades, with the availability of increasing computing power, ANNs

have emerged as a powerful tool for classification and regression problems, and have

been applied to countless different applications across almost every relevant application

domain. The primary feature of ANNs, which has made them so popular, is their abil-

ity to learn highly-complex nonlinear functional relationships between input and output

training data. A wide variety of different types of ANNs have been developed including

radial basis function (RBF) neural networks [55], Kohenen self-organising maps [56], and

Hopfield networks [57]. However, by far the most commonly employed ANNs are multi-

layer perception (MLP) neural networks. A review of the theory of MLPs is presented

in this section.

3.2.1 Multiple-Layered Perceptrons

A MLP neural network [58] is a type of ANN where the neurons are arranged in several

layers. In all MLP networks, an input and output layer are present, along with one, or

more, hidden layers between the input and output layers. The most common type of

neuron used in MLPs is the McCulloch Pitts neuron. The form of a McCulloch Pitts

neuron is illustrated in Figure 3.1. The neuron operates by calculating the weighted

sum of the inputs ini, with each input having an associated weight value, wi. The

neuron computes the weighted sum of the inputs and adds a bias value, b. The sum of

the weighted inputs and the bias term are then passed to an activation function in the

neuron f(.), to yield the neuron output.

In an MLP neural network, the neurons in each layer receive weighted inputs from all

neurons in the preceding layer, which are combined with a bias value, to calculate an

output value. This output value is then passed to the neurons activation function and the

neuron output is then passed as an input to the next layer. This type of ANN structure,

in which data information processing flows in one direction, from the input layer to
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Figure 3.1: McCulloch Pitts neuron [4]

the output layer, is known as a feed-forward neural network. Figure 3.2 illustrates the

structure of a typical feed-forward neural network.

Figure 3.2: Structure of a feed-forward ANN [4]

The neurons in an MLP network can use a variety of linear and non-linear activation

functions. Some of the most common activation functions include the step function, log-

sigmoid, and tan-sigmoid functions. Log-sigmoid activation functions are often used in

the output layer for classification problems, to limit the output to a small range, whilst
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linear activation functions are often used in the output layer for regression problems,

to avoid limiting the output range. By allowing the number of neurons to increase

indefinitely, it has been shown that a feed-forward ANN can be used to approximate

any continuous function [58]. However, with noisy data, the ability to implement ANNs

with a sufficiently large numbers of neurons required is a limiting factor.

A standard issue to be addressed in creating an MLP network is the selection of the

network architecture, and the number of neurons to be used in the hidden layers. There

does not exist a standardised method for choosing the optimal network structure, for a

specific modelling problem, and the selection of the optimal network architecture is often

a trial and error exercise. Selecting a network topology and the number of neurons in the

hidden layer must consider a number of issues. The greater the number of neurons within

the network, the greater the ability of the network to model more complex input-output

relationships. However, during network training, as the number of neurons increases,

the network will typically begin to model the noise and “over-fit” the training data,

reducing the generalisation capabilities of the trained network. As a result, care must

be taken in both network size selection and the network training process, to prevent

over-fitting of the training data.

3.2.2 Network Training

To identify an optimal set of network weights and bias values, for a given input and

output training data set, a network training procedure is required. For an MLP network,

the training procedure is supervised and the training data used to identify the model

parameters consists of input-output pairs, used by the network to learn the underlying

functional relationship of the data. The most common approach for this task is the

backpropagation algorithm, first introduced by Rumelhart et al. [59], which is described

briefly below.

1. The training data, consisting of both the input data vectors, and output, or target,

vector(s), are presented to the network.

2. Once the input data has been passed through the network, where the network

weights and biases have usually been randomly initialised, the network output

is computed. By comparing the model output with the target output, the sum

squared error (SSE) is computed, where the SSE is defined as

SSE =

n∑
i=1

m∑
j=1

(yij − ŷij)2 (3.11)
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where n is the number of input-output samples in the training data set, m is the

number of model outputs, yij is the desired value, or target value, of the output j,

and ŷij is the estimated network value for output j. The SEE is used as the cost

function, to measure the training error at each iteration of the training procedure.

3. After evaluating the error signal on the first iteration, learning occurs by minimis-

ing the SSE, through modifications of the weights between each neuron. This is

typically carried out using an iterative gradient descent algorithm, whereby the

weights are adjusted at each iteration in the direction of decreasing values of the

SSE. The weight optimisation routine is typically of the form

w(m+ 1) = w(m)− v∇(m) (3.12)

where w is vector containing the values of the network weight and biases, m is

the current training iteration number, or epoch, and v is the learning rate. ∇(m)

represents the gradient vector of the error function (3.11), with respect to the

weight vector w.

4. The training procedure, described by 1-3, is then repeated until the error reaches

a desired threshold value, or until the required number of training iterations has

been reached. At this point the network is deemed to have been trained, and can

then be used to make predictions on previously unseen data.

3.2.3 Issues

A potential issue in training MLP networks is that the training procedure can begin

to overfit the training data, resulting in poor generalisation capabilities when tested

on previously unseen data. One technique for improving the generalisation capabilities

of ANNs is to employ early stopping during network training. During typical network

training, the training data set is generally split into three subsets known as the training

set, validation set, and test set. The training set is employed for calculating the gradients,

and update the network weights and biases. At each iteration, the error on both the

training and validation sets is calculated. As training progresses, both the training set

error and validations set error typically decrease. However, at some stage the network

typically begins to over-fit the training data and the error on the validation set begins to

rise. As the training algorithm continues to iterate, if the error on the validation set does

not reduce further during the remaining epochs, then the network weights and biases

which generated the minimum validation error are selected. The test set is not used
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during training but is instead used as a benchmark dataset to compare the performance

of different trained networks.

Due to the random initialisation of the network weights and biases, it is common to

train several networks, of the same structure, using a different random initialisation of

the weights and biases. This is to address any potential sensitivity of the solution to the

initial values of the weights and biases. The trained model with the best performance

is then retained for future use.

In general, ANNs are a powerful tool for modelling complex input-output relationships.

They provide the capability to model complex relationships where an understanding of

the underlying physical relationships between the input and output data is unknown.

However, this feature is also a drawback of ANNs, as the models created are completely

black-box models and provide no direct insight into understanding the underlying re-

lationship. In addition, ANNs typically require significant training times to identify

the values of the weights and biases, and are relatively data-hungry, requiring a large

number of samples to develop a useful model.
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3.3 Gaussian Mixture Models

Mixture models are a probabilistic modelling technique which have found application in

a wide range of engineering problems. To illustrate the principle of mixture modelling,

consider the “old-faithful” data set [60], which is plotted in Figure 3.3. This data set

comprises 272 measurements, which record the eruptions of the old-faithful geyser in the

Yellowstone National Park in the US state of Wyoming. Each measurement comprises

two values; the duration of an eruption in minutes and the time elapsed until the next

eruption occurs.

Figure 3.3: Old-Faithful data set

Looking at the plot of the old-faithful data set in figure 3.3, it can clearly be seen that

there are two distinct clusters of data samples. If we wish to statistically model this

data set using a parametric density function, it is immediately obvious that any single

probability density function (PDF) will struggle to accurately represent the true under-

lying distribution of this data set. If instead, the set of observations is modelled using a

combination of individual PDFs, it might significantly improve the overall accuracy of

the model.

Figure 3.4 (a) illustrates the results of modelling the old-faithful data using a single

2-dimensional Gaussian PDF and Figure 3.4 (b) shows the results of modelling the old-

faithful data set as a combination of two 2-dimensional Gaussian PDFs. The PDFs in

each of the figures are presented as contour plots. The actual process of identifying the

values of the parameters which define the PDFs illustrated in Figure 3.4 is discussed in

Sections 3.3.1 and 3.3.2.
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Figure 3.4: Old-Faithful data set: Model fitting

It is clear that by modelling the old-faithful data set using a combination of individual

PDFs, the model can better capture the true underlying distribution of the data. These

types of probabilistic models are formed via the linear superposition of individual PDFs,

and are commonly known as mixture distributions or mixture models. These types

of mixture distributions can be used to model very complex densities and, indeed, by

employing a sufficient number of PDFs, and via appropriate choice of means, covariances,

and mixture coefficient values, almost any continuous density can be approximated to

arbitrary accuracy [60]. By far the most common probability density functions employed

in real-world applications is the Gaussian PDF, although mixture models can be formed

from mixtures of other parametric PDFs. The type of mixture models which are formed

by taking linear superposition of individual Gaussian densities, and are more commonly

known as Gaussian mixture models (GMMs).

A K-component Gaussian mixture model PDF is defined as

p(x) =

K∑
k=1

αk N (x|µk,Σk) (3.13)

where each Gaussian density N (x|µk,Σk) is known as a component of the mixture

model, and the parameters αk are known as the mixing coefficients, which represent

the weight of each component within the mixture model. The individual Gaussian

components can be either univariate or multivariate depending on the dimensions of

the data set being modelled. In the case of a single variable x, the Gaussian density is

defined as
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N (x|µ, σ2) =
1√

2πσ2
exp

{
1

2σ2
(x− µ2)

}
(3.14)

where the Gaussian density is defined by two properties, the mean µ and the variance σ2.

In the case of a multivariate D-dimensional vector x, a multivariate Gaussian density is

defined as

N (x|µ,Σ) =
1

(2π)D/2
1

|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(3.15)

where the vector µ ∈ RD is a D-dimensional vector containing the mean values of

each variable, Σ ∈ RD×D is a D x D covariance matrix and |Σ| is the determinant of

the covariance matrix Σ. To satisfy the requirements that the mixing coefficients αk

represent probabilities they are subject to a number of constraints, such that

K∑
k=1

αk = 1 and 0 ≤ αk ≤ 1 (3.16)

As a result, a K-component Gaussian mixture model is completely specified by param-

eter set θ, where

θ = {α1,µ1,Σ1, ... , αD,µD,ΣD} (3.17)

It follows then that the process of fitting a GMM to a set of observations involves

optimising the values of the parameters in θ. There are two primary approaches within

the literature for estimating the parameter values in θ, namely Bayesian estimation and

maximum-likelihood estimation. By far the most commonly used approach is maximum-

likelihood estimation, and within this thesis only maximum-likelihood approaches are

considered.

3.3.1 Maximum-Likelihood Estimation

Consider a set of observations X = [x(1),x(2), ...,x(N)], where x(n) = [x1, ..., xD]T is a

D-dimensional random vector representing a single observation in X. The likelihood

function for the parameter vector θ is given by
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L(X|θ) =
N∏
n=1

p(x(n)|θ) (3.18)

which quantifies the likelihood of observing the set of observations X, conditioned on

the values contained within the parameter set θ. The goal in using maximum-likelihood

estimation techniques is to find θ̂, which is the set of parameter values which maximises

the likelihood function.

θ̂ = arg max
θ

L(X|θ) (3.19)

A further issue to note is that it is common to maximise the logarithm of the likelihood

function instead of maximising the likelihood function directly, as this is easier to handle

analytically. This is called the log-likelihood function, and is equivalent to maximising

the likelihood function due to the monotonicity of the logarithm function.

logL(X|θ) =
N∑
n=1

log p(x(n)|θ) (3.20)

Equation (3.20) describes the log-likelihood function in its generic format. In the case

of a Gaussian mixture model, the log-likelihood function is described as follows

log p(X|θ) =
N∑
n=1

log

{
K∑
k=1

αkN (x(n)|µk,Σk)

}
(3.21)

where K is the number of components in the mixture model, and N is the number of

samples in the set of observations X. For reasons which will become clear in Section

3.3.2, equation (3.21) is also commonly known as the incomplete-data log-likelihood

function. In certain cases, it is possible to maximise the log-likelihood function directly

by setting the partial derivatives of the log-likelihood function, with respect to each

parameter in θ, to zero. For example, in the case of the log-likelihood function for a

single Gaussian PDF, the maximum-likelihood solution leads directly to the standard

equations for estimating the mean and variance of a set of observations [61].

In the case of the log-likelihood function for a Gaussian mixture model as in (3.21), there

is no closed form solution possible once the derivative of the log-likelihood function is set

to zero. This is due to the presence of the summation over k which appears inside the
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logarithm function [60]. As no closed form solution exists for the log-likelihood function

of a Gaussian mixture model, the most common approach to identifying maximum-

likelihood solutions for Gaussian mixture models is via the expectation-maximisation

algorithm, which is discussed in the following section.

3.3.2 Expectation-Maximisation Algorithm

The expectation-maximisation (EM) algorithm is a two-stage iterative optimisation tech-

nique for finding maximum-likelihood estimates of the parameter values of a probability

distribution from a set of observations. Inherent in the application of the EM algorithm

is the interpretation of the set of observations being modelled, X, as an incomplete data

set. In the case of the EM algorithm for mixture modelling, the missing part of the

data set is a set of latent (hidden/unobserved) variables, Z, which indicate which com-

ponent in the mixture model is responsible for generating each sample within the set of

observations X. The missing set of latent variables Z has the form

Z = {z(1), ..., z(N)} (3.22)

in which there are N labels associated with the N samples in the set of observations.

Each individual label takes the form of a binary vector z(n) = [z
(n)
1 , ... , z

(n)
k ]T with

z
(n)
m = 1 and z

(n)
p = 0, for p 6= m if and only if x(n) was produced by the m-th component

of the mixture model. The values of z therefore satisfy z
(n)
k ∈ {0, 1} and

∑
k z

(n)
k = 1.

As a result, we can see that there are K possible states for the vector z(n).

Having introduced the set of latent variables, it is now possible to define the complete-

data log-likelihood function (3.23). Maximisation of this function with respect to θ is

simple if the missing data Z were observed, together with the actually observed set of

observations X.

log p(X,Z|θ) =

N∑
n=1

K∑
k=1

z
(n)
k log [αk p(x

(n)|θk)] (3.23)

However, since the set of latent variables Z are not observable, the complete-data log-

likelihood function cannot be maximised directly. To address this problem, the EM algo-

rithm provides a method for indirect optimisation of the incomplete-data log-likelihood

function via iterative optimisation of the conditional expectation of the complete-data

log-likelihood function (3.23).
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The EM algorithm operates by iteratively applying two-steps until some convergence

criteria are satisfied. The two steps are known as the E-step (expectation) and the

M-step (maximisation). In the E-step, the conditional expectation of the complete-data

log-likelihood function is computed, conditioned on the set of available observations X

and the current estimate of the parameter set θ as

E [ log p(X,Z|θ) |X,θ ] (3.24)

However, since the complete-data log-likelihood function (3.23) is linear with respect to

the set of latent variables Z, it is only necessary to compute the conditional expectation

of the latent variables W, as in (3.25), given the observed data X, and the current

estimate of the parameter set θ, which are available.

W ≡ E [ p(Z|X,θ) ] (3.25)

As the elements of the set of latent variables Z are binary variables, their individual

conditional expectations w
(n)
k are given by Bayes’ rule such that,

w
(n)
k ≡ E[ p(Z|X,θ) ] = Pr[ z

(n)
k = 1 | x(n),θ ] (3.26)

=
αk p(x

(n)|θk)
K∑
j=1

αj p(x(n)|θj)
(3.27)

where αk is the a priori probability that z
(n)
k = 1 and w

(n)
k is the posterior probability

that z
(n)
k = 1 given the observation x(n) and the current estimate of the parameter set

θ. The w
(n)
k values can also be viewed as the responsibility that component k takes

for explaining the observation x(n) [60]. Following the E-step, the M-step generates a

revised estimate for the parameter values in θ by maximising the complete-data log-

likelihood function with respect to each of the elements in θ, where the z
(n)
k in (3.23)

are replaced with the w
(n)
k estimated in the E-step.

The EM algorithm iterates with the property that each cycle or iteration of the EM

algorithm will increase the incomplete-data log-likelihood function until some local or
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global maximum is reached [61]. This is typically determined using some type of con-

vergence criteria. A common approach to identify convergence is to cease iterating the

EM algorithm once the improvement in the incomplete-data log-likelihood function be-

tween successive iterations falls below some threshold. The following is a summary of

the implementation of the EM algorithm applied to estimating the parameter values of

a Gaussian mixture model:

1. Initialise the parameter set θ, which comprises the means µk, the covariances

Σk and the mixing the coefficients αk for the desired number of components K.

Once these parameters have been set, an initial value of the incomplete-data log-

likelihood function (3.21) is calculated.

2. E-Step Once an initial value for model parameters has been selected, the E-Step

is performed in which the conditional expectations of the the set of latent variables

is computed,

w
(n)
k =

αk p(x
(n)|θ̂k)

K∑
j=1

αj p(x(n)|θ̂j)
(3.28)

3. M-Step In the M-Step, the complete-data log-likelihood function (3.23) is max-

imised with respect to each of the parameters in θ, resulting in the following

formulae for updating the parameter values,

αt+1
k =

Nk

N
(3.29)

µt+1
k =

1

Nk

N∑
n=1

w
(n)
k x(n) (3.30)

Σt+1
k =

1

Nk
w

(n)
k (x(n) − µt+1

k )(x(n) − µt+1
k )T (3.31)

where

Nk =

N∑
n=1

w
(n)
k (3.32)

4. Following the E-step and M-step, the incomplete-data log-likelihood function is

calculated using the latest parameter estimates in θ̂
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log p(X| θ̂) =
N∑
n=1

log

{
K∑
k=1

αk p(x
(n)|θ̂k)

}
(3.33)

5. The final step is to check for convergence. If algorithm has not converged, return

to step 2.

3.3.2.1 Shortcomings of EM Algorithm

In the application of the standard EM algorithm for mixture modelling, there are a

number of issues and shortcomings of the algorithm to consider. These include

1. How to determine the number of components?

2. Sensitivity of solution to initial values chosen for parameters in θ

3. Convergence to the boundary of the parameter space

The first issue to consider is how to determine the optimal number of components with

which to model a set of observations (i.e. model structure). Using the maximised likeli-

hood function (3.21), for various values of k, might seem a reasonable approach; however,

this method is ineffective for selecting the number of components since the maximised

likelihood function is a non-decreasing function of K. Numerous researchers have con-

sidered this issue, with a wide variety of solutions proposed. EM-based approaches

typically address this problem by adopting a “model-class/model” hierarchy approach.

In this way the EM algorithm is used to obtain a sequence of estimates of θ for a range

of values of k, {θ̂(k), k = kmin, ..., kmax}, with the final estimate k̂ being defined [62] as

that which minimises some specified cost function

k̂ = arg min
k
{C(θ̂(k), k), k = kmin, ..., kmax} (3.34)

Typically, the cost function employed will be of the form

C(θ̂(k), k) = −log p(X|θ) +R(k) (3.35)

where R(k) is a complexity cost penalising larger values of k. Numerous criteria have

been suggested to penalise larger values of k, such as Schwarz’s Bayesian inference criteria
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(BIC), Akaike’s information criteria (AIC) and Rissanen’s minimum description length

(MDL) to name a few. A comprehensive study and performance review of a range of

possible criteria was presented in [63].

The second issue which affects the performance of the EM algorithm is the initialisation

of the parameter values in θ. Before applying the E-step, an initial estimate for the

parameters in θ is required. The selection of the initial values is critical as the EM

algorithm will always converge to a local maximum of the likelihood function [64]. Thus,

the final estimate of the parameter values will be dependent upon the initial estimate.

Common approaches to addressing this issue include running the EM algorithm several

times, with each run starting with a different initial estimate of the parameters in θ. The

run which results in the highest value of the likelihood function is then selected as the

final estimate. Other approaches use clustering techniques such as K-means, to generate

an initial estimate of the component parameter values [65]. The common feature of any

of these solutions, with regard to selecting the number of components and addressing the

initialisation issues with the EM algorithm, is a significant increase in the computational

burden of applying the EM algorithm.

The final issue to consider is that of the EM algorithm potentially converging to the

boundary of the parameter space. This can result in an unbounded likelihood, where

one of the component weights αk approaches zero, resulting in the covariance matrix

of the corresponding component becoming arbitrarily close to singular. This can occur

frequently, when the assumed number of components is significantly larger than the

true/optimal number [66].

In Chapter 5, Gaussian mixture models are utilised for a range of condition monitoring

applications. One of the primary considerations in selecting an EM algorithm for use

in these applications is that it must be robust to each of the issues described above. In

particular, the issue of avoiding convergence to boundary of the parameter space was

identified as the primary consideration. To address these issues, a variant of the EM

algorithm known as the Figueiredo-Jain algorithm [66] was investigated and selected as

an appropriate choice to address the shortcomings of the standard EM algorithm. This

algorithm is described briefly in the following section.

3.3.3 Figueiredo-Jain Algorithm

The Figueiredo-Jain (FJ) algorithm [66] is a variant of the EM algorithm which addresses

the three major shortcomings of the standard EM algorithm identified in Section 3.3.2.1.
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The first issue which the FJ algorithm addresses is determining the number of compo-

nents in the mixture model. As discussed in Section 3.3.2.1, the standard approach to se-

lecting the number of components in a mixture model is to adopt a “model-class/model”

hierarchy approach, in which candidate mixture models are computed for each model-

class (i.e. number of components), from which the “best” model is selected. The FJ

algorithm instead aims to find the “best” overall model directly from the set of possible

models.

The FJ algorithm operates by starting with an initial large number of components k

(k � true/optimal number of components), and attempts to determine the correct

number of mixture components by letting the value of some of the mixing coefficients

be zero. Starting with a large number of components, the FJ algorithm iterates and

automatically adjusts the number of components by annihilating and removing those

components which are not supported by the data. In this fashion, the FJ algorithm also

avoids the issue of convergence to the boundary of the parameter space. When one of

the components becomes weak, meaning that it is no longer supported by the data, and

the mixing coefficient value αk approaches zero, then this component is annihilated by

the algorithm.

The FJ algorithm also tackles the initialisation issue of the EM algorithm. By starting

the algorithm with a large number of components, in which the initial estimates of the

parameter values for each component are distributed throughout the parameter space,

the initialisation issue is avoided. Instead, it is now only necessary to remove those

components which are not supported by the data. The FJ algorithm uses a modified

cost function, based upon the minimum message length (MML) criteria [66], which is

given by

L(θ,X) =
V

2

∑
m: αm>0

(
Nαm

12
) +

knz
2

log
N

12
+
knz(V + 1)

2
− log p(X|θ) (3.36)

where V is the number of free parameters specifying each mixture component, N is the

number of samples in the set of observations, knz is the number of components with

non-zero weighting (αm > 0), and log p(X|θ) is the log-likelihood function, as in (3.21).

A full description of the design and motivation for the cost function in (3.36) is presented

in [66]. The EM algorithm can be then used to minimise (3.36) with respect to θ, which

then represents the best mixture estimate. The FJ algorithm incorporates a modified

M-step in which the mixing coefficient update formula (3.29) is modified such that
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αt+1
k =

max{0, (
∑N

n=1w
(n)
k )− V

2 }∑K
k=1 max{0, (

∑N
n=1w

(n)
k )− V

2 }
(3.37)

This modified update formula provides an explicit means for annihilating components

by setting the mixing coefficient value to zero when a component is no longer supported

by the data. In this way, the FJ algorithm automatically avoids the boundary of the

parameter space and thus avoids this common pitfall of the standard EM algorithm.

The M-step update formulae for the remaining mixture parameters, given in 3.30 and

3.31, are unchanged.

Another feature of the FJ algorithm addresses a potential failure mode which can occur

through the use of the modified M-step (3.37). In a situation where the starting value

of k is large, it is possible that none of the mixture components will obtain sufficient

support from the data (i.e.
∑N

n=1w
(n)
k < V

2 , for k = 1, 2, ...,K), resulting in all of the

mixing coefficients αk having a value of zero. To address this issue, the FJ algorithm

uses a component-wise EM algorithm (CEM) [67]. Instead of simultaneously updating

all of the parameters in θ as in the standard EM algorithm, the CEM algorithm updates

the parameters in θ sequentially for each component. Once the parameter values for

a single component have been updated, the CEM algorithm recomputes the E-step

(i.e. updates the W values, (3.28)). In this way, if any component is annihilated, its

weighting is immediately redistributed amongst the remaining components. In this way,

the algorithm can be started with an arbitrarily large value of k without any problems.

The final issue to discuss, regarding the convergence of the FJ algorithm, is the determi-

nation of the optimal number of mixture components. The component annihilation rule,

described by (3.37), does not take into consideration the reduction in the cost function

value L(θ,X) that might be achieved by decreasing the value of knz. The FJ algorithm

addresses this issues as follows; once the CEM algorithm converges, the component

with the least weighting (i.e. smallest αk) is annihilated, and the CEM algorithm is

rerun until convergence. The procedure repeats until knz = kmin, where kmin is selected

by the user. The estimate for each value of k, which leads to the minimum value of

L(θ,X), where k = {kmin, ..., kmax}, is then selected as the final estimate of the number

of mixture components.
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3.4 Particle Filtering for Prognostics

3.4.1 Introduction

Prognostics involves the generation of long-term predictions, describing the evolution in

time of a signal of interest, or fault indicator, for the purposes of estimating the remain-

ing useful life (RUL) of a degrading system [27]. Since prognostics involves projecting

the current system state into the future, in the absence of future measurements, this

inevitably introduces a significant degree of uncertainty into the generated predictions.

To address this uncertainty, it is common to represent system state variables as random

variables, whose probability distributions need to be estimated to derive confidence in-

tervals on RUL predictions. In addition, the generation of long-term predictions requires

a model describing the future evolution of a fault indicator. However, the dynamics of all

damage processes are inherently nonliner processes, with uncertainties which are often

non-Gaussian, therefore propagating these effects through time becomes a challenging

and error-prone task [68].

To address these uncertainties, recursive Bayesian estimation techniques have emerged

as a powerful technique for prognostics, which combine information from both dynamic

models describing the evolution of a fault indicator, and on-line data collected from

sensors monitoring key system variables [69]. In this way, long term predictions of a

fault indicator are generated using dynamic models ,which describe the evolution of

a fault indicator, and the initial conditions on those predictions, which are estimated

using incoming measurement data. Within the domain of recursive Bayesian estimation

techniques for prognostics, particle filters have emerged as the de facto state-of-the-art

technique [69]. Particle filters are used for nonlinear Bayesian filtering and do not require

the linearity and Gaussian noise assumptions of the Kalman filter. Particle filters also

provide a robust framework for the generation of long term prognosis, while accounting

effectively for uncertainties [33].

The basic principle of particle filtering is the approximation of the system state distri-

bution using a set of particles (state values), and an associated set of particle weights

which represent the discrete probability masses of the individual particles. The applica-

tion of particle filtering to prognostics generally encompasses two separate steps, state

estimation and long term prediction. In the first step, incoming measurement data is

used to generate an estimate of the current system state [33]. Once an updated estimate

of the state is available, the updated state estimate is used as a starting condition for

the second step, which involves the generation of long term predictions of the evolution
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of the fault indicator. In Sections 3.4.2, 3.4.3, and 3.4.4, a technical review of the theory

and principles of particle filtering is presented, with an emphasis on the application of

particle filtering to prognostics.

3.4.2 Nonlinear Bayesian Filtering

Consider a dynamic system whose state at time tk is represented by the vector xk. The

evolution of the system state is described by a state-space model such that

xk = fk(xk−1,ωk) ↔ p(xk|xk−1) (3.38)

zk = hk(xk,υk) ↔ p(zk|xk−1) (3.39)

where

• fk : Rnx × Rnω → Rnx is the state transition function (possibly nonlinear) which

describes the evolution of the system state, where nx and nω are the dimensions

of the state and process noise vectors respectively

• hk : Rnz × Rnυ → Rnz is the measurement/observation function which describes

the sequence of measurements zk collected at successive time steps tk

• ωk ∈ Rnω is an independent identically distributed (i.i.d.) process noise sequence

of known distribution

• υk ∈ Rnυ is an i.i.d. measurement noise sequence of known distribution

Also shown in equations (3.38) and (3.39) are the equivalent probabilistic interpretations

of the state-transition function and the measurement update function. The function

p(xk|xk−1) represents the state transition probability and the function p(zk|xk−1) is the

likelihood function that defines the probability of observing the values in zk, given the

current estimate of xk.

The objective of the filtering operation is to find filtered estimates of xk, based upon

the set of all available measurements z1:k = {zj , j = 1, 2, ..., k}. Considering the filtering

problem from a Bayesian perspective, the objective is to recursively calculate some

degree of belief regarding the distribution of the state xk, given the set of observations

z1:k up to time tk [70]. It is therefore required to construct the PDF p(xk|z1:k) which is

known as the filtered posterior state PDF. This PDF contains all the information about
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the state xk, which is inferred from the measurements z1:k and the initial state PDF

p(x0), which is assumed known.

In principle, the posterior state PDF p(xk|z1:k) can be estimated recursively by per-

forming two sequential steps, prediction and update [71]. Given the probability distri-

bution p(xk−1|z1:k−1) at time tk−1, the prediction step uses the system model (3.38) to

obtain the a priori state PDF p(xk|z1:k−1), at time tk, via application of the Chapman-

Kalmogorov equation

p(xk|z1:k−1) =

∫
p(xk|xk−1, z1:k−1) p(xk−1|z1:k−1)dxk−1 (3.40)

Since the state transition equation in (3.38) describes a 1st order Markov process, in

which the next system state xk is a function of only the previous state xk−1, we have

that

p(xk|xk−1, z1:k−1) = p(xk|xk−1) (3.41)

and, hence, the prediction equation in (3.40) can be simplified as

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (3.42)

Following the prediction step, the update step incorporates the current measurement

vector zk, the a priori state PDF p(xk|z1:k−1) calculated in the prediction step, the like-

lihood function p(zk|xk), and Bayes rule, to estimate the posterior state PDF p(xk|z1:k)
as

p(xk|z1:k) =
p(zk|xk) p(xk|z1:k−1)

p(zk|z1:k−1)
(3.43)

where the normalising constant

p(zk|z1:k−1) =

∫
p(zk|xk) p(xk|z1:k−1)dxk (3.44)

is dependant upon the likelihood function p(zk|xk) and the statistics of the measurement

noise vector υk. In short, the objective of the update step is to incorporate the latest

measurement vector zk, and modify the a priori state PDF p(xk|z1:k−1), to estimate the

posterior state PDF p(xk|z1:k).
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The procedure described above in (3.40 → 3.44) form the basis for the determination of

the optimal Bayesian solution. However, the recursive computation of the posterior state

PDF is more conceptual than practical and in general cannot be determined analytically.

In a restricted set of cases, such as when using linear Gaussian state space models, the

optimal solution leads to the well known Kalman filter [71]. However, in the presence of a

nonlinear process model and/or non-Gaussian noise processes, an alternative approach

must be considered. A common approach is to use particle filtering methods, which

approximate the optimal Bayesian solution.

3.4.3 Particle Filtering (State Estimation)

Particle filtering, also known as Sequential Monte Carlo (SMC) methods [72], is a tech-

nique for implementing a recursive Bayesian filter via Monte Carlo simulations. The

basic principle of particle filtering is to represent the posterior state PDF by a set of

random samples or “particles”, each with an associated weight, and to compute esti-

mates based on these samples and weights. One of the most commonly used particle

filter algorithms is the sequential importance sampling (SIS) particle filter. The SIS par-

ticle filter approximates the posterior state PDF p(x0:k|z1:k) by a set, S, of Ns weighted

particles,

S = {x(i)
0:k, w

(i)
k }

Ns
i=1 (3.45)

where {x(i)
0:k, i = 1, ..., Ns} is a set of particles representing state values, with an asso-

ciated set of importance weights {w(i)
k , i = 1, ..., Ns} which are approximations to the

relative posterior probabilities of the particles, and x0:k = {xj , j = 0, ..., k} is the set of

all states up to time k.

The weight values are also normalised such that,

∑
i

w
(i)
k = 1 (3.46)

The posterior state PDF can then be approximated as

p(x0:k|z1:k) ≈
Ns∑
i=1

w
(i)
k δ(x0:k − x

(i)
0:k) (3.47)
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This results in a discrete weighted approximation to the true posterior state distribution

p(x0:k|z1:k). As the number of samples/particles becomes very large, the Monte Carlo

characterisation becomes an equivalent representation to the usual functional description

of the posterior state PDF, and the filter approaches the optimal Bayesian solution [71].

3.4.3.1 Importance Sampling

A key issue which must be addressed is how to determine the particle weight values w
(i)
k .

Consider the posterior state PDF p(x0:k|z1:k). Without a closed form for describing this

PDF it is often impossible to sample from this distribution. To address this issue, the

principle of importance sampling is used [72].

Consider the situation where p(x) ∝ q(x), where p(x) is a PDF from which it is difficult

to draw samples, but q(x) is a PDF from which samples can be easily drawn. If we let

x(i) ∼ q(x), i = 1, ..., N be a set of samples that are easily generated from a proposal

distribution q(·), known as the importance density, then a weighted approximation to

the density p(·) is then given [71] by

p(x) ≈
Ns∑
i=1

w(i) δ(x− x(i)) (3.48)

where the normalised weight of the ith particle is given by

w(i) ≈ p(x(i))

q(x(i))
(3.49)

Thus, if a set of samples x
(i)
0:k were drawn from an importance density q(x0:k|z1:k), then

the weights in (6.3) are defined to be

w
(i)
k ∝

p(x0:k|z1:k)
q(x0:k|z1:k)

(3.50)

In an online application, the objective of the filtering operation is to recursively estimate

the distribution p(x0:k|z1:k) at time tk, from the distribution p(x0:k−1|z1:k−1) at time

tk−1. If at time tk, we have a set of samples approximating p(x0:k−1|z1:k−1) and want to

obtain a new set of samples approximating p(x0:k|z1:k), this can be achieved by placing

a constraint on the importance density so that it can be factorised as

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1) (3.51)
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It is then possible to obtain a new set of samples x
(i)
0:k ∼ q(x0:k|z1:k), by append-

ing onto each of the existing samples x
(i)
0:k−1 ∼ q(x0:k−1|z1:k−1), the new state x

(i)
k ∼

q(xk|x0:k−1, z1:k). Following the update of the particle values at each iteration, it is also

necessary update the particle weights. To derive the weight update equation, the first

task is to factorise the posterior state PDF [71] as

p(x0:k|z1:k) = p(x0:k−1|z0:k−1)
p(zk|xk)p(xk|xk−1)

p(zk|z1:k−1)
(3.52)

Then, using (3.51) and (3.52), it is possible to derive a recursive weight update equation

w
(i)
k ∝ p(x0:k|z1:k)

q(x0:k|z1:k)
(3.53)

∝ p(x0:k−1|z0:k−1) p(zk|xk)p(xk|xk−1)

q(xk|x0:k, z1:k)q(x0:k−1|z1:k−1)
(3.54)

= w
(i)
k−1

p(zk|xk)p(xk|xk−1)

q(xk|x0:k, z1:k)
(3.55)

Finally, if q(x
(i)
k |x

(i)
0:k−1, z1:k) = q(x

(i)
k |x

(i)
k−1, zk), then the importance density becomes

dependent only upon xk−1 and zk. This is of particular benefit in an online application,

where only a filtered estimate of p(xk|z1:k) is required at each time step. In such a

situation, only the current state estimate x
(i)
k , and the set of observations z1:k needs to

be stored. The previous path of state x
(i)
0:k−1 up to the current time can be discarded.

This results in a modified update formula so that

w
(i)
k ∝ w

(i)
k−1

p(zk|x
(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1, zk)

(3.56)

and the posterior filtered distribution p(xk|z1:k) can be approximated as

p(xk|z1:k) ≈
N∑
i=1

w
(i)
k δ(x0:k − x

(i)
0:k) (3.57)

where the weights are defined as in (3.56). The SIS particle filter computes the values

of the particle weights w
(i)
k by setting the importance density equal to the a priori PDF

for the state [33], i.e. q(x0:k|x0:k−1) = p(xk|xk−1) = fk(xk|xk−1). This means that

the new set of particles x
(i)
k are generated from the previous set of particles x

(i)
k−1, by

projecting the previous set of particle values forward using the state transition function

fk(xk|xk−1). Substitution of the a priori state PDF p(xk|xk−1), for the importance
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density in (3.56), also leads to the simplification of weight update formula, such that

the non-normalised weight update formula is now given by

w
(i)
k = w

(i)
k−1p(zk|x

(i)
k ) (3.58)

In this way the algorithm is simplified, and the weights for the newly generated particle

x
(i)
k are evaluated from the likelihood function for new observations p(zk|x

(i)
k ).

3.4.3.2 Particle Degeneracy

A common issue with the application of the SIS particle filter is particle degeneracy. It

has be shown previously that as the SIS algorithm iterates, the variance of the particle

weights can only increase until, after a few iterations, all but one of the particles will

have negligible weight [72]. This can result in a poor approximation of the target poste-

rior distribution p(xk|z1:k), and significant computational effort being spent updating

particles whose contribution to the distribution is almost zero. To measure the level

of degeneracy, a metric known as the effective sample size, Neff is used [72], which is

defined as

Neff =
Ns

1 + var(w
(i)
k )

(3.59)

However, this value cannot be evaluated exactly [71] so, instead, an estimate N̂eff is

computed whereby

N̂eff =
Ns∑Ns

i=1(w
(i)
k )2

(3.60)

The level of particle degeneracy is determined at each iteration by comparing N̂eff

with a specified threshold value Nthres. Whenever N̂eff ≤ Nthres, a particle resampling

operation takes place. The idea behind the resampling operation is to eliminate those

particles that have small weights and to focus on those particles with large weights. The

resampling operation results in the generation of a new set of particles {x(i∗)
k }

Ns
i=1 by

resampling (without replacement) Ns times from the current discrete approximation of

p(xk|z1:k)

p(xk|z1:k) ≈
N∑
i=1

w
(i)
k δ(x0:k − x

(i)
0:k) (3.61)

such that Pr(x
(i∗)
k = x

(i)
k ) = w

(i)
k . The new particle population represents a set of

independent and identically distributed (i.i.d.) samples from the discrete density (3.61),
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and therefore the particle weights are reset such that w
(i)
k = 1/Ns. The incorporation

of the resampling step leads to the SIS particle filter becoming known as the sequential

importance resampling (SIR) particle filter.

