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Stepping back: What is our ‘anchor’ problem?

e The problem is that 15 million people suffer
a stroke annually. Of these 5 million are left
with permanent disability which has severe
economic and quality of life consequences.

* \We are seeking to engineer technology (and
science when required) which will improve
recovery and function following stroke.

v
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Stepping back: What is the science
underpinning our approach?

The Science of Changes in brain structure as a result of
experience and behaviour

Neuroplasticity

Cellular | o, | Cortical | Behavioural

changes changes changes
Process scale
Feedback Mechanisms

NUI MAYNOOTH
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What we are doing - specifically

e Science

— Discovering if/how, through appropriate feedback we
can improve functional performance

» Especially feedback of brain activity to improve motor function
e Engineering
— Novel instrumentation for cortical brain activity readout
— NIRS/EEG
— Game theoretic modelling of patient/therapist interaction

— Creation of web-technologies to facilitate distributed
biosignal acquisition and processing

o Application

— A neurorehabilitation system to improve functional
outcome following stroke

v
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What | will be talking about today

e Scilence

— Especially feedback of brain activity to improve
motor function

* Engineering

— Novel instrumentation for cortical brain activity
readout — NIRS/EEG

o Application

— A neurorehabilitation system to improve
functional outcome following stroke

v
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Optimise Recovery: We want to affect change
and avoid learned neglect and other suboptimal

Applied
NeU./" op/a.s‘ ficity rewiring’ phenomena.
auring TBIL/stroke
Compensatory
Cellular | o, | Cortical ) ) Functional
changes changes changes
Original T
Behavioural Clinical
Feedback Strategies targets
Exteroceptive | Technology driven EEG
feedback mechanisms
spanning biological deficits
Proprioceptive | due to injury fNIRS
EM&
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Cortical Activity
/ Monitoring

ven
1anisms
ical deficits

EME

Q: So what are some of the practical
problems for this subsystem? =.
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A: Usability versus Utility

v
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Usability

' |
* The sensor system must be easy to use.

— Simple: Unlikely that there is an neurophysiologist
technician available every time patient wants to engage In
therapy esp in domestic setting

— Single: Single person required
— Minimal: Minimise instrumentation complexity (e.g. number

of application steps required — single step is best)
* No gel if possible — dry electrodes better, non contact even better!

— Reliable: Must provide reliable measures of brain activation.

o |f patient tries to engage interface and nothing happens, patient !=
happy.

v
[P

BCI-AR 2011 Workshop 7t-8t July 2011 11 osetion sreann s ons



Utility

e The system must be useful

— Robust measures of brain activation required.

« Unlike ALS patient, subject capable of head movement. The
home is anything but an artefact free environment. Must make
measurement in poorly controlled conditions.

— Precise measures of brain activation required.

« Something more than a binary signal may yield measures that
can be related to outcome, neurovascular condition, cortical
function.

— Accurate measures of brain activation required.
 False positives not a good idea for example

v
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What we would wish our proposed
solution to look like

« Usability: single step application via single
cortical ‘patch’

o Utility: dual NIRS/EEG to extract more
useful signal per unit measurement area =

BCI-AR 2011 Workshop 7t-8" July 2011 13



Why dual modality? — redundancy

* \We wish to measure over very specific
cortical areas.
— We access this area via the scalp

— There i1s only so much scalp to work with for a
specific cortical region.

— NIRS optode positions do not overlap those of
EEG for a given cortical target so maximising
sensing area for a particular activation site

v
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Why dual modality? — complementary

 EEG measures post synaptic potentials
assoclated with neural activation

e TNIRS measures local haemodynamic
changes associated with neural activation

e .". Provides better overall picture of cortical
health and function and perhaps even state of
recovery (hypothesis).

 Spatial resolution of fNIRS can be combined
with temporal resolution of EEG

v
[P
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What else does fNIRS give us that might of use?

e Autonomic response through blood pressure fluctuations,
which may be useful in more completely characterising motor
effort:

— Heart Rate

— Heart Rate Variability
* Respiration rate
» Sympathetic nervous activity — GSR-like measure

— Mayer wave! — changes may be indicative of systemic problems
— Direct respiration rate
— Oxygen saturation (pulse oximeter)

!These are waves in arterial blood pressure brought about by
oscillations in baroreceptor and chemoreceptor reflex control
systems

v
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Q: What is the underlying physiology of the
signal measured with fNIRS?

