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Abstract 

Lung disease and lung injury are responsible for 20% of deaths of the Irish population 

every year, and the country has the 2
nd

 highest death rate in Europe for respiratory 

diseases. Conditions related to the respiratory system are the second largest long term 

illness by young adults. Lung cancer is the largest cause of cancer related death in 

Europe as a whole.  

New and refined mechanisms of drug delivery for the prevention, cure or delayed 

progression of disease, represents a pathway for the delivery of novel style therapies 

and for the targeted delivery of different of more toxic drugs to the airways in order to 

increase efficiency of both the delivery mechanism and of the drug utilised. Here we 

looked at the use of a number of different mechanisms, which can be used as stand-

alone devices/delivery agents and/or in conjunction with other devices and delivery 

agents to optimise targeted delivery to the lung, and to the specific areas required.  

We examined the use of a direct delivery mechanism, particle bombardment, for the 

delivery of various molecules to human and murine cells lines, and to mouse primary 

cell isolates, MAECs, to examine the potential of the mechanism for adaption to a 

clinical mechanism for delivery. An aerosol delivery system was developed to utilise 

a current aerosol generator for the delivery of aerosol to mice in vivo. This was done 

with the aim of creating a more efficacious and ergonomic mechanism for the 

delivery of aerosols to mice in vivo and also to investigate the effects of 

aerosolistation on various drug compound molecules. 

We also looked for BMP4 disregulation in a number of different animal models to 

help ascertain the role of the pathway in the progression of disease and damage in the 

lung. BMP4 has been shown to have a role in the induction of EMT in MAECS 

(E.Molloy) and to play a role in both lung cancer and allergic Rhinitis. Here we 

looked at its role in a number of different models. It was firstly examined in vitro in 

mouse cell lines and primary cell isolates and the effect of pathway stimulation and 

deregulation examined. The role of the pathway was then examined in both a murine 

Elastase model of emphysema, where it was determined to be inactive, and a murine 

OVA model of asthma where deregulation of the active pathway was evident. The 

pathway was also shown to be activated in a deregulated fashion in an Ozone/HDMA 

model of allergic asthma in Rhesus Macaques.  

In vitro models of mouse, human and primate cells lines were used to examine the 

role of BMP4 in more detail. Mouse cell lines and primary isolates were used both in 

normal culture and in an air liquid interface (ALI), stimulated with BMP4 and 
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examined. An air liquid interface enables the culturing of cells in a system consistent 

with that of the in vivo environment, where the nutrition is provided through the basal 

surface of the cells and the dorsal surfaces of the cells are exposed to air. Murine 

model of OVA induced asthma in vivo was also stimulated with exogenous BMP4 

and the effects monitored. Human primary cells and primate primary cell isolates 

were also grown in ALI and were treated with either BMP4 or EGTA and BMP4 in 

order to help determine more information about the cells involved in the pathway and 

the other pathways that are recruited by BMP activation. 
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1.1 The Lungs 

The human lungs are responsible for the gaseous exchange of O2 into the vascular 

system, and the removal of CO2 from it. They do this through a network of capillary 

lined epithelial cells responsible for respiration, which in the average adult human, 

covers some 70m
2
, and at an average overall thickness of just 1µm. In order to fit this 

much functional respiratory surface area into a space the size of a human chest cavity, 

with expansion limited by a ribcage in an area shared with the central cardiac system, 

the human lung has evolved a complex entwined vascular and respiratory system, 

divided into 5 lobes, 3 on the right and 2 on the left.  The inhalation of air into the 

human respiratory system typically starts in the nasal cavity, especially in infants, 

though inhalation through the buccal cavity becomes more common (Shannon and 

Hyatt, 2004; Warburton and Bellusci, 2004) The nasal cavity however leads to 

optimal deep lung inhalation, and conditions the air before encountering the 

respiratory bronchioles. It serves to humidify, warm and filter particulate matter from 

the inhaled air which inhalation through the buccal cavity does not offer (Harkema et 

al., 2006). The buccal and nasal cavity join at the top of the trachea which in turns 

brings inhaled oxygen through to the bronchus, bronchioli and into the alveolar region 

where the majority of gas exchange occurs. There is a series of 23 generations of 

dichotomous branching in the human lung, the first 16 of which are stereotypically 

reproducible and the remaining 7 are random, and in total there is estimated to be 

more than 40 different cell types in this system. Of the in excess of 40 types present, 

to date 8 have been identified in the epithelium of the tracheobronchial airways, 

though the location, type and number of cells can differ between species (Crapo et al., 

1982; Pinkerton and Joad, 2000). 

Although the human lung has many similarities with other mammalian lungs, with the 

use of animal models it is vital to understand various discrete differences. In common 

with primates, humans have a relatively simple nasal passageway, but many 

commonly used animal models such as mice are obligate nasal breathers with more 

complex nasal structures, especially important with regard to the delivery of inhaled 

particulates. Humans have near dichotomous branching of the tracheobronchial tree, 

in common with primates, but this is much more branched than evidenced in common 

rodent models such as mice. Human and primates also have a gradual transition from 

ciliated only to alveolar only lined ducts with a number of generations of combined 

bronchiolar epithelium and alveolar gaseous exchange that form respiratory 

bronchioles making up this transitional area. Mice however lack in entirety the 
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respiratory bronchiole system present in humans. In terms of delivery this results in 

much faster alveolar clearance of inhaled particles than seen in humans and primates. 

The changes in structure come from underlying differences in developmental 

regulation of the respiratory system (Plopper et al., 1992; Phalen et al., 2008). 

1.1.1    Development 

Development of the respiratory system begins during gestation, and although it is 

capable of functional gaseous exchange by week 40, it is by no means fully 

developed. An understanding of the development of the lung system, and how its 

development is regulated, helps further the understanding of how disease and damage 

can induce long term damage to the system, and help us discover means to help 

control the system, either by subjectively switching it off where deregulated, or trying 

to turn it back on where tissue or cell regeneration may be beneficial.  

 Development of the lung begins with evagination of an avascularised epithelial cell 

into the mesenchyma finishes with a multicellular, vascularised, innervated and 

ventilated region comprising of over 25000 distinct terminations and 300million 

alveoli. The bronchiolar region undergoes completion between weeks 5 and 25  

gestation, whit the development of the alveolar units beginning at week 20, with 

development continuing on for many years afterwards, as far as year 7, allowing for 

the fact that as the mass of the body increases, its demand for greater oxygen 

exchange capacity  also increases. Over 80% of the alveoli mass in the adult human is 

formed postnatally. This process of development is a carefully regulated by a highly 

conserved set of developmental genes whose function in the generation of airways 

and modelling of the respiratory and entwined vasculature system, also play a role in 

the repairing of the lung after insult or injury in order to maintain optimal function in 

the lung. As will be seen however, deregulated or inappropriate activation of the 

genes during repair can lead to further complications and disease within the lung. 

 

Post embryogenesis, and common to all mammalian lung systems, there are 5 stages 

of lung development. The main central stages of development on average last 10 to 12 

weeks each and can slightly overlap. They can be divided as follows: 

a) Embryonic- Humans weeks 0-7, mice embryonic (E) 0-9.5 

b) Pseudo-glandular - Humans weeks 7-17, mice E9.5-16.6. This is the beginning of 

development of the lung structure and is the duration during which branching of the 

airways develops. During this stage both the tubular epithelium, lined internally with 

as yet underdeveloped respiratory cells not capable of gaseous exchange, and 
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externally with arterial blood vessels, as well as the development of the vein system 

through the mesenchyme, occurs. This process helps to assign borders for later lung 

segmentation. The branching epithelial tubules are heavily interwoven with the 

mesenchyme and the interaction between these two regions is vital in the guidance of 

further development of the lungs 

c) Canicular- Humans weeks 17-27, mice E16.6-17.4. This period sees enlargement of 

the tracheobronchial tree, with epithelial tubules growing wider in diameter and 

longer, and accompanied by capillarisation of the respiratory units. It also marks the 

period during which respiratory bronchioles and alveolar airways undergo 

development, and the synthesis of lung surfactants begins. During this stage of 

development the type I and type II pneumocytes start to differentiate and lamellar 

bodies such as start to appear in the type II pneumocytes. This occurs before the 

production of surfactant can begin. It is also the period of development that sees the 

creation of the blood-gas or alveolar-capillary barrier. 

d) Sacular- Humans weeks 28-36, mice E17 post natal day 5 (P5). This stage marks 

the further development of the peripheral regions. Peripheral airways from terminal 

saccules which further enlarge the respiratory surface through an increase in 

generations. This process is especially influenced by regulating factors from the 

mesenchyme. Vascular growth is ongoing also throughout this stage, and capillary 

influx throughout the alveolar mesenchyme is greatly increased in order to be capable 

of sufficient diffusion of gas. In combination with this the cells of the respiratory 

system start to differentiate. Fibroblasts differentiate cells producing extracellular 

matrix, elastin and collagen; while alveolar epithelial cells fully differentiate into type 

I mature squamous cells and type II secretory cells. Type I cells surfactant levels 

increase, vital to the capability of the lung to sustain gas exchange without collapsing. 

A final and key factor to this stage is the switching of the system from a chloride ion 

driven fluid secretion into the airway with a sodium ion uptake into the airway 

induced by the cutting of the umbilical cord upon delivery. 

e) Alveolar/postnatal- Humans week 36 prenatal to postnatal year 7/8, mice P5-P30. 

The development of the alveoli regions of the lungs continue. This period of growth is 

fastest in the first 1.5-2 years post natal and sees the number of alveoli in the lungs 

increase from approximately 50 million to approximately 300million plus, the exact 

number varies between an estimated 300 and 800 million, matching the increase in 

demand from a still growing body. It also sees an increase in capillarisation again, 

“shortly after birth the secondary septation begins in the terminal saccules”, 

increasing the capacity of the lungs for gaseous exchange. Males will also have larger 
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lungs than females at any given age or body length, a possible factor for consideration 

where therapeutic delivery is concerned, as males will have a larger alveolar surface 

and a higher number of alveoli than females. Also it has been reported that the 

deposition of particles inhaled could be 6 times greater in resting infants than seen in 

resting adults, a concern for both potential inhaled therapeutics and also for exposure 

to inhaled toxins in the developing lung (Pinkerton and Joad, 2000; Shi et al., 2009).  

The majority of the gaseous exchange sites therefore are undergoing development 

during this final postnatal stage, during which time the lungs will be exposed to 

external factors that will influence and possibly impede or deregulate development, 

such as exposure to stand alone toxins or exposure to toxins in combination with 

underlying genetic predisposition factors as can be seen in childhood asthma. The 

human airways actively inhale to complete gaseous exchange, and as they do they are 

responsible for ensuring that the sterility of the body is maintained. The lungs are a 

primary route of infection for numerous viruses and micro-organisms, and are also 

exposed to particulate matter and toxins. In order to deal with this the lungs have 

developed a highly efficient set of systems to maintain sterility and rid the lungs of 

pathogens, toxins and inhaled particulates. At birth, the immune system is active but 

underdeveloped and exposures to challenges are an essential part of its development 

into a fully functioning system capable of helping protect the body. The immune 

defences of the lung comprise of both innate and adaptive mechanisms 

1.1.2 Lung defence and immunity 

The cells lining the airways contribute to the lung defences. The goblet and Clara 

cells, discussed later, of the conducting airways as well as the submucosal glands and 

the type II alveolar cells, form the mucous secretory apparatus of the lungs and are as 

a result vital parts of the lung defence mechanism, coating the airways in a thin layer 

of mucous or airway surface liquid. In combination with ciliated cells, the secreted 

mucus and cilia form a muco-cilliary ladder which propels the mucus and any trapped 

particle to the top of the trachea for expulsion. 

 

Due to the nature of operation of the lung, it is exposed to a large number of inhaled 

micro-organism, pathogens and toxins. In order to protect against damage resulting 

from this a number of innate and adaptive immune responses are in place. 

With regards to the innate immunity, there are a number of defence mechanisms in 

place. They include the physical barrier provided by the epithelial cells, the muco-

cilliary clearance mechanism, antimicrobial production by way of active and 
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inducible chemical production, chemotactic signalling for the induction of immune 

cells response such as  macrophages and dendritic cells, as well as protease activity 

(Bivas-Benita et al., 2005). The muco-cilliary clearance ladder is perhaps one of the 

main lines of defence and recruits cells from throughout the airways in its operation. 

The function of the muco-cilliary ladder is to trap inhaled particles and by ciliary 

action propel the particles up out of the airways to be cleared. The mucous is secreted 

by secretory cells such as type-II alveolar cells, Clara cells, goblet cells and ciliated 

cells line the airways. This pseudo-stratified airway is a mainstay in the protective 

function of the lung. The secretory cells are also responsible for the secreting anti-

microbials into the Airway Surface Liquid (ASL), also known as the perciliary or sol 

layer. This lines the respiratory airways and its height affects the muco-cilliary 

clearance capabilities as differences in height can affect the ability of the cilia and the 

overlying mucus to effectively work in tandem. This periciliary layer also contains 

defensins, lactoferrin and lysosyme that have potent anti microbial properties that help 

prevent damage or insult to the underlying epithelium (Cowley et al., 2000). The 

attraction of immune cells by the release of cytokines can induce a localised 

inflammatory response, which if properly regulated and occurs in tissue that has not 

been badly injured, can stay contained. However deregulation of this inflammatory 

process or its occurrence in pathologically damaged tissues can see the cytokine 

release spread to undamaged tissue and exacerbate any local problems, causing either 

potentially damaging inflammation occurring throughout the organ or even 

systemically. However this process is tightly regulated and usually is well managed 

with the exception of major insult of underlying pathological or genetic problems. 

Chemotactic cytokines recruited during this inflammatory process include granulocyte 

macrophage–colony stimulating factor (GM-CSF) and lymphocyte chemo attractant 

factor which attract inflammatory cells to the sites required, as well as pluriepotent 

chemokines such as IL-1, IL-5, IL-6, IL-8 and tumour necrosis factor-α (TNF-α) 

which have effects on numerous different cell types and are responsible for the 

activation of B lymphocytes and monocytes (Mills et al., 1999). Pulmonary 

macrophages work by phagocytosis of any potential pathogen followed by the release 

of anti microbial enzymes as well as T-cell stimulatory and pro inflammatory 

cytokines. Regulation of macrophage activity prevents a constant state of 

inflammation, and resultant organ damage, from occurring. Dendritic cells are also 

part of the innate immune system, but are a vital link to the adaptive immune response 

of the lung. They are key antigen presenting cells, with the greatest populations 

located in the conducting airways of the lungs. During inflammation the concentration 
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of dendritic cells in greatly increased. Transforming growth factors such as TGF-β, 

secreted by bronchial epithelial cells help play a role in the suppression of the 

inflammatory response. 

1.1.3 Clara cells 

Clara cells are non ciliated type II undifferentiated lung epithelial cells. They are 

progenitor cells for type I ciliated cells and are regarded as the lung stem cell. They 

are heavily involved in injury repair in the lung. In both human and primates Clara 

cells undergo cytodifferentiation both pre and post natally and this changes see a 

move from glycogen filled non ciliated cell to a ciliated, low glycogen containing 

multi organelle cell (Plopper et al., 1992). Experimentally in rodents Clara cells have 

been shown to play a vital role in the repair and regeneration of epithelium after 

injury or disease. In hamsters exposed to inhaled NO2and O3 which negatively 

affects the epithelium, the proliferative response that follows on from exposure has 

been shown to be primarily a result of Clara cell division. In rabbits heavily enriched 

Clara cell populations grafted onto a denuded trachea have been shown to resolve the 

lack of epithelium, with the Clara cells differentiating to leave both non ciliated Clara 

cells and ciliated type I cells forming an epithelial layer. 

The importance of Clara cells to the process of development regeneration and 

resolution of injury can be seen in their locations throughout the lungs, as determined 

by the analysis of 7 histologically normal lungs in autopsy. The lungs showed Clara 

cells to be almost absent from the proximal airways, but in the terminal bronchioles 

they formed 11±3% of the cell population and 22±5% of the total cell population of 

the respiratory bronchioles. In the regions of proliferation of the airways, determined 

to be on average 0.83±47% of the total airways, Clara cell population was 9%, with 

15% showing in the terminal bronchioles and a 44% share of total cell population in 

the more proliferative regions of the respiratory bronchioles. This high percentage of 

Clara cell location in the proliferative regions of the lungs shows the vital role they 

play in the maintenance of healthy epithelial organisation in the lung (Boers et al., 

1999).  

 

1.1.4 Repair responses of the lungs 

Where damage and insult has occurred to the lungs a wide number of pathways linked 

to repair are activated. However this can in certain cases lead to chronic inflammatory 

responses or pathological changes in the structure of the lung. Growth factors 
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involved in the process of development outlined above, play a vital role in the 

direction of repair in the lungs and can guide in undifferentiated or partially 

differentiated lung cells to a damaged area in order to regenerate the denuded or 

damaged epithelium. One of the major pathways involved in guiding the repair of 

lung surface epithelium is part of the TGF-β super pathway, the BMP pathway. The 

BMP pathway is a pleiotropic signalling pathway heavily involved in both lung 

development and lung repair, and its deregulation linked to various lung diseases and 

cancer. 

1.2 Diseases Of the lungs  

The lungs are susceptible to many different types of infection and disease, as a result 

of genetic defects, protein abnormalities, environmental stimuli or various 

combinations thereof. The initial aim of this project was to assess the role of the BMP 

pathway, cell cycle and differentiation markers as well as markers of EMT in the 

progression and development of some of these diseases. Following on from this the 

aim was to then identify and target for potential aerosol delivery of therapeutics, some 

of the underlying causes of these problems. Some of the main diseases examined 

included genetic diseases such as cystic fibrosis (CF), pulmonary hypertension 

(PAH), chronic inflammatory diseases linked to both genetic and environmental 

causes such as asthma, and diseases of the lung resulting from prolonged 

environmental insult, such as emphysema.  

1.2.1 Cystic Fibrosis 

Cystic Fibrosis (CF) gene therapy has been long held as a major milestone on the road 

to the development of successful gene therapy. The reason for this is that the cause of 

the disease lies in the mutation of a single gene, CFTR, first identified in 1989. It is 

thought that correction of this mutation by the expression of a non mutated gene and 

its subsequent protein in just 5% of the airways would be sufficient to result in a 

healthy airway epithelium. CF is a particularly pertinent problem in Ireland, with over 

1100 CF patients in the population, significantly the highest concentration of CF 

patients per head of population in the world. The occurrence in Ireland is 2.98 patients 

per 10,000 head of population, vs. 0.737/10,000 in the rest of Europe and 0.797 in the 

United States. CF is also the most common lethal autosomal recessive disease in 

European and US populations (Farrell, 2008). The disease is caused by a mutation of 

the ΔF508 gene in 60-70% of cases, where a deletion of 3 nucleotides results in the 

loss of the amino acid phenylalanine. This results in erroneous synthesis of the protein 
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and incorrect folding and structure and prevents the protein from embedding and 

functioning in the cell membrane. All told however there are an estimated 1400 

mutations in the gene in total that can result in CF pathogenesis. The CFTR gene 

functions as a cyclin-AMP-dependent low conductance chloride channel (Legssyer et 

al., 2006). When this is defective in the epithelium, it is most commonly a result of 

incorrect quaternary structure due deletion of three nucleotides at the 508 position on 

the protein, leading to the incorrect formation of the amino acid phenylalanine. This 

leads to incorrect processing of the chloride channels and results in a thickening of 

mucus and the formation of mucus plugs. This thickened mucus is too viscous for 

clearance by the muco-cilliary ladder, leading to a build-up of mucus in the airways. 

This leads not only to restrictive breathing, but to reduced surface area and most 

importantly, to increased residency times for infectious microbes leading to infection, 

inflammation and airway obstruction. Cystic Fibrosis is not just a disease of the lungs, 

affecting all the mucous membranes of the body, however it is the manifestation of 

disease in the lungs that is the most life threatening. This particular disease is a strong 

target for gene therapy advocates as only one gene needs to be corrected for and a 

relatively low level of correction will have a high benefit. It will then pave the way 

for the development and delivery of other gene therapies for different more complex 

genetic diseases. The mode of delivery of gene therapies to the lungs is covered later. 

Mice, though commonly used for CF studies, are not necessarily the most ideal model 

for the study of CF treatments. ΔF508 mice show little CF pathogenesis without 

repeated exposure to bacterial infection. This is in part due to the low salt 

environment of their ASL, allowing the salt sensitive lung defences to function 

normally and clear low levels of infection (McCray et al., 1999). In humans the 

alteration of the Chloride transport channels is purported to affect the ionic 

concentration of the ASL, increasing it sufficiently to impair the ability of epithelial 

cells to stave off excessive bacterial infections and colonisation of the lungs (Cowley 

et al., 2000). Porcine models of CF provide a better mechanism for the study of CF, 

due to the similarities of anatomy, biochemistry, physiology size and genetics (Rogers 

et al., 2008). All told there a number of different large mammal models of CF 

including sheep, ferrets and monkeys which all have unique advantages as a model of 

the disease (Rogers et al., 2008). 

Aside from being a model for gene therapy, CF is also a major target for inhaled 

therapeutics such as anti-inflammatories and anti-bacterials. Inhaled delivery of 

therapeutics to the CF lung has numerous advantages including the direct targeting of 

active compounds on the infected site, limited systemic activity, fast onset of action, 
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and no first pass metabolism to bypass. Also due to the fact that CF morbidity 

ultimately results from the inflammation and resulting destruction of the lung 

parenchyma, it is possible that combined delivery of both therapeutics such as anti 

bacterials in combination with drugs that have the ability to modulate the response of 

pathways such as the BMP pathway, EMT and cell cycle could have a positive effect 

in limiting the destructive inflammatory response and help ensure epithelial survival. 

Currently being heavily investigated are anti-bacterials delivered via inhalation 

targeting pseudomonas aeruginosa, which is found in approximately 80% of all CF 

patients between the ages of 25 and 34 years of age (Heijerman et al., 2009) 

 It has been shown that aerosol delivery of tobramyin, the only aerosol therapeutic 

currently licensed for treatment of P.aeruginosa in CF patients, is more effective than 

systemic dosing as a treatment regime (Sabet et al., 2009). 

1.2.2  Asthma 

Asthma is a disease resulting from a combination of genetic and environmental 

factors. Allergic asthma is a major health and social burden. According to the Irish 

thoracic society report, as of 2006 approximately €92.56 million was the cost to the 

Irish state as a result of the state covered prescriptions, of which there were 

approximately 3.083 million. The total number of items prescribed for asthma in the 

state (Public and Private) was put at approx. 806.3 million. Epidemiological studies 

show Ireland with a population of approximately 470,000 asthmatics, the 4
th

 largest in 

the world (O'Connor, 2008). Asthma is also a concern globally, in the US 9% of all 

children, or approximately 6.7million children, are diagnosed as having asthma 

(Bloom et al., 2009). As a result asthmatic patients form a huge percentage of the 

market in relation to inhaled therapies where direct delivery of steroids is regularly 

use to control or alleviate asthmatic response. This means that the patients are largely 

educated as to the correct use of inhaler and/or nebuliser type devices and so novel 

therapeutics dependent upon inhalation delivery are likely to be more readily accepted 

will not require a steep learning curve from a patient standpoint. 

Asthma is a chronic inflammatory disease that is characterised by intermittent onset of 

symptoms and variable airflow obstruction that can occur spontaneously or as a result 

of environmental or non specific stimuli that results in eosinophil influx and 

inflammation, mucus hyper secretion, bronchial hyper reactivity, alterations to the 

smooth muscle lining the airways and extensive remodelling of the airways 

themselves. These are all components of the pathophysiology in adult humans. 

Remodelling of the airways results in thickening of both sides of the airway wall, 
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making the bore of the airways smaller and affecting mechanical properties of the 

lung and has been directly associated to hyper responsiveness. The remodelling 

aspects of the disease in the airway wall include increase in smooth muscle, increased 

capillarisation, goblet cell hyperplasia, epithelial cell disruption and an increase in the 

amount of collagen deposition on the basement membrane (McKay and Hogg, 2002; 

Lambrecht and Hammad, 2003). 

Dendritic cells play a major role in the onset of asthma as they are an essential 

component in the recruitment of eosinophils to the lung and the resultant 

inflammation. It has been consistently shown that asthmatic patients have a high 

amount of eosinophilic infiltrate as well as increased lymphocytes and neutrophil 

populations. This inflammatory milieu adds to the mucus on the surface of the 

epithelial cells and accumulation of the inflammatory exudate in mucus can lead to 

characteristic mucus plugging of the asthmatic airways. 

1.2.2.1 Animal Models of Asthma 

Mice are the most commonly utilised animal model in the study of asthma with the 

methods of bringing around asthma like disease varying greatly between labs. One of 

the most common means of inducing chronic inflammation of the lung in mice that 

closely resembles the pathology of asthma is by using OVA as an antigen. Delivery of 

the antigen via subcutaneous injection in the presence of the Th2 inducing adjuvant 

Alum over the period of 10-14 days followed by inhalation exposure to the OVA 

antigen induces increased levels of OVA specific IgE. There is much inter lab and 

experimental variation between timing of dosages and the routes of administration. 

However there are problems associated with this model of disease in mice. Primarily 

short term exposure to OVA as described inhibits the examinations of the effects of 

long-term damage from asthma. Attempts to extend the sensitisation period have 

resulted in either widespread inflammation of lung parenchyma or a down regulation 

of airway inflammation and hyper reactivity responses (Kumar and Foster, 2002). The 

manifestations of the disease do not directly correlate with asthma seen in humans 

however such as 1) mice display less eosinophilic granulation than observed in 

humans 2) mice develop transient airway hyper reactivity as opposed to persistent 

hyperactivity 3) no defined role for IgE and Mast cells, differences in anatomy and 

eosinophil function between the two species (Epstein, 2006). In spite of these 

differences however and the lack of a long term chronic inflammatory model in mice, 

mice provide a valuable model in the initial testing of therapeutics targeting asthma 

and chronic inflammation of the lung. 
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One of the best models available for the studying asthma is the primate model. In 

2001 Schelegle et al. reported that they had created a model of allergic asthma in 

Rhesus macaques using a protocol of repeated exposure to a known human allergen, 

house dust mite (HDMA). The rhesus model provides a better model for human 

asthma for a number of reasons: 1) rhesus monkeys share a common ancestor with 

humans from 25 million years ago (versus 70million years for rodents) and show 

greater similarity to human genetics, physiology, neurobiology and susceptibility to 

human infectious diseases (Gibbs et al., 2007), 2) the immune systems are very 

similar, 3) all the components of the lung that are altered in human asthma are present 

in the rhesus monkeys and 4) the rhesus monkey undergoes similar levels of extensive 

postnatal lung development as the human lung (Schelegle et al., 2001). The HDMA 

model of asthma in rhesus monkeys that was established met the criteria for asthma as 

defined by the 1997 national heart, lung and blood institutes’ national education and 

prevention program clinical guidelines. In common with humans the majority of the 

cells in the asthmatic primates BAL after aerosol challenge were found to be ciliated 

cells. They also demonstrated a similar immediate bronchorestrictive response to 

inhaled allergen as seen in humans. An important feature of the bronchorestrictive 

response is that it is triggered by histamine and histamine was seen to be produced as 

an early response to type I hypersensitivity in both the human patient and the HDMA 

primate model. Rhesus primates also share the distribution profile of inflammatory 

cells with humans as well as the same type of allergen mediated response. 

Pathologically the HDMA model of asthma in primates underwent the same extensive 

remodelling of the airway walls as well as mucus hypersecretion seen in the human 

disease. Extensive hyperplasia and thickening of the basement membrane was also 

shared between the primate model and the human occurrence of the disease. 

(Schelegle et al., 2001). This model of HDMA induced asthma was then improved 

upon to help more closely mimic the onset of the disease in humans.  

Ozone is a known environmental toxin and acute inhalation of it damages the entire 

lung parenchyma, and initiates an inflammatory response that subsides as repair is 

carried out on the damaged cells (Schelegle et al., 2003). Cyclic exposure to Ozone 

occurs in humans as the levels in the atmosphere can be seasonally dependent. It has 

been shown in primates that cyclic exposure to Ozone resulted in repetitive cycles of 

injury and repair that lead to altered development of the lung in the primate as well as 

decreased lung function and increased chronic airway diseases ((Fanucchi et al., 

2006). It was shown that by combining the HDMA model of allergen exposure to a 

common human allergen with a cyclic dose of a common environmental toxin such as 
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Ozone led to a stronger model of naturally occurring human allergic asthma. It 

resulted in a marked increase in serum IgE and histamine levels as well as airway 

eosinophilia. It led to more extensive remodelling of the airways and lung resistance 

as well as increased reactivity (Schelegle et al., 2003). 

These models of asthma in both mice and primates as well as what is seen in human 

pathology, shows the process of remodelling and inflammation to be strong 

contributory factors in the prevalence of the disease in the human body. Targeting the 

pathways that control remodelling by means of BMP antagonism therefore provides a 

potential means of alleviating not only the symptoms of asthma as achieved with 

steroidal drugs, but in the blocking of the cycle of injury and repair that leads to 

progressive inflammation, constriction and damage to the lung tissue. Targeting 

delivery to the lungs directly via inhalation reduces the systemic impact of the drugs 

and increases the bioavailability for the targeted region than could other wise be 

achieved. 

1.2.3 Emphysema 

Emphysema is a major disease of the lung. It is closely associated with COPD and it 

generally results from exposure of the lungs to tobacco smoke. Emphysema results in 

enlargement of the alveolar spaces through destruction of the lung parenchyma and it 

is clinically diagnosed through a loss of elastic recoil in the lung and an increase in 

lung volume. It has also been shown that emphysema, independent of cigarette 

smoking predisposes the individual to lung cancer (Houghton et al., 2008). There are 

a number of different types of emphysema with different pathogenesis, believed to 

result from different genetic markers in the individuals but the root of these 

differences are not fully understood. The different types of pathogenesis include 

centriacinar, which includes centrilobur as seen in tobacco smokers which begins in 

the respiratory bronchioles and primarily affects the upper half of the lungs, panacinar 

which is the most commonly seen in patients suffering from α1-protease inhibitor 

deficiency that begins with the alveolar ducts in a secondary lobe of the lung and 

primarily affects the base of the lung, paraseptal which initiates in alveoli adjacent to 

the fibrous planes and is mostly located in the peripheral regions of the lung and 

adjacent to the septa, and airspace enlargement with fibrosis which is associated with 

scarring in the lungs(Snider et al., 1991; Lucey et al., 2002). It is possible that 

underlying genetic differences are also the reason that smoking cessation does not 

slow the progression of emphysema in some patients as much as it does in others. As 
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with COPD there is no current cure for emphysema with smoking cessation being the 

biggest contributory fact to the prolonging of disease advancement in patients. 

Numerous mice models have been established to examine emphysema and are 

generally of the genetic variety using over expression or knockout to induce damage 

or the exposure variety based on the delivery of damage inducing agents such as 

elastase or tobacco smoke to the lung to bring about the onset of the disease 

(Taraseviciene-Stewart and Voelkel, 2008). The most common model is based on the 

delivery of elastase to the mouse lung. It is the direct action of elastolytic enzymes 

such as elastase that brings about the emphysema phenotype, delivery of other 

proteases do not bring about the same pathology (Snider et al., 1991). As it stands 

there is no clinically relevant method for promoting recovery of the lung from 

emphysema. Data in rats had appeared to indicate that treatment of the lungs with all-

trans-retinoic acid aided recovery however it has not proven effective in other models 

of the disease such as mouse and guinea pig and is possibly a species specific result 

(Fujita et al., 2004). Elastase induced emphysema has also been shown to be 

decreased in severity in TNF-α and Il-1β receptor deficient mice indicating a role for 

the pro-inflammatory cytokines in the onset of the disease (Lucey et al., 2002). 

Another characteristic of elastase induced damage in mice is the loss of body weight 

in exposed animals where the control animals gain or maintain weight and also show 

decreased ability to exercise as is the pattern in the human disease (Luthje et al., 

2009).  

1.2.4 Pulmonary Arterial Hypertension (PAH) 

PAH occurs in approximately 2-3 cases per million and atypically affects young 

females. It is a severe and fatal disease with an average survival period of 2.5yrs from 

the time of diagnosis. Death begins with obstruction of the small pulmonary blood 

vessels that leads to a continuous increase in pulmonary vascular resistance. This 

gives rise to an increase in pulmonary arterial pressure that eventually brings on the 

failure of the right heart wall (Davies and Morrell, 2008). Current therapies include 

the use of anticoagulants which can double the average survival length and calcium 

channel blockers which in patients in which they are effective sees a 95% survival 

rate at the 5year mark after diagnosis (Rubin, 1997). The disease is a result of 

extensive remodelling of the small blood vessels found surrounding the lung. 

Specifically what defines this disease is the fact that it is limited to the pulmonary bed 

with no pathology occurring in the vasculature of any other area of the body (Stewart, 
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2005). The pathology encompasses thrombus formation, vascular remodelling due to 

unregulated proliferation and inflammation.  

There is a strong link between the onset of PAH and a defective BMPR-II gene. 

Mutated BMPR-II gene expression leads to the deregulation of responses to BMP and 

TGF-β signalling in the vasculature (Stewart, 2005; Morrell, 2006; Teichert-

Kuliszewska et al., 2006). In animal model studies it has been shown that if the ratio 

of expression of normal gene to mutated gene is as low as 1:9 the mice will survive, 

though vasculature deformities will arise. Beppu et al. reported that in BMPR-II
+/-

 

heterozygous mice there was an increased pulmonary arterial pressure and pulmonary 

vasculature remodelling compared to wild type BMPR-II
+/+

 mice, though the 

following year Song et al. reported that BMPR-II
+/-

 mice enjoyed the same lifespan 

and right ventricular systolic pressure and histology as the wildtypes in the absence of 

any stressing conditions. However under inflammatory stress the BMPR-II
+/- 

increased right ventricular systolic pressure and an increased level of vascular 

remodelling then the wildtype animals subjected to the same stresses (Beppu et al., 

2004; Song et al., 2005b). When dominant negative BMPR-II
-/- 

expression located 

specifically in the smooth muscle however was switched on after birth utilising a 

tetracycline gene switch, mice developed pulmonary specific arterial hypertension, an 

increase in right ventricular systolic pressure and muscularisation of the arteries in the 

absence of an inflammatory stimuli (West et al., 2004). These experiments seem to 

suggest that total loss of BMPR-II can induce PAH, and where an individual is 

heterozygous for the gene inflammatory stimuli leads to disease progression. 

Due to the major involvement of BMPR-II in the onset and prognosis of disease 

numerous means of trying to improve function have been postulated. Of particular 

relevance is the fact that in cell culture experiments, the use of a recombinant BMP 

ligand to increase the available concentration of the ligand to the cells has been shown 

to overcome the defects in BMP signalling (Davies and Morrell, 2008). As such it is 

foreseeable that direct delivery of BMPs to the targeted vasculature by using the lung 

surface as an entry point for the protein could potentially provide a means for 

alleviating the issues associated with PAH remodelling by, for example, supplying a 

constant low dose of protein to the system and increasing amounts over periods of 

inflammation, or by targeting plasmid induced over expression of BMP4 to the 

vasculature of the lungs.  
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1.3 BMPs 

Bone Morphogenetic Proteins (BMPs) are so named as they were first discovered for 

the ability to induce the formation of bone and cartilage (Urist, 1965). They are now 

known to be part of the much larger family of TGF-Beta superfamily of signalling 

molecules. Erroneous triggering or inhibition of members of this superfamily of 

cytokines is responsible for giving rise to the majority of human diseases including 

various forms of cancer, developmental disorders and vascular diseases (Gordon and 

Blobe, 2008). They are found at different stages and to different extents in nearly 

every organ and tissue throughout the body. The extent of their importance can not 

only be seen in the number of roles they play in critical stages of development and 

repair, with TGF beta family signalling being one of the most ubiquitously expressed 

regulators of prenatal development, but also in how evolutionarily conserved they 

remain.  (Massague, 1998). 

Embryogenesis and prenatal development sees the involvement of the BMP pathway 

in left-right asymmetry, mesodermal patterning, bone and cartilage formation and 

repair, organogenesis as observed in the lung, amnion, gut, teeth, kidneys and testis, 

neurogenesis, and epithelial mesenchymal interactions in the developing organs such 

as lungs (Wozney et al., 1988; Massague, 1998; Balemans and Van Hul, 2002; Herpin 

and Cunningham, 2007; Zhu et al., 2007). In the post natal period and all through 

adult hood BMPs continue to play a role in  growth, proliferation, differentiation 

apoptosis as well as chemotaxis in cells throughout the body (Massague, 1998). It is 

this continued role throughout adulthood that has linked BMPs to inflammatory 

responses in fibroblasts, myocytes and other cells linked with or undergoing an 

inflammatory response. For example, Rosendahl et al  reported phosphorylation of the 

downstream effectors of BMP signalling, the Smads, particularly Smads 1 and 5, in 

response to OVA induced inflammation of the bronchi in mice, confirming BMP 

pathway activation involvement in the inflammatory response (Rosendahl et al., 

2002). 

The pathway itself can be activated in one of two main ways; the canonical, or Smad 

dependent pathway, or alternatively if the pathway activation is not Smad dependent, 

the MAP Kinase pathway. The predominant interest in the role of the effect of the 

BMP pathway in inflammation and disease in the human lung has focused on the 

canonical Smad dependent pathway (Figure 1.1). The Smad molecules are the 

signalling effector molecules of the BMP pathway.  
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1.3.1 The BMP pathway 

The canonical Smad dependent pathway operates as follows. Secreted BMP ligand 

binds to a type I or type II ser/thr kinase receptor, also known as a BMP receptor 

(BMPR-I or BMPR-II). BMP ligands typically bind to BMPR-II when both receptors 

are expressed together before recruiting a type I receptor. The binding affinity of the 

receptors for BMP is greatly increased when both are present. However BMP ligands 

will also bind weakly to type II receptors expressed alone on the cell surface and to 

type I receptors expressed either alone or in solution. In the typical scenario, once the 

type II BMPR has bound the BMP ligand it recruits a type I receptor and then goes on 

to form a hetero-tetra BMPR complex by recruiting another type I and type II receptor 

to the complex. When the complex is formed the type II receptors phosphorylate the 

glycine-serine (GS) activation domain of the type I receptors, activating the complex. 

The now active complex can phosphorylate the effectors modules, the Smads. The 

group of Smads activated in this fashion are known as the regulatory Smads. Once 

they are phosphorylated they are capable of binding to Co-Smad, Smad4, which is 

responsible for trafficking of Smad complex into the nucleus. Once in the nucleus, the 

Smad complex links with a DNA binding protein such as FAST-1, before binding to 

the target gene and regulating its transcription (Heldin et al., 1997; Massague, 1998; 

Yu et al., 2005). 

 

In the lung the Smad dependent BMP pathway is linked to ongoing repair and 

development of the lung tissue. In our lab it has already been established that the 

canonical BMP pathway is involved in the process of EMT in mouse airway epithelial 

cells (Molloy et al., 2008). The pathway has been shown to be involved in processes 

linked to certain types of lung cancer (Gilbert, J., unpublished data) and to Allergic 

Rhinitis (Molloy, E., unpublished data). A link has also been established  between 

BMP signalling and airway regeneration (Masterson et al., 2010). This data, in 

conjunction with work such as from Rosendahl et al., suggest that the BMP pathway 

is a potential target in order to interfere with the onset of damage in certain disease 

models, particularly those linked to inflammatory responses and remodelling. As such 

it is important to have a good understanding of the make-up and functions of the 

different components of the pathway. 
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Figure 1.1 The BMP Pathway 

The BMP pathway is activated by the binding of a BMP ligand to a BMP specific 

receptor (1). This receptor (Can be a type I but BMP preferentially binds type II) then 

recruits a type I receptor and this in turn leads to the formation of a hetero-tetra 

complex consisting of a total of four receptors (2) This leads to the activation of the 

type I receptors by phosphorylation of the GS domain (3). This activated receptor 

complex can now in turn phosphorylate a regulatory Smad (Smad 1/5/8) (4). 

Phosphorylated Smads are the intracellular mediators of BMP signalling. This 

phosphorylated Smad complex is now capable of binding the nuclear trafficking 

Smad, a.k.a. Co-Smad or Smad4 (5). Co-Smad then escorts the Smad complex into 

the cell nucleus where the activated Smads, in conjunction with a DNA binding 

protein (6) can now actively regulate the transcription of the target gene (7). 
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1.3.1.1 BMPs and Asthma 

There is an established link between airway inflammatory disease in mice established 

via OVA induced asthma and the activation of the BMP pathway. Rosendahl et al 

investigated the involvement of the Smad proteins, notably phosphorylated Smad1 

and Smad5 and found that with the onset of disease and in contrast to healthy models, 

animals undergoing airway inflammation saw increased signalling via the canonical, 

Smad dependent, BMP pathway. They also showed that the onset of disease in the 

model animals led to alterations in the expression profiles for various BMP ligand and 

protein and mRNA levels. In combination with the known effects of the BMP ligands 

this shed light on the possible role of activated BMP pathway involvement in the 

pathology associated with allergic airway inflammatory diseases (Rosendahl et al., 

2002). Later studies examining the correlation between BMP pathway activation in 

asthma and the associated remodelling and pathophysiology was carried out in 

humans using bronchial biopsies from asthmatic patients with ‘mild’ asthma and non 

asthmatic patients (Kariyawasam et al., 2008). Findings showed that overall BMPR 

protein expression was down significantly in asthma patients, and that exposure to 

allergen caused a significant response in terms of increased BMP7 production. This 

increase in endogenous BMP7 was then linked to an increase in both pathway 

activation and BMPR expression levels. This contrasts somewhat with the earlier 

work by Rosendahl et al which had shown type I BMPR levels to be significantly 

upregulated after exposure to OVA allergen. The difference in profiles of the type 1 

receptors could be due to a myriad of different reasons such as time after allergen 

exposure, differing immune responses to different allergens, the difference between 

the model and the clinical reality and the type of inflammation reaction present. Both 

models however demonstrate clearly the involvement of the BMP pathway in 

response to allergic inflammatory disease of the airways and the need for a better 

understanding of the underlying mechanisms and responses. 

1.3.2 BMP proteins 

BMP functional proteins are large dimeric molecules that are bound by hydrophobic 

interactions and an inter subunit disulphide bond which is a strong covalent bond that 

holds the subunits of the protein together. They are synthesised and undergo 

conformational folding in the cytoplasm. As they are secreted they are cleaved by 

proteases. The receptors are highly specific and the BMP molecules are highly 

conserved in order to ensure correct conformation for binding (Eimon and Harland, 

1999; Danesh et al., 2009).  
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In total there are over 20 known BMP proteins. Of particular interest to our lab is 

BMP4. 

1.3.3 BMP4 

BMP4 is a secreted protein that plays a key role in morphogenesis in the local 

environment. It has been shown to have an active role throughout development and 

also in processes resulting from injury and repair within the human body. It is 

required for early mesoderm formation and is also expressed in the splanchnic 

mesoderm from which the lung buds will emerge (Molloy et al., 2008). After this it is 

shown to be active in areas of rapid division and growth such as the proximal  regions 

of the developing lungs and in areas undergoing repair and proliferation (Shannon and 

Hyatt, 2004). In the developing lung the expression of BMP4 occurs with precise 

spatial and temporal specificity (Hogan, 1996; Zhu et al., 2007). The level of BMP4 

activity is tightly linked to its role in development, with over expression of the protein 

resulting in lung hypoplasia and lower proliferation of the epithelial cells and has 

been linked to inhibition of epithelial proliferation in the lung and trachea also (Hyatt 

et al., 2002). The regulation of the levels of BMP4 is, in part, carried out by 

Fibroblastic Growth Factor (FGF) signals. FGFs are themselves pluripotent growth 

factors shown to have a vital role in development,  with FGF10 and BMP4 shown to 

play opposite roles in lung bud morphogenesis and BMP4 shown to modulate FGF 

signals during branching lung bud formation in the developing lung (Weaver et al., 

2000; Hyatt et al., 2002).  In mouse embryos, BMP4 deletion specifically in the 

epithelium via Cre- induced silencing resulted in abnormal development of the lung. 

This shows that BMP4 has a pivotal role in the control of proliferation, survival 

differentiation of lung epithelial cells (Eblaghie et al., 2006). 

BMP4 is also expressed throughout the adult lung. In adult cells our lab has shown 

that BMP4 induces an epithelial-to-mesenchymal-like transition in airway epithelial 

cells (Molloy et al., 2008). It is also a known inhibitor of myogenic formation, and 

studies in mice have shown that under hypoxic conditions it is upregulated. This is 

linked to the role that BMP4 plays in the direction of pulmonary vascular remodelling 

after hypoxic shock and also links BMP4 remodelling to pulmonary hypertension. As 

such, targeted silencing of BMP4 activity presents itself as a means to possibly 

prevent aberrant BMP4 induced remodelling of the pulmonary vascular system in 

patients who suffer from hypoxia induced in pulmonary hypertension (ten Dijke et al., 

2003). Selective targeting of BMP4 however is required rather than full organ 

silencing. This can be seen in the case of idiopathic pulmonary fibrosis, where a 
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natural inhibitor of BMP4, Gremlin, is over expressed, causing an enhanced 

fibroblastic growth response in the lung and reduce epithelial regeneration (Koli et al., 

2006). This over expression of a BMP4 antagonist is linked to the increased resistance 

of the myofibroblasts in the lung and therefore presents itself as a therapeutic target, 

or potentially, increased BMP4 as a possible means of therapeutic intervention into 

the disease (Koli et al., 2006). This report into the role of Gremlin and BMP4 in 

idiopathic pulmonary fibrosis both highlights the potential use in certain cases of 

BMP4 as a therapeutic, but also highlights the advantage of using specific, targeted 

antibodies against BMP4 rather than using a natural occurring antagonist such as 

Gremlin which could have more widespread and unknown consequences. 

BMP4 activity in proliferation of cells is closely linked to its known inhibitory effect 

on cell cycle activity. As a result BMP4, if correctly utilised could play a potential 

role in the control of some lung cancers by inhibition of cell cycle machinery. This 

has been seen in cell lines where up-regulation of p21 and p27 as a result of BMP4 

inhibited the growth of the cancer cell lines Ghosh (Ghosh-Choudhury et al., 2000; 

Buckley et al., 2004). BMP4 has also been shown by Su et al. to be involved in the 

mediation of adriamycin induced premature senescence in lung cancer cells, and over 

expression of the BMP4 protein induced premature senescence of the lung cancer 

cells (Su et al., 2009). The specific role of BMP4 in other diseases including allergic 

inflammatory type conditions such as asthma will be expanded upon later. However 

this serves to show that the BMP4 induced biological responses are dependent upon 

the development of disease scenario encountered. As such it shows itself to be a 

highly important target for therapeutic intervention in certain areas of developmental 

insult or aberrant injury remodelling, yet as a potential therapeutic in its own right in 

other areas of injury or deregulated cell cycling and growth. 

1.3.4 BMP receptors 

There are two types of BMP receptors, type I and type II. Type I receptors for BMP 

include BMPR-IA and BMPR-IB and they are approximately 55kDa. The Type II 

receptor involved in BMP signalling is known as BMPR-II and is approximately 

70kDa.  Both receptor types are glycoproteins consisting of core polypeptides of 500-

570 amino acids with short extracellular regions that are N-glycosylated and contain 

10 or more cysteines that determine the superstructure of the final folded protein 

(Massague, 1998). Neither the type I nor type II receptors have any discernable 

structural features in the transmembrane or cytoplasmic juxta-membrane regions. 

BMPR-IA and BMPR-IB however contain a type I specific amino acid region called 
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the GS domain, which plays a pivotal role in the activation and activities associated 

with the Type I receptor. Both Type I and Type I receptors have a kinase domain that 

is known to concur with the canonical sequence of serine/threonine protein kinase 

domain (Massague, 1998). This is seen in type I receptors ability to phosphorylate 

their target Smads on serine residues, whereas type II receptors  self phosphorylate as 

well as have the ability to phosphorylate type I receptors. BMPR-II also has a short C-

terminal extension, though in human a variant also exists with an extended C-terminal 

region of unknown function and type I receptors have no C-terminal extension 

(Massague, 1998).  

BMPR-1A and –IB are structurally similar. They have an extracellular domain which 

contains two β-sheets and one α-helix that are a central part in the specificity of the 

type I receptors (Miyazono et al., 2010). It is thought that there is an element of 

redundancy in signalling between the BMPR-IA and –IB receptors with overlapping 

functionality; however both are required for bone formation in vivo. With regard to 

the lung, both the type I receptors are to be found in the central regions of lung 

epithelium, but BMPR-IA is the only one found in the distal regions of the lung. Mice 

in which BMPR-IA has been completely silenced die at E9.5 due to defects in 

mesoderm formation (Miyazono et al., 2010). Specific deletion of BMPR-1A in 

mouse embryos via Cre-mediated knockout results in death by P1 or P2 with major 

defects occurring in lung morphogenesis, and showing reduced epithelial 

proliferation, morphological differences to healthy lungs and higher rates of apoptosis 

than observed in normal lung (Eblaghie et al., 2006). BMPR-IA signalling has also 

been shown to be required for successful vessel and atrioventricular endocardial 

cushion formation (Park et al., 2006). Type I BMP receptors are also subject to 

selective inhibition. Dorsomorphin for example has been shown to be capable of 

blocking BMP induced Smad1/5/8 activation (Miyazono et al., 2010).  