3.4.4 Particle Filtering (Long-Term Prediction)

The second stage in the application of particle filtering for prognostics, long-term pre-

dictions, involves predicting the RUL of the system under observation. This is carried

out in two steps. Firstly, long-term predictions of the system state are generated using

the current state estimate as the starting condition. The generated predictions are then

combined with a predefined critical threshold value of the system state, to derive a RUL

PDF for the system. The details of this two-step process are presented below.

3.4.4.1 Step 1: Generation of Long-Term Predictions

To generate long-term predictions of the system state, the set of particles and weights

{x(i)
k , w

(i)
k }

Ns
i=1 which define the current posterior TPU degradation state estimate are

used as the initial conditions. Each particle is individually progagated into the future

by recursively applying the state-transition model (3.38), until the value of each particle

enters the predefined hazard zone. The hazard zone defines a range of critical values of

the degradation state at which the system under observation is deemed to have reached

the end of its serviceable life and there is a significant risk of equipment failure in

continuing to operate the equipment beyond the range of values defined by the hazard

zone. Typically, the lower and upper hazard zone bounds (Hlb and Hub respectively) are

determined statistically from historical failure data, or inferred using expert knowledge

gathered from domain experts such as maintenance personnel.

Assuming that the current set of particles and weights {x(i)
k , w

(i)
k }

Ns
i=1 are a good repre-

sentation of the system state at time tk, then the predicted state PDF at time tk+p can

be approximated by using the law of total probabilities [33], whereby

p̂(x̂k+p|x̂k:k+p−1) ≈
Ns∑
i=1

w
(i)
k+p−1 p̂(x̂

(i)
k+p|x̂

(i)
k+p−1) (3.62)

To evaluate (3.62) it is necessary that the particle weights be modified at each predic-

tion iteration, to account for the fact that noise and process nonlinearities may change

the shape of the state PDF as time passes. However, at each prediction iteration, no

59



Condition Monitoring and Prognostic Techniques

measurement data is available, with the result that the weight update procedure, de-

scribed previously (3.58), cannot be utilised. To address this problem, a number of

solutions have been proposed [27]. The simplest approach is to consider that the error,

associated with considering the particle weights invariant for future time instants to be

negligible with respect to other sources of uncertainty, such as model inaccuracies and

noise process assumptions [33]. Using this approach, the particle trajectories x
(i)
k:k+p are

simply propagated in time, using the state-transition model, while the current particle

weights are propagated in time without any change. More accurate and robust methods

for updating the particle weights at each prediction iteration are available (see [27])

for further details). However, it has been demonstrated previously that the approach

described above provides satisfactory performance in describing how a system behaves

in a practical application [27].

3.4.4.2 Step 2: Characterisation of Remaining Useful Life

Once the projected path for each particle, x̂
(i)
k+p, has been generated, and the time at

which each particle enters the hazard zone has been identified, this information is then

combined with the weight of each particle w
(i)
k to generate a RUL PDF for the system.

The RUL PDF can be computed by applying the law of total probabilities [27], whereby

pttf (k + p) =

Ns∑
i=1

Pr(Failure|X = x̂
(i)
k+p, Hlb, Hub) .w

(i)
k+p (3.63)

where pttf (k+p) is the probability of equipment failure at time tk+p. The overall system

RUL PDF is then approximated by the sum of the individual failure probabilities at each

future time instant.

The application of particle filtering to prognostics, incorporating both state estimation

and the generation of long-term predictions, is known as the particle filtering framework

for prognostics [73]. The generation of long-term predictions is generally subject to

a range of uncertainties, such as modelling errors and errors in updating the particle

weights at future time horizons. The level of error generally increases with the length of

the prediction horizon. To improve the prediction accuracy as more measurement data

becomes available, a number of methods for correcting the predicted RUL are presented

in [27]. These methods attempt to alter the RUL PDF on the basis of predictions errors,

calculated from measurement data which subsequently becomes available as the fault

progresses. A discussion of these methods, and techniques developed in this thesis to
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address issues of prognostic uncertainty, is presented later in Chapter 6, with reference

to the application domain under investigation.
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3.5 Sparse Bayesian Learning

Sparse Bayesian learning, of which the relevance vector machine (RVM) is a specific

type of realisation, is a novel machine learning technique developed by Tipping [74],

which uses Bayesian inference to obtain sparse models for regression and classification.

Sparse Bayesian learning models have an identical functional form to support vector

machines (SVMs), a state-of-the-art technique in regression and classification, but have

a number of properties which make them more attractive. Predictions generated by

sparse Bayesian learning models are probabilistic, incorporating uncertainty estimates

which are not generated by SVMs. In addition, sparse Bayesian learning models have

comparable generalisation capabilities to SVMs, but generally use dramatically fewer

kernel functions as, during the training procedure, many of the model weights are set

to zero, thus achieving sparsity. This section presents a brief review of the principles of

sparse Bayesian learning for regression.

Given a set of input-target pairs {xn, tn}Nn=1, and considering a scalar valued target

function t, a standard probabilistic formulation is to assume that the targets are samples

from a model with additive noise, so that

tn = y(xn,w) + εn (3.64)

where the noise terms εn are independent samples from some noise process, which is

assumed to be zero-mean and Gaussian distributed, with variance σ2. Thus, the target

values, tn, follow a Gaussian distribution, with mean y(xn) and variance σ2.

Typically, a sparse model takes the form

y(x) =

N∑
n=1

= wnφ(x) = wTΦ (3.65)

where w = (w0, ..., wN )T is the weight vector, and Φ is an N × (N + 1) “design matrix”,

with Φ = [φ(x1), φ(x2), ..., φ(xN )], where φ(xn) = [1,K(xn,x1),K(xn,x2), ...,K(xn,xN )],

where K(x,xi) is a kernel function, defining a single basis function for each input-target

pair. A common choice of Basis function is a Gaussian data-centred kernel function.

Assuming independence of the tn values, the likelihood function for the complete set of

input-target pairs {x, t} can can be defined as

p(t|w, σ2) = (2πσ2)−N/2exp

{
− 1

2σ2
‖t−Φw‖

}
(3.66)
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The form of the model in (3.66) contains an equal number of model parameters as input-

target pairs. As a result, it might be expected that maximisation of (3.66), with respect

to w and σ2, might lead to severe over-fitting of the data. To address this problem from

a Bayesian perspective, a constraint is placed on the parameters by defining an explicit

prior probability over them. A preference for smoother, less complex functions, can be

made, by choosing a zero-mean Gaussian distributed prior distribution over w, so that

p(w|α) =
N∏
i=0

N (wi|0, α−1
i ) (3.67)

where α is a vector of N + 1 hyperparameters (in Bayesian statistics, a hyperparameter

is a parameter of a prior distribution). An individual, independent, hyperparameter is

associated with each individual weight wi, which moderates the strength of each weight.

This is a key feature of the model, and is ultimately responsible for its sparsity properties.

The procedure for identifying the model weights involves first computing the posterior

distribution over the weights, which is defined by

p(w|t,α, σ2) =
p(t|w, σ2)p(w|α)

p(t|α, σ2)
(3.68)

To compute (3.68), it is first necessary to solve for its normalising constant, whereby

p(t|α, σ2) =

∫
p(t|w, σ2)p(w|α)

= (2π)−N/2|σ2I + ΦA−1ΦT |−1/2 ×

exp{−1

2
tT (σ2I + ΦA−1ΦT )−1t} (3.69)

Then, using equations (3.66),(3.67), and (3.69), it is possible to estimate the posterior

distribution over the weights (3.68), as

p(w|t,α, σ2) =
p(t|w, σ2)p(w|α)

p(t|α, σ2)
= (2π)−(N+1)/2|Σ|−1/2 ×

exp{−1

2
(w − µ)TΣ−1(w − µ)} (3.70)

where the posterior mean and covariance are given by

µ = ΣΦTBt (3.71)

Σ = (ΦTBΦ + A)−1 (3.72)
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where A = diag(α0, α1, ..., αN ) and B = σ−2IN .

3.5.1 Hyperparameter Optimisation

Identifying values for the posterior mean (3.71) and covariance (3.72) of the model

weights requires first identifying most-probable values for the hyperparameters, αMP

and σ2MP , which can be computed by maximising (3.69) with respect to α and σ2.

However, values of α and σ2 which maximise (3.69) cannot be obtained in closed form

[75]. Instead, formulae for their iterative re-estimation can be derived.

For α, by deriving (3.69), equating to zero, and rearranging, it can be shown that [75]

αnewi =
γi
µ2i

(3.73)

where µi is the i-th posterior mean weight from (3.71) and the quantities γi are defined

as

γi ≡ 1− αiΣii (3.74)

where Σii is the i-th diagonal element of the posterior weight covariance in (3.72),

computed with the current estimates for α and σ2. For the current estimate of the noise

variance σ, differentiation of (3.69) leads to the re-estimate

(σ2)new =
‖t−Φµ‖2

N − Σiγi
(3.75)

The learning algorithm thus iterates by repeated application of (3.73) and (3.75), with

concurrent updating of the posterior mean µ and covariance Σ from equations (3.71)

and (3.72) respectively, until some convergence criteria are satisfied and αMP and σ2MP

are identified. In practice, during re-estimation, it is generally the case that many of the

αi tend to infinity (or numerical equivalent, given machine accuracy). From (3.70), this

implies that p(wi|t,α, σ2) becomes highly (in principle, infinitely) peaked at zero, which

implies that we are a posteriori certain that those wi are zero. The corresponding basis

functions can thus be ‘pruned’, and sparsity is realised.

3.5.2 Prediction Generation

Once the hyperparameter values have been identified, predictions can be generated by

the model for new input data x∗ in terms of the predictive distribution (3.76), based on
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the posterior distribution over the weights, conditioned on the maximising values αMP

and σ2MP

p(t∗|t,αMP , σ
2
MP ) =

∫
p(t∗|w, σ2MP )p(w|t,αMP , σ

2
MP )dw (3.76)

Since both terms in the integrand in (3.76) are Gaussian, the model output follows a

Gaussian distribution, so that

p(t∗|t,αMP , σ
2
MP ) = N (t∗|y∗, σ2∗) (3.77)

with the predicted mean and variance estimate for the new input data x∗ given by

y∗ = µTφ(x∗) (3.78)

σ2∗ = σ2MP + φ(x∗)
TΣφ(x∗) (3.79)

3.5.3 Fast Marginal Likelihood Maximisation

A major training performance improvement in the sparse Bayesian learning scheme was

also introduced by Tipping and Faul [76], who presented a fast marginal likelihood max-

imisation scheme. The new highly accelerated algorithm exploits identified properties of

the marginal likelihood function to enable maximisation via a principled and efficient se-

quential addition and deletion of candidate basis function. Details of the new algorithm

can be found in [76].
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Chapter 4

Dry Vacuum Pump Condition

Monitoring

4.1 Introduction

The manufacturing of semiconductor devices often involves over 300 different processing

steps to produce nanometer scale devices. Each step involves different manufacturing

processes including deposition, ion implantation, etching and lithography. By repeatedly

applying different processing steps, semiconductor devices are manufactured on silicon

wafers. Semiconductor devices are manufactured in fabrication facilities, commonly

referred to as fabs. Different processing tools within a fab are used for different processing

steps and the semiconductor wafers are transported around the fab to each tool, as

necessary. Processing tools are located in fab, which is a extremely clean, dust free,

environment. Support equipment, such as chillers, pumps, and abatement equipment

are usually located in a separate facility below the fab, commonly referred to as the

subfab.

Most semiconductor manufacturing processes require some level of vacuum, or reduced

pressure, to operate, typically in the range of slightly below atmospheric pressure, down

to what is known as “ultra-high vacuum”, where pressures are measured in the region

of 10−9 Torr [77]. To achieve the necessary vacuum level required for a specific manu-

facturing processes, different types and combinations of vacuum pumps are used. Low

to mid-levels of vacuum (a few mTorr) can usually be achieved by using a mechanical

dry vacuum pump in isolation. To achieve ultra-high vacuum, a dry vacuum pump is

often used in combination with a turbomolecular pump or cryogenic pump.
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Vacuum pumps used in semiconductor manufacturing are generally very reliable. How-

ever, when applied to pumping on particularly harsh manufacturing processes, involving

toxic gases and solid particulates, pumps can occasionally suffer from unexpected fail-

ures. At the same time, growing pressure on profit margins has lead semiconductor

manufacturers to increase their focus on improving process yields, tool uptime, and

wafer throughput. At the same time, the increase in the use of tools for 300mm wafers

and the introduction of new material technologies and cleaning flows constantly raise

the by-product challenge and increase the value of wafers [78]. The occurrence of a vac-

uum pump failure can cause irreparable damage to wafers, but also results in significant

tool downtime and cleanup, which can can be a major expense. Furthermore, a vacuum

pump failure results in unplanned maintenance of a pump which is significantly more

expensive than planned maintenance, in terms of resources, planning, and manpower.

As a result, semiconductor manufacturers are increasingly interested in the development

of condition monitoring solutions for vacuum pumps, to reduce instances of pump fail-

ures and scrapped wafers, and also to reduce tool downtime and reductions in wafer

throughput

In this chapter, the development of a condition monitoring solution for dry vacuum

pumps used in semiconductor manufacturing is presented. The primary issue addressed

is the pumping of large quantities of fluorine gas, which corrode the pumps and reduce

their vacuum performance and remaining useful life. The layout of this chapter is as

follows. Section 4.2 introduces dry vacuum pumps used in semiconductor manufacturing

and describes the design of the specific type of dry vacuum pump investigated in this

study. Section 4.2 also discusses the data collection system used to collect and store

sensor data generated by the pumps. Section 4.3 describes the specific issue which

this chapter addresses and the motivation for undertaking this study. Section 4.4 then

discusses the signals available and preprocessing necessary for developing models to

describe vacuum pump degradation. Section ?? then presents the results of the study in

identifying and tracking the development of fluorine induced degradation in dry vacuum

pumps. Section ?? then introduces an approach for predicting the remaining useful life

(RUL) of pumps suffering from degradation. Finally, a brief conclusion of the chapter

is presented in Section 4.6.
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4.2 Dry Vacuum Pumps for Semiconductor Manufactur-

ing

Dry vacuum pumps for semiconductor manufacturing were introduced in the late 1980’s

to replace oil-sealed rotary vane pumps which, until that time, had been the vacuum

workhorse of the semiconductor industry. The term “dry” means that the pumps contain

no oil or lubricating fluid within the swept pumping volume. The switch to dry vacuum

pumps occurred due to the requirement for frequent oil changes in oil-sealed rotary vane

pumps, and because of the risk of contamination caused by oil backstreaming into the

processing chamber [79].

Several publications have addressed the issue of condition monitoring and predictive

maintenance of dry vacuum pumps. Mooney and Shelley [78] presented an overview of

new capabilities in pump predictive maintenance through the introduction of networked

monitoring systems. Konishi [80] investigated the accumulation of process by-products

within the running clearances of a dry vacuum pump, which causes friction resulting in

the pump motor current exceeding current limits and causing the pump to shut down.

An ARMAX model was developed to predict when the vacuum pump motor current

would exceed acceptable limits. The use of fuzzy-logic based condition monitoring is

considered in [81], where a fuzzy-model based diagnostic scheme to detect mechanical

inefficiency and exhaust system blockage in a dry vacuum pump was designed. The

system is based upon time and frequency analysis of the exhaust pressure signal. It

is demonstrated that the power ratios of certain frequency components in the signal

spectrum can be used to predict the gas load, motor current and, hence, mechanical

efficiency.

In this chapter, the specific type of vacuum pump investigated are iH600 dry vacuum

pumps manufactured by Edwards Vacuum, a major supplier of vacuum and abatement

technology to the semiconductor industry. Section 4.2.1 provides a review of the design

of iH series dry vacuum pumps.

4.2.1 iH Series Dry Vacuum Pumps

The Edwards iH series of dry vacuum pumps are an industry standard dry vacuum pump

used in semiconductor fabs worldwide, on a wide variety of different manufacturing

processes, where particulates, condensables and corrosive by-products are present. The

iH system operates at pressures between atmospheric and ultimate vacuum with no
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lubricating fluid in the pumping chambers. The iH series of dry vacuum pump utilise

two separate pumps mounted in series. The primary pump is a five-stage dry pump,

known as the harsh chemical dry pump (HCDP). A second, single-stage, mechanical

booster pump, known as the harsh chemical mechanical booster (HCMB) pump, is

located at the inlet to the HCDP. Figure 4.1 illustrates the layout of a typical iH series

dry vacuum pump.

Figure 4.1: iH Series Dry Vacuum Pump

Other features of the iH series pumps include a nitrogen gas purge flow system to dilute

the chemicals received from the upstream process tool and to keep corrosive chemicals

away from critical components such as the pump shaft seals. A water cooling system

is also employed to avoid pump overheating. A brief review of the design of the HCDP

and HCMB pumps is presented below.

Harsh Chemical Mechanical Booster Pump

The harsh chemical mechanical booster (HCMB) pump on iH series pumps employ a

roots mechanism, which is a valveless positive displacement device. The roots mechanism

uses “figure-of-eight” rotors, also referred to as impellers or lobes, which are synchronised

by timing gears. Figure 4.2 shows the cross section through a typical HCMB. The rotors

rotate in opposite directions inside a stator and do not touch each other or the stator

walls. The clearance is generally 0.1 to 0.5 mm when cold. The rotating lobes create an

expanding volume which is then trapped between the rotor and the stator wall. As the

rotors continue to rotate, the gas is compressed and moved around the stator wall of the

pump. Once the rotor reaches the pump outlet, the compressed gas is then exhausted to
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the outlet. The HCMB operates at rotational speeds between 1400 and 4000 revolutions

per minute (RPM) (without a motor inverter) [82].

Figure 4.2: Roots Mechanism - Cross Section

Overheating is a source of trouble in roots pump designs. Heat generated by the com-

pression process is transmitted to the rotors and the stator housing. Due to the clearance

between pumping components, back-leakage of gas occurs at a rate governed by the pres-

sure difference between the pump inlet and outlet (compression ratio) and the type of

gas being pumped. The overheating issue is further aggravated by the back expansion

of gas, at exhaust pressure, into the displacement volume where it undergoes further

compression and heating. This inefficiency increases the rate of heat generation in the

pump. Under high gas loads, the resulting temperature rise and expansion can poten-

tially lead to the closure of the working clearances and consequent seizure. To address

this issue, iH600 pumps incorporate a pressure relief valve to decrease the pressure dif-

ferential across the booster pump. Larger variants of iH series pumps incorporate an

electrical inverter, which increases the rotational speed of the booster pump up to ap-

prox 6000 RPM [83], but which is also used to reduce the HCMB rotational speed under

high gas loads.

Harsh Chemical Dry Pump

The HCDP within each iH series variant is a five-stage positive displacement rotary

pump. The iH series HCDP employs pairs of intermeshing rotors (of different types

mounted on common shafts) which are held in correct phase relation by a pair of timing

gears. The profiles/mechanisms employed consist of a roots stage followed by three

claw stages. The final, fifth, stage is a 5-lobe roots rotor which is used to reduce the

pump noise at the exhaust end, eliminating the need for a pump silencer. The combined

roots/claw profile, used in all iH series HCDP pumps, is illustrated in Figure 4.3.

The main type of rotors employed on the dry pump are claw rotors. Unlike the roots

mechanism used in the HCMB pump, the claw rotors mechanism is commonly described

as a true compressor, as it can deliver to atmosphere without the need for exhaust
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Figure 4.3: HCDP: combined roots/claw mechanism

cooling or pressure relief bypassing. The non-contact claw rotors are cylindrical for most

of the circumference of the rotor, but have a deep depression followed by a protruding

claw. Each claw combinations inlet and exhaust are arranged horizontally, rather than

arranged vertically as in the roots mechanism used in the HCMB pump. As the two

rotors rotate, gas is drawn in via an inlet slot, which matches the cavity in one of

the rotors. Continued rotation closes the inlet while the “claws” compress the trapped

volume of gas until the cavity in the second rotor exposes the outlet or exhaust slot (i.e.

the mechanism is self valving). A small volume remains trapped and is “carried over”

into the next rotational cycle.

The roots mechanism performs most efficiently at lower pressures, in contrast to the claw

mechanism which performs more efficiently at higher pressures. A method of achieving

optimum performance across a wide pressure range is to use both the roots and claw

mechanisms together, as is the case in all iH series HCDP pumps. The use of a single

roots stage at the HCDP pump inlet, followed by three claw stages, has been shown to

be capable of developing 60% greater pumping speed than an all claw design, at 10−1

mbar [82]. This can be partly attributed to the better inlet conductance effect of the

roots mechanism.

In the Edwards HCDP dry pumps, the claw stages are reversed compared to adjacent

stages. This means that the outlet of the first claw stage is directly inline with the

inlet of the second stage and provides the most direct gas path through the pump. This

is illustrated in Figure 4.4. This arrangement of the claw stages contributes to good

vacuum performance and improved power utilisation, enabling particles to pass easily
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through the pump. It also minimises the area available for the build up of corrosive or

condensable residues.

Figure 4.4: HCDP: reversed claw stages design

The use of the reversed claw arrangement also results in gas temperature increases

through the pump, towards the exhaust side, with no cold spots present, which could

arise if a reversed claw arrangement were not employed, due to the longer gas paths.

The maintenance of elevated temperatures through the pumps substantially reduced

the deposition of condensables. A further advantage of the claw mechanism is its ability

to deal with precipitation on the internally exposed surfaces of the stator wall. This

precipitation tends to reduce running clearances. The use of the rotating claws helps

to “shave” the static surfaces as fast as deposition occurs. In normal use, few problems

arise as the high gas throughputs are capable of transporting dust efficiently through

the pump. Such debris is generally swept by centrifugal force around the periphery

of the stage ahead of each claw, scouring the curved surfaces clean. However, rigid

pump shafts and powerful motors are employed as occasional flakes of precipitate may

sometimes detach and, in order to transport the debris towards the exhaust, the rotors

must first pulverise the load via a milling action.
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4.2.2 FabWorks Networked Monitoring System

In this study, all of the pump sensor data used was collected by the FabWorks net-

worked monitoring system [84]. The FabWorks networked monitoring system, offered

by Edwards Vacuum, allows real-time vacuum and exhaust gas management system

monitoring over a local area network (LAN). The FabWorks system allows for data log-

ging of up to 3000 items of equipment connected to the network, where each piece of

equipment connected to the FabWorks network sends regular updates on sensor values

and operating status information to a central server, where it is stored and analysed.

The FabWorks system was originally developed prior to the widespread proliferation of

ethernet based network communications. As a result, network bandwidth in many older

generations of FabWorks installations is limited. Newer generations of the FabWorks

systems almost exclusively use ethernet based network communications and, as a result,

network bandwidth issues are not as much of a concern. In the current study, the pump

data was collected using a FabWorks network system installed before the availability of

ethernet based communications. This means that network traffic across the FabWorks

network needed be managed to avoid network saturation.

To address the issue of limited network bandwidth, the FabWorks system uses an event-

based sampling scheme known as send-on-delta, or delta logging [78, 85]. The principle

of send-on-delta sampling is to regularly sample the latest value for each sensor locally

at each pump or abatement device. Once the latest value of a sensor variable x(ti) is

sampled, it is compared to the value of the most recent sample sent across the network

to the central database x(tLastSent). If the difference between the two values is greater

than a preset threshold δ, such that

|x(ti)− x(tLastSent)| ≥ δ (4.1)

then the latest value sampled, x(ti), is time stamped and sent to the central database.

Otherwise, the latest sampled value is ignored. As a result, the major factor influencing

the rate at which signal updates are sent across the network is the value of the δ chosen

for each sensor variable. The δ value for each sensor essentially acts as a trade-off

between signal tracking accuracy and network load. The smaller the value of the δ for

a specific sensor, the greater the signal tracking accuracy and the greater the network

traffic generated, and vice versa. Another feature of the FabWorks system is the timeout

setting. In the event of the δ value for a sensor not being exceeded for a significant period
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of time, then an update containing the most recently sampled value is sent to the central

database once a timer function elapses.

The FabWorks system allows for the user to select the data rates at which parameters

are logged by selecting the δ values for each sensor variable. Another issue generated

by the use of send-on-delta sampling is that the data recorded in the central database

is on an irregular sampling interval. Overall, the send-on-delta data collected by the

FabWorks monitoring system presents some challenges from a data analysis perspective,

which are elaborated on further in Section 4.4.2 .

4.3 Problem Description

4.3.1 Fluorine Induced Pump Degradation

Vacuum pumps operating in the semiconductor manufacturing environment are exposed

to a wide variety of often toxic and corrosive gas mixtures. On certain manufacturing

processes, the types of gases pumped can result in a gradual deterioration in pump

performance over time. One particular gas, commonly used in semiconductor manufac-

turing, which can cause significant and accelerated rates of pump degradation is Nitrogen

trifluoride (NF3).

In semiconductor manufacturing, one of the most common manufacturing processes

involves the deposition of multiple thin-films, of various materials, onto the surface of

a wafer. A common technique for performing this task is chemical vapour deposition

(CVD). CVD facilitates the growth of thin-films of a material on the surface of a wafer,

by exposing it to one or more volatile gases, which react on the surface of the wafer to

produce the desired deposit. In addition to depositing material onto the surface of a

wafer, CVD can also result in solid residues being deposited onto the internal surfaces

of the wafer processing chamber. These unwanted residues can influence the electrical

characteristics of the processing chamber, potentially leading to process drifts, particle

defects, and yield loss [86]. In order to maintain production yields, and manufacturing

quality, periodic cleaning of each chamber is necessary to remove these deposits from

the chamber walls.

A common approach to maintaining processing chamber uniformity is to run a clean cycle

between each processed wafer, to remove any deposited material. A current industry

standard practice to remove deposited material involves the use of remote NF3 plasma

clean processes. The clean process operates by generating an NF3 plasma upstream
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of the process chamber, using radio-frequency (RF), or microwave (MW) excitation.

Once the plasma is generated, reactive fluorine neutrals drift into the process chamber

where they react with the deposited residue, such as silicon dioxide (SiO2) or silicon

nitride (Si3N4). The reaction forms a volatile etch product such as (SiF4) which is then

pumped out of the chamber and down into the dry vacuum pump and onto a suitable

abatement unit for processing [87]. Another major by-product produced by the remote

plasma cleaning cycle is elemental fluorine (F2). This is a highly reactive and corrosive

gas which exits the processing chamber and enters the dry vacuum pump downstream.

Depending on the manufacturing process, different quantities of NF3 are employed in

the cleaning cycle, as necessary. On those processes which use significant quantities of

NF3, the impact of generated fluorine gas on the operational lifetime of the dry pump

can be significant.

Fluorine gas acts in a number of ways to degrade and reduce the performance and effi-

ciency of dry vacuum pumps. One of the primary reasons for loss of vacuum performance

is the degradation of the stator o-rings, which are gradually corroded by the fluorine

gas. The stator o-rings seal each individual compression stage from those beside it and

also provide a seal between the pump internals and the outside atmosphere. The degra-

dation of the seals can result in leak paths between the pump stages and can eventually

create leak paths from atmosphere into the pump. Figure 4.5 illustrates an example of

an iH600 pump removed from service for poor vacuum performance and stripped down

for failure analysis. Evidence of an external leak path can be seen at the bottom of

picture where fluorine has corroded the o-ring and has caused whitening of the metal on

the external side of the pump o-ring.

Figure 4.5: Evidence of o-ring damage resulting in an external pump leak-path
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In addition to corroding the pump o-rings, the fluorine gas also corrodes and removes

the polytetrafluoroethylene (PTFE), more commonly known as teflon, which coats many

of the pump components. This results in an increase in the size of the pump running

clearances as the teflon is removed. The increased running clearances further reduce the

pumping performance and increases the rate of back-leakage of gas, causing the pump

temperature to rise.

The degradation in vacuum pump performance, caused by the pumping of large quanti-

ties of NF3 gas, results in a gradual increase in pressure in the upstream wafer processing

chamber. Eventually the loss in vacuum performance causes the acceptable pressure lim-

its in the wafer processing chamber to be exceeded, resulting in the automatic shutdown

of a process tool, due to a high-pressure alarm. This can result in the loss of any wafers

present in the chamber at the time, which can be of significant value. Furthermore, the

shutdown of any tool in mid process often requires that the chamber undergoes a major

clean, resulting in significant tool downtime and the unexpected removal of tool from the

production line. This can have effects across the manufacturing facility, impacting on

production scheduling and resulting in production bottlenecks, and lower wafer through-

put rates. In addition, the costs associated with performing unplanned maintenance on

a vacuum pump are far higher than the planned swap out of a pump.

Analysis of sensor data, collected from pumps suffering from fluorine induced degrada-

tion, clearly shows a gradual drift in pump sensor values over time, as the pumps begin

to degrade. However, a number of issues presented in developing automated condition-

monitoring solutions for this problem include; 1.) quantifying the level of pump degra-

dation from analysis of the pump sensor data and 2.) estimating the remaining useful

life (RUL) of a pump suffering from fluorine induced degradation. Addressing these two

issues is the primary objective of this study.
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4.3.2 Motivation

Semiconductor manufacturers operate in a highly competitive environment and are very

protective of their process chemistries, recipes, and general operations. As a matter of

routine they do not supply any information to outside parties regarding the types and

quantities of different gases employed, or the rate of upstream wafer processing. These

process related properties and operating characteristics are often proprietary and, as

such, are often inaccessible to vacuum pump suppliers [88]. As a result, vacuum pump

suppliers, who often operate and maintain pumps on-site on behalf of semiconductor

manufacturers, are challenged to optimise pump maintenance, relative to the character-

istics and operational profile of the different manufacturing processes.

The primary driver and motivation for this study was the interest, and willingness, of a

major semiconductor manufacturer to provide assistance in carrying out this work. The

manufacturer was experiencing excessive numbers of pump failures on a specific deposi-

tion process, which used significant volumes of NF3 gas in the chamber cleaning cycle.

As the fluorine induced degradation manifests itself in the form of increasing pressure in

the upstream chamber, the semiconductor manufacturer was willing to provide access

to relevant upstream process measurements.

The issue of fluorine induced pump degradation is also one which will become more

important with the imminent introduction of 450mm wafers. The current standard

size of wafers is 300mm. The increase in wafer sizes will require larger pump sizes

to handle the increased gas loads, but will also require increased volumes of fluorine

gas to clean the bigger process chambers. With the arrival of 450mm wafers, and the

increasing reduction in the size of semiconductor components, the value of wafers will also

increase significantly and, as a result, the costs associated with the in-service failure of

a dry vacuum pump will also increase. Thus, the requirement for condition monitoring

solutions to address fluorine induced vacuum pump degradation will only increase in

future years.

A major driver for this study is to identify any benefits of incorporating such upstream

process data in the development of condition monitoring algorithms for vacuum pumps.

By having access to, and incorporating, such data in the development phase, it will

be demonstrated how pump degradation can be identified, tracked, and predicted in

real-time, using only the available pump data. In Section 4.4.1, a description of the

specific upstream process measurement used this study, which were provided by the

semiconductor manufacturer, is presented.
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4.4 Preliminary Signal Analysis & Feature Extraction

4.4.1 Foreline Pressure Data

As described earlier in Section 4.3.2, a major semiconductor manufacturer was willing

to provide access to upstream process data which might be useful in the development of

algorithms for pump condition monitoring. The primary upstream process measurement

which was identified as the signal most likely to provide visibility on the loss of vacuum

performance is the foreline pressure (FP) signal. The FP sensor is located directly

downstream of both the processing chamber and the turbo-pump, on the foreline between

the turbo pump and dry vacuum pump. Figure 4.6 illustrates the equipment layout on

the investigated manufacturing process and the location of the FP sensor.

Figure 4.6: Equipment and sensor locations on investigated manufacturing process

The rational for investigating the foreline pressure signal as a suitable signal for quan-

tifying the level of vacuum pump degradation is that, as a dry vacuum pump degrades,

it was expected that the loss in vacuum performance in the dry vacuum pump would be

reflected by increasing values of the FP signal. This sections describes how the foreline

pressure signal, sampled at 1 second intervals by the processing tool, is preprocessed for

use in describing vacuum pump degradation.
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Semiconductor manufacturing processes are typically carried out using a specific “recipe”

for each process. Each recipe step typically uses different mixtures of gases and requires

different vacuum levels in the processing chamber. Control of vacuum in the chamber

is achieved by using a gate-valve, which is automatically controlled to maintain the

pressure at the required setpoint. Figure 4.6 ilustrates the location of the chamber gate-

valve. As the gate-valve is controlled to try and achieve the desired pressure setpoint

during each recipe step, the FP signal varies significantly in response to changing gas

flows and gate-valve positions. As a result, some preprocessing of the FP signal was

necessary.

The objective in using the FP signal is to generate a target signal which could then be

used to train a model which quantifies the level of pump degradation, using the pump

signals as inputs. To generate a target signal, the mean foreline pressure value over a

specific recipe step was chosen to represent the FP for each individual processed wafer.

In selecting a specific recipe step over which to average the FP values, a number of issues

were considered:

1. The specific recipe step should be of significant duration relative to the overall

wafer processing time so that the mean FP value over the chosen time-interval has

least variance.

2. The recipe step should ideally be a high gas load recipe step so that the FP value

rises significantly and that a high gas load is applied to the pump. Imparting a

high gas load on the pump stresses the pump and, as the pump degrades, the loss

of vacuum performance should be reflected in the FP value, during the specified

recipe step, increasing over time.

3. The chamber gate valve should not be under control during the chosen recipe step

and should ideally remain fully open for the duration of the recipe step. This

ensures that the rate of gas load discharge from the chamber remains consistent

for each wafer, and that the gate valve does not compensate for the loss of vacuum

performance over time.

Figure 4.7 illustrates the FP signal, recorded during the processing of a single wafer.

The corresponding recipe step number at each sample time is illustrated on the opposite

axis. To protect the intellectual property of the semiconductor manufacturer, the FP

data provided was mapped onto an arbitrary scale so that FP values have no physical

meaning. In addition, the recipe step numbers have been altered and the actual duration
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of the recipe is not indicated on the time axis.

Figure 4.7: Foreline pressure (FP) by recipe step (single wafer)

As illustrated in Figure 4.7, the variability in the value of the FP signal over the course

of the recipe is significant. The variability in FP is due to changes in gas flows. At each

recipe step, different gases flow at different rates causing fluctuations in the FP value.

The gate-value is controlled to maintain the chamber pressure at the desired setpoint

for each recipe step.

From analysis of the FP signal illustrated in Figure 4.7 and the chamber gate-valve

signal, the mean FP value during recipe step 19 was selected to represent the FP value

for each individual processed wafer. The FP values for each processed wafer were then

combined to form a vector of FP values over time. This vector of FP values over the

lifetime of a pump was then employed to represent, and quantify, the level of vacuum

pump degradation over time. Figure 4.8 below plots the extracted FP value for each

processed wafer over the lifetime of a single pump which failed in-service due to poor

vacuum performance. As illustrated in Figure 4.8, the FP remains relatively constant

for a period of time. As the pumped fluorine begins to corrode the pump, the FP signal

begins to rise in response to increasing levels of pump degradation. The values of the

FP signal have also been mapped onto the interval [0, 1]. The values on the interval

[0, 1] are thus used to represent the level of vacuum pump degradation.

The rational for using the FP signal to describe the evolution of fluorine induced vacuum

pump degradation is clearly motivated by the observed behaviour of the FP signal in

Figure 4.8. This behaviour, involving monotonically increasing values of FP signal
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Figure 4.8: Foreline pressure by recipe step

which reflect the loss in vacuum performance leading up to pump failure, was observed

in all the available historical pump failure examples.

4.4.2 Pump Signal Data

For the period of this study, pump sensor data collected from three high-density-plasma

(HDP) CVD processing tools was available for developing a condition monitoring algo-

rithm for detecting, tracking, and predicting fluorine induced pump degradation. Pump

data covering the period January 2007 to December 2008 was available for the study

and, during this period, a total of 4 pumps failed in-service or were removed from service

for poor vacuum performance.

The dry vacuum pumps employed on each processing tool were Edwards iH600 mechan-

ical dry vacuum pumps. A description of the design of iH series pumps was presented

previously in Section 4.2.1. Each HDP-CVD processing tool has two individual wafer

processing chambers, with each chamber having its own iH600 mechanical backing pump

located in the subfab. The sensor data from each of the iH600 vacuum pumps was col-

lected using the FabWorks networked monitoring system. Note, in the following sections,

the HCDP and HCMB pumps are referred to as the dry pump and booster pump re-

spectively. The FabWorks system recorded a number of pump variables for the period

of this study, including

• Booster power
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• Booster temperature

• Drypump power

• Drypump temperature

• Exhaust pressure

• Shaft-seal pressure

• Nitrogen purge flow

The FabWorks networked monitoring system records pump sensor data using a send-on-

delta based logging scheme, as described previously in Section 4.2.2. This logging scheme

presented a number of challenges. The logging profile for each pump variable is defined

by two parameters; the δ value and the timeout value. The original logging profile used

excessively high values for the δ values for each sensor variable. As a result, most sensor

updates occurred due to the timer function elapsing and an automatic update being sent

to the central server. However, the timer setting was originally set to 1-hour, resulting

in significant periods of time between signal updates. The issue of poor signal resolution

was identified at an early stage and the logging profiles on the FabWorks system were

adapted to try and improve the signal resolution. The timeout setting on each sensor

variable was reduced to 5 minutes, to guarantee a signal update in the event of the

delta value not being exceeded during this interval. This significantly improved both

the time and amplitude resolution in the temperature sensor values, though issues with

the resolution of the power signals remained.

In addition to difficulties presented by the delta-logging profiles, the quantisation levels

on the power sensors employed on the iH600 pumps also presented a number of issues.

The Edwards iH pumps series are manufactured in a range of sizes, with the iH600 being

the smallest sized pump within the iH series range. However, the sensors employed on

each iH variants are the same and, in the case of the iH600, the quantisation levels on

the power sensors are relatively large when compared to the typical operating range

of the power signals. Consider Figure 4.9 which illustrates the booster power (BP),

booster temperature (BT), drypump power (DPP), and dry pump temperature (DPT)

signals recorded from an iH600 pump which was removed from service for poor vacuum

performance. The pump signals in Figure 4.9 illustrate a number of issues presented by

the delta-logging profile, and the sensor quantisation levels.

