
ISSC 2012, NUI Maynooth, June 28-29

An Architecture for the Java VST Wrapper that
supports the Implementation of Digital Sound

Synthesis Algorithms in an Educational Environment

Joseph Timoney*, Robert Voigt*, Stephen Brown* and Victor
Lazzarini **

*Department of Computer Science

National University of Ireland Maynooth

email: jtimoney@cs.nuim.ie;

robert.a.voigt@nuim.ie;

sbrown@cs.nuim.ie

**Department. of Music

National University of Ireland Maynooth

email: victor.lazzarini@nuim.ie

Abstract — A framework to support the development in an educational environment of

real-time, digital sound synthesis algorithms is proposed. Sound synthesis algorithms are an
important subset of Digital Signal Processing (DSP) and are an excellent way of teaching the
application issues of many DSP concepts. Steinberg’s Virtual Studio Technology (VST) is a
very flexible format for creating digital sound synthesis and audio effect plugin applications.
The company provides an associated C/C++ SDK, and an open source wrapper
(jVSTwRapper) is available that allows the plugin code to be written in Java. However, the
jVSTwRapper documentation is sparse and the examples bundled are difficult to extrapolate
from, reducing its effectiveness in an educational context. This paper proposes an improved
interface for the JVSTwRapper that comprises a novel generalised voicing structure. This
simpler interface built on top of the existing jVSTwRapper architecture allows synthesis
algorithms to be implemented more easily, thereby shifting the development emphasis from
the VST implementation to the higher-level DSP & Synthesis concepts. This abstraction
means that an educator can focus more thoroughly on the core DSP material while
simultaneously taking advantage of the benefits that the Java language offers for students.

Keywords – Digital Sound Synthesis, Audio Processing, VST SDK, JVSTwRapper, Java

I INTRODUCTION

Digital sound synthesis is an important aspect of
Digital Signal Processing (DSP) for audio. As both a
research and a commercial field, it has expanded
significantly in the last two decades driven by both
the fall in the cost, and rise in the power, of hardware
and software. Common digital sound synthesis
algorithms include band-limited (or low-aliasing)
oscillators, envelope generators, analogue filter
models, and sample/ wavetable players [1].

Generally, a university module in this field
would be taught at advanced undergraduate or at
Master’s level, following a foundation module in
DSP. It is an excellent subject as it offers a great
opportunity for students to apply what they have
learnt in the foundation module to produce
applications that are immediately satisfying: they can
generate live sound, but are also intellectually

challenging because many signal processing
elements must be combined and real-time user
interaction elements incorporated. In particular, the
requirement for interaction demands that the
implementation focus shift from the well-known
Matlab [2], which is an excellent analysis and
prototyping tool for DSP but is not well designed for
real-time, interactive execution, to a more suitable
platform. C/C++ and Java, for example, provide
more application-oriented support along with
libraries for GUI creation and sound processing, and
facilitate more direct interfacing with the operating
system and peripheral hardware. Moreover, a
particularly good choice for building Digital Sound
synthesis applications is the popular VST (Virtual
Studio Technology) standard of Steinberg [3]. A
Software Development Kit (SDK) for C/C++ is
available from the company, and plugins (i.e.
synthesis applications) designed with this can be
used in many digital music production environments,

both commercial and open source. This makes VST a
very rewarding environment. Additionally, the VST
framework obviates a need to detail the low-level
mechanisms for dealing with MIDI input or the
delivery of digital audio streams to the output D/A
converter in a sound card. This allows the user to
conceptualize them at a higher level as inputs and
outputs to the VST system itself, and focus on the
DSP elements of the system.

There are two significant issues that arose in
the context of adopting VST for a module in Digital
sound synthesis programming that was taught at
NUIM in 2011:

Firstly, the students had programming skills
in Java but not C/C++. This was easily
addressed by using the open source wrapper,
jVSTwRapper [4], which supports Java-based
VST plugins. The wrapper itself is a native
compiled binary that invokes a Java Virtual
Machine (JVM) and delegates native calls to
the VST plugins implemented in Java. This
provides programming advantages for the
students, as Java does not have the difficulties
associated with C/C++ syntax, provides better
compile-time and run-time checking, and also
provides platform-independence.

