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A B S T R AC T

Differential-Algebraic Equations (DAE) provide an appropriate framework to model and
analyse dynamic systems with constraints. This framework facilitates modelling of the
system behaviour through natural physical variables of the system, while preserving the
topological constraints of the system. The main purpose of this dissertation is to investigate
stability properties of two important classes of DAEs. We consider some special cases of
Linear Time Invariant (LTI) DAEs with control inputs and outputs, and also a special class of
Linear switched DAEs. In the first part of the thesis, we consider LTI systems, where we focus
on two properties: passivity and a generalization of passivity and small gain theorems called
mixed property. These properties play an important role in the control design of large-scale
interconnected systems. An important bottleneck for a design based on the aforementioned
properties is their verification. Hence we intend to develop easily verifiable conditions to
check passivity and mixedness of Single Input Single Output (SISO) and Multiple Input
Multiple Output (MIMO) DAEs. For linear switched DAEs, we focus on the Lyapunov stability
and this problem forms the basis for the second part of the thesis. In this part, we try
to find conditions under which there exists a common Lyapunov function for all modes
of the switched system, thus guaranteeing exponential stability of the switched system.
These results are primarily developed for continuous-time systems. However, simulation and
control design of a dynamic system requires a discrete-time representation of the system
that we are interested in. Thus, it is critical to establish whether discrete-time systems,
inherit fundamental properties of the continuous-time systems from which they are derived.
Hence, the third part of our thesis is dedicated to the problems of preserving passivity,
mixedness and Lyapunov stability under discretization. In this part, we examine several
existing discretization methods and find conditions under which they preserve the stability
properties discussed in the thesis.
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1
I N T RO D U C T I O N

Constraints are inevitable in real world systems. They can arise in the form of algebraic
constraints dictated by the conservation laws for energy, mass or charge, or in the form of
position constraints on a vehicle traversing a surface. In such cases, accurate mathemati-
cal models involve standard Ordinary Differential Equations (ODE) along with algebraic
equations to describe these constraints. Such systems, consisting of both differential and
algebraic equations are called DAEs. The main purpose of this dissertation is to investigate
stability properties of a certain class of constrained dynamical systems, described by DAEs.
In other words, the objective is to develop compact and easy to calculate conditions to
evaluate the stability properties of some constrained dynamical systems. These conditions
are primarily developed for continuous-time systems, however, as engineers, we rarely work
with continuous-time systems exclusively. For simulation purposes, or for the purpose of
control design, or in order to implement a controller, we must at some stage work with a
discrete-time representation of the system that we are interested in. Thus, it is critical to es-
tablish whether discrete-time systems inherit fundamental properties of the continuous-time
systems from which they are derived. Though discrete-time system design and analysis is
a well-established field, the problem of preserving certain fundamental system properties
under discretization is still an open question. The second objective of this thesis is to make
a contribution in this direction by exploring discretization methods that preserve certain
stability properties of continuous-time systems.

We broadly divide the thesis into three different parts: LTI Descriptor Systems, Linear
Switched Descriptor Systems and Discretization Methods. In Sections 1.1, 1.2 and 1.3, we
will first introduce the class of systems studied in each part of this work and then outline our
contribution.

1.1 PA RT I : LT I D E S C R I P T O R S Y S T E M S

Computer-aided analysis of constrained dynamical systems like multibody mechanical
systems or electrical networks is usually based on interconnection-oriented modelling. These
automatic modelling approaches are employed to preserve the topological structure of
the network [1]. Hence they lead to a modular approach towards modelling whereby the
dynamic behaviour of each constituent subsystem is described by differential equations and
the coupling of the subsystems by algebraic equations [2], further leading to DAE models.
Traditional modelling methods eliminate such algebraic constraints to obtain models with a
minimal set of unknowns, thereby losing useful network information. As a result there has

1



2 I N T RO D U C T I O N

been significant interest in recent years towards a more flexible and general description of
constrained dynamic systems given by DAEs of the form

F(t,x, ẋ) = 0, det
[

∂F
∂ ẋ

]
≡ 0 (1.1)

where x is a common vector denoting the physical variables of an interconnected system
and ẋ is its time derivative. To demonstrate these ideas, we consider the model of a simple
RLC circuit generated using one such automatic modelling technique called Modified Nodal
Analysis (for more details see [3]).

-vS

vR vL

vC
C

LR

I

Figure 1: A simple RLC circuit.

Assuming ideal linear devices, the equations modelling the resistor, capacitor and inductor
are

vR = IR, vL = Lİ and I =Cv̇C,

respectively. Applying Kirchhoff’s Voltage Law, we get the algebraic condition

−vS + vR + vL + vC = 0.

Thus the circuit model is

F(t,x, ẋ) = 0 :




L 0 0 0

0 0 C 0

0 0 0 0

0 0 0 0




İ

v̇L

v̇C

v̇R

=


0 1 0 0

1 0 0 0

−R 0 0 1

0 1 1 1




I

vL

vC

vR

+


0

0

0

−1

vS,

and if we measure the voltage across the capacitor for output, we have

y = [0 0 1 0]


I

vL

vC

vR

 .
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Observe that the leading coefficient matrix
(

∂F
∂ ẋ

)
in the above state equation is singular.

Such examples lead to an important subclass of (1.1), given by

Eẋ(t) = Ax(t)+Bu(t);

y(t) = CT x(t)+Du(t), (1.2)

where E and A are constant square matrices such that det[E] = 0, u(t), y(t) are external
input and output and B, CT and D are constant matrices of appropriate dimension.

“Systems of the form (1.2) are called LTI descriptor systems because they arise from formulat-
ing the system equations in their natural physical variables” - [2, 4].

A popular subclass of LTI descriptor systems with an invertible matrix E (det[E] 6= 0)
are known as regular state space systems, and LTI descriptor systems are also known as
generalized state space systems. Stability theory for regular systems is very rich, however,
the results for regular systems cannot be easily generalized to descriptor systems owing to
non-invertibility of the matrix E [5, 6, 7, 8, 9]. Passivity is one such property in the context
of stability theory, and Part I of this dissertation aims at finding conditions under which LTI

descriptor systems are passive. This is explained in more detail in the sequel.

1.1.1 Passivity of LTI descriptor systems

In this part of the thesis we consider the problem of finding the conditions under which
LTI descriptor systems of the form (1.2) are passive. Passivity arises from the property of a
physical system to dissipate energy.

A dynamical system with a state space model is passive if the energy absorbed by the network
over any period of time [0, t] is greater than or equal to the increase in the energy stored in
the network over the same period; that is,∫ t

0
uT (τ)y(τ)dτ ≥V (x(t))−V (x(0))

where uT (t)y(t) is the energy supply rate and V (x(t)) is the energy storage function in terms
of the system state x(t) -[10].

In the input-output framework for linear systems, passivity is equivalent to∫ t

0
uT (τ)y(τ)dτ ≥ 0,

provided that the system is detectable [11]. Where detectability is a weaker version of ob-
servability, which allows unobservable modes as long as those are stable. When we deal
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with LTI systems, the input-output relationships take the form of a rational transfer function
(or a transfer function matrix) H(s), s ∈ C, and Y (s) = H(s)U(s), where U(s) and Y (s)
are the Laplace transforms of the time-functions u(·) and y(·). This allows the time domain
conditions for passivity of LTI systems to be transformed into frequency domain conditions
for positive realness of H(s). The resulting conditions involve conditions on the poles of H(s)
and frequency dependent Linear Matrix Inequalities (LMI) of the form H( jω)+H( jω)∗ ≥ 0
∀ ω ∈ R, where ∗ is the complex conjugate transpose of a matrix. In this thesis we also
consider stronger definitions of passivity like strict passivity and strict positive realness.
More detailed mathematical formulations of all forms of passivity and positive realness are
given in Chapter 2. The importance of such transfer functions can be attributed to some of
the features below.

H
2

H
1

Figure 2: A negative feedback interconnection.

1. Suppose that two systems represented by transfer functions H1(s) and H2(s) are
passive. Then the two systems, one obtained by the parallel interconnection and the
other obtained by feedback interconnection, are both passive.

2. For a negative feedback interconnection of H1(s) and H2(s), where H1(s) is Positive
Real (PR) and H2(s) is Strictly Positive Real (SPR) (or strictly passive), then the
feedback interconnection is input-output stable.

3. If a PR transfer function H1(s) is connected via negative feedback with any nonlinear
and/or time-varying controller device, then sufficient conditions for Lyapunov stability
are provided by the Circle Criterion and Popov’s Criterion.

Such attractive features combined with robustness against large variations of the system
parameters, make passivity an important tool to analyse and synthesize stable control systems
[12, 13, 14, 15].

The main bottleneck for passivity based control design and passivity enforcement is ver-
ification of passivity. The frequency domain conditions for verifying positive realness of
a transfer function involves a numerical evaluation of H( jω) + H( jω)∗ for an infinite
number of frequency points. This issue has led to a considerable amount of research for
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regular system transfer functions of the form H(s) = D+CT (sI−A)−1B with success-
ful results. Owing to the non-invertibility of E in a descriptor system transfer function
H(s) = D+CT (sE−A)−1B, the methods for regular systems cannot be easily generalized
to descriptor systems. The main problem with testing positive realness of descriptor systems
is that continuous-time descriptor system transfer functions might be improper in nature.
This results in poles at infinity, which further leads to the problem of checking the signs of
residues at infinity [16][12]. This problem involves decoupling the transfer function into
proper and improper parts, using Weierstrass canonical form [17]. But direct transformation
to the Weierstrass’ canonical form can be numerically unstable and expensive [17], hence
alternative methods have been explored.

SISO transfer functions: Algorithms to test (strict) positive realness of regular and descrip-
tor versions of continuous-time transfer functions were proposed in [18]; these algorithms
were based on generalized eigenvalue computation. They were further improved in [19],
by removing the necessity of generalized eigenvalue computation. Computational methods
to design (strictly) positive real transfer functions using optimization over linear matrix
inequalities were proposed in [20]. Testing positive realness was further simplified in [21],
by providing compact spectral conditions, however, the conditions derived in [21] are valid
only for regular continuous-time transfer functions.

MIMO transfer functions: Methods for checking whether a SISO transfer function is PR (or
SPR) cannot be easily generalized for MIMO transfer function matrices. Consequently, alter-
nate methods to test the PR (or SPR) property of transfer function matrices were developed in
[22], [23], [24], [25]. This work included checking the eigenvalues of a given Hamiltonian
matrix on the negative real axis. But these methods fail when D+DT is singular and lead to
generalized eigenvalue problems. This problem motivated new methods based on reciprocal
transfer functions, proposed in [26], [27], [28]; to avoid solving for generalized eigenvalues,
however, these methods are valid only for regular continuous-time transfer functions.

For MIMO descriptor systems, several passivity tests have been explored in [29], [30], [31],
[32]. These approaches use Van Dooren’s algorithm [33] or Orthogonal Reducing Equiva-
lence Transformations (using singular value decompositions, QR factorizations and general-
ized Schur decompositions, see [30]) to decouple the descriptor system transfer functions and
then check for their positive realness. Methods proposed in [31] use generalized controllable
staircase forms to detect positive realness of descriptor systems. Another method using
skew-Hamiltonian/Hamiltonian transformations was proposed in [34]. But the expensive
nature of methods used for decoupling, like singular value decompositions, Schur and QR
factorizations, keeps this area of research still relevant.

Recent progress in this field includes the works; [35], [17]. Passivity tests for descriptor
systems based on the Generalized Hamiltonian Matrix (GHM) were proposed in [35]. In [17],
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GHM methods were coupled with canonical projector techniques proposed in [36], [37] to
formulate passivity tests for descriptor systems. Canonical projectors are used to decouple a
descriptor system into its proper and improper constituents. These canonical projectors were
constructed using fast sparse LU-based methods [17].

So far, the central approach in this area of research has been to decouple the descriptor
system transfer function using efficient numerical methods and/or apply GHM methods to
test passivity. In this thesis we avoid both the problems of generalized eigenvalue calculation
for a GHM and decoupling the transfer function. Our methods are motivated in [26, 27, 28],
which have successfully avoided generalized eigenvalue calculation for the MIMO case when
D+DT is singular and also for the SISO case in [21].

1.1.2 Mixedness of LTI regular and descriptor systems

A situation that motivates the study of “mixed” systems [38, 39] is the one in which high
frequency dynamics neglected for modelling purposes destroy the passivity properties of
an otherwise passive system. These unmodelled dynamics will always be present in a real
system. As such, the passivity theorem alone may not be adequate to show that the stability
of the system interconnection is guaranteed [40]. The book [41], see also [42] and [43],
described tools for establishing the stability of adaptive systems of the type examined in
[40]; that is, where passivity-type properties hold only for low frequency signals.

In particular, “mixed”, LTI systems, as defined in the frequency domain in [44], are sys-
tems that, in some frequency bands, have passivity-type properties, while in the remaining
frequency bands, may lose these properties but instead have small gain-type properties;
there exist no frequencies over which a “mixed” system has neither of the notions of these
properties associated with it. In appropriate circumstances, multipliers (or weights) may be
used to scale systems in feedback interconnections that do not exhibit mixtures of small gain
and passivity properties into “mixed” systems frameworks [38].

The “mixed” property of an LTI system can be illustrated geometrically through Nyquist
plots. The Nyquist plot of a passive system always lies in the right half plane, this fact is
obvious from the condition

H( jω)+H( jω)∗ ≥ 0 ∀ ω ∈ [−∞,∞]

for positive realness of a continuous-time LTI system. Similarly, when a continuous-time LTI

has the small gain property, i.e.,

H( jω)∗H( jω) ≤ 1 ∀ ω ∈ [−∞,∞],
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Figure 3: Nyquist diagram of H(s).

then the Nyquist plot of H(s) lies entirely inside the unit circle. Now let us consider an
example of a “mixed” system with the transfer function

H(s) =
3

(s+ 1)(s+ 2)

and Nyquist diagram as depicted in Figure 3. From the Nyquist diagram, it is obvious that
there exists a frequency Ω such that,

• over the frequency band [−Ω,Ω], H(s) is passive and

• over the frequency bands [−∞,−Ω] and [Ω,∞], H(s) has gain smaller than one.

In this thesis we explore the application of mixedness for large scale interconnected systems
along the lines of passivity. In this pursuit we also correct an oversight in earlier proofs for
stability of mixed systems from [38] and [39]. We also characterize “mixed” property for
descriptor systems, while providing spectral conditions to test for mixedness.

1.2 PA RT I I : L I N E A R S W I T C H E D D E S C R I P T O R S Y S T E M S

In this part, we consider another important subclass of (1.1), given by

Eσ(t)ẋ = Aσ(t)x , σ(t) ∈ {1, · · · ,N}; det[Eσ(t)] ≡ 0. (1.3)

We assume throughout this paper that σ is a piecewise continuous switching signal with a
finite number of discontinuities in any bounded time interval. To motivate this subclass, we
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present an example from [45]. The switching circuit (a) in Figure 4 can be represented by
the two modes (b) and (c). Modes (b) and (c) can be modelled using simple ODEs given by

Mode (b): İ =
1
L

vS; Mode (c):

[
İ

v̇C

]
=

[
0 1

L
1
C 0

][
I

vC

]
,

however, this ODE-based model has two main drawbacks:

1. there is no common state vector as the variable vC is missing from Mode 1;

2. there is no description of the initial voltage of the capacitor after the switch.

-vS C L

I II

L

-vS
L

IC

(a) (b) (c)

Figure 4: Circuit (a) described by the two modes (b) and (c)

These problems are the result of a modelling approach which eliminates algebraic constraints
in order to obtain ODE formulations with a minimum number of variables describing the
system, however, such issues can be easily avoided by using a switched descriptor framework
as shown by the equations below.

Mode (b):


L 0 0 0

0 0 0 C

0 0 0 0

0 0 0 0




İ

v̇L

İC
v̇C

=


0 1 0 0

0 0 1 0

0 1 0 0

0 0 1 0




I

vL

IC
vC

+


0

0

−1

0

vS,

Mode (c):


L 0 0 0

0 0 0 C

0 0 0 0

0 0 0 0




İ

v̇L

İC
v̇C

=


0 1 0 0

0 0 1 0

0 1 0 1

−1 0 1 0




I

vL

IC
vC

+


0

0

0

0

vS.

Stability theory for switching descriptor systems is somewhat different to stability theory
for regular dynamic systems; see [46, 47, 48, 49, 50, 51] for a discussion on the stability
of switching descriptor systems using Lyapunov stability theory and distribution theory.
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Roughly speaking, several mechanisms arise in switching descriptor systems in addition to
the regular instability mechanisms found in regular switched systems. In particular, switching
descriptor systems may give rise to discontinuities in the state leading to impulses. Thus,

1. the existence of a common Lyapunov function for all modes is not a sufficient condition
for stability of a switching descriptor system as the Lyapunov function need not be
continuous when transferring between two modes of the system;

2. impulsive behavior may arise when transferring between two modes of the system.

As impulses in engineering applications are usually disastrous, they need to be avoided
while performing switching. Hence the switching function is chosen such that impulses are
avoided, however, jumps in the states are common in practical scenarios, hence switching
should ideally allow jumps while avoiding impulses.

1.2.1 Arbitrary switching

Exponential stability of a regular switched linear system (Ei = I for all i ∈ {1, . . . ,N}) under
arbitrary switching is guaranteed by the existence of a common Lyapunov function. This
statement is the result of a number of converse theorems which state that the existence of
a common Lyapunov function is necessary and sufficient for the exponential stability of a
regular switched linear system (see [52]). A similar result for switched descriptor systems of
the form (1.3) has been proposed in [53]. This converse theorem is based on the distributional
framework for switched descriptor systems developed in [51] and is valid only under the
assumption that (1.3) has impulse-free solutions.

Our primary goal in this part is to obtain verifiable conditions on the matrices in E =

{E1, . . . ,EN} and A = {A1, . . . ,AN} that guarantee the exponential stability of the switched
system (1.3) for any switching signal. Considering the interesting properties of quadratic
Lyapunov functions and their relationship with the Kalman Yakubovich Popov (KYP) Lemma,
we primarily focus on the sufficient conditions for exponential stability obtained through
showing the existence of an appropriate Common Quadratic Lyapunov Function (CQLF) for
(1.3). In this thesis we explore the existence of a CQLF V (x(t)) for an arbitrary switching
sequence {ti} such that

1. V̇ (x(t))< 0 for t 6= ti and

2. V (x(t+i ))≤V (x(ti)) for t = ti.

Similar sufficient conditions for asymptotic stability of linear switched descriptor systems
were derived in [50], and they state that a common quadratic Lyapunov function guarantees
stability under arbitrary switching when an additional condition involving certain spectral
projections of (Ei,Ai) holds (for more details see Chapter 5), however, this condition is not
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needed when the switching signal is chosen in such a way that no jumps occur.

Generalized quadratic Lyapunov functions: In this part we study the existence of gen-
eralized quadratic Lyapunov functions as a first step towards the study of exponential
stability of switched linear descriptor systems. Contrary to regular LTI systems, there ex-
ist many different formulations of generalized quadratic Lyapunov functions proposed in
[54, 55, 56, 57, 58, 59], however, we propose an equivalent, albeit modified, generalized
quadratic Lyapunov function which provides a more convenient framework to study its
existence. Thus enabling us to find useful criteria to determine whether a given collection of
matrix pairs (Ei,Ai) has a generalized CQLF.

Special structures of matrices that guarantee existence of a CQLF: For regular switched
systems with Ei = I for all i ∈ {1, . . . ,N}, there are some special cases where the structure
of matrices {A1, . . . ,Am} guarantees the existence of a CQLF, e.g. if the Ai’s are normal
(AT

i Ai = AiAT
i ) and Hurwitz, then xT x is a CQLF. Two important special cases considered by

the switched system research community are given below.

1. Simultaneous triangularizability (commutativity): The special case where all the Hur-
witz matrices Ai are upper triangular is illustrated through the following Theorem.

Theorem 1 [60],[61] The set of systems {Ai} has a CQLF if there exists a non-singular
matrix U ∈ Cn×n such that every U−1AiU is upper (lower) triangular.

When there is a matrix U such that U−1AiU is in upper triangular form, the matrices
A1, . . . ,Am commute with each other, and thus it follows that the subsystems ΣAi have a
CQLF [62], [63]. Analogous to regular switched systems, special structures of switched
descriptor systems can be exploited to obtain interesting stability results. [46] extended
the result on existence of a CQLF condition for regular commuting subsystems ΣAi

from [62] to the switched descriptor system case. These results guarantee the existence
of a CQLF of the form V (x) = xT ET Px for switched descriptor system with two modes
of operation (σ(t) ∈ {1,2}). Results based on commutativity are further extended
to discrete-time descriptor systems in [47],[48]. For further extensions based on the
commutative property under a distributional framework, see [64].

2. Two systems with a rank-one difference: As a part of exploiting the special structure
of matrices to obtain CQLFs, we recall this classic result regarding regular switched
systems from [65, 66].

Theorem 2 [65, 66] Let A1 and A2 be Hurwitz matrices in Rn×n, where the difference
A1−A2 has rank one. Then the swiched system

ẋ(t) = A(t)x(t); A(t) ∈A = {A1,A2} (1.4)

has CQLF if and only if the matrix product A1A2 has no negative real eigenvalues.
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This condition can be recovered from Meyer’s version of the KYP Lemma; and it
provides simple and easy to calculate necessary and sufficient conditions for the
existence of a CQLF. Hence they promise simple and elegant results for switched
descriptor systems upon extension. Thus, we explore the conditions under which
analogous results can be obtained for switched descriptor systems.

1.2.2 State dependent switching

In certain situations, it is not necessary to guarantee stability for every possible switching
signal; and a number of authors have considered questions related to the stability of switched
linear systems under restricted switching regimes. For example, in certain scenarios, when
the constituent subsystems are not stable, a suitable switching signal can be chosen to ensure
exponential stability (see [46], [67]). Another important example of restricted switching
is the state dependent switching, where the rule that determines when a switch in system
dynamics may occur is determined by the value of the state-vector x(t).

In this section of the thesis we consider state dependent switching. State depedent switching
is necessary to avoid impulsive behaviour that may arise when the initial conditions of a
system do not satisfy the system constraints. Impulsive behaviour of descriptor systems can
characterized by an important system property called index. Roughly speaking index of a
descriptor system is the number differentiations necessary to convert a DAE into an ODE.
A more detailed discussion on the index of a descriptor systems will follow in Chapter 2.
Switched descriptor systems with different indices may have different constraints and thus
different solution spaces; this may result in jumps and further impulsive behaviour at the
switching instants. However, descriptor systems with index-one do not generate any impulses
and hence, they are also known as impulse free descriptor systems.

In this thesis we deal with two special scenarios:

1. switching between index-zero (regular system) and index-one (impulse free) descriptor
systems ;

2. switching between index-one (impulse free) and a particular class of index-two de-
scriptor systems.

We found that when descriptor modes differ from each other by one index, they can be treated
analogous to regular systems with rank-one difference, where one of the regular modes is
marginally stable. This observation motivates us to use the following result in the context of
switched descriptor systems.



12 I N T RO D U C T I O N

Theorem 3 [68] Suppose that A is Hurwitz and all the eigenvalues of A−ghT have negative
real part, except one, which is zero. Suppose also that (A,g) is controllable and (A,h) is
observable. Then, there exists a matrix P = PT > 0 such that

AT P+PA < 0 (1.5)

(A−ghT )T P+P(A−ghT ) ≤ 0 (1.6)

if and only if the matrix product A(A−ghT ) has no real negative eigenvalues and exactly
one zero eigenvalue.

1.3 PA RT I I I : D I S C R E T I Z AT I O N

Discretization methods play an important role in simulation and digital control of physical
systems. Thus, it is of interest to explore how continuous-time systems can be transformed
to a discrete form in a manner that preserves certain properties of the original system.
Our main focus is to preserve the three properties described earlier: passivity, mixedness
and Lyapunov functions. Initially we survey the discretization methods that preserve these
properties for regular systems, and then we extend the successful methods to descriptor
systems. Throughout the thesis, we only consider a constant sampling time interval h.

1.3.1 Passivity preserving discretization

Discretization methods for regular systems can be classified into two broad categories: (1)
discretizing the continuous-time transfer functions and (2) discretizing the continuous-time
state space model. We discuss both approaches in detail.

• Discretizing Transfer Functions: Discretization of continuous-time transfer func-
tions can be further classified into two methods.

Approximating the discrete input signal through a Digital to Analog (DA) sampler

With Zero Order Hold (ZOH) and First Order Hold (FOH) elements on the input as DA

samplers, the discrete-time transfer function can be obtained through the formulas

GZOH(z) =
z−1

z
Z

(
1
s

H(s)
)

and GFOH(z) =
(z−1)2

hz
Z

(
1
s2 H(s)

)
,

where Z is the z transform and h is the sampling time. According to [69] positive re-
alness of strictly proper transfer functions may not be preserved with ZOH, however, it
was shown in [70] that positive realness can be preserved for continuous-time transfer
of relative order zero via ZOH, provided that the direct input-output transmission gain
is sufficiently large. These results were extended for the MIMO case in [71]. Passivity
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preserving properties of FOH were explored in [71] while deducing that FOH elements
preserve positive realness, and these results hold true even for strictly proper transfer
functions. From the discussion so far, we can conclude that ZOH and FOH methods are
only suitable for proper descriptor system transfer functions. This rules out improper
transfer functions resulting from index two descriptor systems.

Numerical approximation of the integral using Euler’s and Tustin’s methods

Euler and Tustin methods are used to approximate the behaviour of a continuous-time
transfer function by a discrete-time transfer function using integral numerical approxi-
mation. These methods require substitution of the integrator s−1 by approximations
of the form: h

z−1 , z−1
zh and 2

h
z−1
z+1 corresponding to Euler’s forward method, Euler’s

backward method and Tustin’s method, respectively. J. Jiang [69] proved that Euler’s
forward method and Euler’s backward method fail to preserve positive realness, how-
ever, Tustin’s method preserves positive realness. We observe that Tustin’s method may
be a suitable method for discretizing PR and SPR descriptor system transfer functions.
The effect of the Tustin transform on the Hamiltonian test matrices for descriptor
systems will be explored in this part of the thesis.

• Discretizing State Space Models: Discretization of state space models with ZOH

element on the input does not preserve passivity. Hence several different approaches
have been proposed to implement passivity based digital controllers in [72, 73, 74].
Another new passivity preserving method for the state space models has been proposed
in [75] and successfully used for passivity based network control in [76]. This method
is based on the fact that the passivity property of a system depends on the input-
output variables, hence non-passive models can be transformed into passive models by
appropriate selection of input-output variables. Traditional discretization methods for
the state space models do not change the output and consequentially degrade passivity
of discrete-time systems. This problem has been solved by defining a modified output
[75]. This new output is based on the average of the sampled output over the sampling
period and produces passive discrete-time models whenever the continuous-time model
is passive. This new output can be defined as

y∗(kh) =
∫ kh+h

kh
y(τ)dτ . (1.7)

This method of preserving passivity has been studies only for regular systems, and
there exists no equivalent method for preserving passivity of descriptor systems. This
task will be carried out in Chapter 9 of this thesis.
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1.3.2 Preserving mixedness under discretization

There exists no literature on discrete-time tests to check for “mixedness” and discretization
methods which preserve “mixedness” for either regular systems or descriptor systems. In
this part of the thesis, we focus on these two new problems.

1.3.3 Preserving Lyapunov Stability under Discretization

We begin our analysis with regular switched systems of the form

Σsc : ẋ(t) = Ac(t)x(t), Ac(t) ∈Ac = {Ac1, . . . ,AcN}, (1.8)

with its approximate discrete-time counterpart,

Σsd : x(k+ 1) = Ad(k)x(k), Ad(k) ∈Ad = {Ad1, . . . ,AdN}. (1.9)

Discretization of regular switched systems (or differential inclusions) has been studied by a
number authors [77, 78, 79, 80, 81, 82, 83]. One of the main criteria for these discretization
methods has been the convergence of the Hausdorff distance between reachability sets of
continuous and discrete-time systems. These authors have primarily focused on obtaining
classical convergence proofs for a class of Euler methods and multistep methods.

But the main goal of this part is to find a class of discretization methods C : Σsc→ Σsd such
that if V is a common Lyapunov function for Σsc, then the same function V is also a common
Lyapunov function for Σsd . This is a very apt criterion for discretization of switched systems
because the Converse Lyapunov Theorems state that existence of a common Lyapunov func-
tion is necessary and sufficient for the exponential stability of an arbitrarily switched regular
system [52]. Some other interesting directions of research in this area have been on the
topic of preserving positivity and co-positive Lyapunov functions of switched systems under
discretization [84], and preserving positivity of descriptor systems [85]. Before proceeding
further with our analysis of switched system discretization, we pose the same problem for a
regular LTI subsystem.

Discretization of a regular LTI subsystem: Consider a continuous-time LTI system

Σc : ẋ = Acx (1.10)

and the corresponding discrete-time LTI system with sampling time h > 0,

Σd : x[(k+ 1)h] =C(Ac,h)x[kh]. (1.11)

The closed form solution of (1.10) is given by x(t) = eAc(t−t0)x(t0) for t ≥ t0 and this leads
to x[(k+ 1)h] = eAchx[kh]. Hence discretization of a continuous-time LTI system involves
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the calculation of a matrix exponential, which may not yield satisfactory results [86]. One
must therefore rely on numerical methods that are able to approximate the solution of a
differential equation to any desired accuracy. In this thesis we mainly focus on single step
Runge-Kutta (RK) methods [87]. One can study the behaviour of RK methods based on
their stability functions (see the Dahlquist Criterion in [87]). The stability functions of
Runge-Kutta methods are obtained from Padé approximation tables [88, 89]. These Padé ap-
proximations can also be seen as approximations for the matrix exponential eAch. Initially we
consider first order diagonal Padé approximations or equivalently RK methods with first-order
diagonal Padé approximations as their stability functions, e.g. single stage Gauss methods.
First-order diagonal Padé approximations are popularly known as bilinear transforms or
Tustin transforms.

Bilinear Transform: Consider system (1.10) and its discrete-time equivalent (1.11). Accord-
ing to [90] if the discrete-time matrix Ad is obtained using the Tustin discretization method
(bilinear transform) given by

Ad(h) =
(

I +Ac
h
2

)(
I−Ac

h
2

)−1

, (1.12)

then the following observations can be stated:

1. quadratic Lyapunov function class is preserved during discretization;

2. polyhedral Lyapunov function classes (vector norm based Lyapunov functions) are not
preserved during discretization.

Observation 1. leads to a notable result concerning common quadratic Lyapunov functions,
i.e. they are invariant under bilinear transform [90]. We show later that bilinear transform
belongs to larger class of approximations called diagonal Padé approximations and the main
disadvantage of bilinear transform is its low convergence rate O(h). This motivates the
question whether other diagonal Padé approximations with increased numerical accuracy
also preserve CQLFs? In this part of the thesis we address this question.

1.4 O U T L I N E A N D C O N T R I B U T I O N S

In this section we present the contributions made in this thesis and the corresponding
publications for each part of the thesis.

PA RT I : L I N E A R T I M E I N VA R I A N T D E S C R I P T O R S Y S T E M S

Passivity: In this part we develop easily verifiable, compact spectral conditions for checking
the PR (or SPR) property of SISO and MIMO descriptor systems. To obtain our results, we use
only elementary concepts from linear algebra and existing results on strict positive realness
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for regular systems. This construction results in a test that involves only the evaluation of
the eigenvalues of a matrix which is determined in an elementary manner from the matrices
E,A,B,C,D; while avoiding generalized eigenvalue calculation.

Mixed Property: In this part, we provide a proof of the stability result concerning simple
feedback-loops consisting of two LTI “mixed” systems due to Griggs, Anderson and Lanzon
[38, 39, 91]. We do so by applying classical Nyquist stability techniques (see Chapter 10).
Our reasons for doing so are twofold. First, we correct an oversight in Theorems 1 and 6 of
[38] and [39], respectively. In these, the system output signals were assumed to be bounded
a priori. Secondly and importantly, these results pave the way to obtaining new sufficient
conditions for the stability of large-scale interconnections of “mixed” systems. In this part
we also propose a mathematical formulation for the “mixed” property of descriptor systems.
A test, based on Hamiltonian matrices for determining whether MIMO, regular LTI systems
have the property of “mixedness” was introduced in [44]. This test is further extended for
the descriptor case. Some of this material has been published in the following articles.

1. Ezra Zeheb, Robert Shorten and Shravan Sajja, Strict positive realness of descriptor
systems in state space, International Journal of Control, 83(9): 1799–1809, 2010. (see
errata online)

2. Shravan Sajja, Robert Shorten and Ezra Zeheb, Comments and observations on the
passivity of descriptor systems in state space, Accepted by International Journal of
Control.

3. Wynita Griggs, Shravan Sajja, Robert Shorten and Brian Anderson, On Interconnec-
tions of Mixed Systems Using Classical Stability Theory, Systems and Control Letters,
61(5): 676–682, 2012.

4. Wynita M. Griggs, Shravan Sajja, Brian D. O. Anderson and Robert N. Shorten,
Extending Small Gain and Passivity Theory For Large-Scale System Interconnections,
in Proc. IEEE American Control Conference, pp. 6376-6381, 2012.

PA RT I I : L I N E A R S W I T C H E D D E S C R I P T O R S Y S T E M S

In this part we provide an alternate generalized Lyapunov equation for descriptor systems to
suit our approach towards stability analysis of switched descriptor systems. Corresponding
to the new generalized Lyapunov equation, we also propose alternate sufficient conditions
for the stability of switched descriptor systems. We also derive a KYP-like Lemma for a
special class of descriptor systems called index one systems. This KYP-like Lemma allows
us to generate necessary and sufficient conditions for the existence of a CQLF for a switched
descriptor system described by

Eσ(t)ẋ = Aσ(t)x , σ(t) ∈ {1,2}, (1.13)
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where each constituent system is index one, stable and the rank of A−1
1 E1−A−1

2 E2 is one.
Here, we show that if a simple eigenvalue condition holds, then the system is exponentially
stable for arbitrary switching. We provide a state dependent switching rule associated with
a simple spectral condition under which switching between index zero and index one or
between index one and index two descriptor systems is exponentially stable. Our results for
switched descriptor systems are based on the dimensionality reduction of descriptor systems
using full rank decomposition. This result has been published in the following article.

5. Shravan Sajja, Martin Corless, Ezra Zeheb and Robert Shorten, On dimensionality
reduction and the stability of a class of switched descriptor system, Accepted by
Automatica.

PA RT I I I : D I S C R E T I Z AT I O N

Passivity: In this part of the thesis we develop passivity preserving discretization methods
for state space models of index one descriptor systems. We also show that Tustin’s method
of discretizing transfer functions preserves positive realness of descriptor system transfer
functions. We also present the output averaging of preserving passivity of a state space model
in the context of descriptor systems.

Mixed Property: Here we develop discrete-time tests to check for “mixedness” of regular
systems and descriptor systems. We also focus on discretization of “mixed” systems. As
“mixedness” is a frequency domain property, we only focus on discretization of transfer func-
tions. We find conditions under which a discretization method preserves “mixedness” and
show that Tustin’s method is one of the suitable candidates for discretizing mixed systems.

Lyapunov Stability: In this part of the thesis, we prove that diagonal Padé approximations
preserve CQLFs, irrespective of their order and sampling size h. We also show that the converse
is not true. We further explore the conditions under which diagonal Padé approximations
preserve polyhedral Lyapunov functions and show that there always exists a polyhedral
Lyapunov function that can be preserved using diagonal Padé approximations. Finally, we
derive generalized Padé approximations for descriptor systems and also show that numerical
methods with diagonal Padé approximations as stability functions preserve generalized
CQLFs. Our results on diagonal Padé approximations have been published in the following
articles.

6. Shravan Sajja, Francesco Rossi, Patrizio Colaneri and Robert Shorten, Extensions of
“Padé Discretization for Linear Systems With Polyhedral Lyapunov Functions” for
generalised Jordan structures, Accepted by IEEE Transactions on Automatic Control.
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7. Robert Shorten, Martin Corless, Shravan Sajja and Selim Solmaz, On Padé Approx-
imations and the Preservation of Quadratic Stability for Switched Linear Systems,
Systems and Control Letters, 60(9): 683–689, 2011.

8. Shravan Sajja, Selim Solmaz, Robert Shorten, and Martin Corless, Preservation of
Common Quadratic Lyapunov Functions and Padé Approximations, in Proc. IEEE
49th Conference on Decision and Control, pp. 7334-7338, 2010.



Part I

L I N E A R T I M E I N VA R I A N T D E S C R I P T O R S Y S T E M S

In this part we give necessary and sufficient conditions for passivity of LTI

descriptor systems in the form of simple spectral conditions. This work was
carried out in collaboration with Prof. Martin Corless1, Prof. Ezra Zeheb2 and
Prof. Robert Shorten3.

We also formulate the mixed property for LTI descriptor systems, and thereby
correcting an error in the proof of a stability result concerning negative feedback-
loops of mixed systems due to Griggs, Anderson and Lanzon [38, 39]. We do
so using classical Nyquist arguments and then derive spectral conditions to test
mixedness of descriptor systems. This work was carried out in collaboration
with Dr. Wynita Griggs3.

1 School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA.
2 Technion-Israel Institute of Technology, Haifa and Jerusalem College of Engineering, Jerusalem, Israel.
3 Hamilton Institute, NUI Maynooth, Ireland.
3 Hamilton Institute, NUI Maynooth, Ireland.





2
BAC K G RO U N D A N D P R E L I M I NA RY R E S U LT S

In this chapter, we present some definitions and preliminary results for descrip-
tor systems. We also introduce the mathematical formulation for passivity and
mixedness of LTI systems.

2.1 P RO P E RT I E S O F LTI D E S C R I P T O R S Y S T E M S

In this chapter, we consider descriptor systems of the form

Eẋ(t) = Ax(t)+Bu(t); x(t0) = x0 (2.1)

y(t) = CT x(t)+Du(t), (2.2)

where E,A ∈Rn×n,B ∈Rn×m,C ∈Rn×m, D ∈Rm×m and rank(E) = r < n. Now, we intro-
duce some notation, definitions and preliminary results that shall be useful in analysing
descriptor systems. We begin our analysis with an unforced LTI descriptor system (u(t) ≡ 0),
described by

Eẋ = Ax, (2.3)

where E, A ∈ Rn×n. In order for the origin to be attractive, we need A to be nonsingular
[59]. If A was singular, there would be a non-zero vector v for which Av = 0; in that case, a
solution starting at v would remain at v and the origin would not be attractive. We assume
throughout this thesis that A is nonsingular. The following concepts are important in the
study of descriptor systems.

Regular descriptor systems: The system is regular if det[sE−A] is not identically zero.
We further assume that all the descriptor systems considered in thesis are regular. Regular
descriptor systems should not be confused with regular systems where E = I.

Eigenvalues of (E,A): An eigenvalue of (E,A) is any complex number λ for which
det[λE−A] = 0. When A is nonsingular, (E,A) has no eigenvalues at zero and for λ 6= 0

det[λE−A] = (−λ )n det[A]det[λ−1I−A−1E]. (2.4)

From this expression, it is clear that the finite eigenvalues of (E,A) are simply the inverse of
the nonzero eigenvalues of A−1E.

21



22 BAC K G RO U N D A N D P R E L I M I NA RY R E S U LT S

Consistency space: When E is nonsingular, the system is regular and has a unique continu-
ous solution x(·) for any initial condition x(t0) = x0. When E is singular, this is no longer
the case; there is not a solution for every initial condition. When A is invertible, system
description (2.3) is equivalent to

x = A−1Eẋ. (2.5)

This means that x(t) must always be in the subspace Im(A−1E); hence ẋ(t) must be in
Im(A−1E), which in turn implies that x(t) must be in Im((A−1E)2). By induction, we obtain
that x(t) is in Im((A−1E)k) for all k = 1,2, . . .. Since

Im((A−1E)k+1) ⊂ Im((A−1E)k)

and Rn has finite dimension n, there exists k∗ ≤ n such that

Im((A−1E)k∗+1) = Im((A−1E)k∗) ; (2.6)

in that case, Im((A−1E)k) = Im(A−1E)k∗) for all k ≥ k∗. Let

C = C (E,A) := Im((A−1E)k∗) . (2.7)

Since Im((A−1E)k∗+1) = Im((A−1E)k∗), we see that A−1EC = C ; this means that A−1E is
a one-to-one mapping of C onto itself; hence the kernel of E and C intersect only at zero,
i.e.,

ker(E)∩C (E,A) = {0}, (2.8)

If we let Ã be the inverse of the map A−1E restricted to C , then (2.3), or equivalently (2.5),
is equivalent to

ẋ = Ãx, (2.9)

Thus the descriptor system is equivalent to the regular system (2.9), where x(t) is in C . We
call C (E,A) = C the consistency space for system (2.3) or (E,A). Note that Ã is invertible
on C .

Hence, C is the set of initial states x0 for which the system (2.3) has a solution.

Index: The index of the system is the smallest integer k∗ for which (2.6) holds. Clearly, a
system is index-zero if and only if E is nonsingular. In this case, the system is equivalent
to the regular system ẋ = E−1Ax and the consistency space is the whole state space. If E is
singular, we make the following claim where the nullity of E is the dimension of the kernel
of E and equals n− r and r = rank(E).
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A system is index-one if and only if the number of zero eigenvalues of A−1E equals the nullity
of E.

To see this, note that the number of zero of eigenvalues of A−1E is the algebraic multiplicity
of zero as an eigenvalue of A−1E, whereas the nullity of E (which equals the nullity of A−1E)
is the geometric multiplicity of zero as an eigenvalue of A−1E. The geometric and algebraic
and geometric multiplicities are equal if and only if A−1E and (A−1E)2 have the same nullity;
this is equivalent to Im((A−1E)2) = Im(A−1E), that is, the system is index-one.

Theorem 4 (Weierstrass canonical form [92],[93]) Let λE−A be a regular matrix pencil.
Then there exist nonsingular matrices S and T ∈Rn×n such that

SET =

(
Iq 0

0 N

)
SAT =

(
J 0

0 In−q,

)
(2.10)

where Iq denotes the identity matrix of order q. The matrix J corresponds to the finite
eigenvalues of λE−A, whereas N is nilpotent and corresponds to the infinite eigenvalues.
The matrices J and N can be assumed to in Jordan form.

When all eigenvalues of J have negative real parts, the pencil λE−A is said to be stable. The
nilpotency index-µ of N, viz. Nµ−1 6= 0 and Nµ = 0, is called the index of the matrix pencil
λE−A. It should also be noted that both definitions of index are equivalent, i.e., µ = k∗.

The concept of index defined above plays a major role in our analysis of descriptor systems,
and it determines the switching strategy between the linear switched descriptor systems
considered in Part II of this thesis. It also imposes a restriction on the smoothness of the
control input for descriptor systems (see Theorem 6). There are several other definitions of
index used in the literature, based on the nature of descriptor systems and their applications;
for a detailed analysis and a comparison of various index concepts, see [94] [95].