A: Haemodynamic changes associated with
neural activation

v
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r Meural activation jL

Ce re b ral neurotransmitter release ATP Oxygen consumption

(e.g., glutamate, GABA) consumption Glucose consumption

Metabolism 7

vasoactive chemical
agents, metabolites

(e.g., K+, NO, adengsine)

¢

Cerebral
Blood Flow

* Neural activation -> increase in consumption of glucose and oxygen -> increase
in CBF

e While % increase in glucose consumption and CBF are similar, % increase in
oxygen consumption is much less than CBF leading to net increase in amount
of oxygen in blood in form of HbO

e This net increase in HbO then is source of signal

v
[P

NUI MAYNOOTH
Oliscoil na hEireann Ma Nuad

BCI-AR 2011 Workshop 7"-8" July 2011 18



Haemodynamic Response Function

arterioles arterioles - arterioles -

| capillaries | capillaries
venules venules venules
Basal state Stimulated Stimulated
Resting state (i) state (ii)
[HbOJIHb] Increase Increased
Resting [Hb] flow, CBYV
CBV Increase
[HbO]
Decrease

[HE]

v
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Haemodynamic Response Function

Conc.
change

M (i) i)

(i) Initial increase in Hb followed by
(i7) increase in HbO, decrease in Hb
and (i) return to basal levels

v
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What does the HR tell us about neural activity? - Spatial

e Dense network of capillaries in grey matter
(cortex) have spatial separation of ~25um so
Intrinsically high resolution If can separate
contributions from larger arterial/venous vessels

v
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What does the HR tell us about neural
activity?- Timing

e Timing: CBF impulse response Is delayed
1-2 seconds with 4-6 seconds to peak

CBF
response

MNeural
response

Time (s)

v
[P

NUI MAYNOOTH

BCI-AR 2011 Workshop 7t-8" July 2011 22 o 1 s neireann s Nusg



What does the HR tell us about neural
activity?- Magnitude

o Amplitude: Generally linear for neural
activity greater than a few seconds.
— Some evidence that low Intensity neural

responses do not evoke a measurable CBF
(fMRI)

— Also while neural activity might saturate CBF
can continue to grow

v
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Q: How does fNIRS measure this haemodynamic
response?

A: The haemodynamic response Is associated
with changes in optical absorption and scattering
In the near infrared region (700-900nm)

v
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Near infrared Spectroscopy >

e Itis an optical method for measuring
haemodynamic signals at the cortex.

source

Detector

NIRS detects localised changes in cortical
i 1) activity and associated blood flow due to an
ML i e “Optical Window” (700nm - 900nm)
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below the surface of the scalp.
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Qualitative description

Scalp:
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Qualitative description
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Qualitative description
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Qualitative description

Detector

Active Region
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Absorption Changes - Quantitative

e The primary
chromophores which are

dynamic during activation e
~ 03}
are [HbO] and [HbRY]. SEon
S
 Relative concentrations of o P wavetengihm)
Hb, HbO change during
activation — due to
neurovascular coupling
v
i
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Absorption Changes — Modified Beer-Lambert
Law

1
4, =log() = (@, yy [HB)+ @, 1y [HDOY)B, L +G (1.

Where T is the transmittance which is the ration of incident power to transmitted

A
power, 1.e. —*—.

0,2
A, = (@, ,, A[HB) +a, ,,,, ALHDO])B, L ),

v
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Modified Beer-Lambert Law Example

A4
——o = (a'?t‘iﬂmrr,Hb‘A[H bl + s, 1100- D H b O]) 3)
B?G()nm 'L
AA

SO = (axx()nm,ubA[Hb] + axsnnm,uh()-A[HbO]) )
BSSOHm L

In matrix form these can be expressed as
A/BL=aC (5)

Where

AA Lot O -
A( T60nm ] , 0= [ 760nm, Hb 760nm,HbO and C: (A[H b] A[H bO])

AARROnm (ZSSUHH:JHJ' (‘ISSUnm,Uf}O'
Equation (5) 1s solved to extract C for each time sample as

C=a’A/B.L (6)

v
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Putting this altogether: A signal model for

fNIRS

o Simulate fNIRS signal for signal processing research and
development — key to advance performance outside the lab