BMPR-II is the main instigator of typical BMP induced activation of the Smad 

signalling cascade (Figure 1.2). It is a constitutively expressed and active receptor and 

upon ligand binding it is responsible for the recruitment of a type I BMPR, the 

formation of the hetero tetra complex and the phosphorylation of the GS domain of 

the type I receptor that is responsible for Smad activation. Loss of function studies 

with BMPR-II have shown BMPR-II to be vital in development and to play a role in a 

number of different human diseases. Mice without BMPR-II die by E9.5 due to 

defects in mesoderm formation during gastrulation. Loss of function of BMPR-II has 

been linked to pulmonary arterial hypertension (PAH) as far back as 1997. The 

BMPR-II gene promotes survival of the arterial endothelial cells due to its role in 
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developmental and repair pathway regulation in processes including apoptosis and the 

inhibition of differentiation.  Studies in mice have shown that BMP heterozygous 

mice develop normally under unstressed condition, but that under inflammatory 

stress, they are more susceptible to right ventricular systolic pressure increases and 

vascular remodelling than homozygous mice. This shows that BMPR-II loss of 

function on its own is not sufficient to trigger the onset of disease and other 

environmental effects may be required for pathology to occur (Song et al., 2005b; 

Miyazono et al., 2010).  Studies of human cells where BMPR-II has been silenced 

also show a link between BMPR-II loss of function and PAH (Teichert-Kuliszewska 

et al., 2006). The role of BMPR-II in PAH is discussed above (section 1.2.4). 

BMPR-IA, -IB and -II are regulated by processes such as dephosphorylation and 

ubiquitination amongst others. Dephosphorylation, or the removal of phosphate 

groups, can prevent activation of the of the pathway be inhibiting the formation of the 

hetero-tetra complex. Ubiquitination is a process by which ubiquitin, a small 

regulatory protein, binds to protein and signals it for destruction via proteosome 

degradation and can be used to control the amount of the BMPR proteins available in 

a cell..Use of regulators of BMPR activity by inhibitors such as dorsomorphin in the 

instance of type I receptors and BAMBI which is a pseudo receptor for serine 

threonine receptors that can interact with both type I and type II receptors to inhibit 

signalling is a potential means for therapeutic targeting of bmp activity. However as 

BMPs are pleiotropic signallers, the same issue with blocking receptors lies with the 

aforementioned problems of using BMP inhibitors as with BMPR inhibitors. Using 

such inhibitors either long term or by constitutive activation of expression in even 

defined areas is likely to lead not only the blocking of specific targeted BMP induced 

problems, but also to the creation of an array of other issues based on the other 

functions disabled. However correct and efficient targeting of the secreted ligands and 

the receptors with specific antibodies holds potential, especially due to the fact that 

BMP ligands are secreted and therefore can be ‘mopped up’ and receptors are 

expressed at the cell surface and so may be more readily targeted than the intracellular 

signallers such as the Smads which require entry of the therapeutic into the cell. 
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Figure 1.2 Strucure and regulatory mechanisms linked to BMPR-II and its 

ligands. 

This figure shows both the structure and related functions of the BMPR-II, including 

regulation of differentiation, transcription, cell cycle regulation and apoptosis, 

trafficking, ion transport etc. The c-terminal region is not found on the type I receptor. 

Figure from (Hassel et al., 2004). 
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1.3.5 Smads 

The Smads are the intracellular effector molecules of the BMP pathway and were 

originally described in Drosophila with identification of the protein Mad. In total 

there are 3 different functional classes of Smad protein and these are  

1) Receptor mediated or Regulatory Smads (R-Smads) Smad1, Smad5 and Smad 8, 

which are activated by phosphorylated receptors and Smad2 and Smad 3 which are 

involved in TGF-β/activin signalling.  

2) Inhibitor Smads (I-Smads) Smad6 and Smad7 which block the activity of R-Smads 

in the cytoplasm. 

3) Co-Smad which is responsible for the ferrying of phosphorylated Smad complexes 

into the cell nucleus. There is only one member of the Co-Smad class known in 

mammals, Smad4. 

(Kretzschmar and Massague, 1998; Massague, 1998; Karaulanov et al., 2004). 

R-Smads are comprised of 2 domains, the N terminal and C terminal, also referred to 

as MH1 and MH2, which are joined together by a variable linker region and they play 

a vital role in mouse embryogenesis, eg Smad1 is essential for regulation of BMP 

mediated early lung development and Smad5 is required for endothelium-

mesenchymal interactions that are necessary for survival of the epithelium (Yang et 

al., 1999).  These domains are responsible for controlling the protein-protein or 

protein-DNA interactions of the Smad molecules. The MH1 domain is responsible for 

the DNA binding capacity of Smads and also plays a role in protein-protein 

interactions in the phosphorylated state. In the basal, or un-phosphorylated, state the 

MH1 domain is responsible for inhibition of the MH2 domains activities. It is also 

known that in Drosophila the MH2 domain can inhibit the DNA binding capacity of 

the MH1 domain, meaning that both domains are responsible for inhibiting each 

others function in the un-phosphorylated state (Massague, 1998). The highly 

conserved MH2 domain has the ability to activate transcription regulation but it does 

not bind DNA and plays a role more in the activation of the Smads by 

phosphorylation from type I receptors at the C-terminal SS(V/M)S motif, as well as 

binding to SARA and a number of nuclear receptors such as Fast, TGIF and Ski 

(transcription co-suppressors), CBP and MSG1 (transcription co-activators) 

(Massague, 1998; Wrana and Attisano, 2000). The linker region that joins the 2 

domains can vary in both sequence and size. In the R-Smads it is the location of the 
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phosphorylation site for MAP Kinase. When phosphorylated here the R-Smad is no 

longer capable of entering the nucleus.  

The R-Smads in their basal state are homo oligomers and are cytoplasmic. Upon 

ligand binding to the receptors they become phosphorylated and form heteromeric 

complexes with the Co-Smad, Smad 4. The afore-mentioned protein SARA (Smad 

Anchor for Receptor Activation) has been shown to play an important role in the 

phosphorylation process (Kretzschmar and Massague, 1998; Wrana and Attisano, 

2000). The heteromeric complex is then transported into the nucleus where either 

alone, or in combination with a nuclear DNA binding protein, they regulate target 

genes through binding with specific elements. A DNA binding protein can be required 

due to the fact that due to the fact that the heteromeric complex can have a low 

binding affinity and low specificity on its own. The Smads can then positively 

regulate transcriptional activity through recruitment of co-activator molecules 

including CBP/p300 and MSG1 or negatively through recruitment of repressors 

including Ski and TGIF (Wrana and Attisano, 2000). In the nucleus R-Smads are 

subjected to continuous dephosphorylation which renders them inactive and leads to 

their transport out of the nucleus. They are also subject to ubiquitin-proteosome 

degradation that helps regulate the levels of R-Smads available in the cytoplasm at 

any particular time. 

The Co-Smad, Smad4 is needed in most cases for trafficking of the R-Smad/Co-Smad 

complex into the nucleus. Smad4 can be found in both the nucleus and the cytoplasm 

of the cell and its stability can be selectively upgraded via sumoylation. It was 

initially reported that Smad1 does not require the presence of Smad4 to enter the 

nucleus, though Smad4 does require the presence of Smad1 or Smad2 in order to 

translocate (Massague, 1998) however subsequent work has shown Co-Smad can 

travel between the nucleus and cytoplasm due to a nuclear localisation signal in the N-

terminal and a nuclear export signal in the linker region of the protein unit. It is 

thought that when the Co-Smad binds to the R-Smad complex in the cytoplasm that 

the nuclear export signal is blocked thereby facilitating transport into the nucleus 

(Derynck and Zhang, 2003). Smad4 also differs from R-Smads in that they are not 

susceptible to ubiquitin mediated degradation. As it is a highly important mediator of 

signalling, Smad4 is highly conserved and required for normal growth and 

development, e.g. specific knockout of Smad4 in heart tissue results in heart failure 

due to defects in cardiogenesis (Song et al., 2007). 

The I-Smad proteins Smad 6 and Smad 7 are located in the cytoplasm of the cell. 

They play a major role in the inhibition of the BMP activated Smad pathway. Also, 
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they differ from R-Smads in that 1) they have no N-terminal domain and 2) their 

expression levels are highly regulated by external factors. Induction of these 

inhibitory Smads by BMP provides a negative feedback loop for inhibition of active 

BMP signalling (Derynck and Zhang, 2003). The I-Smads are not the only means of 

inhibiting the activity of the regulatory Smads. As an example, Smurf1 over 

expression is known to negatively regulate embryonic lung development through 

specific targeting of Smad1 and Smad 5 regulatory Smads for ubiquitination mediated 

degradation as a means to modulate the signals from BMP4 on the developing lung 

(Shi et al., 2004) 

 

1.3.6 Id1  

Id1 is a member of the Helix-Loop-Helix (HLH) protein family. There are 4 Id 

proteins, with Id1 being the original member of the family identified in 1990 by 

R.Benezra (Benezra et al., 1990). Originally Id1 was designated Id, and was named 

for both its functional properties as an Inhibitor of cell Differentiation and as an 

Inhibitor of DNA binding. HLH transcription factors have a vital function in 

regulating growth and differentiation in vertebrates and invertebrates and the entire 

family of proteins consists of over 240 family members, broken down into seven 

classes dependent on localisation, dimerisation ability and DNA binding specificities 

(Massari and Murre, 2000; Campuzano, 2001; Yokota, 2001). Id proteins constitute 

the Class V family and there are 4 distinct Id proteins, 1-4 respectively. All Id 

proteins share a highly homologous HLH region. Id proteins do not contain a basic 

motif region. With the exception of four small homology domains, which may 

indicate some other conserved functional commands, the Id sequences are 

predominantly unique. The HLH region is responsible for homo or hetero 

dimerisation but it is the basic region on basic HLH (bHLH) proteins that is in charge 

of sequence specific binding to ‘E-box’ DNA sequences. It is these E-box sequences 

that control the transcription of genes for terminal cell differentiation in a number of 

different cell lineages (Norton et al., 1998). The Ids function by binding to bHLH 

proteins by forming non-functional Id-bHLH heterodimers, as such they have the role 

of a dominant-negative regulator, removing the ability of the bHLHs to interact with 

E-box sequences. This was first evidence for a role in controlling differentiation was 

elucidated from studies in Drosophila by examining mutations in the Drosophila emc 

locus. Drosophila emc is a HLH protein that functions in the same manner as Id, 

binding to bHLH proteins to form heterodimers, preventing them from binding to 
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DNA and functioning transcriptionally. (Campuzano, 2001). Id1 has also been shown 

to have a much higher binding affinity for the ubiquitously expressed E protein family 

of HLH transcription factors than that of tissue specific HLH transcription factors. 

These E-proteins are themselves obligate binding partners for tissue specific bHLH 

factors. Therefore, by binding both ubiquitously expressed and cell type restricted 

bHLH transcription factors these it allows Id family members to regulate the 

transcriptional array of a vast number of cell types in different tissues and locations, 

while utilising the same basic mechanism. It has also hypothesised that E-box proteins 

chaperone Id proteins, which lack a nuclear localisation sequence, into the nucleus in 

order to increase the half life of the protein which is otherwise very short (Deed et al., 

1996). 

1.3.6.1 General Pathways associated with Id1 Protein 

Id1 is associated with cell proliferation, cell cycle progression and invasiveness 

during tumorgenesis (Di et al., 2007). One pathway it has been shown to interact with 

in order to effect changes in these areas is the TGF-β pathway. Id1 has an ability to 

modulate a cells sensitivity to TGF-β: It was shown that Id1 disrupted the adherens 

junctions in TGF- β treated cells via down-regulation of E-cadherin, up-regulation of 

N-cadherin and redistribution of N-cadherin. This shows a role for Id1 in 

tumourgenesis via re organisation of the actin cytoskeleton and a breakdown of cell 

adhesion in response to TGF- β in human prostate epithelial cells, giving the 

hypothesis that intracellular Id1 levels might be the deciding factor in TGF- β going 

from growth factor to a tumour promoter during prostate carcinogenesis (Di et al., 

2007). BMPs, members of the TGF superfamily, have also been shown to induce an 

Id1 response in a variety of cell lines and in embryonic stem cells. BMPS directly 

target and up-regulate Id as has been illustrated in various studies (Hollnagel et al., 

1999; Ruzinova and Benezra, 2003). BMPs themselves are responsible for up-

regulation of Id1 in epithelial cells, but TGF- β reduces levels of ID1 in epithelial 

cells. 

Ids role in cancer progression is also well established (Fong et al., 2004). One of their 

major functions is regulation of epithelial cell phenotype, from differentiation through 

to proliferation through to cancer development (Coppe et al., 2003), and Id expression 

is concurrent with both cancer progression and prognosis. Examination of Id in cell 

lines has shown that as a general rule, it is strongly expressed in proliferating cells and 

is present at its lowest levels in non-differentiating and terminally differentiated cells. 

As well as strong induction by BMP proteins, generally mitogen and growth factor 
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stimulation has the same effect with the highest level of expression being recorded 1-

3 hours after stimulation, as is the case with lots of other early response proteins 

(Norton et al., 1998). 

1.3.6.2 Id1 in Embryogenesis and Cell Cycle 

Id1 plays a major role in both embryogenesis and in normal cell cycle progression. It 

has been shown in mouse embryonic development to express unique and definite 

patterns of expression. It is present along with the three other Id proteins for 

neurogenesis in its own expression pattern and remains active after neuronal 

development. It is also expressed post-gastrulation in many different tissues which are 

experiencing morphogenic actions. After this it is also to be found in the endothelium 

surrounding the epithelium (Coppe et al., 2003). The Ids are known to play a role in 

cell cycling and differentiation. They are expressed at the beginning of cell cycle and 

peak again between G1 and S phase, before DNA synthesis begins to occur. Ids role 

in cell cycle has been observed experimentally by ectopic expression of MyoD and 

E47, bHLH proteins that function to stop proliferation, by causing a halt in the cell 

cycle at the G1 phase. Experiments have also shown that E2A (E12/E47) dependent 

transactivation of p21 is inhibited by Id1. It has furthermore been shown that an 

increased level of cell growth in the presence of ectopically expressed Id1 matches 

with inhibition of p21 expression (Norton et al., 1998). Additional studies, in 

keratinocytes and endothelial cells, have shown that Id over-expression is capable of 

delaying the senescence program (Nickoloff et al., 2000; Tang et al., 2002). Id1 levels 

have also been shown to be upregulated during differentiation, and have been shown 

to summit in alveolar cells that support the non-proliferating and well differentiated 

phenotype, which implies that they positively regulate alveolar cell differentiation 

(Liu et al., 2000). Furthermore Id1 was revealed to affect differentiation of 

Keratinocytes in epidermal wound healing, where it functions in transitioning sessile 

keratinocytes into mobile, migrating and proliferating keratinocytes during the repair 

of lesions and also during re-epithelialisation (Schaefer et al., 2001). 

1.3.6.3 Id1 in Cancer 

Id1 has been shown to play a major role in cancer progression. It is commonly over-

expressed in tumour cells and is predominantly associated with aggressive, invasive 

and less differentiated tumour phenotypes. The level of Id1 proteins tracks with poor 

prospects and tendency to metastasize. (Langlands et al., 2000; Sikder et al., 2003; Di 

et al., 2007). 
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Of pertinent interest to our studies Id1s role in cancer has been linked to regulation of 

E-cadherin, as well as β-catenin, F-actin, EMT and fibrogenesis. Results show that E- 

cadherin switching in prostate carcinogenesis is promoted by Id1 over-expression. 

This is of note as adherens junctions are important in maintenance of cell to cell 

contact, with breakdown closely linked to tumour progression and metastasizing, as 

seen with the established link between prostate cancer and the down regulation of E-

cadherin. The main proteins in adherens junctions include E-cadherin as well as β-

catenin and α-catenin. Results suggest also that, in NPTX cells, Id1 over expression 

on its own didn’t greatly affect the amounts of the adherens proteins present, but that 

when the cells with over expressing Id1 were also treated with TGF- β, there was a 

decrease in E-cadherin and α-catenin and an increase in β-catenin. Overall results 

imply that Id1 promotes cadherins switching which gives increased cell motility in 

TGF- β treated cells. The membranes of these cells were almost entirely devoid of the 

usual E-cadherin staining also; showing Id-1 over expression in response to TGF- β1 

can bring about deconstruction of the Adherens junction complex (Di et al., 2007). 

Id1 has also been purported to drive cancer survival in other ways (Figure 1.4). Id1 

over expressing cells have been shown to resist TNF-α induced apoptosis by 

inactivating caspase 3 and Bax, along with up-regulation of NF-κB functional activity 

as well as that of Bcl-xL and ICAM-1 (Fong et al., 2004).  

As a result Id1 is now demonstrating itself to be a promising candidate in targeted 

treatments of cancer. It therefore falls within our remit to evaluate its progression in 

growth factor induced damage in cells and its functional activity levels in order to 

help assess different pathways stimulated by addition of both transfection reagents 

and growth factors. 
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Figure 1.3 Id related BMP functions in epithelial and endothelial cells 

In epithelial cells BMP triggers phosphorylation of Smad1/5 which bind to Smad 

responsive elements in the Id1 promoter and activate transcription which in turn leads 

to a switch in cell fate. In endothelial and epithelial cells it leads to cell migration, 

proliferation and tube formation. Figure adapted from (Ruzinova and Benezra, 2003). 
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Figure 1.4 Id protein plays a major role in cancer metastatic progression. 

Id proteins regulate pathways that are essential to the metastatic progression of 

cancer. Through an interaction with bHLH or non bHLH proteins, Id proteins have 

positive (+) or negative (-) regulatory roles in cellular pathways that are crucial to 

cancer metastasis. (Fong, S. et al. 2003). 
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1.4 E-cadherin and Snail1/Snail2 

E-cadherin is the most extensively characterised molecular marker in epithelial cells. 

The full length protein is 124kD and it is an adherens junction protein found between 

epithelial cells that plays a major role in cell-cell adhesion (Masterson and O'Dea, 

2007). It is located on the cell membrane and creates the tight junction by means of 

calcium dependent dimer interactions with E-cadherin molecules on adjacent cells. 

One of the major developmental roles of E-cadherin is embryogenesis epithelial to 

mesenchymal transition, or EMT. EMT allows tightly bound epithelial cells to 

dissociate from each other to differentiate into loosely bound mesenchymal cells. This 

function during embryogenesis plays an important role in developmental procedures 

such as gastrulation movement and neural crest formation (Katoh and Katoh, 2008). 

The process of EMT sees a class switch in the cadherin junction molecule form E-

cadherin, which is associated with tightly bound adherens junction, to N-cadherin, 

which is found at the junctions of loosely bound mesenchymal cells. This sees the loss 

of the epithelial phenotype to a mesenchymal phenotype, and loss of cell-cell contact 

and polarity. Zinc fingered proteins Snail1 and Snail2 play a pivotal role in overseeing 

this class switch at the adherens junction during EMT through inhibition of the 

transcription of E-Cadherin (Schmidt et al., 2005; Tsuji et al., 2008). This is done by 

their binding of the proximal promoter region of the E-cadherin gene. E-cadherin 

function and EMT is also believed to play a role in a number of human diseases such 

as cancer where it has been linked to lung, breast, pancreatic and other cancers  and 

inflammatory diseases (Schmidt et al., 2005). In tumourgenesis where E-Cadherin is 

down regulated by promoter methylation, and where upregulation of EMT inducers 

Snail1 and Snail 2 also occurs, it is characteristic of a invasive malignant cancer 

phenotype, as the loss tight junctions help tumour cells to proliferate and disseminate 

more rapidly, and associated with metastasis and a poorer prognosis (Masterson and 

O'Dea, 2007; Katoh and Katoh, 2008). As such when E-cadherin is present it is seen 

as a tumour suppressor and an indicator of tumour status. However the presence of E-

cadherin inactivated via truncation as a result of tumourgenesis and the effect of this 

shortening of the full length functional protein on junction strength and stability is an 

important consideration when using E-cadherin as such a marker.  

E-cadherin expression can also be affected during chronic inflammation resulting in 

loosely bound epithelial cells which can result increased cytokine signalling and an 

increase in the spread of inflammation to surrounding cells. EMT, discussed again 

later in certain diseases, where E-cadherin is down regulated and fibrosis occurs can 
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result in a pathological outcome in the lungs where epithelium is lost and replaced 

with fibrotic cells in what is essentially a faulty repair mechanism as seen in such as 

airway fibrosis resulting from lung transplant operations (Ward et al., 2005). 

1.5 Delivery of therapeutics 

Delivery of therapeutics can take many forms and can be practically related to the 

culture system, model or disease/damage targeted. Many forms of delivery are 

combined efforts. This consists of coupling one method of delivery, such as 

inhalation, with another system, such as a plasmid encoding a gene, in order to 

successfully target, deliver and achieve the desired therapeutic effect. While some 

forms of delivery are very specific as to the nature of the therapeutic they can deliver, 

others are capable of delivering numerous types of therapeutic compounds. 

Specifically this thesis is interested in the delivery of therapeutics to the lung and 

examines the feasibility of delivering DNA and protein based therapeutics in vivo. 

Delivering therapeutics to the lung in vivo, either for localised delivery and effect in 

the lung, or for systemic uptake, requires an understanding of the different methods 

for not only delivering compounds locally, but also the use of carrier compounds 

which can aid in the targeting, protection and dissemination of the drug as and if 

required. The benefits of targeting delivery to the drug to specific regions are outlaid 

in Figure 1.5. Some of the principle benefits include higher efficacy and lower drug 

loading leading to lower costs and less off target effects, improved deposition 

patterning and uptake.  

 

 

 

 

 

 

 



35 

 

 

Figure 1.5 Order of targeting delivery to Lungs. 

Targeted delivery of drugs to lungs, to specific cells within the lung, to inside the cells 

and finally to within the various specific compartments of the cells all add to the 

levels of complexity of targeted drug delivery. Depending on the requirement and the 

type of drug used not all orders need to be achieved. On one end of the scale certain 

drugs such as corticosteroids and bronchodilators need very little targeting with the 

lung, however genes therapies that require nuclear localisation within a certain cell 

type require a much higher level of targeting. The arrows in the above diagram show 

how achieving ever increasing levels of lung targeting from the lung region to specific 

cellular compartments within specific cells in the lungs increases the therapeutic and 

cost benefit of drug delivery (from (Aneja et al., 2009)). 
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The ways of introducing the therapeutics to the lungs are outlined also. For different 

therapeutics and different diseases, selective mechanisms can enhance the targeting of 

drugs in vivo. Some mechanisms are invasive and not suitable for repeat or frequent 

administration though for certain applications may be of relevance. Other methods 

require hospitalisation or physician direction. The ideal delivery system in most 

instances, however, would allow repeat, non invasive dosing by the patient. 

1.5.1 Aerosol as a mode of delivery 

Aerosols hold potential for the delivery of therapeutics to specific regions within the 

lungs, for systemic delivery throughout the body, and for targeted delivery of 

molecules to site specific regions within the body. The structure of the lung, as 

described earlier, lends itself to this method of delivery. It provides a target for 

delivery with an immense surface area designed for the exchange of solutes. 

The development and assessment of drug molecules for the aerosol delivery to 

humans in vivo most commonly entails the delivery of the molecules to a small animal 

model in order to determine efficacy of aerosol delivery on the in vivo activity and 

stability of the delivered agent. Prior to the aerosol being available for inhalation to 

the animal it is first subjected to the flow dynamics of the chamber from which it is 

delivered. These characteristics can help determine the final Variable Mass Diameter 

(VMD) and over all Fine Particle Fraction (FPF) available for inhalation as its design 

must account for potential shear forces, aerosol collision and aerosol agglutination 

which can occur.  

To this end a chamber system was designed for the delivery of aerosol to small animal 

models including, but not limited to, mice rats and guinea pigs. Our primary concern 

was to study effect of chamber dynamics on the aerosol that would be available for 

inhalation, in comparison to what was formed initially by the nebuliser on its own, 

that is, did we improve upon the nebuliser.  

A design for a novel restraint was also included in this work. Most current restraints 

have remained largely unimproved upon over the period of the last 30 yrs. The basic 

model involves a cylindrical tube with space for the nose to exit at the top and a 

plunger behind to hold the animal in place. This results in an unnatural and restrictive 

position for the animal, with a potentially negative effect on the animals respiration in 

order to preserve nose only exposure. Animals can also become suffocated if they 

manage to struggle to turn around in the chamber. Aside from the ethical concern, the 
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loss of experimental animals can lead to statistical problems and can be costly 

depending on the treatment, cost of the animal and in experimental hours invested. As 

a result it was decided to design a novel restraint system that could more effectively 

and safely restrain the animal for the duration of any exposure procedure and that 

would be complimentary to the aerosol chamber. 

1.5.1.1   Current Aerosol Generation Technology 

There are a number of different types of chambers currently available, some with 

specific adaptations for the aerosol producing device. In choosing a device to produce 

an aerosol a number of different parameters need to be examined and ultimately one 

will provide the best answer to the delivery agent in question. In order to deal with 

clinical demands, aerosol devices should be aiming to decrease delivery time, deliver 

large doses and be capable of dealing with different viscosities and multiple drugs at 

the same time. 

 On the market at the moment there are a number of different types of aerosol 

producers. These include, amongst others, 1) Dry powder inhalers, 2) Pressurised 

metered dose inhalers and 3) Nebulisers.  

1.5.1.1.1 Dry Powder Inhalers (DPIs):  

These are amongst the newest members of the inhaler family on the market and 

include products such as the GlaxoSmithKline Diskus®. They are breath activated 

devices, requiring no propellant and are generally considered amongst patient groups 

as being easier to use than metered dose inhalers. DPIs vary in performance 

depending on manufacturer, operation techniques and drugs loading. They can be sold 

as single dose units where each individual dosage is loaded prior to inhalation, 

multiunit dose inhalers which contain multiple individually sealed units of drug 

dosages and reservoir multidose units which contain a large supply of the drug, of 

which a small amount is released upon each activation, with dose counters available 

on the multidose versions (Chrystyn, 2007). DPIs, due to the fact that they are breath 

actuated, require a relatively high inspiratory flow rate, thus precluding patients with 

severely limiting airflow restrictions, and they are generally also not recommended 

for use in patients under the age of 5 (Geller, 2005). Matching the correct DPI to the 

patient is also important as it will help improve patient compliance. Some DPIs utilise 

a higher airflow resistance than others against the inspirational flow in order to trigger 

device activation. This means that in a situation where a patient is using a number of 
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different devices, different deposition patters will emerge for the drugs dependent of 

the charge required to activate each one. 

Other reasons for varying deposition patterns between DPIs are differences that occur 

in how different patients use the devices and also in the drug formulation (Martonen 

et al., 2005). Mid level to high resistance devices are generally more efficient at 

delivery than low resistance devices, but due to the requirement for high airflow, this 

can lead to greater inter and intra patient variations in deposition dependent on the 

exact way in which the intake manoeuvre was carried out. As regards to drug 

formulation, with or without excipient present, the powdered drug is formulated and 

engineered to present a specific aerodynamic profile or VMD. Where excipient is 

used, with the most common excipient being lactose, high shear mixing is used to 

blend the final powder. High shear blending results in the powders encountering a 

variety of different forces. The DPIs themselves also lend themselves towards being 

highly cohesive and adhesive in their release of the powder. Together this results in 

poor drug aerosolisation and less than optimal deposition patterning in the lung (Adi 

et al., 2008; Wagner et al., 2009). 

Essentially DPIs provide a light, discreet and portable mechanism for the delivery of 

dry powdered therapeutics in patients who have a sufficiently competent inspiratory 

flow rate and have correct inhalation technique. 

1.5.1.1.2 Pressurised Meter Dose Inhalers (pMDIs) 

pMDIs consist of a small self-contained unit consisting of a canister containing 

propellent and drug formulation, a metering valve, an actuator and a mouthpiece. 

They are generally used by shaking the canister first to ensure good mixing of the 

drug and propellent before actuation of the canister to release the drug/propellent 

formulation through a carefully designed actuator nozzle. Aerodynamic forces within 

the nozzle disassociate the propelled mixture into an aerosol, while the propellent 

rapidly evaporates leaving only the drug formulation behind that is cooled by the 

evaporation of the propellant. The propellant used in pMDIs is hydrofloroalkane 

(HFA), which replaces CFCs out of environmental concerns. The change of 

propellent in the formulations has resulted different behaviour and deposition 

characteristics for different drugs, changing plume properties and particle size 

distribution profile of the generated aerosol (de Vries et al., 2009). 

pMDIs are generally regarded as being the most difficult and inconsistent of the 

nebulisers, for a number of reasons. Delivery of therapeutics is carried out by the 

actuation of a charge, which in some pMDIs can be breath activated. This leads to a 
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high pressure release of the drug that requires careful timing and co-ordination on the 

part of the patient in order to ensure proper inspiration for the best deposition of the 

drug. In general the mode of actuation, whether breath or manual, and the 

accompanying high flow rate of the delivered aerosol has led pMDIs to being 

regarded as the least efficient and least consistent of the different available inhaler 

types. pMDIs generally do not come with incorporated dosage counters and so rely on 

patient tracking to count remaining dosages. They are generally over filled with drug, 

meaning that even if a patient count is slightly off, the individual should still be 

receiving medicine upon actuation. However  comparative studies of different pMDIs 

with inhaled corticosteroids found that different pMDIs created significantly different 

VMD sized aerosol particles, with delivered dose quantity varying throughout the 

lifespan of the different devices (de Vries et al., 2009). This can in part be due to how 

the drug formulation and propellent are combined. If not correctly mixed prior to use, 

or in instances where inaccurate dose counting has been performed patients can 

receive an aerosol containing propellant only. The use of breath actuation can help 

improve the coordination of the patients’ use of these devices, as does the use of a 

spacing chamber. However spacing chambers are not without issues, they are large 

and make the device both less discreet and less portable, therefore less likely to help 

with patient compliance. They are also prone to the build up of static charges and 

require cleaning in order to reduce this build up. They are also regarded as being very 

difficult to use successfully with young children (Geller, 2005). 

However in spite of the problems associated with pMDIs they are still a highly 

utilised inhaler. They are, due to the nature of the concerns expressed above, restricted 

in their use to potent quick acting local drugs such as bronchodilators and 

corticosteroids. They are also unique in that pMDIs, unlike devices such as nebulisers, 

are required to be tested and approved as a joint drug-delivery system combination 

(Hess, 2008). 

1.5.1.1.3 Nebulisers:  

Nebulisers are clinically relevant devices capable of creating an aerosol suitable for 

inhalation for patients of all ages and sizes, for any disease severity and are actively 

recommended for patients on ventilation. Most of the modern devices for nebulisation 

are relatively small and portable and this facilitates their use both in clinical settings 

and in day to day life. The greater the level of convenience of use the greater the level 

of patient compliance with prescription protocols and an increase in the number of the 

devices in prescriptions. This greater convenience makes them more widely 
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acceptable to patients and therefore more likely to be prescribed for use with more 

and more medications. Another advantage with this nebuliser system is that it is 

possible to deliver a combination of drugs at the same time, reducing delivery time 

over all, and the amount of administrations a patient may have to make. In a 

laboratory setting this also allows for simultaneous delivery of different active agents 

to a particular system, such as a siRNA molecule in combination with an active 

protein molecule, reducing the amount of animal handling time and also reducing the 

amount of stress on the animal. Another advantage along this line is that it is possible 

with an inhaler to, in one sitting, deliver a very large dose of a therapeutic. This is due 

to the fact that a larger reservoir is all that is needed. DPIs for instance are limited in 

this fashion as although newer generations of devices are capable of delivering larger 

doses, they can require too many breath activations that have to be precisely co-

ordinated to be an effective means of delivery. An example of this is inhaled 

tobramycin, which is a topical antibiotic for Pseudomonas endobronchial infections in 

cystic fibrosis. This antibiotic is delivered as a unit dose of 300 mgs which is 

impossible to deliver with a metered dose inhaler (Geller, 2005). As a lab delivery 

device also helpful is the fact that the therapeutic of interest can be delivered as a 

liquid or as a suspension, allowing a wide range of potential drugs to be examined 

without the need for reformulation. 

There are a number of important reasons why a nebuliser was chosen as the most 

suitable instrument for the aerosolisation of therapeutics in this project. Chief amongst 

reasons is the fact that nebulisers are a clinical reality; they are used in hospitals and 

homes around the world with various different medications and meet most of the 

important characteristics of an ideal inhalation system as defined by Virchow et al in 

2008 (Virchow et al., 2008); 

Simple to handle-especially for children 

Should possess control mechanisms which ensure: 

-optimal respiratory flow at the time at which the dosage is triggered 

-a correct inhalation manoeuvre 

-allow the patient to verify successful completion of the inhalation manoeuvre 

-Both the released active ingredient dosage and the deposition of the active ingredient 

in the lungs must be sufficiently high and reproducible.  

-There is a need for a dosage encounter that counts not only the dosages but also the 

correctly executed inhalations which allow supervision of compliance 

-Free of propellant gas and refillable 

-Maintenance requirements should be minimal 
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The vibrating nebulisers overcome a lot of issues associated with other delivery 

devices. They have short nebulisation times, are easy to use and clean and are not 

overly expensive. They also avoid the problems of heating the drug or subjecting it to 

strenuous shear forces as seen in ultrasonic and jet nebulisers and as shown below, 

this makes them suitable for the delivery of liposomes and nucleic acids. 

1.5.1.1.3.1 Important considerations and difficulties associated with Nebulisers. 

Although there are many positive aspects associated with this technology, it is not 

perfect. While each nebuliser type on its own is characterised, there is highly variable 

performance efficiency between different types. This means that when a drug is being 

marketed as being suitable for nebulisation delivery, it should be tested in a single 

device which should then be paired with that drug to ensure consistency across doses 

and patients. This is because the amount of drug available for lung deposition will not 

be predictable unless the device has been studied with the drug of interest. Other 

factors such as fill volume for the reservoir all need to be considered. Another 

drawback with nebuliser technology is that nebulisers tend to be more time 

consuming than MDIs or DPIs, and therefore not necessarily always the best choice 

for certain types of treatment (Geller, 2005). 

The specific drug formulation can also have a major impact on device performance, 

with it being reported for example, that nebulizer performance can be greatly 

improved by the addition of preservative to the drug formula as a result of its surface 

activity (MacNeish et al., 1997). Nebuliser efficiency is constantly being improved in 

efficiency in various different ways Figure 1.6. 

The main types of nebuliser, ultrasonic, jet and vibrating membrane are discussed 

below. 
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Fig1.6: Schematic of nebuliser performance efficiencies 

Treatment Efficiency (TE) depends on system efficiency (SE) and Retention 

Efficiency (RE): TE=RE x SE. System Efficiency depends on Delivery Efficiency 

(DE) and Nebuliser Efficiency (NE): SE=DE x NE. Delivery efficiency (DE) depends 

on Conserver Efficiency (CE) and Breathing Efficiency (BE); DE=CE x BE. 

Nebuliser Efficiency is the ratio of output aerosol (OA) to Initial Charge (IA): 

NE=OA/IC. Retention efficiency (RE) is the ratio of lung deposition (LD) to Inhaled 

Aerosol (IA): (RE) =LD/IA (Chatburn and McPeck, 2007). 
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1.5.1.1.3.2 Ultrasonic Nebulisers 

Ultrasonic nebulisers generate an aerosol through vibrating a piezoelectric crystal, 

converting electrical energy into ultrasonic waves. However a negative effect of these 

types of nebulisers is that they require 3.5-4 MHz vibration in order to sufficiently 

disrupt the liquid formulations into a respirable aerosol, generating a sufficient 

amount of heat that precludes the use of this system for the delivery of certain heat 

labile drugs proteins and liposomes, and are regarded as not suitable for the 

aerosolisation of suspensions (Ghazanfari et al., 2007; Shen, 2010) There is also a 

potential for the ultrasonic waves to deactivate drugs during nebulisation, though this 

has not seen with commonly used aerosol medications (Hess, 2008). 

1.5.1.1.3.3 Jet Nebulisers 

Jet nebulisers are powered by pressurised air travelling at high velocity through a 

venturi nozzle, generating an area of low pressure. Since the area of low pressure is 

less than that of the reservoir where the drug solution is stored, this drives the solution 

for aerosolisation to be incorporated into the jet stream where it is sheared into an 

unstable liquid film. The instability, due to large surface tensions, causes the film to 

disintegrate into droplet aerosol. This aerosol is then impacted upon a baffle driven by 

compressed air or oxygen that creates an aerosol of suitable size particles for 

inhalation (Lentz et al., 2005; Ghazanfari et al., 2007; Hess, 2008). The VMD of the 

particles reaching the lungs can be influenced by the humidity of the carrier gas being 

used. The use of solvent in the drug solution means that as the aerosol is created, the 

solvent evaporates, leading to a higher concentration of drug solute in the aerosol. The 

operation of a jet nebuliser requires a compressor, an air line and bottled gas and as 

such they are not overly portable. They also require equipment maintenance and 

cleaning in order to limit the opportunity for infection of the device. Jet nebulisers 

average a drug deposition of 5-25% of the given dose in the patients’ lungs, with 

specific drug-device combinations being required to allow accurate gauging of drug 

dosing. 

Due to the high pressures used to create the aerosol in jet nebulisers there is a risk of 

drug degradation linked to their use that may make them less desirable for certain 

applications. The use of the jet nebuliser for the delivery of ‘naked’ gene therapies 

results in sub-optimal dosing as a result of hydrodynamic shear. This necessitates the 

use of cationic lipids or other protective carriers to prevent the loss seen in DNA 

integrity. The breakdown in integrity is usually a result of a strand break in the 

phosphate backbone. This results in the conversion of supercoiled plasmid into an 
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open circle plasmid. Any subsequent breaks on the other double helix results in 

linearization of the plasmid which makes it more likely to end up as fragmented DNA 

by the time the aerosol is formed (Lentz et al., 2005). In comparison to the vibrating 

mesh nebuliser discussed below the jet nebuliser can be more destructive of nebulised 

drug. In a study looking at the effect on liposomes it was found that a vibrating mesh 

nebuliser Aeroneb Pro, in comparison to  a jet nebuliser, the Pari-LC, had less 

negative impact on the stability of the liposomes examined and also that the  vibrating 

mesh nebuliser liposomes retained more entrapped salbutamol than that of the jet 

nebuliser (Elhissi et al., 2007). It has also been shown in the delivery of rhDNase that 

although a jet nebuliser (Pari-LC) is comparable with the amount of active amount of 

Drug aerosolised, the vibrating mesh nebuliser (Omron Microair) was more efficient 

and required less time for nebulisation and delivery (Johnson et al., 2008). 

1.5.1.1.3.4 Vibrating Mesh Nebulisers 

Vibrating mesh nebulisers come in two main varieties, passive and active. An 

example of the active vibrating mesh nebuliser is Aerogens Aeroneb Pro, which is 

discussed in detail below. Aerosol droplet size, total aerosol output and FPF are all 

dependent on fluid physiochemical properties. 

With vibrating mesh nebulisers, an increase in viscosity is desirable up to a certain 

limit but would not be recommended for delivery of liquids with a viscosity above 

1,92cP. Nebulisers using Aeroneb Pro technology have previously been shown to 

have higher output rates than certain competitors such as the Omron Microair 

nebuliser which is a passively vibrating device, due to the higher energy input and the 

fact that the Aeroneb Pro mesh vibrations are active, permitting a more efficient 

ability to overcome the resistance of fluids to the shear forces applied. Compared 

specifically to the Omron Microair, the Aeroneb Pro was superior in terms of 

completing nebulisation in shorter times and producing higher aerosol output rates 

especially when viscosity was increased. Comparison studies found that increased 

viscosity of drug solution was more debilitating in the passive nebuliser and resulted 

in  prolonged nebulisation times and poorer output compared to the Aeroneb Pro 

actively vibrating nebuliser (Ghazanfari et al., 2007). 

1.5.1.2 Clinical and lab uses 

The Aeroneb Pro is clinically operational, meaning the transfer of therapeutics from 

lab bench to bedside is easier as the therapeutics being tested will not have to be 

reconfigured, lyophilised or altered in any way by the addition of a propellant etc. to 
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allow use in a human in vivo setting. The advantage of an aerosol device like this, as 

previously mentioned, is that it allows for both targeted local and systemic delivery of 

a wide variety of therapeutics. The Aeroneb Pro has been used to successfully 

nebulise amorphous itraconazole (ITZ) as an antifungal agent in aspergillus infected 

mice, so as to directly target the affected region. Recombinant human 

DNase1(rhDNase) has also been nebulised using the Aeroneb Pro as means to 

evaluate the potential of aerosol delivery improving clearance of cisco-elastic 

secretins directly in the region affected in patients with cystic fibrosis (Johnson et al., 

2008). The Aeroneb Pro has also been used for pulmonary drug delivery with 

aerosolisable nanoparticles in an ex-vivo model utilizing an isolated rabbit lung 

model. The nanoparticles used were investigated for stability and performance after 

aerosolisation where the results showed nebulisation as a potential mechanism for 

successful delivery targeting the lung tissue (Beck-Broichsitter et al., 2009). The 

Aeroneb Pro has also been utilized for the delivery of liposomes, where in vitro 

analysis found it to be a comparatively better than one of the main rivals, the Pari LC 

jet nebuliser, having a less disruptive effect on the liposomes and also having a higher 

rate of aerosol production (Elhissi et al., 2007).   

Also, as stated, a major advantage of the Aeroneb Pro is its ability to deliver solutions 

where powders can be dispersed in water and delivered via nebulisation. Instances of 

such solutions that have been examined with this technology are solutions of 

nanoparticulate amorphous or crystalline tacrolimus-an immunosuppressive drug used 

in transplantation medicine. Current mechanisms of delivery include either oral or 

intravenous administration. The dosages needed for these mechanisms of delivery are 

poorly tolerated by patients and are not consistent in delivering an accurate dosage. 

This is due to either poor absorption of the drug in the gastro-intestinal tract and/or 

first pass metabolism, which varies from patient to patient. The solution of TAC 

comprising of TAC nano-crystals was shown to be successfully delivered to the lungs 

with the use of the Aeroneb Pro, and did so without the use of polymers, surfactants 

or propellants. Another example of an effective use of nebulisation to counter 

problems with other mechanisms of delivery, as mentioned earlier, is inhaled 

tobramycin, which is a topical antibiotic for Pseudomonas endobronchial infections in 

cystic fibrosis. Furthermore nebulisers can be used for a variety of drugs as effectively 

as other delivery mechanisms, case in point being studies by Cates et al that showed 

that short acting beta2 agonists delivered via either nebuliser or MDI/chamber are 

essentially equivalent in the treatment of acute asthma. Moreover, for outpatient 

COPD, 7 studies found that bronchodilator via nebulizer, MDI or MDI/chamber are 
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essentially equivalent (Geller, 2005). Another gain of the nebuliser system is that it 

can be used in combination with Heliox. This is a gas mixture of helium (60-80%) 

and oxygen, which is used to improve airflow in patients with partial airway 

obstruction. In patients with asthma, heliox has the potential benefit of being able to 

carry the nebulised medication further (than air or pure oxygen) into the distal airways  

during severe airway obstruction (Hess, 2008).  

Hindi et al have also shown nebulised sustained release silver carbine complex loaded 

L-tyrosine polyphosphate nanoparticles as potentially translating into less frequent 

dosing of the antibiotic, which in a clinical setting would also help with patient 

compliance (Hindi et al., 2009). 

1.5.1.2.1 Systemic Delivery 

Aside from the localised delivery of therapeutics specifically combating lung related 

illnesses, the potential for systemic delivery of therapeutics is becoming clearer. The 

best example of this to date is the delivery of insulin via aerosol in order to remove 

the need for injections in diabetics. This particular project is covered in detail below. 

1.5.1.3 Mechanism of Action 

The Aeroneb Pro was the nebuliser unit all aerosolisation work was carried out with 

in this thesis.  The Aeroneb Pro is referred to specifically as an actively vibrating 

nebuliser, as it contains a vibrating element which is activated by applying an 

electrical charge to it. Upon activation this vibrational plate responds by moving 

constantly, contracting and expanding. This creates a micro pumping action, 

propelling the domed aperture plate to move up and down. This domed aperture is the 

“Vibrating mesh” referred to. It consists of a small dome shaped plate with up to 1000 

precision engineered holes which are tapered in shape, consisting of a larger diameter 

opening on the side acting as the medication reservoir, and a smaller diameter exit on 

the ventral surface where the aerosol is formed. It is the size of this exit diameter that 

determines the characteristics of the aerosol produced and the flow rate of the 

medication through the nebuliser, i.e., how quickly a fixed volume with specific 

characteristics can be nebulised. As the aperture plate moves up and down by a few 

micrometers, the tapered holes temporarily enlarge as the plate moves up, allowing 

liquid to enter, and then as it enters the downward motion the liquid is forced through 

the small exit on bottom of the plate beneath the reservoir, thus generating the aerosol 

and doing so without recourse to propellants or compressors which could interact or 

effect the aerosol. It also does this without producing heat, giving it a competitive 
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advantage over other types of nebulisers such as sonic nebuliser which do produce 

heat and are therefore unsuitable for certain applications where the therapeutic may be 

heat labile (J.B. Fink, 2001). 

1.5.1.4 Aerosolisation chamber 

The Chamber used in this project was designed especially for use in conjunction with 

the Aerogen Aeroneb pro. It was designed for use with nose only exposure restraints 

with mice, rats, guinea pigs and other small rodents. An important characteristic of the 

chamber is how it holds the aerosol in the time between the aerosols being generated 

and before it reaches the point of inhalation. There are a number of properties of the 

chamber which can affect this. One is to ensure that there are no dead spaces within 

the chamber where the aerosol can settle and not be reached by airflow through the 

chamber. Dead spaces can be caused by sharp angles or major intrusions into the 

chamber itself which would interrupt the circulation of air. The chamber design is 

symmetrical with 4 ports on the current design (vs. 8 on the original concept) for the 

delivery of aerosol (Chapter 5). Within the chamber there are a number of factors that 

will affect the behaviour of the aerosol. These are the rates of collision of aerosol 

droplets with each other, which can cause agglomeration and increase the FPF and 

MMAD and also result in the formation of droplets that fall out of the aerosol and 

deposit on the surfaces of the chamber, which can in turn trap more aerosol as it 

passes alongside these droplets. A way of controlling this is by monitoring the airflow 

within the chamber, which was a factor that we analysed. The positioning of the ports 

strategically centred vertically also helped ensure an even sized aerosol would be 

available for respiration without a bias for smaller or heavier aerosol particles. Due to 

the fact that the particles are in the chamber for a time period before being inhaled, 

the aerosol generated by the nebuliser was analysed for MMAD, FPF and respirable 

dose prior to being connected to the chamber, and subsequently the aerosol generated 

by the nebulisers was tested at the point of inhalation. Characterisation was carried 

out by laser diffraction using a Malvech Spraytech analyser. The chamber is a vital 

component in this aerosol delivery, proper characterisation enables the researcher to 

determine, in conjunction with plethysmography, not only the amount of aerosol 

available but the likely inhaled volume by the animal. The advantage of using a 

chamber system like this multifold, instead of a nebulised drug being only available to 

one animal in the case of a nebuliser with a spacer attached to the restraint, this allows 

for effective treatment of multiples of animals at the same time. It also ensures equal 

exposure to a dose. In the case of expensive proteins or other therapeutics this can 
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help reduce costs and also increases experimental repeatability. This also relates to the 

advantage of a nebuliser in a lab setting, such multiple exposures, reducing costs, time 

and drug expense are not possible with some other mechanism of delivery such as 

those associated with dry powder.  

1.5.1.5 Restraint 

The restraint is the perhaps one of the least prioritised components in relation to the 

restrained delivery of therapeutics to an animal model. Over time the generic restraint 

has remained largely unmodernised, and this appears to be more of a case of oversight 

than it reaching a finely tuned point in its evolution. Overall most restraints available 

to date had resembled a 50ml tube, with a small opening on the conical end for the 

protrusion of the animals nose, and a crude plunger system at the tail end to 

effectively squeeze the animal down to the bottom of the restraint so it could not back 

up the tube and negate the nose only element of the exposure. There are a number of 

serious design flaws in this design that we set out to address relating to the following 

areas: 

1) Comfort 

A: Heat  

B: Positioning and Stress 

C: Animal Safety 

2) Restraint 

3) Ease of Handling for animal technicians 

4) Guaranteeing nose only exposure 

Comfort: 

Heat-Restraints are generally made out of plexiglass type material that can be easily 

shaped to design for needs such as this. However, when an animal is restrained in a 

traditional restraint for a long period of time, the body heat given off by the animal 

has no vent through which it can dissipate away from the animal. This results in the 

animal quickly growing warmer in the chamber during exposure, which will affect 

plethysmograph readings such as rate of respiration and heart rate as it copes with this 

increase in heat. It can therefore affect how well it is exposed to the aerosol, as if the 

animal is increasing its rate of respiration in order to cool down, this can result in a 

shallower breathing pattern, effectively restricting aerosol deposition to only the 

upper regions of the airway. Due to the fact that the animal is breathing quicker, its 

inspiratory pause can be shortened, allowing less time for aerosol deposition in the 

lung. Although these changes can be quite small over a very short period or on a 
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single exposure, over the course of multiple or long aerosol exposure periods this 

could lead to a significant difference, further exacerbated in the case of animal models 

with a disease or damage induced in the lung already. 

Positioning and Stress-Traditional restraints do not keep the animal (mice in 

particular), in a standard anatomical position. Due to the plunger like mechanism of 

keeping them in place they are tightly compressed in the restraint. This forces an 

unnatural breathing position on the animal, again potentially affecting the delivery of 

aerosol into the lungs as desired. This unnatural position can stress the animals, 

resulting again in increased heart rate and shallower heightened rate of respiration. 

Again in disease or damage models the effect of this may be amplified. 