The quantisation levels on the power sensors are 0.1kW, however the typical operating

range of the BP signal is between approximately 0.6kW and 0.9kW, and the operating
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Figure 4.9: Evidence of o-ring damage resulting in external pump leak-path

range of the DPP signal is between 2.2 and 2.6kW. As a result, the signal resolution is

quite poor in the amplitude domain. In addition, the delta values on the profile were

set to 0.3kW, which means the power signal must change by this quantity in order for

the pump to send an update to the central database. Otherwise, a new update is not

sent until the sensor times out and a new update is sent. As a result, the quality of the

signal resolution for the BP and DPP signals is very poor.

A further issue requiring attention is the bi-modal nature of the booster temperature
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signal. The short-term rise and fall of the BT signal is a result of the intermittent

processing of wafers, which generate a gas load on the pump which, when compressed in

the booster pump, generates heat, resulting in a rise in observed temperature values. If

a signal indicating the operational state of the processing chamber is available then the

booster temperature signal can be separated by pump mode in a supervised manner.

However in the absence of such a signal, the pump status must be inferred from the

available pump signals. A simple method for tracking the BT signal, in each of the

pump operating modes, is presented in Section 4.4.4.

4.4.3 Signal Resampling & Filtering

To extract signals/features suitable for detecting and tracking pump degradation it was

necessary to preprocess the power and temperature signals using smoothing techniques,

to generate suitable signals which correlate with the loss of vacuum performance. How-

ever, the use of a send-on-delta based sampling approach for collecting pump sensor

data presents a number of challenges. Most applications in digital control and signal

processing have traditionally used periodic sampling, as there exists a well established

systems theory for periodically sampled data. The lack of such a systems theory for deal-

ing with event-driven data suggests that in order to apply classical systems theory, such

as system identification or regression, some form of reconstruction of the event-based

sampled data onto a periodic sampling interval is necessary.

In the current application, signal updates occur either due to the delta values being

exceeded, or the five-minute timeout interval being triggered. This results in the data

for each signal being recorded on an irregular sampling interval, which is different for

each pump signal. To address this issue each of the pump signals were resampled onto a

regular 1-minute sampling interval. The sampling interval was chosen on the basis of the

observed signal update rate characteristics. In general, for both the temperature and

power signals, the vast majority of signal updates are triggered by the timeout setting

and a 1-minute interval was deemed appropriate to sample each of the signals onto a

single regular sampling interval.

Once the periodic sampling interval was chosen, the resampling method had to be se-

lected. The most common approaches to resampling use either a zero-order hold ap-

proach whereby, in the absence of a signal update, the most recently available signal

update is used at the current sample time. The alternative approach is to use linear

interpolation between available signal update values. In this study, both ZOH and linear

interpolation were employed. The power signals from both the booster and drypump
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were resampled using a zero-order hold (ZOH) approach and the temperature signals

from the booster and dry pump were resampled using linear interpolation. The selection

was based upon the relative dynamics of the signals in question. Temperature is typically

a relatively slow changing process and so it is reasonable to assume that the temperature

values between available updates moved somewhat linearly between the recorded values.

In the case of the power signals, these can change almost instantaneously and to assume

that the values between updates change linearly has no basis and so, given the available

signal resolution, the power signals were resampled using a ZOH approach.

Once all of the available pump data was resampled onto a periodic sampling interval

of 1-minute, it was then necessary to filter the data in order to extract the relevant

trends from both the power and temperature signals. The primary objective of the

filtering operation was to smooth the data, particularly in the case of the power signals

which have poor amplitude resolution, and to extract relevant trends which, over time,

correlate with the loss of vacuum performance.

The resampled pump signals were smoothed using an exponentially weighted moving

average (EWMA) filter. The principle of an EWMA filter is similar to that of a simple

moving average filter except that equal weighting is not applied to each sample within

the window. Instead, the weighting for older data points decreases exponentially, giving

more importance to recent observations whilst not discarding older observations entirely.

Equation 4.2 describes the operation of an EWMA filter

st = αxt + (1− α)st−1 (4.2)

where st is the output of the filter and xt is the original signal value at time t. The filter

constant α is the smoothing factor which controls the degree of smoothing applied to

the input signal. The lower the value of α the greater the level of smoothing applied to

the data. The smoothing constant α is analogous to the cut-off frequency in a low-pass

filter. Figure 4.10 illustrates how the smoothing filter operation is used to extract a

signal for tracking changes in the power signals from both the booster and drypump

from the original, poorly resolved, data. The value of α used to generate the filtered

signals in Figure 4.10 was 0.001. The value of α was chosen so as to try and extract a

long-term trend from the available, poorly resolved, power signal.

The filtering operations described above were also applied to both the booster and dry-

pump temperature signals to smooth the short-term fluctuations in these signals. In
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Figure 4.10: Smoothed pump motor power signals for pump lifetime

addition to the smoothing operation, additional preprocessing on the booster tempera-

ture signal was necessary due to the multi-modal nature of this signal. The details of

this process are described in then following section.
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4.4.4 Multi-Mode Booster Temperature Signal Tracking

The load imparted on a dry vacuum pump is a function of the gas load generated in the

upstream processing chamber. Once this gas load reaches the pump it is compressed,

which generates a response in the pump variables. Typically, a response is seen in the

booster pump variables, as the booster pump is located at the pump inlet. However, due

to the poor booster power signal resolution, the only pump variable, in the investigated

data set, which illustrates a response to change in gas load imparted on the pump is the

booster temperature (BT) signal. Figure 4.11 illustrates a typical BT signal profile over

a period of 5 days. The BT signal profile exhibits bi-modal behaviour which reflects the

operating modes of the pump.

Figure 4.11: Typical BT signal profile

The BT signal is characterised by two different responses. During periods of no wafer

processing in the upstream chamber, described henceforth as idling mode, the BT sig-

nal remains steady about a lower range of operating values. During periods of wafer

processing in the upstream chamber, the BT signal responds and increases to a higher

range of values. This higher range of values is associated with the compression of the

process gases used in the upstream manufacturing process, which generates heat. In-

dividual wafers are processed sequentially and usually arrive at the processing tool in

batches of 25 wafers. During periods of upstream wafer processing the pump mode is

described henceforth as processing mode. Once wafer processing is completed, the BT

signal decays back to the idling mode range of values, until a new batch of wafers arrives.
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Once a gas load is imparted on the pump, the booster pump power signal also generally

increases to maintain a constant rotational speed. However, the quantisation levels on

the iH600 power sensors are too small to identify and track this process. In Section 5.5,

an algorithm for inferring the current pump mode from the booster power signal is

presented. In the application presented in Section 5.5, the booster power signal is

recorded from a larger iH1800 pump, in which the operating range of the BP signal is

much larger, allowing the pump mode to be inferred. For the purpose of tracking the

changes in the characteristics of the BT signal, in response to increasing levels of pump

degradation, it is necessary to identify some method for tracking the BT signal in each

of the pump operating modes. From observations of a typical BT signal profile, it is

possible to classify the BT signal status as being in one of four states, as illustrated in

Figure 4.12

• HIGH

• LOW

• RISING

• FALLING

Figure 4.12: BT signal: signal status classification

The BT signal HIGH and RISING states are associated with periods of upstream wafer

processing, whilst the FALLING and LOW states are associated with periods of no wafer

processing in the upstream chamber. To classify the BT signal state at each sample time,
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a simple moving-window classifier was developed, which infers the BT signal state on

the basis of the slope of the BT signal. Using the BT signal, which was first resampled

onto a regular 1-minute sampling interval, a moving window of 20-minutes length was

applied. At each iteration of the moving window, the slope of the line of best-fit was

computed from the samples within the bounds of the window.

Initially, the algorithm identifies those sample times at which the BT state is either RIS-

ING and FALLING. Threshold slope values were determined for both the RISING and

FALLING states on the basis of the historically observed slope profiles of the BT signal.

Those samples which exceeded the relevant thresholds were classified as either RISING

or FALLING. The remaining samples were left unclassified at this stage. Figure 4.13

illustrates the output of the algorithm in identifying those BT signal samples at which

times the BT signal state was either RISING or FALLING.

Figure 4.13: Pump mode identification using BT signal

Using the values of the BT signal samples, classified as either RISING or FALLING,

a moving average signal was generated from these samples. On the basis of whether

the remaining BT signal samples were above or below this moving average signal, the

remaining BT samples states were classified as either HIGH or LOW. Once the BT

signal state was identified at each sample time, two moving average signals were then

generated, to describe the BT signal in each of the pump operating modes; idling and

processing. Those BT samples recorded when the BT signal state was either LOW or

HIGH were each arranged into two individual timeseries vectors. Both of these timeseries

vectors occur on an irregular sampling interval, which reflect the different times at which
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the relevant BT signal states occurred, and so each of these timeseries vectors was then

resampled onto the original 1-minute sampling interval and smoothed using an EWMA

filter, as described previously in Section 4.4.3. The final output of the algorithm is

two timeseries vectors describing the evolution of the BT signal in both the idling and

processing pump modes, which is illustrated in Figure 4.14.

Figure 4.14: Evolution of BT signal under different operating modes

The separation of the BT signal into two signals, representing the operating modes of

the pump, was necessary for a number of reasons. The primary reason was that the

BT signal, in its original form, was not suitable for analysing pump condition over

time. If the signal were simply smoothed to produce a signal useful for correlating with

pump degradation, then the value of the smoothed signal would be a function of the

pump utilisation rate within each short period of time. This would generate significant

fluctuations in the BT signal which would not be a function of pump condition but

instead be a function of the pump utilisation rate. By separating the BT signal into two

separate modes it is now possible to describe the evolution of the BT signal regardless

of the rate of pump utilisation.

In addition, the approach described above provides a crude method for tracking the

utilisation rates of these types of pumps, which corresponds to those times when the

BT signal state is identified as RISING or HIGH. This information can be useful for

identifying relationships between pump failure rates and utilisation rates, as opposed to

purely time based relationships which do not take into consideration actual pump usage

rates, which can vary significantly.
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4.5 Dry Pump Condition Monitoring Algorithm

In this section, the proposed algorithm for identifying, tracking and predicting fluorine

induced vacuum pump degradation is described. A flowchart describing the proposed

algorithm is illustrated in Figure 4.15. Firstly, raw sensor data recorded in real time by

the FabWorks monitoring system is passed to the preprocessing stage. During this stage,

various resampling, filtering, and feature extraction routines, as described in Section 4.4,

are applied to the FabWorks data to generate a set of inputs for use in estimating the

current level of pump degradation. The list of inputs generated by the preprocessing rou-

tines described in Section 4.4, is presented below. The preprocessing routine generates

a value for each input on a regular 1-minute sampling interval.

• u1: Booster Power

• u2: Booster Temperature (Idling Mode)

• u3: Booster Temperature (Processing Mode)

• u4: Dry Pump Power

• u5: Dry Pump Temperature

Once the set of inputs are generated by the preprocessing stage, the inputs are passed

to the modelling stage, where the current level of pump degradation is estimated. Two

approaches to modelling the level of pump degradation are considered, namely multiple

linear regression (MLR) and artificial neural networks (ANNs). The processing of train-

ing and testing the models to estimate pump degradation on historical pump failure

data is described in Section 4.5.1.

Once an estimate of the current level of pump degradation is estimated, the level of

estimated degradation is compared to a threshold value. If the current level of pump

degradation is below the defined threshold, the algorithm continues to iterate and esti-

mate the level of pump degradation at 1-minute intervals. Alternatively, if the current

level of pump degradation exceeds the defined threshold, a prediction of the remaining

useful life (RUL) of the pump is generated. The algorithm then continues to iterate and

update the current degradation estimate and the RUL prediction. The RUL predictions

are generated using a double exponential smoothing prediction (DESP) technique, which

is described in Section 4.5.5.
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Figure 4.15: Dry pump condition monitoring algorithm

4.5.1 Modelling Pump Degradation

Having applied suitable preprocessing to the pump signal data and the upstream foreline

pressure signal, the next stage is to develop a model to estimate the current level of pump

degradation, using the pump variables as inputs. To achieve this task, static models

relating the value of pump variables to upstream pressure values were developed. The

models developed to estimate the level of pump degradation are of the form

r̂(k) = f(u1(k), u2(k), ..., um(k)) (4.3)

where r̂(k) is the estimated level of pump degradation at time k, and ui(k), i = 1, ...,m

are the model inputs, which comprise the values of the preprocessed pump sensor vari-

ables at time k. The input variables ui represent the following pump variables, which

were all preprocessed as described in Sections 4.4.3 and 4.4.4.
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• u1: Booster Power

• u2: Booster Temperature (Idling Mode)

• u3: Booster Temperature (Processing Mode)

• u4: Dry Pump Power

• u5: Dry Pump Temperature

The relationship between the pump sensor variables and the upstream foreline pressure

is assumed time-invariant. To model the relationship between the level of pump degrada-

tion and the pump sensor variables, two different modelling approaches are considered,

multiple linear regression (MLR) and artificial neural networks (ANNs). A review of

the theory and backgrounds of MLR and ANNs is available in Sections 3.1 and 3.2

respectively, which should be referred to as necessary.

The motivation for investigating MLR was to determine if the relationship between the

pump variables and upstream foreline pressure could be described by a linear model. In

addition, MLR models are computationally inexpensive, which is a desirable property

when monitoring potentially hundreds of pumps in a semiconductor manufacturing facil-

ity. In contrast, ANNs are capable of modelling complex non-linear relationships between

input and output data. ANNs were investigated to determine if improved performance

could be achieved in modelling pump degradation, versus MLR-based approaches.

The input and outputs signals, following the preprocessing steps discussed in Section

4.4.3, are all on a regular 1-minute sampling interval. However, since vacuum pumps

generally operate continuously, this results in significant volumes of data being generated

over periods of weeks and months. To address this issue, the input and output signal

were downsampled to a five-minute interval. This was done simply by selecting every

fifth sample. Due to the filtering applied to smooth the input and output signals, no

loss of signal fidelity arose from this operation. As described previously in Section 4.4.2,

a total of four historical pump failure examples are available. Of these, three failed

in service and another was removed from service when poor vacuum performance was

suspected.

4.5.2 Model Training using MLR

A multiple linear regression (MLR) model is used to describe a linear relationship be-

tween the preprocessed pump sensor variables ui(k), and the preprocessed upstream
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foreline pressure value r(k). The subscripts i, where i = 1, 2, ..., p, refer to the individual

input variables. The form of the MLR model is given by

r(k) = β0 + β1u1(k) + β2u2(k) + ...+ βpup(k) + ε (4.4)

where the model parameters βi, i = 0, 1, ...p, represent the regression coefficients and

ε represents the modelling error term, which should ideally be a random zero-mean

Gaussian distributed variable. Given a set of n observations to be modelled, representing

input-output pairs of preprocessed pump sensor values and foreline pressure values, the

values of βi are identified via the method of least squares, as described previously in

Section 3.1. Identifying the βi values is a batch process, and the pump failure examples

need only be separated into training and test data. Thus, for each available pump failure

case, the βi parameters were identified using the input-output data describing three of

the failure examples, and the identified model was then tested on the single remaining

failure example.

4.5.3 Model Training using ANNs

In this study, a standard feed-forward neural network was employed to model pump

degradation. Various network architectures were considered and tested. The selected

architecture comprised a single hidden layer with 10 neurons, using tan-sigmoid activa-

tion functions, and a single output layer using a log-sigmoid activation function, to limit

the output to the range [0,1]. The range [0,1] defines the range to which the upstream

foreline pressure signal were mapped to in Section 4.4.1, to represent the level of pump

degradation. A single hidden layer was chosen as no improvement in estimation accuracy

was observed when tested using two hidden layers. Additionally, a single hidden layer

reduces the complexity of the ANN, potentially improving the generalisation capabilities

of the network. For training and testing purposes, the 4 historical failure examples were

separated into training, validation and test data. For network training and testing pur-

poses, two failures were selected for use as training data, a single failure was selected for

validation data, and the remaining failure was retained for testing data. The network

was trained using the Levenberg-Marquardt backpropagation algorithm [58].
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4.5.4 Results

This section presents the results of the models developed for identifying and tracking

the development of fluorine induced vacuum pump degradation. In each case presented,

the performance of the developed models was evaluated on previously unseen data, i.e.

the test cases presented were not used in training either the MLR or ANN models.

Figure 4.16 presents the first examples of the ANN and MLR models tested on an his-

torical pump failure example. As illustrated in Figure 4.16, the ANN model tracked the

more general trend of increasing degradation, but the ANN output suggests that failure

is occurring at a faster rate than is actually the case. The MLR model tracks the in-

creasing degradation quite accurately though, in the later stages, the MLR models fails

to describe the observed behaviour and underestimates the level of pump degradation.

Figure 4.16: Pump degradation tracking performance (Pump A)

Figure 4.17 presents the case of the pump which was removed from service prior to

failure. In this example, the MLR model overestimates the increase in the level of pump

degradation, compared to the degradation tracking performance of the ANN. However,

the accuracy of the MLR estimates were greater at the time the pump was removed

from service.
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Figure 4.17: Pump degradation tracking performance (Pump B)

The final example illustrated in Figure 4.18 demonstrates good degradation tracking

performance for the both the ANN and MLR models. However, the accuracy of the

MLR model in the later stages of degradation fails to describe the observed behaviour.

Figure 4.18: Pump degradation tracking performance (Pump C)
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To compare the performance of the ANN and MLR models, Table 4.1 shows the root

mean squared error (RMSE), evaluated for each failure cases by comparing the estimated

and actual levels of vacuum pump degradation, where the RMSE is defined as

RMSE =

√√√√ 1

n

n∑
i=1

ε2i . (4.5)

where ε2i is the error between the estimated and actual level of pump degradation at

time i, and n is the number of model estimates over which the RMSE is computed.

The RMSE values in Table 4.1 were computed only using the model estimates generated

when the actual level of pump degradation was above 0.2, as the performance of the

models belows this level of degradation is less important.

Failure Case MLR ANN

Pump A 0.0654 0.0769

Pump B 0.0983 0.0546

Pump C 0.0803 0.0371

Pump D 0.1104 0.0624

Table 4.1: RMSE for degradation level greater than 0.2

As Table 4.1 illustrates, the performance of the ANN models is generally superior to

that of the MLR models, with the exception of pump failure A. However, as illustrated

in Figure 4.16, the behaviour of this failure examples was better described by the ANN,

only that the ANN estimated a faster rate of degradation.

4.5.5 Predicting Pump Remaining Useful Life

Section 4.5.4 demonstrated the ability to estimate the current level of pump degradation

using pump sensor variables. While such information is of benefit to pump operators, by

far the most useful information for operators is an estimate of the RUL of the pump. This

allows for planning of pump replacements at a convenient time, with minimal disruption

to manufacturing. Predicting the RUL of a pump is a difficult task as there are a number

of factors which cannot be determined a priori, such as the future utilisation rate of the

pump (wafer throughput rate) and the number of times the pump is shutdown and

restarted, which can influence the RUL.

Looking at the failure examples illustrated in Figures 4.16 and 4.18, as the level of pump

degradation approaches 70% (0.7), the time series observations of the pump degradation

levels can be “roughly” approximated by sloped line, of the form in Equation (4.6).
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Double exponential smoothing-based prediction models a given time series using a simple

linear regression equation, where the y-intercept β0, and the slope β1, are slowly changing

over time. In such cases, double exponential smoothing can be used to apply unequal

weighting to the individual elements of the time series.

yt = β0 + β1t+ εt (4.6)

In order to obtain updated estimates of the time series, double exponential smoothing

uses what is called the single and double smoothed statistics, St and S
[2]
t . These values

are computed using two smoothing equations, (4.7) and (4.8), where both equations use

the same smoothing constant α, which lies within the range [0,1]. This value determine

the degree of smoothing applied to the data. The first equation smoothes the original

time series and the second filters the St values.

St = αyt + (1− α)St−1 (4.7)

S
[2]
t = αSt + (1− α)S

[2]
t−1 (4.8)

Using St and S
[2]
t , updated estimates of β0 and β1 are determined as:

β0(t) = 2St − S[2]
t − tβ1(t) (4.9)

β1(t) = (
α

1− α
)(St − S[2]

t ) (4.10)

Having estimated β0 and β1, the forecast made at time t for the future value of yt+τ is

given by,

ŷt+τ (t) = β0(t) + β1(t)(t+ τ) (4.11)

With some manipulation, see [89], it can be shown that the forecast ŷt+τ (t) is given by,

ŷt+τ (T ) = (2 +
ατ

(1− α)
)St − (1 +

ατ

(1− α)
)S

[2]
t (4.12)

Such an approach to estimating the RUL of a degrading system has previously been

applied to determining time-to-wash intervals for shipboard gas turbine engines which

experience gradual performance degradation caused by the ingestion of salt [90].

The choice of a number of parameters must be carefully considered in the application of

the double exponential smoothing prediction. The smoothing constant α is determined

by simulated forecasting of an historical dataset. Using a section of available historical

data, a regression line is fitted to the data and the initial least-squares estimates of

β0 and β1 are determined. Using (4.9) and (4.10), initial values of St and S
[2]
t can be
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calculated. Using these values, the historical dataset is used to update St and S
[2]
t and

in each time period a forecast is computed using the current values of St and S
[2]
t . The

procedure is repeated for a range of α values, and the value which minimises the sum of

the squared forecast errors in selected for use in forecasting future values.

The time series generated by the output of the ANN and MLR models generally com-

prises thousands of values, as the input variables are on a 5-minute sampling interval,

and the difference between each consecutive value is quite small. In order to extract

the relevant linear trend from the data over a smaller dataset, a new dataset comprising

every 12th sample of the time series (i.e. 1 hour) was complied. This dataset was used

for the prediction of the estimated RUL of the pump, and the generation of approximate

95% confidence limits.

Figure 4.19 illustrates the performance of the DESP method applied to the prediction of

the RUL of a pump from 70% observed degradation, as estimated by the ANN model.

Also shown is the actual rate of degradation in the pump, and the approximate 95%

confidence limits of the prediction.

Figure 4.19: Pump degradation: RUL prediction at 70% degradation

Assuming a value of 90% degradation is used to define the point at which at pump is

deemed to have exceeded its serviceable life, then the predictions generated fall well

within the generated confidence limits. In this example, the mean estimate of the RUL

was approximately 22 days, with pump failure occurring (in the sense of exceeding the

acceptable level of degradation) approximately 20 days after the RUL prediction was

generated.
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4.6 Conclusions

In this chapter, a method for identifying and tracking the development of fluorine in-

duced degradation in a dry vacuum pump was developed. The developed solution has

the potential to reduce instances of unexpected pump failures caused by vacuum pump

degradation. This could have significant monetary benefit in terms of reduced pump

maintenance costs but also reduce the costs associated with scrapped wafers, tool down-

time and chamber cleaning, following an unexpected pump failure.

To model pump degradation, both MLR and ANNs were investigated. The performance

of the ANN models was significantly better than the MLR models. This is due to

the ANNs ability to model non-linear functional relationships between the input and

output variables. This chapter also demonstrated the potential benefit to semiconductor

manufacturers in providing access to upstream process measurements in the development

of condition monitoring solutions for dry vacuum pumps. By having access to such data

in the development phase, it is now possible to identify and, more importantly, quantify

the current level of vacuum pump degradation using only pump sensor variables. In

this way, potential pump failures can be avoided and the serviceable life of dry vacuum

pumps operating on harsh processes can be maximised.

RUL prediction capabilities for dry vacuum pumps were also developed using a double

exponential smoothing prediction technique. This capability will provide maintenance

personnel with an estimate of the RUL of a pump so that corrective maintenance can

be arranged at a suitable time, thus minimising equipment downtime and the associated

costs.
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Chapter 5

TPU Condition Monitoring

5.1 Introduction

The primary focus of this chapter is the development of a signal tracking and condition

monitoring algorithm for thermal abatement systems used in semiconductor manufactur-

ing. The specific type of thermal abatement system investigated is known as a thermal

processing unit (TPU). The main challenge presented in developing condition monitoring

solutions for TPU systems is the multiple operating modes, which generate multi-modal,

non-Gaussian, distributed signals. To address this challenge, a moving-window based

solution is developed which addresses the multi-modal and non-Gaussian distributed

signals by modelling the underlying signal distribution as a mixture of Gaussian proba-

bility density functions (PDFs), i.e. a Gaussian mixture model. The proposed condition

monitoring algorithm for TPU systems is developed and tested exclusively using data

collected within a large semiconductor manufacturing facility. The signal tracking algo-

rithm allows for changes in the maintenance condition of a TPU system, which generate

changes in the underlying distribution of the signals generated, to be tracked, allowing

for accurate real-time condition monitoring. In addition, the extracted features also

provide the foundation for the development of prognostic capabilities for TPU systems,

which will be presented in Chapter 6.

In addition to the signal tracking algorithm for TPU systems, Gaussian mixture model-

based solutions are also developed for a number of other applications. In Section 5.4.4, a

Gaussian mixture model representation is used to develop a novelty detection algorithm

for TPU systems, which can detect the occurrence of unanticipated fault conditions. This

is demonstrated on an historical TPU failure example. Finally, in Section 5.5, a Gaussian
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mixture model-based solution for multi-mode signal tracking within a mechanical dry

vacuum pump is developed. The proposed solution identifies the underlying distribution

of the booster power signal as a mixture of Gaussian components, where each component

describes a different operating mode of the pump. Bayesian inference is then applied to

identify the pump mode at any instant in time. This approach allows for changes in the

statistical characteristics of different pump variables, within the different pump operating

modes, to be tracked over time. This permits greater insight and ability to identify

and track the development of pump degradation. This capability is demonstrated on

historical pump failure data.

5.2 Semiconductor Abatement Technology

5.2.1 Introduction

Semiconductor manufacturing utilises a wide variety of often toxic, corrosive and reactive

gas mixtures, which pose a significant health, safety, and environmental, hazard. As a

result, a key component of many semiconductor manufacturing processes is the exhaust

gas management system. The exhaust gas management system is responsible for the

safe handling and disposal of the effluent gas streams generated by semiconductor man-

ufacturing processes. The exhaust gas management system is generally composed of two

separate systems. Vacuum systems are employed in the form of mechanical dry vacuum

pumps and turbomolecular (turbo) pumps which provide the necessary vacuum condi-

tions to permit processing to occur, and also serve to remove hazardous by-products

and gases from the processing chamber. The vacuum systems then pump these often

toxic and reactive by-products downstream to devices known as abatement systems,

which break these substances down for safe disposal. Abatement systems are designed

to reduce the emission levels of dangerous gases from the effluent gas stream of semi-

conductor manufacturing processes to such a level that they can be safely exhausted to

atmosphere, or discharged in liquid form into the waste-water treatment system.

In a large modern semiconductor fabrication facility, the abatement systems will typ-

ically utilise a range of different processes, each of which is designed to handle the

different types of effluent gas streams, generated by different manufacturing processes.

The principles of operation of different abatement devices generally falls into one of the

following categories:
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• Wet scrubbing of semiconductor manufacturing effluent streams involves the

contacting of the effluent gas with a scrubbing liquid, which results in the ab-

sorption of undesired effluent components by the scrubbing liquid. Alternatively,

the gas effluent may react with the scrubbing liquid; for example a caustic solu-

tion may be used to react with an acidic gas effluent to neutralise the undesired

components of the effluent stream.

• Dry scrubbing involves contacting the effluent stream with a solid material,

often in the form of small pellets designed to maximise the overall surface area for

contact, which treats the effluent stream by chemisorption, in which a chemical

reaction occurs at the exposed surface of the material to remove the undesired

components of the effluent stream.

• Thermal destruction involves combustion of the effluent gas stream to oxidise

and destroy the hazardous elements, at high temperatures.

• Non-thermal plasma abatement involves the destruction of specific compo-

nents within the effluent stream using a plasma discharge. The development and

in-service application of non-thermal plasma devices is at a much less mature

stage when compared to the techniques descried above, but is becoming much

more widespread. One of the primary drivers of plasma abatement is the lack

of available and reliable natural gas sources at certain manufacturing locations

around the world.

Abatement devices are also commonly described by their physical location relative to

the processing tool which they serve. Local point-of-use (POU) devices are generally

located immediately downstream of the vacuum systems to control emissions from a

single or several processing tools. In contrast, end-of-pipe (EOP) devices are generally

installed further downstream where they operate to abate emissions from multiple tools,

or possibly the entire fab [91]. Figure 5.1 illustrates the layout of the processing tool

and the exhaust gas management system on a typical semiconductor manufacturing

process. The processing tool, located within the fabrication (fab) facility clean room,

performs a specific manufacturing process on a single, or batch of, silicon wafers. The

process effluent gases, generated by the manufacturing process, then flow down through

the fab floor into the sub-fab. Located in the sub-fab is the primary dry vacuum pump

which feeds the process gases into the point-of-use abatement device, located directly

downstream of the dry vacuum pump. The treated gases then flow into the fab-wide

exhaust system for further treatment downstream or discharge to the atmosphere.
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Figure 5.1: Typical equipment layout

One of the primary drivers for the development of new abatement technologies and

particularly thermal and plasma abatement devices, is the challenge presented by a range

of gases known as Perfluorocompounds (PFCs). These types of gases are commonly used

in semiconductor manufacturing due to many desirable properties they exhibit; however,

they also represent a significant environmental hazard when released to the atmosphere

due to their high infra-red absorption capabilities.

5.2.2 PFC Gas Abatement

Perfluorocompounds (PFCs), including CF4,C2, F6, NF3, SF6, and hydrofluorocarbons

(HFCs) such as CHF3, are used extensively in semiconductor manufacturing for plasma

etching, chemical vapour deposition (CVD), and process chamber cleaning because of

their low impact on employee safety, and because of the unique chemical properties they

possess [92].

In particular, these types of gases provide uniquely effective performance when etching

high aspect ratio features on semiconductor wafers. These gases also provide a safe and

reliable source of fluorine gas used for remote plasma cleaning of deposition chambers

[93]. Finding suitable replacements for these PFC gases has proven difficult due to the

specific chemical properties of these gases.
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PFC gases are mostly chemically inert and noncorrosive; however, these types of gases

are known to intensely absorb infrared radiation and survive for long periods in the at-

mosphere. As as result, PFC gases are classed as high global-warming potential (GWP)

gases due to their high infrared absorption capacity when compared to CO2. For ex-

ample, one metric tonne of SF6, a gas commonly used in plasma etching, released into

the atmosphere, is the equivalent of 23,900 metric tons of CO2 in terms of its potential

effect on global warming over a time horizon of 100 years [91]. A further concern with

the use of PFC gases is the remaining volume of such gases that are not consumed by

the manufacturing process, and thus requiring abatement. This is due to the relatively

low utilisation efficiencies of these gases within fabrication processes [92]. To address the

issue of PFC gas emissions, the World Semiconductor Council (WSC), in 1999, declared

an industry-wide goal of 10% or greater reduction of aggregate PFC gas emissions over

1995 levels, from semiconductor fabrication facilities, by the year 2010 [87]. This repre-

sented a ambitious goal considering the average annual growth rates of 15% which the

semiconductor industry has experienced almost every year since the 1970s. According

to a statement released by the WSC in 2010, the industry was on target to achieve this

goal [94].

To address the issue of PFC gas abatement, the semiconductor industry has investi-

gated different approaches to reducing the volume of PFC gases discharged into the

atmosphere. The range of approaches have included process optimisation, the introduc-

tion of alternative chemistries, capture/recovery of emissions and the abatement of PFC

gases from process gases [93]. Each of these approaches have achieved varying levels

of success, and it is understood that a complete solution will incorporate aspects from

each of the proposed approaches. One of the most successful approaches to date has

been the use of thermal abatement systems which have become commonplace in large

semiconductor manufacturing facilities worldwide, as a method for reducing the levels

of PFC gas emissions into the atmosphere.
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5.3 Thermal Abatement Systems

5.3.1 Introduction

Amongst the range of approaches to reducing PFC emissions, one of the most com-

monly used in semiconductor manufacturing facilities worldwide is thermal abatement

of effluent gas streams. Thermal abatement operates on the principle of oxidisation of

the PFC gas components of effluent gas streams, via combustion at temperatures in

excess of 900◦C. Thermal abatement devices have become the technology of choice for

the abatement of PFC gases due to their high performance, measured in terms of their

destruction/removal efficiency (DRE). The DRE measures the percentage of PFC gas

components which are destroyed or removed by a thermal abatement device. One of

the highest scoring thermal abatement devices, in terms of its DRE, is the thermal pro-

cessing unit (TPU) [95], which is manufactured by Edwards Vacuum, who are a major

supplier of both vacuum and abatement solutions to the semiconductor industry world-

wide. The TPU has become one of the most prevalent thermal abatement devices in

semiconductor, solar, and flat-panel manufacturing facilities worldwide.

5.3.2 Edwards Thermal Processing Unit (TPU)

The TPU system, manufactured by Edwards Vacuum, is a point-of-use abatement device

which is generally located in the subfab of a manufacturing facility, directly downstream

of the exhaust of the mechanical dry vacuum pump employed on a particular manu-

facturing process, as shown in Figure 5.1. The TPU system has become an industry

standard device for abatement on both CVD and etch processes, and has been shown

to achieve greater than 99% DRE in the treatment of PFC gases [95].

A TPU utilises an inwardly fired combustor to oxidise the effluent gas stream, followed

by a three-stage wet scrubber. The combustion chamber utilises inward-fired combus-

tor technology developed by the Alzeta
TM

corporation, and employs four gas injector

nozzles to control the level of combustion, by injecting natural gas and oxygen into the

combustion chamber.
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Figure 5.2: TPU system layout [5]

5.3.2.1 System Design

In this section, a general overview of the design and operation of a TPU is presented

with reference to Figure 5.2, in which each of the major functional units within a TPU,

labelled A-E, are described [6].

A. Head Unit The head of the TPU unit contains four inlets, each of which can be

connected to an individual processing tool chamber, which feed the process gases

into the TPU combustion chamber directly below.

B. Combustion Chamber Within the TPU combustion chamber the process gases

undergo oxidisation at very high temperatures. Figure 5.3 illustrates the design of

the TPU combustion chamber.

The combustion chamber contains a porous ceramic liner (5), which separates the

inner surface walls of the combustion chamber from the high temperature reaction

zone (3) inside the ceramic liner. Oxygen and natural gas are injected (1) into

the inner surface walls of the combustion chamber which serves to flush the inner
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Figure 5.3: TPU combustion chamber design [6]

walls, keeping reaction materials away from the walls and preventing corrosion and

the build up of solids. The area between the outer walls and the ceramic liner also

serves as an annular supply plenum (4) for the delivery of the oxygen and natural

gas mixture to the cylindrical ceramic liner.

The injected natural gas and oxygen, known as the fuel-air mixture, passes through

the porous ceramic linear, where combustion and oxidation of process gases occurs

on the inner surface of the ceramic liner. Temperatures at the surface of the

liner can exceed 900◦C. Sustained exposure of the process gas effluent to these

high temperatures ensures complete destruction of the PFC gas components of

the effluent stream. The principle of operation of the TPU combustion chamber is

shown in Figure 5.4, where the arrows illustrate the annular supply of the fuel-air

mixture around the ceramic liner, which then passes through the ceramic liner and

into the inner combustion zone.

Figure 5.4: TPU combustion chamber illustration [7]
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Also located within the combustion chamber is a temperature sensor which moni-

tors the temperature within the combustion zone of the chamber. The temperature

at this location is one of two TPU sensor variables monitored and recorded by the

FabWorks networked monitoring system. This variable is named “combustor tem-

perature” (CT).

C. Flux Force Condensation Scrubber (Quench-Unit) After the combustion cham-

ber, the hot gases pass through to the first stage of a three-stage water scrubber.

This first stage is known as the “quench” unit. Two water spray jets generate a

fine mist which is sprayed across the hot gas stream to both; cool the gas, and

condense on the surface of any particulates in the gas, causing the particulates

to drop to the bottom of the quench-unit, removing those components from the

exhaust gas stream.

Additionally, water is continuously flushed across the walls of the quench unit, both

to keep the walls cool, and to prevent corrosion from the hot gases. A temperature

sensor located in the wall of the quench unit, monitors the temperature of the walls.

The temperature at this location is the second TPU sensor variable monitored by

the FabWorks system and is named quench-wall temperature (QWT).

D. Cyclone Scrubber Following the quench unit, the cooled gas stream passes through

the cyclone scrubber. During this stage, the gases and the water vapour are spun

at high rotational speeds to ensure that any particulates, not removed from the

gas stream in the previous scrubber stage, become entrained in the water which

forms on the walls of the cyclone scrubber.

E. Packed Tower Scrubber The final water scrubber stage is the packed tower. The

remaining components of the effluent gas stream rise up through the packed tower,

which contains high surface area packing, where water which flows down from the

top of the tower and scrubs the remaining acidic components from the gas. The

cleaned gas stream then passes through two mist filter elements which remove any

remaining water droplets, and the gas then exits through the exhaust gas outlet

and into the fab-wide exhaust extraction system.

During manufacturing operations, TPU systems operates in two distinct modes; low-fire

(LF) and high-fire (HF). In HF mode, increased flows of natural gas and oxygen are

injected into the combustion chamber via the gas inject nozzles, to increase the com-

bustion temperature, and ensure the destruction of all PFC gases within the effluent

stream. The starting and stopping of the HF mode is usually controlled via communica-

tion between the semiconductor processing tool, and the TPU device. Typically, the HF
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mode is triggered by the radio frequency (RF) generator (i.e. the RF power signal) in

the processing chamber, indicating the generation of a plasma in the chamber, and the

pending arrival of an effluent gas stream containing PFC gas components, which requires

higher temperature within the combustion zone to ensure their complete destruction.

5.3.2.2 Data Collection & Resampling

As part of this study, a dataset collected over a number of years was made available for

analysis, and development of condition-monitoring and prognostic algorithms for TPU

systems. The data was collected from a number of TPU systems installed on chemical

vapour deposition (CVD) processes, within a large semiconductor manufacturing facility.

Within the manufacturing facility, each TPU was connected to the FabWorks monitoring

system. An overview of the FabWorks networked monitoring system was presented

previously in Section 4.2.2.

