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ABSTRACT 

An essential component of digital emulations of subtractive synthesizer systems are the algorithms used to generate 

the classic oscillator waveforms of sawtooth, square and triangle waves. Not only should these be perceived to be 

authentic sonically, but they should also exhibit minimal aliasing distortions and be computationally efficient to 

implement. This paper examines a set of novel techniques for the production of the classic oscillator waveforms of 

Analogue subtractive synthesis that are derived from using amplitude or phase distortion of a mono-component 

input waveform. Expressions for the outputs of these distortion methods are given that allow parameter control to 

ensure proper bandlimited behavior. Additionally, their implementation is demonstrably efficient. Lastly, the results 

presented illustrate their equivalence to their original Analogue counterparts 

 

1. INTRODUCTION 

Interest in the development of algorithms to simulate 

Analogue signals in the digital domain has spurred an 

area of research known as Virtual Analogue (VA) 

Modelling (also VA Synthesis in the specific case of 

sound generation) [1,2,3,4,5,6]. The key issues in these 

works are related to approximating the modelled signals 

efficiently and avoiding or minimising aliasing 

distortion.  

 

This paper investigates a number of methods for 

amplitude and phase distortion to generate classic 

waveforms for Analogue subtractive synthesis. These 

methods are very closely related, as they operate on 
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sinusoidal inputs, yielding complex spectra as a result of 

waveshape distortion. They feature some interesting 

characteristics that are useful for this particular 

application: low computational cost, easily described 

dynamically-variable spectra and simple parametric 

control. In addition, they provide means of matching 

their Analogue counterparts as closely as a digital signal 

will allow.  

 

This paper is organised as follows. We will first discuss 

the basic techniques of amplitude distortion and their 

use in the emulation of classic waveforms. This is 

followed by an exploration of phase distortion. In this 

discussion we will examine two different methods: the 

original oscillator phase increment distortion and the 

novel technique of allpass filter coefficient modulation.  

2. AMPLITUDE DISTORTION TECHNIQUES 

Amplitude distortion provides perhaps the simplest 

means of modification of a sinusoidal waveshape. It 

operates by a non-linear amplification of the original 

signal. Mathematically stated, it is basically function 

mapping of some signal (such as a sinusoid with 

frequency ω = 2πf0t and amplitude k): 

))cos(()( ωkfts =                                                   (1) 

When f(.) is non-linear, the output spectra will be 

complex. Another name commonly given to this group 

of techniques is waveshaping [7].  This technique 

allows for very low-cost implementations, as the 

function mapping can be implemented with simple table 

lookup. 

The result of waveshaping depends on two factors: the 

non-linear transfer function shape and the amplitude of 

the input signal. Generally speaking, increasing the gain 

of the input sinusoid will cause the distortion to be more 

pronounced and the output spectra will contain more 

components. In order to de-couple the amplitude of the 

signal and its spectral richness, we normally provide a 

means of normalising the output signal for the full range 

of input amplitudes. This is done using a normalising 

function, which in its turn is dependent on the shape of 

the waveshaping transfer function. Once this is 

accomplished, the amplitude k in equation 1 becomes 

the distortion index that controls spectral richness. 

Traditionally, the method of transfer function selection 

for waveshaping has been by spectral matching based 

on (finite) polynomial transfer functions. However, even 

though this provides a perfectly band-limited and 

matched spectrum for a given index of distortion, it is 

not suitable for the emulation of classic Analogue 

waveforms. The major problem with it is that the use of 

polynomials has a crippling side-effect: very un-natural 

sounding dynamic spectra. That is, for values of the 

distortion index other than the ‘matched’, the spectra 

can deviate wildly from the desired one.  

This is problematic because: (i) we will need to vary the 

spectra to limit the bandwidth of the output signal to 

avoid aliasing; (ii) we want to preserve the spectral 

envelope, so that waves of various fundamentals look 

and sound alike. The solution is to look for alternatives 

to polynomial transfer functions that do not exhibit 

these side-effects. We will not be concerned in finding 

only waveshaping functions that produce perfectly 

band-limited spectra, but ones where the bandwidth can 

be effectively limited by judicious use of the index of 

distortion.  

The cases examined below will all employ functions 

with infinite Taylor’s series polynomial expansions, 

which in theory will provide non-bandlimited spectra. 

However, in practice, we can avoid aliasing by reducing 

the distortion on higher fundamentals. 

