
Real-Time Detection of Musical Onsets with
Linear Prediction and Sinusoidal Modelling

John Glover, Victor Lazzarini and Joseph Timoney

The Sound and Digital Music Research Group
National University of Ireland, Maynooth

Ireland

John.C.Glover@nuim.ie
Victor.Lazzarini@nuim.ie

JTimoney@cs.nuim.ie

Abstract

Real-time musical note onset detection plays a vital role in many audio
analysis processes, such as score following, beat detection and various sound
synthesis by analysis methods. This paper provides a review of some of the
most commonly used techniques for real-time onset detection. We suggest
ways to improve these techniques by incorporating linear prediction, as well
as presenting a novel algorithm for real-time onset detection using sinusoidal
modelling. We provide comprehensive results for both the detection accu-
racy and the computational performance of all of the described techniques,
evaluated using Modal, our new open source library for musical onset detec-
tion, which comes with a free database of samples with hand-labelled note
onsets.

1 Introduction
Many real-time musical signal processing applications depend on the temporal
segmentation of the audio signal into discrete note events. Systems such as score
followers [1] may use detected note events to interact directly with a live per-
former. Beat-synchronous analysis systems [2, 3] group detected notes into beats,

1

where a beat is the dominant time unit or metric pulse of the music, then use this
knowledge to improve an underlying analysis process.

In sound synthesis by analysis, the choice of processing algorithm will often
depend on the characteristics of the sound source. Spectral processing tools such
as the Phase Vocoder [4] are a well established means of time-stretching and pitch-
shifting harmonic musical notes, but they have well documented weaknesses in
dealing with noisy or transient signals [5]. For real-time applications of tools such
as the Phase Vocoder, it may not be possible to depend on any prior knowledge
of the signal to select the processing algorithm, so we must be able to identify
transient regions on-the-fly in order to reduce synthesis artifacts. It is within this
context that onset detection will be studied in this paper.

While there have been several recent studies that examine musical note onset
detection [6, 7, 8], there have been few that analyse the real-time performance
of the published techniques. One of the aims of this paper is to provide such an
overview. In Section 2 some of the common onset detection techniques from the
literature are described. In Section 3.1 we suggest a way to improve on these tech-
niques by incorporating linear prediction [9]. In Section 4.1, we present a novel
onset detection method that uses sinusoidal modelling [10]. Section 5.1 introduces
Modal, our new open source library for musical onset detection. This is then used
to evaluate all of the previously described algorithms, with the results given in
Sections 5.2 and 5.3, and then discussed in Section 5.4. This evaluation includes
details of the performance of all of the algorithms, in terms of both accuracy and
computational requirements.

2 Real-Time Onset Detection

2.1 Definitions
This paper distinguishes between the terms audio buffer and audio frame as fol-
lows:

Audio Buffer: A group of consecutive audio samples taken from the input signal.
The algorithms in this paper all use a fixed buffer size of 512 samples.

Audio Frame: A group of consecutive audio buffers. The algorithms described
here all operate on overlapping, fixed-sized frames of audio. These frames
are 4 audio buffers (2048 samples) in duration, consisting of the most recent
audio buffer which is passed directly to the algorithm, combined with the
previous 3 buffers which are saved in memory. The start of each frame is
separated by a fixed number of samples that is equal to the buffer size.

2

In order to say that an onset-detection system runs in real-time, we require two
characteristics:

1. Low Latency: The time between an onset occurring in the input audio stream
and the system correctly registering an onset occurrence must be no more
than 50 ms. This value was chosen in order to allow for the difficulty in
specifying reference onsets, which is described in more detail in Section 2.1.1.
All of the onset detection schemes that are described in this paper have la-
tency of 1024 samples (the size of two audio buffers), except for the peak
amplitude difference method (given in Section 4.3) which has an additional
latency of 512 samples, or 1536 samples of latency in total. This corre-
sponds to latency times of 23.2 ms and 34.8 ms respectively, at a sampling
rate of 44.1 kHz. The reason for the 1024 sample delay on all onset detec-
tion systems is explained in Section 2.2.2, while the cause of the additional
latency for the peak amplitude difference method is given in Section 4.3.

2. Low Processing Time: The time taken by the algorithm to process one frame
of audio must be less than the duration of audio that is held in each buffer.
As the buffer size is fixed at 512 samples, the algorithm must be able to
process a frame in 11.6 ms or less when operating at a sampling rate of 44.1
kHz.

It is also important to draw a distinction between the terms onset, transient and
attack in relation to musical notes. This paper follows the definitions given in [6],
summarised as follows:

Attack: The time interval during which the amplitude envelope increases.

Transient: A short interval during which the signal evolves in a relatively unpre-
dictable way. It often corresponds to the time during which the excitation is
applied then dampened.

Onset: A single instant marking the beginning of a transient.

2.1.1 The Detection Window

The process of verifying that an onset has been correctly detected is not straight-
forward. The ideal situation would be to compare the detected onsets produced by
an onset detection system with a list of reference onsets. An onset could then be
said to be correctly detected if it lies within a chosen time interval around the ref-
erence onset, referred to here as the detection window. In reality, it is difficult to
give exact values for reference onsets, particularly in the case of instruments with

3

a soft attack such as the flute or bowed violin. Finding reference onsets from natu-
ral sounds generally involves human annotation of audio samples. This inevitably
leads to inconsistencies, and it was shown in [11] that the annotation process is
dependent on the listener, the software used to label the onsets and the type of mu-
sic being labelled. In [12] Vos and Rasch make a distinction between the Physical
Onset Time and the Perceptual Onset Time of a musical note, which again can
lead to differences between the values selected as reference onsets, particularly if
there is a mixture of natural and synthetic sounds. To compensate for these lim-
itations of the annotation process, we follow the decision made in a number of
recent studies [6, 7, 8] to use a detection window that is 50 ms in duration.

2.2 The General Form Of Onset Detection Algorithms
As onset locations are typically defined as being the start of a transient, the prob-
lem of finding their position is linked to the problem of detecting transient inter-
vals in the signal. Another way to phrase this is to say that onset detection is the
process of identifying which parts of a signal are relatively unpredictable.