Animal safety- A problem with the generic restraint model is ensuring that the animal 

is effectively restrained in a position that is tight enough to ensure that the exposure 

remains nose only and that the animal cannot turn on itself, without applying to much 

pressure to the animal. If the animal manages to back up at all and turn on itself it can 

quite quickly suffocate itself, and if too much pressure is applied by the animal 

handler then the animal can either get limbs or tails trapped or damaged or may get 

crush injuries 

Restraint-As addressed in the above points, the physical restraint of the animal is not 

in line with what like to be achieved. Most current models require a technician with a 

reasonable level of familiarity and competence with the restraints to rapidly and safely 

change over and restrain units. Also it was my belief that a more effective, technician 

and animal friendly, restraint was achievable that would be more effective at 

restraining the animal in a nose only exposure position without so many 

complications. 

Ease of handling for animal technicians- Current restraints, though simple in design 

tend to be neither ergonomic or handler friendly. In instances where large numbers of 

animals need to be restrained for exposure or for other requirements, and especially in 

the case of disease bearing animals, safe ergonomic handling had potential to be 

greatly improved 

Guaranteeing nose only exposure-This is vital for a number of reasons. In the case 

where plethysmography is taking place a tight seal is required in order to be able to 

gain the most accurate readings. It prevents loss of drug through the restraint. It averts 

deposition of aerosol in the eyes and on the fur of the animal. Rodents are habitual 

cleaners and will likely ingest any aerosol that lands on their bodies. It is also 

important to prevent deposition of aerosol in the eyes for a number of reasons. One is 

animal safety to prevent any potential drug interactions with the eye where exposure 



50 

 

has led to complications such as over dilated pupils (Brodie and Adalat, 2006) and the 

other is to ensure that any effect seen is due to the aerosol being inhaled and not due 

to absorption in through the eye, especially in instances where the therapeutic may be 

for systemic delivery. 

As a result of this data I set about the design of such a restraint, keeping in mind other 

potential uses for such a system, such as injection and biopsy. In conjunction with 

designers from Buxco, we fabricated such a design that is now being considered for 

general production and sale (Chapter5). 

1.5.2   EGTA 

Ethylene Glycol-bis(β-aminoethyl ether)-N,N,N’,N’- Tetraacetic Acid (EGTA) is a 

chemical known for its ability to modify paracellular permeability and enhance gene 

and drug transfer to cells. It is a poly amino carboxylic acid and functions as a 

calcium chelating agent giving it the ability to open or loosen tight epithelial junctions 

in a transient and time dependent manner, and this has been well catalogued both in 

vitro (Martinez-Palomo et al., 1980; Denker and Nigam, 1998) and in vivo 

 (Chu et al., 2001; Johnson et al., 2003). EGTA has the capacity to do this with 

minimal toxicity to the lungs, meaning that its toxicity need not be a rate limiting 

factor for delivery as can be seen with other chemical delivery aids (Chu et al., 1999; 

Johnson et al., 2003). It is very similar to EDTA, a more commonly known chelating 

agent, except that it has a higher affinity for Ca2+ molecules than Mg2
+
 ions and has 

been shown to exhibit a less toxic profile (Ortega et al., 1989). EDTA, as well as 

being more toxic than EGTA, is also less effective at disrupting epithelial tight 

junctions (Chu et al., 2001). This is particularly of note as EDTA has previously been 

delivered in vivo to human normal and cystic fibrosis patient lungs which resulted in 

no significant differences noted in either lung function or in the growth of 

pseudomonas and no other determinable lung toxicity (Hillman and Twigley, 1984; 

Brown et al., 1985)  

1.5.2.1 EGTA and Barriers to Drug and/or Gene Delivery 

In damaged and diseased lungs, and even, in the situation where systemic delivery 

through the lung is being examined, in healthy lung, there are a number of general 

barriers to gene and drug delivery to the surface of the epithelium allowing for 

successful targeting of either the membrane or specific receptors. These barriers 

include indiscriminate barriers such as the glycocalyx, the airway luminal contents 

and the inflammatory response, and more specific defences such as cell type specific 
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barriers and barriers targeting specific sorts of vectors. In certain disease and damage 

models such as cystic fibrosis the expression of functioning apical membrane 

receptors can be greatly reduced or entirely eroded, reducing the number of binding 

sites for vectors dependent on receptor mediated endocytosis for successful 

integration into the target cells. Alongside this vectors or drugs can be met by a 

decreased capacity of the cell itself carry out endocytosis and also some vectors, 

especially in the case of retroviral, AdV and AAV, encounter post nuclear entry 

defects. Taken together in combination, these barriers provide a challenging problem 

to overcome in order to successfully carry out delivery to the Airways (Johnson et al., 

2003). 

In general most initiatives to target this defence involve ‘designer vectors’-vector 

modification as a means to bypass the defence elements (Kreda et al., 2000; Kobinger 

et al., 2001). However EGTA shows another way to achieve the goal of bypassing 

elements of the defences. By opening and loosening tight epithelial junctions it 

exposes receptors located on the basement membrane of the epithelial cells and the 

cells below in the endothelium, opening up a far larger surface area with a greatly 

increased number of receptors available for targeting, and has also been shown to 

work in vitro and in vivo (Johnson et al., 1998; Chu et al., 2001). 

1.5.2.2 EGTA Use In Vitro 

A large number of studies have been carried out examining the effect of EGTA on 

cell lines and undifferentiated cells. A549 epithelial cells were utilised to examine 

whether or not EGTA increased the effectiveness of AdV transfer of a gene, in this 

instance a Luciferase reporter construct, into a cell line. The use of EGTA resulted in 

a 600% increase in the level of reporter detected in the cells treated with EGTA and 

then the AdV construct versus the cells treated with just the AdV construct (Myles et 

al., 2002). The same study also treated fetal distal lung epithelium cells and primary 

human airway epithelium cells ± EGTA with AdV lacZ and across the board it 

resulted in a significantly higher level of expression when EGTA was used to pre-

treat the cells. In a more detailed look at the mechanism of action, it was concluded 

that while EGTA does loosen epithelial tight junctions, there may also be other 

mechanism at work. This was elucidated by growing airway epithelial cells on plastic 

at very sub-confluent levels. Again, EGTA pre-treatment significantly increased the 

level of Luciferase expression compared to the no EGTA controls. This means that in 

a situation where tight epithelial junctions were not a major obstacle to successful 

transfection, use of EGTA still enabled higher levels of transfection (Myles et al., 
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2002). Of particular interest was a similar study carried out using NHBE cells, where 

EGTA pre-treatment was again determined to be capable of significantly increasing 

expression levels when the cells were subsequently treated with an AdV construct 

(Chu et al., 2001). Cells which had CA
2+ 

free media added before treatment, which 

would result in a reduction of the overall available Ca
2+

 available to the cells, also 

resulted in increased levels of AdV transfection. The cells used were polarised NHBE 

cells grown in ALI, of the same type used in this study. 

1.5.2.3 EGTA Use In Vivo 

Due to EGTAs success in in vitro conditions a natural progression would be to 

consider it as s potential transfection reagent for human use in vivo. Prior to this it is 

important to study its effects in either ex vivo and/or animal models. As such a study 

was carried out (Johnson et al., 2003) examining the effects of EGTA compared to a 

PBS control and a number of Medium Chain Fatty Acid (MCFA) transfection 

reagents, Sodium Laurate (C12) and Sodium Caprate (C10) which act as non-ionic 

surfactants and have been shown to work in vitro by the redistribution of Claudin1 as 

a means to increase paracellular permeability (Coyne et al., 2000). Examination of the 

effects of EGTA showed that it triggered a significant neutrophil response and 

increase in pro-inflammatory cytokines (Table 1.1). It also led to a mild level of 

inflammation but did not affect airway responsiveness.(Johnson et al., 2003). 

Pre-instillation into mouse trachea of EGTA prior to treatment with an AdV-β-Gal 

construct significantly increased reporter uptake into the airway epithelium (Chu et 

al., 2001). From studies on cells lining human airway epithelium it was determined 

that the increase of transfection by the AdV vector in vivo was due to an increase in 

availability of internalising receptors that were exposed on the basolateral surface of 

the cells lining the airway epithelium by the EGTA loosening the tight epithelial 

junction, thereby providing access to the vectors to these otherwise hidden receptors 

(Pickles et al., 1998; Walters et al., 1999). Myles et al also showed this successful 

increase in CD-1 mice in vivo by utilising EGTA prior to vector treatment (Myles et 

al., 2002). Studies of EGTA in Humans in vitro studies with EGTA have shown also 

that EGTA has the capacity to change the physiochemical properties of 

M1/MUC5AC, which compliment earlier canine studies in vivo which suggest that it 

can also alter the solubility of the respiratory mucous (Coles et al., 1982). 
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Table 1.1 Toxicity profile of EGTA 

(Adapted from Table2, (Johnson et al., 2003)). Summary data for toxicity induced by 

EGTA administration relative to vehicle (PBS) control. 

 

 

 

 

 

 

 

 

 

Toxicity Profile Of EGTA 

In vitro  

Histology No change 

LDH No change 

P. aeruginosa/IL-6 No change 

P. aeruginosa/IL-8 Increased 

In vivo  

Wet-to-dry ratios No change 

BAL fluid  

     Murine Albumin No change 

     LDH No change 

     Cell count Increased 

     MIP-2 Increased 

     mKC Increased 

     mTNF-α No change 

     mIL-6 Increased 

     mIL-1β Increased 

Histology Mild 

Airway Responsiveness No change 
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1.5.3 Particle mediated gene transfer/Particle bombardment 

Particle mediated gene transfer is a method for the delivery to cells of exogenous 

materials, such as proteins, DNA, RNA or chemicals. It is done by adsorbing the 

exogenous material onto inert metal particles and physically shooting them under high 

pressure through the cells surface and into the cytoplasm and/or nucleus of the 

targeted cells. The method was first derived in 1987 by Klein et al as a way to 

transfect plant cells with foreign DNA, specifically as a means to avoid the limitations 

of host-range restrictions found with Agrobacterium Tumefaciens (Klein et al., 1987), 

with A. Tumefaciens for example, only naturally able to transfect DNA in 

dicotyledons, and many of the main food plants and cereals mass produced such as 

grain crops are monocotyledons.  A. Tumifaciens is a gram negative bacterium that 

naturally infects over 140 species of dicot plants and where no host restrictions were 

present, was successfully used to transfect plants with plasmids of interest since 

Schell J and Van Montagu M published their work on the Ti plasmid in 1977 (Schell 

and Van Montagu, 1977). It was also designed with the idea of bypassing problems 

associated with protoplast regeneration, which was both more timely and painstaking. 

Most crucially at the time it provided the potential for the successful transformation of 

important monocotyledons such as grasses and grains which hitherto had been 

impervious to other methods of genetic manipulation. Zelenin et al first demonstrated 

this successfully by showing transformation of Hordeum vulgare L. (Barley) by early 

1989 (Zelenin et al., 1989). Utilizing chimearic constructs of Beta-glucuronidase 

(GUS) (Colour metric- transfected cells stain blue) and Neomycin phosphotransferase 

11 (NPT2-confers resistance to a wide range of aminoglycoside antibiotics such 

Kanamycin and Geomycin and G418 by phosphorylating them) under the control of 

either the Agrobacterium TR 1’2” promoter or the Cauliflower Mosaic Virus 35 S 

Promoter.  

The method was initially published by Klein et al in 1987 (Klein et al., 1987) as a 

mechanism to transfer genetic material into epidermal cells of Allium cepa (Onion). It 

was a crude system involving a modified pistol, a vacuum and tungsten powder as the 

transfer material to carry the DNA to the target site. Essentially a firing pin was 

triggered, igniting gunpowder which then shot the bullet coated with DNA coated 

tungsten microparticles as far as a stopping screen, stopping the bullet but allowing 

the microparticles to continue. Though it destroyed the central region of the epidermal 

layers targeted, it was successful in transferring the genetic material into the halo of 

cells surrounding the blast site as shown by the expression of viral inclusion bodies 
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after transfection with Tobacco Mosaic Virus and of an increase in CAT 

(chloramphenicol acetyltransferase) activity after bombardment with p35S-CAT 

plasmid.  

There were a number of serious limitations with this technique as regards its 

suitability for the transfection of mammalian cells and tissue. Though the force of the 

bullet carrying the DNA could be modified by altering the amount of explosive 

propellant used it was nonetheless not as controllable as desired. The tungsten 

particles used would also prove toxic to many cells types. As soon as late 1989 

however the first reports were published with successful transfection of mammalian 

NIH 3T3 mouse cells by the pSV3neo plasmid (G418-resistant) (Zelenin et al., 1989). 

In this instance tungsten particles were again utilized as a microcarrier for the DNA. 

Stability of the transformed murine cells was analysed by culturing the cells in G418 

containing medium for a period of 3 weeks. 

Two years later the same group published data showing successful transfer of the 

CAT enzyme gene, under 3 different promoters, both into ex-vivo tissue samples of 

mouse and rat liver, kidney and mammary glands (Zelenin et al., 1991). They also 

showed successful transformation of liver cells in vivo. This was done by opening the 

abdomen, then exposing and elevating part of the liver with the use of surgical pads. 

The remainder of the animal was shielded from bombardment by means of plastic 

sheeting and the liver was then bombarded before being repositioned within the 

animal for 24 hrs before harvesting. In all of the tissue types, in vivo and ex vivo, CAT 

activity was detectable  

As the technique advanced the basic principles remained the same, but the 

mechanisms were designed to be better regulated. One of the most significant 

modifications was the substitution of a helium blast mechanism in the place of the 

gunpowder discharges. Now inert helium gas is pumped into a chamber sealed with a 

rupture disk. These rupture discs are designed to withstand a certain defined pressure, 

after which they will give way and allow a sudden discharge of built up gas and 

subsequently project the macrocarrier. The macrocarrier is a disk that was 

incorporated to replace the bullets used in the earlier set up. This macrocarrier is itself 

coated with a suitable Microcarrier. Most of this was pioneered in 1991 (Williams et 

al., 1991) with successful expression of foreign genes in murine liver and skin cells. 

In this instance human Beta Actin promoter was paired with Firefly Luciferase to 

allow for visual detection of successful transformation. They also managed to modify 

the device so it could be handheld and used without vacuum so as to allow easier use 

in the bombardment of skin in vivo. In this study a non replicating promoter was used 
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and it was noted that for skin cells treated in vivo detection lasted approx 3 days, the 

brevity due to the natural cornification and sloughing of the cells as they matured. 

However they reported detection in the liver up to a period of 23 days. It also 

displayed very little damage to the soft internal organs targeted. 

More modifications of the technique have taken place as requirements for more 

selective control have materialised and the technique itself has grown in use from just 

its envisioned use of transforming plants to gene-gun immunisation with DNA as a 

powerful mechanism of vaccination against infectious diseases and tumours (Seder et 

al 2000). It has also been employed in the biolistic delivery to live embryos initially 

using the  PDS-1000/He system from Biorad (Zelenin et al., 1993) and later via a 

version which is a pneumatic capillary gun, using multiple plasmids targeting the 

same cells to both “knock in” and “knock down” specific genes leading to huge 

potential in animal models (Shefi et al., 2006). In 2005 it was shown that epidermal 

biolistic delivery help reduce allergic sensitivity, possibly as a means of controlling 

diseases such as asthma (Kendall et al., 2006).  

Gold has now, especially in mammalian system, replaced tungsten as it exhibits less 

cellular toxicity than that of tungsten and is inert in mammalian systems. It also has a 

high chemical stability, is a dense material and has a high affinity to biomolecules. 

Gold molecules above 2nm in diameter have been shown, even in an inflammation 

stimulating environment, not to induce toxic or adverse effects, with particles smaller 

than this potentially interacting with DNA in the cell to cause adverse toxic effects 

(Brandenberger et al., 2010) However any unnecessary exogenous material can 

potentially lead to unforeseen stresses or complications and as result would be less 

desirable as a medical tool for targeted delivery. Work by Lian et al has shown that 

intracellular delivery can be achieved by bombarding cells or tissues with accelerated 

molecules or bacteria without the need for carrier particles and Bombardment has also 

been carried out using no carrier on cells in culture, including primary cells and tissue 

explants using PDS-1000/He system from Bio-Rad and used successfully in the 

delivery of plasmid DNA and protein (Lian et al., 2007). 

This has lead to a progression whereby DNA can be projected into cells without the 

need for not only such a carrier but without the restrictions of vacuum and large fixed 

devices by utilizing a portable endoscope device (O’Dea et al., unpublished data). 

The device utilized in our Lab was the commercially available Helios pds1000 from 

Bio-Rad. This particular system worked as follows. A disc macrocarrier is projected 

at force down a short barrel until a stopping screen is reached, this retards the 

progression of the macrocarrier disc, but the microparticles get dislodged from the 
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surface of the macrocarrier and continue on through a vacuum until they reach the 

target site (Figure 1.7). This mechanism allows for the control of several different 

variables allowing the optimisation of the technique between different cells types. 

One can control the pressure of the Helium blast, the size and type of microcarrier 

used, the vacuum pressure in the chamber and the length of distance from the 

stopping screen to the target site, all of which impact on the force with which the 

target cells are exposed and also on the surface area exposed. 

The purpose of this work was multifold. We wanted to be able to quickly insert 

various plasmids into different cell lines that were present in the lab to analyse the 

effects of the encoded DNA. We also wanted to compare the technique directly with 

other methods of transfection which were commercially available for success rates. In 

particular we were interested in being able to successfully transfect primary cells with 

our plasmids of interest using a physical method and therefore not jeopardising their 

characteristics by using chemical or viral transfection methods or antibiotics. The last 

purpose was to gain a further understanding of the technique with a view to 

examining the potential for a different commercially viable and hospital friendly 

device that could be used for targeted drug, protein or DNA delivery.   
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Figure 1.7 Helios pds1000 from Bio-Rad (top) and Schematic (below) 
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1.6 Insulin as an example of a model therapeutic for inhaled 

therapeutics. 

Insulin is the best example to date of a protein based inhalation therapeutic brought to 

market. It is a 6kDa protein used for the treatment of type I and type II diabetes, with 

a growing market. Insulin is required by diabetics in order to control both their blood 

sugar levels and also the HbA1c, or glycemic control, levels. Insulin use for the 

treatment of diabetes dates back to the 1920’s and its widespread use has led to its 

position as first amongst proteins on a number of fronts. It was the first protein 

molecule to have its primary structure fully analysed, the first to be fully synthesised, 

the first to have its 3D structure mapped and the first biotech product to be sold on a 

large scale. 

Currently diabetics control their blood sugar levels via daily injection routines of 

insulin or by use of an insulin pump, which allow precise dosage levels to correct for 

food ingested and maintenance of blood sugar levels, down to fractions of 1/20
th

 of a 

unit in the case of pump users. The study of inhaled insulin being used as an inhaled 

therapeutic is not novel and dates back to experiments in 1924 (Heubner W, 1924). 

This has progressed to large scale human clinical trials by a number of companies in 

an effort to bring the aerosolised form to market, culminating in the launch of the 

inhaled insulin therapeutic Exubera® in the beginning of 2006, following approval by 

the FDA and the European Union Drug Advisory Board (Lenzer, 2006). It was 

brought to market by Pfizer, in partnership with Nectar. By the time it reached the 

market, inhaled insulin had become one of the most comprehensively tested drugs to 

be approved, and many other major biopharma companies such as Novo, Eli Lily and 

Mannkind amongst others, were also carrying out extensive clinical trials at different 

phases of development. However in little over a year and a half, in October 2007, 

Pfizer announced it was withdrawing the drug from the market and ceasing 

production due to unsuccessful uptake in the market (Siekmeier and Scheuch, 2008). 

This poor performance of what had been a highly anticipated “block buster” drug saw 

nearly all the other companies pursuing the inhaled insulin market cease all 

operations, trials and development related to the product. This meant that in less than 

24 months inhaled insulin went from being potentially a major market force and 

paving the way for inhalation therapeutics to being one of the costliest exercises in 

failed drug marketing in history (Heinemann, 2008). 

 There are a number of different reasons for the failure of Exubera as a drug product, 

and they are linked to both clinical concerns as well as poor marketing strategies. 
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Primary amongst these is that there was no perceived need for inhaled insulin, with 

s.c. insulin being an established and successful mechanism of disease control that is 

already in place and well understood by both clinicians and patients. This was a 

concern even amongst the members of the FDA advisory panel on the drug, with the 

acting chair of the Exubera review committee voting against the drug due to concerns 

over erratic absorption profiles and complex dosing conversions (Lenzer, 2006). 

Erratic absorption of the drug was identified as a problem in patients with chronic 

lung diseases such as emphysema and asthma where reduced uptake of the drug was 

seen, and in smokers where tobaccos smoke induced damage saw more rapid uptake 

of the insulin into the system, contra indicating these groups of patients for the drug. 

Patients suffering period of lung infection and those exposed to even environmental 

tobacco smoke could also suffer altered absorption profiles, and exercise after 

inhalation of the insulin could result in increased absorption rates into the blood 

system from the lung and increase the risk of a hypoglycemia event. The dry powder 

formula the drug was released in offered certain advantages to patients in terms of 

drug stability, allowed for an uncomplicated inhaler device, and potentially the use of 

more complex formulations in the future. However a liquid drug would have allowed 

for more accurate dosing at the cost of requiring a more sophisticated nebuliser 

device.These issues are not just specific to the delivery of insulin and provide 

valuable information in dosing strategies for all drugs targeted for lung delivery for 

either local or systemic effect. 

There were also a number of side effects associated with the inhaled insulin. Common 

were coughing, sore throats, shortness of breath and dry mouth after administration. 

Also seen throughout the clinical trials was a loss of FEV1, which members of the 

FDA advisory panel that voted against the initial approval of the drug voiced amongst 

their concerns, citing that reversals of decreased FEV1 in type I diabetics was not 

convincing (Lenzer, 2006). However over a two year period, although Exubera users 

did show a decrease of FEV1, it was on average only 20mls, measured against an 

average baseline of 3 litres. It was also shown to be a static, non progressive decrease 

that was reversible upon cessation of delivery of the drug product (Selam, 2008).  

Also a potential issue with inhaled insulin was the risk of lipodystrophy occurring in 

the lung. Lipodystrophy occurs in over 30% of patients on s.c. insulin and is a result 

of insulin’s anabolic activity at the site of injection, promoting protein and fat 

formation. Other issues with the drug involved the initial cost of the device and the 

training required for each patient to ensure that they were properly administering the 

insulin for maximum benefit. As there was no critical need for inhaled insulin the 
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additional costs over injections and lack of accuracy compared to pumps reduced the 

willingness of clinicians to prescribe Exubera, especially in line with the time and 

costs associated with the training of each patient. Inhaled insulin was also perceived 

as being more time consuming than injection, requiring blister insertion, air pump 

activation and inhalation of the standing cloud taking up to minutes to complete 

depending on the required dose.  

After the launch and subsequent withdrawal of the drug a number of important 

considerations came to light with respect to the potential of inhaled insulin as a drug. 

One of the initial general concerns relating to the product was that the use and size of 

the inhaler would mean patients would be unreceptive to the product. However this 

proved to be unfounded amongst patients who were prescribed the device. The inhaler 

was also the first generation of mass market nebuliser for this type of purpose and was 

bulky, whereas technology has progressed and companies are now working on 5
th

 and 

6
th

 generation inhalers, such as Mannkinds Technosphere palm size inhaler.  

The failure of Exubera has left the future of delivery of proteins for systemic and/or 

frequent use on uncertain ground. After ceasing the marketing and sale of the drug, 

ongoing clinical trials of the drug with Pfizer revealed 6 patients, all of whom were 

former smokers, versus 1 control patient who remained on subcutaneous insulin, 

developed lung cancer. The number reported was not statistically significant, however 

in light of the revelations Nectar announced a cessation of all spending on all budgets 

associated with inhaled insulin. Currently the only remaining company developing 

insulin for inhalation is Mannkind with its Technosphere® insulin product. They are 

in the process of carrying out clinical trials, and to date have not reported increased 

incidences of lung cancer amongst any group of patients. Mannkind hopes to succeed 

where Pfizer has failed by providing a faster acting insulin formulation that will more 

effectively mimic the first phase insulin response seen in healthy individuals, 

providing patients with more effective control over HbA1c levels and clinicians with 

a product that offers pharmacological and clinical benefits over s.c. insulin 

(Heinemann, 2010). The Mannkind formulation utilises a pH sensitive protein carrier 

in its formulation to increase the rate of delivery.  By better targeting select patient 

groups initially before rolling the drug out to larger populations of target users and by 

providing a clinical benefit with the product over currently available options, 

Mannkind could surmount the obstacles faced by Pfizer. Not only would this be of 

high value and importance for diabetics, but it would also provide a critical proof of 

principle for the large scale delivery of a whole raft of inhalation based therapeutics 

targeting different aspect of various diseases. 
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1.7 Mechanisms for improving delivery 

Aside from the methods discussed throughout, there a number of methods available 

for improving the delivery of inhaled molecules. These methods can play a number of 

different roles, from aiding in specificity, to protecting the therapeutic molecule from 

degradation, providing timed release, increasing the spread of the molecule over a 

greater surface area, removing or temporarily disabling obstacles to delivery inherent 

in the lungs such as tight junctions or mucus build up. They can be availed of for a 

range of different delivery techniques, and of particular interest, they can be employed 

for use in combination with nebulisation and inhalation technologies. 

Liposomes are commonly used in vitro for the application of gene therapy. When 

forming a complex with a nucleic acid, liposomes encapsulate it within a 

hydrophobic/philic bi-layer, depending on the liposomes chemical structure. This 

encapsulation not only serves to protect the cargo from degradation by internal 

defence mechanisms in vivo but also makes it more compact, making it less 

susceptible to damage resulting from the process of nebulisation. Liposomes can 

encapsulate hydrophilic molecules in their core and can contain hydrophobic 

molecules within the lipid bi-layer. The surface of the liposomes is structurally similar 

to that of the target cells membrane enabling the liposomes to keep the cargo 

encapsulated and protected until the cell contact is made, at which point the liposome 

can merge with the cell membrane and begin the release of its cargo into the cell. In 

addition to the protection of the therapeutic cargo, liposomes can be utilised as a 

system for time dependent drug release, allowing one delivery application to release a 

constant sustained supply of therapeutic over a definable time period (Siekmeier and 

Scheuch, 2008). Liposomes are particularly well suited to the delivery of nucleic acid 

cargos, such as seen in the delivery of siRNA and plasmid DNA in Chapter 5, but are 

also potential carrier molecules for drugs such as insulin where a constant slow 

‘background’ release of the drug is required over a prolonged time period. 

Also under development is the use of micro-spheres in the delivery of proteins in a 

controlled manner. Similar to liposomes they can facilitate a time dependent release 

profile of delivered drug and can protect the drug from degradation in vivo as well as 

ensuring the delivery method utilised has no untoward effects on the drug. By 

controlling the size, structure and chemical composition of the carriers it facilitates a 

prediction of the time release profile of the carrier and, in the case of aerosol delivery, 

the lung deposition profile. This allows for the development of carriers tailored to 

facilitate increased bioavailability and residency times in the lung (Cryan, 2005). 
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Small hydrophobic carriers are more rapidly absorbed than liposomes, so they can be 

more desirable for the delivery of therapeutics in situations where rapid onset of 

action is required such as bronchoconstriction or hypoglycemia. Their absorption 

times are in the range of seconds to minutes depending on composition. Hydrophilic 

compounds tend to be absorbed at a slower rate (Patton et al., 2004).  

Chitosan is a prime example of an almost ideal delivery system that small 

microcarriers and liposomes for example strive to replicate in a number of areas. It is 

non toxic, biodegradable and does not induce a strong foreign body response by the 

host immune system. It also possesses its own antimicrobial activity against fungi and 

bacteria, favouring it for applications such as delivery to an infected lung. Chitosan 

also facilitates easy to form highly stable complexes with DNA (Shi et al., 2006). 

Other means for the assisting in the delivery of therapeutics involves the use of 

chemicals such as surfactants to increase the surface area over which an inhaled 

therapeutic will spread and therefore increase the rate of uptake of the drug or the use 

of anti mucin drugs to break down build up of mucus in clogged airways enabling 

better transport of the drugs into the system. Complexing drugs with antibiotics can 

facilitate cell type specific delivery or enhanced transport through the epithelium. FcN 

receptor for example is present in the epithelium of the lung in human adults. It is a 

functional active transport mechanism that has been identified as a potential means for 

erythropoietin (EPO) delivery through the use of EPO-Fc monomers (Bitonti et al., 

2004). EGTA (Section 1.5.2) is an example of a calcium chelating agent that can be 

utilised during drug delivery to temporarily disrupt tight junctions to facilitate better 

transport of therapeutics across the epithelial barrier. In situations where a viral 

transfer mechanism is used, such as rhinovirus, removal of calcium has been shown to 

significantly increase infection with the carrier virus (Jakiela et al., 2008). This type 

of pre-treatment prior to therapeutic delivery can be used in conjunction with other 

mechanisms of delivery such as liposomes or antibodies to ensure that not only does 

the therapeutic successfully cross the epithelial barriers but its release is better 

targeted and/or controlled.  
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1.8 Aims 

The overall aim of this thesis was to establish in vitro and in vivo models of lung 

disease and methods to target BMP signalling in these models. 

Specifically we aimed to:  

 Further confirm the role of BMP signalling in animal lung disease models. 

 Assess in vitro lung disease and treatment models. 

 Assess in vivo lung disease and treatment models. 

 Establish clinically relevant methods to target BMP signalling in vivo. 

 To test the safety and efficacy of aerosolised therapeutic strategy in an animal 

model. 
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2  Materials And Methods 
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2.1 Materials 

2.1.1 Reagents 

Reagent Company Address 

1.6µm Gold particles/Microcarriers Bio-Rad California, USA 

100bp Ladder Promega 
Madison, WI, 

USA 

1Kb DNA Ladder Invitrogen Paisley, UK 

2X TGS Running Buffer Invitrogen Paisley, UK 

30% Bis-Acrylamide Bio-Rad Herts, UK 

ABC Lowry Protein Assay Bio-Rad California, USA 

Acridine Orange Sigma Dublin, Ireland 

Agarose Sigma Dublin, Ireland 

Ammonium Persulphate Sigma Dublin, Ireland 

Antigen Retrieval Solution Vector Labs Dublin, Ireland 

BEGM Media Lonza Maryland, USA 

Blocking Serums Sigma Dublin, Ireland 

BMPR-II siRNAs Qiagen West Sussex, UK 

Bradford Protein Assay Bio-Rad California, USA 

BSA Sigma Dublin, Ireland 

Calcium Chloride 
Reidel-

deHaen 

Hanover, 

Germany 

Carrier Free rhBMP4 R&D Oxon, UK 

Chloroform Sigma Dublin, Ireland 

Collagen, Human Placental Sigma Dublin, Ireland 

Complete Mini Protease Inhibitor 

Cocktail 
Roche Dublin, Ireland 

Cryovial NalgeNunc USA 

DAPI Sigma Dublin, Ireland 

DEPC Sigma Dublin, Ireland 

DMEM :F12 Gibco Paisley, UK 

DMSO Sigma Dublin, Ireland 

Dnase (PCR) Invitrogen Paisley, UK 

DNase1 (MAEC isolation) Roche Dublin, Ireland 

dNTPs Invitrogen Paisley, UK 
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DPX Mountant Sigma Dublin, Ireland 

ECL Kit Amersham 
Buckinghamshire, 

UK 

Eclipse E200 UV microscope Nikon Surrey, UK 

EDTA Sigma Dublin, Ireland 

Elastase, pancreatic, Type IV porcine 

pancreas 
Sigma Dublin, Ireland 

Eosin Sigma Dublin, Ireland 

Ethidium Bromide Sigma Dublin, Ireland 

EtOH Sigma Dublin, Ireland 

Euthanal (Pentabarbitone) 
Rhône 

Meriéux 
Ireland 

Faramount aqueous mounting medium DAKO Galway, Ireland 

FBS Gibco Paisley, UK 

Fibronectin Sigma Dublin, Ireland 

Film Fixer and Developer Kodak Dublin, Ireland 

Glyceine 
Reidel-

deHaen 

Hanover, 

Germany 

Glycerol Sigma Dublin, Ireland 

Hams F12 Gibco Paisley, UK 

Harris' Modified Hemotoxylin Sigma Dublin, Ireland 

Hydrocortisone Sigma Dublin, Ireland 

Hyperfect Transfection Reagent Qiagen West Sussex, UK 

Imject Alum Adjuvant Thermo Dublin, Ireland 

Insulin-Transferrin-Selenium Gibco Paisley, UK 

Isoflurane TCD Dublin, Ireland 

Isopropanol Sigma Dublin, Ireland 

L-Glutamine Gibco Paisley, UK 

Lipofactamine 2000 Invitrogen Paisley, UK 

M199 Basal Media Gibco Paisley, UK 

Macrocarriers Bio-Rad California, USA 

Magic Mark XP Protein marker 
Molecular 

Probes 
Dublin, Ireland 

MAPK1 siRNA Qiagen West Sussex, UK 
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Marvel non fat dried milk 
Dunnes 

Stores 

Maynooth, 

Ireland 

Maxi Prep Kit Qiagen West Sussex, UK 

MeOH Sigma Dublin, Ireland 

Microcarriers BioRad, California, USA 

Mini Prep Kit Qiagen West Sussex, UK 

M-MLV reverse Transcriptase Invitrogen Paisley, UK 

MTS/Cell Titer 96® Aqueous One 

Solution Proliferation Assay 
Promega 

Madison, WI, 

USA 

Nitrocellulose membrane Amersham 
Buckinghamshire, 

UK 

Oligo(12-18) dT Primers Invitrogen Paisley, UK 

Optimem Gibco Dublin, Ireland 

Ovalbumin Sigma Dublin, Ireland 

Oxygen BOC Gases Dublin, Ireland 

Paraformaldehyde Sigma Dublin, Ireland 

PBS Sigma Dublin, Ireland 

Penicillin-Streptomycin Gibco Paisley, UK 

pMGFP Promega Dublin, Ireland 

Poly Acryl Carrier MRC Ohio, USA 

Precast 10% Polyacrylamide Tris-HCl 

Gel 
Bio-Rad California, USA 

Qiashredder Qiagen West Sussex, UK 

Quantitect 18S primer Kit Qiagen West Sussex, UK 

Quantitect SYBR Green PCR Kit Qiagen California, USA 

RIPA Buffer Sigma Dublin, Ireland 

Rnase OUT Invitrogen Paisley, UK 

RNeasy Mini Kit Qiagen California, USA 

Rosse Cat Catheder C&M Vetlink Limerick, Ireland 

See Blue Protein Molecular Weight 

Ladder 
Invitrogen Paisley, UK 

Sodium Chloride Sigma Dublin, Ireland 

Sodium Dodecyl Sulphate Sigma Dublin, Ireland 

Speedy-Diff Clin-Tech Guildford, UK 
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Spermidine Sigma Dublin, Ireland 

Stopping Screen Bio-Rad California, USA 

SYBR Green 2Step PCR Qiagen West Sussex, UK 

Taq polymerase-Go Taq Flexi Promega 
Madison, WI, 

USA 

TEMED Sigma Dublin, Ireland 

Tissue culture semipermeable inserts 
Greiner Bio-

One 
Herts, UK 

TMB Sigma Dublin, Ireland 

Transblot Filter Paper Bio-Rad Herts, UK 

Tris   BDH Dublin, Ireland 

TRIS Glyceine 10X Buffer Bio-Rad California, USA 

TriZol Invitrogen Paisley, UK 

Trypsin for MAEC isolation Sigma Dublin, Ireland 

Trypsin-EDTA Gibco Paisley, UK 

Tween-20 Sigma Dublin, Ireland 

Ultroser-G Serum Gibco Paisley, UK 

XL-1 Blue E-Coli Stratagene Cork, Ireland 

Xylene BDH Dublin, Ireland 

β-Mercaptoethanol Sigma Dublin, Ireland 
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2.1.2 Instrumentation 

Product Company Address 

Aeroneb Pro Nebuliser + Nebuliser Units Aerogen Galway, Ireland 

Aerosol Chamber Buxco Hampshire, UK 

ABI PRISM® 7900HT 
Applied 

Biosystems 

California, 

USA 

Airflow Regulator for nebulisation Buxco Hampshire, UK 

Benchtop Centrifuge Hettich Germany 

Citadel 1000 Shandon Dublin, Ireland 

CS3 Software Adobe 
California, 

USA 

Cytospinner Rotafix 32 Hettich Germany 

Densitometer Bio-Rad Herts, UK 

Desktop centrifuge Eppendorf Cambridge, UK 

FACScan Flow Cytometer BD Bioscience Oxford, UK 

Gradient Cycler- MyCycler Bio-Rad 
California, 

USA 

Mouse Restraints Buxco Hampshire, UK 

Nanodrop 1000 spectrophotometer Thermo Surrey, UK 

New Brunswick E25 Excella Shaker Eppendorf Cambridge, UK 

Olympus 1030µ Digital Camera Olympus Dublin, Ireland 

Olympus IX61 Fluorescence Microscope Olympus 
California, 

USA 

Olympus IX81 Fluorescence Microscope 
Mason 

Technologies 
Dublin, Ireland 

Opticon thermal cycler MJ Research Massachusetts 

Plethysmograph Buxco Hampshire, UK 

Quantity One Software Bio-Rad Herts, UK 

Spraytech Analyser Malvern 
Worcestershire, 

UK 

Tecan Plate Reader Unitech Dublin, Ireland 

Trans-Blot SD semi-dry transfer cell Bio-Rad Herts, UK 

Western Blotting Electrophoresis Rig Bio-Rad Herts, UK 

XA Software Package Buxco Hampshire, UK 
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2.1.3 Primers 

2.1.3.1   Primers for QPCR 

Primer Id Species Sequence (5'-3') 

Annealing 

Temp. 

Product size      

(base pairs) 

Id1 For hu/mon CGTGCTGCTCTACGACAT       55°C 95bp 

Id1 Rev  GAATCTCCACCTTGCTCACC       

     

P21 For hu/mon CTGCCCAAGCTCTACCTTCC   55°C 123bp 

P21 Rev  CAGGTCCACATGGTCTTCCT         

     

BMP2 For hu/mon ATGGATTCGTGGTGGAAGTG     58°C 198bp 

BMP2 Rev  GCTGTTTGTGTTTGGCTTGA       

     

PCNA For hu/mon AAGAAGGTGTTGGAGGCACT     58°C 195bp 

PCNA Rev  TTTGGACATACTGGTGAGGTTC     

     

BMPR-IA For     hu/mon TCGTGATTTGGAACAGGATG      58°C 98bp 

BMPR-IA Rev      CCAGACCCACTACCAGAACTTT      

     

BMPR-IB For     hu/mon ACTCAAGGCAAACCAGCAAT 58°C 204bp 

BMPR-IB Rev      TCTGTTCAAGCTCTCGTCCA        

     

BMPR-II For     hu/mon CAGAGACCCAAGTTCCCAGA            58°C 139bp 

BMPR-II Rev      GTTCAGCCATCCTTTCCTCA             

     

Smad1 For     hu/mon ATGTTCAGGCGGTTGCTTAT               58°C 148bp  

Smad1 Rev      CGGTTCTTATTGTTGGAAGG        

     

Smad4 For     hu/mon TTGATGACCTTCGTCGCTTA       58°C 84bp 

Smad4 Rev      CTTTGATGCTCTGTCTTGGGTA        

     

Smad5 For     hu/mon GGAGAGGTGTATGCGGAATG     58°C 93bp 

Smad5 Rev      GACAGTGGTGGGATGAAAGC        

     

E-cadherin For hu/mon GGCTGGACCGAGAGAGTT    58°C 350bp 

E-cadherin Rev  CTGCTTGGCCTCAAAATCC   

     

GAPDH For  hu/mon CATCCATGACAACTTTGGTATCGT 55&58°C 74bp 

GAPDH Rev      CAGTCTTCTGGGTGGCAGTGA   

     

Snail1 For   hu/mon TTTACCTTCCAGCAGCCCTA 58°C 108bp 

Snail1 Rev   GACAGAGTCCCAGATGAGCA   

     

Snail2 For    hu/mon GCCAAACTACAGCGAACTGG 58°C 239bp 

Snail2 Rev       AGGAGGTGTCAGATGGAGGA   

     

BMPR-II For hu/ms GGCACATAGGTCCCAAGAAA 54&56°C 88bp 



72 

 

BMPR-II Rev  TTCATGCTCATCAGGACTGG   

     

18S Ribosomal 

RNA (Rn18s) 

ms Quantitect primer kit for QPCR, 

sequence not available 

54-60°C 169bp 

     

     

     

2.1.3.2   Primers for rtPCR 

Primer Species Sequence (5'-3') 

Product size 

(Base Pairs) 

Annealing 

Temp. 

Smad3 For ms AGACGCCAGTTCTACCTCCA 466bp 58°C 

Smad3 Rev  GTAAGTTCCACGGCTGCATT   

     

CC10 For ms ATCGCCATCACAATCACT  282bp 55°C 

CC10 Rev  GAATCTTAAATCTTGCTTACACAGAGG   

     

BMPR-II For hu/ms GCCCGCTTTATAGTTGGAGA 144bp 55&58°C 

BMPR-II 

Rev  AGCAAGACGGCAAGCGATTA   

     

GAPDH For hu/ms CTGCACCACCAACTGCTTAG 487bp 55°C 

GAPDH Rev  CCAGGAAATGAGCTTGACAAA    

 

Key      hu: human 

             ms: mouse 

             mon: monkey 
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2.1.4 Antibodies 

Antibody/Clone Raised In IF conc. WB conc. Company 

     

E-Cadherin/36 Mouse 1/200 1/2000 BDB 

     

Smad4/B8 Mouse 1/100 1/100 SC 

     

Smad8/A-17 Goat 1/50 N/D SC 

     

BMPR-IA/H60 Rabbit 1/20 1/200 SC 

     

BMPR-II/a Rabbit n/a 1/200 Abgent 

     

BMPR-II Goat n/a n/a R&D 

     

pSmad 1/5/8 Rabbit 1/50 1/1000 CST 

     

CC10/S20 Goat 1/100 n/a SC 

     

Id1/Q11 Mouse n/a 1/100 SC 

     

PCNA/pc10 Mouse 1/3000 1/3000 Sigma 

     

Smooth Muscle Actin/1A4  1/2000 n/a Sigma 

     

BMP4/N-16 Goat n/a 1/100 SC 

     

Actin/(20-33) Rabbit n/a 1/2000 Sigma 

     

Key SC: Santa Cruz 
  

 
CST: Cell Signaling Technology 

 
BDB: BD Biosciences 

 

 
R&D: R&D Systems 
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2.2 Methods 

2.2.1 Cell culture 

2.2.1.1 Cell Lines 

BEAS-2B cells, an adherent SV-40 transformed human bronchial epithelial cell line, 

were obtained from the ATCC. They were cultured in tissue culture flasks in a 1:1 

ratio of Dulbecco’s modified Eagle’s media and Hams F12 (DMEM:F12) 

supplemented with 5% fetal bovine serum (FBS) and 1% L-glutamine. MLE-12 cells, 

an adherent cell line derived from an adenoma tumour of an SP-C SV-40 transgenic 

mouse, were obtained from the ATCC. They were cultured in tissue culture flasks in a 

1:1 ratio of DMEM:F12 supplemented with 5% FBS and 1% L-glutamine. LA4 cells, 

an adherent adenoma mouse lung derived cell line, were obtained from the ATCC. 

Cells were cultured in tissue culture flasks with Hams F12 media supplemented with 

5% FBS and 1% L-glutamine. A549 cells, a human adenocarcinoma cell line, were 

obtained from the ECACC. Cells were cultured in tissue culture flasks in a 1:1 ratio of 

DMEM:F12 supplemented with 5% FBS and 1% L-glutamine. All cells were 

maintained in a 5% CO2 incubator at 37°C. 

2.2.1.2 Routine sub-culture 

Cells were routinely subcultured upon reaching 80-90% confluency. Culture medium 

was removed from the flasks and the cells rinsed with pre-heated PBS at 37°C. 

Trypsin-EDTA was then added to the cells and the flask returned to 37°C for 

approximately 5-10min until all cells had detached. The cell suspension was then 

centrifuged at 219g for 5mins in a 30ml sterilin in a bench top centrifuge to pellet the 

cells. The pellet was then resuspended in a fixed volume of preheated media and 

depending upon requirements a percentage of cells would then be used to either 

reseed the flask or for experimental procedures. All routine subculture was carried out 

aseptically. 

2.2.1.3 Freezing and thawing of cells in liquid nitrogen stock 

Once received, cells would be cultured and a master stock of cells cultivated and 

frozen in liquid nitrogen. From this a working stock of cells would be grown and 

frozen in liquid nitrogen facilitating the repeating of all experiments within 5 cell 

passages of each other. In order to freeze down an aliquot of cells the cells would be 

first grown to logarithmic growth phase (approximately 50-70% confluent). They 
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were then trypsinised and pelleted as per routine sub-culture. Once the supernatant 

from the pellet had been removed, the pellets were resuspended in 500µl FBS. To this 

resuspended pellet, a 1:9 solution of DMSO:FBS was added dropwise, the suspension 

then transferred to a chilled cryovial, and held on ice to be frozen at -80°C. After 

approximately 5-7days the frozen cells were then transferred to liquid nitrogen for 

long-term storage. 

Thawing of cells from liquid nitrogen was carried out by removal of the cryovial from 

storage and thawing in a 37°C water-bath. Once thawed the cell suspension added to 

5mls of culture medium and then immediately spun in a bench-top centrifuge at 219g  

for 5min. The supernatant containing DMSO was then removed and the cell pellet 

resuspended in culture medium and seeded into an appropriate tissue culture flask. 

After allowing cells to adhere culture medium was again changed after no longer than 

18hrs to ensure all DMSO was removed from the culture medium. 

2.2.1.4 Isolation and culture of primary murine airway epithelial cells 

(MAECs). 

2.2.1.4.1 Isolation 

MAECs were isolated form the lungs of between 4 and 6 6-8week old female C3/Hen 

mice. Mice were sacrificed by i.p. injection of sodium pentabarbitone. The dorsal vein 

was exposed and cut to prevent pooling of blood in the lungs. Then the trachea was 

isolated and cannulated. At this point the lungs were perfused with saline via gravity 

feed of PBS through the heart to remove any remaining blood cells. The lungs were 

then excised and pre-warmed trypsin was added to the lungs via the cannula until the 

lungs were fully inflated. The lungs were then placed in a 50ml sterilin and placed at 

37°C for 15mins to allow the trypsin to digest the epithelial cells from the lining of 

the lungs. The lungs were then manually diced using a curved scissors for 

approximately 1-2mins to allow the release of the now digested epithelial cells. 1ml 

FBS per mouse was then added to stop the enzymatic action of the trypsin. The diced 

lungs and FBS mixture was then transferred to a 50ml tube and DNase solution  

CONCENTRATION REQD was added. The suspension was then shaken vigorously 

by hand for 5minutes, after which it was passed through first a 100µm nylon filter and 

then a 40µm nylon filter to remove lung particulate. This cell suspension was then 

pelleted twice and resuspended in a second DNase solution both times. The cell 

suspension was then added to a 10cm
2
 non tissue-culture Petri dish for 1hr at 37°C for 

a differential attachment phase. This allowed non airway epithelial cells to attach to 
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the Petri and helped enrich for MAECs. After the hour the cell suspension was 

removed from the Petri dish, taking care not to disrupt the attached cell layer. This 

MAEC enriched cell population was then pelleted and resuspended in defined serum 

free media (Section 1.4.1.4.2). Due to the nature of MAECs and the fact that they 

clump together it is not possible to determine cell number by cell counting. Therefore 

the Cell Titre 96®Aqueous One Solution Cell Proliferation Assay, also known as an 

MTS Assay, was used to determine seeding densities (Section 1.4.4.1). The cells were 

then seeded as required on fibronectin or collagen coated glass chamber slides, 96-

well, 24-well, 6-well plates or tissue-culture graded Petri dishes as required. 

2.2.1.4.2 MAEC Media 

Defined serum free media (DSFM): DFSM consisted of 1:1 HamsF12:M199 basal 

media supplemented with 100ng/µl hydrocortisone, 10ng/µl EGF, 1% L-glutamine, 

1% penicillin/streptomycin, 1% Insulin Selenium Transferrin. 

Plating media: Plating or seeding media consisted of DMEM basal media 

supplemented with 5% FBS, 2mM L-Glutamine, 1% Penicillin/Streptomycin. 

USG/DSFM plating medium: consisted of 1:1 DMEM:Hams F12, 

Penicillin/Streptomycin 100µg/ml, 2% Ultroser-G Serum (USG) (15950-017 Gibco) 

2.2.1.5 Fibronectin coated of inserts for non-ALI culturing of MAECs 

All work was carried out aseptically in a laminar flow cabinet. Fibronectin (FN) was 

reconstituted in basal medium to a stock concentration of 1mg/ml. This was then 

aliquoted into 100µl aliquots in sterile eppendorfs and stored at -20
°
C. This formed 

the stock from which the work was carried out. The stock FN was then diluted to a 

working concentration of 50µg/ml by adding 1900µl of basal medium to a 100µl 

aliquot of the stock. 200µl of FN was then added to the base of the tissue culture 

surface (enough to ensure that the fibronectin was adequately coating the entire base 

of the well/insert/Petri). The chamber slide was then carefully wrapped in parafilm 

and incubated at 4
o
C overnight. The next day the FN solution was aseptically 

removed and used immediately or the slides/plates were again wrapped in parafilm 

and stored at -20 until required for use. 