2.1. Triangle wave generation 

The simplest example of a classic-waveform 

waveshaper transfer function is represented by the 

inverse trigonometric functions, arcsin(.) and arccos(.). 

The result of employing these functions with full 

distortion (k=1) is the production of a non-bandlimited 

triangle wave.  Triangles have a very steep roll-off in 

their spectral envelope, decaying by N
-2

, where N is the 

harmonic number. Given these conditions, in many 

applications, aliasing is minimised by default. However, 

we can improve on that. By employing progressively 

smaller values of k, inversely proportional to the 

fundamental frequency of the signal, we will be able to 

band-limit the signal very well.  

2.2. Hyperbolic tangent transfer function 

The example of the triangle wave provides an 

interesting method of operation: we can find a function 

that generates the (non-bandlimited) shape we want, 

then we can find ways of band-limiting or minimising 

the aliasing distortion in the signal. If we want, for 

instance, to produce a square wave from a sinusoid 
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input, it is just a matter of hard-clipping the signal. 

However, this will introduce aliasing that is much more 

pronounced and intrusive than in the triangle wave case, 

as now the spectrum decays as N
-1

 and the higher 

components will be more disruptive. 

 

Figure 1. Clipping (continuous line) and tanh (dots) 

waveshaping transfer functions 

If we look at the reasons for this heavy aliasing, we will 

see that it is the transition around 0, at the join of the 

two pieces of the clipping function (Figure 1) that 

causes the problem. What we need here is a function 

that is smooth around 0, a sigmoid. The hyperbolic 

tangent tanh(.) (Figure 1, dots), a favorite in other 

waveshaping applications (e.g. overdrive distortion 

effects) will do very well. 

 

Figure 2. Square wave produced by hyperbolic tangent 

waveshaping 

In addition, we will need to control the index of 

distortion to minimise aliasing, as tanh(.) has again an 

infinite Taylor’s series. This can be measured 

experimentally and a simple expression to determine the 

modulation index k from the fundamental f0 is found in 

010log

12000

ff
k

o

=                                                         (2) 

Intuitively, we can see why this is the case: as the 

amplitude of the input increases, the sharper, the 

transition at 0 is, as more of the ‘flat’ portion of the 

transfer function is used to waveshape the signal. A plot 

of the resulting square wave is shown on Figure 2. 

2.2.1. Sawtooth wave generation 

Sawtooth generation using waveshaping poses a small 

problem. It is impossible to find a transfer function that 

directly generates the desired shape from a sinusoidal 

input. It is simple to demonstrate why: waveshaped 

signals have a half-period symmetry that does not exist 

in the sawtooth shape. If we take for instance, just the 

positive half of a sine wave, after any function mapping, 

the rising side will always be mirrored by the decreasing 

one. It is easy to see that we cannot amplitude shape it 

into a sawtooth because of this (we will however be able 

to approximate it by phase distortion as discussed later 

on). 

 

Figure 3. Sawtooth from square wave 

However, if we incorporate a means of ring-modulating 

a square wave produced by waveshaping with a cosine, 

we can produce the missing even harmonics. By mixing 

this signal with the original square wave a sawtooth can 
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be produced. The following expression demonstrates 

this: 
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This will indeed approximate the sawtooth shape quite 

well (Figure 3). There is a slight deviation in even 

harmonic weights in comparison to the classic sawtooth, 

but this is only perceptible in harmonic 2, where the 

error is 2.5 dB. From harmonic 4 upwards, the 

difference is less than 0.5dB. 

2.3. Exponential waveshaping and Modified 
FM 

Waveshaping can also be used to produce pulse 

waveforms. This is accomplished by using another very 

common function, which also has an infinite Taylor’s 

series, the exponential, exp(.). The result of distorting 

the amplitude of a sinusoid with an exponential transfer 

function is given by a well known expression: 

∑
∞

−∞=

==
n

n nkIkts )cos()())cos(exp()( ωω                  (4) 

where In(k) are known as Modified Bessel functions. 

Signal normalisation here is actually simpler than in 

other cases. The normalising function turns out to be the 

inverse of the exponential itself, exp(-k). Unipolar 

pulses of various bandwidths can be produced with this 

expression (Figure 4). In fact, this is the basis of a more 

general expression for a technique we call Modified 

Frequency Modulation (ModFM) synthesis [8]: 
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This technique, based on a variation of the original FM 

expression [9], has, like that method, a number of 

applications, depending on its parameters c, m and k 

(the carrier and modulator frequencies; and the 

modulation index). In addition, unlike FM, it is also 

useful for the synthesis of classic waveforms. This is 

because one of its characteristics is an ordered, natural, 

dynamic spectral evolution. FM, on the other hand, 

features very synthetic-sounding spectral changes, as a 

consequence of how Bessel functions scale its 

components. The effect is comparable to the problems 

with polynomial waveshaping. 