2.2.1 Onset Detection Functions

The majority of the algorithms described in the literature involve an initial data
reduction step, transforming the audio signal into an Onset Detection Function
(ODF), which is a representation of the audio signal at a much lower sampling
rate. The ODF usually consists of one value for every frame of audio, and should
give a good indication as to the measure of the unpredictability of that frame.
Higher values correspond to greater unpredictability. Figure 1 gives an example
of a percussive audio sample together with an ODF calculated using the spectral
difference method (see Section 2.3.2 for more on this technique).

2.2.2 Peak Detection

The next stage in the onset detection process is to identify local maxima, also
called peaks, in the ODF. The location of each peak is recorded as an onset lo-
cation if the peak value is above a certain threshold. While peak picking and
thresholding are described elsewhere in the literature [13], both require special
treatment in order to operate with the limitations of strict real-time operation (de-
fined in Section 2.1). As this paper focuses on the evaluation of different ODFs in
real-time, the peak picking and thresholding processes are identical for each ODF.

When processing a real-time stream of ODF values, the first stage in the peak
detection algorithm is to see if the current value is a local maxima. In order
to make this assessment, the current ODF value must be compared to the two

4

Figure 1: Percussive audio sample with ODF generated using the spectral difference method.

neighbouring values. As we cannot “look ahead” to get the next ODF value, it
is necessary to save both the previous and current ODF values and wait until the
next value has been computed in order to make the comparison. This means that
there must always be some additional latency in the peak picking process, in this
case equal to the buffer size which is fixed at 512 samples. When working with
a sampling rate of 44.1 kHz, this results in a total algorithm latency of two buffer
sizes or approximately 23.2 ms. The process is summarised in Algorithm 1.

5

Input: ODF value
Output: Whether or not previous ODF value represents a peak (Boolean)

IsOnset←− False

if PreviousValue > CurrentValue and PreviousValue > TwoValuesAgo then
if PreviousValue > CalculateThreshold() then

IsOnset←− True
end

end

UpdatePreviousV alues()
return IsOnset

Algorithm 1: Real-time peak picking (one buffer delay)

2.2.3 Threshold Calculation

Thresholds are calculated using a slight variation of the median/mean function
described in [14] and given by (1), where σn is the threshold value at frame n,
O[nm] is the previous m values of the ODF at frame n, λ is a positive median
weighting value and α is a positive mean weighting value.

σn = λ× median(O[nm]) + α× mean(O[nm]) +N (1)

The difference between (1) and the formula in [14] is the addition of the term N ,
which is defined as

N = w × v (2)

where v is the value of the largest peak detected so far and w is a weighting value.
For indefinite real-time use it is advisable to either set w = 0 or to update w at
regular intervals in order to account for changes in dynamic level. Figure 2 shows
the values of the dynamic threshold (green dashes) of the ODF given in Figure 1,
computed using m = 7, λ = 1.0, α = 2.0 and w = 0.05. Every ODF peak that is
above this threshold (highlighted in Figure 2 with red circles) is taken to be a note
onset location.

2.3 Onset Detection Functions
This section reviews several existing approaches to creating ODFs that can be
used in a real-time situation. Each technique operates on frames of N samples,
with the start of each frame being separated by a fixed buffer size of h samples.
The ODFs return one value for every frame, corresponding to the likelihood of

6

Figure 2: ODF peaks detected (circled) and threshold (dashes) during real-time peak picking

that frame containing a note onset. A full analysis of the detection accuracy and
computational efficiency of each algorithm is given in Section 5.

2.3.1 Energy ODF

This approach, described in [5], is the most simple conceptually and is the most
computationally efficient. It is based on the premise that musical note onsets
often have more energy than the steady-state component of the note, as for many
instruments this is when the excitation is applied. Larger changes in the amplitude
envelope of the signal should therefore coincide with onset locations. For each
frame, the energy is given by

E(n) =
N∑

m=0

x(m)2 (3)

where E(n) is the energy of frame n and x(m) is the value of the mth sample in
the frame. The value of the energy ODF (ODFE) for frame n is the absolute value
of the difference in energy values between consecutive frames.

ODFE(n) = |E(n)− E(n− 1)| (4)

7

2.3.2 Spectral Difference ODF

Many recent techniques for creating onset detection functions have tended to-
wards identifying time-varying changes in a frequency domain representation of
an audio signal. These approaches have proven to be successful in a number
of areas, such as in detecting onsets in polyphonic signals [15] and in detecting
“soft” onsets created by instruments such as the bowed violin which do not have
a percussive attack [16]. The spectral difference ODF (ODFSD) is calculated by
examining frame-to-frame changes in the Short-Time Fourier Transform [17] of
an audio signal and so falls into this category.

The Fourier transform of the nth frame, windowed using a Hanning window
w(m) of size N is given by

X(k, n) =
N−1∑
m=0

x(m)w(m)e−
2jπmk
N (5)

where X(k, n) is the kth frequency bin of the nth frame.
The spectral difference [16] is the absolute value of the change in magnitude

between corresponding bins in consecutive frames. As a new musical onset will
often result in a sudden change in the frequency content in an audio signal, large
changes in the average spectral difference of a frame will often correspond with
note onsets. The spectral difference ODF is thus created by summing the spectral
difference across all bins in a frame. This is given by Equation 6.

ODFSD(n) =

N
2∑

k=0

||X(k, n)| − |X(k, n− 1)|| (6)

2.3.3 Complex Domain ODF

Another way to view the construction of an ODF is in terms of predictions and
deviations from predicted values. For every spectral bin in the Fourier transform
of a frame of audio samples, the spectral difference ODF predicts that the next
magnitude value will be the same as the current one. In the steady-state of a
musical note, changes in the magnitude of a given bin between consecutive frames
should be relatively low and so this prediction should be accurate. In transient
regions, these variations should be more pronounced and so the average deviation
from the predicted value should be higher, resulting in peaks in the ODF.