2.2.2 Culturing MAECs in ALI 

A volume of cells was used which gave an absorbance of 0.1 by MTS assay (Section 

1.4.4.1). The inserts were pre-coated with type VI Human Placental Collagen (see 

below). The cells were then seeded onto the tissue culture insert and incubated at 37
°
C 
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in 5% CO2 for 3 days. On Day4 the media on the apical surface of the cultured cells 

was removed along with any non-adherent cells and debris and the media outside the 

insert, bathing the basolateral surface was replaced with 600µl of USG Media. Once 

the cells have reached confluency the apical surface of the insert appeared dry, and is 

to be expected from Day4 onwards. Media bathing the basolateral surface was 

replaced twice weekly thereafter. 

2.2.2.1 Collagen coating of semi-permeable membrane tissue culture insert for 

ALI  

Collagen solution: type VI Human Placental Collagen, 0.5mg/ml in Distilled H2O 

with 0.2% Glacial Acetic Acid. 100µl of the collagen solution was added to the semi 

permeable membrane in each tissue culture insert, the insert was then allowed to air-

dry overnight. The inserts were then washed twice with sterile PBS before use. All 

work was performed in a laminar flow hood. 

2.2.3 Culture of human NEHB primary cells and primary primate 

airway epithelial cells in ALI 

Human NEHB and primate airway epithelial cells were provided by Dr Mark 

Avdolovich, Jodie Usachenko and Dr Dallas Hyde (California National Primate 

Research Centre, UC Davis, California, USA.). Cells were seeded into 24well semi-

permeable inserts and were cultured submerged in BEGM media (Lonza) without 

retinoic acid until fully confluent (Day3-Day5) and media was changed every second 

day. Once confluency had been established, the media from the apical surface of the 

insert that coated the cells was removed and the media in the well surrounding the 

well was replaced with BEGM media with retinoic acid added. Cells were cultured 

until Day10 in ALI before treatment. 

2.2.4 Cell Counts and Cell Viability 

Cell counts were carried out using a haemocytometer. In order to ascertain cell 

viability, EBAO staining was used in conjunction with a haemocytometer under a UV 

microscope. Dead cells stained orange and live cells stained green. Other methods for 

determining cell quantity and viability included the MTS and the LDH assays below 

2.2.4.1 MTS/Cell Titer 96® AQueous One Solution Cell Proliferation Assay 

The assay uses the reduction of MTS by a dehydrogenase enzyme in cells to give a 

colour change by converting the MTS chemical into a purple formazan dye. The 
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resulting  change in absorbance value or O.D. reading between a control well that 

contains only MTS and no cells and a the target wells containing both MTS and live 

cells could then be used to determine the appropriate seeding densities required. For 

experimental purposes cells were seeded at a constant O.D. per experiment to ensure 

consistent results. 20µl of reagent was pipetted into each well of a 96 well plate 

containing a 100µl MAEC cell aliquot and a no cell, media only, control well. The 

plate was incubated for 1hr at 37°C and 5% CO2. Absorbance was recorded at 490nm. 

2.2.4.2 LDH assay for cells in culture. 

 The lactose dehydrogenase (LDH) assay is based on the principle that there is an 

increase in the release of the cytosol enzyme, lactate dehydrogenase, from cells with 

damaged cellular membranes. Thus in cell culture the course of drug induced 

cytotoxicity can be followed quantitatively by measuring the activity of LDH in the 

supernatant. O.D.’s at 490 nm can be put on y-axis, concentrations on x-axis of 

different drug concentrations utilized, and this allows the interpolation of IC50 values. 

A cell count is performed and equal volumes of cells added to each well with culture 

media only added to a control well. Cells are then incubated for 45min at 37°C. To a 

‘max release well’ a lysis solution is added 45 minutes prior to the end of the 4hr 

timepoint. The contents of all wells are then removed by pipette and added to 

eppendorfs and centrifuged at 250g for 4mins and 50µl of supernatant from each tube 

is added to a well of a 96well plate. 50µl of reconstituted substrate mix is then added 

(reconstituted substrate mix is reconstituted using Assay buffer provided with the 

Kit). Plate is covered and incubated for 30 mins away from light. 50µl stop solution is 

added to each well. Absorbance is recorded at 490nm. 

 

2.2.5 Acquisition of brightfield images 

Phase contrast images were captured on a light microscope using an Olympus 1030µ 

Digital Camera 

2.2.6 Immunofluorescence 

2.2.6.1 Fixation and preparation for immunofluorescence 

2.2.6.1.1 Cells  

Cells for analysis by immunofluorescence were grown on either glass bottomed 

microscope chamber slides or on coverslip inserts in 24well plates or 35mm
2
 Petri 
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dishes. Prior to antibody detection the cells had first to be fixed. To achieve this 

media was removed from the wells containing the cells and the cells then rinsed x3 

with PBS. Ice-cold methanol was then added to the cells and the cells placed in a 

20°C freezer for 5min. Methanol was then removed and the cells allowed to air dry 

for 10-15min. The fixed cells could then be used immediately or stored at -20°C until 

required. 

2.2.6.1.2 Whole Lung 

Whole lung isolation and fixation was carried out as described in Section 1.4.17.1. 

Paraformaldehyde fixed paraffin embedded lungs were chilled on a cold plate and 

lungs sections of 3µm were sliced using a microtome tissue slicer. The sections were 

then mounted on poly-L-lysine coated microscope slides in a water bath and allowed 

to dry and adhere to the slide. The sections were then baked onto the glass slide by 

incubation of the slides in a 60°C oven for 20-25min. After this the slides could be 

stored indefinitely or prepared for use. To prepare for use the slides were first de-

waxed. This was done by placing the slides in a xylene bath for 5min in a chemical 

fume hood, then sequentially rehydrating the slides in a series of EtOH to water 

stages, incubating the slides for 2min in 90%EtOH, 75%EtOH, 75% EtOH and finally 

tapwater for 2min. Antigen retrieval was then performed by boiling the slides in a 

commercially available citric acid solution (Vector Labs Antigen Retrieval solution) 

for 15min in a microwave. This was done in 5 min intervals with 2-3min between 

each step to allow steam to escape and to ensure that the slides did not dry out. The 

slides were then cooled by the addition of cold water to the citric acid solution. The 

samples were then removed from the solution and allowed to air-dry for 2-3min on 

the bench. To facilitate the staining of the tissue sections present on the slide for 

immunofluorescence analysis, the tissue sections were then encircled using a wax 

pen. This facilitated the use of a reduced volume of antibody for coating the relevant 

sections. The slides were now suitable for immediate use. 

2.2.6.2 Indirect Immunofluorescence 

Indirect immunofluorescence was carried out on prepared tissue or lung sections in 

the same fashion. Samples were incubated for 5min in 1X Tris Buffered Saline (TBS). 

They were then incubated with an appropriate serum for 20min to prevent non-

specific binding from occurring. The serum was then removed and the primary 

antibody diluted as per Section 2.1.4, then added to the sample. The sample was then 

incubated at 4°C overnight. Following this any unbound primary antibody was 
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washed away by washing the samples with TBS containing 0.1% Tween-20 x3 over a 

total period of 10min. Alexa-488 (Green) or -568 (Red) secondary antibodies were 

then made up to the appropriate dilutions in a solution of 20% serum (same as used 

for initial blocking step) in TBS buffer. Secondary antibody was incubated with the 

sample for 30min at room temperature protected from light. The samples were then 

washed x3 for a total of 10min in TBS/0.1% Tween-20 to remove any unbound 

secondary antibody. Samples were then counterstained using DAPI nuclear stain 

diluted 1/200 in TBS in a 5min incubation at room temperature followed by a rinse in 

tap water. The samples were then mounted in Faramount aqueous mounting medium. 

Samples were kept protected from light to prevent degradation of the fluorescent 

signal. Fluorescently tagged antigens were then visualised and examined using an 

Olympus IX81 fluorescent microscope. The only exception was primate tissue 

sections which were imaged using an Olympus IX61 microscope system. Appropriate 

secondary control slides were included with every experimental set-up to ensure that 

no non-specific binding was occurring. 

2.2.7 Protein harvest and analysis 

2.2.7.1 Harvest of protein from cells in culture and whole tissue 

Cells: Briefly, at a harvest time-point, any media or mucus present was carefully 

removed by pipette and ice-cold RIPA buffer containing a protease inhibitor cocktail 

was added to the well/insert. The cells were then scraped off of the bottom of the well 

into the RIPA buffer using a pipette tip. This solution was then all collected by pipette 

and placed into an appropriately labelled 1.5ml Eppendorf tube that had been stored 

on ice. The sample was then stored on ice before being placed into -80 storage until 

required. MORE DETAILS ON VOLUMES ETC 

Tissue: Whole lung samples for protein analysis were isolated and snap frozen in 

liquid nitrogen before storing at -80°C until required. Once required the tissue was 

added to a solution of ice-cold RIPA buffer containing 1X Complete mini protease 

inhibitor cocktail (Roche). The tissue was then homogenised in this solution 

mechanically either by a glass/Teflon homogeniser or by use of an electric 

homogeniser. This was carried out on ice to prevent a build up of heat that could lead 

to protein destruction. Once fully homogenised, the sample was aliquoted into a 

Qiashredder eppendorf and centrifuged at 12000g for 5min at 4°C. This filtered out 

all the remaining non homogenised tissue remnants and broke down any DNA present 
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in the sample, providing a homogenous protein solution for analysis. This could either 

be used immediately or aliquoted and returned to -80°C storage. 

2.2.7.2 Protein Quantification 

Protein quantification was carried out on cells and tissue samples for the purposes of 

Western Blot analysis. It was also carried out on BALF samples to ascertain the 

quantity of free protein in the lungs. When ready, all the samples were quantified for 

protein concentration using either the Bio-Rad ABC Lowry assay protocol (used 

specifically for NEHB and primate airway cell based experiments) or the Bio-Rad 

Bradford assay and read at the appropriate wavelength in a plate reader. 

For both the Bradford and Lowry assays, standards made from BSA were used to 

prepare a standard curve ranging from 0.2-1.4µg/ml (w/v).  

2.2.7.2.1 Bradford protein assay 

Standards were assayed in duplicate and samples were analysed in triplicate. A fresh 

standard curve was required each time the assay was performed. Samples and 

standards were prepared at the same time. Samples were diluted 1/10 in RIPA buffer 

and 4µl of both samples and standards were added to 200µl Bio-Rad Bradford reagent 

in a clean, labelled, 96well plate. When added to their individual wells, samples and 

standards were mixed well with the reagent by gentle pipetting and care was taken to 

ensure no bubbles formed as they would block accurate measurements of the wells. 

Absorbance was read in a plate reader at 620nm and the protein concentration 

calculated by fitting the samples to the standard curve 

2.2.7.2.2 Lowry protein assay 

Standards were assayed in duplicate and samples were analysed in triplicate. A fresh 

standard curve was required each time the assay was performed. Samples were diluted 

1/10 before assaying. 5µl of samples and standards were aliquoted into a clean, 

labelled, 96well plate. 25µl of Reagent A was added to each well, followed by the 

addition of 200µl of Reagent B to each well. The wells were gently pipetted to ensure 

even mixing of the reagents using a clean dry pipetted for each well. The plate was 

then incubated at room temperature for 15min and read at 750nm. Absorbances are 

stable for one hour. 
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2.2.8 SDS-PAGE gel electrophoresis and Western blotting 

2.2.8.1 SDS-PAGE 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed according to the Bio-Rad mini-PROTEAN 3 cell protocol.  

2.2.8.1.1 Sample Preparation 

Samples for analysis were quantified and an equal quantity of protein from each 

sample was loaded per gel. Samples were combined with an equal volume of loading 

buffer containing β-Mercaptoethanol (BME) (25µl/500µl loading buffer) and heated 

to 95°C for 5min in a thermal cycler block. The combination of BME treatment and 

boiling reduced the disulphide bonds present and denatured the protein respectively. 

After heating the samples were cooled on ice and then centrifuged for 30sec at 

12000g at 4°C. They were now ready for loading onto the gels for electrophoresis. 

2.2.8.1.2 Electrophoresis 

Gels for separation of the proteins were prepared as per section 2.2.18, with the 

resolving gel being poured first and allowed to polymerise for 30min with a layer of 

dH2O on the top to prevent the gel for drying out on the top and to help give an even 

surface. This was then followed by the pouring of the stacking gel, which was 

prepared as per section 2.2.8. Once the stacking gel had been poured well plates were 

added to allow the formation of loading wells for samples. Gels could be used 

immediately after the polymerisation of the stacking gel (approximately 45min) or 

stored overnight at 4°C in a solution of 1:4 1.5M Tris:dH2O. For the primate and 

human primary protein samples pre-cast gels were used. The samples and a pair of 

molecular weight protein markers- a SeeBlue colour-metric ladder that allowed for 

visual tracking of the gel running and MagicMark ladder which was visible on the 

developed blots for confirmation of protein size-were then loaded and electrophoresed 

in 1X TGS buffer at 110V for 75-90mins until the protein front was detected to be 

near the bottom of the gel. 

2.2.8.2 Western Blot Reagents 

2.2.8.2.1 SDS-PAGE gels 

 Resolving Gels Stacking Gel 

Reagents 10% 12% 4% 

dH2O 4.1ml 3.4ml 6.1ml 
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30% Bis Acrylamide 3.3ml 4.0ml 1.3ml 

1.5M Tris-HCl (pH 8.8) 2.5ml 2.5ml  

0.5M Tris HCl (pH 6.8)   2.5ml 

10% SDS 100µl 100µl 100µl 

10% Ammonium Persulphate 50µl 50µl 50µl 

Temed 5µl 5µl 5µl 

    

2.2.8.2.2 1X TGS Buffer 

100ml 10X TGS brought to 1L in dH2O to provide a 1X working solution. 

2.2.8.2.3 Towbin Transfer Buffer 

Reagent Quantity 

Tris-HCl 1.515g 

Glycine 7.2g 

MeOH 100ml 

 

2.2.8.3 Semi-Dry Transfer 

After the gel had finished separating the proteins according to molecular weight, the 

protein was transferred to a nitro cellulose membrane via semi dry transfer as follows. 

The gel was removed from the gel rig apparatus and transferred to a weigh boat 

containing 1X TBS transfer buffer and allowed to equilibrate for 15min. 

Nitrocellulose membrane was equilibrated in TGS for 5 min and extra thick blotting 

paper for 10min. The 1X TBS transfer buffer was prepared fresh immediately before 

use while the gel was still running. After the equilibration step the gel was 

sandwiched in between blotting paper and membrane on the Transblot SD Semi-Dry 

Transfer Cell in the following order building up from the base; blot paper, 

nitrocellulose membrane, SDS-PAGE gel, blot paper. The proteins were then 

transferred onto the nitrocellulose membrane by electrophoresis at 25V for 45min. 

2.2.8.4 Immunoblotting 

The nitrocellulose membranes were incubated in a blocking buffer consisting of either 

5% Marvel or 5% BSA (w/v) in TBS for 1hr at room temperature to prevent non-

specific binding. After incubation primary antibodies diluted as per section 2.1.4 and 

were incubated with the membrane over night at 4°C. The blots were then washed x3 

over 10min with TBSt (TBS buffer containing 0.1% Tween-20) wash solution. The 
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blot was then incubated with the appropriate secondary horseradish peroxidase (HRP) 

labelled secondary antibody for 1hr at room temperature. The blot was then washed as 

before, x3 over 10min with TBSt. After this wash the membrane was then treated with 

enhanced chemi-luminescence (ECL) Western blot detection reagent as per 

manufacturers’ instructions. The protein was then detected and visualised by placing 

the ECL treated membrane in an x-ray film cassette and exposing them to chemi-

luminescence film in a dark room using Hyperfilm™ ECL film. The film was then 

developed and fixed in Kodak developer and fixer reagents allowing visualisation of 

the protein bands and analysis of the protein by densitometry.  

2.2.8.5 Densitometry 

Densitometry was carried out using a Bio-Rad Quantity1 software package. An image 

of the gel was taken and opened in the operations window. Using (No.2) ‘Tool’- 

‘Zoom Box’ the bands present in the image were centred and enlarged. The lanes 

were then selected and autoframed and the number of lanes present was entered. The 

autolanes were then centred to be located in the centre of the bands. This was done by 

selecting the lane, editing the frame and adding/adjusting the anchor. The lane 

background was then set to be even across all bands by selecting a lane, selecting the 

lane background and putting all lanes on the same level background threshold. Band 

selection was then carried out by selecting ‘Band-Detect Bands’ and increasing the 

band widths until the bar was just overlapping the ends of the band. The band quality, 

i.e. the information about the band to be recorded, was then selected, and the 

measurement used was ‘Trace Quantity-Area under the curve’. Measurements were 

then given on screen and a report was obtained detailing each band and its 

corresponding trace quantity via selecting ‘Report-All lanes report’ which was then 

saved to file or printed as required. 

2.2.9 Treatment of human NEHB and primate airway epithelial cells 

24 well inserts were seeded with cells of interest and allowed form an ALI. After day 

10 of ALI establishment the cells were then treated with EGTA or BMP4 or kept as 

no treatment controls. The cells were harvested along the following time-points, t=0, 

t= 6hr, t=12hr, t=24hr, t=48hr and t=72hr respectively. For harvest cells were 

removed from the 24 well plate and lysed using a Qiagen RNeasy Kit as per 

manufacturers instructions and the cell pellet was either frozen immediately at -70
°
C 

or immediately made into RNA as per manufacturers’ protocol. RNA was then 

quantified using a nanodrop and cDNA prepared as per section 2.2.20. rtPCR using 
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GAPDH primers, as per Section 2.1.3.2, was carried out on all cDNA preparations to 

ensure that the cDNA was intact before proceeding to the qPCR stage. 

2.2.10  EGTA Pre-treatment of ALI cells 

In order to treat cells with EGTA it was first necessary to remove any trace amounts 

of media present on the apical surface of the membrane. Once this was done 100µl of 

10mM EGTA was added to the cells 1hr prior to the additional treatment with BMP4. 

Both human and primate cells were treated in the exact same manner. 

2.2.11   BMP4 treatment of cells 

2.2.11.1 Cells in culture 

Cells in culture in 24 well plates were treated with BMP4 as follows. Before treatment 

media coating the cells was replaced with defined serum free media. BMP4 at the 

desired concentration was then added to defined serum free media and added to the 

cell culture in place of serum containing media. The cells were then harvested or fixed 

as required at specific timepoints. 

2.2.11.2 Cells in ALI 

Cells in ALI were treated only when ALI was fully established and the cell layer on 

the insert fully confluent. For BMP4 treatment the BMP was diluted to the desired 

concentration in DMEM or HamsF12 basal media in a final volume of 50µl which 

was then added to the apical surface of the inserts to coat the cells. No BMP4 was 

added to the media coating the Basolateral surface of the inserts.  

2.2.12 Plasmids 

2.2.12.1 pCyclinD1-GFP 

pCyclinD1-GFP vector had been generated in the lab previously by the sub cloning of 

the CyclinD1 promoter  upstream of the Aequorea Victoria enhanced GFP gene in the 

pEGFP-1 promoterless vector, giving rise to GFP expression resulting from the 

activation of the CyclinD1 promoter which is involved in cell cycle progression. The 

plasmid was especially useful in dividing cells for confirmation of plasmid integration 

by FACS analysis or Immunofluorescence but was not as effective in the treatment of 

confluent cell layers as very little promoter activation would occur. 
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2.2.12.2 pMGFP 

pMGFP plasmid is a commercially available plasmid and was sourced from Promega. 

Its GFP gene is derived from Montastrae cavernosa and the gene is under the control 

of the constitutively active promoter CMV that was tailored for use in eukaryotic 

cells. Due to the fact that this was constitutively active it meant that this plasmid when 

used for determining transfection efficiencies was particularly useful as it was not 

reliant on cell cycle for activation. 

2.2.12.3 Plasmid preparation-Mini/Maxi preparations of plasmid from E-Coli  

Small scale preparations of plasmid stocks were carried out using Qiagen mini prep 

kit, large scale plasmid preparations using Qiagens Maxi prep kit. Preparations were 

carried out as per manufacturers’ recommendations. 

2.2.12.4 Generation of plasmid stocks 

E-Coli that had been transformed with plasmid was grown overnight at 37°C on a 

shaker in LB broth at 200rpm. 500µl of the bacteria was then diluted in a 1:1ratio of 

30% glycerol before being stored at -80°C until required. 

2.2.12.5 Antibiotic preparation 

The two antibiotics required were Kanamycin and Ampicillin. Kanamycin was used at 

a final concentration of 30µg/ml and Ampicillan at 25µg/ml. 

2.2.12.6 Transformation of E-Coli 

XL-1 Blue are commercially available ultra competent bacterial cells and were 

transfected with the desired plasmid DNA according to the manufacturers’ 

recommendations. This consisted of thawing the cells on ice, the addition of β-

mercapthoethanol and the incubation of the cells on ice for 10min. The plasmid was 

then added to the cells and incubated on ice for a further 30min. The cells were then 

heat shocked by incubation in a 42°C water bath for 30sec and then added to SOC 

media and incubated at 37°C for 1hr on an orbital shaker at 300rpm. The cells were 

then plated onto antibiotic agar selection plates and incubated at 37°C in a bacterial 

incubator overnight. 

2.2.12.7 Plasmid Transfection 

Conditions for the transfection of epithelial cells with plasmid using commercially 

available Lipofectamine 2000 (Invitrogen) were as follows. Cells were seeded at a 

density of 9x10
4
 cells/well in a 24well tissue culture plate. After 48hr, DNA and 
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vector were mixed allowed to form a complex by incubation together at room 

temperature and then incubated with the cells by adding in a dropwise manner while 

constantly swirling the plate to ensure even distribution of the complex and to prevent 

toxic side effects. Cells were then analysed by FACS analysis and/or fluorescent 

microscopy to determine the level of successful transfection, with FACS analysis 

facilitating quantitative reporting of the efficiency levels. 

2.2.13 Particle Bombardment 

Cells were seeded into 35 mm
2
 tissue culture dishes. Cells required for subsequent 

analysis by fluorescence microscopy were grown on glass coverslips placed in the 

culture dishes. MAECs were seeded at a density of 0.1 O.D per dish as determined by 

the MTS/Cell Titer 96® AQueous One Solution Cell Proliferation Assay. MLE-12 cells 

and BEAS-2B cells were seeded at densities of 1x10
6 

cells per dish. Bombardment 

was carried out 24 hr later. pMGFP was precipitated onto gold microcarriers as 

follows: Briefly, 50l pMGFP (1 g/l), 50 l 2.5 M-CaCl2, 20 l 0.1 M-spermidine 

and 3 mg 1.6μm gold particles were mixed then rinsed once with 70 % EtOH, once 

with 100 % EtOH and resuspended in 60 l 100% EtOH. 6l aliquots were 

transferred to microcarriers. The gene gun (PDS-1000/He System, Bio-Rad) was used 

for bombardment. Cells were then bombarded under various conditions by varying the 

stage level and psi used as appropriate. 

2.2.13.1 Stock Solutions 

2.2.13.1.1 Gold Stock solution 

Gold was weighed out and added to Absolute EtOH where it was then sonicated for 

2min. It was then centrifuged at 1400 g for 3sec in a micro-centrifuge. Supernatant 

was removed and the wash step was repeated x2. 1ml sterile dH2O was then added 

and the suspension sonicated for a further 2min. the suspension was then centrifuged 

at 1400g for 3sec. The supernatant was removed and the wash step was then repeated 

x1. The gold pellet was then resuspended in sterile dH2O and vortexed to ensure it 

was well mixed. The gold was then aliquoted, vortexing between each aliquot, and 

stored at -20°C until required. 

2.2.13.1.2 Calcium Chloride CaCl2 

1.84g of CaCl2.2H2O dissolved in 5ml dH2O. Solution vortexed and filter sterilised 

trough 0.2µm filter and aliquoted into 100µl aliquots and frozen at -20°C or used 

fresh.  
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2.2.13.1.3 Spermidine 

Stock solution; Spermidine supplied as 1g ampoule of powder in argon. Warmed in 

37°C water bath until liquefied then aliquoted into 15.8µl aliquots and snap frozen 

instantly in liquid nitrogen before storage at -80°C. Working solution; 984.2µl of 

sterile dH2O was added to a 15.8µl aliquot and the solution mixed well by vortexing. 

The solution was then aliquoted into 30µl aliquots and stored at -80°C until required. 

2.2.14   Flow Cytometry 

Flow cytometry analysis can be used to detect the fluorescent emissions of cells using 

specific narrow bandwidth lasers. This allows for specific detection of target 

fluorescent markers contained in or being expressed by analysed cells. The FACS 

Calibur uses an FL-1 designated laser for detection of fluorescence in the range of 

450-500nm that is used for the acquisition of Alexa-488 tags and GFP expression. 

This narrow bandwidth reduces the levels of false positives and issues with auto-

fluorescence that can be problematic with certain cell types. For analysis, cells were 

first trypsinised from their culture vessel. Cells were pelleted and then re-suspended 

in a fixed volume of 1ml ice-cold PBS containing 1% paraformaldehyde. Cells were 

then stored on ice prior to acquisition. Pipetting of the cells to disrupt any clumps and 

vortexing before acquisition was important in order to increase the quality of the 

reading and to prevent the blockages occurring. An untreated control group of cells 

with no GFP or Alexa-488 was present was used in order to set the background 

threshold for fluorescence. All cells expressing above this level, not including those 

within a 5% level of error, were then deemed to be positively expressing the GFP 

plasmid or Alexa-488 tag. Mean Fluorescent Intensity (MFI) of every cell positive for 

expression was also measured, which can be used to determine the level of plasmid or 

Alexa-488 expression per cell population. 

2.2.15   Laser Diffraction characterisation 

Laser diffraction characterisation was carried out in Aerogen facilities in Galway, 

Ireland. A Malvern™ Spraytech analyser and accompanying software was used to 

characterise both the aerosol chamber and the nebulisers using 0.9% PBS solution. 

PBS was used as it was the solute of choice for aerosol delivery of therapeutics. 

Further detail of the use and characterisation of laser diffraction is given in Section 

5.1, 5.2. 
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2.2.16   Plethysmography 

Plethysmography was carried out using a Buxco plethysmograph and accompanying 

Buxco XA software. In all experiments the device was first calibrated to the 

individual restraints as per manufacturers’ instructions. In order to ensure accurate 

calibration, and to prevent a high noise to signal ratio from occurring during both 

calibration and readings, all the pressure sensitive equipment was isolated on a 

standalone heavy table in a sealed and noise free room. This was to prevent pressure 

changes from door openings and loud noises from interfering with readings. The mice 

were introduced into the restraints for 10min before any recording of measurements 

began. This was to allow the animal to acclimatise to its new environment before 

taking any readings. Measurements of lung function were then recorded using the 

Buxco XA software for a period of 20min. Up to four mice could be analysed at a 

time. All mice were individually identifiable by a combination of ear tagging and cage 

identifications. This allowed for each mouse to be analysed in the same restraint for 

each of multiple recordings and prevented any differences in pneumotachs or 

restraints from having an effect on any recorded differences in lung function. 

2.2.17   Lung Histological analysis 

2.2.17.1 Isolation, gravity perfusion, and fixing of lungs for histology 

Lung Isolation: The mice are killed by lethal i.p. injection of pentabarbitone 

(Euthanal). The Abdominal cavity is then opened up as far as the throat exposing the 

intestinal cavity, ribcage and trachea. The dorsal vein is cut to prevent pooling of 

blood in the lungs and in the work space surrounding them. The diaphragm is then 

pierced, deflating the lungs in situ, and the front of the rib cage is then removed 

exposing the lungs beneath. The thyroid gland is then removed and the trachea is 

cannulated with a short length of cannula (2.5 ‐ 3.5cms) which has a syringe needle 

inserted in the open end of the cannula protruding from the trachea. The lungs with 

cannula attached are then removed from the body cavity. The abdomen chest and 

throat were then opened, and the trachea was intubated with a cannula which was 

secured in place with thread. The entire lungs with trachea intact are then removed 

from the thoracic cavity. 

Gravity perfusion and fixation: The Cannula is now attached to a 3 way valve system 

that is attached to a butterfly tab intravenous cannula (Figure 2.1). This is then 

attached to a 50ml syringe which is located 20cm above the lungs. The 50ml syringe 

has had its plunger removed and is filled with fixative. Once the lungs were attached 
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to the valve system they were then perfused with the fixative by gravity feed. Once 

the lungs are fully perfused and inflated with fixative the cannula is detached from the 

valve and the lungs are then stored in individual, labelled 50ml sterilins containing 

fixative at room temperature for a minimum of 48hr. The remainder of the embedding 

protocol is as follows; 

Day1‐ Fix in 4% paraformaldehyde in PBS for 48hr at room temperature. 

Day2‐ Store in 70% EtOH over night at room temperature. 

Day3‐ The individual lobes of the lungs are separated and each is assigned to an 

individual labelled  cassette which is then put through various final solutions in 

succession to prepare the lobes for embedding as outlined in Table 2.1 below. The 

lungs were then embedded in wax moulds which were placed on a pre-chilled 

coldplate and allowed to set slowly overnight prior to sectioning. 
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Figure 2.1 Gravity feed system for the perfusion of lungs  

 

 

Duration Solution Temperature 

60 minutes 70% EtOH Room Temp. 

60 minutes 80% EtOH Room Temp. 

60 minutes 95% EtOH (1) Room Temp. 

60 minutes 95% EtOH (2) Room Temp. 

60 minutes 100% EtOH (1) Room Temp. 

60 minutes 100% EtOH (2) Room Temp. 

60 minutes 100% EtOH (3) Room Temp. 

60 minutes 50:50 Xylene:100% EtOH Room Temp. 

60 minutes 100% Xylene (1) Room Temp. 

60 minutes 100% Xylene (2) Room Temp. 

60 minutes Paraffin Wax 65°C 

3-4hr Paraffin Wax 65°C 

Table 2.1 Succesion of treatments for parrafin embedding of lungs on Day3 of 

fixation 
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2.2.17.2 H&E staining of wax embedded tissue sections 

Slides were placed in xylene for 3x3min, then 100% EtOH for 3x3min, 95% EtOH for 

3x3min and then 75% EtOH for 3x3min before placing them in deionised H2O for 

1x5min. Slides were then placed in hematoxylin (Harris' Hematoxylin) for 1x3min. 

Slides were then rinsed in deionised H20 and then dipped in tap water for 1x5min. 

Slides were then quickly dipped x8 into acid ethanol (1ml conc. HCl in 99ml EtOH) 

before rinsing the slides in tap water for 2x1min. Slides were then placed in d H2O for 

1x2min. Slides were then placed in Eosin Y (1g/100ml dH2O) for 1x45sec. Slides 

were then rinsed in 95% EtOH for 3x5min and then 100% EtOH for 3x5min before 

being placed in Xylene for 1x10min. The slides were then allowed to dry and 

coverslips mounted using DPX mountant 

2.2.17.3 Quantitative Histological Analysis 

Lung sections were H&E stained and images of all sections were captured under the 

same magnification .Histological analysis was then carried out and scored in a blinded 

manner. Three different measurements were used to assess the effect of elastase-

induced damage on the lungs:  

(i) The mean interceptal distance for the alveoli was calculated. This was done by 

placing a 5 open square grid over a captured brightfield image of a section using 

Adobe CS3 software. This was done to three different sections for every set of lungs 

analysed. In a randomly determined fashion, in 3 of the squares of every section the 

mean interceptal distance (of all alveoli which were determined to be at least 50% 

inside the grid) was measured using a ruler tool available within the software. In 

combination with scale measurements from the original images it was possible to 

accurately convert pixels to µm measurements.  

(ii) The number of alveoli present was determined. As per the interceptal distance, a 

grid was applied in Adobe CS3. The entire number of alveoli present was then 

counted using the counter tool available in the software and the results exported to 

excel for analysis. 

(iii) The number of intersections present was determined. As per the interceptal 

distance, a grid was applied in Adobe CS3. The entire number of intersections present 

was then counted using the counter tool available in the software and the results 

exported to excel for analysis. 
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2.2.18   BALF isolation protocol 

Mice were euthanized by i.p. injection of 0.3ml Euthanal pentabarbitone and 

subsequently weighed. The abdominal cavity was then opened as far as the throat 

exposing the intestinal cavity, ribcage and trachea. The dorsal vein was cut to prevent 

pooling of blood in the lungs and the surrounding tissue. The diaphragm was then 

pierced deflating the lungs in situ and the front of the ribcage removed, exposing the 

lungs beneath. The thyroid gland was then removed and the trachea cannulated and 

the cannula secured in place. The lungs with attached cannula were then removed 

from the body cavity. 200ml/100g bodyweight of the mouse of 37°C PBS was then 

instilled into the lungs via the cannula. After approximately 30 seconds the BALF was 

then removed from the lungs into a clean syringe, the volume retrieved noted and the 

solution placed in an eppendorf on ice. The BALF was then centrifuged at 259g for 

15mins at 4°C on a desktop centrifuge. Supernatant was then removed and placed in a 

fresh clean eppendorf and the cell pellet resuspended in 200ul PBS. 50µl of the 

resuspended solution was utilised for performing a cell count with a haemocytometer 

and EBAO was used to determine percentage cell viability (Green cells were alive, 

Orange cells were dead). The remaining aliquot (150µl) was divided into two aliquots 

that were each used to prepare cytospins. From the supernatant 30µl was removed and 

stored at -80°C for a subsequent protein assay using the Bio-Rad Bradford protein 

assay. The remaining supernatant was also frozen at -80°C for any other analysis. 

2.2.18.1 Cytospin preparations 

A 75µl aliquot of resuspended cells from BALF as prepared above is used for each 

cytospin preparation. If the preparation turns out to be too high in cell number for 

accurate cytospin preparation, the second aliquot is diluted appropriately and used to 

prepare the sample. Briefly, glass slides are poly-L-lysine coated and placed in a 

cytospin slideholder. There is an absorbent layer placed on top of the slide leaving a 

clear circle of glass in the centre of the slide on which the cell sample is aliquoted. 

Using a cytospin centrifuge, the samples are then spun using a specially designed 

chamber onto the poly-L-lysine coated microscope slide. The cells adhere to the 

surface and any excess liquid is removed into the absorbent layer via centrifugation. 

The cells are now available suitable for further fixing and staining as required.  

2.2.18.2 Speedy-Diff staining of BALF cytospin preparations 

"Speedy-Diff" is a proprietary brand of a Romanowski stain, also known as Quick-

Diff staining. It allows for colorimetric differentiation of cell types. Once the cytospin 
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preparation has been allowed to air-dry it can be subjected to Speedy-Diff staining. 

All solutions required are provided as part of the ‘Speedy-Diff’ kit and fixing and 

staining is carried out according to manufacturers recommended protocols. Once 

stained a coverslip is mounted using DPX mountant and the cells viewed by 

brightfield microscopy. 

2.2.19   siRNA transfections 

Pre-designed siRNA molecules were purchased along with Hiperfect transfection 

reagent from Qiagen. All siRNA transfections were carried out according to 

manufacturers’ protocols   

2.2.20 PCR 

2.2.20.1 RNA Isolation 

(i) Adherent cells were directly lysed with the addition of TriZol to the culture 

surface. For whole lung tissue RNA isolation, the lungs were homogenised using a 

glass/Teflon homogeniser or a mechanical homogeniser in a volume of TriZol 

equivalent to 1ml/g. Once lysed the cells/tissue were pipetted into a 1.5ml eppendorf 

and 5µl of Poly Acryl Carrier was added to each sample to help increase the final 

quantity of RNA isolated. The solution was then incubated at room temperature for 

5min and at this point the cell solution could be stored at -20°C or used immediately. 

Phase separation of the mixture was carried out by the addition of 200µl chloroform 

followed by vigorous shaking of the tube for 15sec to ensure good mixing. The 

mixture was then incubated at room temperature for 3min before being centrifuged for 

15min at 12000g, causing the solution to separate into 3 distinct phases, a lower, red, 

phenol phase, a central white interphase containing DNA and a clear aqueous upper 

phase containing RNA. The RNA phase was carefully removed from the eppendorf 

with care taken to ensure not to contaminate it with any of the DNA interphase, and 

transferred into a sterile 1.5ml eppendorf.  500µl of Isopropanol was then added to the 

aqueous RNA and mixed by inversion and left incubate at room temperature for 

12min, causing the RNA to precipitate out of solution. The solution was then 

centrifuged for at 4°C for 8min at 12000g causing the RNA to pellet out of solution. 

The supernatant was then removed and the RNA pellet was washed x2 by the addition 

of 1ml 75% EtOH, vortexing and centrifugation at 4°C for 5min at 7500g. After the 

second wash all the supernatant was removed and the pellet allowed to air-dry for 2-

3min until all residual EtOH had evaporated. The RNA pellet was then resuspended in 



95 

 

a fixed volume of DEPC water by gentle pipetting, followed by incubation at 60°C for 

10min. The volume of water varied from 15-30µl DEPC depending on the expected 

concentration of the RNA. The RNA was then immediately put on ice and either 

stored at -80°C or quantified and used for cDNA synthesis. 

(ii) RNA isolation from NEHB human primaries and primary airway epithelial cells 

was carried out by using a Qiagen RNeasy kit so as to help extract a sufficient 

quantity of high grade RNA for QPCR. RNA was isolated following manufacturers 

recommended protocols. 

2.2.20.2   RNA Quantification 

RNA was quantified using a nanodrop to ensure it was of sufficient purity and to 

determine the concentration by spectrophotometry. A 260:280 ratio of >1.8 was 

required for all RNA to be used in QPCR analysis.  

2.2.20.3 cDNA synthesis 

Two aliquots of RNA were DNase treated. Of these only one received reagents for 

cDNA synthesis, the other was used as a no-RT control for genomic contamination of 

the samples and received DPC water in lieu of cDNA synthesis reagents. To 1µg of 

RNA 1µl of 10X DNase Buffer and 1µl DNase were added and brought up to 10µl 

final volume with the addition of DEPC water. This was subsequently incubated at 

room temperature for 30mins. The DNase was then inactivated by the addition of 1µl 

of 25mM EDTA and incubated for 10min in a 65°C water bath.  

For cDNA synthesis 1µl of Oligo dT(12-18) primers was added and incubated for 10min 

at 70°C. The samples were then immediately cooled on ice for at least one minute and 

in the order listed the following was then added to each sample; 4µl 5X First-Strand 

Buffer, 2µl DTT, 1µl RNase OUT, 1µl M-MLV Reverse Transcriptase and 1µl dNTP 

mix. The reaction was then carried out at 37°C for 1hr and then stopped by heating to 

95°C for 2min. cDNA was then stored at 4°C for immediate use or at -20°C for up to 

a month for use later. 

2.2.20.4 Primer design 

Gene sequences were obtained from the NCBI Entrez Nucleotide database 

(http://www.ncbi.nlm.nih.gov/sites/entrez). Primers were designed using Primer3’ 

software from the Whitehead Institute for Biomedical Research 

(http://frodo.wi.mit.edu/primer3/).  

http://www.ncbi.nlm.nih.gov/sites/entrez
http://frodo.wi.mit.edu/primer3/
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2.2.20.5 Reverse transcriptase PCR (rtPCR) 

The conditions for standard rtPCR were as follows 

5µl 10X Go Taq Flexi PCR Buffer 

3-5µl 25mM MgCl2 

8µl 1.25mM dNTP mix 

1µl Forward Primer 

1µl Reverse Primer 

0.25µl Go Taq Flexi Polymerase (5U/µl) 

1µl cDNA 

to 50µl DEPC Water 

 

PCR mastermix was prepared on ice and as soon as samples were prepared they were 

transferred to a thermal cycler. This was then programmed to heat samples to 95°C 

for 2min to denature the cDNA. This was then followed by 35 cycles of 95°C for 

45sec (denaturing step), 45sec at annealing temperature (primer specific) and1min at 

72°C (extension step). The only exception to this was GAPDH which only had 

30cycles carried out. Following this set of cycles there was a final extension step at 

72°C for 10min before samples were cooled to 4°C at which temperature they were 

stored until required.  

The temperature for annealing was determined by using a varying temperature 

gradient cycler and specific primer annealing temperatures are listed in Section2.1.3. 

2.2.20.5.1   Agarose Gel Electrophoresis of PCR Products 

0.8 - 2 % (w/v) agarose gels were made by dissolving 0.8 - 2 g agarose in 100 ml 

TAE buffer (40 mM Tris, 0.35 % v/v Acetic Acid, 0.5 mM EDTA). 3µl/100ml of 

ethidium bromide/gel was also added. This bound to the DNA and allowed 

visualization of the DNA product under UV light. The gel was then subjected to an 

electric current (electrophoreses) enabling the DNA to travel through the gel and 

separate according to size. A DNA ladder was also ran in all cases to allow for sizing 

of the DNA products present. 

2.2.20.6 QPCR 

2.2.20.6.1 QPCR in human and mouse cell lines 

Quantitative Real-Time PCR (QPCR) enables the determination of the fold increases 

and decreases in RNA levels of specific targets. It allows for absolute quantification 

in terms of copy number or relative quantification in relation to a housekeeping gene. 

QPCR in human and mouse cell lines was carried out using Sybr Green. The relative 
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quantity of amplified product was calculated based on cycle threshold (CT) values 

and changes in expression levels of the gene of interest were compared to that of a 

housekeeper. The fold differences resulting from treatments were determined using 2
-

ΔΔCT
 calculations. Samples were set up in 8 well PCR strips and primers added to a 

concentration of 400nm. To each well was added 10µl Sybr Green and 1µl cDNA. 

The total colume was then brought to 20µl using DEPC and the samples were 

subjected to PCR on the Opticon thermal cycler. The first step was 10min at 95°C, 

followed by 40 cycles of 95°C for 45sec, 58°C for 45sec and 72°C for 1min. 

2.2.20.6.2 QPCR in human and primate primary cells. 

 For qPCR the primer/cDNA mix was completed as follows: 12.5µl 2X Sybr Green, 

0.5µl forward and reverse primer resectively, 0.5µl cDNA and brought to a final 

volume of 25µl with DEPC and added to 96well labelled plates. All reactions were 

carried out in triplicate for each ‘n’ number experiment, with the results being 

averaged and then compiled. All data was inspected for outliers within the triplicate 

for each reaction. Once the plates were made up they were coated with a plastic cover, 

spun briefly using a desktop centrifuge and then loaded into the ABI Taqman system 

for analysis. All data was exported from Taqman into excel format and compiled 

using Prism Software (Graphpad). Data was analysed as for 2.2.20.6.1 above. 

GAPDH was used as the qPCR house-keeping control. 

2.2.21 Establishment of mouse lung damage models 

2.2.21.1 OVA/Asthma models of allergic inflammation 

2.2.21.1.1 Model establishment for the assessment of BMP pathway activity 

Prior to treatment mice had their lung function analysed by plethysmography on 

Day0. Mice were then sensitized with 100μg of OVA (Sigma) emulsified in 2% 

Alhydrogel adjuvant administered i.p. on days 0, 7 and 14.  The control group (Group 

1) received PBS alone (i.p.). On Day14, approximately 6 hours following the i.p. 

administration, animals were anaesthetised and OVA was administered by i.n. 

delivery. Subsequently on Day25, 26, and 27, OVA‐sensitized mice received 50μg of 

OVA intranasally (i.n.); control group mice received PBS alone. On day 28 half the 

animals from each group were sacrificed. Broncho alveolar lavage fluid (BALF) was 

obtained and analysed, or stored at −70 °C until time of analyses.  
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2.2.21.1.2 Model establishment for the assessment of therapeutic safety and effect. 

The model was established in the same manner as above up as far as and including 

Day27. Animals were then exposed to an aerosol of 2.5µg of therapeutic protein in 

10mls PBS until the solution was fully aerosolised at a flow rate of 4L/min on Day28. 

Also on Day28, prior to treatment, the mice had their lung function analysed by 

plethysmography, which was repeated again immediately prior to animal sacrifice at 

the appropriate time point. 

2.2.21.1.3 OVA-specific IgE ELISA 

96 well plate was coated with ovalbumin (5ug/ml) in alkaline buffer– 50ul/well and 

left overnight at 4°C. the plate was then washed with 1xPBS-Tween (0.05%) and 

blocked with 10% Marvel milk powder in PBS (300ul per well). The plate was then 

incubated for 2 hrs at room temperature. Plate was then washed with 1xPBS-Tween 

Add standards and sample dilutions of 1/50, 1/100, 1/200, 1/250 (50µl/well). Plate 

was then left overnight at 4°C or incubated at room temperature for 2 hours. Plate was 

then washed x3 with PBS-Tween-20 (1% Tween). Biotinylated anti-mouse IgE (1/250 

dilution in PBS+2% BSA) was then added at 50µl/well and incubated at room 

temperature for 1hr. Plate was then washed with 1xPBS-Tween. Streptavidin-HRP 

was then added (50ul/well) and incubated at room temperature for 1hr. Plate was then 

washed with 1X PBS-Tween and TMB was then added (100µl) and incubated at room 

temperature for 30mins away from light. The reaction was then stopped with 1N 

H2SO4 and the results read at 450nm on a plate reader. Alkaline buffer: (a) =424mg 

Sodium carbonate (Na2CO3) in 40mls dH2O. (b) =840mg Sodium hydrogen 

carbonate (NaHCO3) in 100mls dH2O. 30mls of (a) added to 70mls of (b) and made 

up to 200mls with dH2O (Ph 9.6). 

2.2.21.2 Elastase model in mice 

Mice were anaesthetised via inhalation of isoflurane. 30Units of porcine pancreatic 

elastase (Type IV) were administered to each mouse (30µg in 0.1ml of sterile PBS) 

intranasally. This was repeated 3 times weekly for a duration of two weeks. 

2.2.21.3 Anaesthetising mice for intranasal administration 

Mice were removed from their cage and placed in a holding chamber connected to a 

gas scavenger unit. A connected isoflurane line was then opened and the oxygen flow 

rate was increased to 3L/min. The mouse was monitored carefully and once seen to 

have succumbed to the anaesthetic (after approximately 0.5-1min) it was scruffed and 
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removed from the holding chamber. The nasal administration was then carried out by 

pipetting a designated volume of solution into the nasal passages of the animal, which 

upon correct administration could be visibly confirmed to have been inhaled into the 

airway. Subsequently the animal is returned to its own cage where it is monitored 

carefully during recovery from the procedure. Animals were checked again one hour 

post anaesthetic and administration to ensure no adverse affects were to be observed. 

2.2.22  Aerosolisation and delivery of potential therapeutics 

All aerosolisation was carried out by means of an Aerogen Aeroneb Pro vibrating 

mesh nebuliser unit. This consisted of the Aeroneb Pro control unit and a detachable 

and replaceable nebuliser head which contained the reservoir and vibrating element. 

2.2.22.1 Aerosolisation of therapeutics 

Aerosolisation of therapeutics was carried out by aliquoting the solution into the 

reservoir on the nebuliser head. The device was then activated using the control unit 

and the resulting aerosol was captured in a pre-chilled sterilin sitting in an ice-bath. 

This helped rapid condensation of the aerosol, preventing a large cloud build-up in the 

sterilin from affecting the ability of the nebuliser to function correctly. Control 

solutions that were not being nebulised were aliquoted at the same time into ice-cold 

sterilins also. Once the nebulisation was complete and the aerosol cloud seen to have 

deposited on the inside of the sterilin, the nebuliser was removed from the top of the 

sterilin and the tube quickly capped. Both the control and nebulised solution were 

then centrifuged in order to facilitate recovery of the full amount of nebulised 

solution, the control was centrifuged also in order to make sure that centrifugation had 

no impact on the downstream analysis of the effects of the nebulisation. 

2.2.22.2 Delivery to animals of nebulised therapeutics 

Animals were restrained in specially designed whole body restraint, nose only 

exposure systems that were connected to a central aerosol chamber. The nebuliser 

head unit was attached to the top of this chamber. 2.5µg of therapeutic agent was 

dissolved in 10ml PBS and a Buxco Flow regulator was activated to provide a flow of 

dehumidified air through the chamber at a flow rate of 4L/min for 10min. The 

nebuliser control was interconnected with the airflow control to ensure that 

nebulisation only occurred when adequate airflow was established. The solution was 

then nebulised into the chamber and the mice exposed to a 2.5µg/10ml concentration 

of therapeutic for 10min at a flow rate of 4L/min dehumidified air though the central 
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chamber to facilitate the availability of optimal fine particle fraction and VMD of the 

nebulised therapeutic for inhalation to the animals. Immediately after nebulisation the 

animals were released from their restraints back into their cages and carefully 

monitored afterwards for any signs of toxicity or injury resulting from the aerosol 

exposure. 

2.2.23  Animal Care and Ethical Approval 

All mouse work was carried out on animals housed in NUIM Bio Resources Unit 

under licence from the Department of Health and Children and according to N.U.I. 

Maynooth institutional guidelines on animal care and experimentation. Ethical 

approval was sought and granted for all procedures. All Primate cells were harvested 

from Rhesus Macaques housed in the California National Primate Research Centre, 

Davis, California. All work was carried out under institutional guidelines on animal 

care and experimentation under licence. 

2.2.24   Statistical Analysis 

Unless otherwise confirmed, results are expressed as the mean +/- the standard error. 

Statistical analysis using Student T-test, one-way ANOVA, repeated measures 

ANOVA, two-way ANOVA, Tukeys post test and Bonferroni post test were all 

carried out utilising commercially available GraphPad Prism® software. 
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3  The BMP pathway in 

vivo in a primate model 

of asthma and the effect 

of BMP4 on human and 

primate airway epithelial 

cells in vitro 
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3.1 Introduction 

For this project the effects of Ozone (O3) and house dust mite allergen (HDMA) 

induced allergic asthma on the  bone morphogenetic protein (BMP) pathway was 

assessed within the airways of neonatal Rhesus Macaques (Macaca mulatta) after 

exposure to O3+HDMA over a 6month period (Section 2.1.2). It has been shown that 

these non human primates are suitable for research into the defining mechanisms 

underlying allergic airways disease in humans.(Plopper and Hyde, 2008). In our lab it 

has already been established that the BMP pathway is involved in the process of 

regeneration after injury (Masterson et al., 2010), and EMT in Mouse airway 

epithelial cells (Molloy et al., 2008) and has also been shown to be involved in the 

process linked to certain types of lung cancer and to Allergic Rhinitis (unpublished 

data). As such we hypothesised that the BMP pathway is a potential target for 

modulation in certain disease models.  