Spectral Projections and Consistency Projectors:

Definition 1 [58] The spectral projections onto the left and right of the deflating subspaces
of λE−A corresponding to the finite eigenvalues are given by

Pl = S−1

(
Iq 0

0 0

)
S Pr = T

(
Iq 0

0 0

)
T−1 (2.11)

The projections onto the left and right of the deflating subspaces of λE−A corresponding
to the eigenvalue at infinity are given by the complementary projectors Ql = I−Pl and
Qr = I−Pr.
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Stability of descriptor systems:

Now we present different notions of stability for a general DAE of the form (1.1) [96], [97]
under the assumption that C is the consistency space of (1.1).

Definition 2 Stability in the sense of Lyapunov: x∗ = 0 is a stable equilibrium point of
(1.1) if, given any ε > 0, there is some δ > 0 such that for any x(t0) ∈C , ‖x(t0)‖< δ implies
‖x(t)‖< ε for t ≥ t0 for all solutions x(t) of the system.

In the above definition, x∗ is uniformly stable if δ is not a function of t0.

Definition 3 Asymptotic stability: x∗ = 0 is an asymptotically stable equilibrium point of
(1.1) if

1. x∗ = 0 is stable,

2. x∗ = 0 locally attractive; i.e., there exists δ such that for any x(t0) ∈ C ,

‖x(t0)‖< δ ⇒ lim
t→∞

x(t) = 0. (2.12)

In order to quantify the rate of convergence, we define a different form of stability termed as
exponential stability.

Definition 4 Exponential stability: x∗ = 0 is exponentially stable equilibrium of (1.1) if
there exist real constants M ≥ 1, β > 0 such that for any x(t0) ∈ C ,

‖x(t)‖ ≤Me−β (t−t0)‖x(t0)‖ (2.13)

for t ≥ t0 for all solutions x(t) of (1.1).

We can say that x∗ is uniformly asymptotically stable if x∗ = 0 is asymptotically stable and δ

is independent of t0. Further, it is required that the convergence in equation (2.12) is uniform.
The notion of uniformity is important for time varying systems of the form (1.3), however
for time invariant systems of the form (2.3), stability (asymptotic or exponential) implies
uniform (asymptotic or exponential) stability. We say an equilibrium point x∗ is globally
stable if it is stable for all initial conditions x(t0) ∈ C . For the LTI descriptor systems under
consideration in this part (2.3), the following Theorem provides the necessary and sufficient
conditions for asymptotic stability.

Theorem 5 [59, 98] Let (E,A) be a regular matrix pair. The equilibrium point x∗ = 0 of
equation (2.3) is asymptotically stable if and only if all the finite eigenvalues of (E,A) lie in
the open left half-plane.
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State space formulation with u 6≡ 0: One is often interested in controlling descriptor
systems through a control input u while measuring some internal state variables x to obtain a
desired system behaviour, i.e.,

Eẋ(t) = Ax(t)+Bu(t); x(t0) = x0 (2.14)

y(t) = CT x(t)+Du(t), (2.15)

where E,A ∈ Rn×n,B ∈ Rn×m,C ∈ Rn×m, D ∈ Rm×m and rank(E) = r < n. In order to
understand the solvability and consistency of the descriptor control system (2.14-2.15), we
present the next Theorem based on the Weierstrass canonical form from Theorem 4.

Theorem 6 [99] Let the pair (E,A) from (2.14) be regular and let S and T be non-singular
matrices which transform (2.14) to Weierstrass canonical form, i.e.,

SET =

(
Iq 0

0 N

)
SAT =

(
J 0

0 In−q

)
SB =

(
B1

B2

)
(2.16)

and set

T−1x(t) =

(
x̃1(t)

x̃2(t)

)
T−1x0 =

(
x̃1,0

x̃2,0

)
. (2.17)

Furthermore, let µ = index(E,A) and assume u is sufficiently smooth. Then we have the
following:

1. the differential-algebraic equation (2.14) is solvable;

2. an initial condition (2.14) is consistent if and only if

x̃2,0 = −
µ−1

∑
i=0

NiB2ui(t0); (2.18)

in particular, the set of consistent initial values x0 is nonempty.

3. every initial value problem with consistent initial condition is uniquely solvable.

It can observed from (2.18) that for a classical smooth solution x(t), it is necessary that u is
µ times differentiable. Henceforth, in this thesis, we assume that descriptor control systems
(descriptor systems with a non-zero input) of the form (2.14-2.15) are consistent and uniquely
solvable.

Remark 1 If we consider the case where u≡ 0, then

x̃2 = −
µ−1

∑
i=0

Nix̃i
2,0. (2.19)
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Based on (2.19) we can observe that if x̃2,0 represents a sudden jump (Heaviside step
function, or the unit step function), then x̃2 would consist of impulses (Dirac delta functions).
However this is not an issue for index-one systems (N = 0), hence they are called Impulse
Free Systems. For higher index systems, these impulses can be avoided through consistent
initialization.

In order to study inconsistent initial values and impulsive solutions, we need a distributional
framework. For a detailed study of distributional descriptor systems, see [100],[51]. Explicit
representation of the solutions of (2.14) in terms of the original matrices E, A, B is possible
using the concept of Drazin inverse for more details, see [99].

2.2 PA S S I V I T Y O F LT I S Y S T E M S

In this section, we provide some notation, mathematical definitions and preliminary results
on passivity of LTI systems.

Notation: The notation ℜ[s] will be used to denote the real part of a complex number s.
The conjugate of a complex number s = a+ jb, where a and b are real, will be denoted by
s∗ := a− jb, where j2 = −1. For a nonsingular matrix A, A−∗ := (A−1)∗ = (A∗)−1, where
A∗ denotes the conjugate transpose of A. The largest and smallest singular values of a matrix
A will be denoted by σ(A) and σ(A), respectively.

The notion of passivity for LTI systems is based on the input-output framework given by

Y (s) = H(s)U(s),

where s ∈ C is the Laplace variable, U(s) and Y (s) are the Laplace transforms of the time-
functions u(·) and y(·). By slight abuse of notation, we use H(s) for both scalar and matrix
transfer functions. Hence we use the symbols > (≥) for positivity (non-negativity) for scalars
and Hermitian positive definiteness (positive semi-definiteness) for matrices. In particular for
transfer function matrices, H∗( jω) := [H( jω)]∗ = HT (− jω). Also, RL ∞ will be used to
denote proper real rational transfer function matrices with no poles on the imaginary axis and
RH ∞ will be used to denote proper real rational transfer function matrices with no poles in
the closed RHP.

Mathematical formulation of passivity:

Definition 5 [101] A system with input u(·) and output y(·), where u(t), y(t) ∈ Rm, is
passive if there is a constant β ≤ 0 such that∫ t

0
yT (τ)u(τ)dτ ≥ β (2.20)
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for all functions u(.) and all t ≥ 0. If, in addition, there are constants l ≥ 0 and k ≥ 0 such
that ∫ t

0
yT (τ)u(τ)dτ ≥ β + l

∫ t

0
uT (τ)u(τ)dτ + k

∫ t

0
yT (τ)y(τ)dτ (2.21)

for all functions u(·) and all t ≥ 0, then the system is Output Strictly Passive (OSP) if k > 0,
Input Strictly Passive (ISP) if l > 0, and Very Strictly Passive (VSP) if k > 0 and l > 0.

The constant β is related to the inital conditions of a system and without loss of generality,
we assume that the systems are initially relaxed, i.e., β is identically zero [101].

y

u uu

y y

(a) (c)(b)

Figure 5: Graphs of systems Σ1, Σ2 and Σ3 lie in the shaded regions of Figures (a), (b) and (c)
respectively.

From the above defintion, a SISO LTI system Σ1, with input u1 and output y1 is passive if
u1(t)y1(t)≥ 0 for every t > 0. Thus passivity can be interpreted as a restriction on the system
input-output graph to lie in the shaded region illustrated in Figure 5-(a) [10]. Similarly for
a VSP system Σ2 with input u2 and out y2, the input-output graph lies entirely in a region
defined by u2(t)y2(t) ≥ ε(u2

2(t)+ y2
2(t)) (assuming k = l = ε) for every t > 0. This region

is illustrated in Figure 5-(b). Other intermediate versions of passivity can also be interpreted
in a similar way, for example, OSP systems (Σ3) are restricted to region illustrated in Figure
5-(c).

Parseval’s Theorem transforms time domain conditions (Definition 5) into frequency domain
conditions under the assumption that u(t) and y(t) are Lebesgue integrable. Passivity of
an LTI system is equivalent to positive realness of the corresponding transfer function H(s)
[102]. Now we define Positive Realness of a LTI transfer function matrices, these definitions
can be easily extended to the scalar case.

Definition 6 [12] A transfer function matrix H(s) is PR if and only if the following conditions
hold.
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1. H(s) is analytic in {s ∈ C : ℜ(s) > 0}.

2. H( jω) +H( jω)∗ ≥ 0 ∀ ω ∈ R∪{±∞}, with jω not a pole of any element of
H(·).

3. If jω0 is a pole of any element of H(.), it is at most a simple pole, and the residue
matrix, K0 = lims→ jω0(s− jω0)H(s) in case ω0 is finite, and K∞ = limω→∞

1
jω H( jω)

in case ω0 is infinite, is positive semi-definite Hermitian.

Frequency domain interpretations of other stricter forms of passivity are given below.

Definition 7 [101] Given a LTI system with transfer function matrix H(s) analytic in the
closed right half plane, the following assertions hold.

1. The system is ISP if and only if there exists a l > 0 such that H( jω)+H( jω)∗ ≥ lI > 0
for all ω ∈R∪{±∞}.

2. The system is OSP if and only if there exists a k > 0 such that H( jω)+H( jω)∗ ≥
kH( jω)H( jω)∗ for all ω ∈R∪{±∞}.

3. The system is VSP if and only if there exists k, l > 0 such that H( jω)+H( jω)∗ ≥
kH( jω)H( jω)∗+ lI for all ω ∈R∪{±∞}.

Negative feedback interconnection of a passive system and a strictly passive system is
asymptotically stable. But according to the definitions given above, the concept of strict
passivity is very restrictive, because H(s) is strictly passive if and only if H( jω) ≥ δ I >
0 ∀ω ∈R. This is possible only for transfer functions with zero relative order. To relax this
condition, the concept of SPR has been introduced such that the feedback combination of
a passive system with an SPR one is also asymptotically stable [102]. There exists several
notions of strict positive realness in the literature, however we primarily follow the definition
given below.

Definition 8 [103] A transfer function H(s) is SPR if there exists a scalar ε > 0 such that
H(s) is analytic in a region of the complex plane which includes those s for which ℜ(s)≥−ε

and

H( jω−ε)+H( jω−ε)∗ ≥ 0 ∀ ω ∈R∪{±∞} . (2.22)

We say H is regular if H( jω)+H( jω)∗ is not identically zero for all ω ∈R. For convenience,
we will include regularity as a requirement for SPR.

This definition requires the existence of a positive ε such that H(s− ε) is positive real. We
call this KYP-SPR, as it is a notion of strict positive realness that is consistent with the KYP

Lemma. Roughly speaking, the conditions for KYP-SPR and strict passivity coincide, except
for an additional limit condition at infinity that must me satisfied in the KYP-SPR case (the
so called side-condition). The ε-free definition of SPR given below is based on the result
from [103].
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Lemma 1 [103] A transfer function H(s) is SPR and regular if and only if the following
conditions hold.

1. There exists β > 0 such that H is analytic in {s ∈ C : ℜ(s) >−β}.

2.

H( jω)+H( jω)∗ > 0 ∀ ω ∈R (2.23)

3.

lim
|ω|→∞

ω
2ρdet[H( jω)+H( jω)∗] 6= 0, (2.24)

where ρ is the nullity of H( j∞)+H( j∞)∗. In either case, the above limit is positive.

2.2.1 Testing for passivity

Before proceeding to the methods to test passivity of descriptor systems, we present methods
to test passivity of regular systems. Considering the compact, simple and algebraic nature
of these methods, we will use them in the next chapter to develop similar passivity tests for
descriptor systems. These methods can be classified into SISO and MIMO cases.

Passivity of Regular SISO Systems:

Consider a regular SISO system

ẋ(t) = Ax(t)+ bu(t); (2.25)

y(t) = cT x(t)+ du(t), (2.26)

where A ∈Rn×n, b, c ∈Rn, d ∈R, and assume that A is Hurwitz. The corresponding SISO

transfer transfer function is given by

H(s) = d + cT (sI−A)−1b. (2.27)

Passivity tests for the SISO case are presented separately for d > 0 and d = 0.

Theorem 7 [21] Consider the transfer function (2.27) with d > 0. H(s) is SPR if and only if

1. A is Hurwitz and

2. the matrix
(
A− 1

d bcT
)

A has no eigenvalues on the closed negative real axis (−∞,0].

H(s) is PR if and only if

1. the matrix
(
A− 1

d bcT
)

A has no eigenvalue of odd (algebraic) multiplicity on the open
negative real axis (−∞,0) and
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2. all residues of H(s) at poles on the imaginary axis are non-negative.

Theorem 8 [21] Consider the transfer function (2.27) with d = 0. H(s) is SPR if and only if

1. A is Hurwitz and

2. • cT Ab < 0 and the matrix product A(A− AbcT A
cT Ab ) has no eigenvalue on the open

negative real axis (−∞,0) and exactly one zero eigenvalue;
(OR)

• cT A−1b < 0 and the matrix product A−1(A−1− A−1bcT A−1

cT A−1b ) has no eigenvalue on
the open negative real axis (−∞,0) and exactly one zero eigenvalue.

Let p be the smallest odd integer such that cT Apb 6= 0, then H(s) is PR if and only if

1. (−1)
(p+1)

2 cT Apb > 0;

2. the matrix A
(

I− ApbcT

cT Apb

)
A has no eigenvalue of odd (algebraic) multiplicity on the

open negative real axis (−∞,0) and

3. all residues of H(s) at poles on the imaginary axis are non-negative.

Passivity of Regular MIMO Systems:

Consider a regular MIMO system

ẋ(t) = Ax(t)+Bu(t); (2.28)

y(t) = CT x(t)+Du(t), (2.29)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rn×m, D ∈ Rm×m, and assume that A is Hurwitz. The
corresponding MIMO transfer function is given by

H(s) = D+CT (sI−A)−1B. (2.30)

Again, we present these conditions separately for D+DT non-singular and D+DT singular.

Theorem 9 [22], [23] Let A∈Rn×n be a real Hurwitz matrix and assume that Q=D+DT >

0. Then the transfer function matrix

H(s) = D+CT (sI−A)−1B (2.31)

is SPR if and only if the Hamiltonian matrix given by

[
−A+BQ−1CT BQ−1BT

−CQ−1CT AT −CQ−1BT

]
has no eigenvalues on the imaginary axis.
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Theorem 10 [26] Let A ∈ Rn×n be a real Hurwitz matrix with D+DT singular. Then the
transfer function matrix

H(s) = D+CT (sI−A)−1B (2.32)

satisfies H( jω)+H∗( jω) > 0 for all finite ω if and only if the Q+QT > 0, where Q =

D−CT A−1B and the Hamiltonian matrix given by

N =

[
−(A−1 +A−1BQ−1CT A−1) A−1BQ−1BT A−T

−A−TCQ−1CT A−1 (A−1 +A−1BQ−1CT A−1)T

]
, (2.33)

has no eigenvalues on the imaginary axis, except at the origin.

2.3 M I X E D P RO P E RT Y O F LT I S Y S T E M S

LTI “mixed” systems, as defined in the frequency domain in [44], are systems that, in some
frequency bands, have passivity-type properties, while in the remaining frequency bands, may
lose these properties but instead have small gain-type properties; there exist no frequencies
over which a “mixed” system has neither of the notions of these properties associated with
it. In appropriate circumstances, multipliers (or weights) may be used to scale systems in
feedback interconnections that do not exhibit mixtures of small gain and passivity properties
into “mixed” systems frameworks [38]. Before defining the mixed property, we define an
important property known as causality.

Definition 9 A system is causal if and only if for all input pairs u1(t) and u2(t) such that

u1(t) = u2(t), t ≤ t0 ∀t0

the two corresponding outputs satisfy

y1(t) = y2(t), t ≤ t0

If the above condition is not satisfied, then the system is able to anticipate the difference
in the inputs before it occurs, which is not possible for physical systems. For LTI systems,
simpler defintions of causality can be stated.

Definition 10 [104] Let h(t) be the impulse response for a system and H(s) =
∫ +∞

−∞
h(t)e−stdt

be the correponding bilateral laplace transform. Then the system is causal if and only if

h(t) = 0 t < 0, (2.34)

or equivalently,

1. H(s) is defined and analytic in a half-plane ℜ(s) > σ0 and
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2. H(s) grows not faster than a polynomial for ℜ(s) > σ0, for some σ0.

It is well know that if an LTI system is passive, then it is also causal [104], however, mixed
property is based on violation of passivity. Hence, based on the above defintion of causality
and conditions imposed by stability, we restrict our defintion of mixed property to RH ∞

tranfer function matrices.

Mathematical Formulation of “mixed” property:

Consider square transfer function matrix M ∈RH ∞. Suppose that a,b ∈R.

Definition 11 [44] A square transfer function matrix M ∈RH ∞ is said to be input and
output strictly passive over the frequency interval [a,b], (−∞,a], [b,∞) or (−∞,∞) if there
exist k, l > 0 such that

−kM∗( jω)M( jω)+M∗( jω)+M( jω)− lI ≥ 0

for all ω ∈ [a,b], (−∞,a], [b,∞) or (−∞,∞), respectively.

We will say that the system is input strictly passive over a frequency interval if Definition
11 is satisfied with k = 0; output strictly passive over a frequency interval if the definition
is satisfied with l = 0; and passive over a frequency interval if it is satisfied with k =

l = 0. Note that any M( jω) satisfying Definition 11 over the frequency interval (−∞,a],
[b,∞) or (−∞,∞) must be such that limω→±∞ λi[M∗( jω) + M( jω)] = cpi > 0 for all i,
where λi ∈R denotes the ith eigenvalue of the Hermitian matrix M∗( jω)+M( jω). Then
limω→±∞ det[M∗( jω)+M( jω)] 6= 0.

Definition 12 [44] Define the system gain over the frequency interval [a,b], (−∞,a], [b,∞)

or (−∞,∞) as

ε := inf{ε̄ ∈R+ : −M∗( jω)M( jω)+ ε̄
2I ≥ 0

for all ω ∈ [a,b], (−∞,a], [b,∞) or (−∞,∞), respectively}.

The transfer function matrix M ∈RH ∞ is said to have a gain of less than one over the
frequency interval [a,b], (−∞,a], [b,∞) or (−∞,∞), respectively if ε < 1.

In the following, we present an important relationship, connecting passivity and small gain
properties of a transfer function. This relationship will be used later to develop stability
results for “mixed” regular and descriptor systems.

Lemma 2 (Scattering Property) Suppose that H ∈RL ∞ and that, at some ω ∈R∪{±∞},
H∗( jω)+H( jω) ≥ 0. Let S( jω) := (H( jω)− I)(I +H( jω))−1. Then −S∗( jω)S( jω)+

I ≥ 0.
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For any system satisfying Definition 12 with gain of less than one over the frequency interval
(−∞,a], [b,∞) or (−∞,∞) it must be so that limω→±∞ λi[−M∗( jω)M( jω)+ I] = csi > 0 for
all i, where λi ∈R denotes the ith eigenvalue of the Hermitian matrix −M∗( jω)M( jω)+ I.
Then limω→±∞ det[−M∗( jω)M( jω)+ I] 6= 0. We now define a “mixed” system similarly
to [44].

Definition 13 A square transfer function matrix M ∈RH ∞ is said to be “mixed” if for
each frequency ω ∈R∪{±∞}: either

(i) −kM∗( jω)M( jω)+M∗( jω)+M( jω)− lI ≥ 0; and/or

(ii) −M∗( jω)M( jω)+ ε2I ≥ 0.

The constants k, l > 0 and ε < 1 are independent of ω .

2.3.1 Testing for mixedness

Before analysing the methods to test “mixedness” of descriptor systems, we review the
methods to test “mixedness” of regular systems.

“Mixedness” of Regular MIMO Systems:

A test for determining whether MIMO, LTI systems of the form (2.28-2.29) have the property
of “mixedness” was introduced in [44]. This test was presented as a means of ascertaining
“mixedness”; however, it is a procedure that can be adapted to test for other properties as
well (for example, by setting the parameter (ε), denoting the gain of a system over a certain
frequency interval, to a value of greater than one).

Lemma 3 Suppose that k, l ∈R and define

M1( jω) = −kM∗( jω)M( jω)+M∗( jω)+M( jω)− lI (2.35)

Let Y := I− kD and suppose that X1 := −kDT D+DT +D− lI is invertible. For some
ω ∈ [a,b], the matrix H1( jω) has a zero eigenvalue if and only if the matrix H1 has an
eigenvalue on the imaginary axis between and including − ja and − jb, where

N1 :=

(
−A+BX−1

1 Y TCT −BX−1
1 BT

kCCT +CY X−1
1 Y TCT AT −CY X−1

1 BT

)
.

Lemma 4 Suppose that ε ∈R\{0} and define

M2( jω) = −M∗( jω)M( jω)+ ε
2I. (2.36)
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Suppose that X2 :=−DT D+ ε2I is invertible. For some ω ∈ [a,b], the matrix M2( jω) has a
zero eigenvalue if and only if the matrix M2 has an eigenvalue on the imaginary axis between
and including − ja and − jb, where

N2 :=

(
−A−BX−1

2 DTCT −BX−1
2 BT

kCCT +CDX−1
2 DTCT AT +CDX−1

2 BT

)
.

We also note the following:

• there exist k, l > 0 such that −kM( jω)∗M( jω)+M( jω)∗+M( jω)− lI ≥ 0 for all
ω ∈ [a,b] if and only if M( jω)∗+M( jω) > 0 for all ω ∈ [a,b];

• under the assumption that det(M j∞)∗+M j∞)) 6= 0, there exist k, l > 0 such that
−kM( jω)∗M( jω)+M( jω)∗+M( jω)−lI≥ 0 for all ω ∈ (−∞,b], [a,∞) or (−∞,∞)

if and only if M( jω)∗+M( jω) > 0 for all ω ∈ (−∞,b], [a,∞) or (−∞,∞), respec-
tively;

• there exists ε < 1 such that −M( jω)∗M( jω)+ ε2I ≥ 0 for all ω ∈ [a,b] if and only
if −M( jω)∗M( jω)+ I > 0 for all ω ∈ [a,b];

• under the assumption that det(−M j∞)∗M j∞)+ I) 6= 0, there exists ε < 1 such that
−M( jω)∗M( jω) + ε2I ≥ 0 for all ω ∈ (−∞,b], [a,∞) or (−∞,∞) if and only if
−M( jω)∗M( jω)+ I > 0 for all ω ∈ (−∞,b], [a,∞) or (−∞,∞), respectively.

In other words, there are cases in which the free parameters k, l and ε can be eliminated from
the test; that is, we can set k = l = 0 and ε = 1 when applying Lemmas 3 and 4.

Now let k = l = 0, then M1( jω) = M( jω)+M∗( jω). Similarly, let ε = 1, then M2( jω) =

−M∗( jω)M( jω)+ I. Now consider Lemmas 3 and 4 and set

Ωp := {ω ∈ [−∞,∞] : N1 has an eigenvalue on the imaginary axis jω}
Ωs := {ω ∈ [−∞,∞] : N2 has an eigenvalue on the imaginary axis jω}.

Suppose that we divide the real axis −∞ to ∞ into smaller intervals, where any elements of
Ωp and Ωs are set as open interval endpoints, as follows:

Division group 1 := (−∞,ωp1), (ωp1 ,ωp2), . . . , (ωpn−1 ,ωpn), (ωpn ,∞)

Division group 2 := (−∞,ωs1), (ωs1 ,ωs2), . . . , (ωsm−1 ,ωsm), (ωsm ,∞)

where n = number of elements in Ωp; m = number of elements in Ωs; ωp1 ,ωp2 , . . . ,ωpn de-
note the elements of Ωp listed in increasing order; and ωs1 ,ωs2 , . . . ,ωsm denote the elements
of Ωs listed in increasing order.

Let IN1 denote the set of ω belonging to the intervals over which M1( jω)> 0 and IN2 denote
the set of ω belonging to the intervals over which M2( jω) > 0. Then we have the following
result.
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Theorem 11 The following two statements are equivalent:

(i) a continuous-time system with transfer function matrix M(s) ∈RH ∞ is a “mixed”
system;

(ii) IN1 ∪ IN2 = {ω ∈R : −∞≤ ω ≤ ∞}.





3
PA S S I V I T Y

In this chapter, we develop easily verifiable, compact spectral conditions for check-
ing PR (or SPR) property of SISO and MIMO descriptor systems. To obtain our re-
sults, we use only elementary concepts from linear algebra and existing results on
strict positive realness for regular systems. This construction results in a test that
involves only the evaluation of the eigenvalues of a matrix that is determined in
an elementary manner from the matrices E,A,B,C,D; while avoiding generalized
eigenvalue calculation.

3.1 I N T RO D U C T I O N

In this chapter, we consider passivity properties of descriptor systems given by

Eẋ(t) = Ax(t)+Bu(t);

y(t) = CT x(t)+Du(t), (3.1)

where E,A ∈Rn×n,B ∈Rn×m,C ∈Rn×m, D ∈Rm×m and rank(E) = p < n. Passivity of the
descriptor system defined above is equivalent positive realness of

H(s) = D+CT (sE−A)−1B. (3.2)

The traditional approach towards checking passivity of descriptor systems requires transfor-
mation of the original system into a special form using involved numerical linear algebraic
techniques. In this chapter, we use the ideas of full rank decomposition and reciprocal sys-
tems to obtain a convenient realization for our analysis. This realization yields an immediate
connection to regular systems and reveals a direct link to the Kalman-Yacubovich-Popov
Lemma. Most importantly, our approach results in construction of passivity tests that only
involve the evaluation of simple eigenvalues of a matrix, determined in an elementary manner
from E,A,B,C,D. Also, our passivity tests for descriptor systems for all finite frequencies
do not need a priori knowledge of descriptor system index.

In this chapter, we consider passivity of index-one and index-two descriptor systems sep-
arately for both SISO and MIMO cases. Finally, we summarize all results and show that our
passivity tests are independent of the index.

37



38 PA S S I V I T Y

3.2 P R E L I M I NA RY R E S U LT S

Here, we present some important properties of LTI descriptor systems regarding passivity
and some preliminary results.

3.2.1 Passivity of descriptor systems: definitions

Special nature of descriptor system transfer functions can be observed using the Weierstrass
canonical form (Theorem 4) to partition the matrices CT and B as

[
CT

1 CT
2

]
=CT T and

[
B1

B2

]
= SB. (3.3)

Then we can express the descriptor system transfer function as

H(s) = D+CT (sE−A)−1B

= D+
[
CT

1 CT
2

][(sIp− Jp)−1 0

0 −(In−p− sN)−1

][
B1

B2

]

= D−CT
2 B2 +CT

1 (sIp− Jp)
−1B1−

∞

∑
i=1

siCT
2 NiB2

In the above expression, Hp(s) = D−CT
2 B2 +CT

1 (sIp− Jp)−1B1 is the proper part and
H∞(s) = −∑

∞
i=1 siCT

2 NiB2 is the improper part. This decoupling helps us to conclude that
descriptor systems having index greater than two cannot be PR (passive). This is clear from
Definition 6, according to which: poles of a passive transfer function matrix at infinity, if
they exist are simple and their residue is positive semi-definite. Hence, positive realness of
an index-two transfer function matrix H(s) is equivalent to positive realness of the proper
part Hp(s) and positive semi-definiteness of −CT

2 NB2 [16]. This condition is obvious from
the fact that for all finite ω ,

H( jω)+H( jω)∗ = Hp( jω)− (CT
2 NB2)( jω)+Hp( jω)∗− (CT

2 NB2)(− jω)

= Hp( jω)+Hp( jω)∗ (3.4)

For the index-one case, the transfer function matrices are proper, hence regular definitions
of passivity apply.

From the definitions of passivity, the strict passivity and strict positive realness, and the above
discussion on passivity of descriptor systems, it can be deduced that the condition common
to all the definitions involves checking for positive definiteness (or semi-definiteness) of
H( jω) +H( jω)∗. Other side conditions involve (easily verifiable) point conditions that
arise due to the behaviour of H(s) at infinity. Since the aforementioned condition is common
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to all definitions, and since this must be checked for all ω , in this thesis, we primarily focus
on the condition

H( jω)+H( jω)∗ > 0 for all finite ω (3.5)

for index-one and index-two descriptor systems in both SISO and MIMO cases. We will also
discuss the behaviour of H(s) at jω = j∞ for each case of study.

The alternative definitions requiring the existence of a positive ε such that H(s− ε) is
positive real will be considered for a special case of strictly proper descriptor systems. We
call this property KYP−SPR, as it is a notion of strict positive realness that is consistent
with the KYP Lemma for regular systems.

3.2.2 Order reduction of LTI descriptor systems

A direct transformation to the Weierstrass canonical form can be numerically unstable and
expensive [17], hence alternative methods of simplifying the analysis of descriptor systems
will be analysed in this thesis. The following results are useful in reducing the stability
problem of a descriptor system to that of a lower-order system. Before stating our results,
we assume that all descriptor systems considered in this chapter satisfy the conditions that
det[sE −A] 6≡ 0 and that all finite poles of det[sE −A] are in the Open Left Half of the
Complex Plane (OLHP), respectively.

Our results are based on the full rank decomposition of singular matrices explained below:

A pair of matrices (X ,Y ) is a decomposition of E ∈Rn×n if

E = XY T . (3.6)

If, in addition, X and Y both have full column rank, we say that (X ,Y ) is a full rank
decomposition of E.

Note that if (X ,Y ) is a full rank decomposition of E ∈Rn×n and rank(E) = r, then, X ,Y ∈
Rn×r and rank(X) = rank(Y ) = r.

Lemma 5 (Order reduction) Consider a descriptor system described by (2.3) and suppose
that (X ,Y ) is a decomposition of E, then x(·) is a solution to system (2.3) if and only if z(·)
is a solution to the descriptor system

Ẽż = z, (3.7)

where

Ẽ = Y T A−1X . (3.8)
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and

z(t) = Y T x(t) (3.9)

such that C (Ẽ, I) = Y T C (E,A) = Y T C . Hence, global uniformly exponential stability of
the new system (6.10) and the original system (2.3) are equivalent.

PROOF: Consider any solution x(·) of the original system (2.3) and let

z(t) = Y T x(t) (3.10)

and XY T ẋ = Ax. Since A is invertible, we can multiply both sides of the last equation by
Y T A−1 to obtain Y T A−1XY T ẋ = Y T x that is,

Ẽż = z, (3.11)

where Ẽ = Y T A−1X . We now claim that there is a matrix T such that x(t) = T z(t) where
x(t) is in the consistency space C of (E,A). Since C and the kernel of E intersect only at
zero and the kernel of Y T is contained in the kernel of E, it follows that C and the kernel
of Y T intersect only at zero. This implies that the restriction of Y T to C yields a one-to-one
map from C onto the subspace Y T C . Thus, this map has an inverse map T from Y T C to C ;
hence

x(t) = T z(t) . (3.12)

We now show that the consistency space of (Ẽ, I) is Y T C . Considering k sufficiently large,
we have

C = Im((A−1E)k),

C (Ẽ, I) = Im(Ẽk) = Im(Ẽk+1).

Now note that

Y T (A−1E)k = Y T (A−1XY T )k = (Y T A−1X)kY T = ẼkY T . (3.13)

Since Ẽ = Y T A−1X , we must have

Im(Ẽk) = Im(Ẽk+1) = Im(ẼkY T A−1X) ⊂ Im(ẼkY T ) ⊂ Im(Ẽk) .

This implies that Im(ẼkY T ) = Im(Ẽk) = C (Ẽ, I). It now follows from (6.18) that Y T C =

Y T Im((A−1E)k) = Im(ẼkY T ). This yields the desired result that C (Ẽ, I) = Y T C .

Consider now any continuous solution z(·) of the new descriptor system (2.3), and let
x(t) = T z(t). We will show that x(·) is a solution of the original system. Since z(t) is in
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Y T C and x(t) = T z(t), and since T is the inverse of Y T restricted to C , we see that x(t) ∈ C

and z(t) = Y T x(t). Also

x = T z = T Ẽż = TY T A−1XY T ẋ = TY T A−1Eẋ.

Since x is in C , we have A−1Ex in C ; recalling that TY T is the identity operator on C , we
obtain that TY T A−1Eẋ = A−1Eẋ. Thus Eẋ = Ax. Q.E.D.

Lemma 6 (Stability of the reduced order system) The descriptor pair (E,A) is stable if
and only if the non-zero eigenvalues of Ẽ have negative real parts.

PROOF: Since det(A) 6= 0, the pair (E,A) has no zero eigenvalues.

Also, det[λE−A] = (−1)n det[A] det[I−λA−1XY T ]

= (−1)n det[A] det[I−λY T A−1X ]

= (−1)n det[A]det[I−λ Ẽ]

= (−1)n−r det(A)det[λ Ẽ− I] .

This gives the result that the eigenvalues of (E,A) and (Ẽ, I) are the same. Hence the eigen-
values of (E,A) are the inverses of the nonzero eigenvalues of Ẽ. Thus, (E,A) is stable if
and only if the non-zero eigenvalues of Ẽ have negative real parts. Q.E.D.

And for λ 6= 0,

det[λ I−A−1E] = det[λ I−A−1XY T ]

= λ
n det[I−λ

−1A−1XY T ]

= λ
n det[I−λ

−1Y T A−1X ]

= λ
n det[I−λ

−1Ẽ]

= λ
n−r det[λ I− Ẽ] .

By continuity, the above equation also holds for λ = 0. Thus the eigenvalues of A−1E consist
of n− r zeros and the eigenvalues of Ẽ.

Lemma 7 (Index of the reduced order system) The index of the equivalent reduced order
system (Ẽ, I) is k∗−1, where k∗ is the index of (E,A).

PROOF: Recall that the index-k∗ of (E,A) is the smallest integer k for which

Im((A−1E)k+1) = Im((A−1E)k). (3.14)

Since E is singular, k∗ ≥ 1. Note that for any k ≥ 1,

(A−1E)k = (A−1XY T )k = A−1X(Y T A−1X)k−1Y T = A−1XẼk−1Y T .
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Since Y T has full row rank, it now follows that

Im((A−1E)k) = A−1X Im(Ẽk−1) (3.15)

Since A−1X is full column rank, it follows that equation (3.14) is equivalent to

Im(Ẽk) = Im(Ẽk−1);

hence the index of (Ẽ, I) is k∗−1. Q.E.D.

The above lemmas are useful in reducing a descriptor system to an equivalent lower-order
system with lower index. If r < n, then the new system (6.10) is of order r (number of state
variables) and index-(k∗−1). One can iteratively apply Lemma 5 to achieve further order
reduction, provided that there is a decomposition (X̃ ,Ỹ ) of Ẽ with X̃ ,Ỹ ∈Rr×r̃ with r̃ < r.
Since a square matrix always has a full rank decomposition, one can always iteratively reduce
a single linear system (E,A) to a regular system. The above lemmas also yield the following
Corollary.

Corollary 1 Assume that (E,A) is a stable index-one descriptor system, and let(X ,Y ) be a
full rank decomposition of E. Then, the matrix Y T A−1X is Hurwitz stable (and consequently
invertible).

Comment 1 If E is singular, we make the following claim, where the nullity of E is the
dimension of the kernel of E and equals n− r with r = rank(E).

A system is index-one if and only if the number of zero eigenvalues of A−1E equals the nullity
of E.

To see this, note that the number of zero of eigenvalues of A−1E is the algebraic multiplicity
of zero as an eigenvalue of A−1E, whereas the nullity of E (which equals the nullity of
A−1E) is the geometric multiplicity of zero as an eigenvalue of A−1E. The algebraic and
geometric multiplicities are equal if and only if A−1E and (A−1E)2 have the same nullity;
this is equivalent to Im((A−1E)2) = Im(A−1E), that is, the system is index one.

In this thesis, we also frequently use the Matrix Inversion Lemma as stated below.

Lemma 8 For matrices A ∈Rn×n, B ∈Rn×m, C ∈Rn×m and D ∈ Rm×m we have

(A−BD−1C)−1 = A−1 +A−1B(D−CA−1B)−1CA−1.

In the following, these results will be applied to index-one and index-two descriptor systems
separately.
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The following result will allow us to deduce many properties of descriptor systems in an
elementary manner. The evolution follows ideas introduced in [105].

Theorem 12 Consider the following index-one descriptor transfer function:

H(s) = D+CT (sE−A)−1B. (3.16)

Let E = XY T be a full rank decomposition of the singular matrix E. Then H(s) can be
written as

H(s) = D̃+ C̃T (sI− Ã)−1B̃ (3.17)

with

Ã = (Y T A−1X)−1 (3.18)

B̃ =
(
Y T A−1X

)−1Y T A−1B (3.19)

C̃T = CT A−1X
(
Y T A−1X

)−1 (3.20)

D̃ = D−CT A−1B+CT A−1X
(
Y T A−1X

)−1Y T A−1B. (3.21)

PROOF : The proof follows by applying the matrix inversion lemma to (3.17) twice. We
have.

H(s) = D+CT (XY T s−A)−1B

= D−CT
(

A−1 +A−1X
(1

s
I−Y T A−1X)−1Y T A−1

)
B

= D−CT A−1B−CT A−1X
(

1
s

I−Y T A−1X
)−1

Y T A−1B

Recall that the matrix Y T A−1X is Hurwitz (and invertible) if the descriptor system is index-
one. Now apply the matrix inversion lemma again. Thus H(s) = D-CT A−1B +

CT A−1X
(
(Y T A−1X)−1+(Y T A−1X)−1(sI−Y T A−1X)−1)−1(Y T A−1X)−1

)
Y T A−1B. By gath-

ering terms together we have that

H(s) = D̃+ C̃T (sI− Ã)−1B̃. (3.22)

Q.E.D.

Comment 2 Writing H(s) as a regular transfer function allows spectral methods to be used
to check for passivity. These methods involve building pairs of matrices from Ã, B̃,C̃, D̃ for
MIMO systems and Ã, b̃, c̃, d̃ for SISO systems, and checking eigenvalues of their products; see
[106] [107] [108].
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Recall, we are interested in checking if

H( jω)+H( jω)∗ > 0 (3.23)

for all real and finite ω . In the case of SISO systems, this typically reduces to checking the
eigenvalues of the matrix product

A−1(A−1 +A−1b(d− cT A−1b)−1cT A−1) (3.24)

[107], where b,c ∈ Rn and d ∈ R. In the case of a MIMO system, one obtains a similar
condition on the Hamiltonian matrix [108][

−(A−1 +A−1BQ−1CT A−1) A−1BQ−1BT A−T

−A−TCQ−1CT A−1 (A−1 +A−1BQ−1CT A−1)T

]

with Q = D−CT A−1B+DT −BT A−TC, B,C ∈Rn×m and D∈Rm×m. Applying these results
to descriptor systems may appear to be problematic since the matrices appearing in H(s)
involve the full rank decomposition E = XY T , which is not unique. We now show that the
spectral conditions can be written in a manner that is independent of X and Y . We take care
of these two cases in the following lemmas.

Lemma 9 Define the matrices

M−1 = A−1 +A−1b(d− cT A−1b)−1cT A−1, (3.25)

M̃−1 = Ã−1 + Ã−1b̃(d̃− c̃T Ã−1b̃)−1c̃T Ã−1. (3.26)

Then all non-zero eigenvalues of the reduced order matrix product Ã−1M̃−1 coincide with
the non-zero eigenvalues of EA−1EM−1.

PROOF : Observing that d̃− c̃T Ã−1b̃ = d− cT A−1b, we have

M̃−1 = Ã−1 + Ã−1b̃(d̃− c̃T Ã−1b̃)−1c̃T Ã−1

= (Y T A−1X)+Y T A−1b(d− cT A−1b)−1cT A−1X

= Y T M−1X .

Hence, Ã−1M̃−1 = Y T A−1XY T M−1X . Non-zero eigenvalues of any two matrix products
RST and ST R coincide for any two matrices R and S of compatible dimensions [63]. Hence
the non-zero eigenvalues of Y T A−1XY T M−1X coincide with the non-zero eigenvalues of
XY T A−1XY T M−1. Since E = XY T , we have XY T A−1XY T M−1 = EA−1EM−1. Also note
that if Ã−1M̃−1 has η zero eigenvalues, then EA−1EM−1 has n− r+η zero eigenvalues,
where r = rank(E). Q.E.D.
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Lemma 10 Define the matrices

N =

[
−(A−1 +A−1BQ−1CT A−1) A−1BQ−1BT A−T

−A−TCQ−1CT A−1 (A−1 +A−1BQ−1CT A−1)T

]
(3.27)

with Q = D−CT A−1B+DT −BT A−TC,

Ñ =

[
−(Ã−1 + Ã−1B̃Q̃−1C̃T Ã−1) Ã−1B̃Q̃−1B̃T Ã−T

−Ã−TC̃Q̃−1C̃T Ã−1 (Ã−1 + Ã−1B̃Q̃−1C̃T Ã−1)T

]
(3.28)

with Q̃ = D̃−C̃T Ã−1B̃+ D̃T − B̃T Ã−TC̃. Then all non-zero eigenvalues of the reduced-order

Hamiltonian matrix Ñ coincide with the non-zero eigenvalues of the matrix

[
E 0

0 ET

]
N.

PROOF : Observing that Q̃ = Q, we have

Ñ =

[
−(Ã−1 + Ã−1B̃Q̃−1C̃T Ã−1) Ã−1B̃Q̃−1B̃T Ã−T

−Ã−TC̃Q̃−1C̃T Ã−1 (Ã−1 + Ã−1B̃Q̃−1C̃T Ã−1)T

]

=

[
−Y T (A−1 +A−1BQ−1CT A−1)X Y T (A−1BQ−1BT A−T )Y

XT (−A−TCQ−1CT A−1)X XT (A−1 +A−1BQ−1CT A−1)TY

]

=

[
Y T 0

0 XT

]

×

[
−(A−1 +A−1BQ−1CT A−1) A−1BQ−1BT A−T

−A−TCQ−1CT A−1 (A−1 +A−1BQ−1CT A−1)T

][
X 0

0 Y

]

=

[
Y T 0

0 XT

]
N

[
X 0

0 Y

]

Hence, the non-zero eigenvalues of Ñ coincide with the non-zero eigenvalues of[
X 0

0 Y

][
Y T 0

0 XT

]
N =

[
E 0

0 ET

]
N.

Also note that if Ñ has η zero eigenvalues, then

[
E 0

0 ET

]
N has 2n−2r+η zero eigenval-

ues, where r = rank(E). Q.E.D.