 

Figure 4.  Exponential waveshaping pulse waveforms of 

various widths,  for k=5 (wider)  through to 20 

(narrower) 

2.3.1. Pulse integration 

ModFM can be used to generate other types of classic 

waveforms. This is accomplished by integrating the 

pulse waveform generated by certain configurations of 

the algorithm [8]. For instance, with c:m = 1, we have a 

unipolar pulse, which, when integrated will produce a 

sawtooth waveform. One advantage of the method is 

again the ability of controlling the bandwidth of the 

signal, therefore minimising aliasing distortion. Setting 

ωm = ωc in equation 5 and integrating it with respect to 

frequency yields an expression for the resulting 

spectrum of a ModFM sawtooth (Figure 5): 
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where In’(k) =0.5[In-1(k)+In+1(k)]. The integration is 

easily implemented by a 1
st
 order IIR filter: 

( )
1

1

1
−−

=
z

zH                                                            (7) 

To limit the values of k so that we have a full-spectrum 

sawtooth without aliasing, we can solve the following 

optimisation problem (sr denotes the sampling rate): 
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Similarly, we can obtain a square wave by producing a 

bipolar pulse, with ωm = 2ωc.This, when integrated in 

the same way as above, will yield a square wave. 

Further integration can be used to generate triangle 

waveshapes. The only extra care we have to take when 

implementing ModFM for classsic waveforms is that 

the generated signals will contain a lot of energy at 0Hz. 

For practical applications, we will need to correct this 

with either some way of extracting the mean of the 

pulse signal or by applying a good DC blocker at the 

output [10]. 

 

Figure 5. ModFM sawtooth wave 

3. PHASE DISTORTION TECHNIQUES 

Another way of generating complex waveforms by 

distorting sinusoids is to apply a non-linear mapping to 

its phase, instead of amplitude. This will have a similar 

effect of modifying the waveshape and as a 

consequence, introducing higher components to the 

signal. In fact, any such operation is a subset of a more 

general technique, Phase Modulation (PM), a synthesis 

technique related to FM. The original methods of Phase 

Distortion (PD) were based on the manipulation of a 

wavetable oscillator phase increment [11]. Recently, a 

new method, based on the modulation of allpass filter 

coefficients, was proposed as an alternative [12].   

3.1. Phase increment distortion 

The technique of PD as implemented in the Casio CZ 

series of synthesizers is an inexpensive means of 

generating digital versions of classic Analogue 

waveforms. The output signal is produced by using a 

non-linear phase increment to a sinusoidal oscillator, as 

in 

))(2cos()( tts pdpd πφ−=                (8) 

where φpd(t) is the distorted phase increment. The non-

linear phase can be broken down in terms of a linear 

increment φ(t) [normalised in the range of 0-1] and a 

modulation function mdpd(t): 

 

)()()( tmdtt pdpd += φφ  (9) 

 

Figure 6.  Phase Distortion: on top, the original 

waveform; in the middle plot, the original phase, the 

modulation function and the non-linear phase function; 

the bottom graph shows the PD output waveform 

The PD function for the generation of a sawtooth-like 

waveshape is shown on Figure 6.  For this case, the non-

linear phase increment is affected by the use of a 

sawtooth wave modulator. The spectral characteristics 

of the output will depend on the exact shape of this 

sawtooth, particularly the balance between the length of 

its rise and decay portions. Here, we effectively have a 

form of complex PM, with a sawtooth modulator and a 

c:m ratio of 1. This will generate a significantly rich 

spectrum, however, the amount of distortion will need 
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to be carefully limited to avoid aliasing. Spectral 

evolutions here are smooth, because of the use of very 

small values for the effective PM index (a useful 

characteristic of using complex modulators). Other 

waveshapes, such as the square wave, can be created 

using different non-linear phase increment functions. 