In addition, ALI studies using primary human and primate airway cells were 

established to determine the effect of exogenous BMP4 in normal conditions and in 

an injury model. Injury was induced by pre-treatment of the cells with EGTA prior to 

exposure to BMP4 (Section 2.2.10). It helps evaluate the pathways differences in cells 

that are also contending with junction disruption in parallel with TGF pathway signals 

in the form of BMP4 as likely to be seen in an in vivo damage model. 

3.1.1 Markers of lung injury 

A number of important markers of injury were studied during the primate and human 

ALI studies and included p21 and PCNA. 

p21, a cyclin/cyclin dependent kinase inhibitor, is a cell cycle regulator and is found 

to be upregulated in cell senescence, and over expression of the gene results in cell-

cycle arrest. p21 regulates the cell cycle and proliferation through arrest at the G1/S 

transition  (Steinman et al., 1994; Liu et al., 1996) and it is linked to both BMP4 and 

to PCNA and is shown to be increased in allergic asthma (Su et al., 2009).  

Proliferating Cell Nuclear Antigen (PCNA), as mentioned above, is in part regulated 

by the activity of p21. It is a protein clamp that is has an essential role in the repair 

and replication of DNA and as such is vitally important in processes where injury or 

damage has resulted in DNA damage as may be seen in many airway inflammatory 

and pathological diseases. 
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3.1.2 Ozone and HDMA induced Asthma 

The O3 and HDMA induced asthma model was set up as described elsewhere 

(Schelegle et al., 2003). Briefly, primates were exposed to a combination of cyclic 

exposures to Ozone and house mite allergen that resulted in differences in airway 

morphology and in an increase in airway resistance combined with increased 

sensitivity to allergen. The study showed the combination of exposure to O3 and 

HDMA produced an allergic inflammation phenotype similar to what is seen in 

human asthma. 

3.1.3 Study Aims 

Primate airway studies were designed as follows. Paraffin embedded sections of 

Rhesus trachea and airways levels 1, 2 and 6 from O3+HDMA treated animals and 

control animals (Filtered Air) were evaluated by immunofluorescence analysis of 

PCNA, BMPR-IA and pSmad1/5/8 protein expression. The importance of the 

evaluation of the differing regions of the airways is that it can help define where the 

spatial remodelling is occurring within in the airways and to see if, as in vascular 

remodelling, airway response in terms of BMP activity is airway generation-specific 

(Avdalovic et al., 2006).  In order to investigate the role of BMP signalling and to 

assess the level of damage response in the airways in this model the localisation and 

expression of three main proteins was examined, pSmad1/5/8 which is indicative of 

active BMP signalling; PCNA as a marker of proliferating cells used to identify areas 

undergoing regeneration and; BMPR-IA which indicates cells are responding to BMP 

ligands. 

 

In addition to this analysis, ALI cultures of human and primate primary bronchial 

epithelial cells were examined in order to determine what effect activation of the 

BMP pathway had on cells. Pathway activation was achieved by the delivery of 

recombinant human BMP4 to the apical surface of the epithelial ALI cultures. A 

second study was also conducted with both human and primate ALI cultures that 

involved the pre-treatment of the ALI cultures with EGTA to create a disrupted 

epithelium, with the aim of modelling the disrupted and damaged environment 

characteristic of many diseases of the lung. In order to characterise the role of BMP4 

in both a normal intact ALI culture and in an EGTA disrupted epithelium model 

culture, qPCR and Western Blot analysis of various markers was carried out. The 

following markers were analysed by qPCR: Id1, as an early responder to BMP4 

signalling was used to evaluate whether or not the BMP4 delivery had induced 
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pathway activation; PCNA and p21 were examined to assess whether proliferation or 

quiescence respectively occurred in response to BMP4. BMP receptors BMPR-IA, 

BMPR-IB and BMPR-II were evaluated to determine the effect of pathway activation 

on their levels of production. The Smad signalling pathway was evaluated by 

examining the levels of R-Smads Smad1 and Smad5, and of co-Smad, Smad4. BMP2 

was examined to see if BMP4 activity abrogated or stimulated its expression and E-

cadherin was examined to help evaluate cell adhesion under pathway activity. The 

Snail family of genes play key roles in development, patterning and EMT. Western 

Blotting was used to analyse the levels of E-Cadherin, BMPR-IA, Smad4 and Id1. 
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3.2 Results 

3.2.1 Ozone+HDMA Model in Rhesus Macaque primates 

Expression of PCNA, BMPR-IA and pSMAD1/5/8 was examined by immuno-

fluorescence in O3+HDMA treated animals and in control animals treated with 

Filtered Air. Tissue sections from trachea and airway levels 1, 2 and 6 were examined 

(n=3). 

PCNA: PCNA expression appeared similar in the trachea of both control and 

O3+HDMA animals with no difference in protein expression or localisation, with only 

low levels being detected in the trachea of both sets of animals (Figure 3.1). As the 

examination progressed down the airways however a marked change in expression 

between the two groups was noted. At airway level1, there was a marked difference in 

expression levels between the two treatment groups, with the epithelium lining the 

airways at level 1 showing elevated and abundant staining for PCNA in O3+HDMA 

animals compared to that evident in the control animals (Figure 3.2). This trend 

became more pronounced at airway levels 2 and 6, with PCNA highly abundant 

throughout the epithelium of the O3+HDMA animals and with no increase or change 

in expression from the control animals between any of the airway levels (Figure 3.3 

and Figure 3.4).  

 

BMPR-IA: In the trachea BMPR-IA expression was barely detectable in either group 

of animals (Figure 3.5). In level1 however  in O3+HDMA animals there was a marked 

increase in abundance of protein in the epithelium of the level1 airway (Figure 3.6). 

This was not apparent in the control animals where there was just a slight increase in 

the abundance levels to just above what was seen in the trachea. In the level2 and 

level6 airways this pattern was repeated for BMPR-IA expression with highly 

abundant BMPR-IA visible in the epithelium lining the airways of the O3+HDMA 

animals and a low level of expression in the control animals (Figure 3.7 and Figure 

3.8). 

 

pSmad1/5/8: In airway level2, pSmad1/5/8 activity was significantly higher in 

O3+HDMA treated animals than was apparent in the control animals, where no 

pSmad1/5/8 protein was detected. At airway level 6 there was pSmad1/5/8 activity 

detected in both groups of animals. The level detected increased in both groups 

compared to level2 airways. The level of expression in the control animals at airway 
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level6 was similar to that seen in the O3+HDMA animals at airway level 2. The level 

of pSmad1/5/8 detected in the O3+HDMA animals had increased expression far more 

abundant in at level 6 than observed at level2. The localisation of expression between 

the two treatment groups did not differ nor did it deviate between levels. Data was not 

obtainable for the trachea or level1 airways. 

A summation of all results can be seen in Table 3.1. 
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Figure 3.1 Expression of PCNA in the trachea of the primate lung  

O3+HDMA (A and C) compared to control lung (B, D and E). PCNA (568 Red) was 

present at very low levels in both O3+HDMA and Control groups in the Trachea. 

(Blue = Dapi Nuclear stain). 
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Figure 3.2 Expression of PCNA in airway level 1 of the primate lung  

O3+HDMA (A, C and E) compared to control lung (B, D and F). PCNA (568 Red) 

was observed at elevated levels in the O3+HDMA which contrasted with level present 

in the Control group which was ranged from undetected to very low. (Blue = Dapi 

Nuclear stain). 
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Figure 3.3 Expression of PCNA in airway level 2 of the primate lung 

O3+HDMA (A, C and E) compared to control lung (B, D and F). PCNA (568 Red) 

was detected at a level far in excess of that observed in the control lungs at this level 

in the O3+HDMA group. (Blue = Dapi Nuclear stain). 
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Figure 3.4 Expression of PCNA in airway level 6 of the primate lung 

 O3+HDMA (A, C and E) compared to control lung (B, D and F). PCNA (568 Red) 

was here again detected at a level in excess of that observed in the control lungs at 

this level in the O3+HDMA group. (Blue = Dapi Nuclear stain). The control lungs 

indicated the presence of PCNA at level barely exceeding that of the background (B, 

F) though one animal did display a moderate amount of flourescence (D). 
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Figure 3.5: Expression of BMPR-IA in Trachea 

O3+HDMA (A, C and E) compared to control lung (B, D and F). BMPR-IA (568 

Red) was detected at a low level in both O3+HDMA and Treatment control groups in 

the trachea of the animals involved in this study. It was faintly present in airway cells 

in only one of each group (A and B) and not present n the remaining two animals in 

either group at the airway surface though levels could be etected in the basement 

memberane in both groups. 

 



112 

 

 

Figure 3.6 Expression of BMPR-IA in Airway level1 

O3+HDMA (A, C and E) compared to control lung (B, D and F). BMPR-IA (568 

Red) was highly abundant in level1 of the airways in the O3+HDMA treated group. 

This contrasted with the control group where only one animal displayed an abundance 

of the protein (D) while the remaining two animals, (B and F) had no detectable levels 

of BMPR-IA present. 
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Figure 3.7 Expression of BMPR-IA in Airway level 2 

O3+HDMA (A, C and E) compared to control lung (B, D and F). BMPR-IA (568 

Red) was highly abundant in level2 of the airways in the O3+HDMA treated group. 

This again contrasted significantly with the control group as was seen in airway level 

1 (Figure 3.6) where only one animal in the control group displayed an abundance of 

the protein (D). The other two animals in the control group displayed only faint 

amounts of the Protein. 

 



114 

 

 

Figure 3.8 Expression of BMPR-IA in Airway level 6 

O3+HDMA (A, C and E) compared to control lung (B, D and F). BMPR-IA (568 

Red) was highly abundant in level6 of the airways in the O3+HDMA treated group. 

This was in contrast to the control group where BMPR- IA was deteced in the airways 

of the treated groups, though at a much lower level in all animals compared to the 

levels of the protein detected int he O3+HDMA treated group. 
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Figure 3.9: Expression of pSmad1/5/8 in Airway level2 

O3+HDMA (A and C) compared to control lung (B and D). pSmad1/5/8 can clearly 

be seen to be present in and staining the airways of the O3+HDMA (A and C) treated 

animals. The staining present the control animals is non specific and is not present at a 

level higher than seen in the secondary controls (Figure 3.11 (C)). 
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Figure 3.10 Expression of pSmad1/5/8 in Airway level 6 

O3+HDMA (A, C and E) compared to control lung (B, D and E). pSmad1/5/8 can 

clearly be seen to be present in and staining the airways of the O3+HDMA (A, C and 

E) treated animals. The staining present the control animals (B, D and F) is not, 

overall, as definate or as abundant than the O3+HDMA group though there is a 

detectable level of pSmad1/5/8 present. 
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Figure 3.11: Secondary Controls 

PCNA secondary control = (A), Blue = DAPI. BMPR-IA secondary control = (B). 

pSmad1/5/8 secondary control = (C). 
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 PCNA BMPR-IA pSmad1/5/8 

 O3+HDMA Control O3+HDMA Control O3+HDMA Control 

Trachea 0.5 (n=2) 0.5 .5 .5 n/a n/a 

Airway level 1 2 0.5 3 1 n/a n/a 

Airway level 2 3 0.5 2.5 1 2 (n=2) 0 (n=2) 

Airway level 6 3 0.5 3 1 3 2 

Table 3.1 Protein expression levels in the airways 

A system of scoring was devised for the expression of a protein in an airway with n=3 

in each airway and each group unless otherwise indicated in the table. In each animal, 

little to no protein presence was scored with a 0, an obvious presence of protein 

detected scored 0.5 and a highly abundant protein scored 1. This was compiled by 

examination of multiple sections of tissue from each animal in the study.  

As can be seen from the table and in the immunofluorescence images the level of 

PCNA in the airways (Figures 3.1-3.4) in the O3+HDMA models increased with 

decending airway level, whereas the control animals expressed a small amount in the 

trachea, but expression was not evident further down the airways. With regards to 

BMPR-IA, the level of protein present again increased from the trachea to the airways 

(1 in the trachea to 3 in the airway immediatly attached to it), and remained 

consistently high throughout the levels 1, 2 and 6 in the O3+HDMA model. However 

the level in control animals increased slightly from the trachea to the airway but no 

difference in protein levels was noted down through the airway levels and it remained 

at a constant low level. The presence of pSmad1/5/8 was high in airway level 2, in the 

O3+HDMA model (score=2), compared to no expression of the protein in the Control 

animals at this level (score=0). In airway level 6 there was an increased level of 

detection of pSmad1/5/8 in the control animals (score=1.5), though it was not as 

abundant as seen in the O3+HDMA group (score=2.5). 
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3.2.2 ALI cultures 

BMP4 treatment: 

Both human and primate ALI systems were treated with BMP4 in the same manner. 

At Day0, t=0hr, BEGM media (+RA) in the well was replaced with 1.5ml fresh 

BEGM media (+RA). Cells to be treated with BMP4 had 50µl BMP4 at a 

concentration of 100ngs/ml DMEM applied to apical surface of the insert, while 

control cells had 50µl DMEM added. 

EGTA treatment: 

Both human and primate ALI systems were treated with EGTA in the same manner. 

EGTA was delivered at a dose of 10mM one hour before treatment or harvest          

(t=-1hr). At t=0hr the BMP4 media was added and subsequent time points were 

determined from this. EGTA treatment was administered to the apical surface of the 

insert and was removed after one hour by careful pipetting. It was not added in this 

instance to the media in the well below the insert as the media was Ca/Mg +ve and the 

chelating effect would be deteriorated prior to having an effect on the cells. In order to 

determine the level of EGTA to use and the dosage time a pilot experiment based on 

previous literature was carried out (data not shown). Cells were determined to have 

had their junctions disassembled and the cell layers beneath exposed after 1hr 

exposure to 10mM EGTA.  

3.2.3 EGTA effect on cells: 

The effect of EGTA alone on the expression profile of the cells was compared to that 

of control cells in both human and primate ALI systems. This was to determine the 

effect of EGTA alone. If agents such as EGTA are to be used in vivo these 

considerations are important as they could enhance or mitigate the effect of the 

treatment drug itself. It is conceivable that, by temporarily removing the calcium and 

thereby weakening adherens junctions, EGTA may promote generation or inhibition 

of certain proteins and protein channels. In this instance the profile of each of our 

pathway markers was examined after cells had been treated with EGTA and media 

had been added to the well that would coat the basal surface of the cells. It was of 

note that the profile of effect varied between the primate and human cells. Any fold 

increase/decrease or difference was considered significant for the purposes of this 

analysis if ≥0.5fold from the control at the corresponding time point. All results are 

displayed as (Mean±S.E). 
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Id1: Human cells treated with EGTA, most pronouncedly at the t=12hr and t=24hr 

time-points, showed a large decrease in the levels of Id1 mRNA (-3.497±1.947 fold at 

t=12hr and; -5.58±3.156 fold at t=24hr respectively) (Figure 3.12 (A, B)). After 48 

hours this falls back in line with what is observed in the control cells (0.196 fold 

difference). This same pattern is largely repeated in the primate model, however in the 

primate cells, there is an increase in expression levels of Id1 after 48hours (t=48hr 

+2.132±0.426 fold and; t=72hr +2.397±1.463 fold respectively), whereas in the 

EGTA treated cells there continues to be a slight decrease (-1.250±1.285fold at t=48hr 

and -1.744 at t=72hr) compared to the initial t=0hr time-point. The most remarkable 

effect of the EGTA treatment in primate cells was observed at t=12hr post EGTA 

treatment where a -7.040±2.566 fold decrease in the level of Id1 mRNA was 

recorded. Primate control cells are the only group of cells analysed where an increase 

in the amount of Id1 mRNA was recorded at any time point. 

 

p21: There was a sustained decrease in the amount of mRNA present in human in 

both EGTA and control cells over 72 hours (Figure 3.12 (C, D)). There is little 

difference in the profile expression and the fold levels of expression with the 

exception of t=24hr (control=-0.56±0.073 and EGTA = -4.236±3.335), though a large 

Standard Error has to be factored into account and the overall effect is not significant 

when analysed by two way ANOVA. In primate cells both the control and EGTA 

treated cells follow the same profile of expression levels across the time-course, with 

p21 mRNA being present at a relatively unchanged level at t=6hr and then a lower 

level at t=12hr and t=24hr before being up-regulated in both sets of cells after t=48hr. 

 

PCNA: The levels of PCNA expressed in both human and primate ALI systems were 

comparable (Figure 3.13 (E, F)). A decrease compared to t=0hr at all timepoints in 

both sets of cell analysed with the exception of EGTA treated cells at t=48hr in both 

models, where a slight increase in expression compared to the t=0timepoint was noted 

(<0.5 fold). In the human cells this resulted in a difference in expression of Δ=0.95 

fold between Control and EGTA treated, and in a Δ=1.54 fold difference in primate 

cells. 

 

BMPR-IA: Control human cells showed no major alteration in BMPR-IA expression 

from the t=0hr control across the timeframe, but with a slight decrease of less than 1 

fold at t=24hr (-0.559±0.264 fold). With the EGTA treated cells however there was a 

significant increase in the levels of BMPR-IA mRNA detected at t=6hr (0.85±1.53 
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fold) and t=12hr (1.36±1.866 fold), before a marked decrease to -0.973±0.578fold at 

t=24hr and increase again at t=48hr (+0.919±0.638 fold) before levelling off to a less 

significant difference at t=72hr between control and EGTA cells (0.022 fold 

difference at t=72hr). The control cells in the primate ALI largely matched this profile 

with a slight decrease in expression compared to t=0hr at all time points (Figure 3.13 

(B)). This is matched by the EGTA treated cells for the first 12 hours of the time-

course, but at t=24hr an increase in the level of BMPR-IA mRNA is observed against 

the t=0hr background (+0.309±0.143 fold) as opposed to a decrease in the control 

cells (-0.4±0.132 fold). This grows to a greater than 1fold increase at the t=48hr time-

point (+1.32±0.204 fold), with a 1.84 fold difference observed between the control 

and EGTA treated cells profile. The increase, though less significant, is still 

observable at t=72hr (+0.688±0.282 fold).  

 

BMPR-IB: BMPR-IB levels of mRNA in the Human ALI are largely similar between 

control and EGTA treated cells, with no major deviations from t=0hr levels or 

differences between control and EGTA of note (Figure 3.13 (C)). In the primate 

model however this is not the case (Figure 3.13 (D)). Though largely similar for the 

first 24 hours of the time-course, at t=48hr there is a marked increase in the level of 

BMPR-IB mRNA present in the EGTA treated cells compared to the t=0hr control 

(+1.87±0.464 fold), which gives an even larger discrepancy against the control cells (-

1.07±0.26 fold) profile at the same time-point (2.94fold difference between the two). 

Though the difference drops at t=72hr time-point it is still a significant difference 

(1.608 fold) and the increased level of BMPR-IB in the EGTA treated cells is of note 

at 0.769±0.383 fold. It can be noted that EGTA treatment alone, at t=48hr, 

significantly changes the expression profile of BMPR-IB on its own accord.  

 

BMPR-II: BMPR-II expression levels in the human ALI remain consistently close to 

the levels of the t=0hr time-point for the first 12 hours before a significant decrease in 

the level of expression can be seen at t=24hr (-1.412 fold) that remains largely 

unvaried through to the t=72hr time-point (-1.148±0.369 fold at t=48hr and -1.213 

fold at t=72hr) (Figure 3.13 (E)). The EGTA treated cells however show a significant 

decrease in expression at t=6hr (-1.479±0.873 fold). This level however approaches to 

close to that of the t=0hr control over the time-course, with a barely discernable 

decrease in levels compared to the t=0hr control at t=24hr (-0.118±0.194 fold) 

followed by a significant increase over the t=48hr (+0.713±0.277fold) time point and 

a notable increase at the t=72hr (+0.383±0.392 fold) time-point. Though not largely 
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different from the t=0hr control for the EGTA treatments, they are quite different 

from the control cells, with over a fold level difference of expression between them 

(Δ=1.86 fold difference at t=48hr and Δ=1.596 fold difference at t=72hr). In the 

primate ALI system the level of BMPR-II in the control cells never varies 

significantly from the t=0hr control over the entire 72 hour time course (Figure 3.13 

(F)). In the EGTA treated cells however it is noted that the levels remain consistent 

with those of the t=0hr time-point and the control cells for the first 24 hours, but that 

at the t=48hr time-point there is a notable increase in the levels of BMPR-II mRNA 

levels to +1.23±0.953 fold this increase can again be seen in the t=72hr time-point, 

though to a lesser extent (+0.903±0.841fold). 

 

BMP2: mRNA levels of BMPR-II were generally reduced in both human and primate 

models compared to their controls, with the effect most pronounced in culture models 

pre-treated with EGTA prior to BMP4 treatment, most noticeably at t=24hr in humans 

(-2.217±1.604 fold) and t=12hr in primates (-2.021±1.174 fold) (Figure 3.14 (A, B)). 

Exceptions to this in human cells only occurred in BMP4 only treated cells where at 

the t=6hr time point there was a small increase in the amount of BMP2 mRNA 

detected compared to what was observed in the control cells. In primate cells both 

BMP4 (+0.637±0.201 fold increase) and EGTA+BMP4 (+1.19±1.181 fold increase) 

treated cells were significantly increased at t=6hr. It is possible it is noticeable in 

primates because of a slower response to the BMP4 stimulus whereas the peak may 

have been missed by t=6hr in human ALI cultures. 

 

 

E-Cadherin: With regard to E-cadherin expression levels both control and EGTA 

treated cells in human ALI reacted in the same general pattern, both holding around 

the same level of expression down from t=0hr measurements with the exception of the 

t=72hr time-point (-0.129±0.415 fold in control cells vs. -1.441±1.84 fold EGTA 

treated) (Figure 3.14 (C)). In primate however there is a slight decrease in the control 

cells starting 12 hours from the t=0hr control of almost 1 fold difference (-

0.895±1.121 fold) (Figure 3.14 (D)). In the EGTA treated primate cells however there 

is no significant change in expression at all over the first 24hr, but at t=48hr  there is a 

marked up-regulation of E-cadherin mRNA contrasting with a decrease in expression 

in the control cells at this time point (1.914±1.138 fold EGTA vs. -1.537±0.316 fold 

Control).  
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Smad1: Smad1 levels in the human NEHB ALI system show a decrease in the level of 

mRNA compared to the t=0hr controls (Figure 3.15 (A)). At t=6hr there is a 

significant 0.617±0.634 fold decrease compared to control t=0hr cells. There is a 

decrease visible, though not surpassing -0.368fold at t=12, t=24 and t=48hr time 

points before another significant decrease in comparison to control t=0hrcontrol cells 

is again seen at t=72hr with a -0.66±0.422fold decrease. EGTA treated human cells 

show a greater decrease at t= 6hr than what was seen in control cells, with a -

1.128±0.558 fold decrease. The level of mRNA by t=12hr is once again approaching 

the level of the t=0hr control (-0.123±0.198 fold) before another significant decrease 

is recorded of -1.237±0.638 fold at t=24hr. After this the level fluctuates within a half 

fold up (t=48hr) or down (t=72hr) of the level of the t=0hr control. The primate ALI 

profile of Smad1 expression varies from this (Figure 3.15 (B)). The control cells 

remain tethered to the t=0hr control level across the time-course, for the first 48hours 

(t=6hr -0.02±0.123 fold decrease; t=12hr +0.171±0.193 fold increase; t=24hr -

0.261±0.177 fold decrease and; t=48hr -0.75±0.226fold decrease) with the only 

significant deviation away from the t=0hrcontrol occurring at t=72hr where there is a 

0.568±0.134 fold deviation from the levels seen at t=0hr. However the EGTA levels, 

though also extremely close to both the t=0hr levels and also the control cells levels of 

expression, show a marked increase in the levels of Smad1 being expressed at t=48hr 

(+1.2±0.531 fold) and t=72hr (1.358±1.26 fold).  

 

 

Smad4: Smad4 was briefly examined in the primate model (n=1 for control cells and 

n=2 for EGTA treated cells) but no major differences between levels of expression at 

the same time points was noted in either, though a significant drop in Smad4 mRNA 

expression was recorded in both in comparison to their respective t=0hr control at 

t=12hr (-0.636 fold in control cells and; -1.015±0.531 fold in EGTA treated cells) and 

t=24hr. (-0.523 fold in control cells and; -1.15±0.449 fold in EGTA treated cells) 

(Figure 3.15 (D)). 

 

Smad5: Smad5 expression levels largely replicated the pattern of Smad1 with some 

notable exceptions. The human ALI control cells never deviated significantly from the 

level of expression to that of the t=0hr time-point (±0.115 fold difference at the most) 

(Figure 3.15 (E)). However EGTA treated cells showed a -0.775±0.323 fold decrease 

at t=6hr and a -2.14±1.453 fold decrease in the level of Smad5 mRNA expression at 
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t=24hr, before levelling out to the same level of expression as measured against the 

t=0hr time-point at t=48hr (-0.033±0.565 fold difference) and t=72hr (-0.019±0.550 

fold difference). In the primate ALI system Smad5 profile more closely matched that 

of the Smad1 primate ALI profile (Figure 3.15 (F)). From t=6hr to t= 24hr there was 

very little difference in the level of Smad5 mRNA expressed between the t=0hr 

controls in either of the control or EGTA cells. This continues through to the 72hr 

time-point for the control cells. However with EGTA treated cells there was a 

significant increase at t=48hr (+2.241±0.863 fold) and t=72hr (+1.364±1.002 fold). 

 

Snail1: Snail1 expression levels in the human ALI system didn’t vary largely (Figure 

3.16 (A)). Control cells mRNA levels averaged only a 0.134±0.474 fold deviation 

from the t=0hr control. EGTA treated cells however showed a greater variation from 

the t=0hr control over all time points (0.474±0.105 fold). The most significant 

changes as a result of EGTA treatment occurred with an increase of +0.57±0.537 fold 

at t=6hr and a decrease of -0.87±0.151 fold at t=24hr. In the primate ALI system 

however the same profile pattern was not to be found (Figure 3.16 (B)). Control cells 

showed a marked increase in the expression of Snail1 mRNA at t=6hr (+0.423±0.45 

fold) and t=12hr (+1.103±1.148 fold). This was followed by a significant decrease in 

the level of expression compared to that seen in t=0hr control cells of -0.6±0.695 fold 

at t=24hr and -0.794±0.442 fold at t=48hr. The level of Snail1 mRNA was observed 

to have increased significantly relative to the t=0hr control again at t=72hr time point 

(+1.065±0.962 fold). This level of significant fluctuation far exceeded the level seen 

in the human control cells. EGTA treated primate cells also showed a much greater 

reaction in terms of the levels of Snail1 mRNA in the cells. At t=6hr a -1.674±0.859 

fold decrease in the level of Snail1 was observed, with a 1 fold decrease (-0.999±1.15 

fold) at t=12hr. This contrasted with a notable increase in expression at t=6hr for 

control cells (+0.423±0.45 fold), and a +1.103±1.148 fold increase in expression at 

t=12hr in the control cells At t=24hr both sets of cells exhibited a differing degree of 

decrease in the expression levels of Snail1 with EGTA treated cells recording a -1.131 

fold greater decrease than that seen with the control cells (Control cells= -

0.596±0.695 fold decrease vs.; EGTA treated cells =-1.727±0.915 fold decrease). The 

mRNA levels in EGTA treated cells continued to fluctuate significantly at t=48hr 

(+0.659±0.048 fold increase) and t=72hr (-0.814±1.279 fold decrease). This contrasts 

with the decrease seen in control cells at t=48hr and the increase seen in control cells 

at t=72hr.  
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Snail2: Snail2 expression profile in the human ALI treated cells showed a continuous 

decrease over time in the control cells versus t=0hr (Figure 3.16 (C)). There was a 

minor decrease by t=6hr (-0.043±0.302) followed by a notable decrease of -

0.316±0.401 fold at t=12hr and this grew to a significant decrease of -0.78±0.47 fold 

by t=24hr It remained significantly decreased from control cells at t=48hr (-0.65±0.68 

fold decrease) and t=72hr (-0.661±0.096 fold decrease). EGTA treated cells however 

showed a much more marked decline in Snail2 expression over the time-course, 

progressing continuously from a notable -0.416 fold difference at t=6hr straight to a 

significant decrease at t=12hr (-1.144±0.338fold decrease) to in excess of a 2.5fold 

decrease at t=72hr (t=24hr -2.09±0.518 fold decrease; t=48hr -2.231±1.264 fold 

decrease; t=72hr -2.678±1.625 fold decrease). 

 A similar pattern was observed this time in the primate ALI system (Figure 3.16 (D)). 

In the control cells at t=6hr there is a minor increase in the level of Snail2 expressed 

compared to the level seen in the cells at t=0hr (+0.183±0.555 fold increase). After 

this however there is a continuous decrease in the level of Snail2 mRNA in the cells. 

By t=6hr there is a significant decrease to -0.772±0.762 fold, before at t=24hr the 

level increases slightly to just -0.187±0.661 fold decrease below the t=0hr time point. 

t=48hr (-1.374±0.425 fold decrease) and t=72hr (-2.086±0.59) time points however 

both recorded significant decreases in the levels of Snail2 mRNA compared to what 

was quantified in the t=0hr controls.  The EGTA treated cells had a much more 

profound decrease in expression levels compared to this. By t=6hr there was in excess 

of a 2.5 fold decrease (-2.666±0.341 fold decrease), at t=12hr, in excess of a 3 fold 

decrease (-3.891±0.496 fold decrease) and by t=24hr there is in excess of a 6 fold 

decrease (-6.786±2.856 fold decrease) in the expression of Snail 2 mRNA expression 

the in the primate ALI system. By t=48hr the level of decline compared to what was 

recorded in the t=0hr control cells appeared to level off at 4+fold decrease (t=48hr -

4.386±0.857 fold decrease; t=72hr -4.609±1.081 fold decrease).  

In both human and primate treated cells there was a significant effect decrease 

measured in control cells as time progressed. However in cells that were treated with 

EGTA the effect was much more significant with a multi-fold decrease in the quantity 

of Snail2 mRNA in cells compared to the t=0hr time point than seen in control cells. 
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Gene Of 

Interest 
Human 

    
Primate 

    

 EGTA Time Interaction EGTA Time Interaction 

BMP2 No No Yes (*) No No No 

E-cadherin  No No No Yes (*) No No 

Id1 No No No Yes (**) Yes (*) No 

p21 No No No No 
Yes 

(**) 
No 

PCNA No No No No No No 

BMPR-IA No No No Yes (***) Yes (*) Yes (**) 

BMPR-IB No No No Yes (***) No Yes (**) 

BMPR-II Yes (*) No No No No No 

Smad1 No No No No No No 

Smad4 No No No No No No 

Smad5 No No No Yes (**) No No 

Snail 1 No No No No No No 

Snail 2 Yes (*) No No Yes(***) No No 

Table 3.2 Two Way ANOVA analysis of effect of EGTA and time 

Significance as analysed by Two Way ANOVA for each Gene of Interest (G.O.I) and 

whether or not the presence of EGTA, the passage of time, or the interaction of both 

had an effect on the level of expression of the G.O.I. 
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Figure 3.12 Quantification of Id1, p21 and PCNA mRNA expression levels 

 Id1 (A, B), p21 (C, D) and PCNA (E, F) mRNA expression levels in control and 

EGTA treated cells. Both control and EGTA mRNA expression levels are relative to 

the t=0hr control for each group. 

Id1: n=3† (†Human control cells; t=24hr n=2, t=72hr n=2). 

P21: Human control n=3‡, Human EGTA n=3, Primate Control n=3, Primate EGTA 

n=2 (‡Human control cells; t=24hr n=2, t=72hr n=2). 

PCNA: Human control n=3§, Human EGTA n=3, Primate Control n=3, Primate 

EGTA n=2 (§Human control cells; t=24hr n=2, t=72hr n=2). 
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Figure 3.13 Quantification of BMPR-IA, BMPR-IB and BMPR-II mRNA 

expression levels 

BMPR-IA (A, B), BMPR-IB (C, D) and BMPR-II (E, F) mRNA expression levels in 

control and EGTA treated cells. Both control and EGTA mRNA expression levels are 

relative to the t=0hr control for each group. 

BMPR-IA: n=3† (†Human control cells; t=24hr n=2, t=72hr n=2). 

BMPR-IB: n=3‡ (‡Human control cells; t=24hr n=2, t=72hr n=2). 

BMPR-II: n=2§ (§Human control cells; t=24hr n=1, t=72hr n=1). 
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Figure 3.14 Quantification of BMP2 and E-cadherin mRNA expression levels 

BMP2 (A, B) and E-cadherin (C, D) mRNA expression levels in control and EGTA 

treated cells. Both control and EGTA mRNA expression levels are relative to the 

t=0hr control for each group. 

BMP2: Human control n=3†, Human EGTA n=2, Primate Control n=3, Primate 

EGTA n=3 (†Human control cells; t=24hr n=2, t=72hr n=2). 

E-Cadherin: Human control n=3‡, Human EGTA n=2, Primate Control n=3, Primate 

EGTA n=3 (‡Human control cells; t=24hr n=2, t=72hr n=2). 
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Figure 3.15 Quantification of Smad1, Smad4 and Smad5 mRNA expression 

levels 

Smad1 (A, B), Smad4 (C, D) and Smad5 (E, F) mRNA expression levels in control 

and EGTA treated cells. Both control and EGTA mRNA expression levels are relative 

to the t=0hr control for each group. 

Smad1: n=3† (†Human control cells; t=24hr n=2, t=72hr n=2). 

Smad4: Primate Control n=1, Primate EGTA n=2 

Smad5: n=3‡ (‡Human control cells; t=24hr n=2, t=72hr n=2). 
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Figure 3.16 Quantification of Snail1 and Snail2 mRNA expression levels 

Snail1 (A, B) and Snail2 (C, D) mRNA expression levels in control and EGTA treated 

cells. Both control and EGTA mRNA expression levels are relative to the t=0hr 

control for each group. 

Snail1: n=3† (†Human control cells; t=24hr n=2, t=72hr n=2). 

Snail2: n=3‡ (‡Human control cells; t=24hr n=2, t=72hr n=2). 
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3.2.4 Effect of BMP4 Treatment on Human and Primate ALI Cells: 

The effect of BMP4 treatment on cells was analysed:  

a) By examining the morphological effect of treatment on the cell morphology (Figure 

3.17, Figure 3.18 and Figure 3.19). Human cells that received BMP4 with no EGTA 

pre-treatment exhibited morphological differences by at t=48hr and t=72hr. In primate 

cells that received BMP4 with no EGTA pre-treatment, morphological differences 

from the control cells were not detected until t=48hr and again at t=72hr, as was seen 

in human cells undergoing the same treatment conditions. In the case of primate cells 

which all received EGTA pre-treatment, cells that received no BMP4 treatment 

underwent no morphological changes until t=24hr. However BMP4 treated cells were 

responding with a morphological change by t=6hr. 

b) By comparing the expression levels of various G.O.I in control cells which (i) 

received no exogenous BMP4 treatment, and treated cells which were apically treated 

with 100µl of 50ng/ml BMP4 protein and (ii) control cells which received EGTA 

treatment and treated cells that received EGTA treatment 1hr before commencement 

of BMP4 treatment at t=0hr with 100µl of 50ng/ml BMP4 apically. As will be seen 

one of the most striking set of results came from analysis of Id1 expression levels in 

BMP4 treated cells. mRNA expression levels were increased across the board, over 

all time points and both in cells treated with BMP4 alone and cells exposed to EGTA 

prior to BMP4 treatment. Any fold increase/decrease or difference was considered 

significant for the purposes of this analysis if ≥0.5fold from the control at the 

corresponding time point. All results are displayed as (Mean±SE). 

A full breakdown of n number per group can be seen in Table 3.3. 

 

Id1 mRNA levels were increased significantly at all time points in both human and 

primate BMP4 treated cells, with or without the presence of EGTA (Figure 3.20 

(A,B)). Of note with regard to the human NEHB cells, at all time points, with the 

exception of t=24hr, cells treated with BMP4 alone that had not received EGTA pre-

treatment showed a greater difference in fold expression of Id1 mRNA when 

compared to the EGTA+BMP4 treated cells (t=24hr; BMP4 = +7.642±2.018 and 

EGTA+BMP4 = +9.545±4.802 fold increase: Δ=1.902 fold)). It was therefore also of 

note that in treated primate cells, with the exception of the t=6hr time-point, the 

opposite is true and all cells pre-treated with EGTA had a greater difference in fold 

expression of Id1 compared to their respective controls (t=6hr; BMP4 = 

+18.591±6.265 fold and EGTA= +BMP4=8.964±5.108 fold: Δ=9.627 fold). 
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In human NEHB cells the greatest increase in expression was recorded at t=72hr for 

both BMP4 and EGTA+BMP4 treatment groups (46.585±38.161 fold in BMP4 

treated and 17.911±0.271 fold in EGTA+BMP4 treated). 

 

p21 mRNA expression in NEHB cells treated either with BMP4 or EGTA+BMP4 the 

most significant result was observed t=6hr in BMP4 only treated cells which recorded 

a significant 2.004±1.824 fold increase in fold expression of p21 mRNA (Figure 3.20 

(C)). The corresponding time point in the EGTA+BMP4 treated cells recorded a -

0.156±0.418 fold decrease, an insignificant difference from what is observed in the 

EGTA only treated control cells. The only other significant difference in quantity of 

p21mRNA present in NEHB BMP4 treated cells was recorded at t=72hr where a 

1.216±1.173 fold increase was detected as a result of BMP4 treatment. The only two 

significant changes in that occurred in EGTA+BMP4 treated cells occurred at t=24hr 

with a 0.774±1.008 fold increase and at t=72hr with a 0.680±0.299 fold increase over 

respective controls resulted in no changes in expression in comparison to their 

controls. 

With regard to primate cells p21 mRNA levels were initially decreased (-0.324±0.26 

fold decrease) at t=6hr (Figure 3.20 (D)). However by t=12hr they were elevated to 

above that of the control cells and peaked at t=24hr with a significant +0.932±0.493 

fold increase in expression levels  compared to those found in control cells at the 

same time point. Over the next 48hr, at t=48hr and t=72hr, the levels of p21 were 

recorded as decreasing from this significant peak to still significant 0.747±0.493 fold 

increase at t=48hr and a not-significant 0.28±0.54 fold increase at t=72hr. In 

EGTA+BMP4 treated cells, p21 mRNA levels show increasing fold levels of 

expression from t=6hr to significantly higher at t=12hr and t=24hr (t=6hr; 

+0.005±0.078 fold increase: t=12hr; +0.793±0.014 fold increase: t=24hr; +0.97±0.006 

fold increase) before returning to a level closer to that of the control cells at t=48hr (-

0.203±0.08 fold less p21 mRNA than found in control) and t=72hr (+0.49±0.735 fold 

increase). p21 mRNA levels in both treatment groups showed an increase just shy of 1 

fold in expression at t=24hr, a peak in expression deviation from respective controls 

for both groups. 

It is also of note that in BMP4 treated cells in both human and primate, the level of 

expression change  bears no major similarities in levels of p21 present in the 

respective cell types at corresponding times. However after if cells are first treated 

with EGTA and then BMP4 the profile pattern of both is more closely aligned 

between the two cell types. 
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 PCNA mRNA  in NEHB cells treated with BMP4 showed very little variation of note 

compared to the controls with significant exception at t=24hr (+1.213± fold increase) 

and t=72hr (+0.931±0.986 fold increase) (Figure 3.20 (E)). PCNA mRNA levels in 

cells treated with EGTA+BMP4 and EGTA controls were significantly increased at 

t=6hr with a 0.612±0.425 fold increase recorded (compared to a 0.352±0.224 fold 

increase in BMP4 only treated cells). The level exceeded that of control cells at 

t=12hr by only 0.037±0.08 fold but, as was seen in the BMP4 only treated cells, the 

most significant reaction to BMP4 treatment occurred at t=24hr with a 3.169±3.971 

fold increase of PCNA mRNA recorded. After this peak no further increase in PCNA 

is recorded and levels drop to just below what was recorded in control cells at t=48hr 

(-0.24±0.325 fold decrease) and t=72hr (-0.005±0.34 fold decrease).  

Expression of PCNA in primate cells showed a significant -0.567±0.16 fold decrease 

at t=6hr compared to control in BMP4 treated cells (Figure 3.20 (F)). The level of 

expression remained below that of controls again at t=12hr (-0.342±0.064 fold 

decrease) until t=24hr where a small increase in fold expression was detected 

(+0.115±0.369 fold), rising again at t=48hr (+0.31±0.148 fold) before returning to just 

below control levels again at t=72hr (-0.071±0.558 fold). The level of PCNA mRNA 

in EGTA and BMP4 treated cells did not significantly differ to that of control cells 

with the exception of t=24hr (+0.899±0.568 fold increase) and t=72hr (0.512±0.656 

fold increase) where significant increases were recorded in comparison to the level of 

expression in control cells. 

Of note in comparison between human and primate cell responses to BMP4 treatment 

is the decreased expression over the initial 12hours in primate cells in contrast with an 

increase in expression in human cells over this window. With regards to EGTA pre-

treated cells, BMP4 doesn’t result in such a significant decrease in primate cells as 

seen in BMP4 only treated cells and but human cells at this time point were recording 

a significantly increased level of expression at this time point. Both human and 

primate cells however, in response to EGTA pre-treatment followed by BMP4 

treatment show the most significant increase in PCNA mRNA expression at t=24hr. 

 

E-cadherin mRNA expression in NEHB human cells treated with BMP4 was 

increased at all time points, though not by significant levels, never exceeding a 

0.25±0.172 fold difference from controls seen at t=12hr (Figure 3.21 (A)). However 

in EGTA + BMP4 treated cells, with the exception of t=12hr a decrease was noted 
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across all time points in the level of E-cadherin in mRNA expression, most notably at 

t=24hr (-0.207±0.143 fold decrease) and t=48hr (-0.342±0.023 fold decrease). 

The effect on E-cadherin mRNA as a result of BMP4 treatments in primates was 

much more pronounced (Figure 3.21 (B)). In BMP4 only treatments, t=6hr saw a 

decrease in excess of 3fold (-3.199±2.772 fold decrease) in the level of E-cadherin 

mRNA. t=12hr saw almost no variation in expression levels from control 

(+0.171±0.221 fold increase), but t=24hr returned an in-excess of 2 fold decrease (-

2.323±0.429 fold decrease) in E-cadherin mRNA also. At this point the level of E-

cadherin mRNA was significantly increased, with t=48hr (+1.893±1.46 fold increase) 

and t=72hr (+2.926±2.33 fold increase) both showing significantly elevated levels of 

E-Cadherin mRNA. EGTA + BMP4 treated primate cells reacted almost exactly 

opposite to just BMP4 treated cells at every time-point, though the levels of variation 

from control were much less than that seen in just BMP4 treated cells. The most 

notable differences were a increase in expression of  +0.844±1.056 fold increase at 

t=24hr (vs. a -2.323±0.429 fold decrease seen in BMP4 only treated cells against their 

No Treatment controls), a -0.816±0.482 fold decrease at t=48hr (vs. a +1.893±1.46 

fold increase seen in BMP4 only treated cells against their No Treatment controls) 

and -0.536±0.423 fold decrease at t=72hr (vs. a +2.926±2.33 fold increase seen in 

BMP4 only treated cells against their No Treatment controls) compared to control 

cells. In human cells, BMP4 treatment resulted in a consistent, if small, increase in E-

cadherin mRNA at all levels, however in primate, an on verge multi-fold knockdown 

in E-cadherin was noticed over the first 24hr period before a multi-fold increase was 

observed at t=48and t=72hr. With EGTA + BMP4 treated cells, in human as in 

primate, a small but consistent decrease in the expression of E-cadherin mRNA was 

noted across all time points, with exception of t=12hr in human and t=6hr and t=24hr 

in primate. 

 

BMP2 analysis in the human NEHB cells showed that cells that were pre-treated with 

EGTA before BMP4 treatment showed a greater response in terms of BMP2 mRNA 

expression (Figure 3.21 (C)). BMP4 only treated cells responded at t=6hr with a 

significant 0.627±0.757 fold increase in the level of BMP2 mRNA over what was 

observed in control cells. The difference in expression compared to control cells 

decreased to less than significant values after this until the t=48hr time point when a 

significant (-1.235±1.38 fold decrease) was observed. This decrease was then 

followed by another increase in expression 24 hours later with another significant 

increase in BMP2 mRNA recorded (+0.847±0.397 fold increase). NEHB cells treated 
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with EGTA+BMP4, unlike BMP4 only treated cells, showed an increase in BMP2 

expression over controls across all time-points. Most notably after 6 hours there was a 

+1.98±0.161 fold increase in expression, over a fold more than the difference 

observed between BMP4 only treated cells and their control (Δ= 1.353 fold). At 

t=12hr the level returned to closer to that of control cells (+0.327±0.199 fold 

increase), but at t=24hr the difference escalated to a  significant +1.052±0.56 fold 

increase over the control cells, and to an even greater +2.356±3.447 fold difference 

over controls at t=48hr. A still significant increase in the amount of BMP2 mRNA  

compared to EGTA only treated cells was recorded at t=72hr with a 0.668±0.19 fold 

increase. With the exception of t=72hr, EGTA + BMP4 treated cells showed a greater 

increase in fold expression of BMP2 mRNA at all time-points.   

In primate cells the level of response to treatment in fold of expression of BMP2 was 

not as great as observed in human cells, never achieving as much as a 1 fold 

difference from controls (Figure 3.21 (D)). In BMP4 treated cells the only significant 

difference in BMP2 mRNA levels occurred at t=6hr with a -0.898±0.631 fold 

decrease in the level of expression, after which mRNA levels at all other time-points 

remain do not significantly vary from controls. EGTA + BMP4 treated cells never 

exhibited a significant decrease in the level of expression of BMP2, they did however 

twice record a significant increase in expression levels, at t=12hr (+0.561±0.26 fold 

increase) and t=24hr (+0.705±0.349 fold increase). All other time-points showed 

decreases in mRNA expression (t=6hr -0.067±0.081 fold decrease; t=48hr -

0.158±0.219 fold decrease and; t=72hr -0.283±0.648 fold decrease) remain. 

Comparison of human and primate shows the human and primate cells to have 

recorded increases of decreases opposite to each other at every time-point in response 

to BMP4 treatments, i.e. where a slight increase was seen in human a decrease was 

seen in primate at the corresponding time point. EGTA + BMP4 did not result in a 

identifiable pattern of expression between human and primate, though the difference 

in fold expression levels in primates cells was not as high as in human. 

 

Smad1 mRNA expression in both treatment groups in NEHB human cells is increased 

significantly at t=6hr (+0.55±0.173 fold increase in BMP4 treated cells and; 

+0.941±0.425 fold increase in EGTA+BMP4 treated cells) (Figure 3.22 (A)). In 

BMP4 treated cells this returns to close to the control level expression constantly up 

through to the t=48hr time point (t=12hr +0.433±0.684 fold increase; t=24hr 

+0.077±0.11 fold increase and; t=48hr +0.038±0.571) fold increase). However at 

t=72hr a significant +1.206±0.565 fold increase in Smad1 expression was observed. 
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In EGTA + BMP4 treated cells however, while Smad1 mRNA levels also approached 

that of the control cells at t=12hr (+0.141±0.424 fold increase) and t=24 hr (t=0.29± 

0.702 fold increase), the level in BMP4 treated cells pre-treated with EGTA  fell to 

less than 1 fold below seen in control EGTA only treated cells (-1.038±0.944) fold 

decrease). Expression levels then again returned to close to those in the control cells 

at t=72hr (+0.144±0.242). 

With regard to primate cells, expression levels of Smad1 never deviated significantly 

(by more than 0.5 fold) from control cells in BMP4 only treated cells until t=48hr 

when a significant +1.328±0.481 increase in expression was recorded (Figure 3.22 

(B)). Levels again returned to those of control cells at t=72hr (+0.007±0.178 fold 

increase). With respect to EGTA + BMP4 treated cells the difference from control 

cells never varied to the same extent. However the increase in Smad1 levels in 

response to treatment began sooner, at t=12hr (+0.402±0.319 fold increase) and 

significantly at t=24hr (+0.713±0.259 fold increase). A return to control levels was 

observed at t=48hr (+0.006±0.395 fold increase) before a notable increase over 

controls was again seen at t=72hr (+0.461±0.753 fold increase). 

Comparing human and primate responses it can be seen that the most significant 

response in terms of Smad1 mRNA expression was seen in primate cells, but that 

human cells, both BMP and EGTA+BMP4 produced significant responses to the 

presence of BMP4 quicker than primate cells (By t=6hr in both treatment groups in 

human cells vs. primate cells significant responses by t=24hr in EGTA+BMP4 treated 

cells and t=48hr in BMP4 treated cells. 

 

Smad4 mRNA expression levels was only analysed in primate cells treated with 

EGTA + BMP4 (Figure 3.22 (D)). With the exception of the t=48hr time-point (-

1.23±0.176 fold decrease) a steady increase across the experimental window can be 

seen from t=6hr to t=72hr, with the increase being significant at t=24hr 

(+0.872±0.459 fold increase) and t=72hr (+1.453±0.277 fold increase). One way 

ANOVA analysis showed the results to be significant, p<0.05. 