Based on the observations of the previous section, we now give compact characterisations to
check whether H( jω)+H( jω)∗ > 0 for all finite ω . We begin with SISO systems and then
proceed to study MIMO systems.
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3.3.1 SISO index-one descriptor systems

Conditions for SISO systems can be obtained by recalling the following easily deduced fact
[107].

Consider the SISO transfer function H( jω) = d + cT (sI−A)−1b with A a Hurwitz matrix.
Then H( jω)+H( jω)∗ > 0 for all finite ω if and only if d− cT A−1b > 0 and the matrix

product A−1M−1 = A−1
(

A−1 +A−1b(d− cT A−1b)−1cT A−1
)

has no negative eigenvalues.
This fact can be deduced from the expression

ℜ[H( jω)] = (d− cT A−1b).det
[

1
ω2 +A−2

]−1

×det
[

1
ω2 +A−1

(
A−1 +A−1b(d− cT A−1b)−1cT A−1

)]
.

This observation leads to the following result for scalar systems.

Theorem 13 Consider the scalar stable index-one descriptor transfer function with d−
cT A−1b > 0,

H(s) = d + cT (sE−A)−1b.

H( jω)+H( jω)∗> 0 for all finite ω if and only if EA−1EM−1 has no negative eigenvalues.

PROOF : From Corollary 1 and Theorem 12, we can observe that Ã = (Y T A−1X)−1 is Hur-
witz. Also, observe that d̃− c̃T Ã−1b̃ = d− cT A−1b. Now, we can apply Lemma 9 to obtain
the desired result. Q.E.D.

SISO index-one transfer functions at infinity: The value of transfer function H(s) at s= j∞
is given by

H( j∞) = d− cT A−1b+ cT A−1X
(
Y T A−1X

)−1Y T A−1b

= (d− cT A−1b)
[
1+(d− cT A−1b)−1cT A−1X

(
Y T A−1X

)−1Y T A−1b
]

= (d− cT A−1b).det
[
1+Y T A−1b(d− cT A−1b)−1cT A−1X

(
Y T A−1X

)−1
]

= (d− cT A−1b).det
[
Y T A−1X +Y T A−1b(d− cT A−1b)−1cT A−1X

]
×det[

(
Y T A−1X

)−1
].

Case 1: When H( j∞) is positive.
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H( j∞) is positive if and only if d− cT A−1b > 0 and

det
[
Y T A−1X +Y T A−1b(d− cT A−1b)−1cT A−1X

]
.det[Y T A−1X ] > 0.

This is possible if and only if

Y T A−1X +Y T A−1b(d− cT A−1b)−1cT A−1XY T A−1X

has no negative real eigenvalues and no zero eigenvalues. This is further equivalent to the
condition that

X
(
Y T A−1 +Y T A−1b(d− cT A−1b)−1cT A−1XY T A−1)= EM−1EA−1

has no negative real eigenvalues and at most n− r zero eigenvalues. This leads to an improve-
ment of Theorem 13, and we can state the following.

Theorem 14 Consider the scalar stable index-one descriptor transfer function with d−
cT A−1b > 0,

H(s) = d + cT (sE−A)−1b. (3.29)

Then H( jω)+H( jω)∗ > 0 for all ω if and only if EA−1EM−1 has no negative eigenvalues
and at most n− r zero eigenvalues.

Case 2: When H( j∞) is zero.

When H( j∞) = 0, the descriptor system transfer function is strictly proper, and hence we
obtain conditions for strict positive realness of H(s). For strict positive realness, we use the
definition that there exists an ε > 0 such that H(s−ε) is positive real. In this thesis, we term
this definition KYP-SPR.

Recall again the conditions for regular SISO systems to be strictly positive real [107].

Consider the SISO transfer function H( jω) = cT (sI −A)−1b with A a Hurwitz matrix.

Then H(s) is KYP-SPR if and only if −cT A−1b > 0 and the matrix product A−1
(

A−1−

A−1b(cT A−1b)−1cT A−1
)

has no negative eigenvalues and at most one zero eigenvalue.

Theorem 15 Consider the scalar stable index-one descriptor transfer function with d−
cT A−1b > 0,

H(s) = d + cT (sE−A)−1b. (3.30)

Then H(s) is KYP-SPR if and only if EA−1EM−1 has no negative eigenvalues and at most
n− r+ 1 zero eigenvalues.



48 PA S S I V I T Y

PROOF: From Theorem 12,

H(0) = d̃− c̃T Ã−1b̃ = d− cT A−1b > 0 and

H( j∞) = d̃ = 0

⇒ d− cT A−1b+ cT A−1X
(
Y T A−1X

)−1Y T A−1b = 0

⇒ cT A−1X
(
Y T A−1X

)−1Y T A−1b = −(d− cT A−1b)

Also observe that c̃T Ã−1b̃ = cT A−1X
(
Y T A−1X

)−1Y T A−1b = −(d− cT A−1b), and we can
apply Lemma 9 to obtain the desired result. Q.E.D.

3.3.2 MIMO index-one descriptor systems

MIMO systems can be dealt with by recalling the following observation from [106].

Consider the MIMO transfer function H(s) = D+CT (sI−A)−1B with A a Hurwitz matrix,
and Q = D−CT A−1B. Then H( jω)+H( jω)∗ > 0 for all finite ω if and only if Q+QT > 0
and the matrix N in 2.33 has no eigenvalues on the imaginary axis except at the origin.

This observation leads to the following result for scalar systems.

Theorem 16 Consider the MIMO stable index-one descriptor transfer function

H(s) = D+CT (sE−A)−1B

with Q = D−CT A−1B and Q+QT > 0. Then H( jω)+H( jω)∗ > 0 for all finite ω if and

only if

[
E 0

0 ET

]
N has no eigenvalues on the imaginary axis except at the origin.

PROOF : The proof follows directly from Lemma 10 and the fact that Y T A−1X is a Hurwitz
matrix. Q.E.D.

MIMO index-one transfer functions at infinity: From Theorem 12, the behaviour of
H( jω)+H( jω)∗ at jω = j∞ can be understood from

det[H( jω)+H( jω)∗] = det[Q̃].det
[

1
jω

I− Ã
]

.det
[

1
jω

I + ÃT
]

×det
[

1
jω

I + Ñ
]

, (3.31)

where Q̃ = D̃−C̃T Ã−1B̃+ D̃T − B̃T Ã−TC̃ > 0.
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Case 1: H( j∞)+H( j∞)∗ is positive definite.

Assume Ñ has no imaginary eigenvalues, then by continuity H( j∞)+H( j∞)∗ > 0 if and
only if det[H( j∞)+H( j∞)∗] 6= 0. Since Ã = (Y T A−1X)−1 is Hurwitz,

det[H( j∞)+H( j∞)∗] 6= 0⇔ det[Ñ] 6= 0.

Thus Ñ has no zero eigenvalues, then

[
E 0

0 ET

]
N has at most 2n−2r zero eigenvalues. This

leads to an improvement of Theorem 16, and we can state that

Theorem 17 Consider the MIMO stable index-one descriptor transfer function

H(s) = D+CT (sE−A)−1B (3.32)

with Q = D−CT A−1B and Q+QT > 0. H( jω) +H( jω)∗ > 0 for all ω if and only if[
E 0

0 ET

]
N has no eigenvalues on the imaginary axis and at most 2n−2r zero eigenvalues.

Case 2: H( j∞)+H( j∞)∗ is not positive definite.

When H( j∞) +H( j∞)∗ = D̃+ D̃T is not positive definite, we can obtain conditions for
strict positive realness of H(s). Strict positive realness of MIMO transfer functions is based
on the additional side condition

lim
|ω|→∞

ω
2ρdet[H( jω)+H( jω)∗] 6= 0. (3.33)

where ρ is the nullity of D̃+ D̃T . In either case, the above limit is positive. Consider equation
(3.31) and observe that Q̃ > 0 and det

[
1
jω I− Ã

]
.det

[
1
jω I + ÃT

]
6= 0 for very large ω . Hence

the side condition is equivalent to

lim
|ω|→∞

ω
2ρ det

[
1
jω

I + Ñ
]
= lim
|ω|→∞

( jω)ρ det
[

1
jω

I + Ñ
]
6= 0.

This condition can be modified as

lim
|λ |→0

1
( jλ )ρ

det [ jλ I + Ñ] 6= 0. (3.34)

Condition (3.34) is equivalent to the condition that Ñ has no imaginary eigenvalues and ρ

zero eigenvalues. Thus H(s) is KYP-SPR if and only if

[
E 0

0 ET

]
N has no eigenvalues on the

imaginary axis and at most 2n−2r+ρ zero eigenvalues.
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3.4 I N D E X - T W O D E S C R I P T O R S Y S T E M S A N D H I G H E R

In this section, we consider index-two descriptor system transfer functions. Note that higher-
index descriptor systems are not of interest to us since they cannot be strictly positive real
[16]. If (E,A) is index-two descriptor system pair and (X ,Y ) is a full rank decomposition of
the singular matrix E, then, from Lemma 7, Y T A−1X is a singular matrix and (Y T A−1X , I)
is an index-one pair. Now we assume that (M,N) is a full rank decomposition of Y T A−1X ,
thus (NT M, I) is an index-0 descriptor system pair. Again, we focus on the condition that

H( jω)+H( jω)∗ > 0

for all finite and real ω . The behaviour of index-two transfer functions at ω = ∞ can be
understood from the sign of the residues calculated for poles at infinity. Several methods
have been proposed in the literature to calculate the residues and check for their signs [17],
[16]. Hence we do not focus on these conditions.

Lemma 11 Given an index-two descriptor system transfer function H(s) = D+CT (sE−
A)−1B, it can be written as

H(s) = D−CT A−1B − s(CT A−1EA−1B) (3.35)

− s(CT A−1XX1)

(
1
s

I−Y T
1 X1

)−1

Y T
1 Y T A−1B,

and the proper part of H(s) can be expressed as

Hp(s) = Dp +CT
p

(
1
s

I−Ap

)−1

Bp (3.36)

such that E = XY T and Y T A−1X = X1Y T
1 are full rank decompositions of E and Y T A−1X,

respectively, and

Ap = Y T
1 X1, Bp = (Y T

1 X1)
−1Y T

1 Y T A−1B,

CT
p = −CT A−1XX1, Dp = D−CT A−1B.

PROOF : The proof follows by dual application of the matrix inversion lemma to the transfer
function H(s) = D+CT (sE−A)−1B. From Theorem 12 we have

H(s) = D−CT A−1B−CT A−1X
(

1
s

I−Y T A−1X
)−1

Y T A−1B

Since the matrix Y T A−1X is singular and Y T A−1X = X1Y T
1 , we obtain

H(s) = D−CT A−1B− s(CT A−1X)
(
I− sX1Y T

1
)−1

Y T A−1B.
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Now, we apply the matrix inversion lemma again and use E = XY T . Thus,

H(s) = D−CT A−1B − s(CT A−1EA−1B)

− s(CT A−1XX1)

(
1
s

I−Y T
1 X1

)−1

Y T
1 Y T A−1B.

From equation (3.35), we can observe that the transfer function of an index-two descriptor
system has a simple pole at s = ∞. From equation (3.35), the residue of the pole at infinity
can be easily calculated as

K∞ = lim
jω→∞

1
jω

H( jω)

= −CT A−1EA−1B+CT A−1XX1(Y T
1 X1)

−1Y T
1 Y T A−1B.

Hence, the transfer function H(s) of an index-two descriptor system can be decoupled into a
proper transfer function Hp(s) and the improper part sK∞ given by

H(s) = Hp(s)+ sK∞.

Then Hp(s) can be calculated as shown below

Hp(s) = H(s)− sK∞

= D−CT A−1B− s(CT A−1XX1)

(
1
s

I−Y T
1 X1

)−1

Y T
1 Y T A−1B

−s(CT A−1XX1)(Y T
1 X1)

−1Y T
1 Y T A−1B

= D−CT A−1B

−s(CT A−1XX1)

((
1
s

I−Y T
1 X1

)−1

+(Y T
1 X1)

−1

)
Y T

1 Y T A−1B

= D−CT A−1B

−s(CT A−1XX1)

(
1
s

I−Y T
1 X1

)−1(1
s

I
)
(Y T

1 X1)
−1Y T

1 Y T A−1B

= D−CT A−1B− (CT A−1XX1)

(
1
s

I−Y T
1 X1

)−1

(Y T
1 X1)

−1Y T
1 Y T A−1B.

Thus the proper part of an index-two descriptor system can be expressed as

Hp(s) = Dp +CT
p

(
1
s

I−Ap

)−1

Bp,

where

Ap = Y T
1 X1, Bp = (Y T

1 X1)
−1Y T

1 Y T A−1B,

CT
p = −CT A−1XX1, Dp = D−CT A−1B. Q.E.D.

The following Lemmas illustrate spectral equivalences similar to earlier sections.
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Lemma 12 Define the matrices

M = (A−bd−1cT ), (3.37)

Mp = (Ap−bpd−1
p cT

p ). (3.38)

Then all non-zero eigenvalues of the reduced order matrix product ApMp coincide with the
non-zero eigenvalues of EM−1EA−1.

Proof : Consider

ApMp = Ap(Ap−bpd−1
p cT

p )

= Y T
1 X1

(
Y T

1 X1 +(Y T
1 X1)

−1Y T
1 Y T A−1b(d− cT A−1b)−1cT A−1XX1

)
=

(
(Y T

1 X1)
2 +Y T

1 Y T A−1b(d− cT A−1b)−1cT A−1XX1
)

= Y T
1
(
X1Y T

1 +Y T A−1b(d− cT A−1b)−1cT A−1X
)

X1.

Non-zero eigenvalues of any two matrix products RST and ST R coincide for any two matrices
R and S of compatible dimensions [63]. Hence the non-zero eigenvalues of ApMp coincide
with the non-zero eigenvalues of(

X1Y T
1 +Y T A−1b(d− cT A−1b)−1cT A−1X

)
X1Y T

1

=
(
Y T A−1X +Y T A−1b(d− cT A−1b)−1cT A−1X

)
Y T A−1X .

Further eigenvalues of Mp coincide with the non-zero eigenvalues of

XY T (A−1 +A−1b(d− cT A−1b)−1cT A−1)XY T A−1

= E
(
A−1 +A−1b(d− cT A−1b)−1cT A−1)EA−1

= E
(
A−bd−1cT )−1

EA−1.

It can observed that if ApMp has η number of zero eigenvalues, then EM−1EA−1 has
(n− r) + (r− q) +η = n− q+η number of zero eigenvalues, where n is dimension of
matrix E, r is the rank of matrix E and q is the number of finite eigenvalues of (E,A). Q.E.D.

Lemma 13 Define the matrices

N̄ =

[
−(A−1 +A−1BQ−1CT A−1) −A−1BQ−1BT A−T

A−TCQ−1CT A−1 (A−1 +A−1BQ−1CA−1)T

]

with Q = D−CT A−1B+DT −BT A−TC,

Np =

[
−Ap +BpQ−1

p CT
p −BpQ−1

p BT
p

CpQ−1
p CT

p (Ap−BpQ−1
p CT

p )
T

]

with Qp = Dp +DT
p . Then all non-zero eigenvalues of the reduced-order Hamiltonian matrix

Np coincide with the non-zero eigenvalues of the matrix

[
E 0

0 ET

]
N̄.



3.4 I N D E X - T W O D E S C R I P T O R S Y S T E M S A N D H I G H E R 53

Proof : As Q = Qp, we have

Np =

[
−Ap +BpQ−1CT

p −BpQ−1BT
p

CpQ−1CT
p (Ap−BpQ−1CT

p )
T

]
=

[
−Y T

1 X1− (Y T
1 X1)−1Y T

1 Y T A−1BQ−1CT A−1XX1 −(Y T
1 X1)−1Y T

1 Y T A−1BQ−1BT A−TYY1(Y T
1 X1)−T

XT
1 XT A−TCQ−1CT A−1XX1 (Y T

1 X1)T +XT
1 XT A−TCQ−T BT A−TYY1(Y T

1 X1)−T

]

=

[
(Y T

1 X1)−1Y T
1 0

0 XT
1

]
×[

−Y T A−1X−Y T A−1BQ−1CT A−1X −Y T A−1BQ−1BT A−TY

XT A−TCQ−1CT A−1X (Y T A−1X +Y T A−1BQ−1CT A−1X)T

]

×

[
X1 0

0 Y1(Y T
1 X1)−T

]
.

The non-zero eigenvalues of Np coincide with the non-zero eigenvalues of[
−Y T A−1X−Y T A−1BQ−1CT A−1X −Y T A−1BQ−1BT A−TY

XT A−TCQ−1CT A−1X (Y T A−1X +Y T A−1BQ−1CT A−1X)T

]

×

[
X1(Y T

1 X1)−1Y T
1 0

0 Y1(Y T
1 X1)−T XT

1

]
with an additional 2r−2q zero eigenvalues.

We briefly digress here to show that given a square matrix J ∈Rr×r with r−q zero eigen-
values and R,S ∈Rr×q such that rank(R) = rank(S) = q, the non zero eigenvalues of J and
JR(ST R)−1ST coincide. To see this, consider

det[λ I− JR(ST R)−1ST ] = λ
r det[I− 1

λ
JR(ST R)−1ST ]

= λ
r det[I− 1

λ
(ST R)−1ST JR]

= λ
r−q det[λST R−ST JR].det[(ST R)−1].

Hence, non-zero eigenvalues of JR(ST R)−1ST are given by det[λST R− ST JR] = 0. For
det[λST R− ST JR] = 0, there exist q non-zero scalars λi and non-zero vectors xi for i =
1, . . . ,q such that

ST JRxi = λiST Rxi.

Let yi = Rxi, then

ST Jyi = λiST yi⇒ ST (Jyi−λiyi) = 0.
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Thus Jyi−λiyi is in the nullspace of ST and yi = Rxi⇒ Jyi−λiyi is in the image space of R.
The nullspace of ST and the image of R coincide only at origin. Hence we have Jyi = λiyi

for i = 1, . . . ,q.

From the above discussion we can conclude that the non-zero eigenvalues of Np coincide
with the non-zero eigenvalues of[

−Y T A−1X−Y T A−1BQ−1CT A−1X −Y T A−1BQ−1BT A−TY

XT A−TCQ−1CT A−1X (Y T A−1X +Y T A−1BQ−1CT A−1X)T

]

=

[
Y T 0

0 XT

][
−(A−1 +A−1BQ−1CT A−1) A−1BQ−1BT A−T

−A−TCQ−1CT A−1 (A−1 +A−1BQ−1CT A−1)T

]

×

[
X 0

0 Y

]

=

[
Y T 0

0 XT

]
N̄

[
X 0

0 Y

]
.

Hence, the non-zero eigenvalues of Np coincide with the non-zero eigenvalues of[
X 0

0 Y

][
Y T 0

0 XT

]
N̄ =

[
E 0

0 ET

]
N̄.

It can observed that if Np has 2η zero eigenvalues, then

[
E 0

0 ET

]
N̄ has

(2n− 2r) + (2r− 2q) + 2η = 2n− 2q+ 2η zero eigenvalues, where n is the dimension
of the matrix E, r is the rank of the matrix E and q is the number of finite eigenvalues of
(E,A). Q.E.D.

3.4.1 SISO index-two descriptor systems

Conditions for SISO index-two descriptor systems can be obtained by recalling the fact that

H( jω)+H( jω)∗ = Hp( jω)+Hp( jω)∗.

This observation leads to the following result.

Theorem 18 Consider the scalar stable index-two descriptor transfer function with d−
cT A−1b > 0,

H(s) = d + cT (sE−A)−1b.

H( jω)+H( jω)∗> 0 for all finite ω if and only if EA−1EM−1 has no negative eigenvalues.
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PROOF : The proof is obvious from Lemma 12 and the results for index-one proper transfer
functions.

From spectral equivalence Lemma 12, we can also deduce that EA−1EM−1 can have at most
n−q zero eigenvalues, where q is the number of finite eigenvalues of (E,A).

3.4.2 MIMO index-two descriptor systems

Passivity tests for MIMO systems can be deduced in a similar way using Lemma 13, however,
we provide an alternate proof.

Theorem 19 Consider a stable index-two descriptor system H(s) = D+CT (sE−A)−1B.
H( jω)+H( jω)∗ > 0 for all finite ω if and only if:

(i) Q = D+DT −CT A−1B−BT A−TC > 0 and

(ii) the matrix[
−(A−1 +A−1BQ−1CT A−1) −A−1BQ−1BT A−T

A−TCQ−1CT A−1 (A−1 +A−1BQ−1CA−1)T

][
E 0

0 ET

]
(3.39)

has no eigenvalues on the imaginary axis except at the origin.

PROOF : (i) Since H( jω)+H( jω)∗ > 0, we have that Q = H(0)+H(0)∗ > 0 is positive
definite. Conversely, suppose now that Q is not positive definite. Then, H(0)+H(0)∗ cannot
be positive definite.

(ii) Suppose now that Q > 0. We have

H( jω) = D−CT A−1B−CT A−1X
(

1
jω

I−Y T A−1X
)−1

Y T A−1B

= D̄+ C̄T
(

1
jω

I− Ā
)−1

B̄,

where Ā = Y T A−1X , B̄ = Y T A−1B, C̄T = −CT A−1X , D̄ = D−CT A−1B, and this transfer
function is defined everywhere except at jω = j∞. This follows from the fact that the
descriptor system is stable, and consequently Ā = Y T A−1X has eigenvalues in the open left
half plane and at 0. Now we follow [106]. We wish to check that H( jω)+H( jω)∗ > 0 for
all finite ω ∈R. Recall that (i) is assumed to hold. Then, the following transfer function is
well defined for ω 6= 0

H
(

1
jω

)
= D̄+ C̄T ( jωI− Ā)−1B̄,
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and

H
(

1
jω

)
+H

(
1
jω

)∗
= D̄+ C̄T ( jωI− Ā)−1B̄+ D̄T − B̄T ( jωI + ĀT )−1C̄.

Recall that (i) ensures that Q = D̄+ D̄T > 0. Thus H( jω)+H( jω)∗ is positive definite at
jω = 0.

It also follows that the matrix Q is invertible. Thus, using a continuity argument, H( jω)+

H( jω)∗ can only become negative definite or indefinite for finite ω if there exists a finite

ω0 6= 0 such that δ

(
1

ω0

)
= det

[
H
(

1
jω0

)
+H

(
1

jω0

)∗]
= 0. Thus we have δ

(
1

ω0

)
= det(Q).det

[
I +[Q−1C̄T ,−Q−1B̄T ]

[
( jω0I− Ā)−1 0

0 ( jω0I + ĀT )−1

][
B̄

C̄

]]

= det(Q).det

[
I +

[
( jω0I− Ā)−1 0

0 ( jω0I + ĀT )−1

][
B̄

C̄

]
[Q−1C̄T ,−Q−1B̄T ]

]

= det

[
jω0I +

[
−Ā 0

0 ĀT

]
+

[
B̄

C̄

]
[Q−1C̄T ,−Q−1B̄T ]

]
×det(Q).det

[
( jω0I− Ā)−1)

]
.det
[
( jω0I + ĀT )−1] .

Since Ā has no eigenvalues on the imaginary axis, except at the origin, and Q is non-singular,
the non-existence of a finite ω0 6= 0 such that δ ( 1

ω0
) = 0 is equivalent to the condition that

the matrix

N̄ =

[
−Ā+ B̄Q−1C̄T −B̄Q−1B̄T

C̄Q−1C̄T (Ā− B̄Q−1C̄T )T

]
has no non-zero eigenvalues on the imaginary axis. Note:

N̄ =

 −Y T A−1X−Y T A−1BQ−1CT A−1X −Y T A−1BQ−1BT A−TY

XT A−TCQ−1CT A−1X
(

Y T A−1X +Y T A−1BQ−1CT A−1X
)T

 .

This matrix can be written as

N̄ =

[
Y T 0

0 XT

][
−(A−1 +A−1BQ−1CT A−1) −A−1BQ−1BT A−T

A−TCQ−1CT A−1 (A−1 +A−1BQ−1CT A−1)T

][
X 0

0 Y

]
.

Finally, we use the fact that the non-zero eigenvalues of this matrix coincide with the matrix[
−(A−1 +A−1BQ−1CT A−1) −A−1BQ−1BT A−T

A−TCQ−1CT A−1 (A−1 +A−1BQ−1CT A−1)T

][
X 0

0 Y

][
Y T 0

0 XT

]
.

Thus the condition becomes that the matrix[
−(A−1 +A−1BQ−1CT A−1) −A−1BQ−1BT A−T

A−TCQ−1CT A−1 (A−1 +A−1BQ−1CT A−1)T

][
E 0

0 ET

]
has no eigenvalues on the imaginary axis except at the origin. Q.E.D.
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3.5 S U M M A RY

Finally, we summarize all the results in this chapter through the following corollary. Observe
that, testing for H( jω)+H( jω)∗ > 0 for all finite ω does not require a priori knowledge of
index of the descriptor system.

Corollary 2 Consider a stable SISO descriptor transfer function

H(s) = d + cT (sE−A)−1b.

Then H( jω)+H( jω)∗ > 0 for all finite ω if and only if

(i) d− cT A−1b > 0 and

(ii) EA−1EM−1 has no negative eigenvalues.

For a stable MIMO descriptor system

H(s) = D+CT (sE−A)−1B.

Then H( jω)+H( jω)∗ > 0 for all finite ω if and only if:

(i) Q = D+DT −CT A−1B−BT A−TC > 0 and

(ii)

[
E 0

0 ET

]
N has no eigenvalues on the imaginary axis except at the origin.

3.6 E X A M P L E S

To illustrate our results, we consider a simple SISO index-two descriptor system of the form
(3.1), where

E =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0

 , A =


−1 0 0 0

0 −2 0 0

0 0 1 0

0 0 0 1

 , b =


1

1

0

1

 , c =


1

1

1

0


and d = −1. Then H(s) = d + cT (sE−A)−1b is an improper transfer function given by

H(s) =
−s3−4s2−3s+ 1

s2 + 3s+ 2
.

It can be verified that d−cT A−1B = 0.5> 0 and eig(EA−1EM−1) = {−1.3660,0.3660,00}.
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The negative real eigenvalues of EA−1EM−1 give the zero crossing frequencies 1
ω2

0
= 1.3660

for ℜ

[
H
(

1
jω

)]
. Thus, the zero crossing frequencies for ℜ [H ( jω)] are ω0 = ±0.8556 .

We can also test for passivity by calculating the eigenvalues of the matrix[
−(A−1 +A−1BQ−1CT A−1) −A−1BQ−1BT A−T

A−TCQ−1CT A−1 (A−1 +A−1BQ−1CT A−1)T

][
E 0

0 ET

]

given by {0,0,1.1687 j,−1.1687 j,0.6050,0,−0.6050,0}. The imaginary eigenvalues of this
matrix give the zero crossing frequencies 1

ω0
= ±1.1687 for

det
[
H
(

1
jω

)
+H

(
1
jω

)∗]
. Thus, the zero crossing frequencies for

det [H ( jω)+H ( jω)∗] are ω0 = ±0.8556 . These frequency values can be confirmed by
plotting the real part of H( jω) w.r.t. ω as shown in Figure 16.
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Figure 6: Plot showing the real part of H( jω) w.r.t. ω

3.7 C O N C L U S I O N S

In this chapter, we considered passivity of SISO and MIMO descriptor systems and obtain easy
to check spectral conditions to test for passivity. These conditions do not require the initial
knowledge of the index of the descriptor system, and they also provide algebraic conditions
to determine the frequency bands for which passivity might be lost.
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M I X E D P RO P E RT Y

In this chapter, we derive stability results using classical Nyquist arguments for
large-scale interconnections of “mixed” LTI systems. We compare our results with
Moylan and Hill [15]. Our results indicate that, if one relaxes assumptions on
the subsystems in an interconnection from assumptions of passivity or small gain
to assumptions of “mixedness,” then the Moylan- and Hill-like conditions on the
interconnection matrix become more stringent.

4.1 I N T RO D U C T I O N

In this chapter, we provide a proof of the stability result concerning simple feedback-loops
consisting of two LTI “mixed” systems due to Griggs, Anderson and Lanzon [38, 39]. We do
so by applying classical Nyquist stability techniques (see Section 4.3). Our reasons for doing
so are twofold. First, we correct an error in Theorems 1 and 6 of [38] and [39], respectively.
In these, the system output signals were assumed to be bounded a priori. Secondly and
importantly, the result paves the way to obtaining new sufficient conditions for the stability
of large-scale interconnections of “mixed” systems, which we derive in Section 9.4.2. Our
large-scale interconnection results indicate that, as one relaxes the assumptions on the trans-
fer function matrices of the systems, e.g. from assumptions of passivity to assumptions of
“mixedness,” the Moylan- and Hill-like conditions on the interconnection matrix [15] become
more severe.

Finally, we derive a necessary and sufficient condition (test) for determining whether or
not a MIMO LTI descriptor system is “mixed”. The procedure involves the computation
of two Hamiltonian matrices, one associated with any potentially passive aspects of the
system and the other associated with the notion of small gain. The examination of the
spectral characteristics of these Hamiltonian matrices, which are constructed from state-
space matrices E,A,B,C,D, leads to the elimination of an element of frequency dependency
from the test.

4.2 P R E L I M I NA RY R E S U LT S

We will also require the following preliminary results.

59
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Lemma 14 Suppose that H1 ∈RL ∞ and H2 ∈RL ∞. Suppose further that, at some ω ∈
R∪{±∞}, H∗1 ( jω)+H1( jω) > 0 and H∗2 ( jω)+H2( jω) ≥ 0. Then

det[I +H1( jω)H2( jω)] 6= 0.

PROOF: Since H∗1 ( jω)+H1( jω) > 0, ℜ[λi[H1( jω)]] > 0 ∀i (where λi[·] denotes the ith
eigenvalue) and so H1( jω) is nonsingular. Then

H∗1 ( jω)(H−∗1 ( jω)+H−1
1 ( jω))H1( jω) > 0

and observing the congruency, we can write

H−∗1 ( jω)+H−1
1 ( jω) > 0.

Then H−∗1 ( jω)+H∗2 ( jω)+H−1
1 ( jω)+H2( jω) > 0 and consequently ℜ[λi[H−1

1 ( jω)+

H2( jω)]]> 0 ∀i. Hence det[H−1
1 ( jω)+H2( jω)] 6= 0 further implying det[I+H1( jω)H2( jω)]

6= 0. Q.E.D.

Letting H1 = I and setting H := H2 in the above Lemma statement, gives the following
corollary.

Corollary 3 Suppose that H ∈RL ∞ and that, at some ω ∈R∪{±∞}, H∗( jω)+H( jω)≥
0. Then det[I +H( jω)] 6= 0.

Versions of the next corollary can be found in [109, Lemma 7 of Section VI.10] and [101,
Theorem 2.3.4].

Corollary 4 Suppose that H ∈RL ∞ and that, at some ω ∈R∪{±∞}, H∗( jω)+H( jω)≥
0. Let S( jω) := (H( jω)− I)(I +H( jω))−1. Then −S∗( jω)S( jω)+ I ≥ 0.

PROOF: From Corollary 3, det[I +H( jω)] 6= 0. Then

2(I +H( jω))−∗[H∗( jω)+H( jω)](I +H( jω))−1

= (I +H( jω))−∗[(I +H( jω))∗(I +H( jω))− (H( jω)− I)∗(H( jω)− I)]

×(I +H( jω))−1

= I− (I +H( jω))−∗(H( jω)− I)∗(H( jω)− I)(I +H( jω))−1

= I−S∗( jω)S( jω).

Since H∗( jω)+H( jω) and I−S∗( jω)S( jω) are Hermitian-congruent, −S∗( jω)S( jω)+

I ≥ 0. Q.E.D.

An extension to Lemma 14 is given below.
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Lemma 15 Suppose that H1 ∈RL ∞ and H2 ∈RL ∞. Suppose further that, at some ω ∈
R∪{±∞}, H∗1 ( jω)+H1( jω) > H∗1 ( jω)KH1( jω) and H∗2 ( jω)+H2( jω) ≥ −K, where
K ≥ 0 is a constant, symmetric matrix with entries in R. Then det[I+ 1

κ
H1( jω)H2( jω)] 6= 0

for any κ ≥ 1.

PROOF: Since H∗1 ( jω)+H1( jω) > H∗1 ( jω)KH1( jω) ≥ 0, H∗1 ( jω)+H1( jω) > 0 and so
ℜ[λi[H1( jω)]] > 0 ∀i .Then H1( jω) is nonsingular and hence

H−∗1 ( jω)+H−1
1 ( jω) > K

⇒ κ(H−∗1 ( jω)+H−1
1 ( jω)) > K ∀ κ ≥ 1

Adding H∗2 ( jω)+H2( jω) ≥−K to the above inequality, we have

κ(H−∗1 ( jω)+H∗2 ( jω)+H2( jω)+H−1
1 ( jω))> 0 ∀ κ ≥ 1.

Hence ℜ[λi[κH−1
1 ( jω) +H2( jω)]] > 0 ∀i and so det[κH−1

1 ( jω) +H2( jω)] 6= 0 further
resulting in det[I + 1

κ
H1( jω)H2( jω)] 6= 0.

Lastly, since our aim is to deduce the stability of interconnections of “mixed” systems using
arguments based on classical Nyquist techniques, we state a MIMO version of the Nyquist
stability theorem.

Theorem 20 [110, Theorem 5.8] [111, Remark 4 of Section 4.9.2] Consider the feedback
interconnection of systems depicted in Figure 7. Suppose that H1 ∈RH ∞, H2 ∈RH ∞

and that the system interconnection is well-posed. Then the feedback-loop is stable if and
only if the Nyquist plot of det[I +H1( jω)H2( jω)] for −∞ ≤ ω ≤ ∞ does not make any
encirclements of the origin.

H
2

H
1

Figure 7: A negative feedback interconnection.

In the above theorem, well-posedness and stability are defined in the sense of [110, Sections
5.2 and 5.3]. Note, also, the following observations concerning the Nyquist plot of det[I +
H1( jω)H2( jω)].

Observation 1 The Nyquist plot of det[I +H1( jω)H2( jω)] belongs to a family of Nyquist
plots of det[I + 1

κ
H1( jω)H2( jω)], where κ ∈ [1,∞).
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Observation 2 Each Nyquist plot of det[I + 1
κ

H1( jω)H2( jω)] is symmetrical about the
real axis of the complex plane, where κ ∈ [1,∞).1

Observation 3 As κ and ω vary continuously, the point in the complex plane on which the
Nyquist plot of det[I + 1

κ
H1( jω)H2( jω)] lies varies continuously.

Observation 4 As κ → ∞, det[I + 1
κ

H1( jω)H2( jω)]→ 1.

Observation 5 Suppose that κ is very large such that det[I + 1
κ

H1( jω)H2( jω)] is almost
equal to 1 for all ω ∈R∪{±∞}, further suppose that κ is continuously decreasing towards
1. Suppose that the Nyquist plot of det[I+H1( jω)H2( jω)] encircles the origin at least once.
Then there must exist at least one κ0 and one ω0 for which det[I + 1

κ0
H1( jω0)H2( jω0)] = 0.

Thus, a sufficient condition for the Nyquist plot of det[I +H1( jω)H2( jω)] to make no
encirclements of the origin is that, for all κ ∈ [1,∞) and all ω ∈ R ∪ {±∞}, det[I +
1
κ

H1( jω)H2( jω)] 6= 0. Subsequently, we present scenarios in which this sufficient con-
dition is satisfied and thus the stability of the feedback-loop is guaranteed.

4.3 S I M P L E F E E D BAC K - L O O P

Now we provide the correct proof of the stability result on simple negative feedback in-
terconnections of systems with “mixed” small gain and passivity properties due to Griggs,
Anderson and Lanzon [38, 39]. We use the Nyquist discussion provided above.

Theorem 21 Suppose that M1 ∈RH ∞ and M2 ∈RH ∞ denote the transfer function
matrices of “mixed” subsystems interconnected as depicted in Figure 8 and that this
interconnection is well-posed. Suppose that there exist two distinct sets of frequency
bands:

(a) a set denoted by Ωp that consists of frequency intervals over which both M1( jω)

and M2( jω) have associated with them Property (i) as given in Definition 13; and

(b) a set denoted by Ωs that consists of frequency intervals over which both M1( jω)

and M2( jω) have associated with them Property (ii) as given in Definition 13.

Furthermore, suppose that Ωp∪Ωs = R∪{±∞}. Then the negative feedback-loop is
stable.

PROOF: Our aim is to show that, for all κ ∈ [1,∞) and all ω ∈R∪{±∞},

det[I +
1
κ

M1( jω)M2( jω)] 6= 0.

From Section 4.2, this is a sufficient condition for stability. We do so by splitting our proof
into two parts:

1 det[I+ 1
κ

H1(− jω)H2(− jω)] = det[(I+ 1
κ

H∗2 ( jω)H∗1 ( jω))T ] = det[I+ 1
κ

H∗2 ( jω)H∗1 ( jω)] (from [112, Equa-

tion 6.1.4]) = det[(I + 1
κ

H1( jω)H2( jω))∗] = det[I + 1
κ

H1( jω)H2( jω)] (from [112, Exercise 6.1.6])
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Figure 8: Negative feedback interconnection of “mixed” systems.

(i) first, we show that det[I + 1
κ

M1( jω)M2( jω)] 6= 0 for all κ ∈ [1,∞) and all ω ∈Ωs;
and

(ii) then, we show that det[I + 1
κ

M1( jω)M2( jω)] 6= 0 for all κ ∈ [1,∞) and all ω ∈Ωp.

Part (i) for all ω ∈Ωs: From property (ii) of Definition 13, for i = 1,2, there exists an εi < 1
such that−M∗i ( jω)Mi( jω)+ε2

i I ≥ 0. This implies that, for i = 1,2, σ̄(Mi( jω))< 1, which
implies that σ̄(M1( jω)M2( jω))< 1 since σ̄(M1( jω)M2( jω))≤ σ̄(M1( jω))σ̄(M2( jω)).
Now

0 < 1− σ̄(M1( jω)M2( jω))≤ σ(I +M1( jω)M2( jω))

from [110, Section 2.8], and so σ(I +M1( jω)M2( jω)) 6= 0, which is equivalent to det[I +
M1( jω)M2( jω)] 6= 0. Furthermore, det[I + 1

κ
M1( jω)M2( jω)] 6= 0 for any κ > 1. This is

because σ̄(M1( jω)M2( jω)) < 1 is equivalent to 1
κ

σ̄(M1( jω)M2( jω)) < 1
κ

(which is < 1)
for any κ > 1, and so σ̄

( 1
κ

M1( jω)M2( jω)
)
< 1 for any κ > 1. Then

0 < 1− σ̄

(
1
κ

M1( jω)M2( jω)

)
≤ σ

(
I +

1
κ

M1( jω)M2( jω)

)
for any κ > 1, and from this the determinant inequality is immediate.

Part (ii) for all ω ∈Ωp: From property (i) of Definition 13, for i = 1,2, there exist ki, li > 0
such that −kiM∗i ( jω)Mi( jω)+M∗i ( jω)+Mi( jω)− liI ≥ 0. This implies that, for i = 1,2,
M∗i ( jω)+Mi( jω) > 0. Observe that M∗i ( jω)+Mi( jω) > 0 if and only if 1√

κ
M∗i ( jω)+

1√
κ

Mi( jω) > 0, where κ > 0. Then, from Lemma 14, det[I + 1
κ

M1( jω)M2( jω)] 6= 0 for
any κ > 0 and hence for any κ ≥ 1. Q.E.D.

4.4 L A R G E - S C A L E I N T E R C O N N E C T I O N S

Building on the techniques of the previous section, we derive sufficient conditions for the
stability of large-scale interconnections of systems with mixtures of small gain and passivity
properties. Consider a linear interconnection of N “mixed” systems with square transfer
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function matrices denoted by Mi ∈RH ∞, i= 1, . . . ,N. The interconnection will be described
by

ei = ui−
N

∑
j=1

Hi jy j,

where ei is the input to subsystem i, yi = Miei is the output of subsystem i, ui is an external
input and Hi j is a constant matrix. Writing

e :=


e1
...

eN

 , y :=


y1
...

yN

 and u :=


u1
...

uN

 ,

the interconnection description may be written more compactly as

e = u−Hy, (4.1)

where H is a matrix with block entries Hi j. Let M̃ := diag(M1, . . . ,MN) such that y = M̃e.
Eliminating y from (4.1), we have

e = (I +HM̃)−1u.

Then

y = M̃(I +HM̃)−1u. (4.2)

This set-up is depicted in Figure 9. We will assume that the interconnection is well-posed
and, similarly to Theorem 42, impose the following extra conditions on the systems in the
interconnection. We require the existence of two distinct sets of frequency bands:

(a) a set denoted by Ωp that consists of frequency intervals over which every Mi( jω) has
property (i) as given in Definition 13 associated with it; and

(b) a set denoted by Ωs that consists of frequency intervals over which every Mi( jω) has
property (ii) as given in Definition 13 associated with it.

Again, we also require that Ωp∪Ωs =R∪{±∞}. In the following, pi,qi ∈R for i= 1, . . . ,N.

Theorem 22 An interconnection of “mixed” subsystems, with input u and output y, as
described above, is stable if there exist positive definite matrices P := diag(p1I, . . . , pNI)
and Q := diag(q1I, . . . ,qNI) such that HT Q+QH > 0 and −HT PH +P > 0.

PROOF: Similarly to Section 4.3, our aim is to show that, for all κ ∈ [1,∞) and all ω ∈
R∪{±∞}, det[I + 1

κ
HM̃( jω)] 6= 0. Again, we split our proof into two parts: (i) first, we
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Figure 9: Large-scale interconnection of “mixed” systems.

show that det[I + 1
κ

HM̃( jω)] 6= 0 for all κ ∈ [1,∞) and all ω ∈Ωs; and (ii) then, we show
that det[I + 1

κ
HM̃( jω)] 6= 0 for all κ ∈ [1,∞) and all ω ∈Ωp.