Secondly, the accompanying documentation
of both the SDK and the jVSTwRapper is
sparse and examples are free-form. To allow
the students to concentrate on the theory and
implementation of the various digital sound
synthesis algorithms, rather than detailed
interface mechanisms, it was necessary to
provide a more abstract architecture on top of
the VST framework.

The solution to this motivated the work that is
presented in this paper, where a structured rewriting
of the audio processing methods for the VST
wrapper will be presented. This is done in such a
way that is flexible, allowing for the implementation
of any sound synthesis technique, and can be
achieved in a smooth and uncomplicated manner.
Effectively, it means that the sound generation
elements can be written into various separate classes
that can be used as required, giving much more
freedom and much less stress to the synthesis
application designer.

The paper is organised as follows. Section II
gives a brief historic context to music synthesis
software design, outlining the reasons for the
popularity of the VST standard. Section III discusses
audio processing in Java, explaining how the VST
wrapper for Java is organised. Section IV details the
new architectural interpretation created within the
wrapper that leads to efficient VST creation. A
discussion on the relationship of this solution to
abstraction will be provided in Section V. Section VI

provides conclusions and identifies areas for
potential future work. Example code is presented in
Appendix A.

II THE VST STANDARD

The practice of using computers to generate music
has been around for a many years. The development
of the software program “MUSIC” by Max
Matthews in 1957 is acknowledged as being a major
milestone [5]. As the power of the personal computer
(PC) improved over the decades, more powerful
applications appeared. In particular, the 1980s saw
the beginnings of full music production
environments for the PC, known as Digital Audio
Workstations, albeit with technology-related
limitations. With the rapid development in PC
capabilities through the 1990’s, these production
platforms began to include software emulations of
the tools found in hardware-based studios. Such tools
include sounds effect units and synthesizers. Each
vendor produced and promoted their own standard
for implementing and integrating these software
tools, also known as plugins [6].

A plugin takes in a stream of audio data (in
the case of an effect), or responds to MIDI note-on
and note-off information (in the case of a
synthesizer). It then sends audio data back to the
software production environment (the host program).
From the host’s viewpoint, the plugin is simply a
black box that accepts inputs and produces outputs.
However, the implementation of and communication
with the plugin adhere to certain standards
determined by the host vendor. Cubase offered the
Virtual Studio technology (VST) standard, Cakewalk
used DXi derived from Microsoft’s DirectX and
Digidesign used the Real-Time Audio Suite (RTAS)
standard [6]. Overall, the VST standard has become
the most popular approach for two primary reasons:

1. VST plugins could be easily developed for both

windows and Macintosh, a feature that was
impossible with the DXi standard of Cakewalk.

2. Stenberg released a VST Software Development

Kit (SDK) allowing any third-party developer to
make their own effects and synthesizers. This
helped to promote the standard as both
professional and amateur developers appeared.
This was unlike the more restrictive system
employed by Digidesign that required
developers to pay a fee to acquire their SDK,
and to satisfy a number of conditions such as
demonstrating a capability for object-oriented
programming.

A VST plugin requires a host application to

support it, originally intended to be the Cubase
production environment. However, there are other
VST-specific hosts that can be used to run the plugin

itself without the other elements of the production
package. An example of this is “VSTHost” [7]. This
facilitates efficient development as it is easier in
terms of reloading a plugin during development.

The VST SDK release by Cubase is written in
C/C++ [3]. It contains a complete set of methods that
manage the communications between the hardware,
the host, and the processing algorithms of the VST.
A couple of simple audio effects examples are
included with the SDK. The supporting
documentation is limited, but sufficient for a
reasonably experienced developer to begin to
implement their own plugins in a short time frame.
An open source wrapper that allows VST audio
plugins to be written in Java was released in 2006
[4]. This allows the developer to write platform-
independent plugins. The wrapper delegates calls to
and from the host system to a Java interface so that
the developer need only write a Java class that
implements the wrapper interface and code the audio
algorithm. The wrapper comes with a few examples
of synthesizers. Limited documentation and sparse
code comments mean that modifying these to build a
different synthesizer is not straightforward, as there
are a number of idiosyncrasies to overcome. These
issues have detracted from its use in teaching. This
motivated the creation of an alternate architecture,
allowing the educator to focus on teaching sound
synthesis algorithms in Java.