Instead of making predictions using only the bin magnitudes, the complex do-
main ODF [18] attempts to improve the prediction for the next value of a given bin
by using combined magnitude and phase information. The magnitude prediction

8

is the magnitude value from the corresponding bin in the previous frame. In polar
form we can write this predicted value as

R̂(k, n) = |X(k, n− 1)| (7)

The phase prediction is formed by assuming a constant rate of phase change be-
tween frames.

φ̂(k, n) = princarg[2ϕ(k, n− 1)− ϕ(k, n− 2)] (8)

where princarg maps the phase to the [−π, π] range, and ϕ(k, n) is the phase of
the kth bin in the nth frame. If R(k, n) and φ(k, n) are the actual values of the
magnitude and phase of bin k in frame n, the deviation between the prediction
and the actual measurement is the Euclidean distance between the two complex
phasors, which can be written as

Γ(k, n) =

√
R(k, n)2 + R̂(k, n)2 − 2R(k, n)R̂(k, n)cos(φ(k, n)− φ̂(k, n))

(9)
The complex domain ODF (ODFCD) is the sum of these deviations across all bins
in a frame, as given in Equation 10.

ODFCD(n) =

N
2∑

k=0

Γ(k, n) (10)

3 Measuring Signal Predictability
The ODFs that are described in Section 2.3, and the majority of those found else-
where in the literature [6], are trying to distinguish between the steady-state and
transient regions of an audio signal by making predictions based on information
about the most recent frame of audio and one or two preceding frames. In this
section we present methods that use the same basic signal information to the ap-
proaches described in Section 2.3, but instead of making predictions based on just
one or two frames of this data, we use an arbitrary number of previous values
combined with linear prediction (LP) to improve the accuracy of the estimate.
The ODF is then the absolute value of the differences between the actual frame
measurements and the LP predictions. The ODF values are low when the LP pre-
diction is accurate, but larger in regions of the signal that are more unpredictable,
which should correspond with note onset locations.

This is not the first time that linear prediction errors have been used to create
an onset detection function. The authors in [19] describe a somewhat similar
system in which an audio signal is first filtered into 6 non-overlapping sub-bands.

9

The first 5 bands are then decimated by a factor of 20:1 before being passed to
a LP error filter, while just the amplitude envelope is taken from the 6th band
(everything above the note B7 which is 3951 kHz). Their ODF is the sum of the
5 LP error signals and the amplitude envelope from the 6th band.

Our approach differs in a number of ways. In this paper we show that LP
can be used to improve the detection accuracy of the three ODFs described in
Section 2.3 (detection results are given in Section 5). As this approach involves
predicting the time-varying changes in signal features (energy, spectral difference
and complex phasor positions) rather than in the signal itself, the same technique
could be applied to many existing ODFs from the literature, and so it can be
viewed as an additional post-processing step that can potentially improve the de-
tection accuracy of existing ODFs. Our algorithms are suitable for real-time use
and the results were compiled from real-time data. In contrast, the results given in
[19] are based on off-line processing, and include an initial pre-processing step to
normalise the input audio files, so it is not clear how well this method performs in
a real-time situation.

The LP process that is used in this paper is described in Section 3.1. In
Sections 3.2, 3.3 and 3.4 we show this can be used to create new ODFs based
on the energy, spectral difference and complex domain ODFs respectively.

3.1 Linear Prediction
In the linear prediction model, also known as the autoregressive model, the current
input sample x(n) is estimated by a weighted combination of the past values of
the signal. The predicted value, x̂(n), is computed by FIR filtering according to

x̂(n) =

p∑
k=1

akx(n− k) (11)

where p is the order of the LP model and ak are the prediction coefficients.
The challenge is then to calculate the LP coefficients. There are number of

methods given in the literature, among the most widespread are the autocorrelation
method [20], covariance method [9] and the Burg method [21]. All three methods
were evaluated, but the Burg method was selected as it produced the most accurate
and consistent results. Like the autocorrelation method, it is minimum phase, and
like the covariance method it estimates the coefficients on a finite support [21]. It
can also be efficiently implemented in real-time [20].

10

3.1.1 The Burg Algorithm

The LP error is the difference between the predicted value and the actual value.

e(n) = x(n)− x̂(n) (12)

The Burg algorithm minimises average of the forward prediction error fm(n) and
the backward prediction error bm(n). The initial (order 0) forward and backward
errors are given by

f0(n) = x(n) (13)

b0(n) = x(n) (14)

over the interval n = 0, . . . N −1, where N is the block length. For the remaining
m = 1, . . . , p the mth coefficient is calculated from

km =
−2

∑N−1
n=m[fm−1(n)bm−1(n− 1)]∑N−1

n=m[f 2
m−1(n) + b2m−1(n− 1)]

(15)

then the forward and backward prediction errors are recursively calculated from

fm(n) = fm−1(n)− kmbm−1(n− 1) (16)

for n = m+ 1, . . . , N − 1, and

bm(n) = bm−1(n− 1)− kmfm−1(n) (17)

for n = m, . . . , N − 1 respectively. Pseudocode for this process is given in
Algorithm 2, taken from [21].

f ←− x
b←− x
a←− x

for m← 0 to p− 1 do
fp←− f without its first element
bp←− b without its last element
k ←− −2bp · fp/(fp · fp+ fp · fp)
f ←− fp+ k · bp
b←− bp+ k · fp
a←− (a[0], a[1], . . . , a[m], 0) + k(0, a[m], a[m− 1], . . . , a[0])

end
Algorithm 2: The Burg method.

11

3.2 Energy With Linear Prediction
The energy ODF (given in Section 2.3.1) is derived from the absolute value of the
energy difference between two frames. This can be viewed as using the energy
value of the first frame as a prediction of the energy of the second, with the dif-
ference being the prediction error. Here we try to improve this estimate by using
linear prediction. Energy values from the past p frames are taken, resulting in the
sequence

E(n− 1), E(n− 2), . . . , E(n− p)
Using (13) - (17), p coefficients are calculated based on this sequence, then a one
sample prediction is made using (11). So for each frame the energy with linear
prediction ODF (ODFELP) is given by

ODFELP (n) = |E(n)− PE(n)| (18)

where PE(n) is the predicted energy value for frame n.