Part (i) for all ω ∈Ωs: Suppose that there exists a positive definite matrix P (as defined
above) such that −HT PH +P > 0. Let P̃ := P

1
2 and note that P̃T = P̃. Now −HT P̃2H +

P̃2 = P̃T (−P̃−T HT P̃T P̃HP̃−1 + I)P̃ and so −(P̃HP̃−1)T P̃HP̃−1 + I > 0 since −HT PH +P
and −(P̃HP̃−1)T P̃HP̃−1 + I are Hermitian-congruent. Set HP := P̃HP̃−1. Then −HT

P HP +

I > 0. Equivalently, σ̄(HP) < 1. From property (ii) of Definition 13, for i = 1, . . . ,N,
there exists an εi < 1 such that −M∗i ( jω)Mi( jω) + ε2

i I ≥ 0. This implies that, for i =
1, . . . ,N, −M∗i ( jω)Mi( jω)+ I > 0. Since σ̄(Mi( jω)) < 1, the same is true for M̃( jω), i.e.
σ̄(M̃( jω))< 1. Then σ̄(HPM̃( jω))< 1. Now

0 < 1− σ̄(HPM̃( jω))≤ σ(I +HPM̃( jω))

from [110], and so σ(I +HPM̃( jω)) 6= 0, which is equivalent to det[I +HPM̃( jω)] 6= 0.
Furthermore, det[I + 1

κ
HPM̃( jω)] 6= 0 for any κ > 1. This is because σ̄(HPM̃( jω))< 1 is

equivalent to 1
κ

σ̄(HPM̃( jω))< 1
κ

(which is < 1) for any κ > 1, and so σ̄
( 1

κ
HPM̃( jω)

)
< 1

for any κ > 1. Then

0 < 1− σ̄

(
1
κ

HPM̃( jω)

)
≤ σ

(
I +

1
κ

HPM̃( jω)

)
for any κ > 1. Finally, note that det[I + 1

κ
HPM̃( jω)] = det[P̃]det[I + 1

κ
HM̃( jω)]det[P̃−1]

since P̃−1 and M̃( jω) commute.

Part (ii) for all ω ∈Ωp: Suppose that there exists a positive definite matrix Q (as defined

above) such that HT Q + QH > 0. Let Q̃ := Q
1
2 and note that Q̃T = Q̃. Now HT Q̃2 +

Q̃2H = Q̃T (Q̃−T HT Q̃T + Q̃HQ̃−1)Q̃ and so Q̃−T HT Q̃T + Q̃HQ̃−1 > 0 since HT Q+QH
and Q̃−T HT Q̃T + Q̃HQ̃−1 are Hermitian-congruent. Set HQ := Q̃HQ̃−1. Then HT

Q +HQ > 0.
From property (i) of Definition 13, for i = 1, . . . ,N, there exist ki, li > 0 such that

−kiM∗i ( jω)Mi( jω)+M∗i ( jω)+Mi( jω)− liI ≥ 0.

This implies that, for i = 1, . . . ,N,

M∗i ( jω)+Mi( jω) > 0.
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Hence, the same is true for M̃( jω), i.e. M̃∗( jω) + M̃( jω) > 0. Observe that M̃∗( jω) +

M̃( jω) > 0 if and only if 1
κ

M̃∗( jω) + 1
κ

M̃( jω) > 0, where κ > 0. Then, from Lemma
14, det[I + 1

κ
HQM̃( jω)] 6= 0 for any κ > 0 and hence for any κ ≥ 1. Finally, note that

det[I+ 1
κ

HQM̃( jω)] = det[Q̃]det[I+ 1
κ

HM̃( jω)]det[Q̃−1] since Q̃−1 and M̃( jω) commute
and so det[I + 1

κ
HM̃( jω)] 6= 0 for any κ ≥ 1. Q.E.D.

Fixing P = Q = I in the above theorem, gives the following result.

Corollary 5 An interconnection of “mixed” subsystems, with input u and output y, as
described above, is stable if HT +H > 0 and −HT H + I > 0.

Our next version of the large-scale interconnected “mixed” systems stability result involves
some relaxation of the assumptions on the interconnection structure described by the matrix
H compared to the restrictions on H specified in Theorem 22. This relaxation is achieved by
taking into consideration the values of ki and εi associated with each of the “mixed” systems,
where εi denotes the gain of the ith “mixed” system over frequencies in Ωs, and ki provides a
measure of output strict passivity for the ith “mixed” system over frequencies in Ωp. Suppose
that K := diag(k1I, . . . ,kNI) and E := diag(ε1I, . . . ,εNI), where ki > 0 and 0 < εi < 1 for
i = 1, . . . ,N.

Theorem 23 An interconnection of “mixed” subsystems, with input u and output y, as
described above, is stable if there exist positive definite matrices P := diag(p1I, . . . , pNI)
and Q := diag(q1I, . . . ,qNI) such that HT Q+QH +QK > 0 and −HT PE2H +P > 0.

PROOF: The proof follows in a manner similar to that of the proof of Theorem 22. As before,
we want to show that det[I + 1

κ
HM̃( jω)] 6= 0 for all κ ∈ [1,∞) and all ω ∈R∪{±∞}.

Part (i) for all ω ∈Ωs: Suppose that there exists a positive definite matrix P (as defined
above) such that −HT PE2H + P > 0. Then, similarly to the proof of Theorem 22, we
obtain σ̄(EHP)< 1, where HP := P

1
2 H(P

1
2 )−1. From property (ii) of Definition 13, for i =

1, . . . ,N, there exists an εi < 1 such that −M∗i ( jω)Mi( jω)+ ε2
i I ≥ 0. Equivalently, for i =

1, . . . ,N, there exists an εi < 1 such that− 1
ε2

i
M∗i ( jω)Mi( jω)+ I ≥ 0. Since σ̄( 1

εi
Mi( jω))≤

1, σ̄(E−1M̃( jω))≤ 1. Then σ̄(M̃( jω)HP) < 1 since E−1 and M̃( jω) commute. Now

0 < 1− σ̄(M̃( jω)HP) ≤ σ(I + M̃( jω)HP)

from [110] and so σ(I + M̃( jω)HP) 6= 0 which is equivalent to det[I + M̃( jω)HP] 6= 0.
Furthermore, det[I + 1

κ
M̃( jω)HP] 6= 0 for any κ > 1. This is because σ̄(M̃( jω)HP)< 1 is

equivalent to 1
κ

σ̄(M̃( jω)HP)<
1
κ

(which is < 1) for any κ > 1, and so σ̄
( 1

κ
M̃( jω)HP

)
< 1

for any κ > 1. Then

0 < 1− σ̄

(
1
κ

M̃( jω)HP

)
≤ σ

(
I +

1
κ

M̃( jω)HP

)
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for any κ > 1. Finally, note that det[I + 1
κ

M̃( jω)HP] = det[I + 1
κ

HPM̃( jω)] for any κ ≥ 1
[112, Exercise 6.2.7] and that det[I+ 1

κ
HPM̃( jω)] = det[P

1
2 ]det[I+ 1

κ
HM̃( jω)]det[(P

1
2 )−1]

since (P
1
2 )−1 and M̃( jω) commute.

Part (ii) for all ω ∈Ωp: Suppose that there exists a positive definite matrix Q (as defined
above) such that HT Q + QH + QK > 0. Similarly to the proof of Theorem 22, we ob-
tain HT

Q + HQ + K > 0, where HQ := Q
1
2 H(Q

1
2 )−1. From property (i) of Definition 13,

for i = 1, . . . ,N, there exist ki, li > 0 such that −kiM∗i ( jω)Mi( jω)+M∗i ( jω)+Mi( jω)−
liI ≥ 0. This implies that, for i = 1, . . . ,N, −kiM∗i ( jω)Mi( jω) + M∗i ( jω) + Mi( jω) >

0. Hence, −M̃∗( jω)KM̃( jω) + M̃∗( jω) + M̃( jω) > 0. Then, from Lemma 15, det[I +
1
κ

M̃( jω)HQ] 6= 0 for any κ ≥ 1. Finally, note that det[I+ 1
κ

M̃( jω)HQ] = det[I+ 1
κ

HQM̃( jω)]

[112, Exercise 6.2.7], and that det[I+ 1
κ

HQM̃( jω)] = det[Q
1
2 ]det[I+ 1

κ
HM̃( jω)]det[(Q

1
2 )−1]

since (Q
1
2 )−1 and M̃( jω) commute. Q.E.D.

Set P = Q = I in the above theorem, to obtain the following corollary.

Corollary 6 An interconnection of “mixed” subsystems, with input u and output y, as
described above, is stable if HT +H +K > 0 and −HT E2H + I > 0.

4.5 E X A M P L E S

We now compare our large-scale interconnected “mixed” systems stability results to the
large-scale interconnected systems stability results of [15, Sections IV and V] (e.g. see [15,
Theorems 4 and 5]) through the following example.

Consider an interconnected system from [15], depicted in Figure 10, with interconnection
matrix

H =

 1 0 −γ

−1 1 0

0 −1 1

 .

Assume that H1, H2 and H3 are passive and that −8 < γ < 1. According to [15], a sufficient
condition for the stability of large-scale interconnections of passive systems is the existence
of a positive definite diagonal matrix Q such that HT Q+QH > 0. A necessary condition for
this LMI to be feasible is that H has eigenvalues with positive real parts. Using the Robust
Control Toolbox (MATLAB R2009a), we verify that, for any −8 < γ < 1, finding a solution
to the LMI HT Q+QH > 0 is indeed feasible.
Similarly, if H1, H2 and H3 have gain less that one in [15], a sufficient condition for the
stability of large-scale interconnections of systems with finite gain is the existence of a
positive definite diagonal matrix P such that −HT PE2H +P > 0.2 A necessary condition

2 Note that, in [15], the gains εi appearing in E are not necessarily less than one.
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Figure 10: Interconnection 1.

for this LMI to be feasible is that EH has eigenvalues that lie inside the unit circle centred at
the origin of the complex plane [113, Theorem 5.18].

Now, suppose that we relax the conditions on H1, H2 and H3 and assume that they are all
“mixed” systems. For the same values of γ , we search for positive definite diagonal matrices
P and Q that satisfy HT Q+QH > 0 and −HT PH +P > 0 simultaneously. We find that
this LMI problem is not feasible for any −8 < γ < 1. Our results show that, as one relaxes
the assumptions on the subsystems in the interconnection (from passivity or finite gain to
“mixedness”), the [15]-like conditions on the interconnection matrix become more stringent,
i.e. more restriction is imposed on the structure of the interconnection itself. For instance, in
Theorems 22 and 23, the existence of solutions to a pair of LMIs as opposed to a single LMI
is sufficient for stability.
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Figure 11: Interconnection 2.

We conclude this section with an example of a “mixed” systems interconnection for which
stability is guaranteed. Consider the interconnection of the systems depicted in Figure 11,
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and suppose that M1, M2 and M3 are “mixed” with k1 = k2 = k3 = 0.01. Let γ = 0.5. Then
K = 0.01I and

H =

 0 0 0.5

0 0 0.5

−0.5 −0.5 0

 .

Since the eigenvalues of HT +H +K and I−HT H are positive, the interconnection is stable
by Corollaries 5 and 6.

4.6 A T E S T F O R “ M I X E D N E S S ” O F D E S C R I P T O R S Y S T E M S

Given a system generalized state-space description of the form

Eẋ(t) = Ax(t)+Bu(t),

y(t) = CT x(t)+Du(t),

where E,A ∈ Rn×n,B ∈ Rn×m,C ∈ Rn×m, D ∈ Rm×m and rank(E) = p < n. We wish to
determine whether or not the system is “mixed.” The aim is to construct a transfer function
matrix H(s) from the state-space data and determine whether or not there exist k, l > 0 and
ε < 1 such that H(s) = D+CT (sE−A)−1B satisfies (i) and/or (ii) from Definition 13 for
each frequency ω ∈R. However, we limit our methods to index-one descriptor systems with
H( j∞) 6= 0.

To construct a test independent of the frequency variable, we construct the matrices similar
to N1 and N2 from Lemmas 3 and 4; using state space matrices E,A,B,C,D for k, l > 0 and
ε < 1 and then calculate the eigenvalues of these matrices. Existences of purely imaginary
eigenvalues indicate those frequencies at which the matrices −kH( jω)∗H( jω)+H( jω)∗+

H( jω)− lI and H( jω)∗H( jω) + ε2I have zero eigenvalues. We employ the following
Lemma to convert the descriptor system transfer function to a regular system transfer
function.

Theorem 24 Consider the following index-one descriptor transfer function:

H(s) = D+CT (sE−A)−1B. (4.3)

Let E = XY T be a full rank decomposition of the singular matrix E. Then H(s) can be
written

H(s) = D̄+ C̄T
(

1
s

I− Ā
)−1

B̄ (4.4)

with

Ā = Y T A−1X C̄T = −CT A−1X

B̄ = Y T A−1B D̄ = D−CT A−1B.
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PROOF : The proof follows by applying the matrix inversion lemma to (4.4) We have.

H(s) = D+CT (XY T s−A)−1B

= D−CT
(

A−1 +A−1X
(1

s
I−Y T A−1X)−1Y T A−1

)
B

= D−CT A−1B−CT A−1X
(

1
s

I−Y T A−1X
)−1

Y T A−1B

Recall that the matrix Y T A−1X is Hurwitz (and invertible) if the descriptor system is index-
one. Q.E.D.

Using the Lemma stated above we re-write H1( jω) = −kH ( jω)∗H ( jω) + H ( jω)∗ +

H ( jω)− lI as

−k

(
−B̄T

(
1
jω

I + ĀT
)−1

C̄+ D̄T

)(
C̄T
(

1
jω

I− Ā
)−1

B̄+ D̄

)

−B̄T
(

1
jω

I + ĀT
)−1

C̄+ D̄T + C̄T
(

1
jω

I− Ā
)−1

B̄+ D̄− lI

These terms can be rearranged as

H1( jω) : =
(

(I− kD̄)TC̄T −B̄T
)[ 1

jω
I−

(
Ā 0

−kC̄C̄T −ĀT

)]−1(
B̄

C̄(I− kD̄)

)
−kD̄T D̄+ D̄T + D̄− lI. (4.5)

Similarly, H2( jω) = −H( jω)∗H( jω)+ ε2I can be arranged as

H2( jω) :=
(
−D̄TC̄T −B̄T

)[ 1
jω

I−

(
Ā 0

−C̄C̄T −ĀT

)]−1(
B̄

−C̄D̄

)
−D̄T D̄+ε

2I.

(4.6)

Now we formulate the test to check whether H1( jω) and H2( jω) have zero eigenvalues.

Lemma 16 Suppose k, l ∈ R and let H(s) = D+CT (sE −A)−1B represent the transfer
function matrix of a stable index-one descriptor system. Assume that X̄1 = −kD̄T D̄+ D̄T +

D̄− lI is invertible, and let Ȳ = I−kD̄. Then H1( jω) has no zero eigenvalues over ω ∈ [a,b]
if and only if the matrix NE1 given as[

−(A−1 +A−1BX̄1Ȳ TCT A−1) A−1BX̄−1
1 BT A−T

(CT A−1)T (kI + Ȳ X̄1
−1Ȳ T )(CT A−1) (A−1 +A−1BX̄1Ȳ TCT A−1)T

][
E 0

0 ET

]
(4.7)

has no eigenvalues on the imaginary axis between and including − ja and − jb, where a,
b ∈R.
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PROOF: Consider det[H1( jω)] given as

det

( Ȳ TC̄T −B̄T
)[ 1

jω
I−

(
Ā 0

−kC̄C̄T −ĀT

)]−1(
B̄

C̄Ȳ

)
+ X̄1


= det

I +

[
1
jω

I−

(
Ā 0

−kC̄C̄T −ĀT

)]−1(
B̄

C̄Y

)(
X̄−1

1 Ȳ TC̄T −X̄−1
1 B̄T

)
×det(X̄1)

= det(X̄1).det

[(
1
jω

I− Ā
)−1

]
.det

[(
1
jω

I + ĀT
)−1

]
.det

[
1
jω

I + N̄1

]
,

where det
[

1
jω I + N̄1

]
is given by (see Theorem 3)

det

[
1
jω

I +

[
−Ā+ B̄X̄1

−1Ȳ TC̄T −B̄X̄1
−1B̄T

kC̄C̄T + C̄Ȳ X̄1
−1Ȳ TC̄T ĀT −C̄Ȳ X̄1

−1B̄T

]]
.

Since Ā is Hurwitz, then det
[(

1
jω I− Ā

)−1
]
6= 0 and det

[(
1
jω I + ĀT

)−1
]
6= 0 for all ω ∈

R, H1( jω) has a zero eigenvalue if and only if det( jωI + N̄1) = 0, i.e. N̄1 has a purely
imaginary eigenvalue. Of interest are only the frequencies ω ∈ [a,b], correspondingly, the
eigenvalues of N̄1 that lie on the imaginary axis between and including − ja and − jb. From
spectral equivalence we can observe that non-zero eigenvalues of N̄1 coincide with non-zero
eigenvalues of NE1 given by[

−A−1−A−1BX̄1Ȳ TCT A−1 A−1BX̄−1
1 BT A−T

(CT A−1)T (kI + Ȳ X̄1
−1Ȳ T )(CT A−1) (A−1 +A−1BX̄1Ȳ TCT A−1)T

][
E 0

0 ET

]
.

Q.E.D.

Lemma 17 Suppose ε ∈ R and let H(s) = D +CT (sE − A)−1B represent the transfer
function matrix of a stable index-one descriptor system. Assume that X̄2 = −D̄T D̄+ ε2I is
invertible. Then the matrix H2( jω) has no zero eigenvalues over ω ∈ [a,b] if and only if the
matrix NE2

=

[
−A−1 +A−1BX̄2D̄TCT A−1 A−1BX̄−1

2 BT A−T

(CT A−1)T (kI + D̄X̄2
−1D̄T )(CT A−1) (A−1−A−1BX̄2D̄TCT A−1)T

][
E 0

0 ET

]

does not have any eigenvalues on the imaginary axis between and including − ja and − jb.
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PROOF: Consider det[H2( jω)] given by

det

( −D̄TC̄T −B̄T
)[ 1

jω
I−

(
Ā 0

−C̄C̄T −ĀT

)]−1(
B̄

−C̄D̄

)
+ X̄2


= det

I +

[
1
jω

I−

(
Ā 0

−C̄C̄T −ĀT

)]−1(
B̄

−C̄D̄

)(
−X̄−1

2 D̄TC̄T −X̄−1
2 B̄T

)
×det(X̄2)

= det(X̄2).det

[(
1
jω

I− Ā
)−1

]
.det

[(
1
jω

I + ĀT
)−1

]
.det

[
1
jω

I + N̄2

]
,

where det
[

1
jω I + N̄2

]
is given by (see Theorem 4)

det

[
1
jω

I +

[
−Ā− B̄X̄2

−1D̄TC̄T −B̄X̄2
−1B̄T

C̄C̄T + C̄D̄X̄2
−1D̄TC̄T ĀT + C̄D̄X̄2

−1B̄T

]]
.

Since Ā is Hurwitz, then det
[(

1
jω I− Ā

)−1
]
6= 0 and det

[(
1
jω I + ĀT

)−1
]
6= 0 for all ω ∈R.

Thus, H2( jω) has a zero eigenvalue if and only if det( jωI + N̄2) = 0, ie: N̄2 has a purely
imaginary eigenvalue. Of interest are only the frequencies ω ∈ [a,b], correspondingly, the
eigenvalues of N̄2 that lie on the imaginary axis between and including − ja and − jb. From
spectral equivalence, we can observe that non zero eigenvalues of N̄2 coincide with non zero
eigenvalues of NE2 given by[

−A−1 +A−1BX̄2D̄TCT A−1 A−1BX̄−1
2 BT A−T

(CT A−1)T (kI + D̄X̄2
−1D̄T )(CT A−1) (A−1−A−1BX̄2D̄TCT A−1)T

][
E 0

0 ET

]

Q.E.D.

Now, we use matrices NE1, NE2 to construct a simple test to check “mixedness” of H(s).
Before proceeding, we note the following:

• there exist k, l > 0 such that −kH( jω)∗H( jω)+H( jω)∗+H( jω)− lI ≥ 0 for all
ω ∈ [a,b] if and only if H( jω)∗+H( jω) > 0 for all ω ∈ [a,b];

• under the assumption that det(H( j∞)∗+H( j∞)) 6= 0, there exist k, l > 0 such that
−kH( jω)∗H( jω)+H( jω)∗+H( jω)− lI≥ 0 for all ω ∈ (−∞,b], [a,∞) or (−∞,∞)

if and only if H( jω)∗+H( jω) > 0 for all ω ∈ (−∞,b], [a,∞) or (−∞,∞), respec-
tively;

• there exists ε < 1 such that −H( jω)∗H( jω)+ ε2I ≥ 0 for all ω ∈ [a,b] if and only
if −H( jω)∗H( jω)+ I > 0 for all ω ∈ [a,b];
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• under the assumption that det(−H( j∞)∗H( j∞) + I) 6= 0, there exists ε < 1 such
that −H( jω)∗H( jω)+ ε2I ≥ 0 for all ω ∈ (−∞,b], [a,∞) or (−∞,∞) if and only if
−H( jω)∗H( jω)+ I > 0 for all ω ∈ (−∞,b], [a,∞) or (−∞,∞), respectively.

In other words, there are cases in which the free parameters k, l and ε can be eliminated from
the test; that is, we can set k = l = 0 and ε = 1 when applying Lemmas 32 and 3. Under the
assumptions that det(H( j∞)∗+H( j∞)) 6= 0 and det(−H( j∞)∗H( j∞)+ I) 6= 0, Definition
13 becomes:

Definition 14 An index-one descriptor system with transfer function matrix H ∈RH m×m
∞

is said to be “mixed” if, at each frequency ω ∈R, either

(i) H( jω)∗+H( jω) > 0; or

(ii) −H( jω)∗H( jω)+ I > 0;

or both (i) and (ii) hold.

Now let k = l = 0, then H1( jω) = H( jω)+H∗( jω). Similarly, let ε = 1, then H2( jω) =

−H∗( jω)H( jω)+ I. Now consider Lemmas 16 and 17 and set

Ωp := {ω ∈ [−∞,∞] : NE1 has an eigenvalue on the imaginary axis at jω},
Ωs := {ω ∈ [−∞,∞] : NE2 has an eigenvalue on the imaginary axis at jω}.

Suppose that we divide the real axis −∞ to ∞ into smaller intervals, where any elements of
Ωp and Ωs are set as open interval endpoints, as follows

Division group 1 := (−∞,ωp1), (ωp1 ,ωp2), . . . , (ωpn−1 ,ωpn), (ωpn ,∞),

Division group 2 := (−∞,ωs1), (ωs1 ,ωs2), . . . , (ωsm−1 ,ωsm), (ωsm ,∞).

where n is the number of elements in Ωp; m is the number of elements in Ωs; ωp1 ,ωp2 , . . . ,ωpn

denote the elements of Ωp listed in increasing order; and ωs1 ,ωs2 , . . . ,ωsm denote the ele-
ments of Ωs listed in increasing order.

Let INE1 denote the set of ω belonging to the intervals over which H1( jω) > 0 and INE2

denote the set of θ belonging to the intervals over which H2( jω) > 0. Then we have the
following result.

Theorem 25 The following two statements are equivalent

(i) an index-one continuous-time system with transfer function matrix H(s) ∈RH ∞, is
a “mixed” system;

(ii) INE1 ∪ INE2 = {θ ∈R : −∞≤ ω ≤ ∞}.
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4.7 C O N C L U S I O N S

The main contributions of this chapter include the derivation of sufficient conditions for the
stability of (i) large-scale interconnections of “mixed” systems; and (ii) large-scale, time-
varying interconnections of passive systems and systems with small gain. It was shown that
relaxing the conditions on the subsystems in a large-scale interconnection (from conditions
of passivity or small gain to ones of “mixedness”) results in a need to be extra attentive to
the interconnection structure (i.e. more restriction is placed on it) should one wish to employ
the conditions derived by Moylan and Hill to determine stability. We also derive a necessary
and sufficient test for “mixedness” of descriptor systems.



Part II

S W I T C H E D D E S C R I P T O R S Y S T E M S

In this part, we consider the quadratic stability of switched descriptor systems.
Initially we consider switching between a special class of descriptor systems
having index-one and obtain spectral conditions sufficient to guarantee globally
uniform exponential stability. Switching between descriptor systems having
index-zero and index-one (or index-one and index-two) is also considered,
and a state dependent switching rule is proposed to ensure globally uniform
exponential stability. This work was carried out in collaboration with Prof.
Martin Corless1, Prof. Ezra Zeheb2 and Prof. Robert Shorten3.

1 School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA.
2 Technion-Israel Institute of Technology, Haifa and Jerusalem College of Engineering, Jerusalem, Israel.
3 Hamilton Institute, NUI Maynooth, Ireland.
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BAC K G RO U N D A N D P R E L I M I NA RY R E S U LT S

In this chapter, we present some important preliminary results on descriptor sys-
tems and regular switched systems. These results will be used in later chapters
to derive sufficient conditions for global uniform exponential stability of switched
descriptor systems.

5.1 I N T RO D U C T I O N

In the last decade, considerable research effort has been dedicated towards stability of
switched descriptor systems. In this section, we introduce switched descriptor systems and
also present some important developments in this field. In this thesis we are interested in
analysing the stability of switching descriptor systems described by

Σs : E(t)ẋ(t) = A(t)x(t), (5.1)

where E(t) ∈ E = {A1, . . . ,AN} and A(t) ∈ A = {A1, . . . ,AN}. Here, we assume that the
matrix pairs (Ei,Ai) always satisfy det(sEi−Ai) 6= 0, ∀ ∈ {1, . . . ,N}. The logical rule that
supervises switching between the constituent subsystems Eiẋ(t) = Aix(t); i = {1,2, . . . ,N}
generates switching signals, and is usually described by a piecewise constant mapping
σ : t→{1,2, . . . ,m}. The switching signal σ(t) can be formally defined as below.

Definition 15 [66] A switching signal σ(t) is a piecewise constant function σ : R+ →
{1,2, . . . ,N} with the following properties:

1. the points of discontinuity are the sequence of numbers t0, t1, . . . , ti, ti+1, . . . ;

2. there exists a lower bound τmin > 0 for the interval between two consecutive disconti-
nuities ti, ti+1, such that ti+1− tk > τmin, for all k;

3. σ(t) is continuous from the right, i.e. σ(t) = i for ti ≤ t < ti+1.

Using the switching signal described above, we can define the linear switched descriptor
systems as a linear time-varying system with piecewise constant linear dynamics given by a
family of LTI systems of the form

Eσ(t)ẋ = Aσ(t)x , σ(t) ∈ {1, . . . ,N} . (5.2)

77
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Thus, if σ is continuous at t and σ(t) = i, the system must satisfy

Eiẋ(t) = Aix(t) ;

hence x(t) must be in the consistency space of (Ei,Ai).

To complete the description of a switching descriptor system, we must also specify how
the system behaves at a point t∗ of discontinuity of σ . If σ switches from i to j at t∗,
then x(t−∗ ) := limt→t∗,t<t∗ x(t) must be in C (Ei,Ai) and x(t+∗ ) := limt→t∗,t>t∗ x(t) must be in
C (E j,A j). If x(t−∗ ) is not in C (E j,A j), then one has to have a solution which is discontinuous
at t∗, and to complete the description, one must specify how x(t+∗ ) is obtained from x(t−∗ ).
Commonly, the switching condition on the state can be described by

x(t+∗ ) = M jix(t−∗ ) (5.3)

when σ switches from i to j at t∗.

Also, switching may be restricted in the sense that one does not switch from i to j at any
state x(t−∗ ) in C (Ei,Ai). In this case, the restriction may be described by

C jix(t−∗ ) = 0; (5.4)

An equivalent description of condition (5.4) can be obtained using the distributional frame-
work [51]. In the distributional framework, the matrices M ji are obtained using spectral
projectors (see Definition 2.11).

Theorem 26 [51] If the consistency projector corresponding to σ(t) = i is defined as the
spectral projection (see Definition 2.11) onto the right deflating subspace of the matrix pair
(Ei,Ai), then

Π(Ei,Ai) = Pr = T

(
Iq 0

0 0

)
T−1. (5.5)

Now consider the linear switched descriptor system (5.2), and assume that ∀i, j ∈ {1, . . . ,N} :
Ei(I−Πi)Π j = 0. Then every distributional solution of (5.2) is impulse free (see Remark 1)
and is represented by a piecewise-smooth function x : R→Rn. Furthermore, for all solutions
x : R→Rn,

∀t ∈R : x(t) = Πσ(t)x(t−). (5.6)

5.2 G E N E R A L I Z E D Q UA D R AT I C LYA P U N OV F U N C T I O N S

In the following, we introduce several different generalized quadratic Lyapunov functions
used in the literature to study LTI descriptor systems. Studying the existence of such general-
ized quadratic Lyapunov functions is a good starting point in the study of switched linear



5.2 G E N E R A L I Z E D Q UA D R AT I C LYA P U N OV F U N C T I O N S 79

descriptor systems. We say that a scalar valued function V is a generalized Lyapunov function
for the LTI system Eiẋ = Aix if for all non-zero x ∈ C = C (Ei,Ai), we have V (x) > 0 and
V̇ (x)< 0; V is a generalized quadratic Lyapunov function if V is a Lyapunov function and V
can be written as V (x) = xT Px for some symmetric matrix P; in this case, we say that P is
a Lyapunov matrix for the system. The existence of a Lyapunov matrix P guarantees that
the system is Globally Uniformly Exponentially Stable (GUES), that is, there are constants
α ,β > 0 such that every solution satisfies

‖x(t)‖ ≤ βe−α(t−t0)‖x(t0)‖ for t ≥ t0 . (5.7)

The next step towards exponential stability of linear switched descriptor systems would be to
find useful criteria to determine whether a given collection of matrix pairs (Ei,Ai) have a
common generalized quadratic Lyapunov function. Contrary to regular LTI systems, there
exist many different formulations of generalized quadratic Lyapunov functions (see, e.g. [54],
[55], [56], [57], [58]). We present two different formulations proposed by [59] and [54] for
an LTI descriptor system given by

Eẋ(t) = Ax(t). (5.8)

These generalized quadratic Lyapunov functions have been used extensively towards stability
analysis of linear switched descriptor systems.

Theorem 27 [54] A pair (E,A) is regular, stable and impulse-free (index-one) if and only if
there exists P ∈Rn×n such that

ET P = PT E ≥ 0, (5.9)

AT P + PA < 0. (5.10)

These matrix inequalities guarantee the existence of a quadratic Lyapunov function given by
V (x) = xT ET Px.

Theorem 27 is valid only for index-one LTI descriptor systems, hence we present an alternative
formulation from [59].

Definition 16 [59] Consider the descriptor system (5.8) with regular matrix pair (E,A)
and corresponding consistency space C (E,A)⊂Rn. Assume there exist a positive definite
matrix P = PT ∈ Cn×n and a matrix Q = QT ∈ Cn×n which is positive definite on C (E,A)
such that the generalized Lyapunov equation

AT PE +ET PA = −Q (5.11)

is fulfilled. Then

V : Rn→R≥0 : x 7→ (Ex)T PEx (5.12)

is called a Lyapunov function for (5.8).
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Note that this definition ensures that V is not increasing along solutions, i.e., for any solution
x : R→Rn and all t ∈R,

d
dt

V (x(t)) = −xT (t)Qx(t) ≤ 0

and equality only holds for x(t) = 0. Furthermore, the property ker(E)
⋂

C (E,A) = {0}
ensures that V is positive definite on C (E,A).

Theorem 28 [59] A descriptor system (5.8) with regular matrix pair (E,A) is asymptotically
stable if and only if there exists a Lyapunov function V : Rn→R≥0 for (5.8).

In this thesis, we provide another alternative generalized quadratic Lyapunov function; which
allows us to use the results from the well-understood theory of quadratic Lyapunov functions
for regular LTI systems (see Chapter 7).

5.3 E X I S T E N C E O F A C Q L F : T W O S Y S T E M S W I T H A R A N K O N E D I FF E R E N C E

Analogous to regular switched systems, special structures of switched descriptor systems
can be exploited to obtain conditions for the existence of a generalized CQLF. [46] extended
the well-known result for regular commuting subsystems from [62] to the case of switched
descriptor systems. In this thesis, we consider an alternate approach towards extending the
results for regular linear switched systems to switched descriptor systems. As a part of
presenting the necessary background material for our approach, we recall the classical KYP

Lemma for regular SISO systems. In this thesis, we focus on obtaining a similar version of
KYP Lemma for descriptor systems (see Chapter 7).

KYP Lemma relates the strict positive realness of a transfer function and the existence of
quadratic Lyapunov functions [114]. Roughly speaking, Meyer’s version of the KYP Lemma
[115] can be stated as follows. Let A ∈Rn×n be a Hurwitz matrix. Let b,c ∈Rn and d be a
non-negative scalar. Let (A,b), (A,c) be controllable/observable pairs, respectively. Then,
there exists a positive definite matrix P = PT ∈Rn×n, P > 0, such that [116][

A b

−cT −d

]T [
P 0

0 1

]
+

[
P 0

0 1

][
A b

−cT −d

]
≤ 0, (5.13)

AT P+PA < 0, (5.14)

if and only if H(s) = d + cT (sI−A)−1b is KYP-SPR. There are many extensions of this
lemma (for example relaxing the observability/controllability) assumption.

An important alternative statement of the KYP Lemma for SISO systems (b,c vectors) is that
strict positive realness of H(s) is equivalent to the existence of P = PT > 0 satisfying either
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1. AT P+PA < 0 and
(

A− bcT

d

)T
P+P

(
A− bcT

d

)
< 0, when d is strictly positive;

2. (OR) (bcT )T P+P(bcT ) ≤ 0 when d = 0.

Next, we consider the two cases when d 6= 0 and d = 0 separately.

When d 6= 0, KYP strict positive realness is equivalent to the existence of a positive defi-
nite matrix P that simultaneously satisfies a pair of Lyapunov equations. When such a P
exists, the function V (x) = xT Px is said to be a CQLF for the dynamic systems ẋ = Ax and
ẋ =

(
A− bcT

d

)
x.

From Theorem 7, a regular SISO transfer is SPR for d 6= 0 if and only if the matrix
(
A− 1

d bcT
)

A
has no eigenvalues on the closed negative real axis (−∞,0]. These observations lead to the
following result.

Theorem 29 [66] Let A1 and A2 be Hurwitz matrices in Rn×n, where the difference A1−A2

has rank one. Then the swiched system

ẋ(t) = A(t)x(t); A(t) ∈A = {A1,A2} (5.15)

has CQLF if and only if the matrix product A1A2 has no negative real eigenvalues.

This condition was originally derived as a frequency domain condition using the SISO Circle
Criterion by [117], however it was later realised [65] that the condition has a natural and
elegant formulation as illustrated in Theorem 29.

Now, we consider the case when d = 0. In this scenario, a regular SISO transfer is SPR if
and only if cT Ab < 0, and the matrix product A(A− AbcT A

cT Ab ) has no eigenvalue on the open
negative real axis (−∞,0) and exactly one zero eigenvalue. Further, in [68] it was proved
that the inequalities

AT P+PA < 0,

−
(

cbT P+PbcT
)
≤ 0.

are equivalent to

AT P+PA < 0,

(A−ghT )T P+P(A−ghT ) ≤ 0, (5.16)

where g = 1
cT Ab Ab and hT = cT A. These observations lead to the following result.
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Theorem 30 [68] Suppose that A is Hurwitz and all eigenvalues of A−ghT have negative
real part, except one, which is zero. Suppose also that (A,g) is controllable and (A,h) is
observable. Then, there exists a matrix P = PT > 0 such that

AT P+PA < 0 (5.17)

(A−ghT )T P+P(A−ghT ) ≤ 0 (5.18)

if and only if the matrix product A(A−ghT ) has no real negative eigenvalues and exactly
one zero eigenvalue.

Thus, Theorem 30 provides necessary and sufficient conditions for the existence of a CQLF

for a pair of regular LTI systems (ẋ(t) = Ax(t) and ẋ(t) = (A−ghT )x(t)), one of which is
marginally stable.

The necessary and sufficient conditions stated above for regular switched systems are simple
and easy to calculate. Hence they promise simple and elegant results for switched descriptor
systems upon extension. Thus, we focus on developing similar necessary and sufficient
spectral conditions for switched descriptor systems in Chapter 7.
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In this chapter, we consider the quadratic stability of a class of switched descrip-
tor systems. In some situations, using spectral characterisations of passivity, com-
pact conditions for quadratic stability are obtained. Examples are given to illus-
trate our results.

6.1 I N T RO D U C T I O N

In this chapter, we consider switched descriptor systems having index-one. We primarily
focus on exponential stability of a certain class of index-one switched descriptor systems. We
first look at the conditions a quadratic form must satisfy to be a Lyapunov function for an LTI

descriptor system. These quadratic forms are similar to the generalized Lyapunov equations
proposed earlier in the literature (for more details see, background section 5.2). Based on
this, we present conditions for the existence of a piecewise quadratic Lyapunov function for
a switching descriptor system. The existence of such a function guarantees stability of the
switching system. We further propose a result which permits one to determine the stability of
a switching system by looking at the stability properties of a lower-order (state dimension)
system. For index-one systems, the lower-order system is a regular switching system. We
also derive a KYP-like Lemma for a special class of descriptor systems called index-one
systems.

6.2 P R E L I M I NA RY R E S U LT S

In this section, we present some general results on the stability of switched LTI descriptor
systems. We first look at the conditions a quadratic form must satisfy to be a Lyapunov
function for an LTI descriptor system. Based on this, we present conditions for the existence
of a piecewise quadratic Lyapunov function for a switching descriptor system. The existence
of such a function guarantees stability of the switching system.

6.2.1 Quadratic Lyapunov functions for LTI Descriptor Systems

Before we proceed to Lyapunov functions for switching descriptor systems, we present some
basic Lyapunov theory in the context of LTI descriptor systems.

83
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Suppose V (x) = xT Px is a quadratic Lyapunov function and P is a Lyapunov matrix for
the descriptor system (2.3). Then, the requirement that V (x) > 0 all for non-zero x in C

is equivalent to P being positive-definite on C , that is, xT Px > 0 for all x in C . For the
requirement that V̇ (x) < 0 all for non-zero x in C , we note that

V̇ = ẋT Px+ xT Pẋ = ẋT (PA−1E +ET A−T P)ẋ = −ẋT Qẋ,

where Q is given by

PA−1E +ET A−T P+Q = 0. (6.1)

Recall that the descriptor system (2.3), is equivalent to the regular system (2.9) where x is in
C and Ã is invertible on C . Thus V̇ = −xT ÃT QÃx and the requirement that V̇ (x) < 0 for all
non-zero x in C is equivalent to ÃT QÃ being positive-definite on C . Since Ã is a one-to-one
mapping of C onto C , this requirement is equivalent to Q being positive-definite on C . Thus,
we have the following conclusion:

A symmetric matrix P is a Lyapunov matrix for the descriptor system Eẋ(t) = Ax(t) if and
only if the matrices P and Q (defined by (10.15)) are positive-definite on the consistency
space of the system.

6.2.2 Quadratic stability of switching descriptor systems

Here, we consider a candidate Lyapunov function of the form V (t,x) = xT Pσ(t)x, which is a
time-invariant quadratic function for each constituent system, but which can switch as the
system switches. Clearly, for each i, we need Vi(x) = xT Pix to be a Lyapunov function for
the system defined by (Ei,Ai). Since we need V to decrease along trajectories, we also need
V (t+∗ ,x(t+∗ )) ≤ V (t−∗ ,x(t−∗ )) at points t∗ of discontinuity of σ . Basically, the next lemma
states that satisfaction of these conditions are sufficient to guarantee GUES.

Lemma 18 Consider a switching descriptor system described by (5.2) and suppose that for
each i = 1, · · · ,N, there is a symmetric matrix Pi satisfying the following conditions

(a) The matrix Pi is positive-definite on the consistency space of (Ei,Ai).

(b) The matrix PiA−1
i Ei+ET

i A−T
i Pi is negative-definite on the consistency space of (Ei,Ai).

(c) If σ switches from i to j at t∗ then,

x(t+∗ )
T Pjx(t+∗ ) ≤ x(t−∗ )

T Pix(t−∗ ) . (6.2)

Then the system is GUES.



6.2 P R E L I M I NA RY R E S U LT S 85

PROOF: Consider any solution x(·) of the system, and let v(t) = x(t)T Pσ(t)x(t). If t is a
point of discontinuity of σ , then, by hypothesis (c),

v(t+) ≤ v(t−). (6.3)

If t is not a point of discontinuity of σ then,

Eiẋ(t) = Aix(t), (6.4)

where i = σ(t). It follows from the invertibility of Ai that x(t) = A−1
i Eiẋ(t); hence

v̇ = ẋT Pix+ xT Piẋ = ẋT (PiA−1
i Ei +ET

i A−T
i Pi)ẋ = −ẋT Qiẋ, (6.5)

where

Qi := −PiA−1
i Ei−ET

i A−T
i Pi . (6.6)

Recall that system description (6.4) is equivalent to ẋ(t) = Ãix(t), where x(t) is in Ci, the
consistency space of (Ei,Ai) and Ãi is some invertible map on Ci. Hence

v̇ = −xT Q̃ix, where Q̃i = ÃT
i QiÃi.

Since Ãi is invertible on Ci and, by assumption, Qi is positive-definite on Ci, it follows that
Q̃i is positive-definite on Ci. Recalling that Pi is positive-definite on Ci, let

αi =
1
2

min{xT Q̃ix : x ∈ Ci and xT Pix = 1}.

Then αi > 0 and v̇≤−2αiv. Now let

α = min{α1, · · ·αn}.

Then α > 0 and

v̇(t) ≤−2αv(t) (6.7)

when σ is continuous at t.

From this and the discontinuity condition (6.3), we can conclude that v(t)≤ e−2α(t−t0)v(t0)
for t ≥ t0. Since V is positive-definite on each consistency space, there are constants λ1,λ2 > 0
such that λ1‖x‖2 ≤ V (x) ≤ λ2‖x‖2 whenever x is in any of the consistency spaces; hence
every solution x satisfies

‖x(t)‖ ≤ βe−α(t−t0)‖x(t0)‖ (6.8)

for all t ≥ t0, where β =
√

λ2/λ1. This mean that the system is GUES. Q.E.D.

Comment 3 If there exists a symmetric matrix P such that hypothesis (a)–(c) of the above
lemma hold for system (5.2) with Pi = P for i = 1, . . . ,N, we say that this system is quadrati-
cally stable while P and V (x) = xT Px are Lyapunov matrix and Lyapunov function, respec-
tively, for this system.
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6.2.3 Order reduction for switching descriptor systems

The following result is useful in reducing the stability problem of a switching descriptor
system to that of a lower-order system. Before stating this result, we recall that, if (X ,Y ) is
a full rank decomposition of E ∈Rn×n and rank(E) = r, then, X ,Y ∈Rn×r and rank(X) =

rank(Y ) = r.

Lemma 19 (Order reduction) Consider a switching descriptor system described by (5.2)
and switching conditions (5.3)-(5.4) when σ switches from i to j and suppose that (Xi,Yi) is
a decomposition of Ei with Yi ∈Rn×r for i = 1, . . .N. Then, there exist matrices T1, . . . ,TN

such that the following holds. A function x(·) is a solution to system (5.2)-(5.4) if and only if

x(t) = Tσ(t)z(t) (6.9)

for all t, where z(·) is a solution to the descriptor system

Ẽσ(t)ż = z (6.10)

with switching conditions

z(t+∗ ) = Y T
j M jiTiz(t−∗ ), (6.11)

C jiTiz(t−∗ ) = 0 (6.12)

when σ switches from i to j where

Ẽi = Y T
i A−1

i Xi . (6.13)

Moreover,

z(t) = Y T
σ(t)x(t) (6.14)

for all t, C (Ẽi, I) = Y T
i C (Ei,Ai) and z is continuous during switching if and only if the

same is true of Y T
σ x. Hence, GUES of the new system (6.10)-(6.12) and the original system

(5.3)-(5.4) are equivalent.