The next section briefly explains how the
Cubase SDK C/C++ is structured, before the Java
version is described.

III THE C++ VST SDK

The VST 2.4 SDK is written as an object-

oriented C++ interface used for the development of
VST plugins, implementing both effects and
instruments under a shared design. These C/C++
VST Plugins are compiled as platform-specific
dynamic libraries (DLLs for Windows, Shared
Objects for Linux and Bundles for Mac OS).

The core of the Plugin SDK comprises two
base plugin classes: AudioEffect and AudioEffectX.
The latter is derived from the former as a subclass
implementing new functions and features on top of
the existing VST 1.0 codebase (and deprecating
some previous functionality) [3]. New VST plugins
typically inherit from the abstract base class
AudioEffectX and provide implementations of its
many virtual methods. The majority of methods in
AudioEffectX are implemented in the class definition,
but some methods such as processReplacing() are
declared as pure-virtual methods, necessitating
implementation by the developer for a functioning
plugin to be compiled. The processReplacing()
method is called by the VST Host when the plugin is
expected to perform some processing. The method
arguments consist of two dynamically-sized, multi-
dimensional arrays (in the pointer-to-pointer syntax:

TYPE** var) for inputs and outputs and an integer
specifying the size of the arrays (used when iterating
over the input/output vectors of audio samples). The
input and output arrays are multi-dimensional to
support the use of an arbitrary number of channels on
a per-plugin basis, with a typical implementation
using nested loops to iterate between channels and
individual samples alternately during processing.

One of the specific difficulties with this SDK
is that the practice of implementing short arrays of
samples (or buffers) in audio programming is often a
conceptual stumbling block for new students.
Another is the use of indirection by passing pointers
to arrays of samples in the VST Plugin interface,
adding another layer of complexity to the
programming. These issues further hinder the VST
standard's applicability as a learning tool. The
following section explains the Java implementation
of the VST that is intended to address these
problems.

IV VOICING ARCHITECTURE USING JVSTWRAPPER

In JVSTwRapper, the constructor that describes the
plugin being created is an extension to the wrapper’s
VSTPluginAdapter class. The two key methods are:

• processEvents(), which processes MIDI
events, typically by adding and removing
notes from the list of active notes

• processReplacing(), which sums the sound
data from all the active notes (represented
by objects of class Voice) and returns this to
VST for queuing to the audio output (see
Figure 1).

Figure 1
Call Structure for JVSTwRapper

The plugin parameter variables are defined

and associated with the controls on the GUI.
Parameter values are passed to the sound generation
code using an array: guiParameters.

This is followed by a declaration of the
polyphony (i.e. the number of voices for the VST
synthesiser). It is best to limit this to some sensible
figure that reflects the number of notes typically in a
chord, such as 4, 6 or 8. This means then that as new
notes are played older ones should be removed.

As shown in Figure 2, the number of voices
is defined as NUMVOICES, the array voicelist
contains the current Voice instances currently being
used and voiceIndex is set to 0. This will increment
as new voices are played and wrap around when the
maximum number of voices is reached. Lastly, an
array that flags which voices are currently active is
defined.

public static int NUMVOICES=4;
private Voice[] voicelist ;
private int voiceIndex =0;
private static double[] activeNotes
 =new double[NUMVOICES];

Figure 2
Parameters for the active Voices

A base class is then defined that establishes the
initial values such as the number of inputs and output
in addition to values for the sound parameters.

