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ABSTRACT 

The Modal Distribution (MD) is a time-frequency distribution 

specifically designed to model the quasi-harmonic, multi-

sinusoidal, nature of music signals and belongs to the Cohen 

general class of time-frequency distributions. The problem of 

signal synthesis from bilinear time-frequency representations 

such as the Wigner distribution has been investigated [1,14] us-

ing methods which exploit an outer-product interpretation of 

these distributions. Methods of synthesis from the MD based on 

a sinusoidal-analysis-synthesis procedure using estimates of in-

stantaneous frequency and amplitude values have relied on a 

heuristic search ‘by eye’ for peaks in the time-frequency domain 

[2,7,8]. An approach to detection of sinusoidal components with 

the Wigner Distribution has been investigated in [15] based on a 

comparison of peak magnitudes with the DFT and STFT. In this 

paper we propose an improved frequency smoothing kernel for 

use in MD partial tracking and adapt the McCauley-Quatieri si-

nusoidal analysis procedure to enable a sum of sinusoids synthe-

sis. We demonstrate that the improved kernel enhances automatic 

partial extraction and that the MD estimates of instantaneous 

amplitude and frequency are preserved. Suggestions for future 

extensions to the synthesis procedure are given. 

1. INTRODUCTION 

The MD was introduced by Pielemeier and Wakefield [2] as a 

member of the Cohen general class of time-frequency distribu-

tions [10] for the analysis of music signals. It is primarily a Wig-

ner distribution, or more specifically, a smoothed pseudo-Wigner 

distribution (SPWD), with a kernel that takes account of the 

modes present in quasi-harmonic, multi-sinusoidal, music sig-

nals. Based on the Wigner distribution, it allows for accurate 

measurement of instantaneous amplitude and frequency estimates 

calculated as local averages in the neighborhood of each partial’s 

bandwidth. Furthermore, it does not suffer from the time-

bandwidth trade-off inherent in the spectrogram, one of the key 

advantages attributed to the Wigner distribution. However, one 

drawback of the Wigner distribution in relation to modal analysis 

of quasi-harmonic signals is the existence of both inner and outer 

cross terms [11] amounting to beats between partials (outer cross 

terms) which do not exist in the original signal and artifacts due 

to non-linear frequency modulations (inner cross terms). To 

counteract this drawback, the SPWD and MD utilize both a one-

dimensional frequency-smoothing kernel and one-dimensional 

time-smoothing kernel. The frequency smoothing kernel deter-

mines the suppression of artifacts along the frequency axis while 

the time-smoothing kernel reduces the effect of outer cross terms 

for music signals. This time smoothing reduces the bandwidth of 

the distribution in the time direction and so facilitates subsam-

pling. This greatly reduces the number of output frames and the 

number of DFTs that need to be computed. This is a key ad-

vantage of the MD over the Wigner distribution. Based on this 

innovation, the MD has been utilized as an analysis tool for esti-

mating the detailed amplitude and frequency variations of in-

strumental sounds such as the frequency modulation of attack 

transients or 'rogue' piano partials [7], whereas normal spectro-

gram smoothing would  obfuscate such detailed characteristics. 

While the relative lack of smoothing in the MD is its strength, 

when compared with the spectrogram, the existence of cross 

terms and added artifacts complicate any interpretation of the 

MD surface as representing a sinusoidal plus residual noise mod-

el as in SMS [4]. Therefore, the application of useful partial 

tracking methods proves difficult. In this paper we construct a 

novel frequency smoothing kernel which provides better noise 

suppression in the MD while conserving the accuracy of parame-

ter estimates in the distribution. The paper is organized as fol-

lows. Section 2 gives the theoretical background to the MD. Part 

3 describes the new frequency kernel and details its application 

of partial tracking with the MD. Part 4 describes testing for both 

synthetic and real signals. Part 5 gives test results and conclu-

sions are drawn and suggestions for future work in Part 6.  

2. THEORETICAL BACKGROUND  

Leon Cohen [10] proposed a general class of time-frequency dis-

tributions which are related through linear transformations.  The 

set of all linear transformations of the Wigner distribution has 

come to be known as the Cohen general class.  A two-

dimensional kernel determines the linear transformation in-

volved. The Wigner distribution, Eq. (1), in terms of the signal 

 ts  and the spectrum  S  is given by: 
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Figure 1: Spectrogram frame for a trumpet tone 185Hz sampled 

at 44.1kHz showing partials beyond 13kHx (> 4sf ) in which 

case normal MD sampling would produce aliasing. 
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Here the kernel is 1. The autocorrelation with the lag variable, , 
produces the time-relative-time or instantaneous temporal auto-

correlation function: 
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An important property of the Wigner distribution is that it is real 

with     ,,* tWtW  . 