PROOF: Consider any solution x(·) of the original system (5.2) and let

z(t) = Y T
σ(t)x(t). (6.15)

Suppose t is a point of continuity of σ and σ(t) = i. Then z(t) = Y T
i x(t) and XiY T

i ẋ = Aix.
Since Ai is invertible, we can multiply both sides of the last equation by Y T

i A−1
i to obtain

Y T
i A−1

i XiY T
i ẋ = Y T

i x , that is,

Ẽσ(t)ż = z, (6.16)
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where Ẽi = Y T
i A−1

i Xi.

We now claim that there is a matrix Ti such that x(t) = Tiz(t). Since σ(t) = i, it follows that
x(t) must be in the consistency space Ci of (Ei,Ai). Since Ci and the kernel of Ei intersect
only at zero and the kernel of Y T

i is contained in the kernel of Ei, it follows that Ci and the
kernel of Y T

i intersect only at zero. This implies that the restriction of Y T
i to Ci yields a

one-to-one map from Ci onto the subspace Y T
i Ci. Thus, this map has an inverse map Ti from

Y T
i Ci to Ci; hence x(t) = Tiz(t), that is,

x(t) = Tσ(t)z(t) . (6.17)

Now suppose σ is discontinuous at t∗ and switches from i to j; then

x(t−∗ ) = Tiz(t−∗ ) and z(t+∗ ) = Y T
j x(t+∗ )

and switching conditions (5.3)-(5.4) imply (6.11)-(6.12).

We now show that the consistency space of (Ẽi, I) is Y T
i Ci. Considering k sufficiently large,

we have

Ci = Im((A−1
i Ei)

k),

C (Ẽi, I) = Im(Ẽk
i ) = Im(Ẽk+1

i ).

Now note that

Y T
i (A−1

i Ei)
k = Y T

i (A−1
i XiY T

i )k = (Y T
i A−1

i Xi)
kY T

i = Ẽk
i Y T

i . (6.18)

Since Ẽi = Y T
i A−1

i Xi, we must have

Im(Ẽk
i ) = Im(Ẽk+1

i ) = Im(Ẽk
i Y T

i A−1
i Xi) ⊂ Im(Ẽk

i Y T
i ) ⊂ Im(Ẽk

i ) .

This implies that Im(Ẽk
i Y T

i ) = Im(Ẽk
i ) = C (Ẽi, I). It now follows from (6.18) that Y T

i Ci =

Y T
i Im((A−1

i Ei)k) = Im(Ẽk
i Y T

i ). This yields the desired result that C (Ẽi, I) = Y T
i Ci.

Consider now any continuous solution z(·) of the new descriptor system (6.10)-(6.12), and
let x(t) = Tσ(t)z(t). We will show that x(·) is a solution of the original system. Suppose t is
a point of continuity of σ and σ(t) = i. Then z(t) is in Y T

i Ci and x(t) = Tiz(t). Since Ti is
the inverse of Y T

i restricted to Ci, we see that x(t) ∈ Ci and z(t) = Y T
i x(t). Also

x = Tiz = TiẼiż = TiY T
i A−1

i XiY T
i ẋ = TiY T

i A−1
i Eiẋ.

Since x is in Ci, we have A−1Eix in Ci; recalling that TiY T is the identity operator on Ci we
obtain that TiY T

i A−1Eiẋ = A−1Eiẋ. Thus x = A−1
i Eiẋ. Now suppose σ is discontinuous at t∗

and switches from i to j; then

x(t−∗ ) = Tiz(t−∗ ) and z(t+∗ ) = Y T
j x(t+∗ ),

and switching conditions (6.11)-(6.12) imply (5.3)-(5.4). Q.E.D.
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Comment 4 (Impulse-Free Switching) In later sections we will consider systems for which
Y T

σ x is continuous during switching; this is equivalent to the following switching condition.
If σ switches from i to j at a point of discontinuity t∗, then,

Y T
i x(t−∗ ) = Y T

j x(t+∗ ). (6.19)

Since x(t+∗ ) must be in C j = C (E j,A j), the above switch can only occur at states x(t−∗ ) in
Ci = C (Ei,Ai) for which

Y T
i x(t−∗ ) ∈ Y T

j C j . (6.20)

The system cannot switch from an arbitrary state in Ci unless

Y T
i Ci ⊂ Y T

j C j . (6.21)

Conditions 6.20 and 6.21 are sufficient to ensure impulse-free switching and in this thesis
we only consider impulse-free switching. Thus, to be able to arbitrarily switch from one
subsystem to another, one would need

Y T
i Ci = Y T

j C j ∀ i, j = 1, · · · ,N . (6.22)

Otherwise, switching has to be restricted.

However, if (E j,A j) is index one and Yj ∈ Rr×n is full column rank, where r = rank(E),
then, switching to this system can occur from any state. To see this, recall that the kernel
of Y T

j and C j intersect only at the origin, and since the system (E j,A j) is index one, the
dimension of C j is r = rank(E j). Hence the dimension of Y T C j is r. Since Y T

j ∈Rr×n, we
now see that Y T

j C j = Rr; hence (6.20) is satisfied for any x(t−∗ ). This means that switching
to an index one system can occur from any state.

Note that, for any system, if Ei = E for all i and Ex is continuous, then Y T x is continuous
for any full rank decomposition and (X ,Y ) of E.

Before proceeding further, we present the following lemma.

Lemma 20 [118] For matrices Am×n and Bn×p, the following statements are true.

(i) rank(AB) = rank(A) and Im(AB) = Im(A) if rank(B) = n.

(ii) rank(AB) = rank(B) and ker(AB) = ker(B) if rank(A) = n.
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6.2.4 Arbitrary switching

As mentioned earlier, the system can arbitrarily switch from σ = i to σ = j if

Y T
i Ci = Y T

j C j for all i, j = 1, . . . ,N . (6.23)

In this section, we explore some cases under which this condition is satisfied for index-one
descriptor systems. If all the descriptor systems (Ei,Ai) for i = 1, · · · ,N are index-one, then
the consistency space Ci is given by

Ci = Im(A−1
i Ei) and Y T

i Ci = Im(Y T
i A−1

i XiY T
i ). (6.24)

Since (Ei,Ai) is index-one Y T
i A−1

i Xi ∈ Rr×r is non-singular, where r = rank(Ei), we can
apply Lemma 20 to conclude that

Y T
i Ci = Im(Y T

i A−1
i XiY T

i ) = Im(Y T
i A−1

i Xi) = Rr. (6.25)

Hence (6.22) is satisfied as long as r = rank(Ei) = rank(E j) for any i, j = 1, · · · ,N. In this
thesis, we focus on arbitrary switching under the condition that r = rank(Ei) = rank(E j) for
any i, j = 1, . . . ,N and Y T

σ x is continuous.

For index-one switched descriptor systems, continuity of Y T
σ x provides the initial conditions

for the next mode of operation (see condition 6.19). For switched descriptor systems with
different indices (for example, switching between index-one and index-two systems), conti-
nuity of Y T

σ x also provides the appropriate time-instant at which impulse free switching is
possible, thus leading to state dependent switching. We consider switched descriptor systems
with different indices, in the next chapter.

Now, we present a similar reduced order system in the input-output framework for an index-
one descriptor system. This reduced ordered system will be used later to derive a KYP-like
Lemma for SISO index-one descriptor systems.

Theorem 31 Consider the following index-one descriptor system

Σn :

Eẋ(t) = Ax(t)+ bu(t);

y(t) = cT x(t)+ du(t)
(6.26)

with E,A ∈ Rn×n, b,c ∈ Rn, d ∈ R and rank(E) = r < n. Let E = XY T be a full rank
decomposition of the singular matrix E. Then Σn can be written as

Σp :

ż(t) = Ãz(t)+ b̃u(t);

y(t) = c̃T z(t)+ d̃u(t)
(6.27)
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with

Ã = (Y T A−1X)−1, b̃ =
(
Y T A−1X

)−1Y T A−1b,

c̃T = cT A−1X
(
Y T A−1X

)−1, d̃ = d− cT A−1b+ cT A−1X
(
Y T A−1X

)−1Y T A−1b

and z(t) = Y T x(t).

PROOF: Consider Eẋ(t) = Ax(t)+ bu(t), and right-multiply both sides by Y T A−1 to obtain

Y T A−1XY T ẋ(t) = Y T x(t)+Y T A−1bu(t).

Thus Y T A−1Xż(t) = z(t)+Y T A−1bu(t) which further implies

ż(t) = (Y T A−1X)−1z(t)+ (Y T A−1X)−1Y T A−1bu(t).

Now consider y(t) = cT x(t)+ du(t) and substitute x(t) = A−1Eẋ(t)−A−1bu(t) to obtain

y(t) = cT (A−1Eẋ(t)−A−1bu(t))+ du(t)

⇒ y(t) = cT A−1Xż(t)+ (d− cT A−1b)u(t).

Again substitute ż(t) = (Y T A−1X)−1z(t)+ (Y T A−1X)−1Y T A−1bu(t) to obtain

y(t) = cT A−1X(Y T A−1X)−1z(t)+ (d− cT A−1b+ cT A−1X
(
Y T A−1X

)−1Y T A−1b)u(t).

By gathering the terms together, we have

ż(t) = Ãz(t)+ b̃u(t);

y(t) = c̃T z(t)+ d̃u(t)

as claimed.

6.2.5 Lur’e type switched descriptor systems

In section 6.3 and the next chapter (section 7.1) we obtain some very specific results for
systems described by

Eσ(t)ẋ = Aσ(t)x, σ(t) ∈ {1,2}, (6.28)

where rank(A−1
1 E1−A−1

2 E2) = 1. (6.29)

In this case, one can readily show that the corresponding switching system (6.28) can be
expressed as a feedback combination of the LTI system

Eẋ = Ax+ bu,

y = cT x+ du,
(6.30)
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subject to the switching output feedback controller

u = −kσ(t)y with k1 = 0, k2 = 1, (6.31)

where

cT = cT
1 − cT

2 A and d = −cT
2 b . (6.32)

This fact can be observed by choosing any column vector c2 satisfying cT
2 b = −d and then

choosing cT
1 = cT + cT

2 A. Then the output y is given by

y = cT x+ du = (cT
1 − cT

2 A)x+(−cT
2 b)u

= cT
1 x− cT

2 (Ax+ bu)

= cT
1 x− cT

2 Eẋ.

When u = −y, we have Eẋ = Ax−by; further substituting y = cT
1 x− cT

2 Eẋ, we get

Eẋ = Ax−b(cT
1 x− cT

2 Eẋ)

⇒ (E−bcT
2 E)ẋ = (A−bcT

1 )x.

Similarly for u = 0, we have Eẋ = Ax. Now we show that the situation in which

A1 = A , E1 = E , A2 = A−bcT
1 , E2 = E−bcT

2 E (6.33)

for some column matrices b,c1 and c2; the rank condition (6.29) holds. To see this, apply a
matrix inversion formula to obtain that

A−1
2 = (A−bcT

1 )
−1 = A−1 + k−1A−1bcT

1 A−1,

where

k = 1− cT
1 A−1b = 1+ d− cT A−1b . (6.34)

Then computations show that

A−1
2 E2 = A−1

1 E1−ghT , where g = A−1b and hT = −k−1cT A−1E . (6.35)

Thus, rank condition (6.29) holds.

We will obtain some very specific results for these switching systems under the assumption
that Ex is continuous during switching. Associated with this switching system are the
constituent linear systems which we denote as follows

Σ1 : E1ẋ = A1x, Σ2 : E2ẋ = A2x.

We consider the case in which both of the above systems are index one in Section 6.3. Section
7.1 considers cases when the systems have mixed index.
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6.3 R E S U LT S F O R I N D E X - O N E S Y S T E M S

In this section, we consider switching descriptor systems for which each constituent system
is an index-one system. First, we obtain a general result. We then use this result and Theorem
29 from [65] to obtain a simple spectral characterization of stability for a special class of
Lur’e type switching descriptor systems.

The following general result is a corollary of Lemmas 18 and 19.

Corollary 7 Consider a switching descriptor system described by (5.2) where Y T
σ x is contin-

uous during switching and (Xi,Yi) is a decomposition of Ei with Yi ∈Rn×r for i = 1, . . .N.
Suppose that there is a symmetric positive-definite matrix P satisfying

PẼi + ẼT
i P < 0 for i = 1, · · · ,N (6.36)

where Ẽi = Y T
i A−1

i Xi. Then the system is GUES.

Comment 5 Satisfaction of (6.36) implies that each Ẽi must be Hurwitz. If Ei is singular
and (Xi,Yi) is a full rank decomposition then (Ei,Ai) must be index-one and stable.

6.3.1 A special class of index-one systems

Here, we consider systems described by

Eσ(t)ẋ = Aσ(t)x , σ(t) ∈ {1,2}, (6.37)

where each constituent system is index one and stable. We show that if a simple eigenvalue
condition holds then, the system is Quadratically Stable (QS), hence it is GUES. To achieve this
result, we utilize Theorem 29 from [65]; in this chapter, we explore the connection between
passivity and common Lyapunov functions to obtain compact conditions for the existence
of a common solution to the Lyapunov equation for a pair of matrices. The following result
follows from Corollary 7 and Theorem 29.

Theorem 32 Consider a switching descriptor system described by (6.37), where Y T
σ x is

continuous during switching and (Xi,Yi) is a full rank decomposition of Ei with Yi ∈Rn×r

for i = 1,2. Suppose that the following conditions are satisfied, where Ẽi = Y T
i A−1

i Xi.

(a) (E1,A1) and (E2,A2) are stable.

(b) (E1,A1) and (E2,A2) are index-one.

(c) rank(Ẽ1− Ẽ2) = 1

(d) Ẽ1Ẽ2 has no negative real eigenvalues.
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Then the switching descriptor system (6.37) is GUES.

PROOF: For each i ∈ {1,2}, the pair (Xi,Yi) is a full rank decomposition of Ei and (Ei,Ai) is
index one and stable; hence Ẽi is Hurwitz (see Corollary 1.) Since rank(Ẽ1− Ẽ2) = 1 there
exist column matrices g and h such that Ẽ2 = Ẽ1− ghT . Since Ẽ1Ẽ2 has no negative real
eigenvalues, it now follows from Theorem 29 that there exists a symmetric positive-definite
matrix P such that

PẼi + ẼT
i P < 0 for i = 1,2 . (6.38)

Corollary 7 now implies that the switching descriptor system (6.37) is GUES. Q.E.D.

6.3.2 Lur’e type switching systems

Consider the situation in which

A1 = A , E1 = E , A2 = A−bcT
1 , E2 = E−bcT

2 E (6.39)

for some column matrices b,c1 and c2 where d = −cT
2 b 6= −1 and Ex is continuous during

switching. Suppose that (X ,Y ) is a full rank decomposition of E; then (X2,Y ) is a full rank
decomposition of E2, where X2 = (I−bcT

2 )X . Also, continuity of Ex and Y T
σ x are equivalent.

As demonstrated in Section 6.3.2, one can readily show that this system can be expressed as a
feedback combination of the LTI system (6.30) subject to the switching feedback (6.31). We
will show that hypothesis (c) of the previous lemma holds and hypothesis (d) is equivalent to

(d’) A−1
1 E1A−1

2 E2 has no negative real eigenvalues.

To show that (c) holds, we recall (6.35) which says that

A−1
2 E2 = A−1

1 E1 + k−1A−1bcT A−1E;

hence, pre-multiplication by Y T results in

Ẽ2Y T = Ẽ1Y T −ghTY T ,

where

g̃ = Y T A−1b and hT = −k−1cT A−1X . (6.40)

Since Y T is full row rank, we must have

Ẽ2 = Ẽ1−ghT ; (6.41)

thus, hypothesis (c) holds. To obtain the equivalency of (d) and (d’) we first compute that

Ẽ1Ẽ2 = (Y T A−1
1 X)(Y T A−1

2 X2) = Y T (A−1
1 E1A−1

2 X2)
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Now, we use the fact that the non-zero eigenvalues of MN and NM coincide for any two
matrices M and N of compatible dimensions. This implies that the non-zero eigenvalues of
Ẽ1Ẽ2 are the same as those of

(A−1
1 E1A−1

2 X2)Y T = A−1
1 E1A−1

2 E2.

It now follows that (d) and (d’) are equivalent.

6.4 K Y P - L I K E L E M M A F O R S I S O I N D E X - O N E S Y S T E M S

An alternative statement of the KYP lemma for regular SISO systems is that strict positive
realness of H(s) = d + cT (sI−A)−1b with d > 0 is equivalent to the existence of a matrix
P = PT > 0 satisfying

AT P+PA < 0 and(
A− bcT

d

)T

P+P
(

A− bcT

d

)
< 0.

From Theorem 7, a regular SISO transfer is SPR for d > 0 if and only if the matrix
(
A− 1

d bcT
)

A
has no eigenvalues on the closed negative real axis (−∞,0]. Based on these observations, we
can conclude that if A and A− bcT

d are Hurwitz matrices, then the switched system

ẋ(t) = A(t)x(t); A(t) ∈A =

{
A,A− bcT

d

}
has the CQLF V (x) = xT Px if and only if the matrix product A

(
A− bcT

d

)
has no negative

real eigenvalues (see Theorem 29).

Now, we recall our earlier result from Theorem 14 stating that

H(s) = d + cT (sE−A)−1b

= d̃ + c̃T (sI− Ã)−1b̃ (see Theorems 14 and 31)

is SPR if and only if Ã−1
(
Ã−1 + Ã−1b̃(d̃− c̃T Ã−1b̃)−1c̃T Ã−1

)
= Ẽ1Ẽ2 has no negative real

eigenvalues, where Ẽ1 = Y T A−1X and Ẽ2 = Y T
(

A− bcT

d

)−1
X .

Under these circumstances, we can apply Theorems 29 and 32 to show that there exists a
Lyapunov function V (z) = zT P̃z > 0 for z 6= 0 such that

ẼT
1 P̃+ P̃Ẽ1 < 0 and

ẼT
2 P̃+ P̃Ẽ2 < 0.
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hence

ET A−T P+PA−1E is negative definite on C (E,A) and

ET
(

A− bcT

d

)−T

P+P
(

A− bcT

d

)−1

E is negative definite on C

(
E,A− bcT

d

)
.

where P = Y P̃Y T is positive definite on C (E,A) and C
(

E,A− bcT

d

)
. Based on this discus-

sion, we can directly state a KYP-like Lemma for SISO index-one descriptor systems.

Lemma 21 Let (E,A) and
(

E,A− bcT

d

)
be two stable index-one descriptor system pairs.

Then the following statements are equivalent:

(i) d +ℜ{cT ( jωE−A)−1b}> 0 for all ω ∈R∪{±∞}.

(ii) There exists a matrix P = PT , positive definite on C (E,A) and C
(

E,A− bcT

d

)
, such

that

(a) ET A−T P+PA−1E is negative definite on C (E,A) and

(b) ET
(

A− bcT

d

)−T
P+P

(
A− bcT

d

)−1
E is negative definite on C

(
E,A− bcT

d

)
.

6.5 E X A M P L E S

Example 1 (Switching between index one descriptor systems)

Consider the switched descriptor system:

Eẋ = A(t)x, A(t) ∈ {A1,A2}

with

E =

 3 7 8

1 3 1

3 7 8

 , A1 =

 0 1 0

0 0 1

−1 −2 −3

 , A2 =

 0 1 0

0 0 1

−1 −2 −4

 ,

where Ex is continuous during switching. Note (E,A1), (E,A1) are both stable systems and
that the switched system satisfies the assumptions of Lemma 2. Stability of the switched
descriptor system follows from the fact that EA−1

1 EA−1
2 has no negative real eigenvalues.

Note also that a full rank decomposition of E is given by

X =

 1 1

1 0

1 1

 , Y =

 1 2

3 4

1 7

 . (6.42)



96 S W I T C H E D D E S C R I P T O R S Y S T E M S : I N D E X - O N E S Y S T E M S A N D A R B I T R A RY S W I T C H I N G

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x
1

x
2

Figure 12: Solution trajectories for (E,A1) and (E,A2) on the constraint surfaces x1− x2 = 0 and
x1 = 0 are represented by “o” and “∗ ”, respectively. Jumps in the states during switching
are guided by the assumption that Ex remains continuous during switching.

The reduced order matrices admit a common Lyapunov solution, since both

Y T A−1
1 X =

[
−2 0

−1 −2

]
, Y T A−1

2 X =

[
−3 0

−3 −2

]
, (6.43)

are stable and both are lower triangular (however, this is only apparent after a full rank
decomposition) [119].

Example 2 (Switching between index one descriptor systems)

Consider the following switching descriptor system

Eẋ = A(t)x; A(t) ∈ {A1,A2},

where

E =

[
1 1

0 0

]
, A1 =

[
0 −1

1 −1

]
, A2 =

[
0 −1

1 0

]
.
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Assume further that Ex is continuous for all t. A full rank decomposition of E is given by

X =

[
1

0

]
, Y =

[
1

1

]
.

Both (E,A1) and (E,A2) are stable and index-one descriptor systems. Also

rank(Y T A−1
1 X−Y T A−1

2 X) = 1

and the eigenvalue of Y T A−1
1 XY T A−1

2 X is 2. Hence from Theorem 32, the switched descrip-
tor system is GUES about zero for arbitrary switching. A solution to the system is depicted
in Figure 12 with (x2(0),x1(0)) = (1,1), and A1 and A2 are switched periodically with an
arbitrary time period T = 0.5sec.

6.6 C O N C L U S I O N S

In this chapter, we derived results on the quadratic stability of a class of index-one switched
descriptor systems. We obtain, these results by exploiting the relationship between the strict
positive realness property of an LTI system and quadratic stability of the switched system. We
further showed that some of our ideas also apply to nonlinear Lur’e-like descriptor systems.
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In this chapter, we consider a special case of switching between descriptor systems
having different indices. Conditions for stability are obtained for such systems
under special state dependent switching conditions.

7.1 I N T RO D U C T I O N

In this chapter, we consider classes of switching systems where not all constituent systems
are index-one descriptor systems. We deal with two particular scenarios here.

1. switching between index-zero (regular system) and index-one descriptor systems.

2. switching between index-one and a particular class of index-two descriptor systems.

Such systems arise in various situations; in particular when the structure of a controller
changes in response to an external command.

7.2 P R E L I M I NA RY R E S U LT S

7.2.1 State Dependent Switching

In this chapter, we are interested in analysing the stability properties a switched system

Eσ(t)ẋ = Aσ(t)x , σ(t) ∈ {1, . . . ,N}, . (7.1)

where the matrix pairs (Ei,Ai) may not have the same index for all i. We recall from section
6.2.4 that, if (Ei,Ai) is index one and (Xi,Yi) is the full rank decomposition of Ei then

Y T
i Ci = Rr for all i, j = 1, · · · ,N . (7.2)

where r = rank(Ei). Thus, at a point of discontinuity t∗, if σ switches from i to j we
have Y T

i x(t−∗ ) ∈ Y T
j C j thereby allowing arbitrary impulse-free switching between index-one

descriptor systems. For index-two systems

Y T
i Ci = Im(Y T

i A−1
i XiY T

i ) = Im(Y T
i A−1

i Xi) ⊂Rr, (7.3)
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because Y T
i A−1

i Xi is singular for index-two systems. Hence we can always find x(t−∗ ) such
that Y T

i x(t−∗ ) /∈ Y T
j C j. Thus we cannot arbitrarily switch to an index-two system. This fact

motivates state dependent switching when one of the constituent subsystems (Ei,Ai) has
index-two. The state dependent switching rule proposed in this chapter is an assumption
that Y T

σ x (or x) is continuous during switching. This assumption of continuity provides the
appropriate time-instant t∗ at which impulse free switching is possible.

Initially we consider switching between a regular system and an index-one system, and then
we use this result to analyse switching between index-one and index-two descriptor systems.

The following lemma is useful in our results for switching descriptor systems with constituent
systems having different indices.

Lemma 22 Suppose A,B ∈Rn×n with rank(A−B) = rank(A)− rank(B) and

A+AT > 0,

B+BT ≥ 0.

Then, the kernels of B and B+BT are equal.

PROOF: Since QA > 0, where QA := A+AT , we see that rank(A) = n. Let r := rank(B).
Then, by assumption, we have rank(A−B) = n− r. Recall that the nullity of a matrix is the
dimension of its kernel. First, we show that the nullity of QB := B+BT is at most n−r. So,
suppose that x 6= 0 is in the kernel of QB. Then

0 = xT QBx = xT (A+AT )x+ 2xT (B−A)x = xT QAx−2xT (A−B)x,

Since QA > 0 and x 6= 0, we have xT QAx > 0; hence (A−B)x 6= 0, that is, x is not in the
null-space of A−B. Thus, the kernel of QB and A−B intersect only at zero. Since the rank of
A−B is n−r, its nullity is r; hence the nullity of QB is at most n−r.

We now show that the kernel of QB contains the kernel of B. Therefore, suppose that x is in
the kernel of B, that is, Bx = 0. Then

xT QBx = 2xT Bx = 0.

Since QB ≥ 0, it follows that QBx = 0, that is, x is in the kernel of QB. Thus, the kernel of
QB contains the kernel of B.

Since B has rank r, its nullity is n−r. Since we also know that the nullity of QB is less than
or equal to n−r, it now follows that the kernel of QB is the same as the kernel of B. Q.E.D.
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We first obtain this general result from Lemmas 18 and 22.

Lemma 23 Consider a switching descriptor system described by (5.2) where x is continuous
during switching. Suppose that, for some N1 ≤ N, there is a symmetric positive-definite
matrix P satisfying

PA−1
i Ei +(A−1

i Ei)
T P < 0, i = 1, . . . ,N1 (7.4)

PA−1
j E j +(A−1

j E j)
T P ≤ 0, j = N1 + 1, . . . ,N (7.5)

and for each j ∈ {N1 + 1, · · · ,N} there is an index i j ∈ {1, · · · ,N1} such that

rank(A−1
i j

Ei j −A−1
j E j) = rank(A−1

i j
Ei j)− rank(A−1

j E j) . (7.6)

Then, the system is GUES.

PROOF: We prove this result by showing that the hypotheses of Lemma 18 hold. Since P is
positive definite, hypothesis (a) holds. Also, the continuity of x(·) implies that hypothesis
(c) holds. To see that hypothesis (b) holds, we apply Lemma 22 with A = −PA−1

i j
Ei j and

B = −PA−1
j E j to obtain that the kernel of Q j := −PA−1

j E j− (A−1
j E j)T P is the same as that

of−PA−1
j E j which also equals the kernel of A−1

j E j; thus Q j and A−1
j E j have the same kernel.

Since Q j ≥ 0 and the kernel of A−1
j E j and C (E j,A j) intersect only at zero, we conclude that

Q j is positive definite on the consistency space of (E j,A j). Hypothesis (b) now follows by
taking into account (7.4). It now follows from Lemma 18 that the switching system (6.37) is
GUES. Q.E.D.

7.3.1 A special class of index-0 and index-one systems

Here we consider systems described by

Eσ(t)ẋ = Aσ(t)x , σ(t) ∈ {1,2} (7.7)

where each constituent system is stable, with the first being index zero and the second index
one; also the rank of A−1

1 E1−A−1
2 E2 is one. We show that if the matrix A−1

1 E1A−1
2 E2 has no

negative real eigenvalues, exactly one eigenvalue at zero and some other regularity conditions
hold then, the system is QS; hence it is stable. To achieve this result, we utilize Theorem 30
from [68]. The following result follows from Lemma 23 and Theorem 30.

Theorem 33 Consider a switching descriptor system described by (7.7) where x is continu-
ous during switching and suppose that it satisfies the following conditions

(a) (E1,A1) and (E2,A2) are stable.
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(b) (E1,A1) is index-zero and (E2,A2) is index-one.

(c) There exists column matrices g and h such that

A−1
2 E2 = A−1

1 E1−ghT , (7.8)

where (A−1
1 E1, g), (A−1

1 E1, h) are controllable and observable, respectively.

(d) The matrix A−1
1 E1A−1

2 E2 has no negative real eigenvalues and exactly one zero eigen-
value.

Then the switching descriptor system (7.7) is globally uniformly exponentially stable about
zero.

PROOF: We first show that the hypotheses of Theorem 30 hold with A = A−1
1 E1. For i = 1,2,

(Ei,Ai) is stable; hence the non-zero eigenvalues of A−1
i Ei have negative real parts. Since

(A1,E1) is index zero, A−1
1 E1 is nonsingular and has no zero eigenvalues. This implies that

A−1
1 E1 is Hurwitz.

Since A−1
1 E1A−1

2 E2 has exactly one eigenvalue at zero, its nullity is one; the non-singularity of
A−1

1 E1A−1
2 now implies that the nullity of E2 is one; hence the rank of E2 and A−1

2 E2 is n−1.
Since (E2,A2) has index one and the nullity of E2 is one, the matrix A−1

2 E2 has a single eigen-
value at zero. Thus, all eigenvalues of A−1

2 E2 have negative real part except one which is zero.

Recalling hypotheses (c) and (d) in this theorem, we see that the hypotheses of Theorem 30
hold with A = A−1

1 E1. Hence there exists a matrix P = PT > 0 such that

PA−1
1 E1 +(A−1

1 E1)
T P < 0, (7.9)

PA−1
2 E2 +(A−1

2 E2)
T P ≤ 0. (7.10)

Since rank(A−1
1 E1−A−1

2 E2) = rank(ghT ) = 1 = rank(A−1
1 E1)− rank(A−1

2 E2), Lemma 23
now implies that the switching descriptor system (7.7) is globally uniformly exponentially
stable about zero. Q.E.D.

Comment 6 (Switching) The above result requires x to be continuous during switching.
It follows from (7.4) that A−1

1 E1 is nonsingular; this implies that the system (E1,A1) is a
regular system and its consistency space is the whole state space. Hence switching to this
system can occur at any state. Except in the trivial case that A−1

2 E2 = A−1
1 E1, the matrix E2

is singular which implies that the index of (E2,A2) is at least one; hence the consistency
space of this system is not the whole state space. Thus, the switching system does not switch
to the second linear system from an arbitrary point in the state space. To switch to the second
system, the state must be in the consistency space of that system.
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7.3.2 Lur’e type switching systems

Consider the situation in which the system is a Lur’e type system as described in Section
6.2.5. Then hypothesis (c) holds with

g = A−1b and hT = k−1cT A−1E where k = 1+ d− cT A−1b . (7.11)

Assuming (E1,A1) is index zero is equivalent to E being non-singular. If (E2,A2) is index-one
then E2 = (I−bcT

2 )E is singular; this is equivalent to d = −cT
2 b = −1.

Example 3 Switching between index-zero and index-one descriptor systems

Consider a mixed switched system of the form

Eσ(t)ẋ = Ax,

where σ(t) ∈ {1,2} and x is continuous. For

E1 =

[
1 0

0 1

]
, E2 =

[
1 1

0 0

]
, A =

[
−1 0

1 −2

]
,

note that (E1,A) is a stable regular system and the pair (E2,A) is a stable index one de-
scriptor system. Note also that A−1E1−A−1E2 = ghT , where gT =

[
1 0

]
and hT =

[
0 1

]
and the pairs (A−1E1,g) and (A−1E1,h) are controllable and observable, respectively. The
eigenvalues of A−1E1A−1E2 are (1.75,0). Hence from Theorem 33, the switched system
described above is globally uniformly exponentially stable about zero.

7.4 S W I T C H I N G B E T W E E N I N D E X O N E A N D I N D E X T W O S Y S T E M S

Now to conclude, we consider switching between index-one and index-two descriptor
systems. First we have the following result which is a corollary of Lemmas 19 and 23.

Corollary 8 Consider a switching descriptor system described by (5.2) where Y T
σ x is contin-

uous during switching and (Xi,Yi) is a decomposition of Ei with Yi ∈Rn×r for i = 1, . . . ,N.
Suppose that, for some N1 ≤ N, there is a symmetric positive-definite matrix P such that the
following conditions are satisfied, where Ẽi = Y T

i A−1
i Xi.

PẼi + ẼT
i P < 0, i = 1, . . . ,N1 (7.12)

PẼ j + ẼT
j P ≤ 0, j = N1 + 1, . . . ,N (7.13)

and for each j ∈ {N1 + 1, . . . ,N} there is an index i j ∈ {1, . . . ,N1} such that

rank(Ẽi j − Ẽ j) = rank(Ẽi j)− rank(Ẽ j) . (7.14)

Then, the system is globally uniformly exponentially stable about zero.
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7.4.1 A special class of index-one and index-two systems

The following result can be obtained from Lemma 19 and Theorem 33.

Theorem 34 Consider a switching descriptor system described by

Eσ(t)ẋ = Aσ(t)x , σ(t) ∈ {1,2}, (7.15)

where Y T
σ x is continuous during switching and (Xi,Yi) is a full rank decomposition of Ei with

Yi ∈Rn×r for i= 1,2. Suppose that the following conditions are satisfied where Ẽi =Y T
i A−1

i X
for i = 1,2.

(a) (E1,A1) and (E2,A2) are stable.

(b) (E1,A1) is index one and (E2,A2) is index two.

(c) There exists, vectors g and h such that

Ẽ2 = Ẽ1−ghT (7.16)

with (Ẽ1,g) controllable and (Ẽ1,h) observable.

(d) Ẽ1Ẽ2 has no negative real eigenvalues and exactly one zero eigenvalue.

Then the switched descriptor system (7.15) is globally uniformly exponentially stable about
zero.

PROOF: Recall Lemma 19 on reduced order systems. Since (X1,Y1) is a full rank decom-
position of E1 and (A1,E1) is stable and index-one, its corresponding reduced order system
(Ẽ1, I) is stable and index-zero. Since (X2,Y2) is a full rank decomposition of E2 and (A2,E2)

is stable and index-two, its corresponding reduced order system (Ẽ2, I) is stable and index
one. Theorem 33 now guarantees GUES of the reduced-order switching system. Lemma 19
now implies the same stability properties for the switching system (7.15). Q.E.D.

7.4.2 Lur’e type switching systems

Consider the situation in which the system is a Lur’e type system as described in Section
6.2.5 with d = −cT

2 b = −1 and Ex is continuous during switching. Suppose (X ,Y ) is a full
rank decomposition of E. Then (X2,Y ) is a decomposition of E2, where X2 = (I−bcT

2 )X .
This is not a full rank decomposition since X2 does not have maximum column rank. Also,
continuity of Ex and Y T

σ x are equivalent.

We will show that hypotheses (c) and (d) of the above lemma are equivalent to the following
hypotheses.
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(c’) The matrices

Qc :=
[

EA−1b (EA−1)2b · · · (EA−1)rb
]

, (7.17)

(7.18)

Qo :=


cT A−1E

cT (A−1E)2

...

cT (A−1E)r

 (7.19)

have maximum rank r = rank(E), where cT = cT
1 − cT

2 A.

(d’) A−1
1 E1A−1

2 E2 has no negative real eigenvalues and n− r+ 1 eigenvalues at zero.

In Section 6.3.2, we have already seen that Ẽ2 = Ẽ1−ghT , where

g = Y T A−1b and hT = −k−1cT A−1X (7.20)

and k = k = 1+ d− cT A−1b = −cT A−1b.

We now show that controllability of (Ẽ1,g) is equivalent to Qc having rank r. The pair
(Ẽ1, g) is controllable if and only if the controllability matrix

Q̃c =
[

g Ẽg · · · Ẽr−1g
]

has rank r. Since X has full column rank, the above controllability matrix has the same rank
as XQ̃c. Noting that, for any k = 0,1, . . . ,

XẼk = X(Y T A−1X)k = (XY T A−1)kX = (EA−1)kX ,

we obtain that

XẼkg = (EA−1)kXY T A−1g = (EA−1)k+1g .

Hence, XQ̃c = Qc which yields the desired result.

We now show that observability of (Ẽ1,h) is equivalent to Qo having rank r. Since hT =

−k−1cT A−1X , we see that the pair (Ẽ1, h) is observable if and only if the matrix

Q̃o =


ĥT

ĥT Ẽ
...

ĥT Ẽr


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has rank r, where ĥT = cT A−1X . Since Y T has full row rank, the above observability matrix
has the same rank as Q̃oY T . Noting that, for any k = 0,1, . . . ,

ẼkY T = (Y T A−1X)kY T = Y T (A−1XY T )k = Y T (A−1E)k,

we obtain that

ĥT ẼkY T = cT A−1XY T (A−1E)k = cT (A−1E)k+1 .

Hence Q̃oY T = Qo. This yields the desired result.

To obtain the equivalency of (d) and (d′), we observe that

Ẽ1Ẽ2 = (Y T A−1
1 X)(Y T A−1

2 X2) = Y T (A−1
1 E1A−1

2 X2)

A−1
1 E1A−1

2 E2 = (A−1
1 E1A−1

2 X2)Y T .

The desired result now follows from the fact that, for any two matrices M,N ∈Rn×r, the
eigenvalues of MNT are the eigenvalues of NT M plus n− r eigenvalues at zero.

7.5 C O N C L U S I O N S

In this chapter, we provided a state dependent switching rule associated with a simple
spectral condition under which switching between index zero and index one or index-one
and index-two descriptor systems is GUES. These ideas also extend to nonlinear Lur’e-like
descriptor systems.



Part III

D I S C R E T I Z AT I O N

In this part, we explore passivity and mixedness preserving discretization meth-
ods for descriptor systems. We also consider the stability preserving properties
of diagonal Padé approximations to the matrix exponential. We show that while
diagonal Padé approximations preserve quadratic stability when going from
continuous-time to discrete-time, the converse is not true.

As part of exploring other properties of diagonal Padé approximations, [120]
proved that for linear time-invariant systems, certain types of polyhedral Lya-
punov functions are preserved by diagonal Padé approximations, under the
assumption that the continuous-time system matrix Ac has distinct eigenvalues.
In this part, we show that this result also holds true in the case that Ac has
non-trivial Jordan blocks. This work was carried out in collaboration with Prof.
Martin Corless1 , Prof. Patrizio Colaneri2, Dr. Francesco Rossi3, Selim Solmaz4

and Prof. Robert Shorten5

1 School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA.
2 Technion-Israel Institute of Technology, Haifa and Jerusalem College of Engineering, Jerusalem, Israel.
3 Aix-Marseille Univ, LSIS, 13013, Marseille, France.
4 Hamilton Institute, NUI Maynooth, Ireland.
5 Hamilton Institute, NUI Maynooth, Ireland.
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In this chapter, we introduce discretization methods used to preserve passivity
and Lyapunov stability of regular LTI systems. These methods will be used in later
chapters to develop similar methods for LTI descriptor systems.

8.1 I N T RO D U C T I O N

In this chapter, we present some existing results on the topics discretization of LTI systems
and linear switched systems. Our primary goal is to find suitable discretization methods
which preserve the properties of passivity, mixedness and Lyapunov stability of descriptor
systems. Our approach to find appropriate discretization methods for descriptor systems is
based on the understanding of similar discretization methods for regular systems. However,
there exist no prior work on the topic of discretization of regular mixed systems. Hence
we focus primarily on passivity preserving and Lyapunov stability preserving discretization
methods in this background chapter.

8.2 P R E S E RV I N G PA S S I V I T Y U N D E R D I S C R E T I Z AT I O N

Discretization methods for LTI systems can be classified into two broad categories:

1. discretizing the continuous-time transfer functions and

2. discretizing the continuous-time state space model.

Initially, we consider discretization methods for continuous-time transfer functions.

8.2.1 Discretizing the transfer function

In this thesis, we primarily focus on Tustin’s Method owing to its passivity preserving nature,
as understood from the following Lemma. For −π ≤ θ ≤ π and −∞≤ ω ≤ ∞, we can state
the following.

Lemma 24 [69] Let H( jω) be a continuous-time transfer function and assume that H( jω)

is discretized by the Tustin discretization method with sampling period h. The discrete-time
transfer function is given by

G(e jθ ) = H
(

2
h

e jθ −1
e jθ + 1

)
. (8.1)

109
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If H( jω) is continuous-time positive real, then G(e jθ ) is discrete-time positive real.

Now, we consider the following continuous-time state space model:

Σc :

 ẋ(t) = Acx(t)+Bcu(t),

y(t) =CT
c x(t)+Dcu(t),

(8.2)

with the corresponding transfer function

Hc( jω) = Dc +CT
c ( jωI−Ac)

−1Bc. (8.3)

Tustin’s method of numerical approximation for the transfer function Hc(s) results in

Hd( jω) = Hc

(
2
h

e jθ −1
e jθ + 1

)
= Dd +CT

d (e
jθ I−Ad)

−1Bd ,

where

Ad =
(
I− h

2 Ac
)−1 (

I + h
2 Ac
)

, Bd =
h
2

(
I− h

2
Ac

)−1

Bc,

CT
d = 2CT

c
(
I− h

2 Ac
)−1

, Dd = Dc +
h
2

CT
c

(
I− h

2
Ac

)−1

Bc.

8.2.2 Discretizing the state space model

Here, we consider discretization of a regular continuous-time state space model given by

Σc :

 ẋ(t) = Acx(t)+Bcu(t),

y(t) =CT
c x(t)+Dcu(t).

(8.4)

Assuming the presence of a ZOH element on its input with a sampling time h > 0, it can be
shown that the following discrete-time state space model expresses the evolution of the state
x along a discrete time axis:

Σd :

 x[(k+ 1)h] = Adx[kh]+Bdu[kh],

y[kh] =CT
d x[kh]+Ddu[kh],

(8.5)

where

Ad = eAch, (8.6)

Bd = A−1
c (eAch− I)Bc, (8.7)

Cd = Cc, (8.8)

Dd = Dc. (8.9)
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Numerical methods to evaluate the matrix exponential eAch are given by Padé approximation
methods (see Definition 18). However, the selection of a numerical method to evaluate
the matrix exponential does not influence the passivity property. Because passivity is not
an intrinsic property of the system, it depends on the choice appropriate input and output
variables. Hence we postpone the discussion on Padé approximation methods to the later
section.

A passivity preserving method for the state space models has been proposed by [72, 73, 74].
Traditional discretization methods for state space models do not change the output (see 8.5)
and they do not preserve passivity. Hence a different output has been defined by [72, 73, 74],
such that the discrete-time state space model is passive whenever the continuous-time model
is passive. This new output can be defined as

y∗(kh) =
∫ kh+h

kh
y(τ)dτ (8.10)

= CT∗
d x(kh)+D∗du(kh). (8.11)

then

CT∗
d = CT

c A−1
c (eAch− I), (8.12)

D∗d = CT
c A−2

c (eAch− I−Ach)Bc +Dch. (8.13)

Theorem 35 [76][75] Using the output y∗ defined above, the following relationships can
be stated between the continuous-time system Σc, and the discrete-time equivalent Σd:

1. If Σc is passive, then Σd is passive.

2. If Σc is strictly-input passive, then Σd is strictly-input passive.

3. If Σc is strictly-output passive, then Σd is strictly-input passive.

There exists, no equivalent methods for preserving passivity of descriptor systems. This task
will be carried out in the next chapter.