3.3 Spectral Difference With Linear Prediction
Similar techniques can be applied to the spectral difference and complex domain
ODFs. The spectral difference ODF is formed from the absolute value of the
magnitude differences between corresponding bins in adjacent frames. Similarly
to the process described in Section 3.2, this can be viewed as a prediction that
the magnitude in a given bin will remain constant between adjacent frames, with
the magnitude difference being the prediction error. In the spectral difference
with linear prediction ODF (ODFSDLP), the predicted magnitude value for each
of the k bins in frame n is calculated by taking the magnitude values from the
corresponding bins in the previous p frames, using them to find p LP coefficients
then filtering the result with (11). So, for each k in n, the magnitude prediction
coefficients are formed by using (13) - (17) on the sequence

|X(k, n− 1)|, |X(k, n− 2)|, . . . , |X(k, n− p)|

If PSD(k, n) is the predicted spectral difference for bin k in n, then

ODFSDLP (n) =

N
2∑

k=0

||X(k, n)| − PSD(k, n)| (19)

As is shown in Section 5.3, this is a significant amount of extra computation per
frame compared with theODFSD given by Equation (6). However, it is still capa-
ble of real-time performance, depending on the chosen LP model order. We found
that an order of 5 was enough to significantly improve the detection accuracy
while still comfortably meeting the real-time processing requirements. Detailed
results are given in Section 5.

12

3.4 Complex Domain With Linear Prediction
The complex domain method described in Section 2.3.3 is based on measuring the
Euclidean distance between the predicted and actual complex phasors for a given
bin. There are a number of different ways that linear prediction could be applied
in an attempt to improve this estimate. The bin magnitudes and phases could
be predicted separately, based on their values over the previous p frames, and
then combined to form an estimated phasor value for the current frame. Another
possibility would be to only apply linear prediction to one of either the magnitude
or phase parameters.

However, we found that the biggest improvement came from using linear pre-
diction to estimate the value of the Euclidean distance that separates the complex
phasors for a given bin between consecutive frames. So for each bin k in frame n,
the complex distances between the kth bin in each of the last p frames are used to
calculate the LP coefficients. If R(k, n) is the magnitude of the kth bin in frame
n, and φ(k, n) is the phase of the bin, then the distance between the kth bins in
frames n and n− 1 is

Γ(k, n) =
√
R(k, n)2 +R(k, n− 1)2 − 2R(k, n)R(k, n− 1)cos(φ(k, n)− φ(k, n− 1))

LP coefficients are formed from the values

Γ(k, n− 1),Γ(k, n− 2), . . . ,Γ(k, n− p)

using (13) - (17) and predictions PCD(k, n) are calculated using (11). The com-
plex domain with linear prediction ODF (ODFCDLP) is then given by

ODFCDLP (n) =

N
2∑

k=0

|Γ(k, n)− PCD(k, n)| (20)

4 Real-Time Onset Detection Using Sinusoidal Modelling
In Section 3, we describe a way to improve the detection accuracy of several
ODFs from the literature by using linear prediction to enhance their estimates of
the frame-by-frame evolution of an audio signal. This improvement in detection
accuracy comes at the expense of much great computational cost however (see
Section 5 for detection accuracy and performance results).

In this section we present a novel ODF that has significantly better real-time
performance than the LP-based spectral methods. It uses sinusoidal modelling,
and so it is particularly useful in areas that include some sort of harmonic analysis.
We begin with an overview of sinusoidal modelling in Section 4.1, followed by
a review of previous work that uses sinusoidal modelling for onset detection in
Section 4.2 and then concludes with a description of the new ODF in Section 4.3.

13

4.1 Sinusoidal Modelling
Sinusoidal modelling [10] is based on Fourier’s theorem, which states that any
periodic waveform can be modelled as the sum of sinusoids at various amplitudes
and harmonic frequencies. For stationary pseudo-periodic sounds, these ampli-
tudes and frequencies evolve slowly with time. They can be used as parameters to
control pseudo-sinusoidal oscillators, commonly referred to as partials. The audio
signals can be calculated from the sum of the partials using

s(t) =

Np∑
p=1

Ap(t)cos(θp(t)) (21)

θp(t) = θp(0) + 2π

∫ t

0

fp(u)du (22)

where Np is the number of partials and Ap, fp and θp are the amplitude, frequency
and phase of the pth partial respectively. Typically, the parameters are measured
for every

t = nh/Fs

where n is the sample number, h is the buffer size and Fs is the sampling rate.
To calculate the audio signal, the parameters must then be interpolated between
measurements. Calculating these parameters for each frame is referred to in this
paper as peak detection, while the process of connecting these peaks between
frames is called partial tracking.

4.2 Sinusoidal Modelling And Onset Detection
The sinusoidal modelling process can be extended, creating models of sound
based on the separation of the audio signal into a combination of sinusoids and
noise [22], and further into combinations of sinusoids, noise and transients [23].
Although primarily intended to model transient components from musical sig-
nals, the system described in [23] could also be used to detect note onsets. The
authors show that transient signals in the time domain can be mapped onto sinu-
soidal signals in a frequency domain, in this case by using the Discrete Cosine
Transform (DCT) [24]. Roughly speaking, the DCT of a transient time-domain
signal produces a signal with a frequency that depends only on the time shift of
the transient. This information could then be used to identify when the onset oc-
curred. However, it is not suitable for real-time applications as it requires a DCT
frame size that makes the transients appear as a small entity, with a frame dura-
tion of about one second recommended. This is far too much latency to meet the
real-time requirements that were specified in Section 2.1.

14

Another system that combines sinusoidal modelling and onset detection is pre-
sented in [25]. It creates an ODF that is a combination of two energy measure-
ments. The first is simply the energy in the audio signal over a 512 sample frame.
If the energy of the current frame is larger than that of a given number of previ-
ous frames, then the current frame is a candidate for being an onset location. A
multi-resolution sinusoidal model is then applied to the signal in order to isolate
the harmonic component of the sound. This differs from the sinusoidal modelling
implementation described above in that the audio signal is first split into 5 oc-
tave spaced frequency bands. Currently only the lower 3 are used, the upper 2
(frequencies above about 5 kHz) are discarded. Each band is then analysed us-
ing different window lengths, allowing for more frequency resolution in the lower
band at the expense of worse time resolution. Sinusoidal amplitude, frequency and
phase parameters are estimated separately for each band, and linked together to
form partials. An additional post-processing step is applied to the partials, remov-
ing any that have an average amplitude that is less than an adaptive psychoacoustic
masking threshold, and removing any that are less than 46 ms in duration.