Direct
physiological Optical
response
Neural Activation
S Model of Spectrophotometric N

[HbOJ[Hb] i Mode/ I,

response
=O<> \N\/V‘NWA\Z’

[HbO] & [Hb]

v
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Physiological Model for Neurovascular Coupling

capillaries Venule (balloon)

—_—

LA— LN

~~
>, > (1)

=
arteriole \ j \ N /7 )

rcBV increase is as a result

E(t) = 1 —(1—Ey) % of mechanical distension of
. SO EM) (b . 1) venule due to increase in CBF
q(t): 2:_“0 [ o _U(t)}_'_T_v[f?’n(t)_/ba}v(t)
o(t) = L[ fin(t) — v7]
p(t) = L (fin(t) — v ] 55
E= O, extraction rate
g=[HbJ*
v=CBV
p=[Hb0] E"
’
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Simulated balloon model output

fin

Normalised 157
Units

HbO

0.5r

05 1 1 1 1 1 1
Time

Figure: The balloon model of the neurovascular
response relating neural activation to changes in
cerebral blood volume. From top to bottom the
variables plotted are CBF, normalised blood volume,
[HbO] and [Hb].

v
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Spectrophotometric model

 Relate changes in scattering and absorption
to light levels via MBLL

O (t) = Dy (t) + @) (t) + D), (1) + D) () + D))
O (1) = mp( —AAR (1))

B2 (1) = KX F(k(t), R(2))
@ﬁl(t) = K sin(2m fot 4+ 0,,)
O (1) = N(0, (0)?)

v
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Synthetic signal comparisons
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Figure: Visual comparison of synthetic fNIRS model with real optical density signals.
The left hand side is the time domain while the corresponding spectra are on the
right hand side. (a) Actual measurement at 690nm, (b) synthetic output for 690nm,
(c) actual measurement at 830nm and (d) synthetic output at 830 nm.
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Averaged modelled [HbO][HDb]
concentrations

ACTHVITY HbO
ACTHITY HbR
———REST HbO
———REST HbR

delta c (mol/l)

15 | 1 | 1 1 | 1 1 1 ]

time (s)

Figure: Averaged derived changes in [HbO] and [Hb]
responses both at rest and in response to activation
using the synthetic signal mode/

v
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Value of this model

Investigate the nature of artefact.

e For example motion artefact can be induced through
modulation of L (next slide).

« Adaptive filtering methods can be designed and
Investigated for removal of respiratory rate, cardiac
pulsations,etc. (next slide)

e Examine role of superficial channels
o Correlate with real responses

e Can be integrated with EEG model to produce a
comprehensive compound signal — future work

v
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Ch 2 NIRS
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Using Finger-derived PPG to remove cardiac pulse

)} <Student Version> Figure 1

File Edit Vew Insert Tools Desktop Wwindow Help
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Figure 7.2: Adaptive Noise Cancelation applied to 830nm fNIRs signal. Insets illustrate how cardiac

noise has been almost completely removed.
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Current combined electro-optical probes

v
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Wallois Electropode

Wallois, 2004, patented

®— Optical fiber i Optical fiber
A Miror
I X
° —Tll' g
3
. == - — electrode part 1
§ — spring between ring and electrode

clip
Ring fixed on the optical fiber

Preborn electrode

— electrode part 2

gel for electrode contact

skin

skin
Wallois, 2006, patented

o
NUI MAYNOOTH

Oliscoil na hEireann Ma Nuad

45

BCI-AR 2011 Workshop 7t-8t July 2011



Cooper Electrode/Optode

Fibre housing

Optical fibre

Anti-reflection coated window

i
/— Plastic housing
4

FAg!AgCI cup electrode

E- I.
20mm

R. J. Cooper, N. L. Everdell, L. C. Enfield, A. P.
Gibson, A. Worley, and J. C. Hebden, "Design and
evaluation of a probe for simultaneous EEG and

near-infrared imaging of cortical activation,”Phys.
Med. Biol. 54(7), 2093-2102 (2009)
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Maynooth Electrode/Optode

Optical ‘
Source
intensity 1,

S

1\ ode Defec;‘ea’
py

.‘\\ Z'Zelr;]y I

' 4 '/ P

|

X

Active Region =-
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Probe Geometry