8.3 P R E S E RV I N G LYA P U N OV S TA B I L I T Y U N D E R D I S C R E T I Z AT I O N

We introduce some new notation in this part of the thesis. The 2-measure of a square matrix
X is defined as µ2(X) = 1

2 λmax
(
X +XT

)
and the 2-norm as ‖X‖2 =

√
λmax(XT X). Also,

letting Xi j be the entries of X , we define the ∞-measure as µ∞(X) = maxi
(
Xii +∑ j 6=i |Xi j|

)
and the ∞-norm as ‖X‖∞ = maxi ∑ j |Xi j|. Let W ∈Rm×n be a weight matrix, and consider

the Hölder p-vector norms Vp(x) = ‖Wx‖p =
(
∑

m
i=1 |wT

i x|p
)1/p 1≤ p≤ ∞, where wi is the

ith row of the weight matrix W .
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Also, we denote the convex-hull operator using conv{}. Given a finite set of points x1,x2, . . . ,xN ,
the convex-hull is the convex combination of its points, given by

conv{xi}N
i=1 =

{
ΣN

i=1αixi|αi ∈R+∪{0},ΣN
i=1αi = 1

}
and the interior of set S is denoted using int(S).

We begin with a regular continuous-time LTI system given by

Σc : ẋ = Acx (8.14)

and the corresponding discrete-time LTI system with sampling time h > 0 given by

Σd : x[(k+ 1)h] = Ad(h)x[kh]; Ad(h) =C(Ac,h). (8.15)

A square matrix Ac is said to be Hurwitz stable if all of its eigenvalues lie in the OLHP. A
square matrix Ad is said to be Schur stable if all its eigenvalues lie in the open interior of the
unit disc. Assume that Ac is Hurwitz stable and Ad is Schur stable. The following Theorems,
present the necessary and sufficient conditions under which Vp(x) = ‖Wx‖p is a Lyapunov
function for the systems (8.14) and (8.15)

Theorem 36 [121] Vp(x) is a Lyapunov function for the system (8.14) if there exist Wc ∈
Rm×n, m≥ n, rank(Wc) = n, and Qc,∈Rm×m such that

WcAc−QcWc = 0, µp(Qc) < 0. (8.16)

Theorem 37 [121] Vp(x) is a Lyapunov function for the system (8.15) if there exist Wd ∈
Rm×n, m≥ n, rank(Wd) = n, and Qd ∈Rm×m such that

WdAd−QdWd = 0, ‖Qd‖p < 1. (8.17)

Quadratic Lyapunov functions (p = 2): For the special case when p = 2, the existence
of a Lyapunov function V2(x) = ‖Wx‖2 =

(
∑

m
i=1 |wT

i x|2
)1/2 enforces the existence of a

quadratic Lyapunov function ‖Wx‖2 = xT Px, where P = W TW is termed as Lyapunov
matrix for the continuous-time case and Stein matrix for the discrete-time case. Indeed, in
the continuous-time case,

AT
c P+PAc =W T (Qc +QT

c )W < 0,

whereas in the discrete-time case,

AT
d PAd−P =W T (QT

d Qd− I)W < 0.

Polyhderal Lyapunov functions (p = ∞ or 1): For the case when p = ∞, we recall a pair of
results for special polyhedral Lyapunov functions from [122], [123], for the continuous-time
and discrete-time case, respectively.
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Im

Re

m=2 m=3

4 3

Figure 13: The sectors Sc(m) for m = 2
(angle π/4), m = 3 (angle π/3).

Im

Re

m=2

m=3

Figure 14: The polygons for m = 2 (square),
m = 3 (hexagon).

Lemma 25 Consider a Hurwitz stable matrix Ac, with distinct eigenvalues, with nr real
and 2nc complex eigenvalues. For each pair of conjugate complex eigenvalue λi = αi± jβi,
i = 1,2, · · · ,nc, take an integer mi such that λi lies in the sector Sc(mi), where

Sc(m) = {λ = −α + jβ : α > 0, |β |<
sin( π

m )

1− cos( π

m )
α}. (8.18)

Then there exists Wc ∈RN×n and Qc ∈RN×N , with N = ∑
k
i=1 mi + nr, satisfying (8.16).

In Figure 13, the sectors Sc(m) are drawn for m = 2 (angle π/4), m = 3 (angle π/3).

Lemma 26 Consider a Schur stable matrix Ad , with distinct eigenvalues, with nr real and
2nc complex eigenvalues. For each pair of conjugate complex eigenvalue λi = σi± jωi,
i = 1,2, · · · ,nc , take an integer mi such that λi lies in the interior of the regular polygon
Pol(mi), where

Pol(m) = int conv
{

e j pπ

m

}2m−1

p=0
. (8.19)

Then there exists Wd ∈RN×n and Qd ∈RN×N , with N = ∑
k
i=1 mi + nr, satisfying (8.17).

In Figure 14 the polygons Pol(m) are depicted for m = 2 (square), m = 3 (hexagon). The
two Lemmas above have been shown to be valid also in case of multiple eigenvalues. As
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shown in [122], matrix Wc can be constructed for distinct eigenvalues as follows. Let Tc be
the state-space transformation that puts Ac in its real Jordan form, i.e.

TcAcT−1
c =



Hc1 0 · · · 0 0

0 Hc2 · · · 0 0
...

...
. . .

...
...

0 0 0 Hcnc 0

0 0 0 0 Rc


where Hci =

[
−αi βi

−βi −αi

]

where and Rc is a nr×nr diagonal matrix accounting for the real eigenvalues. Moreover let,
for i = 1,2, · · · ,nc:

Wci =



1 0

cos( π

mi
) sin( π

mi
)

cos( 2π

mi
) sin( 2π

mi
)

...
...

cos( (mi−1)π
mi

) sin( (mi−1)π
mi

)


, Qci =



xi yi 0 0 0

0 xi yi 0 0
...

...
. . .

...
...

0 0 0 xi yi

−yi 0 0 0 xi


where

xi = −αi−
βicos( π

mi
)

sin( π

mi
)

, yi =
βi

sin( π

mi
)

Then, it is easy to verify that (8.16) is satisfied with

Wc =



Wc1 0 · · · 0 0

0 Wc2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Wcnc 0

0 0 · · · 0 I


Tc, (8.20)

Qc =



Qc1 0 · · · 0 0

0 Qc2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Qcnc 0

0 0 · · · 0 Rc


(8.21)

Notice indeed that µ∞(Qc)< 0 is forced by the assumption on the position of the eigenvalues
that is equivalent to xi + |yi|< 0.
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The computation of the polyhedral Lyapunov function ‖Wdxd‖∞ for the discrete-time system
(8.15) follows the same lines and can be found in [123]. Let Td the state-space transformation
that puts Ad in its real Jordan form, i.e.

TdAdT−1
d =



Hd1 0 · · · 0 0

0 Hd2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Hdnc 0

0 0 · · · 0 Rd


where Hdi =

[
σi ωi

−ωi σi

]
(8.22)

and Rd is a nr×nr diagonal matrix accounting for the real eigenvalues. It can be verified that
(8.17) is met by choosing Wd =WcT−1

c Td and Qd as in (13), with Rc replaced by Rd and Qci

replaced by

Qdi =



z1,i z2,i · · · zm−1,i zm,i

−zm,i z1,i · · · zm−2,i zm−1,i
...

...
. . .

...
...

−z3,i −z4,i · · · z1,i z2,i

−z2,i −z3,i · · · −zm,i z1,i


where z j,i are such that ∑

m
j=1 |z j,i|< 1. Notice that ‖Qd‖∞ < 1 is forced by the assumption

on the position of the eigenvalues in the regular polygon Pol(mi).

8.3.1 Discretization of ẋ = Ax

Our primary interest in this part of the thesis is to examine the invariance of Lyapunov
functions under discretization. Since the closed form solution of (8.14) is given by x(t) =
eAc(t−t0)x(t0) for t ≥ t0. For a sampling time h > 0 and k = 0,1,2, . . . , if we set t0 = kh and
t = (k+ 1)h, we obtain the discrete-time approximation given by x[(k+ 1)h] = eAchx[kh].
Hence, discretization of a continuous-time LTI system involves the calculation of matrix
exponential, which may not yield satisfactory results [86]. One must therefore rely on nu-
merical methods that are able to approximate the solution of a differential equation to any
desired accuracy. In this thesis, we mainly focus on single step RK methods [87].

One can study the behaviour of Runge-Kutta methods with a simple scalar linear differential
equation given by (see Dahlquist Criterion in [87])

ẏ = λy with λ ∈ C. (8.23)

The exact solution y(t) = eλ (t−t0)y0 remains bounded as t→ ∞ when ℜ[λ ] ≤ 0. This obser-
vation motivates the following definition.
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Definition 17 [87] (A-Stability): Consider the continuous system ẋ = Ax and the corre-
sponding discrete time system given by x[(k+ 1)h] =C(Ah)x[kh], with step size h > 0 and
k = 0,1,2 . . . . Then C(z) is A-stable, if it satisfies

|C(z)| ≤ 1 for ℜ[z] ≤ 0. (8.24)

Such A-Stable approximations (e.g. bilinear transform) are widely exploited in systems and
control as they map the open left half of the complex plane to the interior of the unit disc.
This implies the well known fact that these maps preserve stability of LTI systems as stated
formally in the following lemma.

Lemma 27 ( Preservation of stability) Suppose that Ac is a Hurwitz stable matrix and, for
any sampling time h > 0, let Ad =C(Ach) be an A-Stable approximation of eAch. Then Ad is
Schur stable.

An implicit Runge-Kutta method for (8.23) is of the form

y[(k+ 1)h] =C(hλ )y[kh] (8.25)

with a rational function C(z) (also called stability function), which is a pth order approxima-
tion to the exponential at the origin if

C(z) = ez +O(zp+1) as z→ 0. (8.26)

Thus, it is of interest to study rational functions of given degrees that approximate the
exponential function the best. Padé approximations C[L/M] (see Definition 18) with numerator
degree L and denominator degree M with highest possible order p = L+M are used to
approximate these functions. Also note that Padé approximations with L≤M ≤ L+ 2 are
A-stable.

Definition 18 (Padé Approximations [88], [124], [89]) : The [L/M] Padé approximation
to the exponential function ez is the rational function CL/M defined by

CL/M(z) =
QL(z)

QM(−z)
, (8.27)

where

QL(z) =
L

∑
k=0

lkzk, QM(z) =
M

∑
k=0

mkzk, (8.28)

lk =
(L+M− k)!L!

(L+M)!k!(L− k)!
, mk =

(L+M− k)!M!
(L+M)!k!(M− k)!

.
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Thus the [L/M] Padé approximation to eAch, the matrix exponential with sampling time h, is
given by

C[L/M](Ach) = QL(Ach)Q−1
M (−Ach) (8.29)

where QL(Ach) = ∑
L
k=0 ck(Ach)k and QM(Ach) = ∑

M
k=0 ck(Ach)k

In this thesis, we only consider A-stable Padé approximations. Another important criterion
for the selection of an approximation method is its absolute monotonicity. In some situations,
the radius of absolute monotonicity is used to select the appropriate step size. The property of
absolute monotonicity can be understood through the following Definitions and Theorems.

Definition 19 [125](Absolute monotonicity): A function C(z) : R→R is absolutely mono-
tonic at x if C(z), and all of its derivatives exist and are non-negative at z = x.

Theorem 38 [125] For r > 0, a polynomial C(z) is absolutely monotonic at z = −r if and
only if it is absolutely monotonic on the interval z ∈ (−r,0].

Definition 20 [125](Radius of absolute monotonicity): The radius of absolute monotonic-
ity rC of a function C(z) : R→R is the largest value of r = rC such that C(z), and all of its
derivatives exist and are non-negative for z ∈ (−rC,0].

Several numerical methods have been developed to compute rC for a given approximation
function C(z) [125].

8.3.2 Bilinear transform

The [1/1]-order diagonal Padé approximation C[1/1](z) (also known as Bilinear Transform
or Tustin Transform) is a popular discretization method for control and communication
engineers. We now present some of its properties. Consider continuous-time system (8.14)
and its discrete-time equivalent (8.15).

Theorem 39 [90] If the discrete time matrix Ad is obtained using [1/1] order Padé approxi-
mation given by

Ad(h) =C[1/1](Ach) =
(

I +Ac
h
2

)(
I−Ac

h
2

)−1

, (8.30)

then the following observations can stated.

1. The Lyapunov function class V2(x) is preserved during discretization.

2. The Lyapunov function classes V∞(x) and V1(x) are not preserved during discretiza-
tion.
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It should be noted that the converse to statement 1 is also true, i.e., if V2(x) is a Lyapunov
function for the discrete time system (8.15), then V2(x) is also a Lyapunov function for
the continuous-time system (8.14). Statement 2 can be proved using a counterexample;
that a given polyhedral Lyapunov function in continuous-time may not be a Lyapunov
function for the sampled discrete-time system obtained via the bilinear transformation (with
a fixed sampling time). However, it was also proved in [120], that if an eigenvalue λ of a
continuous-time matrix belongs to Sc(m) (defined in (8.18)) then its image under a diagonal
Padé transformation (for any order and any sampling time h) belongs to Pol(m) (defined
in (8.19)). This result allows us to conclude that a continuous-time polyhedral Lyapunov
function of the form V∞ = ‖Wx‖∞, is preserved under diagonal Padé approximation if Ac

has distinct eigenvalues [120]. In this part we focus on the validity of this result for a more
general case, when Ac has non-trivial Jordan blocks.

8.3.3 Discretization of switched systems

Consider a regular continuous-time switched system of the form

Σsc : ẋ(t) = Ac(t)x(t), Ac(t) ∈Ac = {Ac1, . . . ,AcN} (8.31)

with its approximate discrete-time counterpart,

Σsd : x(k+ 1) = Ad(k)x(k), Ad(k) ∈Ad = {Ad1, . . . ,AdN} (8.32)

Given a finite set of Hurwitz stable matrices Ac, a matrix P is a Common Lyapunov Ma-
trix (CLM) for Ac if AT

c P+PAc < 0 for all Ac in Ac. In this case, we say that the continuous-
time switching system (8.31) is QS with Lyapunov function V (x) = xT Px and V is a CQLF for
Ac. Given a finite set of Schur stable matrices Ad a matrix P is a Common Stein Matrix (CSM)
for Ad if AT

d PAd−P < 0 for all Ad in Ad . In this case, we say that the discrete-time switching
system (8.32) is QS with Lyapunov function V (x) = xT Px and V is a CQLF for Ad .

A notable result concerning common quadratic Lyapunov functions is that they are invariant
under [1/1]-order Padé approximation. This means that, given a set of Hurwitz stable matrix
{Aci} and P = PT > 0 satisfying

AT
ciP+PAci < 0,

then
C[1/1](Acih)T PC[1/1](Acih) < P, ∀h > 0.

The following corollary is easily deduced from the above discussion.

Corollary 9 Suppose that V (x(t)) = xT (t)Px(t) is a CQLF for a finite set of matrices Ac.
Then V (x(k)) = xT (k)Px(k) is CQLF for any finite set of matrices Ad , where each Ad in Ad

is a [1/1]-order Padé approximation of eAch for some Ac in Ac and h > 0.
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PROOF : If P is a CLM for Ac then, P is an Lyapunov matrix for every Ac in Ac. It now
follows from Theorem 39, that P is a Stein matrix for every Ad in Ad . Hence P is a CSM for
Ad . Q.E.D.
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P R E S E RVAT I O N O F PA S S I V I T Y A N D M I X E D N E S S F O R
D E S C R I P T O R S Y S T E M S

In this chapter, we show that Tustin’s method of discretization is also valid for pre-
serving passivity and mixedness of index-one descriptor system transfer functions.
We also consider the output averaging method to discretize the descriptor system
state space models while preserving passivity. For both cases, we derive the cor-
responding discrete time state space matrices in terms of the original continuous
time matrices.

9.1 I N T RO D U C T I O N

In this chapter, we consider discretization methods for descriptor systems which preserve the
passivity and mixedness properties. Initially, we consider two different passivity preserving
discretization methods:

1. discretizing the continuous-time transfer functions using Tustin transform (see Theo-
rem 24) and

2. discretizing the continuous-time state space model using output averaging method (see
Theorem 35).

These well-established methods for regular systems are extended for index-one descriptor
systems. We further consider the problem of preserving “mixed” property for both regular
and index-one descriptor systems transfer functions using Tustin transform.

9.2 P R E L I M I NA RY R E S U LT S

In this section, we present some preliminary results necessary to discretize a continuous-time
descriptor system. Initially, we use Lemmas 5, 6, 7 to reduce a descriptor system to an
equivalent lower-order regular system. This can be achieved by iteratively applying Lemma
19 to achieve order reduction and index reduction while preserving stability of the original
descriptor system. This is possible provided that there is a decomposition (X̃ ,Ỹ ) of Ẽ with
X̃ ,Ỹ ∈Rr×r̃ with r̃ < r. Since a square matrix always has a full rank decomposition, one can
always iteratively reduce a single linear system (E,A) to a regular system.

121
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9.2.1 Reduction to a regular system

Let

Eẋ = Ax (9.1)

be an index-k descriptor system such that E = X1Y T
1 . Then we obtain the new reduced index

system given by

E1(Y T
1 ẋ) = (Y T

1 x), where E1 = Y T
1 A−1X1. (9.2)

From Lemma 7, the reduced-order system (9.2) has an index-(k−1), and we continue with
full rank decomposition of E1 such that E1 = X2Y T

2 and

E2(Y T
2 Y T

1 ẋ) = (Y T
2 Y T

1 x), where E2 = Y T
2 X2. (9.3)

We continue this procedure k times such that Ek−1 has a full rank decomposition of the form
Ek−1 = XkY T

k and

Ek(Y T
k . . .Y T

2 Y T
1 ẋ) = (Y T

k . . .Y T
2 Y T

1 x), where Ek = Y T
k Xk. (9.4)

Since Eẋ = Ax is an index-k descriptor system, (9.4) is an index-zero descriptor system
(regular system) and Ek is non-singular.

In the following, we present some preliminary results.

Lemma 28 If w(t) = Y T
k . . .Y T

2 Y T
1 x(t) = 0, then x(t) = 0.

PROOF: Consider

Ek−1(Y T
k−1 . . .Y

T
2 Y T

1 ẋ) = (Y T
k−1 . . .Y

T
2 Y T

1 x) where Ek−1 = Y T
k−1Xk−1. (9.5)

Now, we use full rank decomposition to obtain Ek−1 = XkY T
k and

Ek(Y T
k . . .Y T

2 Y T
1 ẋ) = (Y T

k . . .Y T
2 Y T

1 x) where Ek = Y T
k Xk. (9.6)

If C is the consistency space of Eẋ=Ax, i.e. x∈C , then Lemma 19 states that Y T
k−1 . . .Y

T
2 Y T

1 C

is the consistency space of (9.5) and Y T
k Y T

k−1 . . .Y
T
2 Y T

1 C is the consistency space of (9.6).
Recall that the consistency space Y T

k−1 . . .Y
T
2 Y T

1 C and the kernel of Y T
k intersect only at origin.

Hence if

Y T
k Y T

k−1 . . .Y
T
2 Y T

1 x(t) = 0, then Y T
k−1 . . .Y

T
2 Y T

1 x(t) = 0. (9.7)

Continuing this procedure k times, we obtain x(t) = 0. Q.E.D.

Lemma 29 EkY T
k . . .Y T

1 = Y T
k . . .Y T

1 A−1E.
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PROOF: Consider

EkY T
k . . .Y T

1 = (Y T
k Xk)Y T

k . . .Y T
1

= Y T
k XkY T

k Y T
k−1 . . .Y

T
1

= Y T
k Ek−1Y T

k−1 . . .Y
T
1 (substituting XkY T

k = Ek−1)

= Y T
k Y T

k−1Xk−1Y T
k−1 . . .Y

T
1

= Y T
k Y T

k−1Xk−1Y T
k−1Y T

k−2 . . .Y
T
1

= Y T
k Y T

k−1Ek−2Y T
k−2 . . .Y

T
1 (substituting Xk−1Y T

k−1 = Ek−2)

= Y T
k Y T

k−1Y T
k−2Xk−2Y T

k−2 . . .Y
T
1

...

= Y T
k Y T

k−1Y T
k−2 . . .Y

T
1 A−1X1Y T

1

= Y T
k Y T

k−1Y T
k−2 . . .Y

T
1 A−1E.

Q.E.D.

Lemma 30 For a non-negative integer p, E p
k Y T

k . . .Y T
1 = Y T

k . . .Y T
1 (A−1E)p.

PROOF: The proof is obtained by applying Lemma 29 p times.

E p
k Y T

k . . .Y T
1 = (Y T

k Xk)
p−1(Y T

k Xk)Y T
k . . .Y T

1

= (Y T
k Xk)

p−1Y T
k Y T

k−1Y T
k−2 . . .Y

T
1 A−1E (Applying Lemma 5)

= (Y T
k Xk)

p−2(Y T
k Xk)Y T

k . . .Y T
1 A−1E

= (Y T
k Xk)

p−2Y T
k . . .Y T

1 (A−1E)2

...

= Y T
k Y T

k−1Y T
k−2 . . .Y

T
1 (A−1E)p.

Q.E.D.

9.2.2 Discretization of Eẋ = Ax

We use Padé approximation methods to discretize descriptor systems. Conventionally, Padé
approximations have been applied to approximate the matrix exponential appearing in
the solution for a regular system. However, our approach is valid for any proper rational
approximation of ez which is analytic on the closed left half plane. In this section we
discretize the descriptor system Eẋ = Ax with an initial condition x0 = x(0) ∈ C .

Ek(Y T
k . . .Y T

2 Y T
1 ẋ) = (Y T

k . . .Y T
2 Y T

1 x) where Ek = Y T
k Xk (9.8)

⇒ Ekẇ = w where w = Y T
k . . .Y T

2 Y T
1 x. (9.9)
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If an [L/M] Padé discretization function is given by C[L/M](z), then the corresponding
discrete-time system would be

w[(p+ 1)h] = C[L/M](E
−1
k h)w[ph]

⇒ w[(p+ 1)h] = QM(−E−1
k h)−1QL(E−1

k h)w[ph]

⇒ Y T
k . . .Y T

2 Y T
1 x[(p+ 1)h] = Q̃M(−Ekh)−1(Ek)

M−LQ̃L(Ekh)Y T
k . . .Y T

2 Y T
1 x[ph],

where Q̃L(s) = ∑
L
i=0 lL−isi and Q̃M(s) = ∑

M
i=0 mM−isi (see Definition 18), hence

Q̃M(−Ekh)Y T
k . . .Y T

2 Y T
1 x[(p+ 1)h] = (Ek)

M−LQ̃L(Ekh)Y T
k . . .Y T

2 Y T
1 x[ph].

Applying Lemma 29 and 30, we have

Y T
k . . .Y T

2 Y T
1 Q̃M(−A−1Eh)x[(p+ 1)h] = Y T

k . . .Y T
2 Y T

1 (A−1E)M−LQ̃L(A−1Eh)x[ph].

Thus

Y T
k . . .Y T

2 Y T
1 (Q̃M(−A−1Eh)x[(p+ 1)h]− (A−1E)M−LQ̃L(A−1Eh)x[ph]) = 0,

and from Lemma 28, we have

Q̃M(−A−1Eh)x[(p+ 1)h]− (A−1E)M−LQ̃L(A−1Eh)x[ph] = 0

⇒ x[(p+ 1)h] = Q̃M(−A−1Eh)−1(A−1E)M−LQ̃L(A−1Eh)x[ph]. (9.10)

Thus C̃[L/M](E,A,h) = Q̃M(−A−1Eh)−1(A−1E)M−LQ̃L(A−1Eh).

Remark 2 For descriptor systems of the form Eẋ = Ax + Bu, we can follow a similar
approach and obtain

x[(p+ 1)h] = Q̃M(−A−1Eh)−1(A−1E)M−LQ̃L(A−1Eh)x[ph] (9.11)

+ (Q̃M(−A−1Eh)−1(A−1E)M−LQ̃L(A−1Eh)− I)A−1Bu[ph]

Equations (9.10) and (9.11) should not be used for the actual computation of a numerical
approximation for a descriptor system with index greater than one. In this chapter, we only
focus on the passivity preservation of index-one systems, hence the discretization method
presented is still valid. This methodology also provides a useful framework for analysing the
Lyapunov function preserving property of different Padé approximations in the later chapters.
Another important observation is that equations (9.10) and (9.11) provide a generalization of
Padé approximations for descriptor systems.
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9.3.1 Discretization of the transfer functions

We begin this sub-section by recalling Theorem 31, according to which the state space model
of an index-one descriptor systems given by

Eẋ(t) = Ax(t)+Bu(t),

y(t) =CT x(t)+Du(t), (9.12)

where E,A∈Rn×n,B∈Rn×m,C ∈Rn×m, D∈Rm×m and rank(E) = r < n, can be expressed
as

ż(t) = Ãz(t)+ B̃u(t),

y(t) = C̃T z(t)+ D̃u(t), (9.13)

where

Ã = Ẽ−1 = (Y T A−1X)−1, B̃ = Ẽ−1Y T A−1B,

C̃T =CT A−1XẼ−1, D̃ = (D−CT A−1B+CT A−1XẼ−1Y T A−1B).

Also note that the matrices X ,Y ∈Rn×p correspond to the full rank decomposition of E and
z(t) = Y T x(t).

The modified state space model for an index-one descriptor system is a regular system. This
fact allows us to apply Theorem 24 to a passive continuous-time modified state space model,
thus resulting in a passive discrete time model given by

z[(k+ 1)h] = Adz[kh]+Bdu[kh],

y[kh] = CT
d z[kh]+Ddu[kh], (9.14)

where

Ad =
(
I− h

2 Ã
)−1 (

I + h
2 Ã
)

, Bd =
h
2

(
I− h

2
Ã
)−1

B̃,

CT
d = 2C̃T

(
I− h

2 Ã
)−1

, Dd = D̃+
h
2

C̃T
(

I− h
2

Ã
)−1

B̃.
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To further simplify these matrices, we consider

z[(k+ 1)h] = Adz[kh]+Bdu[kh]

=

(
I− h

2
Ã
)−1(

I +
h
2

Ã
)

z[kh]+
h
2

(
I− h

2
Ã
)−1

B̃u[kh]

=

(
I− h

2
Ẽ−1

)−1(
I +

h
2

Ẽ−1
)

z[kh]+
h
2

(
I− h

2
Ẽ−1

)−1

B̃u[kh]

=

(
Ẽ− h

2
I
)−1(

Ẽ +
h
2

I
)

z[kh]+
h
2

(
Ẽ− h

2
I
)−1

ẼB̃u[kh]

⇒
(

Ẽ− h
2

I
)

z[(k+ 1)h] =

(
Ẽ +

h
2

I
)

z[kh]+
h
2

ẼB̃u[kh].

Since z = Y T x, we have

(
Y T A−1X− h

2
I
)

Y T x[(k+ 1)h] =

(
Y T A−1X +

h
2

I
)

Y T x[kh]+
h
2

Y T A−1Bu[kh]

further leading to

Y T
((

A−1E− h
2

I
)

x[(k+ 1)h]−
(

A−1E +
h
2

I
)

x[kh]− h
2

A−1Bu[kh]
)
= 0.

Now we recall our earlier discussion on the consistency space of descriptor systems, whereby
ker(Y T ) and C (E,A) intersect only at the origin. Hence for an index-one descriptor system,
if x ∈ C (E,A) = Im(A−1E), then Y T x = 0⇒ x = 0. Based on this property, we state that

(
A−1E− h

2
I
)

x[(k+ 1)h] =
(

A−1E +
h
2

I
)

x[kh]+
h
2

A−1Bu[kh]

hence

x[(k+ 1)h] =
(

A−1E− h
2

I
)−1(

A−1E +
h
2

I
)

x[kh]+
h
2

(
A−1E− h

2
I
)−1

A−1Bu[kh].

Similarly, we can simplify CT
d as

CT
d = 2CT

c

(
I− h

2
Ac

)−1

= 2CT A−1XẼ−1Ẽ
(

Ẽ− h
2

I
)−1

⇒CT
d

(
Ẽ− h

2
I
)

= 2CT A−1X ,
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now post-multiplying both sides by Y T we have

CT
d

(
Y T A−1E− h

2
Y T
)

= 2CT A−1E

⇒CdY T = 2CT A−1E
(

A−1E− h
2

I
)−1

.

The discrete-time matrix Dd can be simplified as

Dd = Dc +
h
2

CT
c

(
I− h

2
Ac

)−1

Bc

= D−CT A−1B+CT A−1XẼ−1Y T A−1B+
h
2

CT A−1XẼ−1
(

I− h
2

Ẽ−1
)−1

Ẽ−1Y T A−1B

= D−CT A−1B+CT A−1XẼ−1Y T A−1B+
h
2

CT A−1XẼ−1
(

Ẽ− h
2

I
)−1

Y T A−1B

= D−CT A−1B+CT A−1XẼ−1

(
I +

h
2

(
Ẽ− h

2
I
)−1

)
Y T A−1B

= D−CT A−1B+CT A−1XẼ−1
(

Ẽ− h
2

I +
h
2

)(
Ẽ− h

2
I
)−1

Y T A−1B

= D−CT A−1B+CT A−1X
(

Ẽ− h
2

I
)−1

Y T A−1B = D+CT
(

2
h

E−A
)−1

B.

Based on these calculations, we can state the next theorem.

Theorem 40 Let H( jω) = D+CT ( jωE−A)B be a continuous-time transfer function
of an index-one descriptor system, and assume that H( jω) is discretized by the Tustin
discretization method with sampling period h. The discrete-time transfer function is given
by

G(e jθ ) = H
(

2
h

e jθ −1
e jθ + 1

)
= Dtd +CT

td(e
jθ I−Atd)Btd ,

where

Atd =

(
A−1E− h

2
I
)−1(

A−1E +
h
2

I
)

, (9.15)

Btd =
h
2

(
A−1E− h

2
I
)−1

A−1B, (9.16)

CT
td = 2CT A−1E

(
A−1E− h

2
I
)−1

, (9.17)

Dtd = D+CT
(

2
h

E−A
)−1

B. (9.18)

If H( jω) is continuous-time positive real, then G(e jθ ) is discrete-time positive real.
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9.3.2 Discretization of the state space model

In this sub-section, we consider a passivity preserving method for the state space model,
based on the output averaging method from Theorem 35. The proposed average output is
given by

y∗(kh) =
∫ kh+h

kh
y(τ)dτ . (9.19)

Now, we consider an index-one descriptor system with a state space model described by
(9.12). Index-1 descriptor systems can be modified into a regular system given by (9.14).
Thus

y∗(kh) =
∫ kh+h

kh
y(τ)dτ (9.20)

= CT∗
mdz(kh)+D∗mdu(kh) (9.21)

= CT∗
mdY T x(kh)+D∗mdu(kh) (9.22)

= CT∗
ad x(kh)+D∗adu(kh) (9.23)

with CT∗
md and D∗md matrices for the modified regular system (9.13) and CT∗

ad and D∗ad for the
original descriptor system corresponding to averaged output.

For the modified regular system (9.13), we can apply Theorem 35 to obtain

CT∗
md = CT

c Ã−1(eÃh− I).

To evaluate eÃh, we can use Padé approximations from Definition 18 (with order [L/M])
leading to

CT∗
md = CT A−1XẼ−1.Ẽ.(QM(Ẽ−1)QL(Ẽ−1)−1− I)

= CT A−1X
(
QL(−Ẽ−1h)QM(Ẽ−1h)−1− I

)
= CT A−1X

(
Q̃L(−Ẽh)(Ẽ)M−LQ̃M(Ẽh)−1− I

)
. (9.24)

where Q̃L(s) = ∑
L
i=0 lL−isi and Q̃M(s) = ∑

M
i=0 mM−isi, hence

CT∗
md = CT A−1X

(
Q̃L(−Ẽh)(Ẽ)M−L− Q̃M(Ẽh)

)
Q̃M(Ẽh)−1

CT∗
mdQ̃M(Ẽh) = CT A−1X

(
Q̃L(−Ẽh)(Ẽ)M−L− Q̃M(Ẽh)

)
.

Pre-multiplying both sides by Y T , we have

CT∗
mdQ̃M(Ẽh)Y T = CT A−1X

(
Q̃L(−Ẽh)(Ẽ)M−L− Q̃M(Ẽh)

)
Y T

CT∗
mdY T Q̃M(A−1Eh) = CT A−1XY T (Q̃L(−A−1Eh)(A−1E)M−L− Q̃M(A−1Eh)

)
CT∗

mdY T = CT A−1E
(
Q̃L(−A−1Eh)(A−1E)M−L− Q̃M(A−1Eh)

)
Q̃M(A−1Eh)−1

⇒CT∗
mdY T =CT∗

ad = CT A−1E
(
Q̃L(−A−1Eh)(A−1E)M−LQ̃M(A−1Eh)−1− I

)
. (9.25)
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Similarly, we simplify the matrix D∗md as

D∗md = D∗ad = CT
c A−2

c (eAch− I−Ach)Bc +Dch

= CT A−1XẼ−1.Ẽ2.
(
Q̃L(−Ẽh)(Ẽ)M−LQ̃M(Ẽh)−1− I− Ẽ−1h

)
Ẽ−1Y T A−1B

+(D−CT A−1B+CT A−1XẼ−1Y T A−1B)h

= CT A−1XẼ.
(
Q̃L(−Ẽh)(Ẽ)M−LQ̃M(Ẽh)−1− I

)
Ẽ−1Y T A−1B

−(CT A−1XẼ−1Y T A−1B)h+(D−CT A−1B+CT A−1XẼ−1Y T A−1B)h

= CT A−1X
(
Q̃L(−Ẽh)(Ẽ)M−LQ̃M(Ẽh)−1− I

)
Y T A−1B+(D−CT A−1B)h.

Substituting CT∗
md for CT A−1X

(
Q̃L(−Ẽh)(Ẽ)M−LQ̃M(Ẽh)−1− I

)
(see equation (9.24)), we

get

D∗ad = CT∗
mdY T A−1B+(D−CT A−1B)h.

Substituting CT A−1E
(
Q̃L(A−1Eh)(A−1E)M−LQ̃M(−A−1Eh)−1− I

)
for CT∗

mdY T (see equa-
tion (9.25)), we get

D∗ad = CT A−1E
(
Q̃L(A−1Eh)(A−1E)M−LQ̃M(−A−1Eh)−1− I

)
A−1B+(D−CT A−1B)h.

Based on these calculations, we can state the next result.

Theorem 41 Consider an continuous-time index-one descriptor system given by

Σc :

 Eẋ(t) = Ax(t)+Bu(t),

y(t) =CT x(t)+Du(t),

where E,A ∈ Rn×n,B ∈ Rn×m,C ∈ Rn×m, D ∈ Rm×m and rank(E) = p < n. Assume that
there exists a ZOH element on its input with sampling time h > 0 and the output is obtained
through equation (9.19). The the corresponding discrete time system is given by

Σad

 x[(k+ 1)h] = Aadx[ph]+Badu[kh],

y∗[kh] =CT∗
ad x[kh]+D∗adu[kh],

where

Aad = Q̃M(−A−1Eh)−1(A−1E)M−LQ̃L(A−1Eh), (9.26)

Bad = (Q̃M(−A−1Eh)−1(A−1E)M−LQ̃L(A−1Eh)− I)A−1B, (9.27)

CT∗
ad = CT A−1E

(
Q̃L(−A−1Eh)(A−1E)M−LQ̃M(A−1Eh)−1− I

)
, (9.28)

D∗ad = CT A−1E
(
Q̃L(A−1Eh)(A−1E)M−LQ̃M(−A−1Eh)−1− I

)
A−1B

+(D−CT A−1B)h, (9.29)

= CT∗
ad A−1B+(D−CT A−1B)h, (9.30)

and Q̃M(−A−1Eh)−1(A−1E)M−LQ̃L(A−1Eh) is a generalized rational A-stable approxima-
tion of the matrix exponential of order [L/M]. Then Σad is passive if Σc is passive.
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Figure 15: Nyquist plots for the passive continuous-time descriptor system (“–”) and the correspond-
ing discrete-time transfer functions G1 (“*”) and G2 (“o”) obtained through Tustin’s
method and output averaging method, respectively.

Example 4 To illustrate our results we consider a passive, continuous-time index-one de-
scriptor system of the form (3.1), where

E =

1 0 0

0 1 0

0 0 0

 , A =

−1 0 0

0 −2 0

0 0 1

 , b =

1

1

0

 , c =

1

1

1


and d = 0. Then

H( jω) = d + cT ( jωE−A)−1b =
2( jω)+ 3

( jω)2 + 3( jω)+ 2
.

We consider both methods of discretizations using Theorems 40 and 41 and obtain the
following discrete-time transfer functions.

G1(e jθ ) =
5e j2θ + 6e jθ + 1

6e j2θ + 2e jθ

{
Tustin’s method with sampling time h = 2

G2(e jθ ) =
0.5833e j2θ + 0.5e jθ −0.08333

e j2θ −0.3333e jθ



Output averaging method

with sampling time h = 2

and first order generalized

Padé approximation.
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It can be further observed from the Nyquist plots of G1(e jθ ) and G2(e jθ ), that both methods
preserve passivity.

9.4 M I X E D N E S S P R E S E RV I N G D I S C R E T I Z AT I O N M E T H O D S

In this section, we obtain the conditions necessary to preserve mixedness property of an
LTI transfer function (regular system or index-one descriptor system). These conditions are
based on preserving the frequency points at which the system transfer function makes a
transition from passivity to the small gain property or vice versa. This approach motivates an
eigenvalue-based test that completely characterises the “mixed” property in discrete time
while providing the transition frequencies. Such a test is an independently valuable tool
that can be used to test mixedness of any given linear shift invariant discrete-time system.
However, we begin with the definitions of a mixed system in discrete time.

9.4.1 Discrete-time “mixed” systems

For −π ≤ θ ≤ π , −∞≤ ω ≤ ∞ and a sampling interval h > 0, assume that ā, b̄ ∈R+ and
ā≤ b̄≤ π , where ā and b̄ are in radians.

Definition 21 [126, Section 10.1.3] A discrete-time system with proper, real-rational transfer
function matrix G(z) is said to be input-output stable if all of the poles of G(z) lie inside the
unit circle on the complex plane.

Definition 22 An input-output stable, discrete-time system with square, proper, real-rational
transfer function matrix M(z) is said to be input and output strictly positive over [−b̄,−ā]∪
[ā, b̄] if there exist real numbers k, l > 0 such that

−kM∗(e jθ )M(e jθ )+M∗(e jθ )+M(e jθ )− lI ≥ 0

for all θ ∈ [−b̄,−ā]∪ [ā, b̄].

Definition 23 For an input-output stable, discrete-time system with proper, real-rational
transfer function matrix M(z), define the system gain over [−b̄,−ā]∪ [ā, b̄] as

ε := min{ε̄ ∈R+ : −M∗(e jθ )M(e jθ )+ ε̄
2I ≥ 0

for all θ ∈ [−b̄,−ā]∪ [ā, b̄]}.

The system is said to have a gain of less than one over [−b̄,−ā]∪ [ā, b̄] if ε < 1.

We define a “mixed” discrete-time system analogous to the continuous-time case.

Definition 24 An input-output stable, discrete-time system with square, proper, real-rational
transfer function matrix M(z) is said to be “mixed” if, for each θ ∈ [−π ,π ], either of the
following hold:
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(i) there exist k, l > 0 such that −kM∗(e jθ )M(e jθ )+M∗(e jθ )+M(e jθ )− lI ≥ 0;

(ii) there exists ε < 1 such that −M∗(e jθ )M(e jθ )+ ε2I ≥ 0.

9.4.2 A symplectic matrix-based test for “mixed” discrete-time systems

Suppose that we are given an arbitrary, causal, linear, shift-invariant system that is described
by the equations

x[(k+ 1)h] = Ax[kh]+Bu[kh], x(0) = x0,

y[kh] =Cx[kh]+Du[kh],

where x[kh] ∈Rn, u[kh] ∈Rm, y[kh] ∈Rm, A ∈Rn×n, B ∈Rn×m, C ∈Rm×n and D ∈Rm×m

with A stable.1 Furthermore, suppose that A is non-singular. Denoting M(z) := C(zI −
A)−1B+D and M∗(z) := [M(z−1)]T gives

M∗(z) =

[
A−T −A−TCT

BT A−T DT −BT A−TCT

]
(9.31)

from [110, Section 21.4].2 Let G1(e jθ ) :=−kM∗(e jθ )M(e jθ )+M∗(e jθ )+M(e jθ )− lI and
G2(e jθ ) := −M∗(e jθ )M(e jθ )+ ε2I. Consider the following two results.

Lemma 31 Suppose that k, l ∈R and consider G1(e jθ ) as defined above. Let Y := I− kD
and suppose that X1 := −kDT D+DT +D− lI and X̃1 := X1−BT A−TCTY are invertible.
For some θ0 ∈R, the matrix G1(e jθ0) has a zero eigenvalue if and only if the matrix S1 has
an eigenvalue on the unit disc at the point e jθ0 , where

S1 :=

(
E1 +U1E−T

1 V1 −U1E−T
1

−E−T
1 V1 E−T

1

)

and E1 := A−BX−1
1 Y TC, U1 := −BX−1

1 BT , V1 := kCTC+CTY X−1
1 Y TC.

PROOF: Given that[
(e jθ0I−A)−1 0

−k(e jθ0I−A−T )−1A−TCTC(e jθ0I−A)−1 (e jθ0I−A−T )−1

]

=

[
e jθ0I−

(
A 0

−kA−TCTC A−T

)]−1

, (9.32)

1 A dynamical system is said to be stable in discrete-time if ρ(A) < 1 [110, Section 21.1], [113, Section 5.7.1].
2 The notation on the right-hand side of (9.31) denotes a state-space realisation.
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note that G1(e jθ0) =−k[−BT A−T (e jθ0I−A−T )−1A−TCT +DT−BT A−TCT ][C(e jθ0I−A)−1B+
D]−BT A−T (e jθ0I−A−T )−1A−TCT +DT−BT A−TCT +C(e jθ0I−A)−1B+D−lI = C̄(e jθ0I−
Ā)−1B̄+ X̃1, where

Ā :=

(
A 0

−kA−TCTC A−T

)
, B̄ :=

(
B

A−TCTY

)
and

C̄ :=
(

Y TC+ kBT A−TCTC −BT A−T
)

,

using [127, Lemma 3]. Then, in the manner of [128, Lemma 1],

det(G1(e jθ0)) = det(C̄(e jθ0I− Ā)−1B̄+ X̃1)

= det(X̃1)det(I + X̃−1
1 C̄(e jθ0I− Ā)−1B̄)

= det(X̃1)det(I +(e jθ0I− Ā)−1B̄X̃−1
1 C̄) (Sylvester’s Determinant Theorem)

= det(X̃1)det((e jθ0I− Ā)−1)det(e jθ0I− Ā+ B̄X̃−1
1 C̄)

= det(X̃1)det((e jθ0I−A)−1)det((e jθ0I−A−T )−1)det(e jθ0I− H̃1),

where H̃1 := Ā− B̄X̃−1
1 C̄. Since A is stable, then det(e jθ0I−A) 6= 0 for any θ0 ∈ R; and

e jθ0I−A is invertible and so det((e jθ0I−A)−1) 6= 0. Similarly, det((e jθ0I−A−T )−1) 6= 0
noting that

(−1)n det(e jθ0I)det(e− jθ0I−A)det(A−1) = det(e jθ0I−A−1) = det(e jθ0I−A−T )

from [112, Equation 6.1.4]. Thus, G1(e jθ0) has a zero eigenvalue if and only if det(e jθ0I−
H̃1) = 0, i.e. H̃1 has an eigenvalue on the unit disc at the point e jθ0 . Finally, H̃1 = S1 via
matrix inversion identities [110, Section 2.3].