 

Smad5 mRNA expression in human NEHB cells showed a similar profile for both 

BMP4 only and BMP4 with EGTA pre-treatment options; however the timing of the 

change in expression levels from controls differed (Figure 3.22 (E)). A response to 

treatment in BMP4 treated cells showing a significant decrease in mRNA levels was 

noted at t=48hr (-0.897±0.749 fold decrease) followed by a significant +1.65±0.664 

fold increase 24hours later at t=72hr. However in EGTA + BMP4 treated cells a 
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significant decrease in expression was first noted at t=12hr (-1.577±1.387 fold 

decrease) with a notable increase in expression 12 hours later at t=24hr 

(+0.437±0.602 fold increase). Although the increase was not as great as seen in BMP4 

treated cells it was still over twice the fold difference increase seen at any other time-

point under these treatment conditions.  

The effect on primate cells was not the same (Figure 3.22 (F)). With BMP4 treated 

cells a significant decrease in fold expression of Smad5 was noted at t=6hr (-

0.797±0.306 fold decrease). This was followed by another significant decrease at 

t=12hr (-0.618±0.116 fold decrease) and a decrease of -0.201±0.162 at t=24hr, before 

a notable increase at t=48hr (+0.326±0.22 fold increase) and a return to control levels 

at t=72hr +0.048±0.276 fold increase). EGTA + BMP4 treated primate cells 

responded differently, a gradual increase was tracked over the first 24 hours to a 

significant peak of just over 0.5 fold more Smad5 mRNA than found in EGTA only 

treated cells (t=6hr +0.05±0.227 fold increase; t=12hr +0.163±0.165 fold increase; 

t=24hr +0.532±0.091). At t=48hr this increase in expression was stopped and a 

notable decrease was observed (-0.407±0.316 fold decrease) before returning to just 

above control levels again at t=24hr (+0.156±0.493 fold increase). 

In comparison the human cells showed more significant responses to BMP4 

treatment, both with and without EGTA pre-treatment than in primate cells. However 

primate cells showed a overall greater reaction to treatment, in the case of BMP4 only 

treated cells, primate showed an immediate reaction whereas no reaction was seen in 

until t=48hr.With EGTA pre-treatment however human cells showed a quicker 

response to BMP4 treatment at t=12hr vs. t=24hr in primate cells. 

 

BMPR-IA in human cells treated with just BMP4 showed no response to treatment in 

terms of BMPR-IA expression levels until t=48hr, where a significant -1.889±2.417 

fold decrease was recorded, followed by a significant +1.314±0.668 fold increase at 

t=72hr (Figure 3.23 (A)). EGTA + BMP4 treated cells however recorded a significant 

-3.606±3.542 fold decrease at t=6hr followed by another -1.362±1.413 fold decrease 

at t=12hr. By t=24hr there was no significant difference from control (+0.232±0.515 

fold increase), however at t=48hr, as was seen at the corresponding time point in 

BMP4 treated NEHB human cells, there was another significant decrease in 

expression (-1.693±1.566) and a notable increase again observed in t=72hr analysed 

cells (+0.328±0.594 fold increase), though not to the same extent as seen in just 

BMP4 treated cells (+1.314±0.668 fold increase). 
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Primate BMPR-IA expression levels did not respond to the same extent as human 

cells (Figure 3.23 (B)). A notable decrease in expression was observed at t=6hr (-

0.317±0.209 fold decrease) and t=12hr (-0.431±0.497 fold decrease). This returned 

almost to control level by t=24hr (-0.036±0.213) and then continued its trend of 

increasing the amount of expression in t=48hr and t=72hr with a significant fold 

increase in expression over controls in both (t=48hr +0.734±0.546 fold increase; 

t=72hr +0.676±0.776 fold increase). The primate EGTA + BMP4 treated cells did not 

vary in expression of BMPR-IA to the same extent as BMP4 treated. At t=6hr there 

was almost no difference in expression levels of BMPR-IA mRNA (-0.02±0.328 fold 

decrease). At t=12hr a notable increase in BMPR-IA mRNA of almost 0.5fold was 

observed (+0.432±0.376) decreasing over the remaining time-points to a level closer 

to that of the control cells. 

In comparing the human and primate responses it can be observed that as a result of 

BMP4 treatment alone, both cells types only reacted with a significant change in 

BMPR-IA mRNA from their controls at t=48hr, however in human cells it was a 

significant decrease in expression following a constant small increase in levels, 

whereas in primates it was a significant increase, following a constant low level of 

decreased expression. The most significant effects were seen in human cells. In 

EGTA pre-treated cells then treated with BMP4 a much more significant and rapid 

response was seen in human cells compared to primates, with a significant decrease 

observed at t=6hr. Overall human cells with this treatment regime showed a greater 

decrease in BMPR-IA from their EGTA pre-treatment controls than was seen in 

primate cells from their EGTA pre-treatment controls.   

 

BMPR-IB mRNA expression in NEHB human cells showed no major response to 

BMP4 either with or without EGTA pre-treatment until t=48hr (Figure 3.23 (C)). At 

t=48hr BMP4 treated cells exhibited a significant -3.651±3.751 fold decrease and 

BMP4+EGTA treated a -2.941±1.303 fold decrease in BMPR-IB mRNA. By t=72hr 

the expression returned to above control cell levels in both treatment groups, 

significantly so in BMP4 only treated cells (BMP4 only at t=72hr +1.556±1.261 fold 

increase; EGTA+BMP4 at t=72hr +0.303±0.251 fold increase). BMP4 treated cells 

showed a greater response than EGTA +BMP4 treated cells at these significant time 

points over the respective controls.  

Primate cells did not exhibit the same level of response as humans, never exceeding 

or reaching a fold deviation from controls (Figure 3.23 (D)). For the first 24hr time 

period, BMP4 treated cells exhibited a significantly decreased level of expression of 
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BMPR-IB mRNA at every time-point (t=6hr -0.631±0.333 fold decrease; t=12hr -

0.764±0.267 fold decrease and; t=24hr -0.688±0.728 fold decrease). The t=48hr time-

point however showed an increase in expression levels to higher than these seen in the 

control cells (+0.372±0.443 fold increase), and t=72hr showed a return to just below 

control levels (0.062±0.777 fold decrease).  In EGTA + BMP4 treated cells however 

the level of expression remained unchanged significantly up as far as t=12hr, before 

exhibiting a +0.546±0.373 fold increase at t=24hr followed by a significant decrease 

at t=48hr (-0.693±0.239 fold decrease) and t=72hr (-0.542±0.281 fold decrease) 

respectively. BMP4 only treated cells appeared to respond quicker in terms of reduced 

BMPR-IB expression to BMP4 treatment than cells pre-treated with EGTA. 

Comparison between human and primate treatment shows no major correlations in 

results. Human cells showed more significant responses (seen at t=48hr) whereas 

primate cells differed more from each other with respect to treatment type than human 

cells did. 

 

BMPR-II response to BMP4 treatment in NEHB human cells shows no significant 

deviation from control cell levels for the first 24hr period (Figure 3.23 (E)). However 

at t=48hr there is a +0.941±0.671 fold increase in the expression over control cells, 

seen again at t=72hr with a +1.164 fold increase over controls was recorded. This was 

markedly different from EGTA + BMP4 treated cells which exhibited an increase in 

BMPR-II mRNA levels of +0.798±0.103 0.5 fold was noted at t=6hr. The levels did 

not significantly vary from the control cells again until t=72hr where another 

significant increase in BMPR-II mRNA was recorded (+0.808±0.247 fold increase). 

In primate cells the response to BMP4 treatment mirrored that of human cells (Figure 

3.23 (F)). No significant differences to control BMPR-II mRNA expression levels for 

the first 24 hour period were observed. However at t=48hr a significant increase in 

expression of BMPR-II mRNA of +0.609±0.212 fold was observed and a notable 

increase of +0.387±0.482 fold again at t=72hr. The EGTA + BMP4 treatment did not 

mirror the response seen in human cells as closely. The response started later at 

t=12hr with a +0.727±0.017 fold increase in BMPR-II expression decreasing as in 

human over the next two time-points to a overall decrease in expression levels at 

t=48hr (-0.237±0.044 fold decrease), seen also at t=72hr (-0.172±0.244 fold 

decrease). 

In human cells EGTA produced a significant response before one was observed in 

BMP4 only treated cells (t=6hr in EGTA+BMP4 vs. t=48hr in BMP4 only). In 

primate cells the EGTA+BMP4 treated cells also produced a significant response 
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before BMP4 only treated cells (t=12hr in EGTA+BMP4 vs. t=48hr in BMP4 only). 

Aside from the degree of significance BMP4 treated cells responded in much the 

same way in human and in primate cells, both establishing a significant deviation 

from their respective controls at t=48hr. EGTA+BMP4 treated cells in primates did 

not appear to react as quickly to BMP4 stimulation (t=12hr vs. t=6hr). 

 

The response of Snail1 expression in human NEHB cells to BMP4 treatment shows a 

significant +0.604±0.41 fold increase in expression by t=6hr (Figure 3.24 (A)). 

However after this the level of variation from control decreases below a significant 

level. However at t=12hr there is a notable -0.437±0.415 fold decrease in expression. 

Time points at t=24hr and t=48hr were very close to control levels (+0.171±0.282 fold 

increase at t=24hr; -0.101±0.973 fold decrease at t=48hr) before there was another 

notable increase in the amount of Snail1 mRNA present compared to control cells at 

t=72hr (+0.494±0.536 fold increase). EGTA + BMP4 showed a more significant 

response overall. Treated cells showed a significant +1.232±1.14fold increase in 

Snail1 expression by t=6hr. This change in expression was followed by a small 

decrease by t=12hr (-0.246±1.077 fold decrease) but t=24 saw a notable increase of 

+0.411±0.18 fold, and t=48hr and t=7272hr continued this upward trend in expression 

with a 1.464±0.308 fold increase at t=48hr and a +1.719±1.579 fold increase at 

t=72hr.  

Primate cells showed a much stronger response to treatment with BMP4 than was 

seen in human cells (Figure 3.24 (B)). BMP4 treatment resulted in an increase of 

Snail1 expression levels at all time points, and significantly so up to and including 

t=48hr. By t=6hr there was already a significant almost 2fold increase (+1.896±1.012 

fold increase) in Snail1 mRNA. This was followed by a significant 1.184±1.753 fold 

increase at t=24hr and a significant 0.756±0.475 fold increase at t=48hr before levels 

returned to lose to that of control cells with only a 0.268±0.357 fold increase at 

t=72hr. EGTA+BMP4 treatment also exhibited a significant increase in Snail1 

expression of +1.549±0.98 fold increase by t=6hr, slightly less than that seen in 

BMP4 treatment alone (Δ=0.347 fold). It retained this increase in expression over 

control cells for the first 24hr with a significant +0.59±0.398 fold increase at t=12hr 

and 1.672±0.735fold increase at t=24hr. Compared to the control the level decreases 

to a notable 0.442±0.647 fold decrease at t=48hr before another significant increase 

over the level in control cells of 0.91±0.17 fold is recorded at t=72hr. It is notable that 

with relation to Snail1 a bigger overall effect an increase in Snail1 mRNA production 

is observed in primate than in human cells with just BMP4 treatment, while a greater 
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response in terms of the expression levels of Snail 1 mRNA with BMP4 treatment 

following EGTA pre-treatment is seen in human cells. 

 

Snail2 mRNA expression in human NEHB cells displays no significant deviations 

from the levels observed in control cells from t=6hr to t=24hr inclusive, however at 

t=48hr a significant decrease of -0.79±1.063 fold in expression compared to control 

cells was noted and at t=72hr this level was adjusted by a notable increase of 

+0.413±0.48 fold over control (Figure 3.24 (C)). EGTA + BMP4 treatment resulted in 

a small but steady increase in Snail2 mRNA from just in excess of the amount seen in 

control cells at t=6hr (+0.074±0.766 fold increase), steadily up to a significant 

+0.792±0.137 fold increase after 48 hours (t=12hr saw a +0.362±0.222 fold increase 

and t=24 hr recorded a significant +0.565±0.022 fold increase). The increase over 

controls reduced to below a significant level by t=72hr (+0.39±0.077 fold increase).  

With the exception of the t=48hr time-point (BMP4 only = -0.79±1.063 fold decrease 

and EGTA+BMP4= +0.792±0.137 fold increase) both treatments resulted in relatively 

similar profile of increased expression.                                                                    

Primate cells responded noticeably differently to treatments and with greater changes 

in expression levels to human cells (Figure 3.24 (D)). In relation to BMP4 treatment 

the levels fluctuated significantly between increased and deceased in comparison to 

the preceding time point measurement. There was an initial -0.533±0.496 fold 

decrease by t=6hr; this was followed by a notable increase at t=12hr of +0.427±0.242 

fold (Δ=0.96 fold between t=6hr and t=12hr); t=24hr reported a significant decrease 

in comparison to control cells of -1.465±0.582 fold, followed by significant fold 

increases in expression of t=48hr (+1.178±0.573 fold increase) and t=72hr 

(+1.167±0.795) respectively.  

EGTA+BMP4 treatment resulted in an almost exactly opposite profile. t=6hr and 

t=12hr saw a small increase and small decrease, neither of which were significant, in 

relation to control. However t=24hr saw a significant, +1.322±1.461 fold, increase in 

expression followed by a decrease at t=48hr (-0.327±0.653) and another, this time 

significant, decrease, -0.702±0.744 fold, at t=72hr time point.  

In primate, as in human, the most significant results were recorded from t=24hr to 

t=72hr. It is also of note that the most significant results were in this instance recorded 

in primate cells in both BMP4 and EGTA+BMP4 treatment groups. 
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Figure 3.17 Human NEHB cells +/- BMP4 over a 72 hour time-frame. 

Human NEHB cells with, (RHS) and without (LHS), BMP4 added over a 72 hour 

time-frame and imaged via brightfield microscopy. No major changes visible in 

BMP4 –ve cells, however cells receiving BMP4 by t=48hr and at t=72hr show a 

change in morphology as a result of BMP4 treatment as indicated by arrows. 
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Figure 3.18 Primate cells +/- BMP4 over a 72 hour time-frame.  

Primate cells with, (RHS) and without (LHS), BMP4 added over a 72 hour time-

frame. No major changes visible in BMP4 –ve cells, however, cells receiving BMP4 

by t=48hr and at t=72hr show a change in morphology as a result of BMP4 treatment 

as indicated by arrows 
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Figure 3.19 Primate cells with EGTA and +/-BMP4 over a 72 hour timeframe 

Primate cells all treated with EGTA and with, (RHS) and without (LHS), BMP4 

added over a 72 hour time-frame. No major changes visible in BMP4 –ve cells until 

t=24hr, however, cells receiving BMP4 by t=6hr show a change in morphology as a 

result of BMP4 treatment. Both sets of cells are markedly different from what was 

observed in non-EGTA treated primate cells (Figure 3.23). Arrows indicate 

mesenchymal like cells. 
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Figure 3.20 Quantification of Id1, p21 and PCNA mRNA expression levels  

qPCR analysis of the change in expression of Id1 (A, B), p21 (C, D) and PCNA (E, F) 

mRNA expression in human and primate ALI bronchial epithelial cells (i) treated with 

BMP4 and compared to control cells treated with PBS and (ii) treated with EGTA and 

then with BMP4 compared to control cells treated with EGTA and PBS. 
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Figure 3.21 Quantification of E-cadherin and BMP2 mRNA expression levels 

qPCR analysis of the change in expression of E-cadherin (A, B), and BMP2 (C, D) 

mRNA expression in human and primate ALI bronchial epithelial cells (i) treated with 

BMP4 and compared to control cells treated with PBS and (ii) treated with EGTA and 

then with BMP4 compared to control cells treated with EGTA and PBS. 
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Figure 3.22 Quantification of BMPR-IA, BMPR-IB and BMPR-II mRNA 

expression levels 

qPCR analysis of the change in expression of BMPR-IA (A, B), BMPR-IB (C, D) and 

BMPR-II (E, F) mRNA expression in human and primate ALI bronchial epithelial 

cells (i) treated with BMP4 and compared to control cells treated with PBS and (ii) 

treated with EGTA and then with BMP4 compared to control cells treated with EGTA 

and PBS. 
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Figure 3.23 Quantification of Smad1, Smad4 and Smad5 mRNA expression 

levels 

qPCR analysis of the change in expression of Smad1 (A, B), Smad4 (C, D) and 

Smad5 (E, F) mRNA expression in human and primate ALI bronchial epithelial cells 

(i) treated with BMP4 and compared to control cells treated with PBS and (ii) treated 

with EGTA and then with BMP4 compared to control cells treated with EGTA and 

PBS. 
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Figure 3.24 Quantification of Snail1 and Snail2 mRNA expression levels 

qPCR analysis of the change in expression of Snail1 (A, B), and Snail2 (C, D) mRNA 

expression in human and primate ALI bronchial epithelial cells (i) treated with BMP4 

and compared to control cells treated with PBS and (ii) treated with EGTA and then 

with BMP4 compared to control cells treated with EGTA and PBS. 
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Gene Species Treatment 

    BMP4 (N) EGTA+BMP4 (N) 

Id1 Human 3† 2 

  Primate 2 2 

p21 Human 3† 3 

  Primate 3 2 

PCNA Human 3† 3 

  Primate 3 3§ 

E-cadherin Human 3‡ 2 

  Primate 3 3 

BMP2 Human 3† 2 

  Primate 3 3 

BMPR-IA Human 3† 3 

  Primate 3 3 

BMPR-IB Human 3† 3 

  Primate 3 3 

BMPR-II Human 2* 2 

  Primate 2 3 

Smad1 Human 3† 3 

  Primate 3 3 

Smad4 Human not examined not examined 

  Primate not examined 3 

Smad5 Human 3† 3 

  Primate 3 3 

Snail1 Human 3† 2 

  Primate 3 3 

Snail2 Human 3† 2 

  Primate 3 3 

† t=24hr n=2; t=72hr n=2 

‡ t=12hr n=2; t=24hr n=2; t=72hr n=2 

* t=24hr n=1; t=72hr n=1 

§ t=12hr n=2 

Table 3.3 qPCR n values  

Table3.3 displays the n number for each qPCR experiment evaluating the effects of 

BMP4 and BMP4+EGTA on Human and Primate ALI. 
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3.2.5 Protein Expression: 

Protein expression in both Human and Primate ALI was analysed by Western Blot 

and densitometry. The main proteins analysed were actin (housekeeper control), E-

cadherin and Smad4 though others were also briefly examined including BMPR-IA 

and Id1.  

 

E-cadherin was detected at two main levels by Western Blotting, at approx 124kDa, 

and again at approx 34kDa (Figure 3.25, Figure 3.26 and Figure 3.27). The higher 

band represents the full length protein and the 34kDa band appears to indicate the 

presence of a truncated protein molecule. These two bands were present in all 

samples, human and primate, under all treatment conditions and are the best 

indication of both the overall relative protein levels and the effects of the treatment 

upon the protein. 

124kDa E-cadherin: With regard to the full length protein in NEHB BMP4 treated 

cells, treatment resulted in a small decrease at t=6hr (-11.47±17.57% decrease) 

(Figure 3.26 (A)). A much greater decrease was observed (-48.61±6.255%) at the 

same time point in the [EGTA+BMP4] treated cells (Figure 3.26 (B)). Both showed 

an increase in full length protein expression at t=12hr (significant in the case of 

BMP4 treated at +59.57±56.43% and; 28.97±14.89% on EGTA+BMP4 treated) over 

respective controls. The quantity of full length protein at t=24hr (-24.55±24.72% in 

BMP4 vs. +9.075±13.93% in [EGTA+BMP4]) and t=48hr (+139.9±84.02% in BMP4 

vs. -26.67±14.47% in [EGTA+BMP4]) were at opposites between the BMP4 and 

[EGTA+BMP4] treated cells compared to their respective controls. Data was not 

available for t=72hr in BMP4 only treated cells but the [EGTA+BMP4] group 

recorded a notable increase in full length protein of 49.32±16.97% at t=72hr. 

 In the primate cells the profiles of the full length protein expression in the cells were 

similar to the expression profiles of the cleaved protein, with the exception in the 

[EGTA+BMP4] treated cells that the amount of full length protein present was higher 

at t=24hr compared to t=12hr for cleaved. The quantity of full length protein in the 

cells, as seen with the cleaved protein, decreased across all cell types and treatments 

compared to controls at t=6hr and increased over the amount seen in the controls by 

t=12hr. EGTA+BMP4 treated cells, both human and primate, showed the largest 

decreases in the amount of full length protein at t=6hr. 
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 34kDa E-cadherin: In human NEHB cells the cleaved 34kDa protein quantity 

decreased slightly compared to control at t=6hr (-13.77±16.93% decrease) and 

subsequently increased as a result of BMP4 treatment from t=12hr to t=48hr (t=12hr 

+45.47±97.37% increase; t=24hr 115.2±133.4%; and t=48hr 72.28±50.02%) (Figure 

3.27 (A)).  

In the [EGTA+BMP4] treated cells the level of cleaved E-cadherin was also 

decreased slightly at t=6hr (-11.93±34.68%) and then notably increased at t=12hr 

(+39.28±55.91%), but unlike BMP4 only treated cells, dropped to that of the control 

cells again at t=24hr (-1.236±24.52% decrease) (Figure 3.27 (B)). t=48hr saw another, 

this time significant, increase in the amount of cleaved protein compared to control 

cells (+97.69±126.3%) before dropping again by t=72hr to a level lower than 

observed in controls (-14.56±26%). 

Primate cells response to BMP4 also showed a slight decrease at t=6hr (-

17.58±27.39%) and then a significantly elevated amount of cleaved E-cadherin 

protein at t=12hr (73.74%). However at t=24hr a significant decrease (-70.3±26.21%) 

compared to the level observed in control cells was recorded. By t=48hr the level of 

protein in treated cells had recovered to just above that of the controls 

(+8.186±0.988%) and is elevated once again to a notable level of 49.82±12.96% at 

t=72hr. 

In primate [EGTA+BMP4] treated cells, t=6hr shows a notable decrease in expression 

of -40.43% (Figure 3.27 (D)). This is followed by a significant increase at t=12hr 

(123.5±95.36%) in relation to the amount of cleaved E-cadherin present in 

EGTA+BMP4 treated cells over EGTA only control cells. There is a steady decrease 

in its quantity in the cells to just below that of what was observed in the control cells 

at t=48hr (t=24hr +51.38±75.91% increase; t=48hr -10.05±36.17%) followed by 

another significant increase in the level of cleaved E-cadherin protein present at 

t=72hr of 197.2±164.2% over controls..  

There were a number of observable traits throughout the different treatments and cells 

types. To varying degrees by t=6hr there was a decrease in the presence of cleaved 

protein in all cells within both treatment groups followed by a noticeable increase at 

t=12hr. Thereafter the responses of the cells to the various treatments are cell type and 

treatment specific. 

Smad 4 was examined in human cells after treatment with BMP4 and [EGTA+BMP4] 

(Figure 3.28 (A, B)). In cells treated with solely BMP4, the level of Smad 4 protein 

expression in the cells was higher on average at every time-point recorded from t=0hr 

to t=72hr. This was not reflected in the [EGTA+BMP4] treatments however. 
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Compared to the control, delivery of  BMP4 post EGTA treatment resulted in a 

decreased amount of BMP4 present in the cells compared to the controls at all time 

points with the exception of t=12hr (+48.65±26.75%). 

BMPR-IA was detected at 66kDa and was briefly examined in human and primate 

BMP4 treatments (Figure 3.28 (C, D)). Over the period of 48hr from t=0hr the 

response to BMP4 treatment in both cell types was very similar. Both showed 

increased levels of BMPR-IA for the first 24hr post-treatment with BMP4 followed 

by a decrease at t=48hr. 

Id1 was examined in primate BMP4 treated cells and was present at 34kDa (Figure 

3.29). Id1 protein levels were elevated as a result of BMP4 treatment in primate cells 

at all time points recorded, with the most significant responses measured at t=6hr 

(+165.8±126% increase) and t=12hr (+149% increase). 
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Figure 3.25 Western Blots Gels actin and E-cadherin detection in Human (A+B) 

and Primate (C+D) BMP4 (A+C) and BMP4+EGTA (B+D) treated cells 

Human BMP4 (A) and EGTA+BMP4 (B) treated cells. The top gel shows actin 

detection (44kDa) and the lower gel shows E-cadherin detection at 124kDa and 

34kDa respectively.  

Primate BMP4 (C) and EGTA+BMP4 (D) treated cells. The top blot shows actin 

detection (44kDa) and the lower gel shows E-cadherin detection at 124kDa and 

34kDa (truncated) respectively.   

In all gels Lane 1 corresponds to the molecular weight marker with lane 2-7 inclusive 

containing protein sample from one repeat from each experiment as follows- 

Lane2 t=24hr Treatment; Lane3 t=24hr Control; Lane 4 t=48hr Treatment; Lane5 

t=48hr Control; Lane6 t=72hr Treatment; Lane 7 t=72hr Control. 
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Figure 3.26 Full length E-cadherin (124kDa) protein levels 

Percentage full-length (124kDa) E-cadherin present in human (A, B) and primate (C, 

D) BMP4 and [EGTA+BMP4] treated cells compared to either No Treatment or 

EGTA controls respectively over a 72hr timeframe.(n=3†) 

†B: t=72hr n=2. 

†C: t=24hr n=2; t=72hr n=2. 

†D: t=6hr n=2; t=12hr n=2; t=48hr n=2; t=72hr n=2 
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Figure 3.27 Truncated E-cadherin (34kDa) protein levels  

Percentage cleaved (34kDa) E-cadherin present in human (A, B) and primate (C, D) 

BMP4 and [EGTA+BMP4] treated cells compared to either No Treatment or EGTA 

controls respectively over a 72hr timeframe. (n=3†) 

†B: t=72hr n=2. 

†C: t=72hr n=2. 

†D: t=6hr n=1; t=12hr n=2; t=72hr n=2. 
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 Figure 3.28 Smad4 and BMPR-IA protein levels  

Percentage of 

(i) Smad4 present in human cells, both BMP4 (A) and [EGTA+BMP4] (B) treated 

cells compared to either No Treatment or EGTA controls respectively over a 72hour 

timeframe (A: n=3†) (B: n=2‡). 

(ii) BMPR-IA present in human (A) and primate (B) BMP4 treated cells compared to 

No Treatment control over a 72hr timeframe (A: n=3) (B: n=2). 

† A: t=72hr n=1 

‡ B: t=72hr n=1 
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Figure 3.29 Id1 protein levels in primate 

Percentage Id1 present in primate BMP4 treated cells compared to EGTA control over 

a 72hr timeframe (n=3†). 

† t=12hr n=1; t=24hr n=2; t=48hr n=2; t=72hr n=2. 
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3.3 Discussion 

3.3.1 Ozone + HDMA model in Rhesus Macaque Primates 

To our knowledge this work represents the first report of BMP pathway expression in 

primate airways in vivo. Immunofluorescence analysis carried out on the comparison 

O3+HDMA primates with filtered air control examined the expression of three 

proteins, PCNA, BMPR-IA and pSmad1/5/8. The expression profiles were evaluated 

at different layers in the airways, the trachea, airway level1, airway level2 and airway 

level6. In the two proteins examined in the trachea, neither PCNA nor BMPR-IA was 

present at anything above a low level. In comparing the same two proteins down 

through the airways however it can be seen that O3+HDMA allergic asthma in 

primates triggered a large response with a substantially increased expression of the 

protein in the airway cells, while the level in the control animal never varied above a 

very low constant. BMPR-IA levels also increased dramatically in the airways of the 

O3+HDMA group, again with no major increase in the control group lungs. 

pSmad1/5/8 was also analysed but results were only available in the level2 and level6 

airways. At level2 airways in the treated animals there was a significant amount of 

pSmad1/5/8 activity, and there was none detected in the corresponding airways of the 

control animals. In the level 6 airways the level in the O3+HDMA animals was higher 

than that seen in the controls. This means that the onset of allergic asthma in primates 

corresponds with an increased level of PCNA, BMPR-IA and pSmad1/5/8 activity, 

showing both the onset of genetic damage and the involvement of the BMP pathway 

in the process. The levels of pSmad1/5/8 detected in the control group level 6 airways 

require comment. The lungs being examined are 6month neonate primates and lung 

development is not arrested at this stage, therefore at the terminal ends of the 

bronchiolar regions development is still ongoing and would include BMP pathway 

activity.  

The O3+HDMA allergic asthma model clearly shows involvement of the BMP 

pathway. Therefore it provides a potential target for modification in attempting to 

moderate and suppress disease progression in the lung. 

3.3.2 ALI Cultures-EGTA effect on cells. 

EGTA treatment of the cells was used to disrupt tight epithelial junctions in the ALI, 

more closely resembling the airway state in a disease lung. In order to ensure that the 

results taken from the treatments of BMP4 were completely understood it was 

necessary to first determine the effect of the induction of this disease model on the 
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airway cells on the genetic markers to be examined. It was recorded that over the 

period of 72hours, mRNA levels for many of the genetic markers examined increased 

or decreased substantially more than was seen in non-EGTA treated cells. This was 

particularly noticeable in relation to the level of Id1 mRNA. Of particular note was 

the response of BMPR-IA and BMPR-IB at t=48hr and t=72hr where a reversal in 

expression levels occurred, i.e., in control animals, compared to their t=0hr control, 

there was a decrease in expression, whereas in EGTA treated animals there was a 

significant increase in expression levels. This was specific to primates and was not 

seen in the human models. The exact same pattern was also noted with E-cadherin 

mRNA levels in the primate model. The same reversal of expression levels was seen 

at t=48hr and t=72hr in BMPR-II mRNA levels in the human model between EGTA 

and control cells.  

This illustrates that when examining the changes in the cells as a result of treatment it 

is important to have proper controls and to ensure comparison to like with like. It 

clearly demonstrates, through analysis of Id1 mRNA levels that no BMP pathway 

stimulation resulted from this pre-treatment damage. It illustrates that EGTA pre-

treatment, of its own violation, can as result of its calcium chelating abilities, effect a 

significant level of change over a 72 hour period on the expression levels of various 

mRNA levels. It also further illustrated that although the primate model is regarded as 

being an exceptionally good model for the forecasting of responses in human cells, 

differences do occur. 

3.3.3 ALI Cultures-Effect of BMP4 on healthy and damaged human 

and primate ALI models  

BMP4 stimulated the activation of the BMP pathway in ALI cultures of primary 

human and primate airway epithelial cells and to the best of our knowledge is the first 

report to do so. This was clearly signalled by the response of cells with the levels of 

Id1 mRNA, in both human and primate models showing a significant increase at all 

timepoints. It should be noted that although the response of Id1 was not as high in 

EGTA treated animals, where response would have been foreseen as been higher, this 

could in part be due to the fact that EGTA pre-treatment predisposes the cells to have 

a lower starting level of Id1 mRNA (Sect. 3.2.3). BMPR-II mRNA levels were also 

significantly upregulated at various timepoints by the presence of BMP4 in both 

BMP4 only and BMP4+EGTA treatment groups. This was also seen in the levels of 

the receptor Smad, Smad1 in human and primate cells, in primate EGTA+BMP4 

treated cells and in human and primate Snail1 and Snail2 mRNA levels. 
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The effects of BMP4 treatment in an intact and in an EGTA treated ALI were also 

examined. At an mRNA level E-cadherin did not respond with a significant change in 

the levels of E-Cadherin mRNA being expressed in the cells as a result of BMP4 

treatment. However at various timepoints the overall level of E-Cadherin did increase 

over the corresponding timepoint controls. There were also two main bands detected 

in the E-cadherin protein analysis, a truncated 34kDa protein and a 124kDa full length 

protein. The levels of both increased and decreased in tandem with each other over 

the various timepoints analysed with no major differences noted. Co-Smad, Smad4, 

protein levels were analysed in BMP4 treated human ALI cells both with and without 

EGTA pre-treatment. The overall level in cells not receiving EGTA disruption prior 

to BMP4 treatment increased, whereas in EGTA pre-treated cells the levels of the Co-

Smad were decreased at all timepoints except t=12hr when an increase in expression 

was recorded. BMPR-IA protein levels were analysed in both human and primate 

BMP4 treated ALI cultures, without the addition of EGTA. Levels of the protein were 

increased in both models for the first 24hour period before a decrease was recorded at 

t=48hr in both models. Id1 protein levels were also analysed and showed an increase 

in levels across all timepoints in primate BMP4 treated cells. Overall the protein 

expression trends matched the mRNA expression levels, though the fold level changes 

observed at mRNA levels were not replicated at protein level. 
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3.4 Conclusion 

Allergic asthma in O3+HDMA models in primates shows activation of the BMP 

pathway not seen in filtered air controls. As has been determined in this lab the BMP 

pathway, when activated, can play a contributory role to the progression of damage 

and inflammation through its effects on the airway cells and surrounds. As such the 

BMP pathway reveals itself as a likely contributor to the progression of disease 

characteristics in the allergic asthma lung. To help further assess the role of the BMP 

pathway in its role as an antagonist to the healthy repair to the damaged lung, it role 

was further evaluated by scrutinising the effect of BMP4 on both healthy and 

damaged version of human and primate airway cells grown in ALI. Confirmation of 

the pathway activation was seen by the increased levels of Id1 mRNA expression, a 

first responder to the onset of the activation of the BMP pathway. If the experiment 

was to be repeated, a more intense look at the reaction of the airway cells over the 

first 24hour period would be carried out, with inclusion of more timepoints and 

broadening the spectrum of mRNA, and most notably, protein targets analysed. The 

results from these experiments provided the necessary information to allow pursuit   

of the BMP pathway as an ideal target for the delivery of therapeutics targeting lung 

epithelium. As such the next step was to identify a mouse in vivo model that shared 

this characteristic BMP pathway activation seen in allergic asthma to enable in vivo 

therapeutic targeting. Other laboratory models available for use in Ireland, where 

Primate research is not permitted, include amongst others, rat, guinea pig, swine and 

ferrets. Of all these other options, ferrets provide potentially the most useful of all, 

generally being regarded as the most useful model animal for studying diseases of the 

lung outside of primates. However due to the fact that a tandem part of this project 

was the design and testing of a suitable delivery device for the delivery of therapeutics 

to small rodents, the ease of use of mice, and the wealth of available information on 

diseases of interest in the model favoured the use of mice in subsequent studies. 

 

 

 

 

 

 

 

 



164 

 

4 Establishment of a 

Clinically Relevant BMP 

Dependent Disease 

Model in Mice 
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4.1 Introduction 

The studies in Chapter 3 confirmed that BMP signalling is involved in allergic airway 

disease in primates. However mouse models are the species of choice for proof of 

principle studies of therapeutic strategies. In order to evaluate in mice models the 

effects of modification of the BMP pathway as a potential therapeutic treatment a 

number of different disease models were examined. By progressing to murine in vivo 

studies it allowed the opportunity to evaluate the effects of therapeutic molecules. 

Before testing molecules it was vital to gain a better understanding of the two 

candidate disease models, emphysema, discussed here in detail, and asthma, discussed 

later in detail in Chapter7, in order to determine the role, if any, of the BMP pathway 

therein. 

4.1.1 Elastase Model of Emphysema in Mice. 

Emphysema, as discussed in Section 1.2.3 is a disease of the lung that results in the 

destruction of the lung parenchyma, causing airways to lose their structure and 

reducing the surface area of the lung used for gaseous exchange and increasing the 

resistance to airflow through the airways.  Data from our lab has shown that BMP 

signalling is involved in maintenance of lung architecture and in regeneration after 

injury (Molloy et al., 2008; Masterson et al., 2010). As a result it was decided to 

evaluate the BMP pathways involvement, if any, in the destruction and inflammation 

associated with emphysema and to determine the extent of the damage induced in 

terms of lung structure and function. A number of different methods were to be used 

for this evaluation including immunofluorescence analysis of lung sections, H&E 

analysis combined with quantitative structural analysis of the sections and finally with 

analysis of the BAL fluid from harvested lungs.  

Immunofluorescence analysis was carried out to gain understanding of the both the 

range of effects of emphysema in the mouse lung and how they pertained to the BMP 

pathway. As such an extensive analysis by immunofluorescence was carried out to 

determine the role of various marker and BMP signalling related molecules 

involvement with, and response to, the disease progression. The expression profiles of 

CC10, PCNA, pSmad1/5/8, Smad8, Smad4 and smooth muscle actin were assessed. 

H&E analyses were carried out in order to qualitatively and quantitatively assess the 

level of damage resulting from the establishment of an emphysema model. Qualitative 

analysis was carried out by visual inspection and comparison of the slides for signs of 

inflammation and damage in the PBS control group and the Elastase treated group. 
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Quantitative analysis analysed the number of alveoli, length of the alveolar 

intersections and the number of alveolar intersections. BAL analysis was carried out 

by examining the neutrophil, lymphocyte and macrophage populations contained in 

the BAL as well as the cell quantity per BAL. Bodyweight analysis of the animals 

was also evaluated. 

A control group of BALB/c mice that received an administration of PBS and no 

porcine elastase was also established as a control group for comparison. 

4.2 Results 

4.2.1 Elastase induced model of emphysema in mice 

Animals were divided into two groups. Group1 were control animals who received 

PBS while Group2 animals received elastase. Elastase treatment was as detailed in 

Section 2.2.21.2. 

4.2.1.1 H&E qualitative and Quantitative Analysis of Elastace Emphysema in 

BALB/c mice. 

H&E analyses were carried out in order to qualitatively and quantitatively assess the 

level of damage resulting from the establishment of an Emphysema model. 

Qualitative analysis was carried out by visual inspection and comparison of the slides 

for signs of inflammation and damage in the PBS control group and the Elastase 

treated group. The PBS Group1 lung sections show healthy undamaged lung tissue 

sections with large number of alveoli present (Figure 4.1). In contrast to this the 

Group2 elastase treated animals show large vacuous regions with no alveoli or airway 

structure present. Inflammation however was not detected in the Elastase treated 

group either, as  determined by histological analysis. 

In relation to Quantitative analysis the number of alveoli, the length of alveolar 

intersections and the number of alveolar intersections were all analysed (Figure 4.2). 

In each of the measurements there was a significant difference between the control 

group and the emphysema lung group (p<0.001; t-test analysis). The control lungs 

contained more alveoli, had shorter alveolar intersections and had a greater number of 

alveolar intersections ensuring better gaseous exchange and lung function than seen in 

the elastase treated Group2 animals. This was as expected.  
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Figure 4.1 H&E histological analysis in elastase model of emphysema. 

All images were taken at the same magnification. The control, Group1, animals 

clearly show the sections of tissue to appear healthy and normal, with large amounts 

of alveoli present. Group2, elastase treated, however (B, D and F) clearly show large 

vacous regions with no alveoli or airway structure present. Detailed analysis of the 

results was carried out (Figure 4.2). 
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Figure 4.2 Statistical analysis from H&E histolgy sections in elastase model of 

emphysema 

Group1 PBS (n=3) and Group2 Elastase (n=4) showed clear significant differences in 

all analysis carried out by histology. The PBS control animals, as was expected, 

contained more alveoli, shorter alveolar intersections and a greater quantity of 

alveolar intersections, enabling for more gaseous exchange and better lung function 

than in Elastase treated animals. 
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4.2.1.2 BAL and whole body analysis of elastase emphysema in BALB/c mice. 

Cytospins were prepared from the BAL fluid of the PBS and Elastase treated animals 

(Figure 4.3).  The ratio of macrophages to macrophages and neutrophils to neutrophils 

differed significantly between the groups (p<0.0001; t-test analysis). Whereas the 

Group1 cytospins consisted predominantly of Macrophages (77.6±5.921%) and less 

than 20% neutrophils (19.4±4.905%), a ratio of approximately 4:1 macrophages to 

neutrophils; in the Group2 Elastase model the amount this ratio was reversed with 

approximatly 9:1 neutrophils (90.33±84.33%) to macrophages (8.333±0.9545%) 

present in the BAL fluid. The number of lymphocytes in the BAL fluid analysed for 

both groups was not significantly different, and the population size was small, with 

lymphocytes making up only 3±1.414% of the cell population in the PBS treated 

Group1 animals and 1.333±0.494% of the Group2 Elastase treated animals. 

Also analysed was the body weight of animals and the total cell population of the 

BAL from both treatment groups at the time of sacrafice (Figure 4.4). The 

bodyweight of Elastase treated Group2 animals (18.47±0.428g; n=6) was significantly 

less (p<0.001; t-test analysis) than that of PBS treated Control Group1 animals 

(22.25±0.671g; n=6). This is as expected with the Emphysema lung animals unable to 

thrive as well as the control group. With regards to the total cell population/ml of the 

BAL and the % viability of this population, no significant difference was found in 

either the cell number/ml (2.4923±0.265x10
5
 cells/ml control Group1 vs. 

3.60399±0.736x10
5
 cells/ml Group2 elastase) or the viability (76±7.51 % viable 

control Group1 vs. 69.83±4.09% viable Elastase Group2). 
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Figure 4.3 BALF Analysis In Elastase model of Emphysema 

Group1 PBS, n=5; Group2 Elastase, n=6. (i) shows sample cytospins resulting from 

the Group1 PBS (A, C)  and Group2 Elastase (B, D) treated animals. 100 sample cells 

were differentially counted from each animals BAL cytospin as can be seen in (ii) 

above. The ratio of macrophages to macrophages and neutrophils to neutrophils 

differed greatly significantly between the groups. Whereas the Group1 cytospins 

consisted predominantly of Macrophages (77.6±5.921%) and less than 20% 

neutrophils (19.4±4.905%), a ratio of approximately 4:1 macrophages to neutrophils; 

in the elastase model the amount this ratio was reversed with approximatly 9:1 

neutrophils (90.33±84.33%) to macrophages (8.333±0.9545%) present in the BAL 

fluid. 
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Figure 4.4 Bodyweight and BALF analysis In Elastase model of Emphysema 

The bodyweight of each animal was assesed immediatly post mortem. It is of note 

that the emphysema model mice showed a significant decrease in body weight as a 

result of the elastase treatment. The total number of cells recorded in the BAL fluid of 

Elastase treated animals was greater than that of the PBS control group, though no 

significance was achieved. There was only a minor, and again, non-significant, 

difference noted in the viability of the cells recorded in the BAL of both groups of 

animals. (Group 1 PBS n=6; Group2 Elastase n=6). 
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4.2.1.3 Immunofluorescence analysis for BMP activity 

CC10, a Clara cell secretory protein, was analysed to determine if there was a marked 

increase or decrease in the presence of Clara cells in the airways (Figure 4.5). An 

increase may indicate an increase in proliferation of the cells, and a decrease may 

indicate that the onset of emphysema as a result of porcine elastase treatment brought 

about a cessation in Clara cell activity, a potential major obstacle to repairing the 

airways. However in both the control and the elastase-treated airways, CC10 protein 

expression was abundant. There was no discernable difference in the level of 

expression or localisation between both groups.  

PCNA is a marker of cell proliferation. In order to assess the level of regeneration in 

the airways the levels of PCNA between the control and treated were compared 

(Figure 4.6). In the control group very little PCNA activity was detected, only located 

in a small number of individual airway cells. There was nothing to indicate an above 

background level of activity of the protein. With regards to the emphysema lungs 

however there was a marked increase in the presence of PCNA, with a high level of 

abundance observed in the alveolar regions of the lungs. pSmad1/5/8 was then 

examined (Figure 4.7). It was one of the key indicators of the involvement of the 

BMP pathway as it signals active phosphorylation of the receptor Smads and their 

transport to the nucleas. A degree of pSmad1/5/8 activity was detected in the control 

animal airways, however the controls were found to be expressing more pSmad1/5/8 

activity than the emphysema mice.  

One of the receptor-regulated Smads, Smad8 was examined to see if there was any 

Smad linked response to the onset of emphysema (Figure 4.8). Smad 8 expression in 

the control animals’ lungs was by and large non-existent, without only a small number 

of cells in some of the control animal alveolar regions expressing the protein. In 

emphysema lungs however the level of Smad8 expression was much higher, and was 

abundant throughout the alveolar regions. Expression was localised in the alveolar 

regions of the lung. 

Co-Smad, Smad4, which is responsible for shepherding the R-Smads through the 

cytoplasm post phosphorylation was also examined (Figure 4.9). No Smad4 staining 

was in evidence during evaluation of the control lungs but Smad4 was detected in 

emphysema lungs. It was localised to the alveolar region and was highly abundant. 

The final protein examined via immunofluorescence analysis was Smooth muscle 

actin (Figure 4.10). Due to characteristics of the disease which can affect the elasticity 

or compliance of the lungs it was evaluated to determine whether, after a short disease 

onset, any discernable difference, either increased or decreased levels of the protein, 
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would be observed alongside the airways. The protein was however detected in the 

same locality with the same level of high abundance just below the epithelium of the 

airways. 

A full summary of observations for all analysed proteins can be seen in Table 4.1. 
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Figure 4.5 CC10 immunofluorescence in elastase model of emphysema 

CC10 staining can clearly be seen lining the airways of both Group1 control animals 

(A, C E and G respectively) and Group2 (I, J, K and L respectively) The level of 

expression detected in both the PBS and Elastase treated animals was similar with no 

discernable difference observed  
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Figure 4.6 PCNA immunofluorescence in elastase model of emphysema 

Group1 control animals had very little evidence of PCNA though small amounts 

could be deteced in parts of the airways as seen in A, B, C and D. PCNA staining was 

more evident in the Group2 elastase treated animals however with detection of the 

protein occuring throughout the alveolar regions as can be seen in I, J, K, L and M. 
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Figure 4.7 pSmad1/5/8 immunofluorescence in elastase model of emphysema 

The phosphorylated Smads 1, 5 and 8 were detected in both the control, Group1, 

animals and in the elastase treated Group2 animals. Staining in Group1 was clearly 

evident, lining the airways in all of the control group animals. There was less detected 

however throughout the Group2 animals, where although a similar amount of airways 

showed some level of activation it was generally observed at a lower level than that 

seen in the control group. 



177 

 

 

Figure 4.8 Smad8 immunofluorescence in elastase model of emphysema 

Group1 PBS control mice exhibited very little Smad8 presence. A small number of 

individual cells were scattered through section of a number of animals, as seen in A 

and C. However in general the airways and alveolar regions were by and large devoid 

of Smad8 as can be seen in E, G and I, where the images show only tissue auto 

flouresence and no Smad8. Group2 elastase treated mice however showed a high 

presence of Smad8 throughout the alveolar regions, clearly visible along the surface 

of the alveolar cells in Group2 images B, D, F and H above. 
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Figure 4.9 Smad4 immunofluorescence in elastase model of emphysema 

No evidence of Smad4 presence was evident in Group1, control animals, in either the 

alveolar regions or in the airways. The only staining present in the images A, C, E and 

G indicates tissue autoflouresence. Smad4 staining however was abundant throughout 

the alveolar regions in Group2 elastase treated animals. Some tissue auto flouresence 

made it difficult to clearly image the Smad4 presence but in the section samples B, D, 

F, H and I, all bright white indicates the presence of Smad4, as indicated by the 

accompanying arrows. 
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Figure 4.10 Smooth Actin immunofluorescence in elastase model of emphysema 

Due to the characteristics of the disease model it was decided to also evaluate any 

difference which may be ocuring in musculature lining the sirways by examing 

smooth muscle actin presence for dysregulation, either by an increase or decrease in 

presence or by proliferation into the surface epithelial layer. However no difference 

was noted in the location or quantity of smooth actin present in either of the two 

groups. 
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PBS Group 

(Group1) 

Elastase Group 

(Group2) 
Notes 

CC10 Abundant in airways Abundant in airways No Discernable difference 

PCNA 

Very low levels of 

expression, found in 

some specific airway 

cells. No Alveolar 

High level of 

abundance 

throughout Alveolar 

cells 

Elastase animals showed a 

much higher level of 

expression of the Protein, 

and throughout the 

alveolar region, whereas 

almost  none was 

detected in the PBS group 

pSmad1/5/8 Detected in Airways 

Detected in airways 

but at a lower level 

than PBS group 

PBS group showed a 

higher level of activity of 

pSmad1/5/8 in the 

airways than elastase 

treated animals 

Smad8 

Very low level of 

expression, found in 

occasional alveolar 

cells 

High abundance 

detected in alveolar 

region 

Elastase treated animals 

displayed a much higher 

level of Smad8 expression 

throughout the alveolar 

region compared with the 

PBS control group. 

Smad4 None Detected 

High abundance 

throughout alveolar 

region 

Elastase treated animals 

displayed a high level of 

Smad4 expression 

throughout the alveolar 

region compared with the 

PBS control group where 

none was detected. 

Smooth muscle 

Actin 

Highly abundant 

lining airways 

Highly abundant 

lining airways 
No Discernable difference 

 

Table 4.1 Summary of immunofluorescence analysis in elastase induced emphysema 

in BALB/c mice 
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4.3 Discussion 

4.3.1 Elastase induced model of Emphysema in Mice. 

The main result from the study of emphysema in mice was that although there was an 

increase in the level of Co-Smad 4 and Receptor Smad 8, there was no detectable 

phosphorylation of the R-Smads. It is possible that the destruction of the parenchyma 

by the elastase also dramatically reduced the receptor number on the cells remaining 

in the lung, lessening the ability of any circulating BMP to trigger a reaction. It is also 

possible that delivery of exogenous BMP proteins may trigger an increase in BMP 

pathway activity that could potentially have a therapeutic effect on the lungs. In PAH, 

lack of a functioning BMPR-II is predominantly responsible for the disease, and it has 

been shown that stimulation of the cells with exogenous BMP has had a therapeutic 

effect. It is also possible that in emphysematous lungs, stimulation of the airway cells 

with exogenous BMPs such as BMP2 BMP4 or BMP7; or BMP pathway related 

proteins may have a therapeutic effect. Further analysis of the Emphysema model 

determined a number of significant differences between control lungs and 

emphysematous lungs that would provide solid platforms for quantitative analysis of 

any such treatment. 