2.1. The discrete pseudo-Wigner Distribution 

The discrete implementation of the pseudo-Wigner distribution 

with a frequency smoothing kernel  kw , with length 

12  LM ,   Lkw  kfor    0  is then defined as: 
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where the discrete instantaneous autocorrelation function is: 

      knfknfkng  *,   (4) 

and the ‘pseudo’ window  is given by: 

      kwkwkp  *   (5) 

Eq. 3 can be interpreted as the discrete Fourier transform of the 

autocorrelation function  kng ,  with respect to n for each value 

of k. Note that the frequency smoothing kernel in Eq. 5 is 

squared in order to maintain the quadratic nature of the distribu-

tion defined in Eq. 4. As autocorrelation samples are only speci-

fied at each discrete integer point k in Eq. 4, compared with the 

continuous lag variable 2  in Eq 2. the discrete version re-

quires the input signal to be either oversampled by 2, or band-

limited to half the Nyquist rate in order to avoid aliasing [5]. 

This is significant for the analysis of music signals where par-

tials may exist beyond 4sf  unless prior band-limiting is in-

curred. An example is shown in Fig. 1 for an F#3 trumpet tone. 

In these cases the analytic version of the signal may be generated 

which avoids such aliasing.  

2.2. The Analytic Signal 

The analytic signal of  ts is defined as: 
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is the Hilbert Transform of  ts , and the * symbol represents 

convolution.  The corresponding analytic spectrum is given by: 

 )()(2)( fFfUfFa    (8) 

where  fU is the unit step function given by: 
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This allows the complete spectrum to be used to represent the 

positive frequencies only, thus doubling the spectral resolution 

for the distribution. Another advantage of using the analytic sig-

nal is the elimination of cross terms between negative and posi-

tive frequencies. These can manifest as extra tracks at non partial 

or partial locations. 

2.3. Cross terms 

Given a music signal model as follows: 
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with each partial indexed by k , specified uniquely by partial 

amplitude 
kA , frequency 

k , and phase 
k , the Wigner distribu-

tion can be expanded to: 
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The auto terms of  ts  are given by the first term in Eq. 11. The 

second double summation indicates the cross terms, arising from 

products between auto terms, which lie between any pair of auto 

terms. The magnitude of the cross terms is the product 
lk AA of 

the amplitudes of auto terms k  and l  and they oscillate at a fre-

quency,  / k
 equal to the difference between the frequen-

cies of the two auto terms.  For strictly harmonic signals, the 
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cross terms form a partial series an octave below the fundamen-

tal, with the consequence that some  cross terms fall at the same 

frequency location as the auto terms. For music signals, this 

property gives rise to amplitude modulated partials and the pos-

sibility of additional artefacts and cross terms at partial frequen-

cies not in the original signal. 

 

Figure 2: MD of attack of a fundamental at 185Hz sinusoid. The 

wideband onset and widening of the auto terms mainlobe at 

points of amplitude discontinuity around 240msecs is clearly 

evident. 

2.4. The Modal Distribution (MD) 

The MD was designed to minimise these cross terms in Eq. (11) 

for music signals. The MD kernel consists of two different filter 

functions.  The time-smoothing window,  phLP
, has the effect 

of smoothing the cross terms in the time direction, and the fre-

quency-smoothing window,  lgLP
, implements cross term sup-

pression in cases of frequency modulation as well as defining the 

frequency resolution of the distribution. The discrete form of the 

MD is defined by 
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where      phlpnRlnR LPsls ,,,   is the time-smoothed tempo-

ral autocorrelation function. Both  phLP
 and  lgLP

 form a sepa-

rable kernel, however, they are interdependent for parameter 

choice [7].  phLP
, is chosen to be a low pass filter with an upper 

cut-off just below the minimum frequency spacing between auto 

terms, 
minf , this being set to slightly less than the fundamental 

frequency for quasi-harmonic signals. This allows for any modu-

lation in the input signal which would narrow the minimum sepa-

ration between auto terms.  Following time smoothing the num-

ber of MD frames can be decimated by at least half the length of 

the impulse response of the cross term filter.  The frequency reso-

lution of 
minf  is, in turn, defined by the length of  lgLP

, chosen 

so as to avoid overlapping auto term main lobes. The main lobe 

width of  lgLP
 determines the estimation limits  

 

Figure 3: Characteristic smoothing and sidelobe suppression to -

42dB for the spectrogram showing the second and third harmon-

ics of a 146Hz clarinet fundamental. 

for these auto terms. However, the width of auto terms character-

istically exhibits variations due to large amplitude changes or 

discontinuities. The effect is the creation of broadband artefacts 

in the distribution. Fig 2. shows the attack of a monocomponent 

synthetic signal illustrating the  signature wideband MD onset 

and widening of the auto term near the peak of attack around 

240msecs where the amplitude is discontinuous. Typically the 

wideband onset lasts for the duration of the impulse response of 

 phLP
 called the ‘end-effect’ region in [7] where the estimates 

have been shown to be extremely biased [8].   Inner interference 

cross terms are also visible between the broadband artefacts 

along the contour of the atuoterm main lobe. 