Lemma 32 Suppose that ε ∈R\{0} and consider G2(e jθ ) as defined at the beginning of
Section 9.4.2. Suppose that −DDT + ε2I, X2 := −DT D+ ε2I and X̃2 := X2 +BT A−TCT D
are invertible. For some θ0 ∈R, the matrix G2(e jθ0) has a zero eigenvalue if and only if the
matrix S2 has an eigenvalue on the unit disc at the point e jθ0 , where

S2 :=

(
E2 +U2E−T

2 V2 −U2E−T
2

−E−T
2 V2 E−T

2

)

and E2 := A+BX−1
2 DTC, U2 := −BX−1

2 BT , V2 := ε2CT (−DDT + ε2I)−1C.

PROOF: Given (9.32) with k = 1, note that G2(e jθ0) =−[−BT A−T (e jθ0I−A−T )−1A−TCT +

DT −BT A−TCT ][C(e jθ0I−A)−1B+D]+ ε2I = C̄(e jθ0I− Ā)−1B̄+ X̃2, where

Ā :=

(
A 0

−A−TCTC A−T

)
, B̄ :=

(
B

−A−TCT D

)
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and

C̄ :=
(
−DTC+BT A−TCTC −BT A−T

)
,

from [127, Lemma 3]. Then, in the manner of [128, Lemma 1] and similarly to the proof
of Lemma 31, det(G2(e jθ0)) = det(X̃2)det((e jθ0I−A)−1)det((e jθ0I−A−T )−1)det(e jθ0I−
H̃2), where H̃2 := Ā− B̄X̃−1

2 C̄. The remainder of the proof follows in the manner of the proof
of Lemma 31.

Let G̃1(e jθ ) := G1(e jθ ), where k = l = 0. Similarly, let G̃2(e jθ ) := G2(e jθ ), where ε = 1.
Consider Lemmas 31 and 32. Set

Θp := {θ ∈ [−π ,π ] : S1 has an eigenvalue on the unit disc at e jθ},
Θs := {θ ∈ [−π ,π ] : S2 has an eigenvalue on the unit disc at e jθ}.

Suppose that we divide the interval −π to π into smaller intervals, where any elements of
Θp and Θs are, respectively, set as open interval endpoints, as follows:

Division Group 1 := (−π ,θp1), (θp1 ,θp2), . . . , (θpn̄−1 ,θpn̄), (θpn̄ ,π)

Division Group 2 := (−π ,θs1), (θs1 ,θs2), . . . , (θsm̄−1 ,θsm̄), (θsm̄ ,π)

where n̄ = number of elements in Θp; m̄ = number of elements in Θs; θp1 ,θp2 , . . . ,θpn̄ denote
the elements of Θp listed in increasing order; and θs1 ,θs2 , . . . ,θsm̄ denote the elements of Θs

listed in increasing order. If Θp is empty, then n̄ = 0 and Division Group 1 consists of the
single interval [−π ,π ]; similarly, if Θs is empty, then m̄ = 0 and Division Group 2 consists
of the single interval [−π ,π ]. If θp1 = −π and θpn̄ = π , then Division Group 1 becomes
(−π ,θp2), (θp2 ,θp3), . . . , (θpn̄−1 ,π). Similarly, if θs1 =−π and θsm̄ = π , then Division Group
2 becomes (−π ,θs2), (θs2 ,θs3), . . . , (θsm̄−1 ,π).

Suppose that we check the sign definiteness of G̃1(e jθ ) over each of the individual intervals
in Division Group 1 and the sign definiteness of G̃2(e jθ ) over each of the individual intervals
in Division Group 2. Note that checking the sign definiteness over any of these intervals
can be achieved by checking the sign definiteness at a single θ from within the interval, e.g.
at the interval midpoint. Let IS1 denote the set of θ belonging to the intervals over which
G̃1(e jθ )> 0, and IS2 denote the set of θ belonging to the intervals over which G̃2(e jθ ) > 0.
We have the following result.

Theorem 42 The following two statements are equivalent:

(i) a discrete-time system with transfer function matrix as described at the beginning of
Section 9.4.2, is a “mixed” system;

(ii) IS1 ∪ IS2 = {θ ∈R : −π ≤ θ ≤ π}.
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PROOF: (i)⇒(ii) By Definition 24, a “mixed” discrete-time system is such that {θ ∈ R :
−π ≤ θ ≤ π and G1(e jθ )≥ 0 for k > 0 and l > 0}∪{θ ∈R :−π ≤ θ ≤ π and G2(e jθ )≥ 0
for ε < 1} = {θ ∈ R : −π ≤ θ ≤ π}. Since the existence of k > 0 and l > 0 such that
G1(e jθ ) ≥ 0 for any θ ∈ R implies that G̃1(e jθ ) > 0, and the existence of ε < 1 such
that G2(e jθ ) ≥ 0 for any θ ∈R implies that G̃2(e jθ ) > 0, then {θ ∈R : −π ≤ θ ≤ π and
G̃1(e jθ ) > 0}∪{θ ∈R : −π ≤ θ ≤ π and G̃2(e jθ ) > 0}= {θ ∈R : −π ≤ θ ≤ π} which
leads to (ii).
(ii)⇒(i) Consider those intervals in Division Group 1 over which G̃1(e jθ ) > 0. For illus-
tration purposes, suppose that one of the intervals has open endpoints. Denote this interval
by (θpα

,θpβ
) and observe that G̃1(e jθ ) ≥ 0 over [θpα

,θpβ
]. Observe that an infinitesimal

increase in k and l yields G1(e jθ )≥ 0 over (θpα
,θpβ

). Dealing with closed interval endpoints
is straightforward since G̃1(e jθ0) > 0 at θ0 ∈R implies that there exist k > 0 and l > 0 such
that G1(e jθ0) ≥ 0 at θ0 ∈R.

Now, consider those intervals in Division Group 2 over which G̃2(e jθ ) > 0. For illustration
purposes, suppose that one of the intervals has open endpoints. Denote this interval by
(θsα

,θsβ
) and observe that G̃2(e jθ )≥ 0 over [θsα

,θsβ
]. Observe that an infinitesimal decrease

in ε yields G2(e jθ ) ≥ 0 over (θsα
,θsβ

). Dealing with closed interval endpoints is, again,
straightforward since G̃2(e jθ0) > 0 at θ0 ∈ R implies that there exists ε < 1 such that
G2(e jθ0) ≥ 0 at θ0 ∈R.
This leads to (i).

Note that Theorem 42 can be applied to square, multi-input, multi-output systems where
graphical methods for determining “mixedness” might be impractical or unavailable.

9.4.3 Preserving mixedness under discretization

Now we recall Lemma 3, 4 from Section 2.3.1 of Chapter 2. Consider a stable continuous-
time system transfer function M(s) = D +CT (sI − A)−1B ∈ RH ∞ and let M1( jω) =

M( jω)+M( jω)∗ (where k = l = 0). Similarly, let M2( jω) :=−M( jω)∗M( jω)+ I (where
ε = 1). Consider Lemmas 3 and 4. Set

Ωp := {ω ∈ [−∞,∞] : N1 has an eigenvalue on the imaginary axis}
Ωs := {ω ∈ [−∞,∞] : N2 has an eigenvalue on the imaginary axis}.

Suppose that we divide the real axis −∞ to ∞ into smaller intervals, where any elements of
Ωp and Ωs are set as open interval endpoints, as follows:

Division group 1 := (−∞,ωp1), (ωp1 ,ωp2), . . . , (ωpn−1 ,ωpn), (ωpn ,∞),

Division group 2 := (−∞,ωs1), (ωs1 ,ωs2), . . . , (ωsm−1 ,ωsm), (ωsm ,∞),

where n = number of elements in Ωp; m = number of elements in Ωs; ωp1 ,ωp2 , . . . ,ωpn de-
note the elements of Ωp listed in increasing order; and ωs1 ,ωs2 , . . . ,ωsm denote the elements
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of Ωs listed in increasing order.

Let IN1 denote the set of ω belonging to the intervals over which M1( jω)> 0, and IN2 denote
the set of ω belonging to the intervals over which M2( jω)> 0. If IN1 ∪ IN2 = {θ ∈R :−∞≤
ω ≤ ∞} then M(s) is a “mixed” system.

Upon discretization, from Lemmas 31 and 32 we will have

Θp := {θ ∈ [−π ,π ] : S1 has an eigenvalue on the unit disc at e jθ}
Θs := {θ ∈ [−π ,π ] : S2 has an eigenvalue on the unit disc at e jθ},

and

Division Group 1 := (−π ,θp1), (θp1 ,θp2), . . . , (θpn̄−1 ,θpn̄), (θpn̄ ,π),

Division Group 2 := (−π ,θs1), (θs1 ,θs2), . . . , (θsm̄−1 ,θsm̄), (θsm̄ ,π),

where n̄ = number of elements in Θp; m̄ = number of elements in Θs; θp1 ,θp2 , . . . ,θpn̄ denote
the elements of Θp listed in increasing order; and θs1 ,θs2 , . . . ,θsm̄ denote the elements of Θs

listed in increasing order.

Considering the continuous time transition frequencies Ωp and Ωs and the discrete time
transition frequencies Θp, Θs, it is obvious that “mixedness” of a continuous time transfer
function M(s) is preserved if :

1. For every ωpi and ωsi there should be a corresponding θpi and θsi respectively. Thus
n = n̄ and m = m̄.

2. If ωpi ≤ ωp j (ωsi ≤ ωs j ), then we should have θpi ≤ θp j (θsi ≤ θs j ). Hence if there
exists a function f : ω → θ , then f must be monotonic function.

Now we show that Tustin’s method given by jω = 2
h

e jθ−1
e jθ+1 , satisfies these criteria. If M(s) is

the continuous time transfer function, then corresponding discrete time transfer function is
given by G(e jθ ) = M( 2

h
e jθ−1
e jθ+1 ). Now we check if this discsretization method satisfies each

of the conditions sufficient for preserivng “mixedness”.

Condition 1: Transition frequencies Ωp and Ωs are obtained from imaginary eigenvalues
of N1 and N2. Let us obtaine Ωp from the equation det[M1( jω)] = 0 ⇐⇒ det( jωI −
N1) = 0. For Tustin’s approximation G(e jθ ), Θp is obtained by solving det[G1(e jθ )] =

det[M1(
2
h

e jθ−1
e jθ+1 )] = 0, i.e.,

det
(

2
h

e jθ −1
e jθ + 1

I−N1

)
= 0

⇐⇒ det
(

e jθ I− (I−N1h/2)−1(I +N1h/2)
)
= 0,
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hence we can see that for the Tustin method, S1 = (I−N1h/2)−1(I +N1h/2). Since (I−
N1h/2)−1(I+N1h/2) is the bilinear transform of N1, all the imaginary eigenvalues of N1 will
be mapped onto the unit circle. Similary, we can prove that S2 = (I−N2h/2)−1(I+N2h/2).
Thus the first condition is satisfied.

Condition 2: If jω = 2
h

e jθ−1
e jθ+1 , then ωh/2 = tan(θ /2)⇒ θ = 2tan−1(ωh/2). It can ob-

served that 2tan−1(ωh/2) is a strictly monotonic function (increasing). Hence Condition 2
is also satisfied.

Thus Tustin’s method is a suitable candidate for discretizing mixed LTI transfer functions.
Since index-one transfer function can be modified into a regular system transfer function, the
above discussion is equally valid for index-one systems.

9.5 C O N C L U S I O N S

In this chapter, we considered passivity preserving discretization of LTI descriptor systems.
We did so by extending the existing methods for discretizing regular systems while preserving
passivity. We also showed that Tustin’s method of approximating continuous-time transfer
functions is equally effective for preserving mixedness.
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P R E S E RVAT I O N O F Q UA D R AT I C S TA B I L I T Y F O R S W I T C H E D
L I N E A R S Y S T E M S

In this chapter, we consider the stability preserving properties of diagonal Padé
approximations to the matrix exponential. We show that while diagonal Padé ap-
proximations preserve quadratic stability when going from continuous-time to
discrete-time, the converse is not true. We discuss the implications of this result
for discretizing switched linear systems. We also show that for continuous-time
switched systems which are exponentially stable, but not quadratically stable,
a Padé approximation may not preserve stability. Finally, we show that diago-
nal Padé approximations for continuous time descriptor systems also preserve
quadratic stability.

10.1 I N T RO D U C T I O N

The [1/1]-order Padé approximation (or bilinear map) is known not only to preserve stability
(A-stable), but also preserve quadratic Lyapunov functions. That is, a positive definite matrix
P satisfying A∗cP+PAc < 0 will also satisfy A∗dPAd−P < 0, where Ad is the mapping of Ac

under the bilinear transform [90] with some sampling time h [129]. This makes it extremely
useful when transforming a continuous-time switching system

Σsc : ẋ(t) = Ac(t)x(t), Ac(t) ∈Ac = {Ac1, . . . ,AcN} (10.1)

into its approximate discrete-time counterpart1,

Σsd : x(k+ 1) = Ad(k)x(k), Ad(k) ∈Ad = {Ad1, . . . ,AdN}, (10.2)

because the existence of a common positive definite matrix P satisfying A∗cP+PAc < 0
for all all Ac ∈ Ac implies that the same P satisfies A∗dPAd −P < 0 for all Ad ∈ Ad . Thus
quadratic stability of the continuous-time switching system implies quadratic stability of the
discrete-time counterpart. This property is useful in obtaining results in discrete-time from
their continuous-time counterparts [90], and in providing a robust method to obtain a stable
discrete-time switching system from a continuous-time one.

1 Discretization error is zero, only at sampling instants.

139
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Our objective in this chapter is to determine whether this property is preserved by higher-order
(more accurate) diagonal Padé approximants. From the point of view of discretization, lower-
order approximants are not always satisfactory, and one often chooses higher-order Padé
approximations in real applications. Later, we present an example of an exponentially stable
continuous-time switching system for which a discretisation based on a [1/1]-order Padé
approximation is unstable, but, discretizations based on second-order approximations are
stable for any sampling time. Also, it is well known that the [1/1]-order Padé approximation
(the bilinear approximation) can map a negative real eigenvalue to a negative eigenvalue if
the sampling time is large. In such situations, while stability is preserved, qualitative behavior
is not preserved even for LTI systems; a non-oscillatory continuous mode is transformed into
an oscillatory discrete-time mode. In this context, we establish the following facts concerning
general diagonal Padé approximations:

(i) Consider an LTI system Σc : ẋ = Acx and let Σd : x(k+ 1) = Adx(k) be any discrete-
time system obtained from Σc using any diagonal Padé approximation and any sam-
pling time. If V is any quadratic Lyapunov function for Σc then, V is a quadratic
Lyapunov function for Σd .

(ii) The converse of the statement in (i) is only true for first-order Padé approximations.

(iii) Consider a switched system Σsc : ẋ = Asc(t)x, Asc(t) ∈ {Ac1, ...,Acn} and let Σd :
x(k + 1) = Asd(k)x(k), Asd(k) ∈ {Ad1, ...,Adn} be a discrete-time switched system
obtained from Σsc using any diagonal Padé approximations and any sampling times. If
V is any quadratic Lyapunov function for Σsc then, V is a quadratic Lyapunov function
for Σsd .

(iv) The converse of the statement in (iii) is only true for first-order Padé approximations.

(v) Consider an exponentially stable switched system Σsc : ẋ = Asc(t)x,
Asc(t) ∈ {Ac1, ...,Acn}. Let Σd : x(k + 1) = Asd(k)x(k), Asd(k) ∈ {Ad1, ...,Adn} be
a discrete-time switched system obtained from Σsc using a pth order diagonal Padé
approximation. Then, Σds may be unstable, even when p = 1.

10.2 P R E L I M I NA RY R E S U LT S

The following definitions and results are useful in developing the main result, Theorem 43,
which is given in Section 10.3.

As we shall see, bilinear transforms play a key role in studying general diagonal Padé
approximations. Next, we present a complex version of this map that inherits some of the
properties of the real bilinear map given in Theorem 39.
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Lemma 33 (The complex bilinear transform) Let Ac be a Hurwitz stable matrix and for
any complex number λ with ℜ(λ ) > 0, define the matrix

Ad = (λ I +Ac)(λ
∗I−Ac)

−1 . (10.3)

Then P is a Lyapunov matrix for Ac if and only if P is a Stein matrix for Ad .

PROOF : Consider any matrix P = P∗ > 0. When Ad is given by (10.3), the Stein inequality
A∗dPAd−P < 0 can be expressed as

(λ ∗I−Ac)
−∗(λ I+Ac)

∗P(λ I+Ac)(λ
∗I−Ac)

−1−P < 0.

Post-multiplication by λ ∗I−Ac and pre-multiplication by (λ ∗I−Ac)∗ results in the following
equivalent inequality

(λ I+Ac)
∗P(λ I+Ac)− (λ ∗I−Ac)

∗P(λ ∗I−Ac) < 0,

which simplifies to

(λ +λ
∗)(PAc +A∗cP) < 0.

Since λ +λ ∗ > 0, this last inequality is equivalent to the Lyapunov inequality PAc+A∗cP < 0.
Thus P is a Lyapunov matrix for Ac if and only if it is a Stein matrix for Ad .

The main result that we shall prove in this chapter concerns common Stein matrices for
discrete-time systems.

Lemma 34 If P is a CSM for A1, · · · ,Am, then P is a Stein matrix for the matrix product
∏

m
i=1 Ai.

PROOF : Suppose that P is a common Stein matrix for two matrices A1 and A2, that is,

A∗1PA1 < P and A∗2PA2 < P. (10.4)

Pre-multiply the first inequality by A∗2 and post-multiply it by A2 and use the second inequality
to obtain

A∗2A∗1PA1A2 ≤ A∗2PA2 < P , (10.5)

that is, (A1A2)∗P(A1A2) < P, which implies that P is a Stein matrix for the product A1A2.
This shows that the statement of the lemma is true for m = 2. Now assume that it is true for
m = k, and then let Mk = ∏

k
i=1 Ai. Since Mk+1 = MkAk+1, it follows from the result for two

matrices that P is a Stein matrix for Mk+1. Hence, by induction, the proposed lemma is true
for all m. So it can concluded that if all the constituent matrices of a product have a CSM P,
then P is a Stein matrix for the product.
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10.3 H I G H E R O R D E R D I AG O NA L PA D É A P P ROX I M AT I O N S

We now present the main result of this chapter: Theorem 43. A main consequence of
this result is that common quadratic Lyapunov functions are preserved by all diagonal Padé
discretizations for all sampling times. Thus, quadratic stability is preserved under all diagonal
Padé discretizations of a quadratically stable continuous-time switched system. This result is
stated formally in Corollary 10.

Theorem 43 Suppose that Ac is a Hurwitz stable matrix and Ad is any [L/L]-order Padé
approximation to eAch for any h > 0. If P is a Lyapunov matrix for Ac then, P is a Stein
matrix for Ad .

PROOF: Consider any matrix P which is a Lyapunov matrix for Ac. Recall that Ad =

QL(Ach)Q−1
L (−Ach). Since the coefficients of the polynomial Qp are real,

QL(sh) = khL
n

∏
j=1

(α j + s)
m

∏
i=1

(λi + s)(λ ∗i + s)

for some k 6= 0, where 2m+ n = L, the real numbers −hα j, j = 1, . . . ,n are the real zeros of
QL and the complex numbers −hλi,−hλ ∗i , i = 1, . . . ,m are the non-real zeros of QL. Since
all the zeros of Qp have negative real parts ([88][124]), we must have α j > 0 for all j and
ℜ(λi) > 0 for all i. It now follows that Ad can be expressed as

Ad =

(
n

∏
j=1

(α jI +Ac)

)(
m

∏
i=1

(λiI+Ac)(λ
∗
i I+Ac)

)(
m

∏
i=1

(λiI−Ac)(λ
∗
i I−Ac)

)−1( n

∏
j=1

(α jI−Ac)

)−1

which, due to commutativity of the factors, can be expressed as

Ad =

(
n

∏
j=1

(α jI +Ac)(α
∗
j I−Ac)

−1

)(
m

∏
i=1

(λiI+Ac)(λ
∗
i I−Ac)

−1

)(
m

∏
i=1

(λ ∗i I+Ac)(λiI−Ac)
−1

)
.

Hence Ad is a product of bilinear terms of the form (λ I+Ac)(λ ∗I−Ac)−1, where ℜ(λ )> 0.
Since P is a Lyapunov matrix for Ac, it follows from Lemma 33 that P is a Stein matrix for
each of the bilinear terms. Thus Ad is a product of a bunch of matrices each of which have P
as a Stein matrix. It now follows from Lemma 34 that P is a Stein matrix for Ad .

In other words, the theorem states that if Ad is a diagonal Padé approximation of eAch for any
h > 0, then a Lyapunov matrix for Ac is also a Stein matrix for Ad . Lemma 39 tells us that
the converse of this statement is true for L = 1. However, the converse of this statement is
not necessarily true for L ≥ 2; that is, for L ≥ 2, a Stein matrix for Ad is not necessarily a
Lyapunov matrix for Ac, and in general LAc is strictly contained in SAd . This is demonstrated
in the following example.
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Example 5 Consider the Hurwitz stable matrix:

Ac =

[
1.56 −100

0.1 −4.44

]

Now consider the matrix Ad obtained under the [2/2]-order diagonal Padé approximation of
eAch with the discrete time step h = 2:

Ad =

[
−0.039 0.4205

−0.0004 −0.0138

]
.

The matrix

P =

[
2.3294 −0.0138

−0.0138 2.7492

]

is a Stein matrix for Ad but is not a Lyapunov matrix for Ac.

The following corollary is easily deduced from the main theorem. This is probably the most
useful result in the chapter. It says that quadratic stability is preserved under all diagonal
Padé discretizations of a quadratically stable continuous-time switched system.

Corollary 10 Suppose that P = P∗ > 0 is a CLM for a finite set of matrices Ac. Then
P is CSM for any finite set of matrices Ad , where each Ad in Ad is a diagonal Padé
approximation of eAch of any order for some Ac in Ac and h > 0.

PROOF : If P is a CLM for Ac then, P is an Lyapunov matrix for every Ac in Ac. It now
follows from Theorem 43, that P is a Stein matrix for every Ad in Ad . Hence P is a CSM for
Ad .

The last corollary shows that diagonal Padé approximations preserve quadratic stability for
switching systems. Thus, quadratic stability of a continuous-time switching system implies
quadratic stability of the corresponding discrete-time switching system obtained via a diag-
onal Padé discretization. However, it is very important to note that the corollary does not
imply the converse. In fact converse is not true in general as the following example illustrates.

Example 6 Consider the Hurwitz stable matrices:

Ac1 =

[
1.56 −100

0.1 −4.44

]
, Ac2 =

[
−1 0

0 −0.1

]
.
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Since the matrix product Ac1Ac2 has negative real eigenvalues it follows that there is no CLM
[130] for {Ac1,Ac2}. Now consider the matrices Ad1,Ad2 obtained under the [2/2]-order
diagonal Padé approximation of eAcih with the discrete time step h = 2:

Ad1 =

[
−0.039 0.4205

−0.0004 −0.0138

]
, Ad2 =

[
0.1429 0

0 0.8187

]
.

These matrices have a CSM

Pd =

[
2.3294 −0.0138

−0.0138 2.7492

]
.

Comment 7 Example 1, together with Corollary 1, illustrate the following facts. Let Ac be
a finite set of Hurwitz stable matrices and Ad the corresponding finite set of Schur stable
matrices obtained under diagonal Padé approximations for fixed L and h. If P is a CLM for
Ac, then P is a CSM for Ad . However, as the example demonstrates, the existence of a CSM
for Ad does not imply the existence of a CLM for Ac.

10.4 A C O N V E R S E R E S U LT

We have seen that if P is a Lyapunov matrix for Ac, then for any positive integer L, P is a
Stein matrix for the [L/L]-order Padé approximation of eAch for all h > 0 that is,

Ad(h)∗PAd(h)−P < 0 for all h > 0,

where Ad(h) is a diagonal Padé approximation (of any fixed order) to eAch. The next lemma
tells us that in order to achieve a converse result, we need the following additional condition
to hold,

lim
h→0

Ad(h)∗PAd(h)−P
h

< 0. (10.6)

Lemma 35 Suppose that, for all h > 0, the matrix Ad(h) is a Padé approximation (of any
fixed order) to eAch. Then P is a Lyapunov matrix for Ac if and only if P is a Stein matrix for
Ad(h) for all h > 0 and (10.6) holds.

PROOF: In view of our previous results, we can prove this result if we show that

lim
h→0

Ad(h)∗PAd(h)−P
h

= PAc +A∗cP . (10.7)

To demonstrate this limit, first recall that Ad(h) = QL(Ach)QL(−Ach)−1 and

QL(Ach) = I +
1
2
(Ach)+ h2DL(Ach),
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where DL is a polynomial. Hence

lim
h→0

QL(−Ach) = I

and

lim
h→0

QL(Ach)∗PQL(Ach)−QL(−Ach)∗PQL(−Ach)
h

= PAc +A∗cP

Since

Ad(h)∗PAd(h)−P = QL(−Ach)−∗ [QL(hAc)
∗PQL(hAc)−QL(−Ach)∗PQL(−Ach)]QL(−Ach)−1

we obtain the desired result (10.7).

10.5 I M P L I C AT I O N S O F M A I N R E S U LT

The starting point for our work was the recently published paper [90]. One of the main
results of that paper was the fact that the bilinear transform preserves quadratic stability
when applied to continuous-time switched systems. We have shown that this property also
holds for general diagonal Padé approximations (although the converse statement is not
true). This is an important observation due to the fact that while the bilinear transform is
stability preserving, it is not always a good approximation to the matrix exponential. Our
result says that “more accurate" approximations are also stability preserving when going
from continuous-time to discrete-time.

Two potential applications of this result are immediate. First, stable discrete-time LTI systems
can be obtained from their continuous-time counterparts in a manner akin to that described in
[90]. Secondly, our results provide a method to discretize quadratically stable linear switched
system in a manner that preserves stability. That is, given a quadratically stable switched
linear systems, a discrete-time counterpart obtained using diagonal Padé approximations
to the matrix exponential, will also be quadratically stable. Since this property is true for
all orders of approximation, and for all sampling times, our main result says that quadratic
stability is robustly preserved under diagonal Padé discretizations or any order.

In the context of the previous comment, it is important to realize that the robust stability
preserving property of diagonal Padé approximations is a unique feature of quadratically
stable systems. It was recently shown that non-quadratic Lyapunov functions may not be
preserved under the bilinear transform with sampling time h = 2. This fact was first demon-
strated in [90], where it was proven that unlike quadratic Lyapunov functions, ∞-norm and
1-norm type Lyapunov functions are not necessarily preserved under the bilinear mapping
with h = 2. In fact, the situation may be worse as the following example illustrates.
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Example 7 Consider a continuous-time switching system described by (10.1) with Ac =
{Ac1,Ac2,Ac3} where

Ac1 =

 −19.00 0 0

0 −9 0

0 0 −0.10

 , Ac2 =

 −19 0 0

−10 −9 0

−18.75 0 −0.10

 , Ac3 =

 −19.00 0 18.75

0 −9 8.75

0 0 −0.10

 .

Using the ideas in [131] (also see Theorem 44 in the next section) it can be shown that this
continuous-time switching system is globally exponentially stable. It follows from the results
of Dayawansa and Martin [52] that this switching system has a Lyapunov function (though
this is not necessarily quadratic). Now, consider a discrete-time approximation to the above
system. We assume that switching is restricted to only occur at multiples of the sampling time
h = 0.25. Using the [1/1]-order Padé approximation, we obtain a discrete-time switching
system described by (10.2) with Ad = {Ad1,Ad2,Ad3} where

Adi = (I− 1
8

Aci)
−1(I +

1
8

Aci), i = 1,2,3 .

that is,

Ad1 ≈

 −0.40 0 0

0 −0.06 0

0 0 0.98

 , Ad2 ≈

 −0.40 0 0

−0.35 −0.06 0

−1.37 0 0.98

 , Ad3 ≈

 −0.40 0 1.37

0 −0.06 1.01

0 0 0.98

 .

We now claim that the discrete-time switching system is unstable. To see this, we simply
consider the incremental switching sequence Ad3→ Ad2→ Ad1; then the dynamics of the
system evolve according to the product

Ad = Ad1Ad2Ad3.

Since the eigenvalues of Ad are approximately {−0.002,−0.060,−1.035}, then with one
eigenvalue outside the unit disc, this switching sequence, repeated periodically results in an
unstable system.

Clearly, by selecting a smaller sampling time one obtains a better approximation to the
continuous-time system. However, selecting an appropriate sampling time is difficult for
switched systems since the sampling time is usually related to solution growth rates. While
this is simple to calculate for an LTI system, bounds on the solution growth rates are usually
very difficult to calculate for a switched system. On the other hand, were the original system
quadratically stable, then our main result implies that stability can never be lost by a bad or
unlucky choice of sampling time.

A further comment on the counter example

Example 7 in the previous section indicates that our main result and its corollary do not,
in general, extend to switched systems which are exponentially stable, but do not have a
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quadratic Lyapunov function. An interesting question therefore to ask is how one discretizes
a general, exponentially stable, switching system. In this section we give a preliminary result
in this direction. Specifically, we take a closer look at Example 7, and ask the question as to
how one might discretize the system in the example so that exponential stability is preserved
irrespective of the choice of sampling time. Our results can be summarised as follows:

(i) Even-ordered Padé discretizations preserve exponential stability for the system class
illustrated by Example 7. This is true for any even ordered approximation, and for any
sampling time.

(ii) Odd-ordered Padé discretizations preserve exponential stability provided the sampling
time is smaller that a computable bound.

The above items say that even-ordered Padé discretizations preserve stability in a robust
manner; odd-ordered ones do not. Example 7 is an example of a switching system of the
form (10.1) where every matrix Ac in Ac has real negative eigenvalues and every pair of
matrices in Ac have n−1 common eigenvectors (namely all such matrix pairs are pairwise
triangularizable). It is shown in [131] that such systems are exponentially stable. This result
follows from the following theorem in [131] which we give here to aid our discussion.

Theorem 44 [131] Suppose V = {v1, . . . ,vn+1} is a set of vectors in Rn with the property
that any subset of n vectors is linearly independent. Let

M = {Mi : i = 0,1 · · · ,n},

where M0 = [v1 · · · vn] and

Mi = [v1 ... vn+1 vi+1 ... vn] for i = 1,2, · · · ,n , (10.8)

that is, Mi is obtained by replacing the i-th column in M0 with the vector vn+1. Let Ac be any
finite subset of the following set of matrices:

{MDM−1 : M ∈M and D is diagonal negative definite } (10.9)

Then the continuous-time switching system (10.1) is globally exponentially stable.

Recently, a discrete-time version of this result was obtained in [132]. Namely, a discrete-time
switching system is exponentially stable if every pair of matrices in Ad share n−1 common
eigenvectors, and if all eigenvalues are real, inside the unit circle, and positive [132] (i.e.
there is no oscillatory behavior). In both the discrete-time case and the continuous-time case,
the same type of Lyapunov function is used to prove stability. Since Padé approximations are
eigenvector preserving, it immediately follows that any approximations that map real negative
eigenvalues to positive ones, will, by invoking the above result, preserve exponential stability.
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Using the above observations we obtain our next result. To describe this result, consider any
positive integer L and let

ᾱL =

{
largest real zero of QL

−∞ if QL has no real zeros

Since all real zeros of QL must be negative, we must have ᾱL < 0. When p is odd, QL must
have at least one real zero; hence ᾱL is finite. When L is even, we show later than QL does
not have any real zeros; hence ᾱL = −∞ for even L. To illustrate,

Q1(s) = 1+
1
2

s , Q2(s) = 1+
1
2

s+
1

12
s2 ;

hence

ᾱ1 = −2, ᾱ2 = −∞ .

Theorem 45 Suppose that Ac is a set of matrices satisfying the hypotheses of Theorem 44
and let

α = min{α : α is an eigenvalue of Ac and Ac ∈Ac} .

Consider any positive integer L and define

h̄L =

{
ᾱL/α if QL has a real zero

∞ if QL has no real zeros
(10.10)

Let Ad be any finite subset of

{C[L/L](hAc) : Ac ∈Ac and 0 < h < h̄L}

Then the discrete-time switching system (10.2) is globally exponentially stable.

PROOF: We first show that all the eigenvalues of the matrices in Ad must be positive, real
and less than one. So, consider any matrix Ad in Ad . This matrix can be expressed as
Ad = C[L/L](Ach) where Ac is in Ac and h < ᾱL/α . From the description of Ac we have
Ac = MDM−1 where D is diagonal with negative diagonal elements, α1, · · · ,αn. Consider
any i = 1, · · · ,n. Since αi is an eigenvalue of Ac, it follows from the definition of α that
αi ≥ α; hence hαi ≥ hα . Recalling the requirement that h < ᾱL/α and noting that α < 0
we must have hα > ᾱL; hence

hαi > ᾱL

Since QL(s) 6= 0 for s > ᾱL where ᾱL < 0 and QL(0) = 1 > 0, it follows from the conti-
nuity of QL that QL(s) > 0 for s > ᾱL; hence QL(hαi) > 0. Since −hαi > 0, we also have
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QL(−hαi) > 0. Hence C[L/L](hαi) = QL(hαi)/QL(−hαi) > 0. Since hαi < 0 and C[L/L]
maps the open left half plane into the open unit disk, we must also have C[L/L](hαi) < 1.
Since Ad =C[L/L](Ach) and Ac = MDM−1, we have

Ad = MΛM−1

where Λ is diagonal with diagonal elements

Λii =C[L/L](hαi) , i = 1, · · · , p

Hence C[L/L](hα1), . . . ,C[L/L](hαL), are the eigenvalues of Ad and these eigenvalues are
positive, real and less that one.

We will now show that

Ad = {eÃc : Ãc ∈ ˜Ac} (10.11)

where ˜Ac is a set of matrices which satisfy the hypotheses of Theorem 44. This will imply
that the continuous-time switching system

ẋ = Ãc(t)x(t) Ãc(t) ∈ ˜Ac (10.12)

is globally exponentially stable. Relationship (10.11) tells us that the state of the discrete-
time system (10.2) corresponds to the state at t = 0,1,2 · · · of the continuous-time system
(10.12) switching at these times; this will imply that the discrete-time switching system is
globally exponentially stable. To achieve the above goal, consider any i = 1, · · · ,L and we
let α̃i = ln[C[L/L](hαi)] . Then α̃i is negative real and

C[L/L](hαi) = eα̃i . (10.13)

Now consider Ãc = MD̃M−1 where D̃ is the diagonal matrix with negative diagonal elements
α̃1, · · · , α̃L. Since Ãc = MD̃M−1 we also have eÃc = MΛ̃M−1 where Λ̃ is diagonal with
diagonal elements

Λ̃ii = eα̃i , i = 1, · · · ,L .

It follows from (10.13) that Λ̃ = Λ; hence

Ad = eÃc .

Since Ac is a finite set of matrices satisfying the hypotheses of Theorem 44, it now fol-
lows that Ad can be expressed as (10.11) where ˜Ac is a finite set of matrices satisfying
the hypotheses of Theorem 44. As explained above this now implies that the discrete-time
switching system is globally exponentially stable.
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Note that α is the most negative eigenvalue of the matrices in Ac. In the example of the
previous section, α =−19 whereas ᾱL = ᾱ1 =−2; hence h̄L =−2/−19 = 0.1053. In this
example, h = 0.25 > h̄L and so the hypotheses of the above theorem are not satisfied. In Ex-
ample 7, it can be easily verified that, had we discretized with h < 0.1053, the corresponding
discrete-time switching would be have been exponentially stable.

Before proceeding to the next result, we briefly digress to show that for L even, the polynomial
QL has no real zeros (hence h̄L = ∞ whenever L is even). This conclusion is evident from
the following theorem. A general rational approximation R(z), is a approximation to ez of
order ‘q’, if ez−R(z) =Czq+1 +O(zq+2) with C 6= 0. Theorem 46 provides the maximum
attainable order of such rational approximations under some conditions.

Theorem 46 [133] Suppose that a rational approximation to the exponential function is
given by R(z) = PK(z)/QJ(z), where the subscripts K and J denote the orders of the
polynomials PK and QJ respectively. Let QJ have only M different complex zeros. If in
addition QJ has a real zero then, the order q of R satisfies

q≤ K +M+ 1.

If QJ has no real zeros then,
q≤ K +M.

A Padé approximation PK/QJ is a special case of the rational approximations considered in
the above theorem and its order is q = J +K [133], where K and J denote the orders of the
polynomials PK and QJ . Hence, if QJ has only M different complex zeros and at least one
real zero, it must satisfy J +K ≤ K +M+ 1, that is,

J ≤M+ 1.

If QJ had a real zero when J is even, it must have two real zeros and, since QJ has at least M
complex zeros, this yields the contradiction that J ≥M+2. Hence, for a Padè approximation
PK/QJ with J even, QJ has no real zeros.

Comment 8 The above results tell us that for even order Padé approximations we have
h̄L = ∞. This yields the next result.

Theorem 47 Suppose that Ac is a finite set of matrices satisfying the hypotheses of Theorem
44 and L is any even positive integer. Then, for any sampling time, the discrete-time switching
system (10.2) obtained under the [L/L]-order diagonal Padé approximation is globally
exponentially stable.
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The key point in the proof of the last theorem is that even ordered Padé polynomials do not
have real zeros. It immediately follows that stability is preserved for any choice of sampling
interval. Odd ordered Padé polynomials, on the other hand, have some real zeros, and these
zeros can cause difficulties in ensuring that negative real eigenvalues map to positive ones.
To preserve stability in this case one must select a sampling time that is small enough. To
illustrate this point let us consider again Example 7. We assume that switching is restricted to
only occur at multiples of the sampling time h = 1 (which is chosen to illustrate the assertions
in Theorem 45). As can be seen from Table 1, the first two odd order approximations lead to

Order (L) λmax(Ad1Ad2Ad3) Comment

1 2.5819 Unstable

2 0.5957 Stable

3 1.0710 Unstable

4 0.6539 Stable

Table 1: Stability of some even and odd approximations for Example 7

an unstable discrete time switching system.

Comment 9 The results of this section indicate that the selection of stable Padé discretiza-
tions is guided strongly by the knowledge of the Lyapunov function for the original switched
system. This suggests the following interesting open question. Namely, to determine if in
choosing a discretization method for exponentially stable continuous-time switched systems,
knowledge of a Lyapunov function for the original continuous-time system is required.

10.6 Q UA D R AT I C S TA B I L I T Y A N D PA D É A P P ROX I M AT I O N S F O R D E S C R I P T O R

S Y S T E M S

In this section, we extend the concept of quadratic stability to descriptor systems having index
greater than one. Then we show that the generalized Padé approximations for descriptor sys-
tems introduced earlier also preserve quadratic Lyapunov functions. We begin this section by
recalling some basics of Lyapunov stability theory and the order reduction (and index reduc-
tion) procedure for general descriptor system of index k > 0 (see equation 9.1) from chapter 9.

We say that a scalar valued function V is a Lyapunov function for the reduced-order LTI

system (9.6) if for all non-zero w = Y T
k . . .Y T

2 Y T
1 x ∈ Y T

k . . .Y T
2 Y T

1 C we have V (w) > 0 and
V̇ (w) < 0; V is a quadratic Lyapunov function if V is a Lyapunov function and V can be
written as V (w) = wT Pw for some symmetric matrix P; in this case, we say that P is a
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Lyapunov matrix for system (9.6). The existence of a Lyapunov matrix P guarantees that the
system is GUES, that is, there are constants α ,β > 0 such that every solution satisfies

‖w(t)‖ ≤ βe−α(t−t0)‖w(t0)‖ for t ≥ t0 . (10.14)

From Lemma 19 we can conclude that GUES of (9.6) is equivalent to GUES of (9.1). Suppose P
is a Lyapunov matrix for the descriptor system (9.6). Then, the requirement that V (w)> 0 all
for non-zero w in Y T

k . . .Y T
2 Y T

1 C is equivalent to P being positive-definite on Y T
k . . .Y T

2 Y T
1 C ,

that is, wT Pw > 0 for all w in Y T
k . . .Y T

2 Y T
1 C . Now note that

V̇ = 2ẇT Pw

= 2ẇT PEkẇ

= −ẇT Qẇ

where Q is given by

PEk +ET
k P+Q = 0. (10.15)

Consider the descriptor systems (9.1) and (9.6) where x is in C and w is in Y T
k . . .Y T

2 Y T
1 C ,

thus
V̇ = −ẇT Qẇ = −(Y T

k . . .Y T ẋ)T Q(Y T
k . . .Y T

1 ẋ)

and the requirement that V̇ (w) < 0 for all non-zero w in Y T
k . . .Y T

1 C is equivalent to Q0 =

Y1 . . .YkQY T
k . . .Y T

1 being positive-definite on C . This is equivalent to the requirement that
Y1 . . .Yk(PEk+ET

k P)Y T
k . . .Y T

1 is negative-definite on C . Since EkY T
k . . .Y T

1 =Y T
k . . .Y T

1 A−1E
and if we let P0 = Y1 . . .YkPY T

k . . .Y T
1 and Q0 = Y1 . . .YkQY T

k . . .Y T
1 , we have the following

conclusion.

A symmetric matrix P0 is a Lyapunov matrix for descriptor system (9.1) if and only if the
matrices P0 and Q0 defined by

P0(A−1E)+ (A−1E)T P0 +Q0 = 0 (10.16)

are positive-definite on the consistency space of the system.

Based on this discussion, we propose the following result.