To briefly recap, each device connected to the FabWorks networked monitoring sys-

tem sends regular updates on sensor values and its current operating status (i.e. start-

ing,running,off,etc) to a central server, where they are stored and analysed. The network

typically carries data from each mechanical dry vacuum pump, turbomolecular pump,

and TPU within a manufacturing facility. To ensure stability and robustness, message

traffic across the network must be managed so that the network does not become sat-

urated, and that regular communication between devices and the central database is

maintained.

The primary method by which the volume of network traffic is controlled, is via the use

of a send-on-delta sampling technique [85]. Using this sampling technique, sensor value

updates are only sent to the central database when the difference between the current

sensor value and the value of the most recent update sent to the central database exceeds

a preset threshold, δ. The value of δ, for each individual sensor variable, acts as a trade-

off between signal resolution and signal update rates, directly influencing the network

bandwidth consumed. As the value of δ increases, the rate of signal updates reduces,

with a corresponding reduction in signal resolution. Likewise, as the values of δ are

decreased, there is an increase in signal updates rates, and hence network bandwidth

utilisation, alongside an increase in signal tracking resolution. For the period of this

study,, the FabWorks monitoring system was setup to record two sensor variables on

each TPU monitored

1. Combustor temperature
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2. Quench-wall temperature

The location of each of these sensors is detailed in Section 5.3.2.1. In addition to the

sensor variables monitored, status information from each TPU system is also recorded

and updates sent to the central database whenever the TPU status changes. The TPU

status at any time is described by one of the following states

• Off

• On

• Processing

• Stopping

• Shutdown

• No Communication

• Communications Fail

During normal operation, the TPU status signal indicates “On” during periods of low-

fire mode and indicates “Processing” during periods of high-fire mode. The status signal

provides a means to track the system switching between operating modes, in a supervised

manner.

5.3.2.3 Preliminary Signal Analysis

In Section 5.3.2, a brief description of the operation of a TPU system was presented,

which reviewed the variables and status information that are recorded by the FabWorks

networked monitoring system. In Figure 5.5, a plot of the combustor temperature (CT)

and quench-wall temperature (QWT) signals from a normally functioning TPU system is

shown over a period of approximately two days. The large fluctuations observed in both

the CT and QWT signal values are a function of the TPU system switching between LF

and HF operating mode, as changing flows of oxygen and natural gas are injected into

the TPU combustion chamber.

Another factor to note is the operating ranges of both the CT and QWT signals. In

Figure 5.5, it can be seen that the operating range of the CT signal is generally between

850◦ and 1000◦ C. The operating range of the QWT signal is generally between 35◦ and
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Figure 5.5: TPU data example

60◦ C. It is also clear that the behaviour of both the CT and QWT signals is similar,

in response to a change in the operating mode of the TPU, with both signals rising and

falling in response to periods of HF mode operation.

Visual analysis of the CT and QWT signals illustrated in Figure 5.5 clearly shows that

both signals exhibit multi-modal behaviour, which reflect the switching of the TPU

system between the LF and HF operating modes. This multi-modal behaviour of both

the CT and QWT signals is a significant issue and a major driver in the selection

of appropriate techniques for the development of condition monitoring algorithms for

TPU systems, which are presented in this chapter. A final issue to note is that, unless

otherwise stated, both the CT and QWT signals were resampled onto a regular 1-minute

sampling interval, using linear interpolation. This resampling operation is necessary as

the data collected by the FabWorks networked monitoring system, using a send-on-delta

sampling technique, results in the data being collected on an irregular sampling interval.

112



TPU Condition Monitoring

5.3.2.4 TPU Failure Modes

TPU devices suffer from range of maintenance issues due to the harsh environment in

which they operate. The result of an in-service failure of any major component of a TPU

will often result in downtime for the entire manufacturing process as wafer processing

cannot continue if the downstream abatement system is not operational. For the dura-

tion of this study, the FabWorks monitoring system only recorded the values of the CT

and QWT signals from each TPU system. As a result, the work presented in this chapter

only considers maintenance issues within either the combustion chamber or the quench-

unit, which generate a response in the temperature sensors monitoring these stages of

the TPU system. In future versions of the FabWorks networked monitoring system, and

in the next generation of TPU system designs, it is likely that many more sensor vari-

ables will be monitored and recorded as ethernet-based communications become more

prevalent, providing greater network bandwidth for communications. This may poten-

tially enable the development of condition monitoring solutions for other components of

a TPU system.

Combustion Chamber Operating Issues

One of the primary maintenance concerns when operating TPUs on certain manufac-

turing processes are silica particles (SiO2), which can be generated as a by-product of

the upstream manufacturing process. These particles, which often form as a fine white

powder, can become deposited on the walls of the ceramic liner and crystalise to form a

hard “glaze”, as illustrated in Figure 5.6 [8].

Figure 5.6: Example of deposit build-up in a TPU combustion chamber [8]
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As the level of deposits increase, the pores of the ceramic liner become blocked, reducing

the overall porosity of the ceramic liner. The reduced porosity causes a reduction in the

volume of the fuel-air mixture which passes through the ceramic liner, from the annular

supply plenum, into the inner combustion zone. This affects the temperature profile

within the inner combustion zone. Figure 5.7 illustrates the response seen in a TPU

CT signal (which monitors the temperature in the inner combustion zone) to a build-up

of silica deposits on the walls of the ceramic liner. As seen in Figure 5.7, the values of

CT signal, at the lower limits, begin to decay in response to a increase in the level of

deposits on the walls of the ceramic liner.

Figure 5.7: Typical TPU combustor temperature (CT) signal response to a build-up
of silica deposits on the walls of the ceramic liner

The gradual decay in the CT values is reflective of the reducing porosity of the ceramic

liner, resulting in less fuel-air mixture reaching the inner combustion zone and, hence,

a reduction in the temperature within the inner combustion zone. It is also noticeable

that the effect of deposit build-up on the observed CT signal values is less significant

during periods of high-fire mode operation, particularly during the early stages of deposit

build-up. It seems that the increased flows of fuel-air mixture during high-fire mode are

sufficient to overcome the reduced porosity of the ceramic liner. This may be due the

the additional fuel-air mixture being injected, raising the pressure on the annular supply

plenum side of the ceramic liner and increasing the volumetric flow through the liner.

However, it has also been observed that the time necessary for the temperature within

the inner combustion zone to transition from low-fire mode values to high-fire mode

values increases, as the CT signal decays in response to a build-up of deposits.

114



TPU Condition Monitoring

From a maintenance perspective, the build-up of deposits causes a number of undesirable

consequences, which must be considered in choosing when to perform maintenance on

TPUs. These include;

Combustion Effects: The build-up of deposits affects the temperature profile within

the inner combustion zone of a TPU, as illustrated in Figure 5.7. As the level of

deposits becomes excessive, it is possible that the destruction/removal efficiency

(DRE) of the TPU may be reduced, potentially affecting the volume of PFC gases

released into the atmosphere.

Ceramic Liner Damage: The air-flow through the pores of the ceramic liner is de-

signed to transport heat build-up in the ceramic liner into the inner combustion

zone. However, as the pores of the ceramic liner become blocked, this air-flow

reduces, meaning that the ability to dissipate heat build-up within the liner is

reduced. This results in hardening of the ceramic liner (which is usually quite soft

to touch) which significantly reduces its remaining serviceable life [8].

Fault Propagation: As the level of deposits become excessive, there is an increased

risk of large silica deposits becoming dislodged and falling into the water scrub-

ber below, potentially damaging the cyclone scrubber unit which rotates at high

speeds.

The build-up of deposits within a TPU combustion chamber essentially represents a pro-

cess of gradual degradation of the maintenance condition of a TPU. Considering each of

the issues described above, it is imperative that TPU systems are maintained in peak

condition to both; ensure maximum DRE at all times, and to reduce the potential for

in-service failures and subsequent unplanned tool downtime. The build-up of deposits

on the ceramic liner within the TPU combustion chamber, and the gradual degradation

in TPU condition, are the primary TPU maintenance issues for which condition moni-

toring and prognostic algorithms are developed in this chapter and the following chapter.

Quench Unit Operating Issues

The quench unit is responsible for cooling the hot gas flows which emerge from the

TPU combustion chamber, and for removing any particulates in the effluent gas stream.

Within the quench unit, it is imperative that the cooling water temperature and flows

are maintained at required levels. This is important, as otherwise the quench unit walls

risk becoming damaged by both the high heat, and the potentially corrosive elements
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within the effluent gas stream. Occasionally, problems with cooling water flows can arise

which risk damaging the quench-unit. In Section 5.4.4, a simple, generic, technique, for

monitoring and detecting potential problems within the quench-unit is presented, which

can identify the occurrence of uncharacteristic or “novel” events within the multi-modal

QWT signal.
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5.3.2.5 TPU Maintenance Practices: Current & Future

The current method for maintaining TPUs is for regular preventative maintenance (PM)

to be performed at fixed intervals. The intervals can be based upon elapsed time, or upon

the volume of wafers processed since the last PM was performed, if such information is

available. Performing regular PM on TPUs has a number of benefits and shortcomings

from a maintenance perspective. By performing regular PM, at sufficiently conservative

intervals, the likelihood of in-service failure is reduced and the DRE of the TPU device is

maintained at high levels. However, regular PM is expensive to perform; manpower must

be allocated to perform the maintenance tasks as scheduled and a significant inventory

of spare parts must be maintained to perform the regular swap out of components. In a

manufacturing facility operating hundreds of process tools, the regular PM requirements

for TPUs, and the cost and logistics of maintaining a large inventory of spares, can be

significant. Furthermore, in those periods between regular PM overhauls, and in the

absence of any condition monitoring system, all in-service failures of TPUs will occur

unexpectedly, resulting in major disruption to process tool availability and potentially

impacting on production scheduling across a manufacturing facility. The consequences

of an in-service TPU failure are even more significant when you consider that a single

TPU might be connected to up to four individual wafer processing chambers.

Semiconductor manufacturing is becoming an increasingly lean manufacturing operation

due to increased competition [96]. As a result, maximising equipment and production

uptime is becoming ever more critical. From a TPU perspective, the importance of

overall production uptime is clearly illustrated by the fact that some manufacturers

are now operating two TPU systems in parallel on certain manufacturing processes, to

try and achieve 100% abatement system uptime. This is achieved by having one TPU

system operating normally, with a second TPU system operating in a standby role. A

bypass valve is incorporated into the design, allowing one TPU to treat process gases

whilst the other system remains in standby, or undergoes maintenance. In the event of

one of the TPU systems failing, the process gases can be automatically diverted into the

other TPU system via the bypass valve, resulting in no impact on wafer processing in the

upstream chamber(s). This approach to achieving 100% abatement uptime illustrates

the importance attached to maintaining high levels of equipment uptime within the

semiconductor manufacturing industry. Running two TPU systems effectively doubles

both capital and operating costs of the thermal abatement system. However, for those

manufacturers operating TPU systems in parallel, the costs associated with unplanned

production downtime must, presumably, far exceed the costs associated with running

two TPU systems in parallel.
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Within the semiconductor manufacturing environment, the increasing focus on max-

imising equipment uptime is serving as a driver for the development and deployment

of new maintenance philosophies and practices on TPU systems. As time and tech-

nology progresses, maintenance activities on TPU systems are expected to move away

from regular PM activities, toward more condition-based, or as-necessary, maintenance.

Currently, TPU maintenance personnel often spend significant amount of time viewing

and analysing the signals recorded on TPU systems to try and identify upcoming main-

tenance events. This practice is often time consuming and the analysis will always be

somewhat subjective.

The overall objective in developing new condition-based maintenance practices on TPU

systems is to minimise preventative maintenance activities, whilst also avoiding in-

service failures. A certain level of preventative maintenance will always be necessary to

swap out life-limited components, but minimising such activities will be key to minimis-

ing maintenance and total ownership costs. Key to the success of new condition-based

maintenance approaches for TPU systems, is the development of new signal tracking

and condition monitoring algorithms for TPUs. Such systems will provide an accurate

assessment of overall TPU health in real-time, and provide maintenance personnel with

warnings of current and approaching maintenance issues. The rest of this chapter de-

scribes the development of a condition monitoring algorithms for TPUs. In Chapter 6,

the features generated by the TPU condition monitoring algorithms developed in this

chapter are used to infer the current level of TPU degradation, and predict the remaining

useful life of a TPU system suffering a build-up of deposits.
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5.4 TPU Condition Monitoring & Feature Extraction

This section describes the development of condition monitoring solutions for TPU sys-

tems. Firstly, Section 5.4.1 describes existing condition monitoring approaches for TPU

systems. Sections 5.4.2 and 5.4.3 then introduce a proposed signal tracking algorithm

which uses Gaussian mixture models to track changes in the underlying distribution of

the combustor temperature signal. The combustor temperature sensor which is located

inside the TPU ceramic liner. The changes in the underlying distribution of the CT

signal can be used to detect the buildup of deposits on the ceramic liner or other main-

tenance issues which may generate a response in the CT signal. Finally, Section 5.4.4

describes how the Gaussian mixture model approach, described in the prior sections,

can also be used to detect the occurrence of novel events within the TPU quench-unit.

5.4.1 Existing TPU Condition Monitoring Approaches

This section provides a brief review of existing condition monitoring techniques for TPU

systems. These techniques have been developed both as part of the FabWorks networked

monitoring system, and also as an optional FabWorks add-on application known as

Edwards Advanced Diagnostic Systems (EADS) [97]. Whilst much of the specifics of

how these existing condition monitoring techniques operate remain proprietary, the basic

principles are understood and are presented here for comparison with solutions developed

as part of this thesis.

5.4.1.1 Alarm Thresholds

The most basic condition monitoring techniques employed on TPU systems are univari-

ate alarm thresholds. These operate by defining threshold limits on individual sensor

values which, when exceeded, generate a warning or alarm, notifying maintenance per-

sonnel of a maintenance issue. In some cases, excessively high sensor value readings

can result in the automatic shutdown of a TPU system. The use of univariate alarm

thresholds is one of the most common condition monitoring techniques across all types of

machinery and equipment, due to the ease of implementation. However, such approaches

suffer from a number of shortcomings. The primary shortcoming is the excessive gen-

eration of false alarms, which can sometimes result in unnecessary maintenance being

performed, or unnecessary downtime to investigate the root cause of an alarm being trig-

gered. As a result, maintenance personnel can become distrustful and lose confidence in

the usefulness of such approaches.
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In the case of TPU systems, a further concern with the use of univariate alarms is

the multi-modal signal characteristics of the CT and QWT signals. This multi-modal

signal behaviour is caused by a TPU system switching between LF and HF operating

modes. For example, consider setting a threshold limit on a temperature signal, which

is triggered when excessively high values are detected. This approach may fail to detect

a potential fault condition if the TPU system is operating in LF mode. This is because

the range of temperature values observed in LF mode are significantly less than those

observed in the HF mode. Whilst a significant rise in temperatures may occur relative to

normal operating ranges, they may not be sufficient to exceed the alarm threshold which

may be set above the typical operating range of the HF mode. Furthermore, setting

threshold limits for each operating mode will also result in numerous false alarms as the

temperature values rise and fall when switching between TPU operating modes.

Another consideration with the setting of alarm threshold limits on TPU systems, par-

ticularly within the semiconductor manufacturing environment, is that the temperature

profiles observed on each TPU system may vary significantly across different manufac-

turing processes. This is due to the different process chemistries employed on each man-

ufacturing process, which can influence the temperatures which are generated within the

combustion chamber. In developing new condition monitoring techniques for fault de-

tection in TPU systems, it is important that such techniques be robust to the variability

in TPU operating temperature profiles, which can vary across different manufacturing

processes.

To address the shortcomings of alarm thresholding on TPU systems, Section 5.4.4 intro-

duces a simple univariate condition monitoring algorithm capable of detecting potential

fault conditions in either the combustion chamber or quench-unit of a TPU system. The

proposed solution comes from the domain of condition monitoring techniques known as

“Novelty Detection” algorithms, previously discussed in Section 2.4.4. The new solution

presented in Section 5.4.4 provides a simple solution to the issue of multiple operating

modes, allowing for the detection of fault conditions independent of the TPU operating

mode. It also avoids the requirement of having to select specific threshold values for

each process. The proposed solution is also insensitive to the different temperature pro-

files observed from TPU systems operating on different processes as the distributions of

signal values is identified online, using data collected from each individual TPU.
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5.4.1.2 Existing Moving Window-Based TPU Signal Monitoring

Section 5.3.2.4 discussed the issue of deposit build-up in TPU combustion chambers.

Current condition monitoring algorithms for TPU systems, offered as part of the EADS

system, employ moving window based methods to detect and track the build-up of

deposits in a TPU combustion chamber from the CT signal. Moving windows of different

lengths are used and, within each window, characteristics such as max and min signal

values of the CT signal are identified, and moving average values are calculated. Gradient

based techniques, using the features generated by the windowing methods, are used

to track and trend the loss of temperature in the combustion chamber, which reflect

the build-up of deposits. These features are then analysed in a proprietary rule-based

framework to identify the build-up of deposits and generate notifications for maintenance

personnel.

Alternatively, in the absence of any automated TPU condition monitoring for TPU

systems, it is common for maintenance personnel to spend significant lengths of time

viewing and analysing the plots of CT values for each TPU in a facility, on a daily, or

sometimes more frequent, basis. The purpose of this visual analysis is to identify those

TPUs experiencing a build-up of deposits within the combustion chamber and to track

this build-up over time. In addition to being quite time consuming, the visual analysis

of signal plots can also be somewhat subjective.

A shortcoming of existing moving-window based methods, is that they do not account for

the different operating modes which a TPU may operate in, over any window period. As

a result, fluctuations in the max and min values of the CT signal will be a function of the

different operating modes in which a TPU operated over that period. In Section 5.4.2,

the development of a new signal tracking algorithm for TPU systems is presented. The

new technique expands upon the existing moving-window based approaches, described

above, by employing Gaussian mixture models to track the changes in the non-Gaussian

distribution of CT signal, in each of the TPU operating modes, over time. This new ap-

proach allows for the identification and generation of many more system features which

can be incorporated into the existing rule-based framework for TPU monitoring. The

new signal tracking approach employs a moving window, similar to existing TPU mon-

itoring methods described above, but provides a more robust, accurate, and adaptable

approach, to tracking deposit build-up within the combustion chamber. Furthermore,

the approach allows for separate tracking of the CT signal distribution in each of the

TPU operating modes.
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It will be illustrated in later sections how the new signal tracking approach provides a

range of improvements over existing methods including, freeing maintenance personnel

from manual analysis of CT plots, allowing them more time for maintenance actions and

planning, and additionally removing any subjectivity from the analysis. The new signal

tracking approach is designed to be flexible and robust with regard to the quality of

signal resolution available in the CT signal. Additionally, the proposed signal tracking

approach can easily be expanded to multivariate signal tracking, which will be neces-

sary as the next generation of TPU systems will have many more signals available for

monitoring. This capability will be illustrated briefly in Section 5.4.4.3.

Finally, with the introduction of new TPU operating modes, designed to reduce the

consumption of the fuel-air mixture whilst no processing is occurring upstream, the

new operating modes will be easily accommodated by the proposed signal tracking ap-

proach, and will provide the ability to monitor and track TPU condition regardless of

the operating mode.
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5.4.2 TPU Condition Monitoring using Gaussian Mixture Models

Previously, in Section 5.3.2.3, a brief introduction to the characteristics of the CT and

QWT signals, generated by a typical TPU device, was presented. The primary char-

acteristic observed in both signals was the large fluctuations in temperature values as

a TPU system switches between operating modes. This switching betweens operating

modes results in the generation of a multi-modal signal, which presents some issues

from a signal tracking perspective. Figure 5.8 illustrates an example of deposit build-up

within a TPU combustion chamber. Highlighted in Figure 5.8 are two periods of data,

labelled 1 and 2, which each cover a 24-hour period of data. The data in period 1 was

recorded when the TPU was operating normally and the data in period 2 was recorded

when a build-up of deposits in the TPU combustion chamber had commenced. This

build-up of deposits within the combustion chamber results in the gradual reduction in

the “lower” range of CT values observed.

Figure 5.8: Evolution of CT signal as level of deposits increase

In Figure 5.9, the distribution of the CT signal during each of the data periods labelled

1 and 2 in Figure 5.8 is presented in histogram format. Looking at the upper illustration

in Figure 5.9, which represents the distribution of CT signal values during normal (fault-

free) operation, we can clearly see two distinct regions, or clusters, of CT signal values.

These two regions reflect the distribution of CT values generated from the TPU operating

in both LF and HF operating modes.

In the lower illustration of Figure 5.9, the distribution of the CT signal, following a build-

up of deposits in the combustion chamber, is shown. Comparing the two distributions in
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Figure 5.9: Combustor temperature signal: Changing distribution

Figure 5.9, it can be seen that the signal distribution at both times maintains the same

general shape. However, once a build-up of deposits occurs, the two distinct clusters

of CT values both diverge from each other, and spread out across a wider range of

temperature values. Since the general shape of the CT signal distribution is maintained

as deposit build-up occurs, this suggests a possible approach to tracking the multi-modal

CT signal. By parameterising the underlying multi-modal distribution of a typical CT

signal, this would provide a means to accurately track the development of deposit build-

up, by analysing the changes in the parameter values defining the underlying signal

distribution.

One potential solution to the problem of parameterising the underlying CT signal dis-

tribution is through the use of Gaussian mixture models (GMMs). GMMs allow for the

parameterisation of multi-modal densities, by modelling the underlying distribution as a

sum of individual Gaussian probability density functions (PDFs). Furthermore, mixture

models can be used to describe situations where each observation is modelled as having

been produced by one of a set of alternative mechanisms [64]. In the case of equipment

monitoring applications, where equipment operating modes define the set of alternative

mechanisms, GMMs can provide a powerful tool for signal tracking and fault detection

applications in a multi-modal signal environment.

GMMs have previously seen application to a number of condition monitoring and fault
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detection problems. Yu and Qin [98] applied GMMs to modelling complex industrial pro-

cesses, in which each of the operating modes of the process is described by a component

of the GMM. Then, using a derived global probabilistic index, process measurements

indicative of a potential fault condition are identified. Choi et. al [99] combined GMMs

and principal components analysis (PCA) for monitoring of multi-modal processes.

5.4.2.1 Gaussian Mixture Models

A mixture model is a type of probabilistic model used for density estimation, in which a

combination of individual probability density functions are used to model the underlying

distribution of a set of observations. Mixture models are often employed for unsupervised

learning, or clustering of data [62, 63]. More specifically, a Gaussian mixture model is a

parametric probability density function, which represents an observed distribution as a

weighted sum of individual Gaussian PDFs. A review of the theory and application of

mixture modelling was presented previously in Section 3.3, which should be referred to

as necessary.

From a set of observations, the parameters of a GMM are usually identified using the

expectation maximisation (EM) algorithms. However, as discussed previously in Sec-

tion 3.3.2.1, the standard EM algorithm suffers from a number of shortcomings. To

address these shortcomings, the Figueiredo-Jain (F-J) version of the EM algorithm [66]

was chosen to estimate GMM model parameters in all examples shown. The primary

motivation for the use of the F-J version of the EM algorithm is its robustness in address-

ing the issues of initialisation sensitivity and convergence to boundary of the parameter

space. These issues can result in an unbounded likelihood estimate for one of the com-

ponents, with the covariance matrix of the that component becoming arbitrarily close

to singular.

The F-J algorithm also has the capability to identify the optimal number of mixture

components with which to model a set of observations, Koptimal. To identify Koptimal, the

user selects a range of possible values for K, by setting values for Kmin and Kmax. The

value of K which minimises the cost function, defined within the F-J algorithm, is then

chosen as the optimal number of components with which to model the set of observations.

In many of the applications presented in the following sections, the number of mixture

model components, K, is known a priori. In such situations, where K is known, the F-J

algorithm was modified slightly. Instead of returning the optimal number of components,

as identified by the cost function, the algorithm instead returns a GMM of size Kmin
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where, in this case, Kmin is the number of components to be identified from the set of

observations, and is known a priori.

By setting Kmin to the desired number of components, and by setting Kmax to a sig-

nificantly larger value, the algorithm addresses the issue of initialisation sensitivity. By

starting with a large value for Kmax, each of the components are initially distributed

randomly throughout the parameter space. Then, by iteratively killing and removing

those components not supported by the data, and at each iteration removing the com-

ponent with the smallest weighting until the desired number of components Kmin is

identified, the algorithm exhibited robust performance in identifying GMM parameter

values. Indeed, using the standard EM algorithm, it was not possible to generate the

results presented in the following sections for the moving-window applications. This is

because the standard EM algorithm frequently converged to the boundary of the pa-

rameter space, resulting in unbounded likelihood estimates and, thus, failing to identify

the parameter values of the specified GMM from the presented set of observations.
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5.4.2.2 Modelling the CT Signal Distribution

Figure 5.10 shows an example of a TPU system which suffered from a build-up of silica

particles on the ceramic liner. In the upper plot of Figure 5.10, a region of fault-free

data is highlighted. The distribution of CT signal within this highlighted region is

shown in the lower plot of Figure 5.10. To model the distribution of the CT signal

within the highlighted region using a GMM, the first issue is to determine how many

individual Gaussian PDFs to use to model the underlying multi-modal distribution.

The F-J version of the EM algorithm was used for this task, and the optimal number

of components identified, with which to model the underlying distribution of the signal,

was three.

Figure 5.10: Fault-free CT signal distribution

Figure 5.11 illustrates the CT signal distribution in Figure 5.10 modelled as a superpo-

sition of three Gaussian PDFs. The upper plot in Figure 5.11 shows the distribution of

CT values, with the identified 3-component GMM PDF overlayed. Shown in the lower

plot are the individual Gaussian PDFs, the weighted superposition of which make up

the overall Gaussian mixture model density shown in the upper plot. As illustrated in
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Figure 5.11, the 3-component GMM accurately models the underlying distribution of

the CT signal.

Figure 5.11: GMM representation of CT signal distribution
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5.4.3 Multi-Mode TPU Condition Monitoring Algorithm

This section describes a proposed algorithm for TPU condition monitoring, specifically

for detecting deposit buildup on the TPU ceramic liner. Figure 5.12 shows a flow chart

illustrating the proposed multi-mode TPU condition monitoring algorithm. Firstly, raw

sensor data is collected by the FabWorks monitoring system. This data is then passed

to the resampling stage where the combustor temperature (CT) signal is resampled to

a regular 1-minute sampling interval, as described in Section 5.3.2.3. The resampled

CT signal is then passed to the multi-mode signal tracking stage, which is described in

detail later in this section. The general purpose of this stage is described below.

Figure 5.12: Multi-mode CT tracking algorithm

Section 5.4.2.2 illustrated how GMMs can be used to model the distribution of a typical

TPU CT signal. However, to track how the distribution of the CT signal changes in

response to deposit build-up within the TPU combustion chamber, it is necessary to
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employ some form of moving-window approach. A moving-window based solution is

proposed to track changes in the distribution of the multi-modal TPU CT signal. The

proposed solution employs a moving window where, at each iteration, the parameters of

a specified GMM are identified from the set of observations within the current window.

In this way, the changes in the parameter values of the GMM identified at each iteration

can be used to track the changes in the underlying distribution of the CT signal.

The identified values, comprising the means and variances of each of the GMM compo-

nents, are then passed as features to the decision logic stage. The decision logic stage

identifies any parameters deviating from normal operating ranges and identifies potential

fault conditions. If no fault condition is identified, the algorithm continues to iterate. If

a fault condition is identified, an alarm condition is generated and the algorithm con-

tinues to iterate. Furthermore, when a fault condition is identified, which is indicative

of deposit buildup occurring on the ceramic liner, the prognostic stage is initialised.

The prognostic stage generates a prediction of the remaining useful life (RUL) of the

TPU. The algorithm then continues to iterate and a specific feature (described in Sec-

tion 5.4.3.4) generated by the multi-mode signal tracking stage is continuously passed

to the prognostic stage to recursively update the RUL predictions as the fault condition

continues to develop. The design of the prognostic stage of the algorithm is described

in Chapter 6.

The remainder of this section describes the specifics of how the multi-mode signal track-

ing stage is implemented. Section 5.4.3.1 describes how the underlying distribution of the

CT signal is modelled using GMMs. The challenges presented by the different operating

modes of the TPU systems in modelling the underlying distribution of the CT signal are

presented and a proposed solution involving separating the CT signal by operating mode

is discussed. The design of the moving window, in terms of window length and the step

size between iterations of the algorithm, is discussed in Section 5.4.3.2. Section 5.4.3.3

then presents some results of the signal tracking algorithm applied to historical TPU

failure examples and illustrates how changes in the values of the features generated can

be used to indicate the presence of a fault condition or deposit buildup. Finally, Section

5.4.3.4 describes how one the features generated by the multi-mode signal tracking stage

can be used to track deposit buildup and for predicting the RUL of a TPU.
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5.4.3.1 CT Signal Distribution Identification

Figure 5.11 illustrated how a 3-component GMM can be used to model the underlying

distribution of a typical TPU CT signal. This suggests that in applying a moving-

window approach to tracking the changes in CT signal distribution, the parameters

of a 3-component GMM should be identified from the set of CT signal values within

each window. In this way, the changes in the mean and variance values of each of the

components could be used to track the changes in the underlying distribution of the CT

signal, in each of the TPU operating modes. However, such approach raises some issues

which must be considered.

Using a moving-window approach, with a specified fixed window length, assumes that

the distribution of CT signal values will be similar within successive windows. In this

way, changes in the parameters describing the underlying distribution of the CT signal

could then be used to infer the condition of a TPU system, within each of the TPU

operating modes. However, wafer processing within a manufacturing facility does not

typically occur at regular, specified intervals. This means that within a specified window

length, a TPU may not have operated in the HF mode and, instead, may have operated

solely in the LF mode for the period of the window. As a result, any attempt to identify

the parameters of a 3-component GMM from the data samples within a fixed-length

data window, where, if it is assumed that the component with the highest mean value

describes the distribution of the CT signal within the HF mode, then this assumption

will be incorrect.

A solution to this issues is provided by the TPU status signal, which is recorded by

FabWorks. The TPU status signal records the times when the TPU switches between

LF and HF operating modes, as described previously in Section 5.3.2.2. By using this

status signal, it is possible to separate the original CT signal into two separate signals.

The first signal, the LF mode CT signal, is composed of only those samples recorded

when the TPU was operating in LF mode. The second signal, the HF mode CT signal,

is composed of only those samples recorded when the TPU was operating in HF mode.

By separating the original CT signal on the basis of the TPU operating mode, it is now

possible to employ a moving-window approach to track changes in the signal distribution,

in each of the TPU operating modes, independently. In this way, the problem of irregular

wafer processing is addressed. Once the original CT signal is separated into two separate

signals, there remain a number of design issues to consider. The first issue is to identify

the underlying distribution of both the LF mode CT signal and the HF mode CT signal,

which is discussed in this section.
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Once the CT signal is separated into two signals, using the TPU status signal, the next

issue is to investigate the distribution of these two signals. Figure 5.13 shows the distri-

bution of the LF mode CT values from the same dataset that generated the distribution

shown in Figure 5.11, except that only those samples recorded during periods of LF

mode operation are shown. The F-J algorithm [66] was used to identify the optimal

number of GMM components necessary to model the underlying distribution of the LF

mode CT signal. The optimal number of components identified was two. The upper

plot in Figure 5.13 illustrates the identified 2-component GMM PDF overlayed on the

LF mode CT signal distribution, with the individual GMM component PDFs are shown

in the lower plot.

Figure 5.13: GMM representation of LF mode CT signal distribution

Considering that TPU systems operate in only two modes, it might be expected that

the signal distribution in each mode might be represented by a single Gaussian den-

sity. However, it has been clearly illustrated that the underlying distribution is best

represented by a 2-component GMM. The reason for the presence of the additional com-

ponent, labelled Component 2 in Figure 5.13, is due to the TPU switching between

operating modes. Once a TPU switches from HF mode into LF mode, the CT values

must decay from the high values, associated with the TPU operating in HF mode, back

to lower values associated with the TPU operating in LF mode. Another reason for

the non-Gaussian distribution of the LF mode CT signal is due to the TPU switching

into HF mode for short periods, whilst abating PFC gases from an upstream chamber
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clean cycle. These clean cycles, which generally last for shorter durations than wafer

processing cycles, cause short duration spikes in CT values and, once the TPU switches

back into LF mode, the CT signal must again decay back to normal range.

Having selected a 2-component GMM to model the distribution of the LF mode CT

signal, the distribution of the HF mode CT signal must also be identified. Figure 5.14

shows the distribution of the HF mode CT signal taken from the same data set as used

previously in Figure 5.11. However, in this example, only those samples recorded during

periods of HF mode operation are selected.

Figure 5.14: GMM representation of HF mode CT signal distribution

Using the F-J algorithm, a 2-component GMM was identified as the optimal number

of components with which to model the underlying distribution of the HF mode CT

signal. As with modelling the LF mode signal distribution, an additional component

is necessary to model the HF mode signal distribution. This additional component,

labelled Component 3 in Figure 5.14, models the periods of transition between LF and

HF operating modes, as the temperature values rise in response to additional flows of

oxygen and natural gas.
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5.4.3.2 Moving Window Design

The proposed multi-modal CT tracking algorithms employs two separate moving win-

dows, which operate independently to the track the CT signal distribution within each of

the TPU operating modes. This means that appropriate window lengths and step sizes

must be chosen for tracking the CT signal in each operating mode. In selecting a win-

dow length, another issue to consider is how to specify the bounds of the moving-window

at each iteration. Since the two signals to be tracked are comprised solely of samples

recorded during the specified operating mode, and that a TPU regularly switches be-

tween operating modes, then the upper and lower bounds of the moving-window cannot

be defined in terms of absolute time. Instead, for tracking within each of the TPU

operating modes, the moving-window is filled with a specified number/window of the

most recent samples recorded, whilst the TPU was operating within the relevant mode.

For example, the window length for tracking the LF mode CT signal might comprise

the most recent two-hours of data recorded when the TPU system was operating in the

LF mode.

Another issue to consider is the performance/accuracy trade-off in choosing different

window lengths. Increasing the window length means a greater number of samples

from the underlying distribution are available, increasing the likelihood that an accurate

representation of the true underlying distribution of the CT signal will be identified.

However, increasing the window length also introduces a lag in the estimates of the

mixture model parameters. Much like a moving-average (low-pass) filter, the greater

the length of the window, the greater the lag introduced. Given that the objective is

to track changes in the underlying distribution, it is preferable to introduce as small a

lag as possible so that the GMM parameters values respond quickly to changes in the

underlying signal distribution. This is achieved by reducing the length of the window.

However, as the window length becomes smaller, this results in greater fluctuations in

the estimates of the mixture model parameters between successive windows. This is due

to having an insufficient number of samples to identify the true underlying distribution.

Considering the issues described above, a wide range of window lengths were considered

for tracking the CT signal distribution in each of the TPU operating modes. Employing

a quantitative approach to selecting the optimal window length in each operating mode

proved difficult. This was due to the absence of a metric against which to optimise

the window length versus the signal tracking accuracy and the different phase lags in-

troduced by the different window lengths. Following exhaustive visual analysis of the

signal tracking performance, across a range of possible window lengths, a window length
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of 300-minutes was selected for tracking the LF mode CT signal, and a window-length

of 75-minutes was selected for tracking the HF mode CT signal.

A final issue to consider in the design of the moving-window solution is the step-size

to be taken between successive windows. This determines how often the parameters

of the GMM must be calculated for each TPU. Due to the relatively slow changing

characteristics of the CT signal distribution, a step-size of 15 minutes was selected.
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5.4.3.3 Application Examples - CT Signal Tracking

Sections 5.4.3.1 and 5.4.3.2 have described the development of a multi-modal CT track-

ing algorithm, to track the changes in the response of the TPU CT signal to deposit

build-up within a TPU combustion chamber. In this section, a number of examples of

the algorithm applied to historical TPU failure examples are presented.

Low-Fire Mode Tracking

Figure 5.15 illustrates the performance of the algorithm in tracking the changes in the

CT signal distribution within the LF operating mode, as the level of deposits within

the TPU combustion chamber increases. As described previously in Section 5.4.3.1, the

LF mode CT signal distribution is tracked using a mixture of two Gaussian PDFs. The

labelling of the components in Figure 5.15 is the same as used previously in Section

5.4.3.1.

The lower valued component, labelled Component 1 in Figure 5.15, tracks the “steady-

state” operating range of the CT signal during continued periods of LF mode operation.

The second component, labelled Component 2, tracks the changing distribution of the

CT signal during periods when the CT signal transitions from HF mode operation to

LF mode operation. The upper plot in Figure 5.15 shows the evolution of the mean

value (µ1) of Component 1, and the 95% confidence limits on the estimation. The 95%

confidence limits are computed from the variance value (σ21) identified for Component 1

of the mixture model at each iteration, and are defined as µ1 ± 1.96σ1, where σ1 is the

standard deviation of Component 1. The lower plot in Figure 5.15 shows the evolution

of the mean value (µ2) of Component 2, and the 95% confidence limits on the estimation

at each iteration.

While Figure 5.15 illustrates the evolution of the GMM components, which are over-

layed on the original CT signal to illustrate the changing distributions of the two com-

ponents, Figure 5.16 illustrates the evolution in time of the actual mean and standard

deviation values identified for each component, at each iteration. As can be seen in

Figure 5.16, the parameter estimates, generated by the F-J algorithm at each iteration

of the moving-window, exhibit a significant level of fluctuation between successive iter-

ations. To smooth these fluctuations, each of the signals were filtered using a low-pass

filter. Forward-backward filtering was utilised to ensure a zero-phase delay as illustrated.

Note that the smoothed parameter values were also used for the illustrations shown in

Figure 5.15.
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Figure 5.15: TPU Low-Fire mode CT signal tracking

From an automated condition monitoring perspective, the most useful feature from the

set of parameter values tracked each iteration is the mean value of Component 1 (µ1).