Many of the methods in the pluginadapter,
such as getProgram() and getParameterName(), deal
with the parameter values input from the GUI (using
either the default slider-based simple GUI that is
available with the VST host program, or a custom
GUI). But the core of the VST is in two methods:
ProcessEvents() and ProcessReplacing().

ProcessEvents() deals with incoming MIDI
events from the host. Most often this is note-on and
note-off information, but it can also be MIDI
controller information that is associated with
particular sound parameters. If a note-on is received,
then a new Voice is assigned to the current note,
while for a note-off the associated active voice is
removed from the ActiveVoice array.

In creating a new Voice the following
method is used as shown in Figure 3. Firstly, the
MIDI note value is converted to a frequency value in
hertz. A new instance of the voice at that pitch and
sampling rate is generated by voicelist[voiceIndex]
for the current voiceIndex. The voice-active flag for
this voice is set to true. The voiceindex, counting the
polyphony is incremented; and if the number of
voices exceeds the limit, then this wraps around.

private void createNewVoice(int currentNote)
{
 double pitch= midi2hz(currentNote);
 activeNotes[voiceIndex]=pitch;
 voicelist [voiceIndex]
 = new Voice(pitch, SR);
 voicelist [voiceIndex].setActive(true);
 voicelist [voiceIndex].setVoicePitch(
 pitch);
 voiceIndex ++;
 if (voiceIndex >= NUMVOICES)
 voiceIndex = 0
}

Figure 3
The createNewVoice() method

The method ProcessReplacing() is the most

important method of all. As in the C/C++ version it
takes in two multi-dimensional arrays, inputs and

outputs, along with the value sampleFrames that is
the audio buffer size of the VST host. This buffer
size determines the delay between pressing a key/
sending a MIDI note-on message from the user and
hearing the sound. This is termed as the latency.
Smaller buffer sizes result in lower latency, but can
give rise to audible crackles in the audio output as
the buffers are being emptied more quickly than they
are filled (underflow) [8]. A larger buffer size
increases latency, which, if being played for real-
time output, can be unacceptable if there is a
significant time gap between playing the note, and
the audio output being produced.

In many example implementations of the
ProcessReplacing() method, both in C++ and in
Java, the sound synthesis code is written directly into
the method. While this works, it is poor
programming practice and reduces its educational
value (by making it hard to separate the interfacing
from the DSP algorithm). In this implementation, the
method has been rewritten to allow flexible
interaction with any sound synthesis algorithm that is
implemented in a separate sound generating class
named Voice, shown in Appendix A.

In this implementation of
ProcessReplacing(), the synthesizer sound parameter
values are gathered into an array. Next, there is a
nested iteration, firstly over each Voice, and then for
each buffer entry. Then, after ensuring that a Voice is
available and active, the buffer is filled with the
synthesized data. This is carried out by the
Voice.getBuffer() method, which adds the
synthesised waveform data for that Voice to the
output buffer (see Figure 4).

public void processReplacing(
 float[][] inputs, f loat[][] outputs,
 int sampleFrames) {
 float[] out1 = outputs[0];
 float[] out2 = outputs[1];
 setguiParameters();
 int start=0;
 for (int index=0; index<NUMVOICES;
 index++)
 for (int i = start, j=out1. length ;
 i < j; i++)
 if ((voicelist [index]!= null)&&
 (voicelist [index].isActive()))
 voicelist [index].getBuffer(
 outputs,i, guiParameters);
}

Figure 4

The open-architecture version of ProcessReplacing

The final class declaration in the main VST
program gives a unique number to each sound
parameter, Param_ID, and declares the variable
names and types of all the parameters. Values for
these variables are extracted from the GUI using a
series of getter and setter methods for each one.

The class Voice, shown in Appendix A, is
where the actual sound generation takes place. The
convenience of Java is obvious here as independent

instances of this class (subclasses) can be created for
each voice of polyphony. Inside the Voice class,
variables associated with each parameter are
declared and assigned values from guiParameter[].