As it stands, it is unclear whether or not the system described in [25] is suit-
able for use as a real-time onset detector. The stipulation that all sinusoidal partials
must be at least 46 ms in duration implies that there must be a minimum latency of
46 ms in the sinusoidal modelling process, putting it very close to our 50 ms limit.
If used purely as an ODF in the onset detection system described in Section 2.3,
the additional 11.6 ms of latency incurred by the peak detection stage would put
the total latency outside this 50 ms window. However, their method uses a ris-
ing edge detector instead of looking for peaks so it may still meet our real-time
requirements, although as it was designed as part of a larger system that is pri-
marily intended to encode audio for compression, no onset detection accuracy or
performance results are given by the authors.

In contrast, the ODF that is presented in Section 4.3 was designed specifically
as a real-time onset detector and so has a latency of just two buffer sizes (23.2
ms in our implementation). As we show in Section 5, it compares favourably to
leading approaches from the literature in terms of computational efficiency and it
is also more accurate than the reviewed methods.

4.3 Peak Amplitude Difference ODF
This ODF is based on the same underlying premise as sinusoidal models, namely
that during the steady-state of a musical note, the harmonic signal component can
be well modelled as a sum of sinusoids. These sinusoids should evolve slowly in
time, and should therefore be well represented by the partials detected by the sinu-
soidal modelling process. It follows then that during the steady-state, the absolute
values of the frame-to-frame differences in the sinusoidal peak amplitudes and

15

frequencies should be quite low. In comparison, transient regions at note onset
locations should show considerably more frame-by-frame variation in both peak
frequency and amplitude values. This is due to two main factors:

1. Many musical notes have an increase in signal energy during their attack
regions that corresponds to a physical excitation being applied, which in-
creases the amplitude of the detected sinusoidal components.

2. As transients are by definition less predictable and less harmonic, the basic
premise of the sinusoidal model breaks down in these regions. This can
result in peaks existing in these regions that are really noise and not part
of any underlying harmonic component. Often they will remain unmatched
and so do not form long-duration partials. Alternatively, if they are incor-
rectly matched it can result in relatively large amplitude and/or frequency
deviations in the resulting partial. In either case, the difference between the
parameters of the noisy peak and the parameters of any peaks before and
after it will often differ significantly.

Both of these factors should lead to larger frame-to-frame sinusoidal peak ampli-
tude differences in transient regions than in steady-state regions. We can therefore
create an ODF by analysing the differences in peak amplitude values over consec-
utive frames.

The sinusoidal modelling algorithm that we used is very close to the one de-
scribed in [26], with a couple of changes to the peak detection process. Firstly,
the number of peaks per frame can be limited to Mp, reducing the computation
required for the partial tracking stage [27, 28]. If the number of detected peaks
Np > Mp, theMp largest amplitude peaks will be selected. Also, in order to allow
for consistent evaluation with the other frequency domain ODFs described in this
paper, the frame size is kept constant during analysis (2048 samples). The partial
tracking process is identical to the one given in [26]. As this partial tracking al-
gorithm has a delay of one buffer size, this ODF has an additional latency of 512
samples, bringing the total detection latency (including the peak picking phase) to
1536 samples or 34.8 ms when sampled at 44.1 kHz.

For a given frame n, let Pk(n) be the peak amplitude of the kth partial. The
peak amplitude difference ODF (ODFPAD) is given by

ODFPAD(n) =

Mp∑
k=0

|Pk(n)− Pk(n− 1)| (23)

In the steady-state, frame-to-frame peak amplitude differences for matched peaks
should be relatively low, and as the matching process here is significantly eas-
ier than in transient regions, less matching errors are expected. At note onsets,

16

matched peaks should have larger amplitude deviations due to more energy in the
signal, and there should also be more unmatched or incorrectly matched noisy
peaks, increasing the ODF value. As specified in [26], unmatched peaks for a
frame are taken to be the start of a partial, and so the amplitude difference is equal
to the amplitude of the peak, Pk(n).

5 Evaluation Of Real-Time Onset Detection Functions
This section provides evaluations of all of the ODFs described in this paper.
Section 5.1 describes a new library of onset detection software, which includes
a database of hand-annotated musical note onsets, that was created as part of this
work. This database was used to assess the performance of the different algo-
rithms. Section 5.2 evaluates the detection accuracy of each ODF, with their com-
putational complexities described in Section 5.3. Section 5.4 concludes with a
discussion of the evaluation results.

5.1 Musical Onset Database And Library (Modal)
In order to evaluate the different ODFs described in Sections 2.3, 3 and 4.3, it was
necessary to access a set of audio files with reference onset locations. To the best
of our knowledge, the Sound Onset Labellizer [11] was the only freely available
reference collection, but unfortunately it was not available at the time of publica-
tion. Their reference set also made use of files from the RWC database [29], which
although publicly available is not free and does not allow free redistribution.

These issues lead to the creation of Modal, which contains a free collection of
samples, all with creative commons licensing allowing for free reuse and redis-
tribution, and including hand-annotated onsets for each file. Modal is also a new
open source (GPL), cross-platform library for musical onset detection written in
C++ and Python, and contains implementations of all of the ODFs discussed in
this paper in both programming languages. Additionally, from Python there is on-
set detection and plotting functionality, as well as code for generating our analysis
data and results. It also includes an application that allows for the labelling of
onset locations in audio files, which can then be added to the database. Modal is
available now at http://github.com/johnglover/modal.