This parameter, which is inferred from the original multi-modal CT signal, tracks the

decay in the values of the CT signal at the lower limits of the CT signal, and provides a

means to infer the degree to which the porosity of the ceramic liner has been reduced,

in response to an increasing build-up of deposits on the walls of the ceramic liner.

From a stand-alone perspective, this feature can be used to trigger warnings and alarms

as its value gradually decays and passes through threshold limits. However, this feature

can be used for a far more useful application, as presented in the following section where

the use of this feature in the development of prognostic algorithms for TPU systems is

discussed. The evolution of the mean value of Component 2 (µ2) is very similar to that

of Component 1, thus making this feature somewhat redundant. However, the standard

deviation of Component 2 (σ2) exhibits a somewhat monotonic increase, which could be
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Figure 5.16: TPU Low-Fire mode CT signal tracking (component means and standard
deviations tracking)

incorporated within a multivariate rule-based framework for the generation of warnings

and alarms.
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High-Fire Mode Tracking

Figure 5.17 illustrates the performance of the CT tracking algorithm in monitoring the

changes in the CT signal distribution within the HF operating mode. As described

previously in Section 5.4.3.1, the HF mode CT signal is tracked using a mixture of two

Gaussian distributions. The labelling of the components in Figure 5.17 is the same as

used previously in Section 5.4.3.1.

Figure 5.17: TPU High-Fire mode CT signal tracking

Component 3, in Figure 5.17, tracks the changing distribution of the CT signal during

those periods when the CT signal rises in response to additional flows of natural gas and

oxygen, when the TPU system first switches into HF mode. In contrast, Component

4, in Figure 5.17, tracks the “steady-state” range of operating values of the CT signal

during continued periods of HF mode operation.

Figure 5.18 shows the evolution of the actual parameter values identified by the F-J

algorithm at each iteration. A notable observation is the reduced level of fluctuations in
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the identified parameter values between successive iterations, compared to the tracking

performance within the LF mode. This is due, in part, to the comparatively better

signal resolution with the HF mode of operation, as the rise and fall of CT signal results

in the δ values for the CT signal being exceeded more frequently.

Figure 5.18: TPU High-Fire mode CT signal tracking (component means and stan-
dard deviations tracking)

From an automated condition monitoring perspective, two of the tracked parameters

within the HF mode provide the most useful features for inferring TPU condition. In

the case of Component 4, the most useful feature is the tracking of the mean value of

this component (µ4). As can be seen in Figure 5.18, there was a significant rise in the

mean value of Component 4 (µ4), as the peak values of the CT signal increased as TPU

failure approached. This process of increasing peak values of the CT signal has been

identified previously by TPU maintenance personnel as a precursor to a pending TPU

failure. The mean value of Component 4 tracks this steady rise in CT values beyond

the normal operating range.
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In the case of Component 3, the most useful feature is the tracking of the standard

deviation of this component (σ3). It can clearly be seen that the standard deviation

value increases significantly as TPU failure approaches. The increase in (σ3) value is

reflective of the increasing temperature differential between the steady-state LF mode

temperature values and the steady-state HF mode temperature values. Considering

that the (σ3) parameter value increases in value, by several orders of magnitude as the

fault evolves (in a relatively monotonic fashion), both the value and gradient of this

parameter could potentially be incorporated within a rule-based framework, alongside

other features, to quantify the current level of degradation and generate alarms and

warnings as the level of degradation passes through certain thresholds.
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5.4.3.4 Fault Indicator Measurement for Prognostics

Section 5.4.3.3 illustrated how the parameters tracked by the multimode CT tracking

algorithm can be used as features to infer the current condition of a TPU. This allows

maintenance staff be be aware of developing problems and to make inferences regarding

when corrective maintenance action should be performed. In this section, the develop-

ment of prognostics for TPU systems is introduced. Prognostics is understood to be

the generation of long-term predictions describing the evolution in time of a particular

signal of interest, or fault indicator, for the purpose of estimating the remaining useful

life (RUL) of a failing system, subsystem, or component [27].

Prognostics is designed to provides maintenance personnel with sufficient visibility of

approaching maintenance events, so that informed decisions, regarding when to perform

corrective maintenance actions, can be made. Prognostics has the potential to deliver

major improvements in both equipment uptime and overall maintenance costs for TPU

systems. In the case of prognostics for TPU systems, the useful life of a TPU is ex-

ceeded once the level of deposits on the ceramic liner becomes excessive, such that the

porosity of the ceramic liner is reduced below an acceptable limit. To avoid the poten-

tial in-service failure of a TPU, and also to maximise the useful life of a TPU ceramic

liner, accurate estimates of the RUL of TPU systems suffering from deposit buildup are

required. To develop this capability, it is first necessary to identify a signal of interest,

or fault indicator measurement, which can be predicted into the future to estimate the

RUL of a TPU.

Figure 5.15 illustrates an example of the proposed fault indicator measurement to be

used in the development of prognostic capabilities for TPU systems. The fault indicator

measurement is shown overlayed on the original CT signal. The fault indicator mea-

surement comprises the mean values of Component 1, identified at each iteration of the

LF mode CT tracking algorithm. This signal was chosen to represent the fault indicator

measurement for a number of reasons.

The maintenance condition of a TPU is characterised by the level of deposits which have

formed on the walls of the ceramic liner. The only method available for inferring the level

of deposits is the response seen in the CT signal. As the level of deposits increases, the

porosity of the ceramic liner is impacted, which reduces the volume of fuel-air mixture

which passes through the ceramic liner into the inner combustion zone. As discussed

previously in Section 5.3.2.4, the effect of reduced porosity is most evident during periods

of LF mode operation, when there are no upstream process gases which are undergoing

oxidisation, and hence a smaller volume of fuel-air mixture is being injected into the
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Figure 5.19: TPU Low-Fire mode CT signal tracking

TPU combustion chamber. The decay in the CT signal, during LF mode operation,

directly reflects the reducing porosity of the ceramic liner and provides the best method

for inferring the level of deposit buildup.

By generating long-term predictions of the evolution of the fault indicator measurement,

and predicting when it will decay below a predefined threshold, accurate and actionable

estimates of TPU RUL can be generated. However, as this problem involves predicting

the future, there is a significant level of uncertainty associated with generating such pre-

dictions which must be accurately represented and managed, to predict TPU RUL. The

development of prognostic capabilities for TPU systems, which address these uncertainty

challenges presented, is presented in Chapter 6.
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5.4.4 Quench-Unit Fault Detection

In this section, a simple application, again using Gaussian mixture models, is presented.

The purpose of the application is to identify the occurrence of an unexpected, or “novel”

event, from monitored sensor data, which might indicate the occurrence of a fault condi-

tion. The specific solution presented here falls within the realm of condition monitoring

algorithms known as novelty-detection algorithms. The basic principle of novelty detec-

tion algorithms is to build a model of a system, which describes the observed behaviour

of the system during normal, fault-free, operation. Future data collected is then com-

pared with the model of fault-free operation and, using a distance metric and a specified

threshold, abnormal or novel events are identified, which might indicate the occurrence

of a fault condition. Novelty detection algorithms have found widespread application in

a number of fields, such as fault detection, hand writing recognition, and radar target

detection. A brief review of the principles of novelty detection algorithms was presented

previously in Section 2.4.4.

5.4.4.1 Problem Description

Figure 5.20 illustrates an example of a fault which occurred in the quench-unit of a

TPU. It is understood that this fault occurred due to a problem with the delivery of

cooling water to the quench-weir. The reduction in cooling water resulted in a rise in the

temperature recorded at the wall of the quench-weir. If the walls of the quench-unit do

not remain covered by a sufficient protective water stream at all times, there is a risk of

the process gases corroding the walls of the quench unit. The longer such issues remain

uncorrected, the greater is the likelihood that the system may suffer further damage,

resulting in more costly maintenance requirements. Additionally, if such a problem

remains unchecked, the temperature values may continue to rise and potentially result

in the automatic shutdown of a TPU system. As a result, it is imperative that the time

between fault occurrence and fault detection is minimised.

In the example shown in Figure 5.20, a condition monitoring systems was in operation

in the form of univariate alarm thresholds, which are used to indicate the presence of a

potential fault condition. Upon the QWT signal exceeding a fixed threshold value, an

alarm is generated which notifies maintenance personnel of an issue requiring immediate

attention. As shown in Figure 5.20, an alarm was generated at 17:11:03 on the day in

question, when the QWT signal exceeded the alarm threshold value of 71◦ C. The entire

TPU system was shutdown by maintenance personnel shortly after, and all planned
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Figure 5.20: QWT Signal: Crack in Quench Wall

processing on the upstream tool(s) connected to this TPU had to be cancelled until the

maintenance issue was resolved.

Whilst the use of a univariate alarm threshold detected the occurrence of an abnormal

event, the time of notification of the event occurred after a significant period of time

had elapsed since the actual event occurred. Within Figure 5.20, an enclosed region,

labelled as “Process Shift” is shown. During this period, there was a significant shift

in the mean operating values of the QWT signal, some 5-6 hours prior to generation

of the alarm condition. This delay in identifying the presence of a fault condition is of

significant concern for a number of reasons:

• The initial fault condition may subsequently propagate, potentially resulting in

damage to other components. This can have a twofold impact

– an increase in maintenance costs with potentially more components to be

replaced

– an increase in the time necessary to carry out corrective maintenance, result-

ing in increased manufacturing downtime

The primary reason for the delay between fault occurrence and alarm generation is

that the fault monitoring system, in the form of a univariate alarm threshold, does not

take into account the different operating modes of the TPU system. Whilst the alarm

threshold will detect excessively high QWT values, such high QWT values will generally
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only occur when the TPU is operating in HF mode. During periods of HF mode,

additional oxygen and natural gas are injected into the TPU, raising the gas temperature

and, subsequently, the QWT signal values. However, TPU systems will typically only

operate in HF mode between 6% and 9% of the time. The actual percentage of time spent

in HF mode is determined by the rate of wafer processing in the upstream chambers.

As a result, the current univariate condition monitoring approach will not notice any

process shift in QWT values, if the system is operating in LF mode.

In the following section, a simple novelty detection algorithm is presented, which takes

into consideration the different operating modes of the TPU system. The solution uses

a GMM to model the underlying distribution of the QWT signal and, on the basis of

comparison of subsequent QWT values and the current TPU mode, an alarm is generated

when the process is detected as having deviated from normal operation, where normal

operation is defined by the parameters of the GMM.

5.4.4.2 Data Modelling

Figure 5.21 illustrates the distribution of the QWT signal and the 2-Component GMM

used to model the underlying QWT signal distribution. The parameters of the GMM

were identified using the F-J algorithm. The underlying distribution of the QWT signal

is modelled as 2-component GMM, which reflect the two operating modes of the TPU;

LF and HF. Unlike the situation with the CT signal, in which 3 Gaussian components

are required to model the distribution of the CT signal, a third mixture component is not

necessary to model the QWT signal distribution. This is due to the significantly smaller

operating range of a typical QWT signal compared to the CT signal. The transition in

temperature values in response to a change in TPU operating mode is much smaller,

at approximately 10◦ C and, thus, no additional component is required to model these

transition periods.

The parameters of the GMM were identified from 3 days of fault-free data, collected

following the most recent maintenance overhaul on the TPU. It is necessary to refit the

parameters of the GMM after each major maintenance overhaul since, following mainte-

nance, the normal operating values of the system often change slightly. This can be due

to a number of reasons, including the replacement of different sensors/components at

each interval, manufacturing variations in replaced components, and the specific actions

of different maintenance personnel in returning the system to fully operational status.
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Figure 5.21: QWT Signal: 2 Component GMM

Once the model describing the distribution of the QWT signal during fault-free opera-

tion has been identified, each subsequent QWT value can be compared with the GMM

and, using a distance measure and a specified threshold, future samples which appear

unlikely to have been generated by the distribution describing normal fault-free opera-

tion can be labelled as “novel”, indicating the potential existence of a fault condition.

For this application, the distance metric used was simply the likelihood function, which

describes the probability that the current sample was generated from the GMM compo-

nent describing the distribution of the fault-free QWT signal, in the LF operating mode

(θLF ).

The likelihood function for a QWT signal value, recorded during LF mode operation, is

given by

p(xk|θLF ) =
1√

2πσ2LF

exp

{
−(xk − µLF )2

2σ2LF

}
(5.1)

where xk is the value of the QWT signal at time tk, θLF is the component of the GMM

which describes the distribution of the QWT signal in the LF mode, and µLF and σ2LF

which are the mean and variance values of the LF mode component, contained in θLF .

Figure 5.22 illustrates the output generated by the simple novelty detection algorithm

described above. In the upper plot, the original QWT signal value is illustrated. In

the lower plot, the likelihood function (5.1), computed for each QWT signal value xk,
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recorded during LF mode operation, is shown. A novelty threshold limit for the likeli-

hood function, below which an xk value is declared as novel, was set at a value of 0.03.

This value was chosen based on testing of the algorithm on historical data.

Figure 5.22: Evolution of QWT signal and inferred novelty measure, illustrating fast
detection of process shift in QWT signal

As can be seen in Figure 5.22, the novelty output for the observed xk values in LF mode

regularly falls below the novelty threshold. This is caused by the TPU switching from

HF to LF mode. Before the QWT signal decays back to normal LF mode operating

values, the threshold limit is commonly exceeded. To address this issue, the output

of the likelihood function if filtered using a low-pass filter to remove the short-term

fluctuations caused by the TPU system switching from HF to LF mode. The resulting

filtered novelty outputs are shown in the lower plot of Figure 5.22. Following the filtering

operation, the novelty threshold is no longer exceeded regularly. As can be seen, the

new filtered novelty output does not fall below the novelty threshold until the time the

process shift occurs in the QWT signal.

In this example, an alarm is now generated at 11:41:47, some five and a half hours

before an alarm was generated by the original unimodal fault detection approach, as

previously shown in Figure 5.20. This provides maintenance staff with earlier warning

of a maintenance issue, potentially reducing the overall impact of the fault condition on

equipment availability.
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5.4.4.3 Discussion

Each of the examples so far have illustrated the applications of GMMs for univariate

modelling. The lack of multivariate modelling presented to date has been due the low

number of signals monitored by the FabWorks network and the irregularly sampled

nature of the data. Using the send-on-delta sampling approach, each of the signals

are recorded on an irregular sampling interval. This means each sample must first

be resampled onto the same, periodic, sampling interval. However, this can result in

significant uncertainty regarding true signal values when no updates on signal values are

received for an extended period of time.

In the development of the algorithms presented here, the issue of extending the described

approaches into the multivariate domain was always considered. With the move toward

ethernet based communication, more signals, recorded at fast sampling rates, will be-

come available. This will permit the extension of the approaches described here into

the multivariate domain. For example, consider Figure 5.23, which illustrates the joint

distribution of the CT and QWT signals modelled as a two component GMM, using

the F-J algorithm to identify the GMM parameters. Using the GMM approach to mod-

elling multi-modal multivariate signal data, both signal tracking and novelty detection

applications will be possible using the approaches described in the previous sections.

Figure 5.23: Illustration of multivariate GMMs applied to TPU data
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5.5 Multi-Mode Vacuum Pump Signal Tracking

In this final section, an example of how the Gaussian mixture model representation of

monitored signals can also be used within the dry-vacuum pump environment, for multi-

mode signal tracking and condition monitoring. Figure 5.24 illustrates the booster power

(BP) and exhaust pressure (EP) signals recorded from an iH1800 dry vacuum pump

operating on a CVD manufacturing process. The upper plot in Figure 5.24 shows the

BP signal, which exhibits multi-modal behaviour. This behaviour is reflective of the

varying gas loads on the vacuum pump. The varying gas loads are generated by the

different recipe steps in the manufacturing processes, when different combinations of gas

types and flow rates are injected into the process chamber.

Figure 5.24: Booster Power & Exhaust Pressure signals example

The lower plot of Figure 5.24 shows the EP signal. During the initial stages of the

recorded EP signal, there is no visible response in the EP signal to the peak values

of the BP signal. However, as time evolves, the EP signal begins to respond with

increasing peak values, at the same time as the peak values in the BP signal occur. The

increasing peak values of the EP signal are caused by a build-up of deposits within the

pump exhaust line. The deposits are similar to those which form on the walls of a TPU

ceramic liner. As the volume of deposits increases, the pump exhaust can eventually

become blocked, leading to an automatic in-service pump shutdown. This can lead to
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a loss of any wafers undergoing processing in the upstream chamber, and significant

manufacturing downtime. Additionally, the loss of vacuum in the process chamber may

result in the process chamber having to be stripped down for a total clean, at a cost

which is often far in excess of the pump replacement costs.

The issue of exhaust pressure blockages has been investigated previously, resulting in

a number of relevant publications. Twiddle et. al [81] developed a fuzzy-model based

diagnostic scheme to monitor two fault conditions in a dry-vacuum pump: Mechanical

inefficiency and exhaust system blockage. The approach described involves time and

frequency analysis of the exhaust pressure signal. Power ratios of certain frequency

components in the EP signal are used to monitor the pump condition, and changes

in the periodic features of the signal, symptomatic of fault conditions, are detected

using a fuzzy reference model. The approach described was successful in detecting both

mechanical inefficiency and exhaust blockage. Twiddle et. al [100] also describe the

development of a sliding mode observer (SMO) for on-line condition monitoring of dry

vacuum pumps. The exhaust pressure signal is described using an auto-regressive (AR)

model, and a discrete-time SMO was designed to estimate the AR model coefficients

based on a short data set, sampled from the EP signal, and a nominal set of model

coefficients estimated from fault-free data. The results showed that the build-up of

deposits in the pump exhaust can be detected by monitoring the injection signal of the

SMO.

The two publications by Twiddle et al. [81, 100], which were both developed in an

experimental test-bed environment, detail promising solutions to the issue of exhaust

pressure blockage within dry-vacuum pumps. However, the data requirements of these

approaches, in terms of necessary signal resolution and sampling frequency, are not yet

achievable within the manufacturing environment. This is due to sampling limitations

which arise from having hundreds of pumps and TPUs, which run continuously, con-

nected to a networked monitoring system. This section details the development of a

exhaust pressure tracking solution, which addresses the multi-modal operating char-

acteristics of typical vacuum pump signals, and which can be implemented with the

currently achievable signal tracking resolution.

5.5.1 Pump Mode Tracking

Figure. 5.24 illustrated how the process of deposit buildup in a pump exhaust line results

in a gradual change in the underlying distribution of the EP signal. The magnitude of

the change in the underlying EP signal distribution varies according to the gas load on
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the pump. This is due to the the relatively low net gas flow rates which are typical of

dry-vacuum pumps. Under low gas loads, a reduction in the effective diameter of the

exhaust line can be difficult to detect in the exhaust pressure signal. Under higher gas

loads, it is more likely that a reduction in the effective diameter of the exhaust line will

generate a response in the EP signal. These principles are reflected in the observed EP

signal behaviour in Figure 5.24.

To track how the distribution of the EP signal changes under different gas loads, it is first

necessary to determine the gas load, or pump mode, at any instant in time. However,

unlike the case of TPU monitoring, in which changes in the TPU status are recorded,

there is no automatic method for tracking the dry-vacuum pump mode. Instead, the

pump mode must be inferred from the available pump signals. The BP signal in a

dry-vacuum pump provides the best method for tracking changes in the gas load on the

pump. This is because the pump controller manipulates the BP signal value to maintain

a fixed rotational speed of the booster pump, in response to varying loads on the pump.

Figure 5.25 shows a zoomed section of the BP signal shown previously in Figure 5.24,

which illustrates the response of the BP signal to changing gas loads.

Figure 5.25: Booster Power signal

The quality of signal resolution, seen in the BP signal in Figure 5.25, was made possible

by changes to the pump logging profile. Previously, all pump data recorded by FabWorks

used a 1-hour timeout on the pump logging profiles. This meant that if the relevant δ

value for a pump signal was not exceed for 1 hour, then a new update, containing the

latest signal value is automatically sent to the central database. The use of a 1 hour
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timeout interval often results in extended periods of time, up to 1 hour, when no updates

are received. This results in a significant level of uncertainty regarding the true signal

values during these periods, which makes it extremely difficult to to generate statistical

characterisations of the recorded pump signals.

The new logging profile, using a 30 second timeout interval, was implemented on a single

pump, to investigate how improved signal resolution in dry-vacuum pumps may improve

condition monitoring capabilities. As the FabWorks monitoring system moves toward

ethernet based communications, such logging profiles will become common, resulting

in improved signal tracking accuracy. The logging profile on this specific pump was

maintained for a period of 18 months, during which a number of maintenance events

were captured. The recorded pump signals were then resampled onto a regular 10 second

sampling interval, using linear interpolation.

Figure. 5.25 highlighted three distinct pump modes which could be identified in the BP

signal, which were labelled as follows

Idling Mode This mode corresponds to periods of no processing in the upstream cham-

ber resulting in the booster power remaining at steady-state operating values.

Processing Mode This mode appears to reflect a period of sustained gas load being

imparted on the pump, resulting in the BP value increasing to maintain the booster

pump rotational speed at a fixed value, in response to the increases in the gas load.

Pumpdown Mode This mode refers to a stage within most CVD manufacturing pro-

cesses in which the wafers are exposed to a sustained period of very high gas flows

to achieve the desired level of deposition on the wafers. This results in a large

sustained increase in BP values as seen in Figure 5.25

Figure 5.26 shows the distribution of the BP signal, shown in Figure 5.25, in histogram

format. Once again it is possible to distinguish the three pump operating modes within

the BP signal. Using a GMM, it is possible to model the distribution of the BP signal in

Figure 5.26 using a mixture of individual Gaussian PDFs, in which each of the individual

Gaussian PDFs characterises the distribution of the BP signal in one of the pump

operating modes. Once the model has been developed, simple Bayesian inference can

be used to infer the pump mode at any future instant using the BP signal. Figure 5.27

shows the BP signal in Figure 5.26, modelled as a three component GMM. The overall

GMM PDF density identified using the F-J algorithm is shown in the upper plot, and

the individual PDF densities are shown in the lower plot.
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Figure 5.26: Booster Power signal distribution

Figure 5.27: Booster Power signal distribution modelled using a GMM

Once the GMM describing the distribution of the BP signal has been generated, it is

then possible to infer the pump mode at any time in the future using the BP signal value

at that time. To determine the pump mode, the conditional probability that each of

the GMM components was responsible for generating the observed BP value, xi at time

ti, is computed (5.2). The GMM component which generates the largest conditional

probability value is selected as the pump mode at that time instant
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p(Modek|xi) =
αkN (xi|µk, σk)∑K
k=1 αkN (xi|µk, σk)

(5.2)

where p(Modek|xi) describes the probability that the observed value of the BP signal

xi, at time ti, was generated by component k, which describes the distribution of the

BP signal in a specific pump operating mode. Using (5.2), it is possible to infer the

current pump mode at each sample time. Then, similar to the multi-mode CT tracking

algorithm in which the TPU status signal was used to separate out the original CT

signal by TPU mode, the inferred pump mode signal can be used to track each of the

other monitored pump signals, in each of the pump operating modes. This process is

illustrated in Section 5.5.2

Aside from the use of the inferred pump mode signal for tracking the EP signal, the

inferred pump mode can be used for a range of more general applications. Firstly, pump

maintenance personnel are often unaware of the volume of wafers which are processed

in an upstream processing chamber, over any period of time. As a result, pump swap

out times, which are often chosen on time-based intervals, may not not correlate well

with the actual load imparted on a pump over a specific time interval. By inferring the

pump mode, the load on the pump can be tracked in real-time, which can be used to

develop more accurate mean-time-between-failure (MTBF) estimates, which reflect the

work done by a pump, instead of simply the total running hours.

Additionally, the relative load severity of different manufacturing processes can be in-

ferred from the GMM developed for each individual process. The GMM for each process

can be identified online, which means that the variations in operating profiles for differ-

ent processes can be easily described. Finally, the developed statistical characterisation

of typical pump loads can be used for developing simulations of potential future loads.

These simulated loads could potentially be used in the development of model-based

prognostics for vacuum pumps, in which the expected future operating load on a pump

can be incorporated into the generation of RUL estimates.

5.5.2 Multi-Mode Exhaust Pressure Tracking

This section illustrates how the inferred pump mode signal can be used to track any of

the other recorded pump signals which may exhibit multi-modal behaviour in response

to changes in the pump mode. Figure 5.28 illustrates the EP signal, as seen previously

in Figure 5.24, in which a build-up of deposits in the pump exhaust is gradually reducing
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the diameter of the pump exhaust pipe. Thus, when the pump is exposed to high gas

loads, a significant rise in the pressure value recorded in the pump exhaust is observed.

Figure 5.28: Exhaust pressure (EP) signal response to increasing deposit buildup

In Figure 5.28, a region of data covering approximately 15 hours is highlighted. Using

the inferred pump mode at each sample time, all of those EP samples recorded when

the pump was operating in pumpdown mode were selected. The distribution of those

samples is illustrated in Figure 5.29. As illustrated in Figure 5.29, the distribution of

the EP signal, during the pumpdown mode, exhibits a similar distribution to the TPU

HF mode CT signal. Therefore, to track how the distribution of this signal changes

in response to deposit buildup, the same approach to tracking the HF mode CT signal

is employed, using a moving-window, where at each iteration the parameters of a 2

component GMM are identified. This is illustrated in Figure 5.29. Using the GMM

parameter values identified at each iteration, the changes in the EP signal distribution

can be tracked over time.
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Figure 5.29: Exhaust pressure signal distribution (pumpdown mode)

Figure 5.30 illustrates the tracking of the EP signal in two of the pump operating modes.

The pumpdown mode tracking signal is simply the the mean value of Component 2 in

Figure 5.29, identified at each iteration of the moving window. The idling mode tracking

signal is computed by simply calculating the moving-average of the EP values recorded

during periods of idling mode operation, as the EP signal follows a Gaussian distribution

in this pump mode.

Figure 5.30: Exhaust pressure signal tracking in different pump operating modes
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The ability to identify the pump mode is critical to permit the accurate tracking of

the multi-modal signals which are generated by the changing gas loads imparted on the

pump. The approach described above, using GMMs and Bayesian inference to identify

the pump mode at each sample time, provides a robust approach to inferring such infor-

mation. Furthermore, by modelling the distribution of the BP signal using GMMs, it is

possible to identify the operating characteristics generated by pumps running on differ-

ent manufacturing processes in an on-line fashion, where the number, and frequency, of

different pump modes can vary significantly.

5.6 Conclusions

This chapter has presented the development of a condition monitoring algorithm for TPU

systems. The primary challenge addressed is the multi-modal, non-Gaussian distribution

signals, which are generated by TPU systems. These signals are generated as a result

of the TPU switching between operating modes. To address this challenge, a GMM-

based solution was developed. The main benefit of using a GMM-based approach to

addressing this challenge, is the ability to parameterise the underlying distribution of the

TPU signals. Then, by tracking the changes in the parameter values of the GMM used

to model the signal distributions, robust and accurate condition monitoring is possible.

This ability was demonstrated on historical TPU failure examples. The GMM-based

multi-mode signal tracking algorithm, developed for tracking the buildup of deposits

within a TPU combustion chamber, also generates a suitable signal, or fault indicator,

for use in developing prognostic capabilities for TPU systems. The development of these

prognostic capabilities is presented in the following chapter.

In addition to addressing the challenge of tracking deposit buildup in the TPU com-

bustion chamber, the GMM representation of TPU signals is also demonstrated to have

other applications. Section 5.4.4 presented the development of a novelty detection al-

gorithm for TPU systems. By modelling the fault-free distribution of the TPU signals,

potential fault conditions can be identified. The novelty detection algorithm, demon-

strated on a fault in the quench-unit of a TPU, has the capability to detect potential

fault conditions as soon as they occur, thus avoiding the potential propagation of a fault,

and minimising potential equipment downtime.

Finally, in Section 5.5, another application of GMMs for dry vacuum pump condition

monitoring was presented. By modelling the distribution of the booster power signal

using a GMM, simple Bayesian inference can then be applied to identify the operating
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mode of a pump, at any instant in time. In addition, by modelling the underlying distri-

bution of the booster power signal, using data collected on-line, models for dry vacuum

pumps operating on different manufacturing processes can be identified online. In this

way, the multi-modal signal tracking approach is adaptive to different manufacturing

processes, which generate different load profiles on dry vacuum pumps. The benefit in

identifying the dry vacuum pump mode at any instant in time is also demonstrated using

an historical pump failure example. The response generated by pump signals, which can

be used to identify and track the development of a fault condition, is often dependant

on the load imparted on the pump at any instant in time. By having knowledge of the

pump mode at each sample time, the development of fault conditions in each mode can

be investigated. The benefit of this capability is demonstrated in Section 5.5.2, where

tracking the exhaust pressure signal, under high load conditions, provides a means to

accurately identify and track the development of an exhaust pressure blockage.
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Chapter 6

TPU Prognostics

6.1 Introduction

Prognostics has been identified as the key enabler of a truly condition-based maintenance

approach, providing maintenance personnel with visibility on upcoming maintenance

issues so that corrective action can be taken to avoid equipment failure. However, the key

difficulty encountered in the development of prognostic algorithms is the inherent level of

uncertainty associated with the generation of long-term predictions of equipment health.

In this chapter, the development of a model-based prognostic algorithm for predicting

the remaining-useful-life (RUL) of TPU systems is presented. The prognostic technique

investigated is particle filtering, which has emerged in recent years as the defacto state-

of-the-art technique for prognostics, with capabilities for representing and managing the

inherent uncertainty involved in predicting the future behaviour of degrading equipment.

In reviewing published literature on the application of particle filtering to prognostics, a

notable observation is the lack of real-world application examples, using data collected

from equipment operating in an industrial setting. Indeed, the requirement for applying

and testing newly developed prognostic algorithms on real world data, as opposed to

simulated data, or data collected on a test rig, has been identified previously [101]. In

this study, particle filtering for prognostics is investigated using real-world data collected

from a large semiconductor manufacturing facility. The benefit of using real-world data,

in developing prognostic algorithms, is that such data captures and illustrates how dif-

ferent sources of uncertainty influence how a fault evolves over time. Such issues can

often be difficult to anticipate, capture, or represent, when using simulated or test-rig

data. This chapter focuses on developing and demonstrating prognostic solutions for
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TPU systems. The proposed solution addresses the uncertainty challenges presented by

the semiconductor manufacturing environment.

The layout of this chapter is as follows. Section 6.2 introduces prognostics for TPU sys-

tems and discusses the potential benefits, and the specific challenges, in implementing

prognostics for TPU systems. Section 6.3 then introduces particle filtering for TPU prog-

nostics. A review of the implementation details involved in applying particle filtering

to TPU prognostics is presented. Section 6.4 then illustrates the application of parti-

cle filtering to TPU prognostics, and discusses how the various sources of uncertainty

within the semiconductor manufacturing environment affect the ability to accurately

predict TPU RUL. Finally, in Section 6.5, a multiple model particle filtering approach is

introduced to address the uncertainty challenges presented by the semiconductor manu-

facturing environment. The capabilities and performance of the multiple model particle

filtering approach are demonstrated on historical TPU failure examples.

6.2 Prognostics for TPU Systems

6.2.1 Benefits of Prognostics for TPU Systems

This section discusses how prognostic technologies have the potential to deliver major

improvements in how TPU systems are maintained, and lead to a significant overhaul of

current maintenance approaches and practices for TPU systems. The potential benefits

of prognostic solutions include increasing equipment uptime and availability, a reduction

in the frequency of scheduled downtime, reducing instances of in-service failure, and

reducing overall operating and maintenance costs. For example, as discussed previously

in Section 5.3.2.5, some manufacturers operate two TPU systems in parallel on certain

processes, to provide immediate redundancy in the event one of the TPU systems failing.

Utilising prognostic technologies, it might be possible to reduce the risk of in-service

failure sufficiently, that it no longer makes economic sense to operate two systems in

parallel, which effectively doubles the capital, operational, and maintenance costs of

operating a thermal abatement system.

Prognostics may also lead to a significant reduction in ongoing maintenance costs for

TPU systems. Maintenance personnel have traditionally utilised time-based intervals

or derived statistics such as mean-time-between-failures (MBTF) to schedule mainte-

nance activities. Such approaches often choose conservative estimates for MTBF to try

and avoid in-service failures. However, this approach often results in components being
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replaced before they have reached the end of their serviceable life, or occasionally, fail-

ing in-service. The cost of TPU system components, such as the ceramic liner within a

TPU combustion chamber, are not insignificant, and the premature replacement of these

parts results in potentially avoidable costs. The cumulative costs of premature compo-

nent replacement within a manufacturing facility are all the more significant when you

consider that a large semiconductor plant may have in excess of 50 TPU systems in

operation over a 20 year lifespan of a plant. Accurate prognostics would improve the

lifetime utilisation of key components, so that the in-service life of components, which

are swapped out as part of necessary maintenance, is maximised. Perhaps the most

significant benefit which prognostic technologies for TPU systems might provide is in

the overall management and planning of maintenance activities within both the sub-fab

and fab environments. In the absence of any prior warning of a TPU system failing,

maintenance actions will always be reactionary in nature. In such situations, the nec-

essary maintenance personnel, spare parts, tools and supplies must be organised, often

resulting in considerable delays before remedial action can be undertaken. In a large

semiconductor manufacturing facility, these delays often results in downtime for all of

those processing tools connected to the failed TPU, which is all the more significant

when you consider that a TPU system can be connected to up to four individual wafer

processing chambers.

The cost of process tool downtime usually far outweighs the cost of rectifying main-

tenance issues. Unexpected tool downtime can have a major impact on production

scheduling, reducing the overall wafer throughput. In an increasingly lean and compet-

itive business environment [96], manufacturers are striving to maximise tool availability

and minimise instances of in-service equipment failure [102]. Prognostics represents a

key enabling technology in achieving these goals.

Prognostic algorithms are designed to provide maintenance staff with accurate and re-

liable estimates of the RUL of a TPU suffering from a buildup of deposits. This will

provide maintenance personnel with sufficient warning of upcoming maintenance events,

so that necessary remedial maintenance work can be planned in advance, with the nec-

essary resources and personnel allocated as necessary. Additionally, with the availability

of sufficient lead times before failure, the ability to perform opportunistic maintenance

becomes possible. This means for example, that if a TPU needs to be taken down for

maintenance, the upstream process tool maintenance staff are provided with an oppor-

tunity to perform any necessary maintenance, or any other work that might be necessary

on the processing tool, at the same time. The objective is to increase the availability of

the entire manufacturing process.
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Whilst the potential benefits of prognostics help explain the growth in related research

in recent years [16], there are many reasons that such technologies have not yet become

commonplace. The primary difficulty associated with the development of prognostics is

the large level of uncertainty, associated with the generation of long-term predictions

of equipment health. Indeed, prognostics has been described as the Achilles’ heel of a

true prognostic and health management (PHM) system [103]. How this uncertainty is

represented and managed is is key to the success of any future prognostic technologies.

6.2.2 Challenges in Developing Prognostics for TPU Systems

The primary difficulty encountered in the development of prognostic algorithms is the

significant uncertainty associated with the generation of long-term predictions, describ-

ing the evolution of a signal of interest, or fault indicator measurement, into the future.

This uncertainty arises from a range of different sources. One of the primary sources

of uncertainty arises in estimating the current level of system degradation. Any errors

at this stage will be propagated into the future, with the margin of error increasing as

the prediction horizon increases. To address and reduce this uncertainty it has become

common to represent the current level of degradation as a random variable, with an

associated probability distributions. This allows for uncertainty regarding the current

level of degradation to be represented and defined. It also allows for the uncertainty

regarding the current degradation level to be predicted into the future, facilitating the

estimation of RUL of the system in terms of a probability distribution, from which

further attributes such as confidence intervals on the prediction can be computed.

In addition to uncertainty associated with monitoring or estimating the current degra-

dation level of a system, there are many other sources of uncertainty in generating

long-term predictions of equipment health. One of the most significant sources is mod-

elling error. The generation of long-term predictions often requires a model describing

the future evolution of a fault indicator. However, the dynamics of fault processes are

often non-linear, with uncertainties that are often non-Gaussian [29], which make the

challenge of modelling such processes more difficult. This introduces further uncertainty

regarding the accuracy of predictions generated. Another major source of uncertainty

concerns the future load profile on the system. This issue is of particular importance

since the RUL of a system is likely to be a major function of the sequence and nature

of the future loads imparted on the system.
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The issue of uncertainty, in the generation of long-term predictions, leads to two key

concepts which a prognostic algorithm must address, uncertainty representation and un-

certainty management. Uncertainty representation implies the ability to model various

forms of uncertainty stemming from a variety of sources, whereas uncertainty man-

agement concerns the methodologies and tools needed to continuously “shrink” the

uncertainty bounds as a fault evolves [3]. One of the most successful and promising

approaches to prognostics, to date, is particle filtering, which provides a framework for

addressing the issues of uncertainty management and representation. Indeed, particle

filtering has been described as the de facto state of the art in failure prognosis [31]

The issues of uncertainty management and representation are key in the development of

prognostic technologies within the semiconductor manufacturing environment in which

there are many factors, which can influence future equipment behaviour, which cannot

be predicted a priori. For this reason, particle filtering was chosen as a technique to

investigate in the development of a prognostic solutions for TPU systems.

6.3 Dynamic Model-Based Prognostics

Prognostics is understood to be the generation of long-term predictions, describing the

evolution of a signal of interest, or fault indicator, for the purpose of estimating the RUL

of a failing system [27]. Inherent in the generation of such long-term predictions is a

significant level of uncertainty associated with the propagation of the current degradation

level into the future, in the absence of any future measurements. This uncertainty

is propagated at each future horizon, resulting in increasing levels of uncertainty as

the prediction horizon increases. Thus, one of the most important attributes of any

prognostic technique is the ability to manage, and reduce, this uncertainty as well as

possible.

In addition to the uncertainty associated with generating long term predictions, another

major source of uncertainty arises in estimating the current level of degradation. In some

cases, the current level of degradation may not be directly quantifiable from system

measurements and must, instead, be inferred from system measurement data. This

can lead to errors in inferring the current degradation state. Additionally, the original

measurement data may also be affected by noise and disturbances. A sensible approach

to addressing this uncertainty is to represent the current level of degradation as a random

variable, the degradation state, with an associated probability distribution which must

be inferred from the sequence of measurement data received from the system under
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observation. This suggests the use of a dynamic model-based approach to inferring the

current degradation state, using recursive Bayesian estimation techniques.