2.5. MD Synthesis Parameters 

Signal synthesis parameters of amplitude and frequency are cal-

culated as local averages in the MD centered around the local 

instantaneous frequency of the auto terms or partials. The band-

width for these moments is determined by the main lobe width of 

 lgLP
. These local moments are given as follows. Given: 
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where  np  is the instantaneous power estimate given  lgLP
 with  

main lobe width of L2 , the amplitude estimate is given by: 
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and the instantaneous frequency by: 
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Figure 4: Comparison of cross term smoothing effect for three 

autocorrelated window, Hamming, Hanning and Blackman-

Harris. The lower plot for the Hamming window performs best, 

lowering the cross terms below 40dB below neighbouring auto 

terms. 

2.6. MD Kernel Choice 

 In [2], both  phLP
 and  lgLP

 are chosen to be an autocorre-

lated  Hamming window for the purpose of obtaining sidelobe  

attenuation of -42dB comparable with the spectrogram shown in 

Fig. 3. For the generalized cosine family of windows, the main 

lobe width is known to be 8 bins or M8 radians per sample 

[9]. Autocorrelating  lgLP
 maintains this main lobe width. Fig. 4 

illustrates that using an autocorrelated Hamming window for 

 phLP
 reduces the effect of the cross terms below -40dB be-

tween auto terms compared with either the BlackmanHarris or 

Kaiser-Bessel windows, both known for their superior harmonic 

identification properties [13]. 

3. PARTIAL TRACKING WITH THE MD 

Partials can be interpreted as time-varying salient ridges in the 

MD surface from which the synthesis parameters of instantane-

ous amplitude and frequency are estimated. We use the well es-

tablished McCauley-Quatieri procedure [3] for peak identifica-

tion and track formation from the MD surface.  Interpolation of 

amplitude and frequency estimates is replaced by the MD pa-

rameter estimates defined in Eqs. 14 & 15, and calculated around 

the bandwidth of each candidate peak, this bandwidth being de-

termined by the main lobe width of the frequency smoothing ker-

nel  lgLP
. Due to the prominence of noise terms in the MD per-

tinent pruning of all tracks based on the assumption of a quasi-

harmonic series may be required prior to synthesis. 

3.1. An Improved Modal Kernel 

One possible approach to reducing the prominence of such noise 

terms is to improve the smoothing capabilities of  lgLP
. Fig. 5 

Table 1: Window suppression characterises 

Window Type MLW (bins) Highest Sidelobe (dB) 

Hamming 8 -42 

HammingQ 12 -49.2 

HammingX 8 -85.4 

HammingQX 12 -93.3 

shows a comparison of the suppression characteristics for  lgLP
. 

The autocorrelated Hamming window (HammingX) has much 

better sidelobe suppression than the ordinary Hamming window 

while maintaining the same main lobe width measured between 

mainlobe minima and detailed in Table I. On the other hand, the 

squared Hamming window (HammingQ) with a slightly wider 

main lobe has a monotonically decreasing series of sidelobes. By 

autocorrelating this squared window we obtain a kernel which 

significantly lowers the sidelobe attenuation, greater than that of 

the autocorrelated Hamming window and retains the monotoni-

cally decreasing series of sidelobes and mainlobe width. This 

new window (HammingQX) significantly reduces ridges between 

the mainlobes of auto terms in the distribution as shown in Fig. 

6, thus reducing the number of possible candidate noisy peaks for 

partial tracking. From Table I, we note that the highest sidelobe 

level of this new window is lower than that of the autocorrelated 

window although at the expense of a slightly increased main lobe 

width by 4 bins. For brevity, in the remainder of the paper, we 

will refer to the autocorrelated frequency smoothing window as 

winX, and the autocorrelated squared window as winXS and the 

corresponding MDs as MDX and MDSX. 

 

Figure 5: Main lobe width and sidelobe suppression characteris-

tics for normal, squared (HammingQ), autocorrelated (Ham-

mingX), and autocorrelated squared (HammingQX) Hamming 

windows 

4. TESTING 

We test the accuracy of the MD estimates by comparing results 

for a synthetic test signal and for various instrumental tones us-

ing samples from the McGill University Master Samples, sam-

pled at 44.1 kHz. Synthesis of tones is carried out using a sum of 

sinusoids approach based on the MD estimates for instantaneous 

amplitude and frequency. Instantaneous phase is calculated as the 

integral of the instantaneous frequency. The synthetic test signal 

has a fundamental (
cf ) of 146Hz with 42 exact harmonics of 
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Figure 6 & 7: Suppression characterises of Hamming and Hamming QX windows for MDX (upper plot) and MDXS for 3rd harmonic of 

clarinet tone with fundamental at 146Hz. There are a significantly greater number of sidelobe ridges visible between the auto terms for 

MDX. Fig. 7 shows tracks overplayed on MDX - a large number of noise peaks are present and prominent sidelobes evolve as parallel 

tracks to the auto terms. 