3.2. Phase shaping 

In complement, if PD is a method of non-linear 

phaseshaping, in analogy to waveshaping, we can 

produce similar-sounding outputs by choosing 

alternative phase ‘transfer functions’. For instance, we 

can approximate the ‘kinked’ phase increment function 

of Figure 6 using the following expression: 

 

))(2cos()( /1 k

pd tts πφ−=                                             (10) 

where φ(t) is the normalised phase increment (moving 

from 0 to 1) and the phaseshaping transfer function is 

f(x) = x
1/k

. The PD index is now k, controlling the 

bandwidth of the signal. All relevant modulation 

functions and the resulting waveform are shown on 

Figure 7, for k =5. In similar fashion, several other 

phaseshaping functions can be proposed to produce a 

variety of output waveforms.  

 

Figure 7.  Phase shaping functions and output waveform 

3.3. Allpass filter coefficient modulation 

The modulation of the coefficient of a single-stage 

allpass filter was shown in [12] to introduce phase 

distortion into a sinusoidal input signal. This property 

can be exploited to create a dynamic phase distortion 

system for waveform generation. The transfer function 

of a time-variant first-order allpass filter is [12] 

( ) ( )
( ) 1

1

1 −

−

−

+−
=
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zH  (11) 

where ( )tm  is the modulation function. The phase 

distortion introduced by this filter at time t and at a 

frequency ω is 

( ) ( ) ( )
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Assuming that the desired phase distortion function is 

known, equation 12 can be rewritten to give an 

expression for the unknown coefficient modulation 

function: 

( ) ( )( )
( ) ( )( ) ( )ωω+ωφ−ω

ω+ωφ−
=

cos,sin2

,

t

t
tm  (13) 

where the simplifying approximation for the tangent has 

been employed [13] 
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To create a sawtooth waveform using this technique the 

phase modulation function of Figure 6 must be shifted 

and scaled appropriately by 

( )
( ) ( )( )
( )

( ) ω−π−−
π−

ω−π−
=ωφ P

P

Ptmd
t

pd
21

21

21
,  (16) 

where ( )1,0∈P , and  is the fraction of the waveform 

period during which the function ( )tmd pd
 is increasing.  

For example, to produce a sawtooth wave a value of 

P=0.25 is suitable. Substituting equation 16 into 

equation 13 gives the required coefficient modulation 

function ( )tm  for the allpass filter. Smoothing of this 

modulation function is desirable to inhibit output 

waveform glitching caused at points of rapid change in 

the coefficient value. A useful smoothing function was 

found to be: 

( ) ( )( )β−+α=′ tmtm tanh  (17) 
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where α = 1.45 and β = 1.5 was determined empirically 

to reduce this phenomenon significantly [14].  

Applying a cosine to the input of this allpass filter 

whose coefficient modulation is given by equation 17 

gives the resulting spectrum and waveform shown in the 

lower panel of Figure 8. The shape of the waveform is 

that of a sawtooth, albeit smoothed, whose frequency 

components are given in the plot of the spectral 

magnitude in the upper panel of Figure 8. The power of 

the highest frequency components of this wave (> 

10,000Hz) is below -60dB. This steeper roll-off of 

spectrum is related to the modulating smoothing given 

in equation 17. Adjustment of the values for α and β can 

be made to alter the bandwidth of the signal spectrum. 
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Figure 8. Modulated allpass filter output sawtooth wave 

To produce a square wave using this technique equation 

16 should be modified to:  

( )
( ) ( )( )

( )
( ) ω−π−−

π−

ω+π−
=ωφ P

P

Ptmds
t

pd
1

1

1
,  (18) 

where the modulation function ( )tmds pd
 is at twice the 

frequency of ( )tmd pd
, i.e. 2ω. Again, smoothing of the 

resulting modulation function can be performed using 

equation 17. A plot of the output square wave spectrum 

and waveform are given in Figure 9. A trace of the 

glitching phenomenon is observable at the corners of the 

square wave; however, no significant alias components 

can be seen at any frequency.  

Having obtained a square wave it is straightforward to 

produce a Triangle wave using the procedure outlined in 

[15].  
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Figure 9. Modulated allpass filter output square wave 

4. CONCLUSION  

This paper has presented a set of novel techniques for 

the production of the classic oscillator waveforms of 

Analogue subtractive synthesis that are derived from 

using amplitude or phase distortion of a mono-

component input waveform. All techniques are 

straightforward to implement and demonstrated 

graphically to produce good results. Future work will 

look at assessing the perceptual accuracy of these 

various techniques in reproducing the sound of their 

respective Analogue counterparts. Additionally, a 

comparative study of their computational complexity 

will be performed. 
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