Dynamic model-based approaches to prognostics employ a state-transition model which

describes the evolution of the degradation state of a system. The predictions from the

state-transition model are combined with the sequence of measurement data received

from the system under observation to generate a posteriori estimates of the degradation

state PDF. As new measurement data arrives sequentially, the posterior degradation

state PDF is recursively updated. Figure 6.1 illustrates the key concepts of a dynamic

model-based approach to prognostics, based upon the use of recursive Bayesian estima-

tion techniques. There are two distinct stages in the process; 1) state estimation and 2)

long-term prediction.

Figure 6.1: Principle of dynamic model-based prognostics

The first stage, state estimation, is carried out by performing two sequential steps;

prediction and update [71]. In the prediction step, the current state PDF estimate at

time tk, and the state-transition model (which describes the evolution of the degradation

process), are used to generate an a priori state PDF estimate at time tk+1. The update

step then combines the latest measurement data received at time tk+1, the a priori state

PDF estimate, the measurement likelihood function, and using Bayes’ law, generates the

a posteriori degradation state PDF estimate at time tk+1 [27]. This process of recursively

estimating the degradation state PDF, using a prediction step followed by an update

step, is commonly known as a filtering problem.
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Once the latest posterior state PDF estimate has been generated at time tk+1, the second

stage of the prognostic process can be carried out; the generation of long-term predictions

describing the future evolution of the degradation state. To generate these long-term

predictions, the current posterior state PDF estimate is propagated into the future in

a recursive manner, using the state-transition model which describes the evolution of

the degradation state. The degradation state is propagated until its value exceeds a

defined threshold value. Using these predictions, a RUL PDF is then generated which

describes the probability of system failure at different times in the future. Corrective

maintenance activities must then be performed, before the just-in-time-point (JITP)

(see Section 2.5.1 for details), to avoid a potential in-service failure of the system.

The primary benefit of the dynamic model-based approach to prognostics is the ability to

quantify the level of uncertainty in the estimate of the current degradation state, which

is represented by the posterior state PDF. This uncertainty can then be incorporated

into the prediction of the RUL of the system. As the degradation process evolves, it

is reasonable to assume that new measurement data will continue to be received, for

some period of time, before system failure. This sequence of new measurement data can

be used to continuously refine the RUL estimate, via recursive updating of the current

system state and the generation of new long-term predictions.

Within the domain of recursive Bayesian estimation techniques, the Kalman filter is by

far the most commonly employed technique, and provides the optimal solution (in the

sense of estimating the posterior state PDF), provided that the underlying process can be

modelled using a linear state-transition model, and that all the associated noise processes

are Gaussian. However, the dynamics of degradation processes are typically non-linear,

and/or the associated noise processes may be non-Gaussian [29]. This often results in a

non-linear filtering problem for which the Kalman filter is no longer optimal. In such

circumstances, approximations to the optimal solution can be made using techniques

such as the Extended Kalman Filter (EFK).

In recent times, sequential Monte Carlo methods, more commonly known as particle

filtering, have grown in popularity, for their flexibility and ease of design in tackling non-

linear filtering problems [17]. Indeed, particle filtering has emerged as the de facto state

of the art technique in failure prognostics [31], and has been demonstrated to outperform

EKF based approaches in prognostic applications [27, 30]. The basic principle of particle

filtering is to approximate the state PDF with a set of particles, representing state values,

and an associated set of particle weights, which represent the discrete probability masses

of the individual particles. The particles can be generated and updated recursively using

a non-linear state-transition model which describes the evolution of the process under
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observation. Section 6.3.1 introduces the application of particle filtering for model-based

prognostics of TPU systems.

6.3.1 Particle Filtering for Prognostics

Particle filtering, also known as sequential Monte Carlo (SMC) methods [72], is a tech-

nique for implementing a recursive Bayesian filter by Monte Carlo simulations. The

basic principle of particle filtering is to represent the posterior state PDF by a set of

random samples or “particles”, each with an associated weight, and to compute esti-

mates based on these samples and weights. In this study, a type of particle filter known

as the sampling importance resampling (SIR) particle filter was used. The SIR parti-

cle filter approximates the posterior state PDF p(x0:k|z1:k) by a set S of Ns weighted

particles,

S = {x(i)
0:k, w

(i)
k }

Ns
i=1 (6.1)

where {x(i)
0:k, i = 1, ..., Ns} is a set of particles representing state values, with an asso-

ciated set of importance weights {w(i)
k , i = 1, ..., Ns} which are approximations to the

relative posterior probabilities of the particles, and x0:k = {xj , j = 0, ..., k} is the set of

all states up to time k.

The weight values are also normalised such that,

∑
i

w
(i)
k = 1 (6.2)

The posterior state PDF can then be approximated as

p(x0:k|z1:k) ≈
Ns∑
i=1

w
(i)
k δ(x0:k − x

(i)
0:k) (6.3)

This results in a discrete weighted approximation to the true posterior state distribution

p(x0:k|z1:k). As the number of samples/particles Ns → ∞, this approximation will ap-

proach the true posterior distribution [71]. The particles can be generated and updated

recursively using a state-transition model, describing the evolution of the process under

observation
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The process of applying the principles of particle filtering to prognostic applications is

known as the particle filtering framework for prognostics [27]. This framework describes

the process of generating RUL estimates from a sequence of measurements received

from a process under observation. A review of the background, theory and application

of particle filters for prognostics was presented previously in Section 3.4, which should

be referred to as necessary. In the following sections, a brief review of particle filtering

for TPU prognostics is presented. Firstly, in Section 6.3.2, a description of the model

developed to describe the evolution of the TPU degradation state is presented. This is

then followed in Section 6.3.3 by a description of the implementation steps involved in

the application of the particle filtering framework for TPU prognostics.

6.3.2 Modelling TPU Degradation

Key to the implementation of a dynamic model-based approach to prognostics is a model

which describes the evolution of the degradation process. Ideally such a model would

be based upon the physics-of-failure and derived from first principles. In recent years a

number of applications of particle filtering for prognostics have focused on applications

such as predicting fatigue crack growth in structural elements, which have incorporated

physics-of-failure models [29, 33]. However, in most real-world situations such models

are unavailable, and the technical difficulty and cost of developing such high-fidelity

models of complex physical processes is often prohibitive. In such scenarios, models can

instead be derived, which describe the observed behaviour of historical failure examples.

In this study, the objective is to develop a prognostic algorithm to estimate the RUL of

TPU systems which suffer from deposit buildup. The ability to infer the current level

of deposit buildup is provided by the fault indicator measurements, which are derived

from the original combustor temperature signal (see Section 5.4.3.4 for details). Figure

6.2 illustrates the CT signal recorded from a TPU which suffered an in-service failure

due to deposit buildup within the combustion chamber. Overlayed on the CT signal,

in Figure 6.2, are the fault indicator measurements, generated by the multi-modal CT

tracking algorithm. The objective, then, is to develop a state-transition model of the

TPU degradation process, as described by the set of fault indicator measurements.

Figure 6.3 illustrates the typical CT signal profile of a TPU failure example. The

evolution of the TPU degradation state is characterised by two distinct stages/periods

of decay. Initially, when the fault is first detected at time tD, the degradation state

decays at a slow rate. After a period of some days, the rate of degradation gradually
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Figure 6.2: CT signal fault indicator measurements

accelerates until either the TPU suffers an in-service failure, or undergoes necessary

maintenance.

Figure 6.3: Typical CT signal profile in response to a gradual build-up of deposits

To apply model-based prognostics to predicting the RUL of a TPU, it is necessary to

develop a model which describes the evolution of the TPU degradation state. In this

study, the structure of the state-transition model used to describe the evolution of the

TPU degradation state was adapted from a model developed by Saha & Goebel [104].

The model developed by Saha & Goebel was used to describe the evolution of lithium-

ion battery discharge cycles, with a view to predicting the RUL of lithium-ion batteries,
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before the end-of discharge (EOD). The profile of these discharge cycles was observed to

be very similar to the profile of the fault indicator measurements from a TPU, as seen in

Figure 6.2. Additionally, the parameterisation of the model developed by Saha allowed

it to be easily adapted, and tuned, to model the evolution of the TPU degradation

process.

By adapting the model originally described by Saha, the evolution in time of the TPU

degradation state is described by the following state-transition model

xk = xk−1 − α1exp

[
−α2/tk
t2k

]
︸ ︷︷ ︸

Component 1

−α3 exp[α4 tk]︸ ︷︷ ︸
Component 2

− α5tk︸︷︷︸
Component 3

+ ωk (6.4)

where xk is the TPU degradation state at time tk, ωk is the process noise PDF, and

α1, ..., α5 are model parameters which can be tuned to adapt the behaviour of the model.

The state-transition model in (6.4) is composed of three components which model the

different stages of the TPU degradation process. Figure 6.4 illustrates the contribution

of each of the model components in modelling the TPU degradation process.

Figure 6.4: Illustration of the contribution of each of TPU degradation process model
components

Component 1 models the initial stage of TPU degradation, where the rate of degradation

is characterised by a slow decay. As time evolves, the t2k term in component 1 grows at

a faster rate than the −α2/tk term, which results in the contribution of this component

in modelling the TPU degradation process, gradually decaying to zero. Component 2
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then models the dynamics of TPU degradation during the second stage of decay which is

characterised by an accelerated rate of TPU degradation. The final model component,

component 3, provides further flexibility to tune the rate of degradation.

Figure 6.5 illustrate an example of the TPU degradation process model tuned to fit an

historical TPU failure example. As seen in Figure 6.5, the model dynamics match the

observed behaviour quite accurately. Using the structure of the state-transition model

described in (6.4), it was possible to tune the model parameters to fit all of the available

historical TPU failure examples.

Figure 6.5: TPU degradation process model tuned to fit historical TPU failure ex-
ample
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6.3.3 The Particle Filtering Algorithm for TPU Prognostics

This section describes the implementation details in applying particle filtering to prog-

nostics. The algorithm describes the entire process of using sequential fault indicator

measurements to generate a RUL PDF of a system under observation. The algorithm

has previously been described as the particle filtering framework for prognostics [73].

Figure 6.6 presents a flow chart illustrating the particle filtering algorithm for prognos-

tics. There are two key stages within the particle filtering algorithm for prognostics

which are highlighted in Figure 6.6, (a) state estimation and (b) long-term predictions.

Figure 6.6: The particle filtering algorithm for TPU prognostics

The purpose of the state estimation stage is to generate a posterior estimate of the

degradation state from the sequence of fault indicator measurements received. The

second stage, long-term predictions, use the current posterior state estimate as a starting

condition and recursively iterates the current degradation state into the future, using

the degradation process model. Using these predictions, an estimate of the RUL PDF is

generated. In the current application, the TPU degradation process is modelled by the

following state transition model, detailed in Section 6.3.2, which describes the evolution

of the TPU degradation process once a fault is first detected, as

xk = xk−1 − α1exp

[
−α2/tk
t2k

]
− α3 exp [α4 tk] + α5tk + ωk (6.5)

zk = xk + υk (6.6)
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where xk represents the TPU degradation state, zk is the fault indicator measurement

received from the multi-mode CT tracking algorithm, and ωk and υk are independent

zero-mean Gaussian noise terms, representing the process noise and the measurement

noise respectively. The α values are model parameters which can be tuned to fit the

observed behaviour. Equation (6.5) describes the state-transition function, and equation

(6.6) describes the measurement likelihood function, which relates the fault indicator

measurements to the system state estimate. Sections 6.3.3.1 and 6.3.3.2 briefly describe

the specific functionality of each of the blocks in the flowchart in Figure 6.6 for each

of the key stages in the particle filtering algorithm for prognostics, (a) state estimation

and (b) long-term predictions.

6.3.3.1 (a) State Estimation

Once a fault is first detected in the CT signal, at time t0, an initial estimate of the TPU

degradation state is generated and represented as a set of particles and weights, S0

S0 = {x(i)0 , w
(i)
0 }

Ns
i=1 (6.7)

where x
(i)
0 and w

(i)
0 represent the individual particle values and weights, at time t0,

respectively, with S0 representing an approximation to the true TPU degradation state

x0 at time t0. The value of Ns determines the number of particles in the set S, which

must be chosen a priori. Once the fault has been detected and an initial set of particles

and weights has been generated, the posterior TPU degradation state can be recursively

estimated from the sequence of fault indicator measurements by applying the following

steps. The interaction of the different steps in the state estimation process is illustrated

in Figure 6.6.

(i) Prediction Step

At each iteration the set of particles Sk−1 are propagated according to the degra-

dation process model to generate a new set of particles Sk, which represent the a

priori TPU degradation state estimate

xk = xk−1 − α1exp

[
−α2/tk
t2k

]
− α3 exp [α4 tk] + α5tk + ωk (6.8)
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(ii) Measurement Update Step

Once a new set of particles has been generated, the particle weights are updated by

computing the likelihood of observing the latest fault indicator measurement value

zk, with respect to each predicted particle value. Using the SIR particle filter, the

importance density is set equal to the a priori state PDF p(xk|xk−1). This leads to

the simplification of weight update formula such that the non-normalised weight

update formula is given by (see section 3.4.3.1 for details)

w
(i)
k = w

(i)
k−1p(zk|x

(i)
k ) (6.9)

In this way, the weights for the newly generated particles x
(i)
k are evaluated from the

measurement likelihood function for new observations p(zk|x
(i)
k ), which is defined

by equation (6.6). Since the only probabilistic component of the measurement

likelihood function is a zero-mean Gaussian term, the measurement likelihood

function is computed using a Gaussian kernel function, so that

p(zk|x
(i)
k ) = p(υk) =

1√
2πσ2υ

exp

{
−(zk − x

(i)
k )2

2σ2υ

}
(6.10)

Once the particle weights have been updated it is necessary to normalise the par-

ticle weights to ensure they sum to 1

w
(i)
k = w

(i)
k /

Ns∑
i=1

w
(i)
k (6.11)

(iii) Particle Resampling

The objective of the resampling operation is to eliminate those particles with small

weights and focus on those particles with larger weights. The level of particle

degeneracy is determined by computing the effective particle sample size

N̂eff =
Ns∑Ns

i=1(w
(i)
k )2

(6.12)

A resampling operation is then performed whenever N̂eff < N̂thres. The resam-

pling operation generates of a new set of particles {x(i∗)k }
Ns
i=1 by sampling (with

replacement) Ns times from the current discrete approximation of p(xk|z1:k), such

that Pr(x
(i∗)
k = x

(i)
k ) = w

(i)
k . The new particle population thus represents a set of

independent and identically distributed set of samples from the current discrete

approximation of the degradation state PDF, and therefore the particle weights
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are reset so that w
(i)
k = 1/Ns.

(iv) State Estimate

The output at each iteration is a discrete weighted approximation to the true

posterior degradation state p(x0:k|z1:k), which is given by

p(xk|z1:k) ≈
N∑
i=1

w
(i)
k δ(x0:k − x

(i)
0:k) (6.13)

where δ is the dirac-delta function.

This process is then repeated at iteration to recursively estimate the posterior TPU

degradation state.

6.3.3.2 (b) Long-Term Predictions

The second stage within the particle filtering framework for prognostics involves pre-

dicting the RUL of the system under observation. Firstly, long-term predictions of the

TPU degradation state are generated, from which a RUL PDF for the system is then

computed.

(v) Prediction Step (p Iterations)

To generate long-term predictions of the TPU degradation state, the set of particles

and weights which define the current posterior TPU degradation state estimate,

at the time the long-term predictions are generated tk, are used as the initial

conditions. Each particle is individually progagated into the future, by recursively

applying the state-transition model, which is given by

xk = xk−1 − α1exp

[
−α2/tk
t2k

]
− α3 exp [α4 tk] + α5tk + ωk (6.14)

Each particle is propagated until the value of each particle enters the defined

hazard zone. The hazard zone defines a range of critical values of the degradation

state at which the system under observation is deemed to have reached the end of

its serviceable life, and there is a significant risk of equipment failure in continuing

to operate the equipment beyond the range of values defined by the hazard zone.

Typically the lower and upper hazard zone bounds (Hlb and Hub respectively)

are determined statistically from historical failure data, or inferred using expert

knowledge gathered from domain experts, such as maintenance personnel.
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(vi) Generate RUL PDF

Once the projected path for each particle has been generated, x̂
(i)
k+p, and the time

at which each particle enters the hazard zone has been identified, this information

is then combined with the weight of each particle, w
(i)
k , at the time the predictions

are generated, tk, to generate a RUL PDF for the system. The RUL PDF can be

computed by applying the law of total probabilities [27], whereby

pttf (k + p) =

Ns∑
i=1

Pr(Failure|X = x̂
(i)
k+p, Hlb, Hub) .w

(i)
k+p (6.15)

where pttf (k+p) is the probability of equipment failure at time tk+p This equation

essentially states that the probability of time-to-failure, tttf , occurring at time

tk+p is equal to the sum of the weights of those projected particles which enter the

hazard zone at time tk+p. The overall system RUL PDF is then defined as sum of

the individual failure probabilities at each future time instant.
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6.4 Particle Filtering for TPU Prognostics

6.4.1 Application Example - Single Model Approach

In applying the particle filtering algorithm for prognostics to the prediction of TPU RUL,

there are a number of parameters which must first be defined. The first parameter to

define are the bounds of the hazard zone. In each of the examples which will be presented,

the hazard zone for the TPU degradation state was defined as Hlb = 580◦ C and Hub

= 600◦ C, where Hlb and Hub define the lower and upper bounds of the hazard zone.

Once the value of the TPU degradation state decays to within this range of values, the

TPU system is deemed to be beyond its useable life.

To illustrate the application of the particle filtering algorithm to TPU prognostics, two

historical failure examples, which exhibited similar degradation profiles, in terms of

rate of decay and time-to-failure, were selected. The TPU degradation process model

parameters were tuned to fit one of these failure examples. The identified model was

then used as the state-transition model in applying the particle filtering framework to

the second TPU failure example. The two specific failure examples where chosen so

that the model derived from the first failure example would be sufficiently descriptive of

the observed behaviour of the second example, which is used to provide an illustrative

example of the application of the particle filtering framework to TPU prognostics in this

section.

Figure 6.7 illustrates the application of the particle filtering algorithm to a TPU failure

example. A total of 50 particles were used to approximate the TPU degradation state in

all of the application examples which will be shown. The number of particles represents

a trade off between computational cost and performance and using 50 particle was

identified as sufficient to approximate a RUL PDF. Figure 6.7 illustrates the output

generated by the two stages within the particle filtering algorithm, (1) state estimation

and (2) long-term predictions.

(1) State Estimation

At time tD a fault condition is first detected. This initiates the particle filtering frame-

work. The particle filtering algorithm iterates at 15 minute intervals as new fault indica-

tor measurements are generated by the multi-mode CT tracking algorithm. The latest

fault indicator measurement, zk, is combined with the state-transition model predictions,

to generate the posterior TPU degradation state estimate.
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Figure 6.7: Particle filtering for TPU degradation state estimation & generation of
long-term predictions

Figure 6.7 illustrates tracking of the TPU degradation state between times tD and

tD + 60 hours. The mean state estimate is computed from the set of particles and

weights at each iteration, and the state estimate bounds, which represent the level of

uncertainty regarding the current state estimate, are defined by the highest and lowest

valued particles generated at each iteration.

(2) Long-Term Predictions

At time tD + 60 hours in Figure 6.7, the latest set of particles and weights Sk, which

define the posterior degradation state PDF estimate, are generated. To generate long-

term predictions each particle, x
(i)
k , in Sk (using its value as the initial condition), is

projected recursively into the future, using the state-transition model, until the predicted

value of each particle enters the hazard zone. Figure 6.7 shows the projected paths taken

by 5 randomly selected particles in Sk, at time tD + 60 hours. Once all of the particles

have been projected into the future the final task is to generate the RUL PDF. The

RUL PDF is generated according to equation (6.15). In the generation of the long-term

predictions, the weights of each projected particle remains unchanged from their values

at the time the predictions are generated.

Figure 6.8 illustrates the RUL PDF generated from long-term predictions made at two

different times. The first RUL PDF was generated from long-term predictions made at

time tD + 1.5 days, and the second RUL PDF was generated from long-term predictions

178



TPU Prognostics

made at time tD + 4 days. An important observation to note is how the RUL PDF

becomes more precise as the prediction horizon decreases. It is also noted that the true

TPU end-of-life, tEoL, occurs within the bounds of the RUL PDF in both instances.

Figure 6.8: TPU RUL estimation using particle filtering

Once the RUL PDF has been generated, the issue of how to incorporate the RUL PDF

within an automated maintenance decision support system must be considered. The key

parameter for incorporation within an automated maintenance decision support system

is the lead-time-interval (LTI). The LTI defines the remaining time before maintenance

actions must be undertaken, to avoid operating the equipment beyond the maximum

allowable probability of failure (PoF), as identified by the just-in-time-point (JITP) (See

Section 2.5.1 for further details). Figure 6.9 illustrates the evolution of the LTI value

for the example shown in Figure 6.8, between when the fault is first detected at time tD,

and the true TPU end-of-life (EoL), tEoL. In the example shown a maximum allowable
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PoF value of 5% was selected for defining the JITP.

Figure 6.9: Evolution of lead-time interval estimates as TPU fault progresses

As time evolves and the TPU EoL approaches, the LTI can be used to automatically

generate maintenance actions. For example, an alarm threshold of 24 hours is illustrated

in Figure 6.9 at which point maintenance actions are generated. In this way, mainte-

nance personnel are provided with a sufficient window within which corrective action

can be taken, and equipment failure avoided and, additionally, the serviceable life of the

equipment is maximised.
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6.4.2 Uncertainty in TPU Prognostics

The primary challenge in the development of prognostic algorithms is addressing the

level of uncertainty inherent in the generation of long-term predictions which describe the

evolution of a fault indicator. Much of this uncertainty arises from the stochastic nature

of the process, but additionally, uncertainty about how a system might be operated in

the future, or the types of loads it might be operated under, significantly contributes

to the overall level of prognostic uncertainty. In this section, the various sources of

uncertainty which effect to ability to accurately predict TPU RUL are presented and

existing and potential solutions to addressing these uncertainty challenges are discussed.

From a TPU prognostics perspective the issue of prognostic uncertainty is illustrated

by the set of historical TPU failure examples. Figure 6.10 illustrates the fault indicator

measurements derived from each of the historical TPU failure examples available. The

immediate observation is the large variability in the time-to-failure tttf value for each

failure example. The tttf represents the time between when a fault is first detected at

time tD and when a TPU reaches the end of its serviceable life tEoL.

Figure 6.10: Fault indicator measurements extracted from 7 available historical TPU
failure examples

The variability in the observed tttf values is largely due to differences in the process

load imparted on each individual TPU during its serviceable life. The process load

imparted on a TPU over any time period will be a function of the types, volumes, and

mixtures of different process gases abated by the TPU. The process load is essentially a

function of the number of wafers processed and the specific type of manufacturing process
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each of those wafers undergoes, since different manufacturing processes utilise different

process chemistries. Additionally, the wafer throughput rate, and the cumulative effect

of different sequences of high rate and low rate wafer throughput are likely to influence

the rate at which deposit build-up occurs within the TPU combustion chamber.

Addressing these sources of uncertainty requires the development of an understanding

of the relationship between the different types of process chemistries abated and the

rate of deposit build-up. Additionally, knowledge of historical processing information

and wafer throughput rates would be necessary to relate the effects of different wafer

throughput rates to TPU RUL. These issues are common in the development of any

prognostic algorithm that does not assume a fixed constant load in the future. How-

ever, in developing prognostic technologies for TPU systems, addressing these issues is

made more challenging due to the industry in which TPU systems are operated; namely

semiconductor manufacturing.

Semiconductor manufacturing is generally at the cutting edge of modern technology,

requiring multi-billion dollar investments in facilities, equipment, and R&D. To protect

these investments, and their intellectual property, semiconductor manufacturers main-

tain strict controls over any process details, data, or information, that might be consid-

ered proprietary or of a commercially sensitive nature. Considering that TPU systems

(and many other types of support equipment used in semiconductor manufacturing) are

often operated and maintained on-site by OEMs (who in many cases also develop and

supply the condition monitoring and prognostic software), this presents additional chal-

lenges and further sources of uncertainty in the development of prognostic technologies

for TPU systems. These same issues are also relevant in the development of prognostic

technologies for vacuum pump systems used in semiconductor manufacturing.

In general, semiconductor manufacturers do not make available any information, either

historically or in real-time, regarding the rate of upstream wafer processing. Even more

tightly controlled is sufficiently specific information on the types, and volumes, of differ-

ent process gases utilised, which might be abated by any individual TPU system. This

lack of information sharing makes it more difficult to address and manage the different

sources of uncertainty which arise from the variability in the input load an a TPU.

In the application of the particle filtering framework for prognostics there are two key,

interrelated, sources of uncertainty to consider, model uncertainty and future load pro-

file uncertainty. In the example application of the particle filtering framework for TPU

prognostics, shown in Figure 6.8, the state-transition model used to describe the evo-

lution of the TPU degradation process was sufficiently representative of the observed
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behaviour that accurate TPU prognostics was possible. However, as illustrated by the

set of failure examples shown in Figure 6.10, it is difficult to capture the variability in

the observed behaviour in a single model.

In Sections 6.4.2.1 and 6.4.2.2, the issues of model uncertainty and future load uncer-

tainty in TPU prognostics are discussed with reference to relevant publications address-

ing these issues. Finally, in Section 6.4.2.3, a proposed solution to addressing the issues of

model uncertainty and future load profile uncertainty in TPU prognostics is introduced,

which attempts to address the uncertainty challenges presented by the semiconductor

manufacturing environment.

6.4.2.1 Modelling Uncertainty

One of the primary sources of uncertainty, in the application of the particle filtering

framework for TPU prognostics, is errors in the model used to describe the evolution of

the degradation state. Ideally, such a model would be based upon the physics-of-failure

but, in general, the development of such high-fidelity models is often difficult and costly.

Instead, models are often developed which simply describe the observed behaviour of

historical failure examples. In the case of TPU degradation, the model employed simply

describes the evolution of the TPU degradation state, as time evolves. Ideally this model

would incorporate information describing how factors such as the volumes, flow rates,

and types of different process gases used, influence the rate of deposit buildup within

a TPU combustion chamber. However, developing such models is difficult considering

the strict controls maintained over such information. Additionally, the transferability of

such models between different manufacturers and different processes might be difficult

considering the variability in process chemistries between different manufacturers.

Within the particle filtering framework for prognostics the issue of model uncertainty

has been considered by a number of authors [27, 32, 101, 105]. The most common

approach identified in the literature, to addressing model uncertainty, is to consider

the model parameters as time varying and to incorporate them as part of the state

vector. In this way the particle filtering algorithm performs both model identification

and state estimation [32]. Consider the model used to describe the evolution of the TPU

degradation process

xk = xk−1 − α1exp

[
−α2/tk
t2k

]
− α3 exp [α4 tk] + α5tk + ωk (6.16)
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The most common technique for incorporating the model parameters as part of the state

vector is to consider the state transition model which describes the evolution of each of

the model parameters as a Gaussian random walk, so that

αi,k = αi,k−1 + φi,k−1 (6.17)

where φi,k−1 is a sample drawn from a zero-mean Gaussian distribution with variance

σ2φ. Provided a suitable initial value for αi,0 and σ2φ is chosen, the principle of the model

identification process is that the αi estimates will converge on the actual parameter value

by the law of large numbers [105].

A second technique for updating model parameters presented by Orchard [27] utilises

an outer correction loop in which short-term prediction errors are used to modify the

variance of φi in (6.17) with respect to the margin of the prediction error. The principle

of the outer correction loop is to allow the value of the unknown model parameters to

be updated rapidly if the prediction error becomes large which might indicate that the

model no longer describes the dynamics of the observed behaviour. In this way the model

parameter values can respond rapidly to a significant change in the operating conditions

of the system (by increasing the variance of φi), and stabilise the model parameter values

when the model behaviour matches the predicted behaviour more closely (by reducing

the variance of φi).

Incorporating the model parameters as part of the state vector within the particle fil-

tering framework means that both the posterior degradation state, and the model pa-

rameters, are updated recursively at each iteration. However, once the particle filtering

framework switches from the state estimation to the generation of long-term predictions,

the model parameters generally remain fixed as the degradation state is iteratively pro-

jected into the future. This raises the question of how changes in the model parameter

values effect the projected evolution of the degradation state.

The incorporation of the model parameters as part of the state vector was investigated

for TPU prognostics. Two main issues arose with this approach to addressing model

uncertainty. The first issue was the difficulty in selecting initial values for αi,0 and σ2i,0,

for each model parameter. The second issue which arose related to the generation of long-

term predictions. At each iteration, when the model parameters were updated, the new

set of parameters remain fixed for the purpose of generating long-term predictions. This

often resulted in significant differences in the RUL projections generated at successive

iterations. Furthermore, given the uncertainty in the future load profile, the accuracy of
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the long-term predictions generated by the updated model parameters at each iteration

often failed to match the observed behaviour, as the prediction horizon increased.

6.4.2.2 Future Load Uncertainty

Another major source of uncertainty in TPU prognostics arises from the variability in

future load profiles on TPU systems. As discussed previously, the future load profile

of a TPU system depends upon the volume and type of process gases that a TPU

system will abate over a future horizon. This is essentially a function of the number of

wafers processed and the type of manufacturing processes those wafers undergo. Both

of these factors can vary significantly in any upstream processing chamber which might

be connected to an individual TPU system.

The variability in future load profiles on TPU systems arises for a variety of reasons. One

of the primary reasons is that wafer processing tools are regularly taken down for pre-

ventative, or corrective, maintenance, as necessary. Additionally, the wafer throughput

rate can be affected by a range of short and longer term influences. In the short-term,

production is organised in real-time to match customer demand for different products,

and to respond to the availability, or otherwise, of different equipment. In the longer

term, conditions such as the worldwide economic climate can significantly influence de-

mand and, hence, the rate and volume of wafers processed. The issue of future load

profile uncertainty is also further complicated by the fact that a TPU can be connected

to up to four individual processing chambers, each of which operate independently.

Ideally, in the development of TPU prognostics, both historical and real-time data on

wafer processing rates and processing tool status would be available to incorporate in

estimating TPU RUL. The historical data would permit an analysis of the relationship

between wafer processing rates and deposit buildup on individual TPUs. Any identified

relationship could then be incorporated in modelling the evolution of the degradation

state so that, ideally, a state transition model of the form described in (6.18) could be

derived

xk = fk(xk−1, uk−1, ωk) (6.18)

where xk is the current degradation state, ωk is the process noise, and uk−1 represents the

input/load on the TPU. With access to historical wafer processing information, including

processing tool status information, statistical load profiles for various possible future
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wafer load scenarios could be generated from historical analysis of wafer processing rates,

and the model could then be simulated using the different potential future load-profiles,

improving the overall prognostic performance. Currently, both real-time and historical

wafer processing information is generally not made available as such information is often

considered to be commercially sensitive. However, there is presently a move toward

greater data sharing between processing tools and support equipment. This is driven

by a move to implement more energy efficient practices, whereby processing tools and

support equipment switch into semi-standby mode during periods when no wafers are

being processed. The objective is to reduce the wasteful consumption of utilities, fuel

and gases during these periods.

To automate the process of having support equipment reduce consumption during peri-

ods of no processing requires a greater level of communication between processing tools

and support equipment. In the future this may provide a method for accessing real-time

and historical processing data, which could be incorporated into the development of

TPU prognostics. The issue of reducing future load uncertainty by incorporating histor-

ical load profiles into RUL predictions is considered an area in which to focus ongoing

research activities into TPU prognostics. Such research, based upon wafer load profile

characterisation, could also be incorporated into the development of prognostic algo-

rithms for vacuum pumps. Additionally, with the development of pump mode tracking

algorithms, as described previously in Section 5.5.2, this may provide another method

for developing statistical characterisations of typical TPU load profiles online, which

could potentially be incorporated into the development of TPU prognostics.

6.4.2.3 Addressing Uncertainty in TPU Prognostics

Sections 6.4.2.1 and 6.4.2.2 have illustrated how issues of uncertainty, arising from mod-

elling errors and future load profile uncertainty, are compounded by the semiconductor

manufacturing environment in which TPU systems are operated. This environment, in

which most process details are considered proprietary or commercially sensitive, present

additional challenges from an uncertainty management and representation perspective.

The challenge becomes how to capture and propagate this uncertainty in the generation

of long-term predictions of TPU RUL, in the absence of many process details which

would normally be available in the development of prognostic solutions.

Without improved process models, or information on future load profiles, the primary

source of information on how the variability in TPU operating characteristics influences

the evolution of the TPU degradation state is captured in the set of available historical
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TPU failure examples, illustrated in Figure 6.10. The set of TPU failure examples

represents samples from the set of all possible failure paths, considering the variability

in the process gas load and operating profiles. By tuning the TPU degradation process

model to each of these failure examples, this generates a set of 7 degradation process

models. These seven models which describe the path taken by the TPU degradation

process represent samples from the set of all possible paths which the TPU degradation

state might follow.

In Section 6.5, a solution to addressing the issues of uncertainty representation and

management in TPU prognostics is presented. The solution is based upon the use of

a multiple model particle filtering approach. The basic principle of the multiple model

approach is to maintain a set of candidate models, where each candidate model describes

how the TPU degradation state might evolve. As a real TPU fault evolves and new

fault indicator measurement data is received, the basic idea is to use the sequence of

new measurement data received to recursively estimate the plausibility that each model

is representative of the observed behaviour. Each model is then weighted accordingly,

and the overall RUL PDF is a weighted sum of the individual RUL PDFs generated by

each model.
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6.5 Multiple Model Particle Filtering for Prognostics

It was shown previously in Section 6.4.2 how various sources of uncertainty effect to

ability to accurately predict TPU RUL. One option to address future load profile un-

certainty is to increase the magnitude of the process noise term, used in the generation

of long-term predictions. In this way, the predictions can account for the uncertainty

in future load profile. However, increasing the process noise settings also increases the

prognostic uncertainty, which is of particular concern when the uncertainty is propagated

over a long prediction horizon [101]. In this section, a potential solution to addressing

the uncertainty challenges in TPU prognostics is presented.

To address the issue of model uncertainty, Tang et. al. [106] introduced the idea of

the multiple model approach for model-based prognostics. The original premise for the

multiple model approach is the situation in which multiple failure modes may exist

for a system which might compete for dominance as a failure evolves. The conceptual

situation presented by Tang, in which such a scenario might occur, is the prediction of

metal corrosion in rolling element bearings [106]. The evolution of a metal corrosion

process can potentially take the form of uniform corrosion, pitting, crevice or galvanic

corrosion. During the initial stages of corrosion, it can be difficult to identify which

type of corrosion which is occurring from the measurement data taken from the process.

The principle of the multiple modelling approach is to utilise a set of candidate models,

in which each model describes how the corrosion process might evolve for each of the

potential failure modes. As time evolves and new measurement data is received, the

idea is to use the sequence of new measurement data received to recursively update the

plausibility that each model is representative of the observed behaviour. In addition to

the application of multiple modelling approach for situations in which multiple failure

modes exist, Tang also makes the observation that failure data collected in the field is

usually insufficient to faithfully construct a model online, but is often sufficient to be

used to select candidate approximating models. Furthermore, the output of the multiple

models can be fused to improve the overall prediction accuracy [106].

In this study, the set of candidate approximating models are derived from the set of

available historical failure examples. The idea is to generate a set of models in which

each model represents a description of how the TPU degradation state might evolve,

given given the uncertainty in the types of gases abated and the load profile imparted on

the TPU. The predictions generated by each of the models can then be fused to improve

the overall prediction accuracy. Furthermore, by using a set of candidate models which

represent approximations to the potential behaviour of the system, the process noise
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term for each model can be made much smaller, thus improving the prediction accuracy

over a longer prediction horizon. Section 6.5.1 introduces the principle of the multiple

model particle filtering approach, and illustrates the application of the technique to

addressing uncertainty in TPU prognostics.
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6.5.1 Multiple Model Particle Filtering Algorithm

The principle of the multiple model particle filtering approach for prognostics is to

maintain a bank of particle filters which each operate in parallel. The state transition

model in each of the filters describes a possible failure mode of the system, or in the

current application, represents a candidate model describing how the TPU degradation

state might evolve, given the uncertainty in the future load profile.

Figure 6.11 presents a flow diagram illustrating the different stages in the multiple model

particle filtering algorithm. Figure 6.11 presents the conceptual case of two candidate

models for ease of visualisation, though the algorithm can easily be scaled to the required

number of candidate models without any change in functionality.

Figure 6.11: The multiple model particle filtering algorithm for TPU prognostics

In the multiple model particle filtering algorithm, each of the filters operates indepen-

dently, using the sequence of fault indicator measurements to estimate the posterior

TPU degradation state at each iteration. The TPU degradation state, which is defined

in terms of a set of particles and weights, is then propagated into the future to generate

long-term predictions of system health, from which a RUL PDF is then generated. Ini-

tially, when a fault is first detected, each of the particle filters is initialised and begins

the process of estimating the posterior TPU degradation state recursively, as each new
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fault indicator measurement is generated. This process, of estimating the current degra-

dation state and projecting into the future, is the same for each candidate model and

is implemented exactly as the particle filtering algorithm, described in Section 6.3.3, is

implemented.

Beyond implementing the particle filtering algorithm for each candidate model, there are

two new stages involved in implementing the multiple model particle filtering algorithm,

updating the candidate model weights and generating the final RUL PDF, as illustrated

in Figure 6.11. The implementation details of these two stages are described below.