 

 

Figures 8&9: Fig. 8 shows tracks overlaid on MDX – there is a clear identification of the auto terms as tracks and the absence of 

parallel sidelobe tracks. Fig. 9 illustrates filtered partial tracks for MDX (upper plot) and MDXS. A prominent parallel sidelobe 

track close to the centre frequency of the second partial is evident in MDX and absent in MDSX.

decreasing amplitude and increasingly delayed attacks. In calcu-

lating the MD we lower 
minf to 120Hz and calculate  phLP

 as 

cs ff75.1 , as this was found to guarantee greater than -40dB 

suppression. This results in a length for  phLP
, 

hL , of about 

30msecs. We set the MD decimation step size to give MD esti-

mates at about every 2 msecs. We then search for tracks at a 

depth of 70dB in the MD surface in order to recover the low am-

plitude attacks of the harmonics. As the number and position of 

the partials are known we filter the tracks returned to extract the 

42 harmonic partials. We then compute the minimum, maximum 

and average frequency and amplitude estimates for each partial. 

The estimates are calculated from beyond the end-effects region 

of each partial to exclude spurious results. We next test a clarinet 

tone, also 146Hz with the same MD settings as for the synthetic 

tone.  Again we set the search depth at 70dB in the MD surface 

in order to recover the low amplitude attacks of the harmonics 

and any very low amplitude partials. With winX the number of 

tracks returned at a depth of 70dB was over 3000 and with 

winXS about 1900 or slightly more than half. Figs 7.and 8 show 

an overlay of the tracks on the MD for harmonics 3-6. We can 

see an increased number of tracks on each side of the main lobes 

for MDX compared with MDXS. In a further pruning stage, Fig. 

9 shows tracks remaining after filtering for harmonics partials up 

to 1000Hz. Clearly visible is a strong extra partial close to the 

center frequency of the second harmonic for MDX. This is audi-

ble in the subsequent synthesis as a modulation artifact. 

5. RESULTS 

Fig. 10 graphs the difference in minimum, maximum, and aver-

age frequency and amplitude estimates for both winX and winXS 

for the synthetic test signal. There is less than a 1 cent difference 

in the frequency estimates for both windows and a fraction of a 

decibel for the steady-state amplitude estimates. For the clarinet, 

the results are graphed in Fig. 11. The difference in frequency 

and amplitude estimates for 25 of the strongest clarinet partials 

are shown. Again the difference in the frequency estimates is less 

than one cent while the difference in amplitude estimates is less 

than 1dB. The outliers at harmonics 18 and 25 can be explained  
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Figure 10: Difference in Frequency (upper plot) and Amplitude 

estimate for MDX and MDXS for a synthetic signal of 42 exact 

harmonics. Frequency differences are within 1 cent tolerance 

while amplitude differences are a fraction of 1dB. 

 
Figure 11: Difference in Frequency (upper plot) and Amplitude 

estimate for MDX and MDXS for a clarinet signal of fundamen-

tal 146Hz and strongest 25 partials. Frequency differences are 

within 1 cent tolerance while amplitude differences are a frac-

tion of 1dB, apart from high frequency low amplitude partials. 

 

by extra power in the estimates for MDX due to excursions of the 

tracks due to sidelobe artefacts. Synthesis of the resulting tracks 

was achieved by a sum of sinusoids method with phases com-

puted as the integral of instantaneous frequency. Cubic phase 

interpolation was implemented between frame boundaries. 

6. CONCLUSIONS 

In this paper we have presented the squared autocorrelated 

Hamming window as a new MD frequency smoothing kernel 

which reduces the prominence of noise artifacts. It has better 

suppression capabilities than the autocorrelated Hamming win-

dow due to a monotonically decreasing series of sidelobes and 

increased sidelobe rolloff. Although this new kernel has a slight-

ly increased mainlobe width, we have demonstrated that the MD 

estimates for amplitude and frequency are preserved. Although 

the MD surface is difficult to adapt for automatic partial tracking, 

the application of the new kernel results in far fewer artifacts. 

Subsequent informal listening tests for synthesis show that the 

synthesized tones are very close to the originals for the new ker-

nel whereas audible artifacts are present for the autocorrelated 

window.  Future work will focus on testing the kernel for a great-

er range of instrumental tones and also on streamlining the auto-

matic sinusoidal analysis/ synthesis to include other and more 

recent partial tracking methods such as use of hidden Markov 

models [11,16] and DESAM [12]. 
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