 

4.4 Conclusion 

There are no reports of the expression of the BMP pathway in emphysema. Though a 

greater understanding of the disease in the in vivo model was attained the lack of a 

major involvement of the BMP pathway precluded its further use as a potential model 

for targeting BMP effects in disease. The model does have future potential however. 

Due to the fact that the BMP pathway is dormant during the onset and progression of 

disease in this model it may provide an ideal platform to study the effect of an 

induced BMP pathway in the possible repair or regeneration of the damaged tissue.  

However the aim of this project was to identify and target a deregulated BMP 

pathway in a disease model, and therefor further analysis of the Emphysema model 

was not initiated as part of this project. 

As will be seen in Chapter 7, the OVA induced model of asthma in vivo shows 

activation of the BMP pathway, which is believed to be a contributory factor to 

progressive remodelling and tissue damage in the asthmatic lung. As a result the 
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pathway was deemed to be a more suitable target for the delivery of regulatory 

compounds that may facilitate a dampening of the damaging effects seen in asthma.  
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5  Design, Characterisation 

& Assessment of Aerosol 

Delivery Devices & 

Molecules 
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5.1 Introduction 

The delivery of therapeutic molecules directly to the lung has numerous advantages 

over non localised systemic delivery mechanisms such as intravenous administration. 

In practical terms it can also be easier to get a therapeutic to the clinic when 

administration is local as opposed to systemic. In order to develop and test 

therapeutics strategies to target BMP signalling in mouse models of lung disease, it 

was necessary to develop a method for targeted delivery to the lung. Aerosol delivery 

provides a highly efficient and well developed mechanism for both local delivery of 

therapeutics to the airways and alveolar regions of the lung and has potential for 

modification to be utilised as an effective systemic mode of delivery. For therapeutic 

development and testing in the lab a commercially available Aerogen Aeroneb® Pro 

nebuliser was paired with a novel chamber device (Buxco®) for delivery to rodents 

and small mammals and a restraint for commercial deployment was designed and 

tested in house in conjunction with Buxco®. 

Many different types of biological molecules are used as therapeutics including 

proteins (including cytokines and antibodies), siRNA, and plasmid DNA. We wished 

to determine if aerosolisation was feasible for the delivery of these types of molecules 

to mouse lungs. 

5.1.1 Particle sizing and laser diffraction 

Particle sizing of aerosols is vital in order to determine exactly the deposition profile 

and particle transport within the respiratory system of an aerosolised drug. It refers to 

measuring the aerodynamic size which, by definition, is the aerodynamic diameter of 

a particle is the diameter of a sphere with unit density of 1, having the same terminal 

settling velocity in still air as the particle in consideration the diameter of a sphere 

with a unit density (de Boer et al., 2002). It can reveal information relating to 

deposition patterning leading to the ability to assess absorption and uptake times and 

can help match an ideal nebuliser or inhaler to specific drug formulation. It is carried 

out primarily by two means, cascade impaction or laser diffraction. The 

pharmaceutical gold standard is multi stage cascade impaction in both European and 

US pharmacopoeias (Mitchell and Nagel, 2003). However for the reasons detailed 

below we pursued laser diffraction as more practical and applied means for screening 

the performance of both the chamber and nebulisers utilised within this thesis. 

Cascade impactors are complex set ups but are favoured for a number of reasons. 

They measure directly the aerodynamic size and both require and facilitate the capture 
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and analysis of the aerosolised particles at each stage in the impactor, which 

correspond to airway levels in the lung. It also shows the quantity of API which is 

deposited at each level. However due their complexity, cascade impactors are difficult 

to set up and analysis is laborious and time consuming and as a result drastically 

reduces screening times for new formulations of drug(Marriott et al., 2006). There is 

also a strongly reported occurrence of inter and intra laboratory variations between 

same model cascade, with variation in the measurement of fine particle fractions of 

5.5% to 20% in readings taken from DPIs, which it is known are even better suited to 

cascade impaction studies than nebulisers (Mitchell et al., 2007; Pilcer et al., 2008). 

The issues with cascade impaction models have led to the optimisation of laser 

diffraction as a method for the characterisation of aerosols. Laser diffraction works by 

sending a laser through a cloud of aerosol and measuring the size of the particles it 

encounters. It has a number of advantages over the impaction system. It is quicker to 

set up and offers a higher degree of reproducibility as well as allowing for a greater 

number of size classes of particles to be defined for an individual aerosol cloud. This 

greatly improves the ability of a lab to screen different formulations and to test other 

parameters such as the effect of a chamber or a mouthpiece on the available aerosol 

for respiration, measurements which cannot be obtained using cascade impaction 

(Clark, 1995; Marriott et al., 2006). Laser diffraction, unlike cascade impaction is also 

known to be a robust system capable of very high reproducibility, and software 

enables automatic data recording and processing, helping eliminate any technical 

differences between labs (Pilcer et al., 2008). 

The other main difference between the systems aside from mode of operation is that 

they both measure particles aerodynamic profile differently and it is not possible to 

directly relate a set of results from one device to another. However it has been shown 

that the two devices compare well when evaluating nebuliser performance on the two 

using the same formulation (Ziegler and Wachtel, 2005). Also data scintigraphy 

studies have been carried out that have enabled direct correlation between size 

profiles and distributions as measured by laser diffraction and corresponding 

deposition profiles, showing a good accord between VMD and the deposit volume in 

the lungs (Clark, 1995). 

5.2 Chamber design and characterisation 

Three nebulisers were chosen at random to generate an aerosol in the delivery 

chamber unit. This aerosol would then be characterised directly at the site of 

inhalation. This was done by connecting the chamber port directly to the Spraytech™ 
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analyser (Figure 5.1). The aerosol was measured over a period of three different time-

points (t=0min, t=5min and t=9min) to allow for the effects of reservoir level  to be 

accurately taken into account and also to see if there was a build up of forces such as 

shear forces or heat which may affect aerosol production or characteristics over time. 

It also allowed for effects of aggregation and flow rate to be accurately taken into 

account. Two different flow rates were also recorded (2L/ and 4L/min) to determine if 

the flow rate had an adverse effect on the aerosol at the point of inhalation. An 

independent flow rate monitor was also used to confirm the flow rate generated by the 

Buxco® flow regulator. PBS was again used as the solution to generate the aerosol. 

The Chamber was assessed for its ability to deliver an effective respirable dose, as 

determined by measuring aerosol VMD and FPF at the point of inhalation from the 

chamber, as can be seen in (Figure 5.1). All statistical analysis relating to VMD and 

FPF was determined by one-way ANOVA (repeated measures) and Tukeys multiple 

comparison test. 

Overall the differences in VMD generated was determined to be statistically 

significant, p<0.001. The VMD achieved at the flow rate of 4L/min was significantly 

lower to varying degrees (P<0.05) than the 2L per min flow rate at all time points 

with the exception of the VMD recorded at 4L/min; t=9 min compared to the VMD at 

2L/min; t=5 min (Figure 5.2; Table 5.1 and Table 5.2). Though not significant, the 

VMD was still less for the 4L/min Flow rate. There was no recorded statistically 

significant difference in VMD across any time point between the 4L/min flow rate 

and the nebuliser units on their own without the chamber. This shows that there was 

no significant deterioration in VMD with this chamber design under these operating 

conditions. The 2L/min flow rate had a significantly higher VMD across the range of 

measurements with the exception noted above. It also recorded a VMD statistically 

significantly larger than the nebuliser units alone without a chamber. This shows that 

a lower flow rate can cause larger molecules to present at the site of inhalation.  

It was noted also that although the VMD for the 4L/min flow rate increased slowly 

over time, this change was not statistically significant. There was also a slight 

fluctuation in the VMD at the slower flow rate of 2L/min, again not statistically 

significant. This indicates that the time frame is less of a factor in influencing the 

resulting VMD of the particles than the Flow Rate.  

The FPF was also assessed at the same time as the VMD, with two different flow 

rates and broken down into the three groupings of 1-3µm, 1-5µm and 1-7µm (Figure 

5.3 and Table 5.2). 
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At the 4L/min flow rate there was no statistical difference across the time-points in 

the percentage FPF in any of these groupings with one exception. The percentage total 

aerosol falling within the respirable dose rage of 1-7µms was significantly less at 

4L/min, t=9mins, than at t=0mins (p<0.05 Figure 5.3). However this was not 

significantly different to the nebulisers on their own unconnected to the chamber. At 

t=0 the 4L/min flow rate was generating significantly more aerosol in each measured 

group than the 2L/min flow rate. By t=9min this statistical difference had stopped but 

it can be seen that across every time-point and every particle size grouping that the 

greater flow rate of 4L/min resulted in a higher percentage of total aerosol being 

produced. It is also of note that across each time-point and all groupings the FPF 

generated at the 4L/min flow rate was not once significantly different than that of the 

nebuliser unit alone, Table 2. This was not the same for the 2L/min flow rate, giving 

significantly less, to varying degrees, total respirable aerosol than the no chamber 

alone. This mostly effected the larger grouping of 1-7µm (2l/min: t=0min, p<0.05; 

t=5min, p<0.01; t=9min, p<0.01) meaning that the total percentage of respirable 

aerosol was significantly less at all time points at the lower flow rate. The results of 

the FPF analysis across all readings, with the exception of the 2L/min flow rate in the 

FPF grouping of 1-5µm, show that an increase in time led to a trend of decreasing 

percentage of total aerosol available. 
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Figure 5.1 Nebuliser and chamber testing with Malvern Spraytech™ 

(A) shows the Nebuliser unit attached to and generating aerosol in the chamber unit. 

Arrows indicate the Malvern Spraytech laser and the Nubuliser head unit. Attached to 

chamber unit is an independent flow rate monitor as can clearly be seen indicated by 

arrows in (B). (C) shows the attachment of the chamber to the Malvern Spraytech™ 

at the point of inhalation as indicated by an arrow. (D) shows the attached nebuliser 

unit generating a PBS aerosol within the chamber while VMD and FPF are being 

assessed. 
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Flow Rate Time Average VMD ±St Err 

4L/min 0mins 4.3828 0.1934 

4L/min 5mins 4.48 0.1980 

4L/min 9mins 4.5506 0.1862 

2L/min 0mins 4.7878 0.1655 

2L/min 5mins 4.7306 0.1525 

2L/min 9mins 4.7583 0.1551 

N/A Neb. Only 4.4755 0.2211 

Figure 5.2 VMD generated through Chamber measured at point of inhalation  

As can be seen the 4L/min flow rate, at all timepoints, generates a smaller average 

VMD particles size than the slower 2L/min flow rate. Full breakdown of statistical 

analysis can be seen in Table 5.1. 
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One Way ANOVA (Repeated 
Measures) 

Significant?  Summary† 

Yes *** 

Tukeys Multiple Comparison 
Test 

Significant?  Summary† 

4L/min t=0 vs. 4L/min t=5 No ns 

4L/min t=0 vs. 4L/min t=9 No ns 

4L/min t=0 vs. 2L/min t=0 Yes *** 

4L/min t=0 vs. 2L/min t=5 Yes *** 

4L/min t=0 vs. 2L/min t=9 Yes *** 

4L/min t=0 vs. Neb. Only No ns 

4L/min t=5 vs. 4L/min t=9 No ns 

4L/min t=5 vs. 2L/min t=0 Yes ** 

4L/min t=5 vs. 2L/min t=5 Yes ** 

4L/min t=5 vs. 2L/min t=9 Yes ** 

4L/min t=5 vs. Neb. Only No ns 

4L/min t=9 vs. 2L/min t=0 Yes * 

4L/min t=9 vs. 2L/min t=5 No ns 

4L/min t=9 vs. 2L/min t=9 Yes * 

4L/min t=9 vs. Neb. Only No ns 

2L/min t=0 vs. 2L/min t=5 No ns 

2L/min t=0 vs. 2L/min t=9 No ns 

2L/min t=0 vs. Neb. Only Yes ** 

2L/min t=5 vs. 2L/min t=9 No ns 

2L/min t=5 vs. Neb. Only Yes ** 

2L/min t=9 vs. Neb. Only Yes ** 

†Summary: ns=not significant; * = p<0.05; **=p<0.01; ***p=<0.001. 
Table 5.1 Variable Mean Diameter statistical analysis  

Statistical analysis was carried out by means of repeated measures ANOVA in 

combination with Tukeys multiple comparison posttest. 
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Flow Rate Time 1-7µm 1-5µm 1-3µm 

    Average ± St. Err Average ± St. Err Average ± St. Err 

4L/min 0mins 64.7394 2.84319 47.5711 2.92991 23.0239 1.2223 

4L/min 5mins 62.9572 3.2906 46.4467 3.28397 22.5906 1.12267 

4L/min 9mins 60.8089 1.86494 44.2311 1.70948 22.0872 0.89727 

2L/min 0mins 59.2528 1.72251 42.4328 1.48872 20.8611 0.72892 

2L/min 5mins 58.2522 1.53104 42.2291 1.2666 21.33 0.64243 

2L/min 9mins 57.7244 1.5967 41.8911 1.32513 21.2411 0.64593 

No Flow 0mins 63.9267 2.6246 46.4944 2.14277 22.5456 1.03108 

Figure 5.3 FPF generated through Chamber measured at point of inhalation 

With the 4L/min flow rate, at all timepoints, a higher percentage FPF is generated 

than with the slower 2L/min flow rate. Full breakdown of statistical analysis can be 

seen in Table 5.2. 
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  FPF 0-7µm FPF 0-5µm FPF 0-3µm 

One Way ANOVA (Repeated 
Measures) 

Significant?  Summary† Significant?  Summary† Significant? Summary† 

Yes *** Yes ** Yes ** 

Tukeys Multiple Comparison 
Test  

Significant?  Summary† Significant?  Summary† Significant? Summary† 

4L/min t=0min vs. 4L/min t=5min No ns No ns No ns 

4L/min t=0min vs. 4L/min t=9min Yes * No ns No ns 

4L/min t=0min vs. 2L/min t=0min Yes ** Yes * Yes ** 

4L/min t=0min vs. 2L/min t=5min Yes *** Yes * Yes * 

4L/min t=0min vs. 2L/min t=9min Yes *** Yes ** Yes * 

4L/min t=0min vs. No Chamber No ns No ns No ns 

4L/min t=5min vs. 4L/min t=9min No ns No ns No ns 

4L/min t=5min vs. 2L/min t=0min No ns No ns Yes * 

4L/min t=5min vs. 2L/min t=5min Yes * No ns No ns 

4L/min t=5min vs. 2L/min t=9min Yes ** Yes * No ns 

4L/min t=5min vs. No Chamber No ns No ns No ns 

4L/min t=9min vs. 2L/min t=0min No ns No ns No ns 

4L/min t=9min vs. 2L/min t=5min No ns No ns No ns 

4L/min t=9min vs. 2L/min t=9min No ns No ns No ns 

4L/min t=9min vs. No Chamber No ns No ns No ns 

2L/min t=0min vs. 2L/min t=5min No ns No ns No ns 

2L/min t=0min vs. 2L/min t=9min No ns No ns No ns 

2L/min t=0min vs. No Chamber Yes * No ns Yes * 

2L/min t=5min vs. 2L/min t=9min No ns No ns No ns 

2L/min t=5min vs. No Chamber Yes ** No ns No ns 

2L/min t=9min vs. No Chamber Yes ** Yes * No ns 

†Summary: ns=not significant; * = p<0.05; **=p<0.01; ***p=<0.001.    

Table 5.2 Fine Particle Fraction statistical analysis  

Statistical analysis was carried out by means of repeated measures ANOVA in 

combination with Tukeys multiple comparison posttest. 
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5.2.1 Nebuliser design and characterisation 

It was first decided to evaluate the performance of each Aerogen Aeroneb® Pro 

nebuliser on its own. An Aerogen nebuliser control unit with known performance 

characteristics was first used to ensure all measurements were being accurately 

recorded. 

A total of 18 separate nebuliser head units were then tested to generate a profile of the 

performance of the nebuliser units on their own. This was done by directly attaching 

the nebuliser to the Spraytech™ system and recording the VMD and FPF (1-3µm, 1-

5µm and 1-7µm) of each unit. The solution used for testing the aerosol generation 

performance was 0.9% PBS. This was due to the fact that saline was a prospective 

carrier solution for any future in vivo work, is non-volatile, and would be suitable for 

most foreseeable future preparations of protein and drug compound solutions for 

aerosolisation. 

5.2.1.1 Results 

The VMD of the particles formed by the nebuliser units alone, directly connected to 

the Malvern Spraytech™ analyser, was analysed (Figure 5.4). This showed the 

average VMD of the particles to be in the region of 4.43µm (±.043µm), falling inside 

Aerogens specified operating limits for the device. This means that 50% of the aerosol 

generated has a VMD of 4.43µm (±.043µm) or less as can be seen in Table 5.3. 

The FPF for the individual units were all also assessed. This allows for the mapping 

of deposition within the lung of the particles delivered. Aerosol generated with a FPF 

of less than 1µm is not likely to settle in the lung after inhalation, due to its size and 

density it is most likely to be exhaled rather than deposit. Molecules in the range of 1-

3µm are likely to target and deposit themselves in the alveolar region. Particles in the 

size range of 3-5µm are likely to deposit in the lower airways, and particles in the 

range of 5-7µm in the upper airways, with anything larger getting deposited on the 

back of the throat. The results of the FPF measurements show that the Aerogen 

Aeroneb® Pro Nebuliser unit, on its own and without a spacer or chamber influencing 

its aerosol production, can generate a respirable dose of 65.26% (±0.44). 22..44% 

(±0.43) of the aerosol generated falls within the FPF of 1-3µm, 24.65% (±0.38) within 

the range of 3-5µm and 18.17% (±.02) in the range of 5-7µm, (See Figure 5.5 and 

Table 5.4). Therefore only 34.7% (±0.756) of the aerosol produced falls outside the 

respirable dose limitations. 
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Figure 5.4 The VMD of every individual nebuliser unit was assessed (n=18) 

All units fell within the operating range for the device and the average VMD 

generated by the devices is 4.43µm (±.043µm). Full breakdown of the behaviour of 

the individual nebuliser units can be seen in Table 5.3. 
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Neb. I.D. VMD (µm) +/- Standard Error (µm) 

055 879 - 040 4.6867 0.01202 

056 056 - 095 4.06 0.04933 

055 894 - 030 4.36 0.01528 

055 891 - 070 4.08 0.02517 

055 879 - 144 4.3933 0.06227 

055 996 - 002 4.8833 0.05783 

055 894 - 005 4.9533 0.02906 

055 879 - 014 4.1233 0.0219 

056 065 - 100 4.1767 0.0203 

056 014 - 115 4.0567 0.0433 

055 923 - 143 4.8933 0.0176 

056 065 - 029 4.42 0.0231 

055 923 - 080 4.7433 0.0418 

056 065 - 114 4.3333 0.02404 

055 894 - 015 4.0267 0.01453 

055 969 - 087 4.6367 0.01202 

055 891 - 031 4.7033 0.01856 

056 052 - 013 4.29 0.02887 

Average 4.4344 0.0431 

 

Table 5.3 Individual nebulisers VMD performance 

All nebuliser units for use throughout the duration of this thesis were tested and 

assessed in order to ensure that nebuliser inefficiencies and discrepancies did not 

impact on the studies performed. This was high importance for molecular work, 

animal delivery and accurate characterisation of the delivery chamber. 
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Figure 5.5 The FPF of every individual nebuliser unit was assessed (n=18). 

65.25% (±SE) of the total aerosol generated fell within the 1-7µm range, 47.09% 

(±SE) within the 1-5µm and 22.44% (±SE) within the 1-3µm range. Full breakdown 

of the behaviour of the individual nebuliser units can be seen in Table 5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FPF Recording % Of Total Aerosol St. Err. 

1-7µm 65.2576 0.4383 

1-5µm 47.0891 0.4201 

1-3µm 22.4426 0.2441 
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Neb. I.D. Percentage FPF 

  FPF 7µm+ FPF 5-7µm FPF 3-5µm FPF 1-3µm 

055 879 - 040 37.39 18.22 23.33 21.06 

056 056 - 095 34.8767 17.1367 23.5367 24.45 

055 894 - 030 32.46 19.18 25.9033 22.4567 

055 891 - 070 30.56 17.8567 26.8567 24.7267 

055 879 - 144 36.02 17.5933 23.6 22.7867 

055 996 - 002 40.13 16.8467 22.4 20.6233 

055 894 - 005 38.5633 19.0933 23.0033 19.34 

055 879 - 014 31.16 18.4333 26.2533 24.1533 

056 065 - 100 34.4567 17.9567 23.91 23.6767 

056 014 - 115 28.8233 19.0567 27.7233 24.3967 

055 923 - 143 37.63 19.24 23.6133 19.5167 

056 065 - 029 36.93 17.0167 23.1933 22.86 

055 923 - 080 36.4567 18.9633 24.1533 20.4267 

056 065 - 114 33.7167 17.9567 25.1367 23.19 

055 894 - 015 29.09 18.6467 27.5967 24.6667 

055 969 - 087 35.94 16.93 25.23 21.9 

055 891 - 031 35.74 19.3467 24.4167 20.4967 

056 052 - 013 35.42 17.56 23.78 23.24 

Avg. 34.7424 18.1685 24.6465 22.4426 

St. error(+/-) 0.7560 0.2037 0.3808 0.4259 

 

Table 5.4 Individual nebulisers FPF performance. 

As was done with VMD measurements, all nebuliser units for use throughout the 

duration of this thesis were tested and assessed in order to ensure that nebuliser 

inefficiencies and discrepancies did not impact on the studies performed. This was 

high importance for molecular work, animal delivery and accurate characterisation of 

the delivery chamber. 
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5.2.2 Restraint design and testing 

Restraint design was started with a blank template rather than working on an existing 

model with the hope of minor modifications for improvement. The pre-existing model 

(Figure 5.6) that was in use had a number of design flaws that needed to be fixed and 

these were borne in mind during the new build. The restraint design underwent a 

number of prototype versions. The first prototype (Mark 1) was designed from scratch 

and post manufacture was tested for feasibility with a number of different aged 

animals of various strains and sizes. A number of areas for improvement quickly 

became apparent and the next prototype addressed these issues. The restraint 

underwent further modifications before arriving at the final prototype (Mark 2) which 

was put forward for selection for manufacture. Prototype plans were put forward by 

J.Purcell and the schematics drawn by engineers at Buxco® UK. Manufacture of the 

prototype units was carried out by Buxco® US on behalf of Buxco® UK. All testing 

was carried out in-house in N.U.I. Maynooth animal handling units under supervision 

of appropriately licensed and qualified individuals. 

5.2.2.1 Results 

In the first attempt to develop a prototype for a novel restraint one of the main 

features addressed was to be the design of a successful system that could safely and 

securely give a nose only exposure while restraining the mouse. The Mark 1 prototype 

was designed with the intent of having half a collar permanently mounted on the 

lower half of the restraint (Figure 5.7 and Figure 5.8). The top half of the restraint was 

then to be dropped into place, with the other half of the collar embedded in this. This 

collar was designed to fit around the mouse neck, preventing aerosol from travelling 

up the restraint. This design identified a number of problems, chiefly the following: 

A neck restraint was too restrictive for dealing with large numbers of different aged or 

size animals 

Smaller neck sizes would have to be made to measure to ensure tight fits across all 

sizes. As the collar would also be required to help keep the animal from moving back 

and forth along the chamber this would have to be relatively secure, which could be 

difficult to achieve without placing too much pressure on the trachea of the animal. 

The mouse body was to be restrained by means of an adjustable lid with Velcro 

attachments that could be tapered to fit any size mouse for the unit. This lid also 

contained an adjustable back, moveable by means of a restraining screw to help keep 

the animals in position and to prevent if from backing out of the nasal opening. The 
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floor of the restraint was raised at the nasal opening to facilitate the animals head 

being better positioned.  

Ergonomically it was difficult for a single handler to fit an animal in the unit and 

restrain it effectively even when it was known that the animal fit the collar size. The 

floor of the device encountered the same issues as with the initial restraint with no 

space for the animals. The difficulty in restraining the animals while trying to fit the 

adjustable lid and back led to handling difficulties and further complicated efforts to 

ensure nose only exposure. The unit would also not allow for full nose only exposure, 

any aerosol delivered could potentially deposit in the eyes and was also more likely to 

result in ingestion of a larger amount of the aerosol. 

The results of this Mark 1 prototype identified a number of key features to consider 

for the development of the Mark 2 prototype. The first was to develop a novel way of 

ensuring nose only exposure. Second was to ensure a wider range of size animals 

could be incorporated into the restraint.  Thirdly, that the restraint was less likely to 

result in injury to any animal. Fourth was to increase the ergonomic handling of the 

unit for animal handlers. All of these considerations were also highly important in the 

development of a restraint that could not only be effectively used, but one that could 

be successfully produced and marketed. 

These primary considerations led to the development of the Mark 2 Prototype (Figure 

5.8, Figure 5.9 and Figure 5.10). 

To ensure a nose only exposure the collar design was replaced entirely with a nose 

cone resembling a layered collar. This cone consisted of sheets of silicone with holes 

in the centre of varying diameters. This ensured an airtight seal around the nose of the 

animal when placed in the restraint. As it no longer impeded the windpipe and did not 

pressure soft tissue, this also aided in increasing the comfort of the animal. This 

system also allowed for a wide variety of age/size animals to be used in the same unit. 

It also ensured that injury to the animals was less likely to result. In order to help with 

the ergonomics of the system a cradle to hold the restraint was also developed, 

allowing the animal handler better control of the animal and its placing in the unit, 

with both hands free to control the animal if required. A number of other design 

innovations were also incorporated to help address the considerations listed above. A 

perforated sliding floor was incorporated into the unit. This has a number of important 

roles. It allows the animal to grip the floor, and this helps in the placing of the animal 

in the restraint. It also brings the animals head up to a higher level so that the nose 

cone is better positioned in relation to the restrained animal. It helps keep the animal 

in a more natural position when restrained compared to the common cylindrical 
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restraints and it allows for the circulation of air around the animal, helping to keep it 

cooler when restrained for long periods of time. All of this also helps obtain better 

measurements from the animals during experimental procedures. Another important 

feature design to address the above considerations was a concave plunger. This 

plunger has a hole in place to pass the tail through to help with restrain of the animal. 

This initially was a closed opening as in the structural diagrams, but was changed to 

be open at the bottom as can be seen in the images of the manufactured mark2 

prototype. Its shape also helps keep the animal in a more natural position than could 

be obtained with the older plunger systems. It is easily controlled as it is on a slide 

which closes up behind the animal. 

When tested on different animals the device produced the desired efficient seal that 

would ensure nose only exposure of a restrained animal. Animals of varying ages and 

sizes were examined in the system. A small three month old C3H mouse and a large 

eleven month old C3H mouse were examined closely (Figure 5.11 and Figure 5.12). 

Both were secured comfortably and successfully within the restraint and no animal 

showed any signs of distress during or after restraint. The device was also given to an 

animal handler with no prior knowledge of or experience with the device to assess its 

ergonomics and ease of use with an inexperienced user. No problems were identified 

and the handler was able to rapidly and successfully restrain the animals. This 

restraint delivers therefore, a viable and efficient restraint, designed for better 

handling and better animal care. It also has other potential uses. The design as is 

allows for easy restraint for tail bleeding animals, and a small modification to the 

perforated floor and base allows for restraint during I.P. injections, intramuscular 

injections and/or cardiac punctures, which would be sold as a separate device to allow 

for full integration of all the modifications. The success of the restraint can be 

assessed also by the decision to bring this restraint system into production by Buxco® 

UK. The Mark 2 device produced is a standalone unit allowing for nebulisation and 

delivery to a single animal. However no modification to the restraint design itself is 

required for the production of the prototype image, which allows for direct connection 

to the Novel chamber system tested here. 
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Figure 5.6 Original Restraint Device. 

This shows the original device in use, A and B illustrate a number of the more 

common issues with this type of restraint. The tail of the animal is at risk of being 

trapped by the plunger device when securing in place. The animal is extremely 

restricted in an unnatural position. C shows the plunger with the adjustable screw for 

varying the length dependent on the mouse. An issue is that has to be pre set before 

inserting the plunger as otherwise the mouse will turn in the restraint. If this happens 

as the plunger is being inserted or if user error sets the screw too long, crush injuries 

or death can result. If the mouse manages to gain more space they have a tendency to 

turn, however with the screw in place this space isn’t usually sufficient and 

suffocation can rapidly occur. In C the placement of the sensor is also indicated. D 

illustrates the close contact of the animal with all areas of the restraint. This prevents 

any dissipation of heat around the animal, restricting thoracic movement and leading 

to potential discomfort and distress of the animal. 
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Figure 5.7 MARK 1 complete prototype 

(A) Shows the complete sealed unit with the restraint inside. (B) Shows an exploded 

view of the full restraint. Here the enclosing chamber that attaches to the aerosol 

chamber, the restraint and the unit seal containing the pneumotach can be more easily 

seen. (C and D) Shows the restraint alone with the lid in place. Clearly identifiable are 

the adjustable screw for the movable back on the lid and the adjustable vecro 

restraints for keeping the lid in place. (E) Shows an exploded view of the restraint 

section with the floor unit and collar section separated from the lid.  
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Figure 5.8 MARK 1 restraint prototype 

(A) The sliding back could be moved by adjustment of the screw. However it was 

necessary to have already gauged the amount of space required as adjustment while 

handling an animal was extremely difficult to do. (B) Shows the the raised base 

leading to the collar to help raise the animals neck at the collar height. The particular 

flooring did not sufficiently deal with problems that had been common in the original 

restraint. (C) The collar formed a full area of contact around the neck of the animal. 

As can be sen here the material used for this prototype was a soft foam and could be 

cut to size. (E) The collar was locked into place by means of two pins to form an air 

tight barrier. Correct sizing of the collar was extremely important and needed to be 

carefully cutomised as too large a collar would result in an incomplete seal and if the 

collar was too tight it could asphyxiate and/or strangle the restrained animal.  
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Figure 5.9 MARK 2 Production Prototype  

Exploded (top) and working (bottom) views of the Mark2 restraint. Shows also in this 

is a cradle attachment to hold the restraint in place during animal restraint, freeing up 

both of the operators hands to allow easier use of the system. This diagram displays 

the restraint as an individual unit for attachment to a chamber device. Not seen in the 

diagram is the sealing tube containing the transducer that the restraint is locked into 

after the animal has been secured for plethysmography or delivery (Figure 5.10). 

Slight modification to the front of the unit allows it to be used as an individual, self-

contained unit for the delivery of an aerosol to one animal at a time. This can be 

advantageous where drug is expensive in order to reduce the total volume of drug 

required or where only one or two animals are being subjected to a treatment. 
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Figure 5.10 Component view of MARK 2 Prototype Restraint 

 (A) Clearly shows the perforated flat floor. This aids in keeping the restrained animal 

in a more natural prone position and allows heat to dissipate from the body. It also 

provides the animal with grip which helps when getting the animal in position within 

the restraint. (B) Shows the concave nature of the plunger unit, with spring loaded 

stoppers on each side to keep the plunger in position. There is space for the tail to sit 

through so it is not trapped in the unit and also allows for restraint while tail tipping or 

during tail vein injection procedures. (C) shows the unique multilayered silicone 

‘sandwich’ which surrounds the nose and (D) shows its location (Brown) in the front 

of the restraint.  
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Figure 5.11 Components and completed assembly of the MARK 2 prototype  

(A) Shows the back of the restraint with the sliding plunger in place, and (B) with it 

removed. It also clearly shows the top of the restraint unit where the scruff of the 

animal can be used to bring the animal up to the top of the unit. (C) Shows the 

location of the silicone sandwich at the top of the restraint. (D) And (E) show an 

exploded view of the cradle with the restraint and the rear of the seal behind. As can 

be seen in (E) and (F), the Mark2 prototype was modified at the front to allow for the 

restraint to be integrated as part of in individual aerosol delivery system. This can be 

easily modified for attachment to the Chamber unit characterised and helps the 

commercial viability of the overall restraint design by allowing incorporation in to 

different systems. 



207 

 

 

Figure 5.12 Three month old C3H mouse in restraint prototype  

(A) Demonstrates the ease at which a scruffed animal can be positioned within the 

restraint. (B) Shows the ‘nose only’ nature of the restraint, with the animal in place 

only the tip of the nose is exposed to the aerosol. (C) Shows the unit in place as would 

be for delivery of aerosol to the animal. 
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Figure 5.13 Eleven month old C3H mouse in restraint prototype 

This, in combination with the 3 month old mouse, shows the unit capable of 

successfully restraining a wide variety of different size animals. If required for 

extremely young animals the restraint can easily accommodate this by simply scaling 

down the device until suitable. 
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5.3 Effect of nebulisation on potential therapeutic molecules 

5.3.1 Effect of nebulisation on proteins. 

To examine the effects of nebulisation on protein integrity and performance, a number 

of experiments were devised to ascertain whether or not the Aeroneb® Pro provided a 

feasible route for aerosol delivery of vehicle-free proteins. In order to do this the 

following series of experiments were devised. The main protein chosen in this 

experiment was BMP4, as it is a candidate for future delivery experiments. 

5.3.1.1 Nebulisation of a primary antibody. 

Primary antibodies, unbound and un-encapsulated, are highly susceptible to the 

effects of shear forces and heat. In order to determine if the Aeroneb® Pro could be 

suitable for the delivery of primary antibodies such as anti-BMP4 in an in vivo setting 

an α-BMP4 antibody was nebulised and then assessed for its ability to detect antigen 

(BMP4) in a Western blot.  

The primary antibody used in this experiment produces two distinct bands under the 

conditions used. When densitometry (n=3) was carried out on the resulting bands it 

was found that the primary antibody, after nebulisation, detected 87.27% (+/-3.13) 

compared with 100% (+/-1.61) for the non-nebulised protein (Figure 5.14 (A, B)). 

This indicates again that the protein is not subject to extremes of heat or shear forces 

that may render it ineffective as a treatment option, preserving its epitopes intact and 

allowing successful interaction with the targeted protein. 

 

 

 

 



210 

 

     

 

Figure 5.14 Western Blot Analysis of Nebulised α-BMP4 Antibody 

1µl of BMP4 protein (10ng) was loaded onto 2 lanes of a 12% SDS-PAGE western 

gel. This was then immuno-blotted and divided into two strips. Primary antibody was 

diluted 1/500 and aliquoted into 2x1ml. One of these was stored at 4°C in a 25cm
3
 

tube while the other was nebulised using the Aeroneb® Pro into a chilled sterile 

25cm
3
 tube. Both 25cm

3
 tubes were then spun @ 259g for 5 minutes, which caused 

the aerosolised solution to drop out of aerosol and form a solution again. The 

nebulised primary antibody was then used to probe one of the strips of BMP4 protein, 

and the non-nebulised used to probe the other. 

(A) Shows a sample Western blot of the protein detection of BMP4 protein by 

nebulised α-BMP4 antibody (Lane1) and non-nebulised α-BMP4 antibody (Lane 2). 

Lane 3 shows the molecular weight marker (Magicmarker - Invitrogen). (B) Shows 

the results of the densitometry analysis stemming from the Western blots. With non 

nebulised detection being set at 100%, it can be seen that nebulised antibody was 

capable of detecting 87.27% (±3.13 SE) as much as the non nebulised antibody. 
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5.3.1.2 Nebulisation of BMP4: Effect on protein integrity 

A 10ug/ml solution of BMP4 was made up to a total volume of 0.2mls. Half the 

solution was untreated and stored on ice while the other half was nebulised by the 

Aeroneb® Pro nebuliser. The solution was nebulised into an ice-cold 25cm
3
 tube, 

which was then centrifuged at 4°C at 259g for 5 minutes, causing the aerosol to 

deposit at the bottom of the 25cm
3
 tube. The non-nebulised protein was also 

centrifuged under the same conditions. A volume of 2µls, corresponding to 20ng of 

protein, from both the nebulised and non-nebulised. BMP4 was then loaded and run 

out on a 12% SDS-PAGE gel, immuno-blotted and probed using an α-BMP4 

antibody. The nebulised protein was present at a rate of 86.6% (±4.99) that of the non-

nebulised protein, at the same molecular weight (Figure 5.15). This resulting 

difference was statistically insignificant (t-test, p<0.05) though the trend in the repeat 

experiments was consistent. This shows that the Aeroneb® Pro can be used to deliver 

a naked or un-encapsulated protein without grossly affecting its molecular weight or 

structure. 
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Figure 5.15 Western blot analysis of protein integrity 

(A) Shows a sample Western blot of the protein detection of a non nebulised BMP4 

protein by an α-BMP4 antibody (Lane 2) and nebulised BMP4 protein (Lane 3). Lane 

1 shows the molecular weight marker (Magicmarker - Invitrogen). B shows the results 

of the densitometry analysis stemming from the Western blots. With non nebulised 

protein levels being set at 100%, it can be seen that nebulised protein was present at a 

rate of 86.6% (±4.99 SE) that of non nebulised protein. 
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5.3.1.3 Nebulisation of BMP4: Effect on protein function 

The treatment of various cell lines and MAEC cells in our lab has shown that cells 

exposed to BMP4 acquire a mesenchymal like morphology (Molloy et al., 2008). This 

provides a quantifiable measurement for the integrity of the protein as the level of 

effect is dose dependent. It was determined that measuring the effect of both 

nebulised and non nebulised BMP4 in vitro would provide both a quantifiable 

analysis of the ability of a nebulised protein to effect change, as well as paving the 

way for further in vitro and in vivo delivery of proteins to aid understanding of 

pathway function and as possible therapeutics in different models of damage or 

disease.  

5.3.1.3.1 BMP signalling 

In order to establish that the protein was still functionally active in the cell, MLE-12 

cells were exposed to both nebulised and non nebulised BMP4 and the effect on cell 

signalling in both was compared to that of a No Treatment control. BMPR-IA, 

pSmad1/5/8 and Smad4 activity levels were monitored (Figure 5.16). 

At the t=20min and t=2hr timepoints, cells treated with nebulised protein and cells 

treated with non-nebulised protein showed a marked increase in BMPR-IA levels in 

both the nucleas and cytoplasm, compared to No Treatment, with no major 

differences noted between BMP4 treated groups. The levels of pSmad1/5/8 and 

Smad4 were both at higher levels in BMP4 treated cells compared to controls at the 

t=17hr timepoint, with Smad4 showing higher levels in the cytoplasm compared to 

near negative staining in the No Treatment control. pSmad1/5/8 staining was 

restricted to the nucleas in both the BMP4 treated cells and the No treatment control 

but at much more elevated levels in both the BMP4 treated cells. This correlated with 

the morphological assays, with both nebulised and non nebulised protein exerting the 

same effects, to similar extents, on the examined markers. 

5.3.1.3.2 Morphology and cell number 

To determine whether nebulised BMP4 retained this ability post nebulisation, MLE-

12 cells were treated with 50µl BMP4 at 100ng/ml. 400uls of media per well was 

added in a 24well plate for 6 days with DSFM containing BMP4 protein, nebulised 

BMP4 protein and a no BMP4 treatment control, which was included to ensure any 

changes were not due to any unforeseen circumstances. Cells were seeded 4x10
3
 

cells/well on Day(-1) in DSFM. On Day0 they were put in DFSM containing BMP4 

protein, nebulised BMP4 protein and in the case of the control cells, just media 
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containing no BMP4 protein. After 6 days the cells were imaged and a cell count 

performed.  

The morphology of MLE-12 cells in both the nebulised and non-nebulised BMP4 

treatments was similar, with both looking more fibroblastic and stressed than the No 

Treatment control. Morphologically they were indistinguishable from each other, but 

both could be readily identified as being significantly different to the No Treatment 

control. This showed that at the same concentration and with equal volume of 

nebulised protein the same effect could be seen as with non-nebulised showing both 

were interacting with the cells to produce a morphologically equal result (Figure 

5.17). 

The cell count and percentage growth of the cells mirrored the morphological results 

(Figure 5.18). Comparing cell number 6days post treatment it can be seen that there is 

no significant difference between the non-nebulised and nebulised protein treatments, 

but that both are significantly different from the No Treatment control. It is also of 

note that, while not statistically significantly different from each other in terms of cell 

number, cells treated with Nebulised BMP4 were more significantly different from 

the No Treatment control than non nebulised BMP4 treated cells. With regard to the 

percentage growth of the cells, the No Treatment group was taken as 100% growth 

against which the other two treatment groups were measured It was noted that both of 

the BMP4 treatment groups, while not significantly different from each other, were 

extremely different from the No treatment control. 
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Figure 5.16 Nebulisation of BMP4, effect on pathway signalling 

The activity of three different pathway related proteins, BMPR-IA, pSmad1/5/8 and 

Smad4 was monitored at t=20min, t=2hr and t=17hr. Cells treated with nebulised and 

non-nebulised protein showed a marked increase in BMPR-IA levels in both the 

nucleas and cytoplasm, compared to No Treatment at t=20mins and 2hrs respectively. 

With regards to pSmad1/5/8 and Smad4, the activity levels of both were best detected 

at t=17hr, when nebulised and non nebulised protein both induced a similar level of 

activity in the treated cells, compared to almost no level of detectable activity in the 

No Treatment controls. The secondary controls for BMPR-IA and pSmad1/5/8 (A) as 

well as Smad4 (B) are also shown. 
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Figure 5.17 Nebulisation of BMP4, effect on cell morphology  

Analysed at Day6, it can clearly be seen that both nebulised and non-nebulised BMP4 

treated cells are very similar to each other but are markedly different from the No 

Treatment controls. Both sets of BMP4 treated cells both appear more fibroblastic and 

stressed than No Treatment across every repeat. 
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   % Cell Growth Cell Number(x10^4) 

Treatment Group Average St. Err. Average St. Err. 

Non Nebulised 65.4829 10.5229 76.8334 12.3468 

Nebulised 55.3977 1.5365 65 1.8028 

No Treatment 100 9.7091 117.3334 11.3920 

          

Tukeys Multiple 
Comparison Test 

Significant? Summary† Significant? Summary† 

NonNebulised vs. 
Nebulised 

No - No - 

NonNebulised vs. 
No Treatment 

Yes *** Yes * 

Nebulised vs. No 
Treatment 

Yes *** Yes *** 

†Summary: ns=not significant; * = p<0.05; **=p<0.01; ***p=<0.001. 
 

Figure 5.18 The effect of nebulisation on BMP4 based cell treatment  

Nebulised and non nebulised BMP4 was used to treat the MLE-12 cell line and the 

effects on cell growth and cell number were assessed. Nebulised BMP4 created 

significantly different results both in terms of percentage cell growth (A), and cell 

number (B). Of note was the fact that nebulised BMP4 had more of a significant 

effect on cell number than non-nebulised BMP4 (B). 
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5.3.2 Nebulisation of siRNA molecules 

siRNA is a small molecule with the ability to modulate protein expression at the 

mRNA level when present in low concentrations. In order to assess whether or not the 

molecule would stay intact during nebulisation a control siRNA molecule with a 

fluorescent Alexa-488 tag was nebulised and then transfected into the cells. The 

siRNA molecule used was a control, a scrambled sequence that should not affect 

RNA concentration in the cell. The Alexa-488 tag is a fluorescent label attached to the 

siRNA molecule which enabled FACS to determine the level of transfection of the 

molecule into treated cells. MLE-12 cells were seeded at 70% confluency in a 24 well 

plate. A 0.2M solution of siRNA was prepared and split into two aliquots. One aliquot 

was kept chilled on ice in a sterile 25cm
3
 tube while half was nebulised using the 

Aeroneb® Pro nebuliser into a chilled sterile 25cm
3
 tube. Both sets of siRNA were 

then centrifuged at 259g for 5min at 4°C, causing the aerosol to condense back into 

liquid. Cells were then treated with either the nebulised siRNA or the non-Nebulised 

siRNA and a set of No Treatment cells was also included. 48hrs post transfection 

FACS analysis was then used to determine the level of transfection of the nebulised 

vs. the non-nebulised siRNA molecule by quantifying the number of cells expressing 

the Alexa-488 molecule and the amount of fluorescence per cell (MFI) (Figure 5.19).  

79.6% (±1.65) of cells treated with nebulised siRNA were successfully transfected 

and expressing the Alexa-488 tag compared to 92.58% of non-nebulised siRNA. 

Therefore nebulised siRNA is 85% as effective as non-nebulised siRNA at being 

expressed in the cells. Though this is a significant difference (P<0.01) it shows that 

nebulised particles can still successfully transfect the cells. Also examined was the 

MFI of the cells that were analysed. In comparison to the nebulised siRNA treated 

cells and the No treatment cells there was a highly significant (P<0.001) difference 

compared to non-nebulised siRNA treated cells. Non-nebulised on average had a MFI 

of 362.839(±11.83) compared to an MFI of only 35.6% (±2.424) for the nebulised 

siRNA. 
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siRNA 
Treatment 

Avg. % Cells 
Transfected St. Err 

Average 
MFI St. Err 

Non-Nebulised 92.58 0.795 362.8383 11.8314 

Nebulised 79.6 1.648 35.6017 2.4243 

No Treatment 0 0.095 14.4033 0.4950 

 

Figure 5.19 FACS analysis of siRNA transfection 

A and B show the percentage transfection and the MFI of cells transfected with either 

nebulised or non-nebulised siRNA in comparison with a No Treatment control. 

Though the difference in the percentage of cells transfected is quite low it can be 

observed that the MFI of cells transfected with nebulised siRNA is considerably lower 

than that of the cells transfected with the non nebulised siRNA. 
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5.3.3 Effect of Nebulisation on neat and complexed lipids and DNA 

molecules 

In order to determine the effect of nebulisation on DNA and on liposomes a number 

of combinative experiments were devised utilising a commercially available and 

highly effective transfection lipid, Lipofectamine™ 2000, and Plasmid DNA 

encoding the fluorescent protein pMGFP.  

5.3.3.1 Effect of nebulisation on lipid-DNA as quantified by Densitometry 

Firstly the effect of nebulisation on the DNA component of the transfection 

complexes was determined. The plasmid DNA was divided equally into two aliquots. 

One aliquot was incubated at 4°C and the other aliquot was nebulised using the 

Aeroneb® Pro nebuliser. Both were then centrifuged @259g for 5mins at 4°C. All 

lipid and DNA, nebulised and non nebulised combinations were then drawn up, Table 

5.5. This would aid in determining the effect on not just the complex itself but on the 

various combinations thereof. This will give information on the response of the 

various components to nebulisation. 

All samples were then ran out on a 1.5% TBE gel and analysed by densitometry 

(Figure 5.20). The effect on different concentration of DNA being nebulised was also 

assessed where different concentrations of plasmid DNA were aerosolised and the 

percentage of DNA compared between the higher and lower concentrations of 

nebulised and non nebulised (Figure 5.21). 
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Lipid And DNA Combinations 

1 Optimem Only 

2 Lipid Only 

3 Lipid+DNA Complex (Positive Control) 

4 [Lipid +DNA Complex Nebulised] 

5 Lipid + [Nebulised DNA] 

6 [Nebulised Lipid] + DNA 

7 [Nebulised Lipid] + [Nebulised DNA] complex 

8 DNA Only 

9 [Nebulised DNA] only 

10 [Nebulised Lipid] only 

Table 5.5 Lipid and DNA combinations 

The table contains all the various nebulised and non nebulised lipids+DNA 

combinations that were used throughout the course of the experiment. 
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Treatment Group Fold Detection 

DNA Only 1 

Neb. DNA 0.8102 

Lipid + DNA 0.7380 

Neb. Lipid + DNA 1.5356 

Lipid + Neb. DNA 0.4124 

Neb. Lipid + Neb. DNA 0.5207 

Neb. (Lipid + DNA) complex 0.1501 

Lipid Only 0 

Neb. Lipid only 0 

Neb. Optimem 0 

 

Figure 5.20 Nebulisation of plasmid DNA and lipid combinations 

Shows the effect of nebulisation on various combinations of plasmid DNA and 

Lipofectamine 2000. Non nebulised DNA was set as the control with detection here 

being set at 1 Fold and all other combinations were set against it. 
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Figure 5.21 Nebulised vs non nebulised plasmid 

Different concentrations of plasmid were nebulised and compared to non nebulised 

controls. At the main band of plasmid detection indicated in the images above, on 

average there was a 37.93% the amount of plasmid detected by densitometry in the 

aerosolised samples ran out on TBE gels compared to non nebulised controls. The 

higher the concentrations the more damage that was noted (42.2% vs. 33.7%). 

Lane1/4: Molecular Weight Marker 

Lane 2: Non aerosolised plasmid 

Lane 3: Aerosolised plasmid 

Lane 5: Aerosolised plasmid 

Lane 6: Non aerosolised plasmid 
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5.3.3.2 Effect of nebulisation on lipid-DNA as analysed by FACS 

It was also decided to test the effectiveness of the nebulised plasmid and lipid in an 

in-vitro setting to determine whether or not the DNA and liposome both remained 

effective and to what degree, if any, nebulisation would affect their performance. In 

order to do this various combinations of nebulised and non-nebulised lipid and DNA 

and lipid-DNA complexes were again used based on Table 5.5 above (Figure 5.22). 

Determination of successful transfection was carried out by FACS analysis of cells 

transfected with the various combinations outlaid and as per Section 2.2.12.  