6.5.1.1 Updating Candidate Model Weights

Each filter within the multiple model particle filtering framework uses a candidate state-

transition model m(j) from the set of candidate models M = {m(1), ...,m(NM )}, where

NM is the number of candidate models. Initially, when a fault is first detected at time

t0, the weighting, or plausibility, of each candidate model m(j) describing the (as yet

unobserved) behaviour is considered equal, so that

µ
(j)
0 =

1

NM
(6.19)

where µ
(j)
0 represents the a priori plausibility that candidate model m(j) describes the

as yet unobserved behaviour at time t0. To satisfy the requirement that the µ(j) values

represent probabilities, they are subject to a number of constraints, such that

NM∑
j=1

µ(j) = 1 and 0 ≤ µ(j) ≤ 1 (6.20)

As the fault evolves and new measurement data is received, the basic idea of the multiple

modelling approach is to use the sequence of new measurement data received to update

the relative plausibility that each of the candidate models is descriptive of the observed

behaviour. At time tk, the plausibility of each candidate model m(j) in describing the

observed behaviour is given by

µ
(j)
k = p(m(j)|z1:k) (6.21)
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which describes the probability that candidate model m(j) is in force, conditioned of

the sequence of fault indicator measurements z1:k received up to time tk. As a fault

evolves, the plausibility of each candidate models in describing the evolution of the

TPU degradation state can be computed recursively using Bayes’ rule [101], whereby

µ
(j)
k =

p(zk |m(j), z1:k−1)µ
(j)
k−1∑NM

j=1 p(zk |m(j), z1:k−1)µ
(j)
k−1

(6.22)

where p(zk |m(j), z1:k−1) is the model likelihood function which describes the likelihood

of observing the latest fault indicator measurement zk, conditioned on model m(j) and

the history of fault indicator measurements z1:k−1 received up to time tk−1. In a situation

where Kalman filters are being utilised, the function p(zk |m(j), z1:k−1) can be computed

analytically. However, in the situation where particle filters are utilised, the function

p(zk |m(j), z1:k−1) must be computed numerically from the particles [101]. One method

to approximate p(zk |m(j), z1:k−1) is to recursively update the model likelihood function

as follows

p(zk |m(j), z1:k−1) = p(zk|x
(m(j))
k )

k−1∏
i=1

p(zi|x(m
(j))

i ) (6.23)

where p(zi|x(m
(j))

i ) is the measurement likelihood function, which describes the probabil-

ity of observing the measurement zi at time ti, conditioned on x
(m(j))
i ,which represents

the posterior state PDF estimate generated by the filter using candidate model m(j).

Since particle filters are used to estimate the posterior state PDF at each iteration, the

function p(zi|x(m
(j))

i ) cannot be computed analytically and instead must must be com-

puted numerically from the particles. To approximate this function, the mean posterior

state estimate x̄
(m(j))
k is computed from the set of particles and weights which define the

posterior TPU degradation state estimate at each iteration. The measurement likeli-

hood function for this purpose is defined in the same fashion as the particle measurement

update function, so that

zi = x̄i + ψi ↔ p(zi|x(m
(j))

i ) (6.24)

where ψi is a zero-mean Gaussian measurement noise process with variance σ2ψ. The

value of the variance term σ2ψ can be tuned to influence how the degree of error, between
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the predicted state PDF and the latest measurement, is penalised in computing the

model likelihood function as the fault evolves.

6.5.1.2 Update Final RUL PDF

The Bayesian model weighting approach, described above, provides a method for in-

ferring the plausibility that each candidate model is representative of the observed be-

haviour. As more fault indicator measurements become available, this information can

be used to update the plausibility that each model is representative of the observed

behaviour. In this way, those models which better describe the observed behaviour gain

greater weighting. This weighting is then incorporated into the generation of RUL PDFs

for each model. The final RUL PDF is then defined as a weighted combination of each

of the individual model RUL PDFs

pttf (k + p) =

NM∑
j=1

µ
(j)
k

Ns∑
i=1

Pr
(
Failure|X = x̂

(i)
k+p, Hlb, Hub,m

(j)
)
w

(i)
k (6.25)

where pttf (k+ p) is the probability of time-to-failure occurring at at time tk+p where tk

is the current time. Hlb and Hub represent the bounds on the hazard zone, x̂
(i)
k+p and

w
(i)
k represent the predicted particle values and their initial weights respectively, which

are generated by the filter using candidate model m(j). The µ
(j)
k values represent the

individual candidate model weights at the time the predictions are generated, tk, which

are recursively update as new measurement data becomes available.
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6.5.2 Candidate Model Generation

Before applying the multiple model particle filtering framework, it is first necessary

to generate a set of candidate models from the set of historical TPU failure examples

available. To derive a set of candidate models, the TPU degradation process model

was first tuned to fit each of the available TPU failure cases. Using the set of model

parameter values identified for each failure cases, the maximum and minimum value for

each αi parameter was identified. To generate a potential candidate model, a value for

each αi parameter was chosen by sampling uniformly from the identified range of values

for each αi parameter. This process of generating a potential candidate model was

repeated several thousand times to generate a large set of potential candidate models.

The second step then initialises each potential candidate model with the same initial

state value x0. An initial state value of 850◦ was selected as this was the average

degradation state value at which a fault was first detected in each of the historical TPU

failure examples. The initial state value was propagated into the future in a recursive

manner, using each of the potential candidate models. At this stage, it was noted

that the combination of certain αi parameter values resulted in the generation of many

improbable degradation paths, from an intuitive perspective, being generated.

The next step was to select a set of candidate approximating models to be used within

the multiple model particle filtering framework for TPU prognostics. Figure 6.12 again

illustrates the set of historical TPU failure examples. As can be seen, the historical

failures have occurred between 5 and 14 days after the time the fault was first detected,

tD. In selecting a set of candidate approximating models, all those potential candi-

date models which crossed the hazard zone anytime between 4 and 15 days were first

selected. This was deemed to be sufficient, at this stage, to capture the potential be-

haviour of future failure cases. In reality, as more failure data becomes available, the

set of candidate models can be continuously refined to reflect future observed behaviour.

A final set of 500 candidate approximating models were chosen by sampling uniformly

within the range of candidate models which crossed the failure threshold within 4 to

15 days. Figure 6.13 illustrates the evolution of the TPU degradation state, without

incorporating any process noise, as described by a sample of 50 of the selected candidate

approximating models. As can be seen, the set of of candidate models represent approx-

imations to potential degradation paths taken by future failure examples. Whilst the

set of available historical failure examples represent samples from the range of possible

paths taken by the TPU degradation state, the set of candidate approximating models
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Figure 6.12: Fault indicator measurements extracted from 7 available historical TPU
failure examples

are designed to describe the full spectrum of potential degradation paths, as can be best

inferred from the set of historical failure examples.

Figure 6.13: Illustration of sample candidate models generated from set of historical
TPU failure examples

Using the approach described above, a total of 500 candidate approximating models were

initially generated, for the purpose investigating how many candidate models should be

used within the multiple model particle filtering framework for the current application.

Selecting the number of candidate models to use essentially represents a trade-off be-

tween prognostic performance and computational cost. As the number of candidate
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models is increased, this means that the value of the process noise term used in each

model for the generation of long-term predictions can be reduced, thus improving the

precision of long-term predictions. Furthermore, a greater number of models allows

for a greater coverage of potential failure paths which might occur. However, each ex-

tra candidate model increases the computational cost of the approach, associated with

performing both state estimation and the generation of long-term predictions for each

candidate model.

In the current application, the multiple model particle filtering approach was tested

across the set of historical failure examples, using combinations of different numbers

of candidate models and process noise values. The trade-off between performance and

computational cost was investigated for various combinations. The objective was to

identify a satisfactory combination of both the number of candidate models, and process

noise values, which generate both accurate and precise RUL estimates, and ensure a

smooth evolution of the RUL PDF as the fault evolves. In each of the subsequent

examples shown, a subset of 150 candidate models was chosen, which was identified as

sufficient to provide good coverage of the state-space, whilst maintaining a small process

noise value in each of the candidate models.
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6.5.3 Application Example: Multiple Model Particle Filtering

Figure 6.14 shows an example of the multiple model particle filtering framework applied

to predicting the RUL of a TPU failure example. Figure 6.14 illustrates how the the RUL

PDF evolves in response to the observed behaviour of the fault signal. In this example,

the fault signal evolves at a relatively slow rate of decay, which implies a reduced likeli-

hood of equipment failure over a shorter prediction horizon. This process is reflected in

the evolution of the RUL PDF in Figure 6.14, whereby the RUL PDF density remains

concentrated over a longer prediction horizon as the fault evolves, gradually becoming

more accurate and precise as the equipment approaches the end of its serviceable life,

tEoL.

Figure 6.14: Illustration of evolving RUL PDF estimate, generated by multiple model
particle filtering approach for TPU prognostics, in response to observed behaviour of

TPU fault
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The key output, generated from the evolving RUL PDF, which can used to automatically

trigger maintenance actions is the lead-time interval (LTI), which provides maintenance

staff with an estimate of the remaining time before corrective maintenance action must

be taken to avoid operating equipment beyond the maximum allowable PoF. Figure 6.15

illustrates the evolution of the LTI value as computed from the evolving RUL PDF, gen-

erated by the multiple model particle filtering framework, in Figure 6.14.

Figure 6.15: Evolution of LTI estimate as TPU fault evolves

Figure 6.15 illustrates how the LTI value estimate is updated as the fault evolves, pro-

viding maintenance staff with significant visibility on an upcoming maintenance issue.

As the fault approaches, the passing of the estimated LTI values through a specified

threshold can be used to automatically generation maintenance actions which must be

performed to avoid risk of equipment failure. The alarm level can be chosen so to pro-

vide sufficient warning so that maintenance actions can be planned at a suitable time,

to minimise overall manufacturing downtime. In applying the multiple model particle

filtering framework, the evolution of the RUL PDF and the LTI estimate is essentially

a function of the weights of the individual candidate model weights changing, as those

filters using candidate models which better describe the observed fault behaviour have

their weights increased, and vice versa. To demonstrate this behaviour, Figure 6.16 il-

lustrates the evolution in time of each of the candidate model weights from the example

in Figure 6.14.

Once a fault is first detected at time tD, the candidate model weights µ(j) are initialised
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Figure 6.16: Evolving candidate model weights in response to observed behaviour of
TPU fault example

with equal weighting. As the fault evolves, the plausibility of each candidate model de-

scribing the observed behaviour is updated recursively, and the candidate model weights

change to reflect this. As can be seen in Figure 6.16, immediately after a fault is first

detected, the model weights begin to respond as more fault indicator measurements are

received. As the fault continues to evolve, an increasing number of the model weights

decay to zero, indicating that the dynamics of these models do not reflect the dynamics

of the observed behaviour.

6.5.4 Adaptive Candidate Model Weighting

As a TPU fault evolves, the model likelihood function is computed over the set of fault

indicator measurements to update the plausibility that each candidate is descriptive of

the observed behaviour. During testing of the multiple model particle filtering frame-

work, across the set of historical TPU failure examples, it was noted that the evolution

of the candidate model weights was heavily influenced by the value of the model like-

lihood function computed during the initial stages of TPU degradation. In computing

the model likelihood function, equal weighting is given to each of the fault indicator

measurements. However, this presents some issues in updating the candidate model

weights.
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During the initial stages of TPU degradation, the dynamics of each of the candidate

models is similar, which reflects the typical dynamics of a TPU failure example, which is

characterised by an initial period of slow decay of the TPU degradation state. This often

results in larger measurement likelihood values for each candidate model, in response

to the fault indicator measurements generated during the early stages of a fault. As a

fault evolves, the model likelihood function value for each candidate model is heavily

weighted by the measurement likelihood values, computed during the initial stages of

a TPU fault. As a result, the evolution of the candidate model weights is often overly

influenced by how well each candidate model describes the observed behaviour during

the early stages of fault evolution. This can then result in some candidate model weights

taking longer to decay to zero, as their dynamics deviate from the observed behaviour.

To address this issue, it is proposed to compute the model likelihood function with

greater weighting applied to more recent fault indicator measurements, as opposed to

applying equal weighting across all fault indicator measurements. In this way, the plau-

sibility of each candidate model in describing the observed dynamics will be computed

with greater weighting applied to how well each model describes the more recent be-

haviour, as opposed to applying equal weighting across the full history of fault indicator

measurements. To achieve this, it is proposed to use exponential weighting in comput-

ing the model likelihood function. By incorporating exponential weighting, the model

likelihood function can be computed as

p(z1:k|m(j)) =

k∏
i=1

λi−k p(zi|x(m
(j))

i ) (6.26)

where λ ∈ [0, 1] can be tuned to govern the rate of exponential decay applied to the set of

historical measurement likelihood values. In Section 6.5.4.1, an example of the multiple

model particle filtering framework, using an exponential weighted likelihood function, is

illustrated. To investigate if the suggested approach results in an improvement in prog-

nostic performance, the results generated using both approaches to updating the model

weights, were compared using available prognostic metrics. The results are presented in

the following section.
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6.5.4.1 Application Example: Exponential Model Weighting

Figure 6.17 demonstrates the application of the multiple model particle filtering frame-

work to another historical TPU failure example. In this example, exponential weighting

was incorporated within the model likelihood function. In Figure 6.17, the RUL PDF

evolves in response to observed behaviour of the system, with the predictions becoming

more accurate and precise as the equipment approaches the end of its serviceable life.

Figure 6.17: Illustration of evolving RUL PDF estimate, generated by multiple model
particle filtering approach for TPU prognostics using exponential weighting within

model likelihood function, in response to observed behaviour of TPU fault

The overall objective of the exponential weighting approach is to identify those models

which better reflect the observed dynamics in the more recent past, and to discount

those models which may have described the failure dynamics during the early stages of

the fault, but diverge from the observed behaviour as the fault continues to evolve. To
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investigate if the exponential weighting scheme improves the performance of the RUL

predictions generated, the results, using both uniform and exponential weighting within

the model likelihood function were investigated, using available prognostic metrics.

Figure 6.18 compares the evolution of the candidate model weights using both the uni-

form weighting and the exponentially weighted methods. The evolution of the weights

is presented in histogram format to compare the general trends in the evolution of the

model weights. As can be seen, at time tD + 1 day, the distribution of the candidate

model weights are similar using both approaches, with each candidate model having the

same approximate weight value.

Figure 6.18: Comparison of candidate model weight distribution, using both uniform
weighting and exponential weighting methods, as TPU fault continues to evolve

At the fault evolves, it can be seen that in both cases the weight assigned to the candidate

models begin to diverge, as those models which describe the observed dynamics, result

in a weight increase, and likewise, those models which do not describe the observed

dynamics result in a weight decrease. In comparing the performance of both approaches,

the main feature to note in Figure 6.18 is the rate at which the candidate model weights

decay to zero as the fault evolves. It can clearly be seen in Figure 6.18 that using the

exponentially weighted approach, the rate at which candidate model weights decay to

zero is significantly faster than is the case using uniform weighting. As a greater number

of candidate model weights decay to zero, a more precise RUL PDF should be generated

since the RUL PDF becomes a weighted sum of a smaller number of individual RUL

PDFs.
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6.5.4.2 Performance Evaluation

To determine if the exponential weighting scheme improves the prediction performance,

the predictions generated by the two approaches were compared using available prog-

nostic performance metrics. The development of prognostic performance metrics has

been an active research area in recent years. Much of the work on performance met-

rics has been developed and reviewed in a series of publications by Saxena et al. [51].

These techniques were developed to address the perceived shortcomings in this area,

particulary the unsuitability of standard forecasting metrics for prognostic problems.

Much of the recent research on prognostic performance metrics has focused on the devel-

opment of techniques for comparing the performance of different prognostic algorithms,

when applied to the the same prognostic problem. A brief review of prognostic metrics

was presented previously in Section 2.5.3. Techniques developed include metrics such as

the prognostic horizon (PH), α-λ performance, and relative accuracy (RA). PH evalu-

ates how far in advance of system failure does an algorithm generate predictions within

the desired accuracy range, around the true EoL, whilst α-λ performance evaluates if

an algorithms stays within desired performance levels, relative to the actual RUL at a

given time [52].

In the current study, techniques such as prognostic horizon and α-λ performance are

not relevant, as the objective is not to compare the performance of different techniques,

but to compare the performance of adaptations to the same technique. Two metric

were evaluated to compare the performance of the uniform and exponential weighting

schemes, accuracy and precision. Accuracy provides a measure of how close a point

estimate of RUL is to the actual RUL, whilst precision quantifies the narrowness of

the time interval which the expected RUL covers, which is essentially a measure of the

spread, or width, of the the RUL PDF [3].

To compare prediction accuracy, the recently developed relative accuracy (RA) metric

was used [50]. The RA metric quantifies the accuracy of a prognostic algorithm at a

given time, where the output is normalised by the actual RUL, so that predictions made

closer to the true failure time, tEoL, should demonstrate greater accuracy. The range

of values for the RA metric is [0, 1], where 1 implies a perfect score. The RA metric is

defined as

RA(tp) = 1− |r∗(tp)− 〈r(tp)〉|
r∗(tp)

(6.27)
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where tp is the time index at which the RUL predictions are generated, r∗(tp) is the

actual RUL at time index tp, and 〈r∗(tp)〉 is a point estimate of the RUL, generated from

predictions made at time index tp. In the situation where the RUL PDF is described by

a parametric distribution, the point estimate of the RUL is defined by the distribution

mean. In the case of the multiple model particle filtering approach, the RUL PDF cannot

be described analytically, and so the RUL point estimate of the RUL is inferred from

the cumulative distribution function representation of the RUL PDF, which is defined

by the set of predicted particles and weights, according to equation (6.25).

The precision metric quantifies the narrowness of the time interval over which the ex-

pected RUL falls. In the current application, the time interval over which the expected

RUL falls is inferred from the cumulative distribution function representation of the

RUL PDF. The upper and lower time indices, which approximate the 95% confidence

limits on the RUL PDF are used to define the time interval over which the expected

RUL falls. The precision metric is defined as

Precision (tp) = exp(
−Ri
R0

) (6.28)

where Ri is the time interval over which the expected RUL falls, and R0 is a normalising

factor, whose value is dependant on the application. Precision is defined over the interval

[0, 1] with a value of 1 denoting a higher precision.

To investigate if the exponential weighting scheme within the model likelihood function

improves the accuracy and precision of the RUL estimates, the multiple model parti-

cle filtering framework was applied to the failure example illustrated in Figure 6.17.

The algorithm was tested separately using both the uniform and exponential weighting

schemes in computing the model likelihood function. Figure 6.19 illustrates the values of

the RA and precision metrics computed from the predictions generated by the multiple

model particle filtering approach using both model likelihood weighting schemes. As

illustrated in Figure 6.19, the incorporation of exponential weighing scheme within the

model likelihood function improves both the prediction accuracy, as defined by the RA

metric, and the precision of the RUL predictions. This is due to the faster rate at which

candidate model weights decay to zero, in response to their dynamics deviating from

the observed fault behaviour.
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Figure 6.19: Comparison of prognostic performance as measured by relative accu-
racy and precision metrics, using both uniform weighting and exponential weighting

methods, as TPU fault continues to evolve

6.6 Conclusions

The primary challenge in developing prognostic capabilities is the inherent uncertainty

in predicting the future behaviour of degrading equipment, which will be subject to

stochastic processes which have not yet occurred. Addressing this uncertainty is chal-

lenging, especially within the semiconductor manufacturing environment. Within this

environment, many process details, such as the gas types abated, the specific flow rates,

and expected future load profiles, are unknown. To address these challenges this chapter

has detailed the development of a multiple model particle filtering approach for TPU

prognostics. To the best of the authors knowledge this is the first time in which a mul-

tiple model approach has been applied to a real-world prognostic problem, using data

collected from a large semiconductor manufacturing facility.

Section 6.1 and 6.2 introduced the potential maintenance and operational benefits, and

the challenges, in developing prognostic capabilities for TPU systems. Section 6.3 then
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detailed the basic principles and implementation steps involved in applying particle fil-

tering for TPU prognostics. The application of single model particle filtering to an

historical TPU failure example was then illustrated in Section 6.4. Section 6.4 then

discussed the challenges in developing prognostic capabilities for TPU system operating

within the semiconductor manufacturing environment. These challenges motivated the

development of the multiple model particle filtering approach which is subsequently pre-

sented in Section 6.5. Within Section 6.5, the details, and implementation steps, involved

in developing a multiple model particle filtering approach were presented, which also in-

cluded a description of how the set of candidate failure models were derived from the set

of historical TPU failure examples. The performance of the multiple model approach

was then demonstrated on another historical TPU failure example. The dynamics of the

evolving candidate model weights, which respond to the observed behaviour of a TPU

fault, were also demonstrated.

Finally, in Section 6.5.4, a modification to the model weighting scheme was introduced,

which incorporates exponential weighting within the model likelihood function, used for

computing the weight of each candidate model. In this way the individual candidate

model weights are more heavily influenced by how well each candidate model describes

the more recent fault behaviour, as opposed to being weighted on the basis of how well

each candidate model describes the full fault history, up to the point at which RUL

predictions are generated. The performance, and the improvement in prognostic accu-

racy and precision of the exponential model weighting scheme, are then demonstrated

on another historical TPU failure example.

While the multiple model approach, presented in this chapter, was developed and tested

on TPU systems used in semiconductor manufacturing, the presented approach could

also be applied in many other prognostic application domains, in which there may be

little understanding, or ability, to model the underlying degradation process, but for

which a set of historical failure examples are available. The set of historical failures

examples can then be used to generate a set of candidate approximating models as

demonstrated in this chapter. As more historical failure examples become available,

and the understanding of the underlying process improves, the set of candidate models

can be continuously refined to reflect this better understanding. In the next chapter,

the potential application of the multiple model particle filtering to another application

domain, wind turbine prognostics, is demonstrated.
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Chapter 7

Wind Turbine Condition

Monitoring

7.1 Introduction

Over the past decade, the deployed wind power generating capacity worldwide has in-

creased rapidly. By the end of 2010, wind generating capacity reached approximately

196,630 MW [107]. In addition, the size and generating capacity of individual wind tur-

bines also continues to increase, with increasing numbers of wind turbines with >5MW

generating capacity becoming standard in offshore wind farms. For the economic ex-

ploitation of wind energy, high reliability of wind turbines and their components is

necessary. Wind turbines typically operate in harsh environments and are continuously

exposed to changing, and sometimes extreme, environmental conditions. Over many

years of operation, the constantly changing loads imparted by changing wind speeds

and directions generate significant loads on wind turbine blades, which is transferred to

the transmission system within a turbine nacelle. This can lead to the failure of bearings

and other components within the gearbox, main bearing, and generator. As a result,

the maintenance of wind turbines and the avoidance of component failures is of critical

importance to wind farm operators.

Due to the better wind conditions available and the lack of shore based sites, wind

turbines, of increasing size and generating capacity, are more commonly being located

offshore. As a result, avoiding turbine downtime and minimising corrective maintenance

due to component failure is even more important, as accessing failed turbines is far more

costly. For offshore wind farms, studies have suggested that maintenance costs are about
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20 to 25% of the total income generated, and that a considerable percentage of these

costs are due to unexpected equipment failure, which require corrective maintenance

[11]. In an effort to reduce the maintenance costs for wind turbines, wind farm oper-

ators are increasingly embracing condition-based maintenance philosophies in an effort

to reduce maintenance costs, increase turbine reliability, increase the lifetime of turbine

components, and reduce turbine downtime and associated loss of revenue. Various ap-

proaches to monitoring the condition of turbines have been considered. Most modern

turbines incorporate onboard supervisory control and data acquisition (SCADA) systems

for performance monitoring and supervision. As these system are already installed as

standard, wind farm operators are interested in better exploiting this data for condition

monitoring, fault diagnostics, and fault prognostics.

In this chapter, SCADA system data is used for a short feasibility study into the de-

velopment of a condition monitoring solution for the main bearing, on a large utility

scale wind turbine. The approach taken is to develop a model which describes the

fault-free behaviour of the main bearing temperature signal. By modelling the fault-free

behaviour of the main bearing temperature, future behaviour can then be estimated

and, by analysing the difference between the estimated and actual behaviour observed,

potential fault conditions can be identified.

The layout of this chapter is as follows. Section 7.2 briefly reviews the design of modern

wind turbines and reviews the different approaches which have been investigated for

condition monitoring of wind turbines. A description of the problem of main bearing

failures, which is investigated in this chapter, is also presented. Section 7.4 describes the

process of modelling the fault-free behaviour of the main bearing temperature on a wind

turbine with greater that 2MW generating capacity. Due to data sensitivity concerns, the

specific type of turbine investigated is not disclosed. In Section 7.5, the model developed

in Section 7.4 is applied to two historical main bearing failure examples, to demonstrate

the performance of the approach and the ability to detect the presence of incipient

fault conditions. In addition, an approach to tracking the evolution of the behaviour

of the fault signal within different turbine operating modes is demonstrated, which

improves the ability to identify and track the development of a fault condition. Finally,

in Section 7.6, the development of a prognostic solution for predicting the remaining

useful life (RUL) of failing main bearings is demonstrated. The multiple model particle

filtering framework for prognostics, developed in the Chapter 6, is used for this task,

to demonstrate its capabilities in addressing the uncertainty in predicting the RUL of

turbine components subject to uncertain future load profiles. Due to a lack of historical

failure examples, the development of prognostic capabilities for the main bearing is

presented simply as a proof of concept. However, with a greater number of historical
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failure examples, the approach presented has the potential to be improved and to be

utilised in developing prognostic capabilities for other wind turbine components.

7.2 Wind Turbines

7.2.1 Wind Turbine Design

In this study, data collected from a utility scale wind turbines, with a generating capac-

ity in excess of 2MW, is used to develop a condition monitoring solution for the main

bearing. The rotor blades on the type of wind turbine investigated are of a three blade

cantilever construction, mounted upwind of the supporting tower. The blades are man-

ufactured using composite material, and are manufactured as a single piece. Figure 7.1

illustrates the typical layout and design of the type of wind turbine investigated [9].

Figure 7.1: Wind turbine design and component layout [9]

The rotor blades are mounted on the main shaft, referred to as the low-speed shaft. The

main shaft is supported at the front of the nacelle by a single main bearing, labelled ball

bearing in Figure 7.1. The torque generated by the rotating blades is transferred to the

speed increasing gearbox by the main shaft. The gearbox is a 3-stage planetary helical

design, which increases the rotational speed of the main shaft. Splashed lubrication is

used to lubricate the gearbox and an onboard oil cooling system is used to cool the

gearbox. A hydraulic disk brake is located on the high-speed shaft, which connects the

gearbox to the generator, to reduce the rotational speed of the main shaft under high-

wind conditions. An asynchronous generator is located at the rear of the nacelle, with

a rated power of greater than 2 MW.
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7.2.2 Wind Turbine Condition Monitoring - A Review

In comparison to dry vacuum pumps and thermal abatement devices, investigated in

Chapters 4 - 6, condition monitoring for wind turbines is an area of widespread research

activity. Researchers and practitioners have been investigating condition monitoring

solutions for many of the different components on wind turbines using a wide variety of

different approaches. A number of publications are available which provide a review of

the different techniques and approaches which have been investigated [108–110].

Wind turbines contain multiple rotating components, including the main shaft, the

multi-stage gearbox, and the generator. As a result, vibration monitoring has been

investigated for application to wind turbine condition monitoring and fault diagnos-

tics [111, 112]. Within the domain of vibration monitoring for wind turbines, wavelet

methods have seen widespread application due to their inherent ability to provide time-

frequency resolution of the monitored vibration signal. This is important due to the

variable-speed operation of wind turbines [113, 114]. Acoustic emissions (AE) analysis

has also been proposed for wind turbine condition monitoring. The relatively low-speed

operations for wind turbines can place limitations on vibration monitoring. AE based

approaches are designed to detect the stress waves generated by the rubbing of rotating

components. An example of an application of AE analysis for gearbox components can

be found in [115].

To address cracking and delamination in large wind turbine blades, which are usually

constructed of composite materials, a range of approaches have been considered. Strain

gauges, located at different stress points, have been used to monitor peak strains, with

the objective of identifying locations where structural damage may have occurred. More

recently, fibre optic strain gauges have become more widespread due to greater capabil-

ities and accuracy over electrical strain gauges [110, 116].

Wind turbine power curve analysis is a common method for providing a universal mea-

sure of wind turbine performance, and as an indicator of overall wind turbine health

[117]. The wind power curve, for a specific wind turbine device, relates the turbine

power output for a given wind speed and air density. Given the current wind conditions

and air density, differences between the expected power output, as estimated by the

power curve, and the actual power output are identified. The difference, which is often

called the power residual, can be used to indicate potential operational issues, such as

the overall blade condition [118], and gearbox faults [117].
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The automatic monitoring and collection of operational data, in the form of sensor mea-

surements and operational status information, is now common in many industries. In

most modern wind turbines, supervisory control and data acquisition (SCADA) systems

are now common. These systems monitor and sample a wide range of different sen-

sor variables, including bearing temperatures, pressures, meteorological conditions, and

power and electrical measurements. These measurements are then stored in a database,

usually in the form of 5-minute or 10-minute aggregate data, which records the mean,

min, max, and standard deviation of each sensor variable over the relevant interval. The

data can the be analysed online or offline, to monitor the health and performance of

each individual wind turbine. Some more recent SCADA systems also monitor overall

vibration levels within critical components [119].

Since SCADA systems are already installed as standard on most wind turbines and, in

many cases, years of historical data recorded by the SCADA system are available, wind

farm operators and original equipment manufacturers are increasingly interested in bet-

ter exploiting this data for real-time condition monitoring and fault diagnostics. One

of the primary drivers for using SCADA data for condition monitoring is that the data

collection and sensor networks are already in place, which makes such approaches sig-

nificantly cheaper. In contrast, comprehensive vibration monitoring and AE approaches

require high-frequency data which might be sampled at up to 20 kHz. The costs of

the required sensor network and the data collection, storage, and processing capabilities

required to analyse and extract relevant features from the high-bandwidth raw vibra-

tion signals are significant. Furthermore, due to the high-bandwidth data required for

advanced vibration monitoring, all significant signal processing and feature extraction

must be performed locally at each turbine, with the extracted features and measure-

ments then transmitted to a central location for further analysis and decision making

[111]. As a result, the cost per turbine of installing such a system is often significant.

SCADA data is often used for power curve monitoring and to estimate power curves

online for individual turbines within a wind farm. Another application of SCADA data

is to develop models which describe the fault-free behaviour of different turbine compo-

nents. Differences between the estimated behaviour and observed behaviour can then

be used to identify the presence of potential fault conditions. A number of authors have

considered such approaches for gearbox and generator components [119, 120], which will

be discussed further in Section 7.2.3.
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7.2.3 Problem Description

In this chapter, data collected from a SCADA system, onboard large utility scale tur-

bines, is used to develop a condition monitoring solution for the main bearing. The

main bearing is responsible for supporting the rotor shaft, on which the turbine blades

are mounted, and for transmitting torque to the turbine gearbox. Due to constantly

changing wind conditions, the bearing loads can vary considerably and, during large

wind gusts, very significant loads can be exerted on the main bearing by the rotor and

blades. Continuous changes in operating loads and environmental conditions can even-

tually lead to damage to the main bearing, in the form of fretting on the inner and

outer races and spalls and cracks in the rolling elements. In the specific type of turbine

investigated, spherical roller bearings are employed in the main bearing which support

the small angular elevation of the main shaft.

The objective of this study is to investigate how existing data collection and monitor-

ing capabilities, in the form of onboard SCADA systems, can be exploited to provide

greater insight into turbine health and provide maintenance personnel with visibility

on developing maintenance issues. The focus of this work is to develop a data-driven

model which describes the fault-free behaviour of the main bearing temperature signal.

Then, using the developed model, the difference between the estimated main bearing

temperature and the observed main bearing temperature, which is called the residual,

is used to detect the presence of a potential incipient fault condition. Such approaches

to modelling fault-free behaviour of wind turbine components, using data-driven mod-

els, have been considered previously. Zaher et. al [119] used artificial neural networks

(ANNs) to model the fault-free behaviour of the gearbox bearing temperature, gearbox

cooling oil temperature, and the generator temperature. Excessive values of the residual

signal between the estimated and observed measurements are used to identify a fault

condition. Garcia et. al [120] also use ANNs to model fault-free behaviour of several

gearbox components. Guo et al. [121] employed a nonlinear state estimate technique

(NSET) to model the fault-free behaviour of a turbine generator. A moving average

filter was then used to detect statistically significant changes in the mean and variance

of the residual signal, which might indicate the presence of a fault condition.

In this study, a similar approach to those described in the previous paragraph is in-

vestigated, whereby SCADA data is used to detect developing faults within the main

bearing, by first modelling the fault-free behaviour of the main bearing temperature

signal. Within the literature, SCADA data has not previously been investigated for

condition monitoring of the main bearing on wind turbines. Another feature of this cur-

rent study, not previously investigated for wind turbine condition monitoring, is how,
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under fault conditions, the evolution of the residual signal is also a function of the vary-

ing operating loads on the turbine. The publications described in the previous paragraph

do not consider the effects of varying operating loads on the magnitude of the residual

signal. In this study, by monitoring the evolution of the residual signal, under different

operating loads, it will be demonstrated how significantly improved error tracking can

be achieved. Indeed, it will also be demonstrated how, by tracking the evolution of

the residual signal in different operating modes, the ability to develop real predictive

prognostic capabilities for wind turbines is improved.

Real predictive prognostics involves predicting the evolution of a signal of interest, or

fault indicator, until its value exceeds a predefined threshold. In many situations, iden-

tifying or extracting an appropriate signal for predictive prognostics is difficult. To date,

most wind turbine condition monitoring research has focused almost exclusively on con-

dition monitoring and fault diagnostics. In contrast, the development of real predictive

prognostic capabilities for wind turbines is still in its relative infancy. This is due in

large part to the difficulties associated with predicting the remaining useful life of tur-

bine components, particularly when the future operating load is so uncertain. However,

prognostic capabilities are essential to enable the benefits of a truly condition based

maintenance philosophy for wind turbines.

The provision of a lead-time, between the detection of an incipient fault condition and

actual equipment failure, would provides major benefits from a wind turbine operations

and maintenance (O&M) perspective. The size, weight, and costs of many wind turbine

components mean that most wind-farm operators do not maintain a large inventory of

spares on-site and, in general, new components must often be ordered from suppliers

once a fault condition is first detected. Furthermore, the actual replacement of specific

components can often require the presence of domain experts and specialised equip-

ment, including cranes capable of handling the relevant loads and reaching the required

heights. Another consideration is the issue of weather-windows. The ability to operate

large cranes is often dependant upon the prevailing weather conditions and particulary

the wind speed. To ensure the safety of maintenance personnel and equipment, the

weather must be satisfactory to enable corrective maintenance actions to be performed.

Thus, during inclement weather conditions, maintenance actions must often be delayed

until the weather improves, increasing both the maintenance costs and the non-revenue

generating turbine downtime.

The provision of accurate RUL estimates can potentially be of major benefit for wind

farm operators. By combining RUL estimates with weather forecasts, the potential for

identifying suitable periods in which maintenance can be performed is improved. In
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this way, equipment failure, including potential damage propagation to secondary com-

ponents, can be avoided and downtime and loss of revenue associated with performing

corrective maintenance can be minimised. However, similar to the development of prog-

nostic solutions for TPU systems in the previous chapter, and perhaps more challenging,

is the uncertainty regarding the future load profile under which a turbine will operate.

The future load profile will depend upon the wind conditions, which is a very stochastic

process. Thus, as in the development of any prognostic algorithm, how this uncertainty

is managed and represented will be key to exploiting the potential benefits of prognostic

capabilities for wind turbines.

In this study, real predictive prognostics for the main bearing are also investigated. Due

to the lack of historical failure examples, the investigation into main bearing prognos-

tics is intended to simply serve as a proof of concept. In the investigation into main

bearing prognostics, to be presented in Section 7.6.2, many assumptions regarding the

future behaviour and characteristics of main bearing failure examples are made, which

may be incorrect. However, as more historical failure examples become available, the

investigated approach can be refined and improved as the level of understanding of the

underlying process increases. In addition, with a greater number of historical failure

examples, some of the assumed values regarding how the level of the error signal re-

late to failure conditions will also be able to be improved. To investigate prognostics

for the main bearing, the multiple model particle filtering framework, developed in the

Chapter 6, is utilised. The capabilities of the multiple model particle filtering approach

are particulary suited for wind turbine prognostics, where the uncertainty over future

load profiles, dictated by the wind conditions, requires that any prognostic approach is

capable of representing and managing this associated uncertainty.
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7.3 Wind Turbine Condition Monitoring Algorithm

This section introduces a proposed algorithm for main bearing condition monitoring and

remaining useful life (RUL) prediction. A model-based approach is proposed. Figure 7.2

presents a flow chart illustrating the different stages in the proposed condition monitoring

and prognostic algorithm.

The basic principle of the model-based approach is to develop a model for each turbine

which describes the fault-free behaviour of the main bearing temperature. The estimated

main bearing temperature generated by the fault-free model is then compared with the

actual main bearing temperature at each iteration of the algorithm. The difference

between the estimated and actual main bearing temperature, known as the residual,

is then evaluated. Assuming the turbine remains fault-free, the residual signal should

generate a Gaussian distributed signal with a mean of zero and a small variance. Once

a fault develops, the residual signal may change and no longer be zero-mean. Analysis

of the residual signal is performed by the residual processing and decision logic stages.

Assuming no fault condition is detected, the algorithm continues to iterate at 10-minute

intervals as data is recorded by the SCADA system. Assuming a fault condition is

detected, this generates an alarm and initialises the prognostic stage, which estimates

the RUL of the main bearing. The algorithm then continues to iterate and the RUL

predictions are recursively updated using the latest filtered value of the residual signal.

Figure 7.2: Main bearing model-based condition monitoring algorithm

The remainder of this chapter describes in detail the different stages illustrated in Figure

7.2. Section 7.4 describes the process of modelling the fault-free behaviour of the main

bearing temperature. Section 7.5 then describes how the developed models can be used
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to detect fault conditions in the main bearing by analysing the residual signal. Section

7.6 then describes the decision logic stage which is used to determine whether a fault

condition is present and also describes the proposed RUL prediction approach and the

results generated.