5.2 Detection Results
The detection accuracy of the ODFs was measured by comparing the onsets de-
tected using each method with the reference samples in the Modal database. To
be marked as “correctly detected”, the onset must be located within 50 ms of a

17

http://github.com/johnglover/modal

reference onset. Merged or double onsets were not penalised. The database cur-
rently contains 501 onsets from annotated sounds that are mainly monophonic, so
this must be taken under consideration when viewing the results. The annotations
were also all made by one person, and while it has been shown in [11] that this is
not ideal, the chosen detection window of 50 ms should compensate for some of
the inevitable inconsistencies.

The results are summarised by three measurements that are common in the
field of Information Retrieval [15]: the precision (P), the recall (R), and the F-
measure (F), defined here as follows:

P =
C

C + fp
(24)

R =
C

C + fn
(25)

F =
2PR

P +R
(26)

where C is the number of correctly detected onsets, fp is the number of false
positives (detected onsets with no matching reference onset) and fn is the number
of false negatives (reference onsets with no matching detected onset).

Every reference sample in the database was streamed one buffer at a time to
each ODF, with ODF values for each buffer passed immediately to a real-time
peak picking system, as described in Algorithm 1. Dynamic thresholding was
applied according to (1), with λ = 1.0, α = 2.0, andw in (2) set to 0.05. A median
window of 7 previous values was used. These parameters were kept constant for
each ODF. Our novel methods that use linear prediction (described in Sections 3.2,
3.3 and 3.4) each used a model order of 5, while our peak amplitude difference
method described in Section 4.3 was limited to a maximum of 20 peaks per frame.

The precision, recall and F-measure results for each ODF are given by Figure 3,
Figure 4 and Figure 5 respectively. In each figure the blue bars give the results for
the ODFs from the literature (described in Section 2.3), the brown bars give the
results for our linear prediction methods, and the green bar gives the results for
our peak amplitude difference method.

Figure 3 shows that the precision values for all of our methods are higher
than the methods from the literature. The addition of linear prediction noticeably
improves each ODF that it is applied to. The precision values for the peak ampli-
tude difference method is better than the literature methods and the energy with
linear prediction method, but worse than the two spectral-based linear prediction
methods.

The recall results for each ODF are given in Figure 4. Here we can see that
linear prediction has improved the energy method, but made the spectral differ-
ence and complex domain methods slightly worse. The peak amplitude difference

18

method has a greater recall than all of the literature methods and is only second to
the energy with linear prediction ODF.

Figure 5 gives the F-measure for each ODF. All of our proposed methods
are shown to perform better than the methods from the literature. The spectral
difference with linear prediction ODF has the best detection accuracy, while the
energy with linear prediction, complex domain with linear prediction and peak
amplitude difference methods are all closely matched.

Figure 3: Precision values for each ODF

19

Figure 4: Recall values for each ODF

Figure 5: F-measure values for each ODF

20

5.3 Performance Results
In Table 1 we give the worst-case number of floating-point operations per second
(FLOPS) required by each ODF in order to process real-time audio streams, based
on our implementations in the Modal library. This analysis does not include data
from the setup/initialisation periods of any of the algorithms, or data from the
peak detection stage of the onset detection system. As specified in Section 2.1, the
audio frame size is 2048 samples, the buffer size is 512 samples and the sampling
rate is 44.1 kHz. The linear prediction methods all use a model order of 5. The
number of peaks in the ODFPAD is limited to 20.

These totals were calculated by counting the number of floating-point opera-
tions required by each ODF in order to process 1 frame of audio, where we define
a floating-point operation to be an addition, subtraction, multiplication, division
or assignment involving a float-point number. As we have a buffer size of 512
samples measured at 44.1 kHz, we have 86.133 frames of audio per second, so the
number of operations required by each ODF per frame of audio was multiplied by
86.133 to get the FLOPS total for that ODF.

To simplify the calculations, the following assumptions were made when cal-
culating the totals:

• As we are using the real Fast Fourier Transform (FFT) computed using the
FFTW3 library [30], the processing time required for a FFT is 2.5Nlog2(N)
where N is the FFT size, as given in [31].

• The complexity of basic arithmetic functions in the C++ standard library
such as sqrt, cos, sin, and log is O(M), where M is the number of digits
of precision at which the function is to be evaluated.

• All integer operations can be ignored.

• All function call overhead can be ignored.

As Table 1 shows, the energy-based methods (ODFE and ODFELP) require
far less computation than any of the others. The spectral difference ODF is the
third fastest, needing about half the number of operations that are required by the
complex domain method. The worst case requirements for the peak amplitude
difference method are still relatively close to the spectral difference ODF and
noticeably quicker than the complex domain ODF. As expected, the addition of
linear prediction to the spectral difference and complex domain methods makes
them significantly more expensive computationally than any other technique.

To give a more intuitive view of the algorithmic complexity, in Table 2 we also
give the estimated real-time CPU usage for each ODF given as a percentage of the
maximum number of FLOPS that can be achieved by two different processors:

21

FLOPS
ODFE 529,718
ODFSD 7,587,542
ODFCD 14,473,789
ODFELP 734,370
ODFSDLP 217,179,364
ODFCDLP 217,709,168
ODFPAD 9,555,940

Table 1: Number of floating-point operations per second (FLOPS) required by each ODF to pro-
cess real-time audio streams, with a buffer size of 512 samples, a frame size of 2048 samples, a
linear prediction model order of 5, and a maximum of 20 peaks per frame for ODFPAD.

an Intel Core 2 Duo and an Analog Devices ADSP-TS201S (TigerSHARC). The
Core 2 Duo has a clock speed of 2.8 GHz, a 6 MB L2 cache and a bus speed of 1.07
GHz, providing a theoretical best case performance of 22.4 GFLOPS [32]. The
ADSP-TS201S has a clock speed of 600 MHz and a best case performance of 3.6
GFLOPS [33], and scores relatively well on the BDTI DSP Kernel Benchmarks
[34]. Any value less than 100% here shows that the ODF can be calculated in
real-time on this processor.

Core 2 Duo (%) ADSP-TS201S (%)
ODFE 0.002 0.015
ODFSD 0.034 0.211
ODFCD 0.065 0.402
ODFELP 0.003 0.020
ODFSDLP 0.970 6.033
ODFCDLP 0.972 6.047
ODFPAD 0.043 0.265

Table 2: Estimated real-time CPU usage for each ODF, shown as a percentage of the maximum
number of FLOPS that can be achieved on two processors: an Intel Core 2 Duo and an Analog
Devices ADSP-TS201S (TigerSHARC).