Theorem 48 Suppose that (E,A) is a continuous time stable descriptor pair and the
corresponding [L/L]-order diagonal Padé approximation is

x[(p+ 1)h] = C̃[L/L](E,A,h)x[ph]

= Q̃L(−A−1Eh)−1Q̃L(A−1Eh)x[ph], h > 0. (10.17)

If P0 is a Lyapunov matrix for (E,A) then, P0 is Lyapunov matrix for (10.17).
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PROOF: A symmetric matrix P0 is a Lyapunov matrix for descriptor system (E,A) if and
only if

P0(A−1E)+ (A−1E)T P0 (10.18)

is negative-definite on the consistency space C of the system (E,A). From our earlier discus-
sion (see equations (10.15) and (10.16)), negative definiteness of P0(A−1E)+ (A−1E)T P0

on C is equivalent to negative definiteness of ET
k P+PEk on Ck = Y T

k . . .Y T
2 Y T

1 C . This is
also equivalent to negative definiteness of E−T

k P+PE−1
k on Ck.

Diagonal Padé approximations preserve the quadratic Lyapunov function [134], hence if
there exists a symmetric matrix P, positive definite on Ck = Y T

k . . .Y T
2 Y T

1 C such that

E−T
k P+PE−1

k (10.19)

is negative-definite on Ck. Then

C[L/L](E
−1
k h)T PC[L/L](E

−1
k h)−P (10.20)

is also negative-definite on Ck. Hence,

Y1 . . .Yk[QL(E−1
k h)T QL(−E−1

k h)−T PQL(−E−1
k h)−1QL(E−1

k h)−P]Y T
k . . .Y T

1

= Y1 . . .Yk[Q̃L(Ekh)T Q̃L(−Ekh)−T PQ̃L(−Ekh)−1Q̃L(Ekh)−P]Y T
k . . .Y T

1

= Y1 . . .Yk[Q̃L(Ekh)T PQ̃L(Ekh)− Q̃L(−Ekh)T PQ̃L(−Ekh)]Y T
k . . .Y T

1

(applying Lemmas 29 and 30)

= Q̃L(A−1Eh)T P0Q̃L(A−1Eh)− Q̃L(−A−1Eh)T P0Q̃L(−A−1Eh)

= Q̃L(−A−1Eh)−T Q̃L(A−1Eh)T P0Q̃L(A−1Eh)Q̃L(−A−1Eh)−1−P0

is negative definite on C .

10.7 C O N C L U S I O N S

In this chapter, we have shown that diagonal Padé approximations to the matrix exponential
preserves quadratic Lyapunov functions between continuous-time and discrete-time switched
systems. We have also shown that the converse is not true. Namely, it does not follow that
the original continuous-time system is quadratically stable even if the discrete-time system
has a quadratic Lyapunov function. Furthermore, it is easily seen that such approximations
do not (in general) preserve stability when used to discretize switched systems that are
stable (but not quadratically stable). Our results suggest a number of interesting research
directions. An immediate question concerns discretization methods that preserve other types
of stability. Since general Padé approximations can be thought of as products of complex
bilinear transforms, an immediate question in this direction concerns the equivalent map
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for other types of Lyapunov functions. For example, given a continuous-time system with
some Lyapunov function, what are the mappings from continuous-time to discrete-time that
preserve the Lyapunov functions. A natural extension of this question concerns whether
discretization methods can be developed for exponentially stable switched and nonlinear
systems but which do not have a quadratic Lyapunov function. We will focus on some of
these questions in our next chapter. Finally, we also extend our results on preserving quadratic
Lyapunov functions for regular systems to descriptor systems.
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In this chapter, we consider preservation of polyhedral Lyapunov functions for
stable continuous-time linear systems under discretization. This problem is mo-
tivated by the non-conservative nature of polyhedral Lyapunov functions. It has
been shown in [120], that a continuous-time system and its diagonal Padé dis-
cretization (of any order and sampling) always share at least one common piece-
wise linear (polyhedral) Lyapunov function if the continuous time matrix Ac has
distinct eigenvalues. We show that this result is also valid for the case when Ac

consists of non-trivial Jordan blocks.

11.1 I N T RO D U C T I O N

A fundamental issue for the discretization of switched systems is that quadratic stability is
only a sufficient condition for exponential stability. A more complete characterisation of
exponential stability requires the study of piecewise-linear and piecewise quadratic Lya-
punov functions [135]. Thus, for switched systems, the notion of stability preservation goes
beyond the notion of quadratic Lyapunov functions, and requires the study of more elaborate
Lyapunov functions. This observation motivates the use of polyhedral Lyapunov functions.
Such functions are known to be non-conservative in the analysis of stability under arbitrary
switching for polytopic and switched systems. In other words, given a switching system that
is stable under arbitrary switching, a polyhedral Lyapunov function for this system always
exists, while a quadratic Lyapunov function does not exist in general. Our results on diagonal
Padé approximations have motivated an interesting result in [120] for polyhedral Lyapunov
functions, which states that a stable continuous-time system and its Padé discretized version
of order p≥ 1 (for any sampling time) always share such a function. This does not contradict
previous results in [90], where it was proven, through a counterexample, that a given polyhe-
dral Lyapunov function in continuous-time may not be a Lyapunov function for the sampled
discrete-time system obtained via the particular class of bilinear transformations with fixed
sampling time. However, this result was proved under the assumption that the continuous-
time system matrix Ac has distinct eigenvalues [120]. This result follows by making explicit
use of the fact that the diagonal Padé approximation preserves the Jordan structure of a
matrix Ac if the matrix has distinct eigenvalues. Unfortunately, this fact no longer holds when
Ac has non-trivial Jordan blocks, and the purpose of this chapter is therefore to extend the
results of [120] to the case of non-trivial Jordan blocks.

155
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In this chapter, we extend the results in [120] to the case where the system matrix has non-
trivial Jordan blocks. As we shall see, this extension is non-trivial and requires developing
substantial technical content that deviates significantly from the arguments in [120].

11.2 P RO B L E M S TAT E M E N T

Consider a continuous-time linear time-invariant (LTI) system

ẋ(t) = Acx(t), (11.1)

where the matrix Ac ∈Rm×m is Hurwitz. We are interested in the discrete time approximation

x[(k+ 1)h] = Adx[kh] (11.2)

obtained via the diagonal Padé approximation of order [n/n] with sampling time h. We are
primarily interested in the preservation of a polyhedral Lyapunov function V (x) = ‖Wx‖∞

under diagonal Padé approximation. Now we present the result from [120], where the authors
proved the following fundamental result:

Theorem 49 [120] Consider a Hurwitz stable matrix Ac of dimension N and its diagonal
Padé discretization Ad of order n. Assume that all eigenvalues of Ac are distinct. Let Nr

be the number of real negative eigenvalues, and 2Nc be the number of pairs of complex
eigenvalues σi± jτi, i = 1,2, . . . ,Nc. For each pair of complex eigenvalues, let ki be an
integer greater than one such that σi± jτi belongs to the sector Sc(ki) := {λ = σ + jτ :

σ < 0, |τ|<
sin( π

ki
)

1−cos( π

ki
)
|σ |}. Then there exists a W ∈RN′×N , with N′ = ∑

k
i=1 ki +Nr with

W =



W1 0 · · · 0 0

0 W2 · · · 0 0
...

...
. . .

...
...

0 0 · · · WNc 0

0 0 · · · 0 I


Tc, (11.3)

where

Wi =



1 0

cos( π

ki
) sin( π

ki
)

cos( 2π

ki
) sin( 2π

ki
)

...
...

cos( (ki−1)π
ki

) sin( (ki−1)π
ki

)


, (11.4)

and Tc is the Modal matrix for Ac, such that V (x) := ‖Wx‖∞ is a Lyapunov function both for
Ac and Ad .
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In this chapter, we prove the same result when Ac has non-trivial Jordan blocks. Given Ac a
square matrix, we consider its real Jordan form Jc = T−1

c AcTc:

Jc =


J0

c 0 . . . 0
0 J1

c . . . 0
. . .

0 . . . 0 Jl
c

 , (11.5)

where J1
c , . . . ,Jl

c are all the blocks either of the form

λ 1 0 . . . 0

0 λ 1 . . . 0

0 0 λ . . . 0
...

...
. . . . . .

...

0 0 0 . . . λ


(11.6)

with λ < 0 (real eigenvalues), or of the form:

Λ I 0 . . . 0
0 Λ I . . . 0
...

...
. . . . . .

...

0 0 . . . Λ I

0 0 . . . . . . Λ


(11.7)

where Λ =

(
σ τ

−τ σ

)
, σ < 0, τ > 0, I is the identity matrix of dimension 2 and 0 is the

null matrix of dimension 2. The first block J0
c has the following structure

J0
c =



λ1 . . . 0 0 0 . . . 0 0
...

0 . . . λn0 0 0 . . . 0 0

0

0
. . .

0

0
Λ1 . . .

0 0

0 0
...

0

0
. . .

0

0

0 0

0 0
. . . Λm0


with Λi =

(
σi τi

−τi σi

)
. In other words, J0

c contains the real eigenvalues Λi (eventually coin-

ciding) such that the corresponding line and column in the real Jordan form are 0 except on
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the diagonal itself, and the complex eigenvalues blocks Λi such that the corresponding lines
and columns are 0 except on the block itself. We now state our main result:

Theorem 50 Let Ac be a Hurwitz matrix. Then, there exists a matrix W such that for all
h > 0 and any order n of approximation, the systems 11.1 and 11.2 with Ad = P[n/n](Ach)
share the polyhedral Lyapunov function ‖Wx‖∞. We have W = W̃Tc where Tc is the modal
matrix for Ac and the precise structure of W̃ is given in Lemmas 36 and 37.

We shall prove this theorem in Section 11.5. The proof is based on the study of each block of
the matrix Jc independently. For this reason, we first study the two following special cases:
the real case, in which Ac is given by 11.6; and the complex case, in which Ac is given 11.7.
These cases are presented in the two following sections.

11.3 T H E R E A L C A S E

In this section, we consider Ac of the form 11.6. We denote its dimension with m. Then

Ad =



f0 f1 f2 . . . fm−1

0 f0 f1 . . . fm−2

0 0 f0 . . . fm−3
...

...
...

. . .
...

0 0 0 . . . f0


, (11.8)

with fi := P(i)
[n/n](λh) hi

i! . The index (i) denotes the i-th derivative of P[n/n](x) with respect to x.

The formula 11.8 can be easily proved by writing P[n/n](x) = ∑
∞
i=0 aixi and studying the

expression of the powers Ai
c; see [136] for details. As a consequence, terms on the upper

diagonal have series expressions coinciding with derivatives of the series ∑
∞
i=0 aixi. The

convergence of the series for Ac Hurwitz is given by the fact that Padé approximation and its
derivatives have poles in the right-half plane only [137].

We now prove the following lemma.

Lemma 36 Consider the Hurwitz matrix Ac of the form 11.6 and denote its dimension
with m. Then, there exists a positive α > − 1

λ
such that for all h > 0 and any order n of

approximation, the matrices Ac and Ad = P[n/n](Ach) share the common Lyapunov function

V (x) = ‖Dx‖∞. (11.9)

with D = diag{1,α . . . ,αm−1}.
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PROOF : We first prove that (11.9) is a Lyapunov function for Ac. Since D is invertible, we
transform DAc = QcD to

Qc = DAcD−1 =



λ
1
α

0 . . . 0

0 λ
1
α

. . . 0
...

...
. . . . . .

...

0 0 . . . λ
1
α

0 0 . . . . . . λ


(11.10)

Under the condition α > − 1
λ

, we have that µ∞(Qc) = λ + 1
α
< 0. Thus V (x) = ‖Dx‖∞

is a Lyapunov function for Ac. Since Ad = P[n/n](Ach) is given by 11.8, we can compute
Qd = DP[n/n](Ach)D−1, that is

Qd =



f0
f1
α

f2
α2 . . . fm−1

αm−1

0 f0
f1
α

. . . fm−2
αm−2

0 0 f0 . . . fm−3
αm−3

...
...

...
. . .

...

0 0 0 . . . f0


(11.11)

To prove ‖Qd‖∞ < 1, we need to prove that

| f0|+
| f1|
α

+
| f2|
α2 + . . .+

| fm−1|
αm−1 < 1 (11.12)

Take now any h̄ > 0. We now compute α such that 11.12 is satisfied for all h < h̄.For each
i = 1, . . . ,m−1, compute Mi = maxh∈[0,h̄] |P

(i)
[n/n](λh)| and M = maxi=1,...,m−1 Mi. Remark

that each Mi is finite, since the derivatives P(i)
[n/n] are always finite for non-positive numbers,

since Padé approximations and their derivatives have poles with real part that is strictly posi-
tive. Hence, M exists, since it is the maximum over a finite set. Then, we bound 11.12 with
|P[n/n](λh)|+M

(
h
α
+ . . .+ hm−1

(m−1)!αm−1

)
< 1. Since λ < 0, we have that |P[n/n](λh)| < 1,

hence we can always find α such that
(

h̄
α
+ . . .+ h̄m−1

(m−1)!αm−1

)
<

1−|P[n/n](λh)|
M . This latter fact

follows from the fact that |P[n/n](λh)| is always bounded away from 1. Thus, for all h < h̄,
condition 11.12 are verified.

We now study the limiting case as h→ ∞. First, define the new variable1 x := − 1
λh and the

function g0(x) := f0 = P[n/n](−1/x), that is defined for x ≥ 0. In particular, at x = 0 we
have g0(0) = limh→∞ f0 = ±1, since |P[n/n](∞)| = 1. Moreover, |P[n/n]| < 1 for all h > 0,
that implies |g0(x)|< 1 for x > 0. Its Taylor expansion in 0 (for x > 0 only) is thus g0(x) =

1 This process coincides with the Taylor expansion of P[n/n] at ∞.
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d0+d1x+o(x) with |d0|= 1 and2 d0d1 < 0. By substitution, we have f0 = d0+
d1
λh +o(1/h).

Differentiating this series i times with respect to h, we have

P(i)
[n/n](λh) = (−1)i d1i!

λ i+1hi+1 + o(1/hi+1), (11.13)

thus | fi| = |d1|
|λ |i+1h + o(1/h). Since β = |λ |α > 1, we have | fi|

α i = |d1|
β i−1|λ |2αh + o(1/h) ≤

|d1|
|λ |2αh + o(1/h) for all i≥ 1. Thus

‖Qd‖∞ = | f0|+
| f1|
α

+
| f2|
α2 + . . .+

| fm−1|
αm−1 ≤ 1− |d1|

|λ |h
+
|d1|
|λ |2αh

(m−1)+ o(1/h).

This means that there exists h∗ > 0 such that ‖Qd‖∞ ≤ 1− |d1|
|λ |h +

|d1|
|λ |2αh (m−1) for all h≥ h∗.

Then estimate (11.12) with

1− |d1|
|λ |h

+
|d1|
|λ |2αh

(m−1) < 1 (11.14)

that is true by choosing α > m−1
|λ | .

We now merge the two cases. Using the first part, choose h̄ = h∗ and find α1 so that (11.12)
holds for all h < h∗ and α ≥ α1. Using the limit case, choose α2 >

m−1
|λ | so that (11.12) holds

for all h≥ h∗ and α ≥ α2. Choose now α∗ = max{α1,α2} and observe that 11.12 holds for
all h.

Remark 3 As apparent from the proof of the previous theorem, there exists a value ᾱ of α

that ensures that V (x) = ‖Dx‖∞ is a Lyapunov function for both Ac in 11.6 and Ad in 11.8,
for all α > ᾱ . Taking again into account the fact that α|λ |> 1, an upper bound value of ᾱ

can be found from 11.12, i.e.

1
|λ |

< ᾱ ≤ sup
h>0

m−1

∑
i=1
| fi||λ |i−1

(1−| f0|)

11.3.1 Explicit computation of h̄ for the case of real Jordan blocks

Since diagonal Padé approximations are A-stable, we have |P[n/n](λh)|< 1. However, for
(11.9) to be a Lyapunov function for the discrete time system we need to verify ‖Qd‖∞ < 1,
that is

i

∑
j=0

∣∣∣∣P( j)
[n/n](λh)

j!

( h
α

) j

∣∣∣∣< 1 for all i = 1 . . . ,m−1. (11.15)

2 For d0 = 1, one needs d1 < 0 to have g decreasing; and the opposite for d0 = −1. More precisely, g0 decreasing
with d0 = 1 implies d1 < 0 or d1 = d2 = 0 and d3 < 0, or d1 = d2 = d3 = d4 = 0 and d5 < 0,... For simplicity
of notation, we study the case d1 6= 0; the same proof can be adapted to the other cases too.



11.4 T H E C O M P L E X C A S E 161

Assumption: Assume that P[n/n](z) is absolutely monotonic over (−rn,0] such that λh < rn.

We recall that absolute monotonicity of P[n/n](z) means that all derivatives Pi
[n/n](z) are

positive. Thus, for λh > −rn, we have that the series 11.15 have all positive terms. We
estimate all these series with

∞

∑
j=0

P j
[n/n](λh)

j!

(
h
α

) j

= P[n/n]

(
λh+

h
α

)
≤ |P[n/n]

(
λh+

h
α

)
|. (11.16)

Since λh+ h
α
< 0 for our choice of α , we have |P[n/n]

(
λh+ h

α

)
|< 1. The condition on h̄ is

thus reduced to h̄ < rn
|λ | . Some values of rn, as well as an algorithm for their computation, are

given in [138].

11.4 T H E C O M P L E X C A S E

In this section, we consider Ac of the form 11.7. We denote its dimension with 2m. Then

Ad =



F0 F1 F2 . . . Fm−1

0 F0 F1 . . . Fm−2

0 0 F0 . . . Fm−3
...

...
...

. . .
...

0 0 0 . . . F0


(11.17)

with Fi := P(i)
[n/n](λh) hi

i! . As in the previous Section, derivative notation should be inter-
preted as the rational functions that are derivatives of the rational function P[n/n](x). The
proof of this formula is as for the real case. The only detail to be careful with is that, in
this case, the product of matrices only involves λ and I, for which the product is commutative.

Let k be a natural number such that σ + jτ ∈Sc(k). Let

W̃ =



1 0

cos( π

k ) sin( π

k )

cos( 2π

k ) sin( 2π

k )
...

...

cos( (k−1)π
k ) sin( (k−1)π

k )


.

This matrix defines a Lyapunov function ‖W̃x‖∞ both for the block λ =

(
σ τ

−τ σ

)
and

P[n/n](λh) for all h > 0, as proved in [122]. We now use this fact to compute the Lyapunov
function for Ac and Ad , and consequently prove the following lemma.
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Lemma 37 Consider the Hurwitz matrix Ac of the form 11.7 and denote its dimension
with 2m. Then there exists an α > 1

−σ−τ
1−cos( π

k )

sin( π
k )

such that for all h > 0 and order n of

approximation, the matrices Ac and Ad = P[n/n](Ach) share the common Lyapunov function

V (x) = ‖Wx‖∞ (11.18)

with

W =



W̃ 0 0 . . . 0
0 W̃α 0 . . . 0
0 0 W̃α2 . . . 0
...

...
...

. . .
...

0 0 0 . . . W̃αm−1


(11.19)

Proof : We first prove that (11.18) is a Lyapunov function for Ac. We already know that
there exists a certain Q̃c with µ∞(Q̃c) < 0 satisfying W̃λ = Q̃cW̃ . Moreover, µ∞(Q̃c) =

|σ |− |τ|cos( π

k )
sin( π

k )
+ |τ|

sin( π

k )
< 0. See details in [120, 122]. Thus WAc = QcW is satisfied, with

Qc =


Q̃c I/α 0 . . . 0
0 Q̃c I/α . . . 0
...

. . . . . . . . .
...

0 0 0 . . . Q̃c

 (11.20)

We have µ∞(Qc) = µ∞(Q̃c)+
1
α
< 0 due to the condition on α . Remark that such α exists,

since σ + jτ ∈Sc(k) is equivalent to 1

−σ−τ
1−cos( π

k )

sin( π
k )

> 0. Thus V (x) = ‖Wx‖∞ is a Lyapunov

function for Ac.

Compute now Ad = P[n/n](Ach), that is given by 11.17. We have to find Qd satisfying
WAd = QdW and ‖Qd‖∞ < 1. As a candidate, we look for

Qd :=



Q0 Q1/α Q2/α2 . . . Qm−1/αm−1

0 Q0 Q1/α . . . Qm−2/αm−2

0 0 Q0 . . . Qm−3/αm−3

...
...

. . . . . .
...

0 0 0 . . . Q0


(11.21)

with Q0,Q1, . . .Qm−1 to be found. The explicit computation of WAd = QdW gives the fol-
lowing conditions

W̃F0 = Q0W̃ , W̃Fi = QiW̃ , i = 1, . . . ,m−1. (11.22)
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Since Λ =

(
σ τ

−τ σ

)
, then the eigenvalues of F0 = P[n/n](λh) lie in Pol(k) :=

int conv
{

e j pπ

m

}2m−1

p=0
, as we proved in [120]. As a consequence, for each h > 0 there exists

Q0 such that W̃F0 = Q0W̃ and ‖Q0‖∞ < 1, see [123].

For each other Fi, observe that its entries are all bounded functions of h > 0, and consequently
its eigenvalues are bounded too. Thus, one can choose a ρ > 1 sufficiently big to have the
eigenvalues of Fi

ρi
as small as wished. In particular, one can always have the eigenvalues of

Fi
ρi

with norm less than Rk, the radius of a ball centered in 0 and completely contained in
Pol(k). As a consequence, there exists Q̃i satisfying W̃ Fi

ρi
= Q̃iW̃ and ‖Q̃i‖∞ < 1; see again

[123]. Then the conditions in 11.22 are all verified by taking Qi = Q̃iρi.
Hence, recalling that α > 1

µ∞(Qc)
we have

‖Qd‖∞ ≤ ‖Q0‖∞ + ‖Q1/α‖∞ + . . .+ ‖Qm−1/α
m−1‖∞

≤ ‖Q0‖∞ +
1
α

m−1

∑
i=1
‖Qi‖∞µ∞(Qc)

i−1

Similarly to the real case, one has to study the limit case h→ ∞. By developing the ∞-norm
of the Qi around ∞, one finds expressions similar to fi in the real case, and the result follows.
Notice in fact that ‖Q0‖∞, as a function of h > 0, can be written as ‖Q0‖∞ = 1−φ (h) with
φ a strictly positive function of h > 0. In conclusion ‖Qd‖∞ < 1 if

α > sup
h>0

m−1

∑
i=1
‖Qi‖∞µ∞(Qc)

i−1

1−‖Q0‖∞

Remark 4 Also for the case of multiple complex eigenvalues, we can conclude that there
exists a value ᾱ of α that ensures that V (x) = ‖W‖∞ is a Lyapunov function for both Ac in
11.7 and Ad in 11.17, for all α > ᾱ . An upper bound value of ᾱ can be found computed in
the following way, i.e.

1
|µ∞(Qc)|

< ᾱ ≤ sup
h>0

m−1

∑
i=1
‖Qi‖∞µ∞(Qc)

i−1

1−‖Q0‖∞

11.4.1 Explicit computation of h̄ for the case of complex Jordan blocks

From 11.17 we have Ad =P[n/n](Ach). We now have to find Qd satisfying WAd =QdW . Since

Λ =

(
σ τ

−τ σ

)
, then P[n/n](Λh) =

(
σ0 τ0

−τ0 σ0

)
for some σ0,τ0. Similarly, all derivatives
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have the same structure, that is P(i)
[n/n](Λh) =

(
σi τi

−τi σi

)
for some σi,τi. Define now the

following matrices:

Bi :=
i

∑
p=0

Fp

α p . (11.23)

Due to the previous observation, we know that Bi =

(
σ̃i τ̃i

−τ̃i σ̃i

)
, with σ̃i, τ̃i depending

on h and α . We now find a condition on h such that the eigenvalues σ̃i± jτ̃i of matrices

B0,B1, . . . ,Bm−1 lie in Pol(k) := intconv
{

e j pπ

m

}2m−1

p=0
. This would ensure that W̃ is a poly-

hedral Lyapunov matrix for each Bi, hence ensuring that ‖Wx‖∞ is a polyhedral Lyapunov
function for Ad . Since the spectral radius of any square matrix ρ(A)≤ ‖A‖2, we evaluate the
bound on the following matrix norm of

‖Bi‖2 = ‖
i

∑
j=0

P j
[n/n](Λh)

1
j!

(
h
α

) j

‖2

Let β =

(
2|σ |

1−cos( π

k )

)
and consider ‖Λh+(βh) I‖2

=

√√√√(σh)2

(
1+ cos

(
π

k

)
1− cos

(
π

k

))2

+(τh)2

<

√√√√(σh)2

(
1+ cos

(
π

k

)
1− cos

(
π

k

))2

+(σh)2

(
sin
(

π

k

)
1− cos

(
π

k

))2

=
|σh|

1− cos
(

π

k

)√2+ 2cos
(

π

k

)
≤ 2|σh|

1− cos
(

π

k

) = βh.

Since ‖Λh+(βh) I‖2 < βh, we can use Taylor series to expand P[n/n](Λh) as

P[n/n](Λh) =
∞

∑
j=0

P j
[n/n](−βh)

1
j!
(Λh+(βh)I) j (11.24)

Then from triangular inequality we have

‖P[n/n](Λh)‖2 ≤
∞

∑
j=0
‖P j

[n/n](−βh)
1
j!
(Λh+(βh)I) j‖2.

Assume that P[n/n](z) is absolutely monotonic over (−rn,0] such that βh < rn.
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Then P j
[n/n](−βh) ≥ 0 for j ≥ 0 and

‖P[n/n](Λh)‖2 ≤
∞

∑
j=0

P j
[n/n](−βh)

1
j!
‖(Λh+(βh)I) j‖2

If we let ‖Λh+(βh) I‖2 = γh, then

‖P[n/n](Λh)‖2 ≤
∞

∑
j=0

P j
[n/n](−βh)

1
j!
(γh) j

= P[n/n](−βh+ γh)

Similarly it can proved that

‖P j
[n/n](Λh)‖2 ≤ P j

[n/n](−βh+ γh) ∀ j ≥ 0. (11.25)

Since −β + γ

= − 2|σ |
1− cos

(
π

k

) +
√√√√(σ)2

(
1+ cos

(
π

k

)
1− cos

(
π

k

))2

+(τ)2

< − 2|σ |
1− cos

(
π

k

) + |σ |
1− cos

(
π

k

)√2+ 2cos
(

π

k

)
< 0,

from Assumption 1 P j
[n/n](−βh+ γh) ≥ 0 ∀ j ≥ 0.

Now consider

‖Bi‖2 = ‖
i

∑
j=0

P j
[n/n](Λh)

1
j!

(
h
α

) j

‖2,

from triangular inequality and observation (11.25) we have

‖Bi‖2 ≤
i

∑
j=0
‖P j

[n/n](Λh)
1
j!

(
h
α

) j

‖2

≤
i

∑
j=0

P j
[n/n](−βh+ γh)

1
( j)!

(
h
α

) j

.

As the partial sum ∑
i
j=0 P j

[n/n](−βh+ γh) 1
( j)!

( h
α

) j
consists of non-negative terms, we have

i

∑
j=0

P j
[n/n](−βh+ γh)

1
( j)!

(
h
α

) j

≤
∞

∑
j=0

P j
[n/n](−βh+ γh)

1
( j)!

(
h
α

) j

.

= P[n/n](−βh+ γh+
h
α
).
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Since P[n/n](z) maps Sc(k) into Pol(k) [120], we know that P[n/n](−β + γ + 1
α
) ∈Pol(k)

if −βh+ γh+ h
α
< 0. However, −β + γ + 1

α
=

− 2|σ |
1− cos

(
π

k

) +
√√√√(σ)2

(
1+ cos

(
π

k

)
1− cos

(
π

k

))2

+(τ)2 +
1
α

> − 2|σ |
1− cos

(
π

k

) +
√√√√(τ)2

(
1+ cos

(
π

k

)
sin
(

π

k

) )2

+(τ)2 +
1
α

= − 2|σ |
1− cos

(
π

k

) + |τ|
sin
(

π

k

)√2+ 2cos
(

π

k

)
+

1
α

Hence we need − 2|σ |
1−cos( π

k )
+ |τ|

sin( π

k )

√
2+ 2cos

(
π

k

)
+ 1

α
< 0, leading to

α >
1(

2
1−cos( π

k )

)(
|σ |− |τ|1−cos( π

k )
sin( π

k )

√
1+cos( π

k )
2

) .

However, it can be observed that

1(
2

1−cos( π

k )

)(
|σ |− |τ|1−cos( π

k )
sin( π

k )

√
1+cos( π

k )
2

)
<

1(
|σ |− |τ|1−cos( π

k )
sin( π

k )

√
1+cos( π

k )
2

)
<

1

|σ |− |τ|1−cos( π

k )
sin( π

k )

From the Lemma 4 we know that α > 1

|σ |−|τ|
1−cos( π

k )
sin( π

k )

, hence −βh+ γh+ h
α
< 0 and we

have P[n/n](−βh+ γh+ h
α
) ∈Pol(k). Hence the eigenvalues σ̃i± jτ̃i lie inside Pol(k) if

Assumption 1 is satisfied. Thus we select h̄ such that h̄ < rn
|β | .

11.5 P RO O F O F M A I N T H E O R E M

In this section, we now prove Theorem 50. We use Lemmas 36 and 37, as well as the results
from the paper [120], given by Theorem 49. The basic idea is to show that we can deal with
each Jordan block independently.

Take Ac a Hurwitz matrix, and Jc = T−1
c AcTc its real Jordan form 11.5. The fundamental

observation for the following is that Ad = P[n/n](Ach) = T−1
c P[n/n](Jch)Tc with
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P[n/n](Jch) =


P[n/n](J0

c h) 0 . . . 0
0 P[n/n](J1

c h) . . . 0
...

...
. . .

...

0 . . . 0 P[n/n](Jl
ch)

 .

This is a standard property of the Padé approximation, since it is a rational function of
matrices. As already remarked, P[n/n](Jch) is not the real Jordan form of Ad , since P[n/n](Ji

ch)
are not real or complex blocks for i > 0. We now define W ,Qc,Qd satisfying

WAc = QcW WAd = QdW , (11.26)

µ(Qc)∞ < 0, ‖Qd‖∞ < 1, (11.27)

that ensures that V (x) = ‖Wx‖∞ is a Lyapunov function both for 11.1 and 11.2 with Ad =

P[n/n](Ach). First of all, we find W i,Qi
c,Qi

d for each Ji
c. For the block J0

c , use Theorem 49,
that gives W 0 and the corresponding Q0

c ,Q0
d . For blocks Ji

c, either use Lemma 36 for the
real case or Lemma 37 for the complex case, that give W i and the corresponding Qi

c and Qi
d .

Define

W̃ =


W 0 0 0 . . . 0
0 W 1 0 . . . 0
. . .

0 0 0 . . . W l


and W = W̃Tc. We prove that W defines a Lyapunov function V (x) = ‖Wx‖∞ both for 11.1
and 11.2 with Ad = P[n/n](Ach). It is sufficient to find Qc and Qd satisfying 11.26-11.27. By
direct computation, one can prove that

Qc =


Q0

c 0 0 . . . 0
0 Q1

c 0 . . . 0
. . .

0 0 0 . . . Ql
c

 (11.28)

and

Qd =


Q0

d 0 0 . . . 0
0 Q1

d 0 . . . 0
. . .

0 0 0 . . . Ql
d

 (11.29)
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satisfy these conditions, since

WAc = W̃TcAc = W̃JcTc =

=


W 0J0

c 0 0 . . . 0
0 W 1J1

c 0 . . . 0
. . .

0 0 0 . . . W lJl
c

Tc =

= QcW̃Tc = QcW

The same holds for WAd . Moreover, µ(Qc) = maxi=0,...,l µ(Qi
c) < 0 and ‖Qd‖∞ =

maxi=0,...,l ‖Qi
d‖∞ < 1.

11.6 E X A M P L E S

Example 1: In this example we illustrate the result indicated in Lemma 36 using a numerical
example. In particular, we wish to show by construction the existence of a Lyapunov function
that is preserved by diagonal Padé approximations of any step size and order. To this end,
consider a Hurwitz matrix Ac of the form 11.6 with λ = −3 and m = 3. Then, it is easily
verified that a Lyapunov function for the continuous time matrix Ac given by

V (x) = ‖Dx‖∞.

with D = diag{1,α ,α2} and α >− 1
(−3) . Now we consider 1st order diagonal Padé approxi-

mation Ad = P[1/1](Ach) for eAch and plot ‖Qd‖∞ = ‖DAdD−1‖∞ w.r.t to h and α .

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Step size (h)

α

Figure 16: Plot showing values of h and α where ‖Qd(h,α)‖∞ > 1 using “*” and
∑

m−1
i=1 | fi||λ |i−1/(1−| f0|) w.r.t h using “o”.

It can observed from Figure 16 that there exists a finite limiting value of α , defining the
boundary of the infeasible values of α as h→ ∞. We denote this value of α as ᾱ and any
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Lyapunov function V (x) = ‖Dx‖∞ with α > ᾱ will be preserved during discretization using
diagonal Padé approximation with any step size h and order n. A similar bound was proposed

in Remark 3. To compare these two bounds, we plot

m−1

∑
i=1
| fi||λ |i−1

(1−| f0|) w.r.t h (using “o”) in
Figure 16. It can observed that the bound on ᾱ , proposed in Remark 3 is accurate but clearly
more conservative. We also plot the boundary of numerically approximated infeasible values
of α for different orders of diagonal Padé approximations in Figure 17.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Step size (h)

su
p

[α
]

***  Pade 1/1
ooo  Pade 2/2
+++ Pade 3/3
>>> Pade 4/4

Figure 17: Plot showing boundary of infeasible values of α for different orders of diagonal Padé
approximations.

Example 2: In some situations it is of interest to first define the Lyapunov function by fixing
α . In such situations the pertinent problem then becomes one of estimating h̄ for preserving
the Lyapunov function. We now show how this can be achieved for matrices with real Jordan
blocks using 1st order diagonal Padé approximations. Consider a Hurwitz matrix Ac and
the Lyapunov function V (x) as defined in Example 1. Let us choose α = α∗ = 0.34 < ᾱ

(from Example 1 ᾱ can be approximately estimated as 0.53). If the goal of discretization
is to preserve this given Lyapunov function, then we need to find values of h such that
‖Qd(α

∗,h)‖∞ < 1. Hence we plot ‖Qd(α
∗,h)‖∞ w.r.t. h in Figure 18. It can be observed that

‖Qd(α
∗,h)‖∞ decreases monotonically for a certain range of step sizes (0, h̄) and then starts

to increase again. Our goal is to numerically evaluate this upper bound h̄, which guarantees
the preservation of Lyapunov function if h < h̄. Note that while this can always be done
numerically, sometimes we can find an algebraic bound on h. To see this consider

‖Qd(α
∗,h)‖∞ = ‖DP[1/1](Ach)D−1‖∞ (11.30)

=
2

∑
j=0

∣∣∣∣P( j)
[1/1](λh)

j!

( h
α∗

) j

∣∣∣∣
In the case of odd-ordered Padé approximations, we know that P[n/n](x) is absolutely mono-
tonic for x ∈ (−rn,0], for a certain rn depending on n. We recall that absolute monotonicity
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Figure 18: Plot showing ‖Qd(α
∗,h)‖∞ (“o”) w.r.t. h.

means that all derivatives are positive. For P[1/1](x) we know that r1 = 2 [138], hence if we
choose h such that λh > −2, then the series 11.30 has all positive terms and then we can
estimate 11.30 with

∞

∑
j=0

P j
[1/1](λh)

j!

(
h

α∗

) j

= P[1/1] (λ1h+ h
α∗ ) ≤ |P[1/1] (λh+ h

α∗ ) |. (11.31)

Since λh+ h
α∗ < 0 for our choice of α , we have |P[1/1]

(
λh+ h

α∗

)
|< 1. Hence h̄< r1

|λ | = 2/3.
For complex jordan blocks of form (11.7) h̄ can be evaluated in a similar manner as

h̄ < rn
1− cos

(
π

k

)
2|σ |

.

Some values of rn, as well as an algorithm for their computation, are given in [138].

11.7 C O N C L U S I O N S

In this chapter, we have considered the problem of preservation of certain types polyhedral
Lyapunov functions under discretisation. In particular, we have shown that the results
described in [120] on polyhedral Lyapunov functions extends to the case of linear systems
with non-trivial Jordan structures. We have shown that the concept of absolute monotonicity
plays an important role in preserving polyhedral Lyapunov functions.
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In this thesis we considered stability properties of certain special classes of linear descriptor
systems. In the first part of the thesis we considered the linear time invariant case, where
we focused on passivity and a generalization of passivity and small gain theorems called
“mixed” property. An important bottleneck for control design based on the above properties
is their verification. Hence we develop easily verifiable and compact spectral conditions to
check for passivity and mixedness of SISO and MIMO descriptor systems in the first part of
the thesis. To obtain our results, we use only elementary concepts from linear algebra and
the existing results for regular systems. This construction results in a test that involves only
the evaluation of the eigenvalues of a matrix which is determined in an elementary manner
from E,A,B,C,D; while avoiding generalized eigenvalue calculation. Apart from developing
tests to check the mixed property of a descriptor system, we also provided a proof based on
classical Nyquist stability techniques for the stability of simple feedback-loops, consisting
of two LTI “mixed” systems. This proof corrects an oversight in [38] and [39], where, the
system output signals were assumed to be bounded a priori. Importantly, these results paved
the way to obtaining new sufficient conditions for the stability of large-scale interconnections
of “mixed” systems.

In the second part we considered the stability analysis of switched descriptor systems. We
begin our analysis by proposing an alternate generalized Lyapunov equation for descriptor
systems based on an equivalent reduced-order (also reduced index) regular system. Corre-
sponding to the new generalized Lyapunov equation, we also propose alternate sufficient
conditions for stability of switched descriptor systems. We also derive a KYP-like Lemma for
a special class of descriptor systems called index one systems. This KYP-like Lemma allows
us to generate necessary and sufficient conditions for the existence of a common quadratic
Lyapunov function for a special class of switched descriptor systems. Here, we show that if
a simple eigenvalue condition holds, then the switched descriptor system is exponentially
stable for arbitrary switching. In this part we also provide a state dependent switching rule
associated with a simple spectral condition under which switching between index zero and
index one or between index one and index two descriptor systems is exponentially stable.

In the final part of the thesis we considered the problem of discretization. Our approach
towards discretization was based on preserving certain stability properties of the continuous-
time system. In the first two parts of the thesis we considered the properties: passivity
and mixedness for linear time invariant systems and Lyapunov stability for linear switched
systems. In the final part we explored the discretization methods that preserve the afore-
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mentioned properties. We show that when discretizing a transfer function, passivity and
mixedness of index-one descriptor systems can be preserved using Tustin’s approximation.
We also showed that when discretizing a state space model, the output averaging method can
be used to preserve passivity of index-one descriptor systems.

Finally, we focused on the Lyapunov function preserving discretization methods. We proved
that diagonal Padé approximations preserve quadratic Lyapunov functions and common
quadratic Lyapunov functions irrespective of their order and sampling size h. We also showed
that the converse is not true. We further explored the conditions under which diagonal Padé
approximations preserve polyhedral Lyapunov functions and showed that there always exists
a polyhedral Lyapunov function that can be preserved using diagonal Padé approximations.
Also, we derived generalized Padé approximations for descriptor systems and showed that
numerical methods with diagonal Padé approximations as their stability functions preserve
generalized quadratic Lyapunov functions.
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In this chapter we discuss some general ideas for possible extensions of the work presented
in this thesis. We present these ideas with respect to the different properties analysed in this
thesis.

Passivity: Mixed property is a generalization of passivity and small gain theorems, however,
another interesting generalization of passivity can be proposed based on the similarity of
conditions between passivity and quadratic stability. A similar idea has been proposed by
[139]. To understand this new generalization we recall that a proper transfer martix H(s) is
passive if

H( jω)∗+H( jω) > 0 ∀ω ∈ [−∞,∞]. (13.1)

Motivated by the similarity of the above equation with the Lyapunov inequality AT P+PA< 0,
we propose a less conservative generalization of passivity by modifying the condition for
passivity, whereby there exists a positive definite matrix P such that

H( jω)∗P+PH( jω) > 0 ∀ω ∈ [−∞,∞]. (13.2)

Condition (13.1) is more conservative because it imposes the restriction that P can only be
an identity matrix. An immediate observation regarding this new generalization of passivity
is that, it does not impose any additional constraints on the interconnection structure while
maintaining stability of the interconnected system. Hence it would be interesting to further
explore the implications of such a generalization on the individual subsystems of an inter-
connection and the interconnection structure itself.

“Mixed” Property: An alternate version of KYP Lemma, shows that passivity of a SISO

transfer function is equivalent to the existence of a common quadratic Lyapunov function for
a pair of LTI systems formed using the matrices from the original system transfer function.
The frequency dependent nature of “mixed” property provides the motivation for a similar
KYP-like Lemma for “mixed” systems. Generalized KYP Lemma proposed by [140] may be
used to obtain similar results for SISO “mixed” systems.

Switched Descriptor Systems: Theorem 44 shows that a special regular switched system
where all the constituent sub-systems share at least n−1 common eigenvectors is globally
attractive. Similar idea may be used to construct a globally attractive switched descriptor
system, where all the constituent sub-systems share certain number of eigenvectors (or gen-
eralized eigenvectors). Another possible extension for descriptor systems is the formulation

173
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of a polyhedral Lyapunov function an index -1 descriptor system using the corresponding
reduced order descriptor system Y T A−1X(Y T ẋ) = Y T x; given by V (x) = ‖WY T x‖∞ and

WY T (Y T A−1X) = QWY T ; µ∞(Q) < 0. (13.3)

The matrix W is full rank matrix and (X ,Y ) is the full rank decomposition of E such that
rank(W ) = rank(X) = rank(Y T ) = rank(E). Further development in this direction may lead
to several new results concerning common polyhedral Lyapunov functions for switched
descriptor systems.

Discretization: We showed that Tustin’s method of discretizing the transfer functions, pre-
serves the mixed property of a regular and index-1 descriptor system. However, the problem
of discretizing the state space model of a mixed system is still an open question and remains
and interesting problem for future research. Also our results on preserving quadratic stability
using diagonal Padé approximations suggest a number of interesting research directions.
An immediate question concerns discretization methods that preserve other types of stabil-
ity. Since general Padé approximations can be interpreted as products of complex bilinear
transforms, an immediate question in this direction concerns the equivalent map for other
types of Lyapunov functions. Namely, given a continuous-time system with some Lyapunov
functions, what are the mappings from continuous-time to discrete-time that preserve the
Lyapunov functions. A natural extension of this question concerns whether discretization
methods can be developed for exponentially stable switched and nonlinear systems but that
do not have a quadratic Lyapunov function.
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