7.4 Modelling Main Bearing Temperature

In this section, the detailed steps in developing a model to describe the fault-free be-

haviour of the main bearing temperature are presented. Firstly, in Section 7.4.1, a

description of the data set available for this study is presented. Section 7.4.2 then intro-

duces the proposed modelling approach, including the inputs and model structure to be

used to model the behaviour of the fault-free main bearing temperature. The motiva-

tion for using sparse Bayesian learning for regression to model the behaviour of the main

bearing temperature is also discussed. Section 7.4.3 then discusses data detrending, to

address the variability in sensor values caused by changes in the ambient temperature,

as the seasons change. Finally, in Section 7.4.4, the proposed model is trained and

tested on historical turbine data to demonstrate the performance of the trained model

on fault-free turbine data.

7.4.1 Data Set Description

For this study, data from a large wind-farm was made available. For each turbine, the

complete history of sensor information and turbine status information, for a period of 11-

months, was available. The onboard SCADA system for each turbine records 10-minute

averages of each monitored sensor variable. In addition, the maximum, minimum, and

standard deviation of each of these sensor values, over each 10-minute period, is also

recorded by the SCADA system. In addition to the values of the onboard sensors, status

information, such as generator start and stop times, are also recorded by the SCADA

system.

7.4.2 Modelling Approach

To develop a condition monitoring solution for main bearings, using available SCADA

data, it is proposed to develop a model which describes the behaviour of the main

bearing temperature under normal, fault-free, operation. Once the model is developed,
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it can then be used to estimate future main bearing temperature values, using other

turbine variables as inputs. Assuming the main bearing remains fault free, the residual

signal, representing the difference between the estimated main bearing temperature and

the actual main bearing temperature, should be a zero-mean random variable with,

ideally, a small variance. Once a fault develops in the main bearing, in the form of

spalling, fretting, or cracks, the increased friction should result in an increase in the

main bearing temperature, beyond the estimated value. As a result, the residual signal,

and its statistical characteristics, should begin to change, reflecting the development of

an incipient fault condition within the main bearing.

Figure 7.3: Turbine components layout

Modelling the behaviour of the fault-free main bearing temperature required selection of

appropriate input variables, which can be used to estimate the fault-free main bearing

temperature under varying load conditions. A range of different variables were inves-

tigated to identify their usefulness in estimating the main bearing temperature. The

final set of input variables, selected for inclusion in the feature vector for estimating the

main bearing temperature are described below. Figure 7.3 illustrates the location of the

different components whose sensor values are described below.

Main Shaft RPM The heat generated in the main bearing will be a function of the

load on the bearing. The main shaft RPM describes the load exerted on the main

bearing under varying wind conditions.

Hydraulic Brake Temperature The turbine brake is located on the high-speed shaft,

which connects the gearbox to the generator, and analysis has demonstrated that,

under fault-free conditions, the brake temperature is closely correlated with the

main bearing temperature.
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Hydraulic Brake Pressure The average hydraulic brake pressure over a ten-minute

interval provides a measure of the brake friction applied to the high-speed shaft,

which in turn generates friction within the main bearing, resulting in a response

in the main bearing temperature

Blade Pitch Position All modern turbines employ pitch control to pitch the blades

under high-wind conditions. While the main shaft RPM may remain constant, the

load imparted on the main bearing will vary with the blade pitch position.

The model used to describe the behaviour of the fault-free main bearing temperature

signal is of the form

r̂(k) = f(r(k − 1), u1(k), u1(k − 1), u2(k), u3(k), u4(k)) (7.1)

where r̂(k) is the estimated main bearing temperature at time k, r(k − 1) is the actual

main bearing temperature at time k − 1, and ui(k), i = 1, ..., 4, is the value of input i,

at time k. The input variables, ui, represent the following turbine variables, which are

described above

• u1: Main Shaft RPM

• u2: Hydraulic Brake Temperature

• u3: Hydraulic Brake Pressure

• u4: Blade Pitch Position

To model the relationship between the main bearing temperature and the input variables,

described by Equation (7.1), sparse Bayesian learning for regression [74, 75] was used.

A review of the background and theory of sparse Bayesian learning for regression is

presented in Section 3.5. In previous similar studies [119, 120], ANNs have been widely

employed for modelling the fault-free behaviour of turbine components. In this study,

sparse Bayesian learning for regression was considered for a number of reasons.

Preliminary modelling studies demonstrated that it is not possible to develop a single

model which could be used to describe fault-free behaviour of every turbine in a wind

farm. Due to manufacturing variations, maintenance history, historical load conditions,

and variations on the current condition of different turbine components, the need to

model the fault-free behaviour of individual turbines was identified. Thus, for each
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turbine within a wind farm, an individual model would be required to describe the

fault-free behaviour of the main bearing, using historical SCADA data for each turbine.

Thus, in training and validating models for each turbine, where wind farms often contain

in excess of 100 wind turbines, training time is a major consideration. Sparse Bayesian

learning, and in particular the fast marginal likelihood maximisation approach developed

by Tipping et. al [76], provide extremely fast training times for model development.

In addition, sparse Bayesian learning models have excellent generalisation capabilities on

unseen data, owing to their sparse representation. Furthermore, the outputs generated

by sparse Bayesian learning models are probabilistic, providing variances estimates on

the generated predictions. This capability is potentially of major benefit from a fault de-

tection and diagnosis perspective, in that confidence estimates provide a method to infer

how confident the model is in the generated predictions. Although this capability was

not actually exploited in this study, future work will likely investigate how probabilistic

outputs might be exploited to improve condition monitoring capabilties.
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7.4.3 Data Detrending for Ambient Temperature

In modelling wind turbine behaviour, a major consideration is the effect of ambient

temperature. Turbine sensor variables, and particularly temperature sensor variables,

are a function of both the current operating conditions and the ambient temperature.

This presents some issues when trying to model fault-free turbine behaviour. For a

model to be sufficiently descriptive of turbine behaviour, across all seasons and weather

conditions, significant volumes of historical data would be required to capture the turbine

responses under varying conditions. Alternatively, some approach to detrending the

data, to remove the ambient temperature relationship, must be considered. In this study,

an approach to detrending turbine temperature variables, suggested by Wiggelinkhuizen

et. al [122, 123], was employed.

To detrend the turbine temperature values, and remove the ambient temperature con-

tribution, each relevant turbine signal was linearly corrected for ambient temperature,

using data collected when the turbine was operating under a small rotational speed.

Figure 7.4 shows a scatter plot of ambient temperature and main bearing temperature,

over an 11-month period from January to November. The samples shown were recorded

when the turbine was operating under a small rotational speed, between 0.1 and 1 RPM.

Figure 7.4 illustrates the linear relationship between main bearing temperature and am-

bient temperature under low rotational speed. Note, due to data sensitivity concerns,

the values of all turbine sensor variables have been mapped to an arbitrary interval,

though meteorological variables have been left on their original scale.

Using the observed relationship, the main bearing temperature was then linearly cor-

rected for ambient temperature. Figure 7.5 illustrates the main bearing temperature

signal from a randomly selected, fault-free, turbine. Figure 7.5 (a) illustrates the original

main bearing temperature signal and Figure 7.5 (b) shows the main bearing temperature

detrended, with the contribution from the ambient temperature removed. In this way,

the effects of ambient temperature can be removed and the process of modelling the

main bearing temperature can proceed without concern for the ambient temperature

contribution. All other turbine variables employed, whose response is influenced by the

ambient temperature, were also normalised in the same fashion as described above.
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Figure 7.4: Relationship between main bearing temperature and ambient tempera-
ture, under low-load conditions

7.4.4 Model Training and Validation

The dataset available for this study comprised 11 months of historical data. Thus, at

a 10-minute sampling interval, approximately 48,000 samples were available for each

turbine. To validate the proposed modelling approach, using the structure of the model

described in Equation (7.1), three fault-free turbines were randomly selected from the

available data set. For each fault-free turbine, approximately 12,000 samples, represent-

ing approximately 3 months of data, were selected for model training. A feature of spare

Bayesian learning for regression is that no data is required for validation, only train-

ing and test data is required. Thus, the remaining samples for each turbine were then

used for model testing. In developing the model describing fault-free behaviour for each

turbine, the data selected for training was taken from a different three month period,

to validate that the data normalisation approach, described in Section 7.4.3, accurately

accounts for the effects of ambient temperature variations.

Once each of the models, describing normal fault-free main bearing temperature be-

haviour, were trained, they were each tested on the remaining previously unseen samples

for each turbine. Figure 7.6 shows the performance of the first fault-free turbine model

over a 20-day period of previously unseen data. Figure 7.6 (a) shows the model estimate

and the actual main bearing temperature, and Figure 7.6 (b) shows the residual term,

which is the difference between the estimated and actual main bearing temperature.
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Figure 7.5: Main bearing temperature: original signal ((a) upper plot)and normalised
for ambient temperature signal ((b) lower plot)

The model error term is sufficiently small that it is difficult to distinguish the model

estimate from the actual main bearing temperature in Figure 7.6 (a).

To confirm that the error signal is zero-mean and Gaussian distributed, the distribution

of the error signal for the second turbine used for model validation, for the complete 8-

months of test data, is plotted as a histogram in Figure 7.7. As can be seen in Figure 7.7,

the error-term is zero-mean and Gaussian distributed.
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Figure 7.6: Main bearing temperature estimation (a) and generated residual signal
(b) indicating error magnitude at each sample time (fault-free turbine)

Figure 7.7: Distribution of residual signal between estimated and actual main bearing
temperature (fault-free turbine)
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7.5 Main Bearing Fault Detection

In Section 7.4.4, the ability to accurately estimate the behaviour of the main bearing

temperature, under fault-free operation, was demonstrated. In the presence of a main

bearing fault, in the form of corrosion, pitting, or fretting, it might be expected that the

additional friction may generate excessive heat within the main bearing, beyond what

might normally be expected within a fault-free bearing. The next stage is to investigate

if the main bearing temperature model, designed in the previous section, is capable of

identifying, and tracking, the development of a fault in the main bearing.

In the available data set, two turbines suffered issues with the main bearing. In the first

case, which will be referred to as Turbine A, an issue with the main bearing was iden-

tified during a routine visual inspection and, some time later, the turbine was removed

from service and the main bearing replaced. In the second case, referred to as Turbine

B, the main bearing temperature exceeded the acceptable operating limits and the tur-

bine control system automatically shut the turbine down during service. This turbine

remained out of service for a number of weeks while the main bearing was replaced.

Figure 7.8 (a) illustrates the main bearing temperature in the final 225 days of operation

of Turbine A, which was removed from service following a visual inspection of the main

bearing. Figure 7.8 (b) shows the residual term generated between the estimated and

actual main bearing temperature. Visual analysis appears to show some changes in the

characteristics of the residual signal after approximately 150 days. Before Turbine A

was removed from service, the mean of the residual signal is clearly above 0. Using

the residual signal in Figure 7.8 (b), in its raw form, the ability to make informed

maintenance decisions, regarding when to perform maintenance, is clearly difficult. Guo

et al. [121] suggest using a moving average (MA) filter to detect statistically significant

changes in the mean and variance of the residual signal. Figure 7.9 (b) illustrates a

moving-average filter applied to the residual signal from Figure 7.8 (b). A two-day

window, comprising 288 samples, was used to generate the signal shown.

As Figure 7.9 (b) clearly illustrates, the statistical characteristics of the residual signal

show a significant, and relatively sustained, change after approximately 175 days. Over

the following 50 days, prior to removal from service, the peak magnitude of the filtered

residual signal continues to increase. Another noticeable feature is the large fluctuations

on the value of the filtered residual signal over this period, with no clear monotonic

increase in the value of the filtered residual signal. However, the results in Figure 7.9

clearly illustrate the ability of the modelling approach in detecting the presence and
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Figure 7.8: Main bearing temperature and residual signal (Turbine A)

increasing magnitude of an incipient fault condition within the main bearing, potentially

negating the requirement for regular visual inspections to detect such conditions.

Figure 7.10 (a) illustrates the main bearing temperature in the final 200 days of op-

eration of Turbine B, which failed in-service due to an excessively high main bearing

temperature value. Figure 7.10 (b) shows the residual term generated between the esti-

mated and actual main bearing temperature. As clearly illustrated in Figure 7.10 (b),

a major increase in the value of the residual term occurred some 5 days prior to failure.

To detect significant changes in the statistical characteristics of the residual signal for

Turbine B, a moving average filter was applied. Figure 7.11 (b) shows the evolution of

the filtered residual signal using 2-day and 5-day moving averages. The filtered residual

signals clearly demonstrate the capability to identify the presence of a fault condition

which, if presented to maintenance personnel, would result in the turbine being removed

from service and avoid damage potentially propagating to other turbine components.

An identifiable shortcoming of applying a simple MA filter to the residual signal is
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Figure 7.9: Main bearing temperature residual (a) and filtered residual signal (b)
(Turbine A)

that no consideration is given to how the different operating modes of the turbine may

influence the magnitude of the residual signal. Furthermore, the filtered residual signals

exhibit large fluctuations, making it difficult to determine, confidently, the presence of

a fault condition. To address the fluctuations in the filtered residual signal, one option

is to increase the length of the moving-window, effectively increasing the time constant

of the MA filter. However, this reduces the ability to detect sudden significant changes

in the characteristics of the filtered residual signal. In the following section, analysis

of the residual signal, based upon the operating mode of the turbine, is investigated as

a method for improving the error tracking accuracy, and for early detection of a fault

condition.
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Figure 7.10: Main bearing temperature and residual signal (Turbine B)

7.5.1 Fault Tracking by Turbine Operating Mode

Section 7.5 demonstrated how, by modelling the fault-free behaviour of the main bearing

temperature, it is possible to detect the presence of incipient fault conditions and to track

the increasing magnitude of the identified fault. However, using a simple moving-average

filter to track the evolution of the residual signal takes no account of how the magnitude

of the error signal may relate to specific operating modes, or operating regions, of the

turbine. If the residual error magnitude is related to operating condition, then the evo-

lution of moving-average signal will also depend upon the varying operating conditions,

instead of solely being a function of the current level of component degradation.

In this section, a brief investigation into operating modes of the main bearing is un-

dertaken. The objective is to identify if improved error tracking can be achieved by

tracking the error signal while the turbine is operating within a specific region. Wind

turbines do not have specific discrete operating modes, such as the high-fire and low-fire

227



Wind Turbine Condition Monitoring

Figure 7.11: Main bearing temperature residual and filtered residual signal (Turbine
B)

operating modes of a thermal processing unit in Chapter 5. Instead, the operating mode

of a wind turbine can be loosely defined by the response to different wind conditions.

In an attempt to identify turbine operating modes, a number of available signals were

investigated. The obvious signal for classifying the current turbine “operating mode” is

the power output. The power output is a function of the generator RPM, which is a

direct function of the main shaft RPM. In addition, the generator and gearbox bearings,

and the gearbox oil temperature, provide a means to identify the current turbine oper-

ating modes. Under high wind speeds, the gearbox and generator bearing temperatures

respond and increase significantly in value, compared to no-wind, low load, operations.

However, using these variables to identify specific turbine operating modes, which could

potentially be used to track the development of the main bearing temperature error

signal within each of the identified modes, is difficult. This is due to the different thermal

conductivity of wind turbine components. The size of the main bearing is many orders
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of magnitude greater than the bearings within either the gearbox or the generator. Due

to the greater mass of the main bearing, the thermal conductivity of the main bearing

is significantly smaller than many of the other available signals, which means the main

bearing temperature is much slower to respond to changes in wind load, as opposed to

the other variables.

In identifying turbine operating modes, which can be used to track the magnitude of

the error signal in the different operating modes, the task is to identify specific, fre-

quently occurring, conditions at which times the magnitude of the error signal can be

evaluated. The objective in trying to identify turbine operating modes is to improve the

ability to track the evolution of main bearing degradation. The primary variable which

directly describes the load (i.e. friction generating force) on the main bearing is the

main shaft RPM. To investigate the relationship between the main shaft RPM and the

main bearing temperature, the joint distribution between the main bearing temperature

and main shaft RPM was investigated. Figure 7.12 illustrates this distribution, over

a 6-month fault-free period, from a randomly selected turbine. The joint distribution

of the main shaft RPM and main bearing temperature, in Figure 7.12, was identified

using a kernel density estimator (KDE) [124], a non-parametric method for estimating

probabiity density functions. A KDE was used as the distribution in Figure 7.12 can

clearly not be approximated by any parametric distribution function.

Figure 7.12: Joint distribution of main shaft RPM and the main bearing temperature
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Within Figure 7.12, there are clearly three distinct “operating regions” identifiable in

the data, labelled Low-Load, Medium-Load, and High-Load. The identified operating

regions are primarily a function of the main-shaft RPM and, within each of the three

identified operating regions, the main bearing temperature is distributed across a range

of values. As a result, it is difficult to further sub-classify each of the three operating

regions using the main bearing temperature. Using the operating regions highlighted

within Figure 7.12, turbine operating modes based solely upon the main shaft RPM were

selected. Table 7.1 shows the main shaft RPM range over each of the three identified

operating regions.

Operating Region Low-Load Medium-Load High-Load

RPM Range 0.1 - 2 7 - 9 15 - 16

Table 7.1: Main bearing operating modes: RPM Range

By identifying the turbine operating region at each iteration, using the main shaft RPM,

the evolution of the residual signal in each of the three operating was investigated. By

far the greatest error tracking performance, in terms of a relatively smooth monotonic

increase in the value residual signal within that operating regions, was achieved whilst

the turbine was operating in the Low-Load operations region. A possible reason for

this behaviour may be that, during low RPM operations, the load on the main bearing,

and the friction generated, may be more consistent than during higher load operations.

During low-wind conditions, the wind speed variance is generally lower, and thus the

load on the main bearing is possibly more consistent. During periods of higher-wind

conditions, the wind speed variance is generally higher, resulting in varying loads on the

main shaft RPM and thus greater variance in the value of the residual signal.

For the available main bearing failure example, Turbine B, Figure 7.13 illustrates the

evolution of the filtered residual signal, generated by filtering only those samples recorded

when the main shaft RPM was within the range of Low-Load operations, as defined in

Table 7.1. The times at which the turbine was under Low-Load operations are also

indicated in Figure 7.13.

Another feature, not utilised in previous similar work [121], is the use of an exponentially

weighted moving-average (EWMA) filter to track changes in the statistical character-

istics of the residual signal. The principle of an EWMA filter is similar to that of a

simple moving average filter except that equal weighting is not applied to each sample

within the window. Instead, the weighting for older data points decreases exponentially,
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giving more importance to recent observations, whilst not discarding older observations

entirely. Equation (7.2) describes the operation of an EWMA filter

s(t) = αx(t) + (1− α)s(t− 1) (7.2)

where s(t) is the output of the filter and x(t) is the original signal value at time t. The

filter constant α is the smoothing factor which controls the degree of smoothing applied

to the input signal. The lower the value of α the greater the level of smoothing applied to

the data. The smoothing constant α is analogous to the cut-off frequency in a low-pass

filter.

To demonstrate the improved error tracking performance, Figure 7.13 also illustrates

the same EWMA filter applied across all values of the residual signal, regardless of the

turbine operating mode. As clearly illustrated, tracking of the residual signal during

Low-Load operations significantly improves the error tracking performance, and identi-

fies the presence of an incipient fault condition long before a fault is detected by filtering

the full residual signal.

Figure 7.13: EWMA filtered residual signal by turbine operating mode
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7.6 Fault Prognostics for Wind Turbines

In this section, the potential for the application of the multiple model particle filtering

framework, developed previously in Chapter 6 for TPU prognostics, is investigated for

wind turbine prognostics. Due to having only a single historical failure example, the

work presented in this section is presented simply as a proof of concept and a number of

assumptions are made. However, the general concept and approach, and the generated

results, clearly illustrate the potential for the development of prognostic capabilities for

wind turbines. In addition, the multiple model particle filtering framework is demon-

strated as a potential enabling technology for wind turbine prognostics, with the nec-

essary capabilities for managing and representing the associated uncertainty involved

in predicting the future behaviour of systems subject to both stochastic degradation

processes and uncertain future load profiles.

7.6.1 Incipient Fault Detection

The first task in developing prognostic capabilities for the main bearing is identifying,

with confidence, the presence of an incipient fault condition. In Section 7.5.1, an EWMA

filter is used to measure changes in the statistical characteristics of the residual signal,

during Low-Load operations. Deviations in the value of this signal can be used to

identify the occurrence of a incipient fault condition and track the evolution of the fault

condition over time.

To identify an appropriate threshold of the EWMA filtered residual signal, which con-

firms the presence of an incipient fault condition, the three fault-free turbines, used for

model development and testing in Section 7.4.4, were selected. Using the model devel-

oped for each turbine, each model was tested on the previously unseen test data. The

residual signal generated was then filtered, using the same EWMA filter as used to gen-

erate the filtered residual signals in Figure 7.13, using the values of the residual signal

generated when the turbine was operating in Low-Load operations. The distribution of

the three EWMA filtered residual signals was then analysed. Figure 7.14 illustrates the

distribution of the three filtered residual signals, during Low-Load operations, for each

of the three fault-free cases.

The distribution of the EWMA filtered fault-free residual signal, during Low-Load op-

erations, can be approximated by a Gaussian distribution, as illustrated in Figure 7.14.

The distribution is approximately zero-mean, as might be expected during fault-free
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Figure 7.14: Distribution of EWMA filtered residual signal during Low-Load opera-
tions for 3 fault-free turbines

operation, with a standard deviation (σ) of approximately 0.0097. For a Gaussian dis-

tribution, the 99% confidence limits are defined by approximately ± 3σ. Therefore, to

provide a sufficient separation between the expected limits of “normal” fault-free op-

eration, a value of 0.004 (> 4σ) was chosen to define the threshold at which a fault

condition is confirmed. The location of the fault threshold is illustrated in Figure 7.14.

Having selected an appropriate fault threshold for the EWMA filtered residual signal,

during Low-Load operations, Figure 7.15 illustrates the point at which the fault condition

is first identified in the available historical main bearing failure example, i.e. Turbine B.

Using the selected fault threshold value, a fault is first detected approximately 32 days

prior to failure. Predicting the evolution of the filtered residual signal, which henceforth

is described as the fault indicator, defines the realm of prognostics. To address this

problem, the multiple model particle filtering framework, previously utilised in Chapter

6, is used to demonstrate the potential application of prognostics for a wind turbine

main bearing. The details of this work are presented in the following section.

233



Wind Turbine Condition Monitoring

Figure 7.15: Evolution of EWMA filtered residual signal during Low-Load operations
for faulty main bearing (Turbine B)

7.6.2 Multiple Model Particle Filtering for Wind Turbine Prognostics

Particle filtering has emerged in recent years as the de facto state of the art technique

for real predictive prognostics. Particle filtering employs recursive Bayesian estimation

techniques to infer the current level of component degradation/damage, by combining

model estimates and online measurements to estimate the current level of degradation

as a random variable, the degradation state. The distribution of the current degradation

state is defined by a set of particles, representing state values, and an associated set of

particles weights, representing the discrete probability masses of the individual parti-

cles. A more comprehensive review of recursive Bayesian estimation techniques and the

particle filtering framework for prognostics was presented previously in Section 6.3 and

Section 6.3.3, respectively, which should be referred to as necessary. In the following

paragraph, some of the general, and more important, principles of particle filtering and,

in particular, multiple model particle filtering for prognostics, are briefly reviewed.

The foundation of particle filtering for prognostics is the use of a state-transition model,

which describes the evolution of the degradation process under observation. In the

current application, the degradation process refers to the the increasing magnitude of

the fault within the main bearing, as described by evolution of the EWMA filtered

residual signal shown in Figure 7.15.
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The application of particle filtering for prognostics involves two distinct stages 1.) state

estimation and 2.) long-term predictions. In the first stage, predictions generated by

the state-transition model are combined with fault indicator measurements (i.e. EWMA

filtered residual signal values), to generate a posterior estimate of the current degrada-

tion state. This process is repeatedly recursively as new fault indicator measurements

are generated. Once the current degradation state is estimated, the second stage can

be carried out; long-term predictions. Using the state transition model, the set of parti-

cles defining the current degradation state estimate can be propagated into the future,

until the value of the degradation state exceeds a predefined threshold. The predefined

threshold is defined by the hazard zone specified for the current application. Figure 7.15

illustrates the hazard zone chosen for the current application.

The performance of a particle filtering approach relies upon the ability to accurately

model the degradation process. However, without a physics-of-failure model, devel-

oping an accurate model with sufficient fidelity to describe the likely behaviour of all

future failure examples is difficult. In addition, uncertainty regarding the future load

profile, which in the case of wind turbines depends upon future weather conditions,

introduces a significant level of uncertainty regarding the future behaviour of the degra-

dation process. To address this challenge, a multiple model particle filtering approach is

considered. By generating a large set of candidate models, designed to approximate the

possible behaviour of future failure examples, the predictions of each of the models can

be combined and, as the fault evolves, the plausibility that each model is descriptive of

the observed behaviour can be computed. The mathematics involved in updating the

candidate model weights and generating RUL estimates which are a weighted combina-

tion of RUL estimates generated by each model, were presented previously in Section

6.5.1, and should be referred to as necessary. In Section 7.6.2.1, the process of develop-

ing a set of candidate models to describe the potential future behaviour of main bearing

faults is presented. A demonstration of the multiple model approach applied to the main

bearing failure example available is then presented in Section 7.6.2.2.

7.6.2.1 Modelling Turbine Main Bearing Degradation

In applying the particle filtering framework for main bearing prognostics, the first task

is to identify a suitable model to describe the evolution of the main bearing degradation

process, as described by the fault indicator signal. With only a single failure example

available, some significant assumptions regarding the degradation behaviour of future

main bearing failures, must be made. To model the evolution of the main bearing fault

indicator, the model used previously to describe the evolution of the TPU degradation
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process in Section 6.3.2 was adapted for this task. The form of the model used to

describe the evolution of the main bearing fault indicator is given by

xk = xk−1 + α1exp

[
−α2/tk
t2k

]
+ α3 exp [α4 tk] + ωk (7.3)

where xk represents the degradation state at time tk, the αi values represent model

parameters which can be tuned to fit the model to describe specific behaviour, and ωk

is a zero-mean Gaussian distribution representing the process noise term. The structure

of the model described by Equation (7.3) provides great flexibility in tuning the model

to describe observed behaviour.

With only a single historical failure example available, generating a set of candidate

models, which are designed to describe the potential behaviour of future examples,

is difficult. To address this task, the model parameters in Equation (7.3) were first

tuned to fit the available historical example. Using the identified value of each αi

parameter, a distribution of values for each αi parameter was generated, using the

identified αi parameter value as the mean of the distribution. By setting a range of

values for each αi parameter and sampling randomly from each distribution, a large set

of candidate models was generated to describe the behaviour of future failure examples.

By appropriate tuning of the distribution from which each αi value is sampled, a set

of candidate models which were deemed sufficient to describe future failure examples,

given the lack of current understanding, were generated. Figure 7.16 illustrates the set

of 100 candidate models generated to describe the potential future behaviour of main

bearing failures, with the available historical failure example overlayed.

7.6.2.2 Application Example

Once the set of candidate models have been generated, the multiple model particle

filtering framework was applied for main bearing prognostics. Initially, when a fault is

first detected, the model weight associated with each candidate model is the same. As

the fault continues to evolve, the plausibility that each candidate model is descriptive

of the observed behaviour of the fault indicator is recursively estimated. The weight

of each candidate model is then updated to reflect how well each model describes the

observed behaviour. At each iteration, long-term predictions, describing the evolution

of the fault indicator are generated, with the RUL PDF generated by each candidate

model multiplied by its respective weight.
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Figure 7.16: Candidate models for use in multiple model particle filtering frame-
work which describe the potential evolution of future main bearing failure examples, as

derived from the single available historical failure example (Turbine B)

Figure 7.17 illustrates the evolution of the RUL PDF for the single historical main

bearing failure example, using the multiple model particle filtering framework for prog-

nostics. As illustrated in Figure 7.17, as the fault continues to evolve the RUL PDF

becomes more accurate and precise, as the behaviour of the degradation process evolves.

By providing maintenance personnel with access to such information, informed mainte-

nance decisions can be made and, by combining RUL predictions with weather forecasts,

potential windows for performing corrective maintenance can be identified, thus min-

imising the risk of inclement weather conditions postponing maintenance activities and

significantly increasing the associated costs. Furthermore, the overall turbine downtime

can also be minimised, reducing the period for which an individual turbine is generating

no revenue.

237



Wind Turbine Condition Monitoring

Figure 7.17: Evolution of RUL PDF using multiple model particle filtering framework
for main bearing prognostics (Turbine B)

7.7 Conclusions

In this chapter, the development of a condition monitoring solution for the main bearing

of a large utility scale wind turbine was developed. A major feature of the developed

solution is that data already collected by onboard SCADA systems was used, which

is of major interest to wind-farm operators as no additional sensors and monitoring

equipment needs to be installed.

A sparse Bayesian learning scheme was utilised to model the fault-free behaviour of the

main bearing temperature signal. A major benefit of this modelling scheme is the fast

model training algorithm, which is extremely useful as it is necessary to develop a single

model for each turbine in a wind farm. Using the developed models, it is possible for

wind farm operators to identify wind turbines in which a potential fault within the main
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bearing is developing. Furthermore, by tracking the magnitude of the residual signal

generated, it is possible to track and quantify the magnitude of the residual signal over

time.

In addition, prognostic capabilities for the main bearing were also demonstrated as a

proof of concept. The multiple model particle filtering framework for prognostics was

used to demonstrate its inherent capabilities to manage and represent the uncertainty

associated with predicting the future behaviour of degrading equipment subject to un-

certain future load profiles.
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Chapter 8

Conclusions and Future

Directions

8.1 Conclusions

This thesis has investigated the development of algorithms for condition monitoring and

prognostics of critical equipment within the domains of semiconductor manufacturing

and wind turbine power generation. As discussed in Chapter 2, the development of such

technologies is of major interest to manufacturers and operators of critical equipment,

for the range of maintenance and operational benefits such technologies might provide.

These include, reduced maintenance costs, reduced instances of equipment failure, a re-

duction in ongoing scheduled maintenance activities and costs, and improved equipment

uptime and availability.

Key to enabling such benefits to be realised are robust algorithms capable of operat-

ing within real-world environments. In this thesis, all of the algorithms presented were

developed exclusively using data collected from systems operating in real-world environ-

ments. Thus, the developed approaches have demonstrated applicability to the relevant

domains for which they are developed and provide future practitioners with insight and

guidance in the development of future condition monitoring and prognostic technologies.

In Chapter 4, the development of a condition monitoring solution for dry vacuum pumps

was presented. The key conclusions of this chapter is the demonstrated benefits of greater

information sharing between pumps suppliers and semiconductor manufacturers. As

discussed in Chapter 4, such information sharing is not typical, as semiconductor manu-

facturers do not make available any information that might be considered proprietary or
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commercially sensitive. This chapter demonstrates how upstream process measurements,

in the form of the foreline pressure signal, allows for the degradation of pump condition

to be modelled and, subsequently, permits maintenance personnel to identify, track and

predict pump RUL, using only the available pump signals. This then enables pump

maintenance personnel to maximise the serviceable life of pumps and reduce instances

of in-service pump failures.

In Chapters 5 and 6, the development of a comprehensive condition monitoring and

prognostic solution for thermal abatement devices is presented. A number of general

issues and conclusions can be identified. In developing condition monitoring and, in

particular, prognostic capabilities, the key consideration is how such systems will en-

able maintenance personnel to make informed maintenance decisions regarding when to

perform maintenance. The key output which enables maintenance personnel to make

such decisions is an accurate RUL PDF. This information allows maintenance personnel

to make risk-based assessments regarding when to perform necessary corrective mainte-

nance. The multiple model particle filtering algorithm presented in Chapter 6, delivers

this capability directly to maintenance personnel, allowing for a range of maintenance

benefits to be realised.

In developing the multiple model particle filtering solution, a number of key challenges,

which are generic across many application domains, were addressed. In particular, un-

certainty about future equipment operating loads and utilisation rates adds a greater

level of uncertainty to an already difficult task - predicting the evolution of a stochastic

degradation process. To address these challenges, a multiple model particle filtering

approach was developed, which exploits and expands upon the existing particle filtering

framework for prognostics. In particular, the challenges presented in addressing model

uncertainty and future load uncertainty are addressed by the multiple model approach,

thus accurately representing the uncertainty in RUL predictions to maintenance person-

nel.

Finally, a condition monitoring solution for the main bearing on utility scale wind tur-

bines was presented in Chapter 7. The key feature of this chapter is that the approach

developed exploits data collected by SCADA systems, which are installed as standard

on most modern wind turbines. The benefit of using such data in developing condition

monitoring solutions is that no additional hardware, in terms of sensors, data collection,

storage, and processing capabilities are required, thus enabling wind farm operators to

better exploit already installed data collection and monitoring systems.
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This thesis has focused on the development of condition monitoring and prognostic

algorithms for dry vacuum pumps, thermal abatement devices, and wind turbines. While

the developed algorithms are specific to the individual problems addressed, a number

of more general issues can be concluded. The first issue, which is common across all

of the investigated application domains, is the importance of investigating equipment

response to degradation under different operating modes. The response in equipment

sensor data usually varies in response to the operating load. For example, in the case of

dry vacuum pumps, the operating load is a function of the gas load from the upstream

processing chamber. In developing condition monitoring and prognostic solutions, one

of the primary challenges is identifying, or inferring, an appropriate signal of interest,

or fault indicator, for quantifying the current level of equipment degradation and for

use in predicting equipment RUL. To track the evolution of an identified fault indicator

over time requires that the operating conditions at which times the fault indicator is

evaluated are consistent. In this way, the only issue which can be responsible for changes

in the value of the fault indicator is equipment degradation, thus enabling the evolution

of the degradation process to be tracked.

The importance of identifying equipment operating modes, to enable the evolution of a

fault indicator to be tracked, is demonstrated in each application presented in this the-

sis. In chapter 4, the response of the booster temperature signal to changes in upstream

gas loads required that a suitable approach to tracking this signal was developed. In

Chapter 5, by tracking the changes in the distribution of the CT signal, during low-fire

operating mode, it is possible to infer the level of deposit buildup within the combustion

chamber and, more importantly, identify an appropriate fault indicator which can then

be predicted to estimate the RUL of a TPU. Section 5.5 also illustrates how, by inferring

dry vacuum pump operating modes using the booster power signal, in its possible to

track the evolution of deposit buildup within the pump exhaust, in each identified op-

erating mode independently, greatly improving signal tracking capabilities. Finally, in

Chapter 7, it is illustrated how tracking the evolution of the residual error signal during

low-rpm operations, the generated fault indicator signal identifies the fault at an earlier

stage, and generates a suitable signal for prognostics. Thus, it is possible to conclude

the importance of investigating the evolution of equipment degradation under different

operating conditions, to improve overall degradation tracking performance. Equipment

operating modes can be discrete and recorded in sensor data (e.g. TPU low-fire mode),

or must be inferred from system data (e.g. pump mode inference from booster power sig-

nal). Alternatively, operating modes can be continuous (e.g. turbine response to varying

wind conditions). Regardless, the importance of investigating and identifying suitable

operating conditions at which times to track fault evolution are clearly important.
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The development of prognostic technologies is a difficult task, and goes some way to

explaining why such technology has not yet seen widespread application. The primary

challenges facing practitioners is the inherent uncertainty in predicting the evolution of a

stochastic process. In developing prognostic solutions, the applicability of the different

algorithms across different application domains must be considered. As described by

Vachtsevanos [3], and illustrated visually by Figure 2.6, the cost of increased prognostic

capabilities generally comes at the expense of reduced applicability. This is often due to

the requirement that high-fidelity models of degrading processes are required to develop

advanced capabilities.

The primary contribution of the thesis is the development and demonstration of a mul-

tiple model particle filtering algorithm for prognostics. The developed algorithm has a

number of desirable properties, which enable it to be adapted and applied across dif-

ferent application domains. This is demonstrated in the thesis, whereby the approach

developed in Chapter 6 is then applied for prognostics of the main bearing on a large

utility scale wind turbine in Chapter 7. By using the available historical failure ex-

amples, and generating a set of candidate models designed to approximate the future

behaviour of historical failure examples, it is possible to exploit the potential of particle

filtering for prognostics in many other application domains, with the ability to address

the uncertainty challenges presented within each potential application domain.

8.2 Future Work

The potential for taking the work developed in this thesis forward is clearly demon-

strated by the successful commercialisation and licensing of the developed technologies.

The industrial partner to whom the technologies were licensed have also expressed their

desire to take this work forward and are actively involved in investigating avenues for

future research, in partnership with academic institutions. In particular, with the prolif-

eration of ethernet-based network communications, the capabilities of the data collection

systems used for vacuum pumps and abatement systems will enable the work presented

in this thesis to be taken forward and improved. The improved signal resolution and

sampling rates achievable using ethernet communications will be a key enabler.

Key areas for future focus will include the application of particle filtering for other

applications within the semiconductor manufacturing space. The prediction of pump

RUL for fluorine induced degradation and exhaust blockages are two immediate areas

in which the multiple model particle filtering algorithm may be focused. In addition,
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the potential for the incorporation of a priori information into the generation of the set

of candidate models is an area for focus. As greater knowledge and understanding of a

process becomes available, it may be possible to incorporate this information into the set

of candidate models, so that the initial RUL PDF might not be uniformly distributed,

and instead be more densely distributed about a specific region, with the ability to adapt

in response to the evolution of the fault indicator signal.

From a wind turbine perspective, the presented work has demonstrated the potential for

the development of prognostic capabilities for wind turbines. As the number of historical

failure examples grows, the demonstrated capabilities can continue to be improved. As

the size of wind turbines continue to expand, and with wind farms increasingly being

located offshore, the potential benefits of prognostic capabilities will also continue to

grow.

In addition, the developed approach to modelling the fault-free behaviour of the main

bearing can also be replicated for other turbine components, such as the gearbox and

generator, enabling wind farm operators to better exploit already available information.

Furthermore, the spare Bayesian learning scheme for regression has clear potential in the

wind turbine domain, as it has been identified that it is necessary to model the fault-free

behaviour of each individual turbine. The fast marginal likelihood maximisation scheme

developed by Tipping [76] enables the fast training of such models, which is of particular

use across a wind farm with potentially hundreds of turbines.
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