5.4 Discussion
The F-measure results (shown in Figure 5) for the methods described in Section 2.3
are lower than those given elsewhere in the literature, but this was expected as
real-time performance is significantly more challenging at the peak picking and
thresholding stages. The nature of the sample set must also be taken into account,

22

as evidently the heavy bias towards monophonic sounds is reflected by the sur-
prisingly strong performance of the energy-based methods. As noted in [8], the
various parameter settings can have a large impact on overall performance. We
tried to select a parameter set that gave a fair reflection on each algorithm, but it
must be noted that every method can probably be improved by some parameter
adjustments, especially if prior knowledge of the sound source is available.

In terms of performance, the linear prediction methods are all significantly
slower than their counterparts. However, even the most computationally expensive
algorithm can run with an estimated real-time CPU usage of just over 6% on the
ADSP-TS201S (TigerSHARC) processor, so they are still more than capable of
real-time performance. The energy with linear prediction ODF in particular is
extremely cheap computationally, and yet has relatively good detection accuracy
for this sample set.

The peak amplitude difference method is also notable as it is computation-
ally cheaper than the complex domain ODF and compares favourably with the
spectral difference ODF, while giving better accuracy than both for our sample
set. For applications such as real-time sound synthesis that may already include
a sinusoidal modelling process, this becomes an extremely quick method of onset
detection. One significant difference between the peak amplitude difference ODF
and the others is that the computation time is not fixed, but depends on the sound
source. Harmonic material will have well defined partials, potentially requiring
more processing time for the partial tracking process than noisy sound sources,
for this sinusoidal modelling implementation at least.

6 Conclusions
In this paper we have described two new approaches to real-time musical onset de-
tection, one using linear prediction and the other using sinusoidal modelling. We
compared these approaches to some of the leading real-time musical onset detec-
tion algorithms from the literature, and found that they can offer either improved
accuracy, computational efficiency, or both. It is recognised that onset detection
results are very context sensitive, so without a more extensive sample set it is hard
to make completely conclusive comparisons to other methods. However, our soft-
ware and our sample database are both released under open source licenses and are
freely redistributable, so hopefully other researchers in the field will contribute.

Choosing a real-time onset detection function remains a complex issue and
depends on the nature of the input sound, the available processing power and the
penalties that will be experienced for producing false negatives and false positives.
However, some recommendations can be made based on the results in this paper.
For our sample set, the spectral difference with linear prediction method produced

23

the most accurate results, so if computational complexity is not an issue then this
would be a good choice. On the other hand, if low complexity is an important
requirement then the energy with linear prediction ODF is an attractive option. It
produced accurate results at a fraction of the computational cost of some of the
established methods.

The peak amplitude difference ODF is also noteworthy and should prove to be
useful in areas such as real-time sound synthesis by analysis. Spectral processing
techniques such as the Phase Vocoder or sinusoidal models work well during the
steady-state regions of musical notes, but have problems in transient areas which
follow note onsets [5, 23]. One solution to this problem is to identify these regions
and process them differently, which requires accurate onset detection in order to
avoid synthesis artifacts. It is in this context that the peak amplitude difference
ODF is particularly useful. It was shown to provide more accurate results than the
well established complex domain method with noticeably lower computation re-
quirements, and as it integrates seamlessly with the sinusoidal modelling process,
it can be added to existing sinusoidal modelling systems at very little cost.

7 Acknowledgements
The authors would like to acknowledge the generous support of An Foras Feasa,
who funded this research.

References
[1] N. Orio, S. Lemouton, and D. Schwarz, “Score following: State of the art

and new developments,” in Proceedings of the 2003 Conference on New
Interfaces for Musical Expression (NIME-03), (Montreal, Canada), 2003.

[2] A. Stark, D. Matthew, and M. Plumbley, “Real-time beat-synchronous anal-
ysis of musical audio,” in Proceedings of the 12th International Conference
on Digital Audio Effects (DAFx-09), (Como, Italy), September 2009.

[3] N. Schnell, D. Schwarz, and R. Muller, “X-micks - interactive content
based real-time audio processing,” in Proceedings of the 9th International
Conference on Digital Audio Effects (DAFx-06), (Montreal, Canada), 2006.

[4] M. Dolson, “The phase vocoder: A tutorial,” Computer Music Journal,
vol. 10, pp. 14–27, Winter 1986.

24

[5] C. Duxbury, M. Davies, and M. Sandler, “Improved time-scaling of musical
audio using phase locking at transients,” in 112th Audio Engineering Society
Convention, (Munich, Germany), May 2002.

[6] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and M. Sandler,
“A Tutorial on Onset Detection in Music Signals,” IEEE Transactions on
Speech and Audio Processing, vol. 13, pp. 1035–1047, Sept. 2005.

[7] D. Stowell and M. Plumbley, “Adaptive whitening for improved real-time
audio onset detection,” in Proceedings of the International Computer Music
Conference (ICMC’07), (Copenhagen, Denmark), pp. 312–319, August
2007.

[8] S. Dixon, “Onset detection revisited,” in Proceedings of the 9th International
Conference on Digital Audio Effects (DAFx-06), (Montreal, Canada),
September 2006.

[9] J. Makhoul, “Linear prediction: A tutorial review,” Proceedings of the IEEE,
vol. 63, no. 4, pp. 561–580, 1975.

[10] X. Amatriain, J. Bonada, A. Loscos, and X. Serra, DAFx - Digital Audio
Effects, ch. Spectral Processing, pp. 373–438. John Wiley and Sons, 2002.

[11] P. Leveau, L. Daudet, and G. Richard, “Methodology and tools for the eval-
uation of automatic onset detection algorithms in music,” in Proceedings of
the 5th International Conference on Music Information Retrieval (ISMIR),
(Barcelona, Spain), October 2004.

[12] J. Vos and R. Rasch, “The perceptual onset of musical tones,” Perception
and Psychophysics, vol. 29, no. 4, pp. 323–335, 1981.