New instances of sound elements, such as
oscillators, filters, and envelope generators, are made
here as well as methods to flag the current status of
the note. This is used by the envelope methods to
determine where the current envelope stage should
be. Once a note is played then the envelope normally
goes through attack, decay and sustain, remaining in
sustain until the note is off, then the envelope goes
into the release mode until it is finished. The flag for
the envelope stage works in conjunction with a
variable sampleIndex, initialised to 0 when the class
in instantiated, and acting as a counter as the voice
plays, incrementing in tandem with each buffer
element.

The getBuffer() method uses this sample
counter, and the sequence of the sound generation
elements produces an audio value for each sample.
The final audio value is added to the output.
Changing the sound generation technique means
changing the Voice class and then including
whichever new classes are required in the package.
Thus, the details of the algorithms for the sound
generating elements can be hidden inside each class.
Additionally, these classes can be easily re-used with
a new plugin.

V DISCUSSION

The jVSTwRapper and the Java classes

discussed in this paper work together as abstraction
layers that take care of the more complex aspects of
VST plugin implementation so that a student can
instead focus on the algorithmic aspects of audio
programming, creative synthesis, and DSP systems.

Abstraction layers are used throughout
various fields of computer science as a means of
hiding the details and complexities of data or
programs. The aim of the abstraction approach is to
reduce the number of concepts down to only those
directly relevant to the current perspective or
objective.

Typical abstraction layers rely heavily on the
black-box approach of implementing functions or
objects which can take input, perform processing and
provide output without the user's full understanding
of what is actually involved in the processing. As
mentioned in Part II, the basic concept of a plugin
already involves this concept, but multiple layers of
abstraction can be combined to achieve a particular
level of user-accessibility.

One of the main abstraction layers involved in
this paper is the jVSTwRapper itself, hiding the
implementation details of writing a functional VST
Plugin in C++, and allowing the development of
plugins through Java; a language often more familiar
to undergraduate students and with simplified

memory management. In addition to the
approachability of Java for undergraduate students,
its cross-platform functionality reduces the potential
for issues arising from attempts at producing GUIs
for plugins that rely on either platform-specific
libraries or cross-platform libraries which students
may not yet have encountered in sufficient detail [9].

VI CONCLUSION

The novel open-architecture synthesizer

classes discussed in this paper provide a new major
abstraction layer for VST plugin implementation by
further removing the implementation details of the
VST plugin, as illustrated in Figure 5.

This facilitates its use in an educational
context as the various parts can be taught as separate
Java classes, allowing specific emphasis in the more
difficult areas, such as the DSP required for sound
synthesis. This allows the system to be addressed as
a set of abstracted parts, each be individually
accessible for study. The open-architecture version
of ProcessReplacing() and the Voice class are the
keys to this abstraction. It is intended that the impact
of this abstraction layer on the education of students
will be evaluated in greater detail at a later date.

An example of a complete plugin is available
at [10]. This new architecture will also be the focal
point in a new textbook currently under preparation
on digital sound synthesis in Java. For this purpose, a
complete set of sound generation algorithms and
effects will be implemented, tested, and finally made
publicly available.

Figure 5
Java VST Abstraction Layers

REFERENCES

[1] M. Russ, Sound synthesis and sampling, 3rd
edition, Focal Press, UK, 2008.
[2] The Mathworks, Matlab version 5.3.1, Natick,
MA, USA, 2012. http://www.mathworks.co.uk/
[3] Steinberg, VST SDK, 2012.
http://www.steinberg.net/en/company/developer.html
[4] jVSTwRapper: Java based audio plugins, 2012.