30 mm

30 mm

®©0o

15 mm

®000O

©®
@000

|

v
3
3

fNIRS data was recorded using a TechEn CW6 system (TechEn Inc., USA).
Wavelengths used were 690 nm and 830 nm, sampled at 25 Hz. EEG data was
recorded using a BioSemi Active-Two system (BioSemi Inc., The Netherlands).
DC coupled data was recorded at 2048 Hz.

v
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Simple Experiment

e OQOvert finger tapping
 Imagined finger tapping
* Postioned C3/C4 — handedness dependent
o 20 trials per subject
* No extensive training — naive performance

e EEG features — Premovement u-ERD/ postmovement 3-
ERS

o fNIRS features— Elevation in [HbO], fall in [HDb]

o Classifier — LDA - EEG separately, fNIRS separately,
combined space

v
[P

NUI MAYNOOTH

BCI-AR 2011 Workshop 7t-8t July 2011 49  ome 1 nEireann ws Muse



Classification with LDA — Overt finger tapping

15 N; +
+
= 05 + o a 2l R
3 LI S +
S 9 o +° & +
% Y 204 Opo *+ 49 *
5 05 O o 'E @ O o
c .2
1 b £
o) © ) o (o)
18, 05 0 05 1 -2 -1 0 1 2 3
AHbO (Molar) x10° Change in p-range power (uV?)

F/_’gt;re 1: 2D fNIRS 7;ea7‘ure space for Channel/ Figure 2: 2D EEG feature space for
2 of Subject A, Trial 1, Channel 2 of Subject A, Trial 1. Crosses
Crosses indicate feature locations when indicate feature locations when subject is
subject is in a rest period. Circles indicate in a rest period. Circles indicate
feafqre /ocqﬁons when subject is in a finger- feature locations when subject is in a
tapping period. finger-tapping period.

v
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Classification with LDA — Overt finger tapping

Subject A Subject B
Trial 1 Trial 2 Trial 1 Trial 2
Channel fNIRS | EEG | Comb. | fNIRS | EEG | Comb. ftNIRS | EEG | Comb. | fNIRS | EEG | Comb.
I 849 9% | 90% 100% 84% | 95% 790 84% | 95% 79% 84% | 84%
2 79% 79% | 84% 05% 79% | 95% 47 % 79% | 63% 53% 84% | 84%
3 100% T4% | 95% 100% 84% 100% 79% T4% | 79% 84% 84% | 84%
4 05% 84% | 95% 849 849 | 79% T4% T4% | 63% 533% 90% | T9%
5 T4% 74% | 84% 42% 749 | 58% 47 % 68% | 47% 74% 79% | 95%
6 100% 00% 100% 05% 74% | 90% 58% T4% | 68% 79% 84% | T79%
7 58% 84% | 84% 68% 68% | 79% 68% 63% | 68% 58% T4% | 63%
Average 84% 80% | 90% 83% 8% | 85% 65% 14% | 69% 68% 83% | 81%
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Classification with LDA — Imagined Movement

Subject A Subject B
Channel | INIRS EEG Dual | INIRS EEG  Dual
| 59% 51%  64% 64% 46%  62%
2 56% 59%  67% 51% 54%  59%
3 56% 54%  64% 61% 41%  56%
4 69% 67%  72% 64% 59%  67%
5 61% 51%  72% 41% 36%  46%
6 56% 77%  64% 74% 59%  69%
7 56% 59%  62% 15% 43%  49%
Average | 59% 60%  66% 53% 48%  58%
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Future Work

e More subjects - more trials

 Bilateral measurements

o Stroke patients

e Minature wireless apparatus for EEG/fNIRS
e Improved signal models

e Simpler application

25 mm

| e |
12.5 mm

Opt Express. 2008 Jul 7,16(14):10323-30.
Wireless miniaturized in-vivo near infrared imaging.
Muehlemann T, Haensse D, Wolf M.
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summary

 fNIRS/EEG has potential as a BCI interface technology
which may be particularly useful for damaged brain

« fNIRS/EEG probe makes more efficient use of scalp area

e Gliven move to dry electrodes with poorer SNR,
combination with fNIRS may restore performance

« fNIRS/EEG may give good spatial resolution AND good
temporal resolution

e fNIRS still in development — better and cheaper
technology will come
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End
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