[13] I. Kauppinen, “Methods for detecting impulsive noise in speech and au-
dio signals,” in Proceedings of the 14th International Conference on Digital
Signal Processing (DSP 2002), vol. 2, pp. 967–970, 2002.

[14] P. Brossier, J. P. Bello, and M. Plumbley, “Real-time temporal segmenta-
tion of note objects in music signals,” in Proceedings of the International
Computer Music Conference (ICMC’04), pp. 458–461, 2004.

[15] “Mirex 2009 audio onset detection results.” http://www.music-ir.org/mirex/
wiki/2009:Audio Onset Detection Results (last accessed 05-10-2010).

[16] C. Duxbury, M. Sandler, and M. Davies, “A hybrid approach to musical
note onset detection,” in Proceedings of the 5th International Conference

25

http://www.music-ir.org/mirex/wiki/2009:Audio_Onset_Detection_Results
http://www.music-ir.org/mirex/wiki/2009:Audio_Onset_Detection_Results

on Digital Audio Effects (DAFx-02), (Hamburg, Germany), pp. 33–38,
September 2002.

[17] J. Allen and L. Rabiner, “A unified approach to short-time Fourier analysis
and synthesis,” Proceedings of the IEEE, vol. 65, November 1977.

[18] J. P. Bello, C. Duxbury, M. Davies, and M. Sandler, “On the use of phase
and energy for musical onset detection in the complex domain,” IEEE Signal
Processing Letters, vol. 11, pp. 553–556, June 2004.

[19] W.-C. Lee and C.-C. J. Kuo, “Musical onset detection based on adaptive lin-
ear prediction,” in Proceedings of the 2006 IEEE Conference on Multimedia
and Expo, ICME 2006, (Ontario, Canada), pp. 957–960, July 2006.

[20] F. Keiler, D. Arfib, and U. Zolzer, “Efficient linear prediction for digital
audio effects,” in Proceedings of the COST G-6 Conference on Digital Audio
Effects (DAFX-00), (Verona, Italy), December 200.

[21] M. Lagrange, S. Marchand, M. Raspaud, and J.-B. Rault, “Enhanced par-
tial tracking using linear prediction,” in Proceedings of the 6th International
Conference on Digital Audio Effects (DAFx-03), (London, UK), September
2003.

[22] X. Serra and J. Smith, “Spectral modeling synthesis: A sound analy-
sis/synthesis system based on a deterministic plus stochastic decompostion,”
Computer Music Journal, vol. 14, pp. 12–24, Winter 1990.

[23] T. S. Verma and T. H. Y. Meng, “Extending spectral modeling synthesis with
transient modeling synthesis,” Computer Music Journal, vol. 24, pp. 47–59,
Summer 2000.

[24] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine transfom,” IEEE
Transactions on Computers, vol. C-23, pp. 90–93, January 1974.

[25] S. Levine, Audio Representations for Data Compression and Compressed
Domain Processing. PhD thesis, Stanford University, 1998.

[26] R. McAulay and T. Quatieri, “Speech analysis/synthesis based on a sinu-
soidal representation,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. ASSP-34, August 1986.

[27] V. Lazzarini, J. Timoney, and T. Lysaght, “Alternative analysis-synthesis ap-
proaches for timescale, frequency and other transformations of musical sig-
nals,” in Proceedings of the 8th International Conference on Digital Audio
Effects (DAFx-05), (Madrid, Spain), pp. 18–23, 2005.

26

[28] V. Lazzarini, J. Timoney, and T. Lysaght, “Time-stretching using the instan-
taneous frequency distribution and partial tracking,” in Proceedings of the
International Computer Music Conference (ICMC’05), (Barcelona, Spain),
2005.

[29] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC music database:
Popular, classical, and jazz music databases,” in Proceedings of the 3rd
International Conference on Music Information Retrieval (ISMIR 2002),
pp. 287–288, October 2002.

[30] M. Frigo and S. G. Johnson, “Fftw3 library.” http://www.fftw.org (last ac-
cessed 29-01-2011).

[31] M. Frigo and S. G. Johnson, “The design and implementation of fftw3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[32] Intel Corporation, “Intel microprocessor export compliance metrics.” http://
www.intel.com/support/processors/sb/cs-023143.htm (last accessed 13-04-
2011).

[33] Analog Devices, “ADSP-TS201S data sheet.” http://www.analog.com/static/
imported-files/data sheets/ADSP TS201S.pdf (last accessed 13-04-2011).

[34] Berkeley Design Technology, Inc., “BDTI DSP kernel benchmarks
(BDTIMark200) certified results.” http://www.bdti.com/Resources/
BenchmarkResults/BDTIMark2000 (last accessed 13-04-2011).

27

http://www.fftw.org
http://www.intel.com/support/processors/sb/cs-023143.htm
http://www.intel.com/support/processors/sb/cs-023143.htm
http://www.analog.com/static/imported-files/data_sheets/ADSP_TS201S.pdf
http://www.analog.com/static/imported-files/data_sheets/ADSP_TS201S.pdf
http://www.bdti.com/Resources/BenchmarkResults/BDTIMark2000
http://www.bdti.com/Resources/BenchmarkResults/BDTIMark2000

	Introduction
	Real-Time Onset Detection
	Definitions
	The Detection Window

	The General Form Of Onset Detection Algorithms
	Onset Detection Functions
	Peak Detection
	Threshold Calculation

	Onset Detection Functions
	Energy ODF
	Spectral Difference ODF
	Complex Domain ODF

	Measuring Signal Predictability
	Linear Prediction
	The Burg Algorithm

	Energy With Linear Prediction
	Spectral Difference With Linear Prediction
	Complex Domain With Linear Prediction

	Real-Time Onset Detection Using Sinusoidal Modelling
	Sinusoidal Modelling
	Sinusoidal Modelling And Onset Detection
	Peak Amplitude Difference ODF

	Evaluation Of Real-Time Onset Detection Functions
	Musical Onset Database And Library (Modal)
	Detection Results
	Performance Results
	Discussion

	Conclusions
	Acknowledgements