http://jvstwrapper.sourceforge.net/
[5] T. Holmes, “Digital synthesis and computer
music”, in Electronic and experimental music:
technology, music, and culture, Taylor & Francis,
UK, 2008.
[6] D. Huber, The MIDI manual: a practical guide to
MIDI in the project studio, Fical Press, UK, 2008,
[7] H. Seib, VSThost-a VST-compatible host, 2012
http://www.hermannseib.com/english/vsthost.htm
[8] M. Walker, ‘Using VST instruments’, Sound on
Sound, Dec. 2000.
[9] Y. Liang, Introduction to Java programming –
comprehensive version, 7th edition, Prentice Hall,
US, 2008.
[10] Java VST plugin example
http://www.cs.nuim.ie/~jtimoney/ISSC2012paper/IS
SC2012plugin.html
[11] V. Välimäki and A. Huovilainen, “Oscillator
and Filter Algorithms for Virtual Analog Synthesis,”
Computer Music Journal, Vol. 30, no. 2, 2006.
[12] J. Lane, D. Hoory, E. Marinez and P. Wang.,
“Modelling analog synthesis with DSPs,” Computer
Music Journal, Vol. 21, no. 4, 1997.

APPENDIX A
This appendix provides sample code for an
implementation of the Voice.java class. The
implementation here has one oscillator based on the
Differential parabolic wave method and one
amplifier envelope (see [11] and [12] respectively for
algorithms). These are generated by the DPWosc and
ADSR classes respectively.

public class Voice {

 private DPWosc osc; //oscillator
 private ADSR ampEnv; //envelope
 private int sampleIndex; //sample counter
 private boolean active; //envelope flag
 private double pitch; //note pitch
 private double SR; //sampling rate in Hz
 private int status; //note flag
 private double OutputVolume; //parameter
 private double OscWaveform; //wave type
 //given by numerical value
 private String waveform; //wave type
 private double AmpA, AmpD,AmpS, AmpR;
 //parameters for ADSR values

 public Voice(double freqHz,
 float sampleRate) {
 //initial values
 pitch=freqHz;
 SR=sampleRate;

sampleIndex=0;

 osc1=new DPWosc(); //new instance
 ampEnv=new ADSR();//new instance
 osc.init(); //initialize method
 ampEnv.init();//initialize method
 status=0;
 }

 //check if envelope active
 public boolean isActive(){
 return active;
 }

 //set envelope to active

 public void setActive(boolean activeOn){
 active=activeOn;
 }

public double getVoicePitch(){return pitch;}

 public void setVoicePitch(double noteHz){
 pitch=noteHz;
 }

 //set status flag depending on note on or
 //off and envelope stage
 public void setVoiceStatus(boolean
 noteStatus) {
 if (noteStatus)
 status=0;
 else if (!noteStatus &&
 !(ampEnv.isFinished())) {
 ampEnv.setReleaseCounter(AmpR, SR);
 status=1;
 }
 else
 status=2;
 }

 public int getVoiceStatus(){return status;}

 //compute the output audio
 public void getBuffer(
 float[][] outputs,int i,
 double[] guiParameters) {
 float[] out1 = outputs[0];
 float[] out2 = outputs[1];
 double oscil;
 double env;
 double output;
 setGuiParameters(guiParameters); //get
 // parameter values from VST GUI
 getOscWave(); //get waveform type
 //generate oscillator
 oscil=osc.GenOsc(pitch, SR,
 waveform1,sampleIndex);
 //generate envelope
 env=ampEnv.envGenNew(AmpA, AmpD, AmpS,
 AmpR,sampleIndex,getVoiceStatus(),SR);
 //calculate output
 output=OutputVolume*env*oscil
 //stereo output from VST
 out1[i] +=(float) output;
 out2[i] +=(float) output;
 //turn off envelope if complete
 if (ampEnv.isFinished())

 setActive(false);
//increment the sampleIndex

 sampleIndex++;
 }
 //set parameter values from VST GUI to
 //local variables
 public void setGuiParameters(
 double[] guiParameters) {
 OutputVolume=guiParameters[0];
 Osc1Waveform=guiParameters[1];
 AmpA=guiParameters[2];
 AmpD=guiParameters[3];
 AmpS=guiParameters[4];
 AmpR=guiParameters[5];
 }
 //convert string describing oscillator
 //waveform to a numerical value
 private void getOscWave(){
 waveform = “triangle”;
 if (OscWaveform < 0.33)
 waveform1 = "sawtooth";
 else if ((OscWaveform>=0.33) &&
 (OscWaveform<=0.67))
 waveform="square";
 }

}