Various combinations of nebulised and non nebulised lipid and DNA complexes 

resulted in levels of successful transfection. Perhaps the two most important results of 

note are lipid+DNA complex which is effectively the positive control, and the 

nebulised (lipid+DNA) complex which is the form in which the combination is most 

likely to be delivered in an in vivo setting. The non-nebulised lipid + DNA complexes 

had a successful transfection rate of 33.57% (± 1.18) of cells treated, which was not 

significantly different (P<0.05) from the nebulised (lipid+DNA) complex transfection 

rate of 30.86% (±8.25%). This corresponds to a comparative rate of 92% for the 

nebulised complex. Examination of the MFI of the transfected cells shows that the 

difference here was also statistically insignificant, with the nebulised complex scoring 

96.25% as high as the non-nebulised positive control complex. Also of note is that the 

nebulised lipid which was then allowed form a complex with ordinary DNA had a 

successful transfection percentage of 28.14% (±1.51), or approx 84% as effective as 

the positive control. This was also not significantly different from the positive control. 

The MFI of this the (Neb. lipid) + DNA complex was 205.45, or approx 70% of that 

of the positive control, which was again a non significant difference. Furthermore, the 

nebulised DNA that was then allowed to form a complex with the non-nebulised lipid 

had a successful transfection rate of 10.13% (±2.17) of cells treated. Compared to the 

positive control this is a significantly different result, (P<0.01), yet still has a rate of 

transfection equivalent to 30.2% of the positive control. When the MFI of the cells is 

also taken into account it can be seen that there is significantly less (P<0.05) 

fluorescence in this combination compared to the control, having a MFI index of 

54.46 compared to 294.13 in the positive control, or approx 18.5% of the positive 

control 
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Treatment Group % Transfection St Err MFI St Err 

No Treatment 0 0 15.27 2.4598 

Lipid Only 5.65 2.4223 15.34 2.1425 

Lipid + DNA complex 33.57 1.1799 294.13 52.8614 

Neb. Lipid + DNA complex 30.86 8.2571 283.11 97.3422 

Lipid + (Neb. DNA) complex 10.13 2.1702 54.46 14.5556 

(Neb. Lipid) + DNA complex 28.14 1.5128 205.45 39.6093 

(Neb. Lipid) +(Neb. DNA) complex 5.81 2.0731 52.64 12.7469 

DNA only -1.48 0.4938 15.16 2.4409 

 

Figure 5.22 FACS analysis of nebulised vs. non nebulised lipid+plasmid 

combinations on cell transfection 

Cells were treated with various combination of lipid and Plasmid mix as outlined in 

the Table in the above Figure. Cells were treated as per 2.2.12.7. After treatment they 

were analysed by FACS analysis to examine the effect of nebulisation on the ability 

of the various components of the combinations to transfect the cells and be 

successfully expressed. 
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  % Transfection MFI. 

Tukeys’ Multiple Comparison Test Significant? Summary† Significant? Summary† 

No Treatment vs. Lipid Only No ns No ns 

No Treatment vs. Lipid + DNA Complex Yes *** Yes ** 

No Treatment vs. Neb. [Lipid+ DNA] Complex Yes *** Yes ** 

No Treatment vs. Lipid + [Neb. DNA] Complex No ns No ns 

No Treatment vs. [Neb. Lipid] + DNA Complex Yes *** No ns 

No Treatment vs. [Neb. Lipid] + [Neb. DNA] No ns No ns 

No Treatment vs. DNA Only No ns No ns 

Lipid Only vs. Lipid + DNA Complex Yes *** Yes ** 

Lipid Only vs. Neb. [Lipid+ DNA] Complex Yes ** Yes ** 

Lipid Only vs. Lipid + [Neb. DNA] Complex No ns No ns 

Lipid Only vs. [Neb. Lipid] + DNA Complex Yes ** No ns 

Lipid Only vs. [Neb. Lipid] + [Neb. DNA] No ns No ns 

Lipid Only vs. DNA Only No ns No ns 

Lipid + DNA Complex vs. Neb. [Lipid+ DNA] Complex No ns No ns 

Lipid + DNA Complex vs. Lipid + [Neb. DNA] Complex Yes ** Yes * 

Lipid + DNA Complex vs. [Neb. Lipid] + DNA Complex No ns No ns 

Lipid + DNA Complex vs. [Neb. Lipid] + [Neb. DNA] Yes *** Yes * 

Lipid + DNA Complex vs. DNA Only Yes *** Yes ** 

Neb. [Lipid+ DNA] Complex vs. Lipid + [Neb. DNA] 

Complex 
Yes ** Yes * 

Neb. [Lipid+ DNA] Complex vs. [Neb. Lipid] + DNA 

Complex 
No ns No ns 

Neb. [Lipid+ DNA] Complex vs. [Neb. Lipid] + [Neb. DNA] Yes ** Yes * 

Neb. [Lipid+ DNA] Complex vs. DNA Only Yes *** Yes ** 

Lipid + [Neb. DNA] Complex vs. [Neb. Lipid] + DNA 

Complex 
Yes * No ns 

Lipid + [Neb. DNA] Complex vs. [Neb. Lipid] + [Neb. 

DNA] 
No ns No ns 

Lipid + [Neb. DNA] Complex vs. DNA Only No ns No ns 

[Neb. Lipid] + DNA Complex vs. [Neb. Lipid] + [Neb. 

DNA] 
Yes ** No ns 

[Neb. Lipid] + DNA Complex vs. DNA Only Yes *** No ns 

[Neb. Lipid] + [Neb. DNA] vs. DNA Only No ns No ns 

†Summary: ns=not significant; * = p<0.05; **=p<0.01; ***p=<0.001.  

Table 5.6 Statistical analysis of lipid+plasmid transfection rates 

Analysis was carried out by one way ANOVA and Tukey posttest analysis. 
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5.3.3.3 Fluorescent detection of Nebulised Lipids and DNA. 

Cells were seeded out on an 8-well chamber slide at 70% confluency per well and 

treated with various combinations of lipid and plasmid complexes as in Table 5.5 

above. At t=48hr post treatment the cells were then viewed with fluorescent 

microscopy to assess the success of the transfection visually in order to complement 

the FACS data and to again ensure that the plasmid and liposome were fully 

functional post nebulisation. 

All formulations of liposome and plasmid complexes, in any combination of 

nebulised or non-nebulised DNA and Lipid, resulted in the successful transfection of 

the treated cells. It was also noted that the quantity of green cells visualised appeared 

to match the general results observed through FACS analysis. 
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Figure 5.23 Fluorescent detection of nebulised lipids+DNA in transfected cells  

A: positive control non nebulised lipid+DNA complex. 

B: cells transfected with (nebulised lipid+DNAcomplex). 

C: cells expressing GFP after treatment with lipid+(nebulised DNA) complex. 

D: Cells transfected with (nebulised lipid)+DNA complex 

E: Cells transfected with (nebulised lipid)+(nebulised DNA) complex.  

F-I: Corresponding high magnification images 

Any potential work in vivo would be best performed carrier/lipid free, to prevent 

loading the lung with extra chemicals and to increase likelihood of acceptance as a 

clinical therapeutic and regulatory body/medicine board acceptance. 
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5.3.4  Effect of nebulisation on cells 

In order to determine if the standard issue nebuliser we had would be successful in the 

nebulisation of cells, a number of different cell types were attempted to be nebulised 

while they were in suspension. Any aerosol formed was collected in a chilled sterile 

50ml
3
 tube which was then centrifuged at 259g for 5mins at 4°C to collect any cells 

which may have been successfully nebulised. The supernatant was then removed and 

1ml of media used to re-suspend any cells present. This was then added to a 24 well 

plate and incubated over night at 37°C in 5% CO2. At t=24hr post treatment, the 

media was removed and EBAO was used to stain any remaining cells which could 

then be visualised by light microscopy. No cells were detected post nebulisation. 

Limitation is pore size, for these applications a larger pore size would be required in 

order to successfully evaluate the effect on and potential of nebulisation of cells. 
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5.4 Discussion 

In this section, the Aerogen nebuliser, a novel Buxco restraint and chamber system, 

and potential therapeutic molecules were evaluated. While many types of biological 

molecules have been nebulised we are not aware of any reports describing the 

nebulisation of the potential therapeutic compounds tested here. It is important to note 

also that the system designed for the delivery of aerosolised therapeutics here is 

specifically designed with mice and rodents as being the end users. Particle formation 

and delivery can have many different requiraments from those necessitated for human 

delivery. The main reasons for this are the structural differences between human and 

mouse physiology. Already mentioned in Chapter1, there are a large number of 

variations between human and mouse airways. Nose only chambers are the first step 

towards improving delivery to mice, avoiding loss of aerosol due to impaction on 

whole body chamber walls, prevents animals from huddling together to avoid aerosol 

inhalation, prevents ingestion and exposure of other mucous membranes to the aerosol 

(Nadithe et al., 2003). It is also vital to bear in mind that the local toxicity effects or 

lack thereof seen in one system, such as mice, may differ greatly from the effects seen 

in humans due variances in physiology and the various transport mechanisms within 

the lungs REFERENCE ( HICKEY and Garcia-Contreras 2001;18(4):387-431)).  

Therefore direct scale up of delivery, in terms of drug quantity/kg body weight and 

targeted region of the lung, does not necessarily exist. The area of deposition can be 

more finely tuned in human delivery, with their larger bifurcated airways resulting in 

a throttling effect on the size of the aerosol droplet going deeper into the lung.  

5.4.1 Nebuliser and chamber performance 

By laser diffraction the average VMD of the aerosol particles generated was 4.43µm 

(±0.043). This roughly correlates with an MMAD as assessed by Cascade Impaction 

of around the range of 3µm (Chapter 5.1.1). This indicates that 50% of the aerosol 

generated is of this size or less, i.e. 50% of the aerosol generated is within the 

respirable dose limitations mentioned earlier. The FPF measurements by laser 

diffraction need to be adjusted also, with a FPF of 1-7µm roughly correlating to a FPF 

by cascade Impaction of 1-4.5µm. This is an issue with using laser diffraction over 

cascade impaction as a means to test the aerosol. There is no straight conversion table 

for the readings and both methods have both pros and cons associated with them. 

Cascade Impactors, and Next Generation Cascade Impactors remain the pharmacopeia 

standard for measuring aerosol formation. However the benefits of laser diffraction in 
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situations such as device qualification outweigh those provided by CI. Cascade 

Impactors are expensive tools with solitary uses. They are slow to set up, analyse and 

clean and are arguably more susceptible to erroneous measurements. In the instance 

used here where a large number of nebuliser units were to be analysed Laser 

diffraction provided the most robust and practical means of evaluation. The same can 

be said for the subsequent evaluation of the chamber itself. The total respirable dose 

available with these nebuliser units (with the VMD of 1-7µm) was an impressive 

65.26%, higher than the competitive brands of nebuliser.   

The Chamber design was a novel design, untested with aerosol delivery to units. Its 

performance was successfully characterised and resulted in an optimal VMD of 

4.47µm when run at the optimised flow rate of 4L/min. The total amount of aerosol in 

the respirable dose range of 1-7µm at this rate was 62.83% when averaged out over 

time, a full 4.4 percentage points higher than that of the lower 2L/min flow rate, and 

only 1% lower than the nebuliser unit on its own. This shows that the chamber run 

under the correct conditions gives animals exposure extremely faithful and close to 

the nebuliser units original output. This is important as any significant variations here 

would mean that the chamber is having its own specific effect on the aerosol, meaning 

that every type of nebuliser unit connected to it would have to be individually 

calibrated. In this instance it can be extrapolated that the chamber would not 

significantly influence the Aerosol characteristics that any aerosolising unit output 

into the system. The main reason that there is deterioration in loyalty between 

nebuliser output characteristics and characteristics derived at the point of inhalation in 

the chamber is most likely due to collision of aerosol molecules within the chamber 

due to the lower flow rate. Lower flow rate increases the time spent by the aerosol in 

the chamber, increasing the chance that independent molecules either collide with 

each other or with a surface within the chamber. Collision with other molecules 

causes aggregation. These larger molecules are then again more likely to randomly 

collide with other independent aerosol droplets. This aggregation leads to the droplets 

falling out of aerosol and depositing and condensing at the base of the unit, 

unavailable for inhalation. Even if only a number of collisions occur, this will 

increase the average VMD, and such molecules will not be successfully respired but 

instead will be more likely to be ingested or deposited at the back of the throat. 

5.4.2 Restraint design 

The novel restraint was designed to offer a better system of restraint for animals for 

nose only exposure systems. It had a number of criteria to meet for various reasons. 
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For commercial reasons, in order to be a viable sales generating candidate, it needed 

to be substantially different from other devices available on the market, offering 

unique advantages. The restraint designed fits these requirements, with a number of 

unique adaptations which are strong individual commercial points. Ultimately the 

functionality of the design is its main selling point. This novel restraint provides a 

more ergonomic method for restraining small animals. It places the animals in a more 

natural posture and in less cramped conditions. These are important as it reduces the 

stress levels of the animals and also reduces the risk of animal death due to handling 

errors. This provides better experimental animals that can be more consistently and 

reliably be analysed. If a treatment results in a slight labouring of breathing, this 

restraint will enable these more subtle differences to be detected by plethysmography, 

as the animal will not be breathing in as laboured a manner just by being in the 

restraint. The fact that that the restraint keeps the animal orientated in a prone fashion 

means that it can be modified as mentioned in the results for other purposes such as 

tail vein injection, I.P. injections and or cardiac punctures. This should help generate 

more sales on the same basic model, lowering costs and increasing profit margins on 

the restraint. The fact that the restraint has been deemed suitable for release and mass 

production is testament to its design. 

5.4.3 Nebulised protein 

BMP4 protein and Monoclonal antibody against BMP4 were both nebulised and 

evaluated against non-nebulised controls. The BMP4 protein was determined to be 

86.63% intact, and the primary antibody 87.27%, less than 1 percentage point in the 

difference. The results are consistent and show that no significant deterioration of any 

aspect of protein size or epitope presentation occurs due to nebulisation. In order to 

ensure this further analysis of the proteins performance in vivo post nebulisation was 

conducted. Both the effect on the growth of the cells, by cell number and examining 

morphology, and the effect on pathways in the cells by looking at proteins affected by 

the presence of BMP4. All assays returned an equal effect by nebulised protein in 

comparison to non-nebulised. In the instance of the cell count, it appeared that the 

nebulised protein had a greater effect than that of the non-nebulised, even though we 

had shown less intact protein post nebulisation.  This result is due to the fact that 

nebulisation can break down any clumped together bits of protein. This means that 

instead of protein molecules being clumped together in solution they remain more 

dispersed throughout the solution as a result of nebulisation. This in turn would make 
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more protein available to interact with more receptors on the cells, triggering a greater 

overall effect. 

The level of stability of the protein is important for a number of different reasons. If 

the protein was too unstable, it may be possible to modify the protein to increase 

stability without the need for carrier molecules. The higher the percentage stability, 

the more reliably consistent dose administration will remain and the cheaper the cost 

of drug delivery. Different drug delivery systems have different requiraments, 

depending on the potency of the protein and the effect of delivery of degenerated 

protein fragments to the system. Ideally the delivery system would provide for 100% 

stability of the drug molecule, however, in this instance, stability of greater than 75% 

was deemed to be successful.  

5.4.4 Nebulised siRNA 

The siRNA molecule nebulised here was a control, non-functional siRNA molecule, 

tethered to an Alexa-488tag. The results show that the cells transfected with nebulised 

siRNA were successfully expressing the Alexa-488 fluorescence 85% as much as the 

non-nebulised protein. This difference was significant (t-test, p<0.05) but nonetheless 

showed the nebulised siRNA to be highly efficient at transfecting the cells. The MFI 

of the two treatment groups however differed grossly. The MFI of the nebulised 

siRNA was under 10% of that of the non-nebulised. This could be due to the fact that 

the nebulising action is damaging slightly the Alexa-488 tag, reducing its capacity to 

fluoresce. It may also be partly attributed again to the dispersion of the siRNA 

molecules by nebulisation. Instead of clumps of Alexa-488tagged siRNA been taken 

into cells and a large MFI being recorded, the molecules may be more dispersed, 

giving a more diffuse response. It is likely to be a combination of these factors 

creating this result. 

5.4.5 Nebulised plasmid and lipid 

Our results showed that approx 80% of DNA was still intact at the same mol weight 

post nebulisation compared to the non nebulised control. It also showed that nebulised 

lipid and nebulised DNA still retained their activity in vitro and that the aerosolised 

complex, the most likely form in which the treatment would be delivered, was also 

highly successful in vitro.  All combinations of nebulised and non-nebulised 

complexes were found to be, to varying degrees, successful. This shows that both the 

lipid was still functioning in its capacity of delivery the Plasmid, and that Nebulised 

plasmid was sufficiently intact when transfected to express its reporter and this was 
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confirmed by both the FACS data and the visualisation of the GFP tag under 

Fluorescent Microscopy. 

5.4.6 Nebulised cells 

Nebulisation of cells has the potential to deliver cells directly to a targeted site in the 

lungs. The ability to nebulise cells, unlike other substances is most likely to be applied 

in a different fashion than the chamber system outlaid. It is more suitable to 

nebulisation where the subject is intubated and the cells can be guided to a specific 

location. There are a number of reasons why nose-only delivery may not be suitable. 

If the cells are too big themselves, they will not be inhaled into the lung, but will get 

trapped at the top of the throat, resulting predominantly in ingestion of the cells and 

also possibly cells migrating from or embedding in nasal or oral cavities. However the 

ability to nebulise cells and then deliver to a target zone via intubation has potential 

for targeted delivery to any region of the lung and an efficient method of dispersal in 

that region. Though not successful with the size nebuliser employed, there are larger 

nebulisers available with greater pore sizes which should be more suitable for this 

specific requirement. 

5.5 Conclusion 

The Chamber designed for the delivery of aerosol to multiple restrained animals was 

capable of successful aerosol delivery to the point of inhalation. The corresponding 

restraint designed to be used on its own or as an integrated part of the chamber 

delivery system provided a safe and effective nose only exposure system in which to 

restrain the animals for aerosol delivery and plethysmography analysis. Assessment of 

different therapeutic molecules, in the form of protein, siRNA, DNA and lipids, to 

withstand nebulisation all resulted in a positive outcome. All were found to be intact 

and functional post nebulisation with only low degrees of functional loss occurring. In 

some instances, nebulisation resulted in increased performance due to the breaking 

down of agglomerates during the nebulisation process. Cells were the only nebulised 

solution which did not successfully nebulise. This was due to the small pore size of 

the nebuliser unit used. Larger pore size units can be obtained on a custom basis but 

were not available throughout this process. Due to the fact that nebulisation was not 

unduly harsh on protein or DNA, it is not unfeasible that certain small cells, 

constrained by the ability to create large enough pores that would still produce a 

respirable size molecule, could be used to deliver cells to the lung in vivo. Critical 

analysis of the nebulisation process as a whole, taking into account its ease of use, 
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success with nebulising potential therapeutic molecules and ability to deliver directly 

to the site of interest shows it to be a highly capable mechanism for enabling delivery 

of several therapeutic molecules to mice in vivo. The choice of therapeutic molecule, 

siRNA vs. protein, for example, would therefore not be limited by delivery method. 

Instead our ability to assess the intended biological effect, such as upregulation of 

knockdown of a target, in terms of satisfactory endpoints, would determine 

therapeutic molecule selection.  
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6 Particle Bombardment 

and siRNA. 
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6.1 Introduction 

The role of the BMP pathway in inflammation, damage and disease is multifaceted 

and complex. In addition to aerosolisation, two other techniques were investigated as 

potential means of effecting a therapeutic change by altering this pathway in the lung 

in vivo.  

(i) Particle bombardment utilising a Bio-Rad Gene Gun is, as previously discussed 

(Section 1.5.3), a viable method for the inclusion of genetic material into animal cells. 

Our aim with the technology was to assess its potential initially as an in vitro tool for 

the delivery of DNA to both cell lines and the more difficult to transfect primary cell 

isolates. This work has been published (Gilbert et al., 2008). Following on from this, 

if the method proved successful, would be the aim to assess the potential of the 

underlying technology to be modified for delivery an in vivo system.  

(ii) siRNA technology, already demonstrated to be capable of successful nebulisation 

of in vivo delivery, was further examined to determine if the technology was suitable 

for the project in hand. It was decided to identify, in vitro, targets for siRNA 

knockdown in order to use loss of function studies to both determine the role of 

various pathway components and to identify a therapeutic target. siRNA, as discussed 

below in Section 6.1.1 has potential uses as a therapeutic agent for both short term 

and long term treatments of various lung diseases. Because we have demonstrated that 

it is possible to aerosolise siRNA, it is a potential candidate for delivery to mouse 

lung in vivo in both healthy and disease models. Aims were to determine the potency 

of the technique in vitro and that of the siRNA molecules themselves, by determining 

their ability to successfully transfect different cell types and the ability to induce 

targeted knockdown of selected targets in these cells. 

The use of plasmids and siRNA as therapeutic candidates has numerous benefits. In 

the case of plasmids, delivery of plasmids capable of over expressing either 

components or antagonists to the BMP pathway in specific targeted cells in the 

airways, potentially allows for long-term regulation of an aberrant pathway 

component. For example, in PAH where BMPR-II has been shown to be deficient, an 

integrated plasmid expressing copies of functional BMPR-II protein has the potential 

to restore the equilibrium in the pathway and reduce the effect of the disease. siRNA 

can be used in a somewhat similar fashion, if a BMP antagonist is being over 

expressed, such as Gremlin, siRNA can be used to silence the antagonist and prevent 

inhibition of the pathway. In instances where pathway components are being over 
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expressed, delivery of quick acting siRNA to the airways could limit the progress of 

the BMP response, reducing inflammation and subsequent damage and consequences. 

6.1.1 RNA interference and short interfering RNA 

RNA interference (RNAi) is an umbrella term that covers any technique that induces 

the post transcriptional silencing of a targeted mRNA via degradation or translational 

arrest (Pauls and Esté, 2004). It usually refers to the use of double stranded RNA in 

the degradation of mRNA. This process was first observed in plants and was initially 

coined as co-suppression before later work in C.elegans gave light to the fact that it 

was brought about by dsRNA and resulted in specific gene silencing. Introduction of 

dsRNA with exact complementarity to the target gene induces the degradation of the 

target molecule (Ryther et al., 2005). RNAi is know known to be a naturally occurring 

event that is part of an evolutionary conserved process used in the regulation of gene 

activity as well as a defence mechanism against viruses and foreign DNA being 

transcribed in cells, with many viruses having long dsRNA as a pivotal part of their 

replication process. If long dsRNA is introduced into cells the defence mechanism 

induces cellular suicide. However short interfering RNA (siRNA) duplexes of 

between 21 and 25 base pairs are enough to bring about specific target degradation 

but short enough to avoid triggering the cellular defence mechanisms (Manoharan, 

2004).  

siRNA molecules by nature of their structure are relatively resistant to nuclease 

degradation and are not overly temperature sensitive, having been shown to be 

capable of retaining function for up to 72hours at 37°C in calf serum. This makes 

siRNA suitable for cell culture and in vivo experimentation without the necessity for 

alterations or complexing. This in turn reduces the likelihood of problems associated 

with the use of various carrier molecules and excipients (Braasch et al., 2003). 

However the use of excipient or the binding or encapsulation of the molecules can 

increase the likelihood of the duplexes entering the target cells upon delivery. As an 

example the use of antibody directed delivery using a siRNA/antibody complex has 

been used to successfully target the siRNA molecules via a cell surface receptor to 

HIV or envelope virus transfected cells. This demonstrates the potential for systemic, 

local and cell type specific antibody mediated siRNA therapeutic delivery (Song et 

al., 2005a). siRNAs have been successfully targeted to the lung via intranasal delivery 

(Zhang et al., 2004). siRNA technology has also been used to treat SARS coronavirus 

(SCV), initially in vitro but later in Rhesus macaque primates infected with the virus 

via intratracheal administration. The siRNA therapeutic was seen to mediate relief 
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form SCV induced fever, there was a decreased viral load present in samples and 

there was a reduction in the level of SCV induced alveolar damage. Dosages in the 

range of 10-40mgs/kg were shown to not induce any siRNA related side effects or 

cytotoxicity. Fears of off-target effects that can be manifested in cell culture 

experiments (caused by the sequence used for the siRNA having complementarity to 

other genes) have not been reported in in vivo experimentation (Li et al., 2005). These 

type of results in a clinically relevant model of disease highlight the potential for 

siRNA mediated therapeutics in the targeting of lung related challenges and the 

potential for the short term silencing of genes associated with over responsiveness to 

challenge in the lungs and shortens the path from bench to bedside for siRNA inhaled 

therapeutics. 

6.2 Particle Bombardment 

6.2.1 Cell types and plasmid choice  

Five different lung cell cultures were used to examine the potential of the model for 

successful downstream applications in an in vivo situation. This involved the use of 

three lung cell lines, primary mouse lung cells in submerged culture and primary 

mouse cell lungs at ALI. The cell lines used were murine LA4 and MLE-12, and 

human BEAS-2B. 

LA4 cells are a large slowly dividing cell line that provided an excellent target for 

initial bombardment studies in that they provided a large target area for the individual 

microcarriers to hit. This then led to an obvious progression to smaller faster dividing 

cells to see if the success could be repeated. Moving into primary cells then afforded 

the opportunity to make a realistic assessment of the viability of bombardment as a 

treatment method, as ultimately this is where other techniques fail. Progression to ALI 

was a natural follow on to assess the potential of the method before looking at any 

potential in an in vivo setting 

The choice of plasmid was also an important consideration as plasmids that could also 

be detected in vivo were preferable. It was decided to pursue the technique with the 

use of fluorescent protein encoding plasmids, cyclin-D1-GFP and later, pMGFP 

6.2.2 Optimisation 

Before carrying out routine particle bombardments with the Gene Gun it was 

important to establish a number of parameters. These parameters involved 

determining (i) what effect if any there was on our agent of interest from the physical 
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bombardment itself (i.e. if a plasmid was being compromised during the coating 

procedure or subject to too high shearing during the blast), (2) the amount of pressure 

firing the particles from the helium blast required and, (3) the shooting distance to the 

stage.  

6.2.3 Plasmid Analysis 

It was first necessary to assess what effect the process of coating the plasmid onto the 

microcarrier may have on plasmid integrity. 

On analysis it was shown that there was no significant degradation of the super coiled 

or coiled lengths of DNA that had been coated onto the microcarriers, though there 

was a small amount more of relaxed cDNA present in sample A. Of note is that it is 

the coiled and supercoiled lengths of DNA which will be responsible for successful 

expression of the plasmid in the target cells so it is these categories that are the most 

important to assess on order to determine the potential of the device. The lack of 

plasmid present in Lane 4 (Sample B) was determined to be due to a pipetting error in 

removing microcarrier along with EtOH before resuspension in dH2O (Repeated 

separately-data not shown). 

Firure 6.1 shows the supercoiled fragment of the plasmid to remain largely intact after 

nebulisation. Decreased quantities of the open circlular is likely due to degradation 

due to the fact that they are less compact than the supercoiled structures, and 

corresponds with an increased concentration of linear plasmid. This shows that 

plasmid DNA is not grossly affected by the coating procedure used in conjunction 

with the Au microcarriers. 
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Figure 6.1 TBE gel showing plasmid recovered from Au particles against Non-

coated plasmid 

The plasmid, CyclinD1-GFP (50µg), was coated onto the 0.6µm gold (Au) 

microcarriers. Half the volume of microcarriers, suspended in EtOH, was aliquoted 

into a tube A, and half into tube B. Tube B was then centrifuged @650g briefly and 

the supernatant removed and the microcarriers were then resuspended in 30µl dH2O. 

Two further tubes were then set up; C containing 30µl EtOH spiked with 25µg 

plasmid DNA and; D containing 30µl dH2O spiked with 25µg plasmid DNA. DNA 

extraction was then carried out on all tubes. The extracted DNA was then run out on 

an agarose gel. The amount of super coiled, coiled and relaxed DNA in the two 

groups was then compared.  

Lane1: Molecular Weight Ladder 

Lane2: H2O control 

Lane3: A- DNA extracted from Au Particles coated with 25µg DNA into EtOH. 

Lane4: B- DNA extracted from Au Particles coated with 25µg DNA in dH2O. 

Lane5: C- EtOH spiked with 25 µg DNA. 

Lane6: D- dH2O spiked with 25 µg DNA. 

Lane7: Molecular Weight Ladder 
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6.2.4 Optimisation of delivery.   

LA4 cells were seeded at a high confluency in order to determine the effect of blast 

pressure on the cells. By examining previously published work it was possible to 

optimise the range to three different blast pressures, 900, 1100 and 1300 psi. Cells 

were shot at these three pressures with microcarriers at the different level stages and 

then analysed for damage.  

Initial experiments were carried out utilising LA4 cells coated on 10cm Petri dishes 

coated with serum with coverslips on the base to help the cells adhere. Cells were 

bombarded with 0.6um Au particles, uncoated, at 1100 psi under 15in Hg vacuum 

with 2mgs Au per shot. It was noted that the cells would not adhere to the Petri dishes 

but showed an affinity for the glass coverslips. This initial experiment was to examine 

whether the cells could tolerate the procedure prior to proceeding with transfection 

with a plasmid. The cells were re-fed with fresh media immediately post 

bombardment and viewed under a light microscope where cell death of approximately 

50% was noted. This indicated that although harsh, the procedure had potential as 

other parameters were modifiable in order to reduce the damage inflicted on the cells. 

The next set of experiments utilised LA4 cells again. Cells were seeded on glass cover 

slips in Petri dishes at approx 50% confluency. This time a range of parameters, 

including pressure (900, 1100 and 1300 psi) and shooting distance (1
st
 and 2

nd
 stage) 

were varied and examined. Plasmid DNA was also used to coat the particles at two 

different concentrations (0.5ug and 5ug per shot) in order to ensure whatever effect it 

would have on the Au particles would be included as too much DNA can lead to 

agglomeration of the Au particles. All cells were shot once. 

The experiment resulted in successful transfection of the cell line after 24 hours with 

plasmid cycD1-GFP but the stresses on the cells were noted (Figure 6.2). It was 

especially noted that in this particular case that LA4 cells did not tolerate the 

procedure well, with a high rate of cell death, and due to the slow growing rate, took a 

long time to recover from the effects of the bombardment. A number of the cells were 

left for a period of 20 days in order to allow them to divide and see if transfection was 

transient or could be observed in the cells after this period of time (Figure 6.3). This 

showed that cells were still expressing the plasmid almost three weeks post 

transfection. 

At this point, in line with literature recommendations, the size of the Au particle 

utilised was changed from 0.6um (more commonly utilized in the transfection of 
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plants) to 1.6um, which had previously been shown to be successful in the 

transfection of mammalian cells (Heiser, 2004). 

The first test under this scenario was to check LDH levels of cells between control 

cells which were exposed to vacuum and pressure blast but no microcarriers, with 

cells bombarded with microcarriers at both the 1
st
 and 2

nd
 stage.  It was noted that 

there was no significant difference in LDH levels between the control and the 

bombarded cells, indicating that neither the first or second stage greatly enhanced the 

survivability of the cells post bombardment and that the bombardment itself didn’t 

greatly increase the LDH output of the microcarrier bombarded cells vs. control cells. 

It is worth noting however that any cells that may have been physically removed from 

the Petri dishes during bombardment or which may have had their integrity seriously 

disrupted may have been removed from the Petri dish during a procedural step where 

bombarded cells were briefly rinsed in media which was removed, removing their 

capacity to affect the LDH assay. 
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Figure 6.2 LA4 cells bombarded with CycD1-GFP coated microcarriers 

Cells were analysed by Fluorescence microscopy 24hr post bombardment; 

A: 900 psi 4cm shooting distance 0.5µg plasmid DNA 

B: 1100 psi 4 cm shooting distance 0.5µg plasmid DNA 

C: 900 psi 3cm shooting distance 5µg plasmid DNA 

D: 1100 psi 3cm shooting distance 5µg plasmid DNA 

E-H: Show corresponding brightfield images. 

Arrows indicate fluorescing cells (A-D) and gold particles (E-H). 
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Figure 6.3 LA4 cells bombarded with CycD1-GFP coated Au particles  

Cells were analysed by Fluorescence microscopy 20 days post bombardment; 

A: 900 psi 4cm shooting distance 5µg plasmid DNA 

B: 1100 psi 4 cm shooting distance 5µg plasmid DNA 

C: 1350 psi 3cm shooting distance 5µg plasmid DNA 

D: 1350 psi 4cm shooting distance 5µg plasmid DNA 

E-H: Show corresponding brightfield images. 

Arrows indicate fluorescing cells (A-D) and gold particles (E-H). 
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Figure 6.4 LDH assay carried out on cells for 6days post bombardment 

There was no significant difference between control cells which were not bombarded 

and cells bombarded at either the 3cm or 6cm shooting distance with regards to LDH 

levels. 
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6.2.5 Modification of coating and particle preparation, analysis in 

BEAS-2B cell line. 

Due to the slow growing nature of LA4 cells it was then decided to further refine the 

technique, now that it had been shown to work, in a smaller but faster growing human 

cell line, BEAS-2B. Also the plasmid used so far was cycD1-GFP, which as 

previously explained, is reliant on being switched on during the D1 stage of the cell 

cycle. This mitigates some of the advantage of using a technique such as particle 

bombardment in the instance where you want your plasmid of choice universally 

expressed at all times in all cells. Therefore it was decided to utilize a different 

plasmid, pMGFP, which is a GFP plasmid made containing a CytoMegloVirus 

(CMV) promoter. The GFP is different to the GFP used in the CyclinD1-GFP plasmid 

and is known as Monster GFP and is more brightly luminescent under fluorescent 

light than cycD1 GFP. It is a constitutively expressed reporter plasmid encoding also 

for GFP, but of a different and brighter variety than that found in the cycD1-GFP 

plasmid. 

Both the cell type and new plasmid were tested together to examine feasibility 

initially and the protocol adapted to include other literature cited recommendations 

(Hagio, 1998), Section 2.2.13. 

BEAS-2B cells were tested under 900psi with different shooting distances, differing 

numbers of shots and differing times of analysis. Results showed that the new coating 

technique and new plasmid were both effective (Figure 6.5). By t=24hr post 

transfection the cells were clearly expressing the GFP plasmid and it could be seen 

that one shot of bombardment was effective, with two shots resulting in much more 

cell damage. It also showed that a 24hour period was sufficient for detectable plasmid 

expression. Compared to the previously employed plasmid, cycD1-GFP, the pMGFP 

plasmid proved to be visually easier to detect and far brighter upon viewing. 
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Figure 6.5 BEAS-2B cells transfected with the pMGFP plasmid   

Cells seeded with 1x10
7
 cells 24hr before treatment on Fibronectin coated coverslips. 

A: 900psi; 1 shot 5µg DNA coated Au; shooting distance 3cm; Imaged 24hours later. 

B: 900psi; 1 shot 5µg DNA coated Au; shooting distance 3cm; Imaged 96hours later. 

C: 900psi; 1 shot 5µg DNA coated Au; shooting distance 4cm; Imaged 24hours later. 

D: 900psi; 1 shot 5µg DNA coated Au; shooting distance 4cm; Imaged 24hours later. 

E: 900psi; 2 shot 5µg DNA coated Au; shooting distance 3cm; Imaged 24hours later. 

F: 900psi; 2 shot 5µg DNA coated Au; shooting distance 4cm; Imaged 24hours later. 

G-L: Show corresponding brightfield images.  

Arrows indicate Fluoresence (A-F) and gold particles (G-L). 
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6.2.6 Validation of technique in different cell types 

BEAS-2B, MLE-12 and MAEC lung cells were then seeded for bombardment under 

the optimised conditions. Bombardment was carried out in 35 mm
2
 tissue culture 

dishes. Cells were approximately 90% confluent. The target area of the gene gun was 

estimated to be approximately 20% of the surface area of the dish. As it was not 

possible to isolate this specific area for FACS analysis the percentage transfected and 

viability reported is of the entire population of cells in the Petri dish, not just cells 

which actually received particles from the bombardment process. Cells were then 

analysed for GFP expression by both FACS analysis and fluorescence microscopy.  

The FACS analysis gave the ability to monitor the percentage of cells transfected and 

helped determine the percentage viability of the cells post bombardment (Figure 6.7 

and Figure 6.8). The percentages of cells transfected per cell type were as follows: 

BEAS-2B cells 5.74 (± 3.5) % transfected; MLE-12 cells 7.11 (± 3.2) % and; MAEC 

cells 5.04 (± 3.6) %. 

The viability of the cells was also analysed. Because the MAECs were bombarded 

twice, the procedure was relatively harsh on these cells with only 58.98 (± 9.15) % of 

cells remaining viable at t=24hr post bombardment, which was significantly different 

from the control. The treatment was less damaging to MLE-12 (86.13±4.166) and 

BEAS-2B cells (88.94±4.42% viable). 

Fluorescence microscopy then confirmed the FACS data with pMGFP clearly visible 

in bombarded cells as indicated (Figure 6.9). Au particles are also clearly visible in 

the transfected cells. Control cells showed no green or auto-fluorescent cells. 

MAECs were also grown in ALI prior to being subjected to bombardment. The 

method resulted in transfection of the cells but had a number of inherent difficulties. 

Establishment of the ALI takes place on a 6 well insert in order to allow a large 

enough target area to be exposed to the blast. The more regular 24well inserts used in 

these applications are too deep and narrow to allow use in bombardment and are also 

very difficult to correctly align in the chamber outside of a plate which could not fit 

due to space limitations. The 6well inserts have a large surface area, and are shallower 

making them more appropriate. However the bases of the inserts were constantly 

damaged by the technique, resulting in the cells having to be returned to submerged 

culture and losing their ALI status. Consequently it was decided not to pursue this 

method further. Of note however is that the trial of the method on the cells did return 

transfected cells when examined 24hours post bombardment when returned to 

submerged culture (Data not shown). 
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Figure 6.7 Transfection of cells was quantified by FACS analysis 

MLE-12 cells were shot once with 900psi pressure on the 3cm stage, returned to a 

submerged culture state with fresh media and then analysed at t=48hr post treatment. 

BEAS-2B cells were shot once with 900psi pressure on the 3cm stage, returned to a 

submerged culture state with fresh media and then analysed at t=48hr post treatment. 

MAEC cells were shot twice with 900psi pressure on the 3 cm stage, returned to a 

submerged culture state with fresh media and then analysed at t=48hr post treatment. 

Shooting the MAEC cells twice decreased the viability of the overall population of 

cells significantly but also greatly increased the percentage of cells successfully 

transfected with the plasmid compared to one shot (data not shown). Cells were then 

analysed for GFP expression by FACS analysis. The percentages of cells transfected 

per cell type were as follows: BEAS-2B cells (A) 5.74 (± 3.5) % transfected; MLE-12 

cells (B) 7.11 (± 3.2) % and; MAEC cells (C) 5.04 (± 3.6) %.Also shown is a sample 

FACS fluorescence graph showing treated populations (black line) and control 

populations (grey line). 
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Figure 6.8 Viability of cells post bombardment 

The control cells of each experiment were gated as shown in the Scatter plot (A) and 

this gate was applied to the bombarded cells to determine the percentage viability and 

the percentage of viable transfected cells. The percentage viability was then analysed 

for each cell type (B). One shot from the gene gun did not significantly affect viability 

of the BEAS-2B or MLE-12 cell populations. However, the MAECs were bombarded 

twice in order to increase the efficaciousness of the technique, but at a significant cost 

to the viability of the overall cell population (t-test analysis, p<0.05). 
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Figure 6.9 Fluorescence microscopy confirmation of GFP expression. 

Fluorescence microscopy confirmed visually the expression of the GFP expressing 

pMGFP plasmid in the different cell types. Also clearly visible in the cells are the 

plasmid coated gold particles.  
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6.3 siRNA 

The first step before delivering siRNA in vivo was to determine the ability of siRNA 

to down regulate gene expression in vitro in characterised cell lines. This began by 

examining E-cadherin knockdown in the A549 cell line and progressed to knockdown 

of BMPR-II in BEAS-2B cells and the identification of a successful housekeeper 

candidate. It was envisaged that knockdown of E-cadherin may lead to further 

information in the role of BMP4 in remodelling and that the knockdown of BMPR-II 

may, by removing the primary binding site of action for BMP4 after insult, prevent or 

stop a cycle of inflammation and damage in vivo. 

6.3.1 siRNA in the targeting of E-cadherin in A549 cells. 

6.3.1.1 Transfection efficiency of siRNA 

In order to determine if the siRNA molecules could be successfully delivered to the 

A549 cell line it was first decided to test the capability of the transfection reagent to 

carry the siRNA into the cells. To do this, cells were set up in 24 well tissue culture 

flasks and transfected with negative control siRNA molecule (Sect.2.2.19). This 

negative control siRNA was a sequence of nucleotides that was scrambled and tested 

to ensure it has no known homology to any mammalian genes. This negative control 

siRNA also had an Alexa-488 tag attached to allow visualisation of the molecule by 

fluorescence microscopy and detection by FACS. The uptake of siRNA into the cells 

was recorded at t=24hr and t=48hr periods. FACS analysis demonstrated that in 

excess of 90% of the cells (91.45±.099% averaged over a 24 and 48 hour period) were 

successfully transfected with the Alexa-488 tagged negative control siRNA (Figure 

6.10). A549 cells were then transfected with E-cadherin siRNAs along with a full set 

of treatment controls. These included (i) scrambled siRNA negative control, (ii) a 

positive control siRNA targeting MAPK1- a validated siRNA shown to knockdown 

the levels of expression of MAPK1 in human and mouse in vitro and (iii) a 

transfection reagent only control. Cells were examined by bright field microscopy 24 

hours post treatment to determine if any morphological difference could be observed 

between the different treatments and to observe the health of the cells in response to 

the Hiperfect transfection reagent. The different treatments showed no discernable 

morphological differences or effects from exposure to transfection reagent (Figure 

6.11(A-E)). Fluorescence microscopy also confirmed the successful uptake of siRNA 

into the cells as was seen with FACS analysis (Figure 6.11 (F)). 
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6.3.1.2 Quantitative analysis of E-cadherin knockdown by QPCR 

E-cadherin knockdown was attempted using two separate siRNA molecules targeting 

separate regions of the E-cadherin gene. QPCR was then used to determine the 

success of the housekeeper and the level of E-cadherin knockdown achieved. Analysis 

of the housekeeper used in this experiment, β-Actin, showed that the level of the 

expression detected varied over the course of the treatments. As can be seen in Figure 

6.12, the housekeeper standard curve was successful (Figure 6.12 (A) with an R
2
 

value of 0.9991. An R
2
 value in excess of 0.95 would have been acceptable). The 

melting curve analysis of the products also verifies the specificity of the reaction 

(Figure 6.12 (B)). The melting temperature for a particular primer pair should all be 

the same. The shape and position of the melting curve are a function of the GC/AT 

ratio, length and sequence. As a result it can be successfully employed in the 

distinguishing of amplified products separated by less than 2°C in melting 

temperature. This means in practice that different melting temperature curves will 

result where there are primer dimers, mis-priming or contamination (Ririe et al., 

1997). As sybr-green does not differentiate DNAs Tm (melting Temperature), the 

melting curve acts as an important quality control. However the cycle thresholds 

(CTs) of the different treatments varied considerably amongst the various treatments 

and controls (Figure 6.12 (C)). The CT is defined as the PCR cycle at which the 

fluorescent signal of the reporter dye crosses an arbitrarily placed threshold. By 

presenting data as the CT, one ensures that the PCR is in the exponential phase of 

amplification. The numerical value of the CT is inversely related to the amount of 

amplicon in the reaction (i.e., the lower the CT, the greater the amount of amplicon) 

(Schmittgen and Livak, 2008).  

Compared to the No Treatment control (20.42±0.157) both the non-silencing siRNA 

(22.13±0.321) and the Hiperfect only control (22.63±0.066), differed by greater than 

1.5 CT from the No Treatment control showing that both the Hiperfect alone and in 

the presence of siRNA was inducing a significant change in the level of the β-actin 

housekeeper. Both E-cadherin siRNA(1) (23.5±0.047) and E-cadherin siRNA (2) 

(32.44±0.082) differed greatly from the No Treatment control, with the E-cadherin 

siRNA(2) also differing significantly from the non-silencing siRNA control. 

 This was further confirmed by the analysis of the Genomic Equivalents (GEs), where 

large variation occurred across the different treatments (No treatment 6530±738.9; 

Non-silencing siRNA 2076±426.2; Hiperfect only 1405±63.76; E-cadherin siRNA (1) 

775.1±25.1; E-cadherin siRNA (2) 1.635±0.09) (Figure 6.12 (D)). 
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One-Way ANOVA and Tukey posttest analysis was also carried out on both CTs and 

GEs, also showing the differences to be statistically significant, p<0.0001, a full 

breakdown of which can be seen in Table 6.1. 

Definitive analysis of the knockdown, if any, of E-cadherin in the cells could not be 

reliably constructed. 

6.3.1.3 Immunofluorescence analysis of E-cadherin knockdown  

Immunofluorescence analysis was carried out on the cells, examining both the level of 

E-cadherin expression and any changes in localisation. However no changes in the 

either the abundance or localisation of the expression in cells was noted in any of the 

treatment groups (Data not shown). 
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Figure 6.10 FACS analysis of siRNA transfection efficiency                                 

Transfection efficiency of siRNA using Hiperfect transfection reagent-determined by 

FACS analysis to give 91.45±0,099% transfection averaged over a 24hr and 48hr 

period. (A) The acquisition graph and scatter plot of normal non transfected A549 

cells. (B) The acquisition graph and scatter plot of the A549 cells transfected with a 

negative control -488 siRNA. (C) The shift in populations from non-488 expressing 

(A) to -488 expressing (B).   
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Figure 6.11 Brightfield and Fluorescent analysis of siRNA transfection       

Images A-E inclusive shows the lack of morphological effect on the transfection on 

A549 cells undergoing various siRNA treatments. (A) Untreated cells, (B) Hiperfect 

treated cells, (C) positive control (MAPK1) treated cells, (D) and (E) are both treated 

with siRNA targeting E-cadherin. No major morphological change was visible with 

any of the cells, indicating that neither the Hiperfect nor Hiperfect/siRNA 

combination was having a deleterious effect on the cells. (F) Cells expressing a large 

amount of 488 tagged siRNA, mostly clustered in and around the cell nuclei, 

following successful transfection and imaged using fluorescent microscopy. 
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Figure 6.12 QPCR analysis of β-Actin housekeeper gene                                                 

(A) shows the CTs of the different concentrations of the β-Actin housekeeper, with 

the CTs appearing as expected, approximately every 1.5-2CTs, and the resulting 

standard curve showing a high performance standard curve (R
2
=0.9991). A melting 

curve (B) was also carried out to further analyse the performance of the housekeeper. 

It showed a successful melting performance curve, with all the curves melting 

together at 85°C, indicating no impurities or performance issues with the standards or 

the primers. The CTs of the β-Actin (C) between the No Treatment controls and the 

various treatments were however variable to an unacceptable level (>1.5 CTs 

difference for the Housekeeper shows a change in housekeeper due to treatment, 

therefore cannot be used as a housekeeper). This difference in behaviour can also be 

seen in the difference in the genomic equivalents across the different groups (D). 
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One Way ANOVA Cycle Threshold Genomic Equivalents 

  

Yes 

P<0.0001 
*** 

Yes 

P<0.0001 
*** 

Tukey's Multiple Comparison Test 
Significant? 

P < 0.05? 
Summary 

Significant? 

P < 0.05? 
Summary 

MAPK1 (+ve cntrl) vs NonSilencing 

siRNA 
No ns No ns 

MAPK1 (+ve cntrl) vs. Hiperfect only No ns No ns 

MAPK1 (+ve cntrl) vs. E-Cadh siRNA(1) Yes *** No ns 

MAPK1 (+ve cntrl) vs. E-Cadh siRNA(2) Yes *** Yes * 

MAPK1 (+ve cntrl) vs. No Treatment Yes *** Yes *** 

Non-Silencing siRNA vs. Hiperfect only No ns No ns 

Non-Silencing siRNA vs. E-Cadh 

siRNA(1) 
Yes *** No ns 

Non-Silencing siRNA vs. E-Cadh 

siRNA(2) 
Yes *** Yes * 

Non-Silencing siRNA vs. No Treatment Yes *** Yes *** 

Hiperfect only vs. E-Cadh siRNA(1) Yes * No ns 

Hiperfect only vs. E-Cadh siRNA(2) Yes *** No ns 

Hiperfect only vs. No Treatment Yes *** Yes *** 

E-Cadh siRNA(1) vs. E-Cadh siRNA(2) Yes *** No ns 

E-Cadh siRNA(1) vs. No Treatment Yes *** Yes *** 

E-Cadh siRNA(2) vs. No Treatment Yes *** Yes *** 

Table 6.1 One-Way ANOVA and Tukey post-test analysis of CT and GE. 

One-Way ANOVA and Tukey post-test statistical analysis of CT and GE differences 

between the differing control groups. The Genomic control was not included in this 

analysis. 
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6.3.2 siRNA knockdown of BMPR-II in MLE cells. 

6.3.2.1 QPCR analysis of BMPR-II expression silencing 

The MLE cell line was used to analyse the ability of siRNA to knockdown the 

expression of BMPR-II in vitro. A number of candidate housekeepers were examined 

(Table 6.2) before selection of 18S. It was found to be the most consistent over all 

treatment types and standard deviation from the average CT never exceeded 1.5 CTs. 

For attaining BMPR-II knockdown, two siRNAs targeting BMPR-II were used. Cells 

were harvested at the appropriate timepoints, t=12hr and t=24hr, and RNA was 

isolated. Determination of percentage knockdown was completed by comparing the 

expression level in every treatment group to the negative control siRNA at the 12 and 

24 hour timepoints by using the ΔCT method (2
-ΔΔCT

= [(CT gene of Interest- CT Internal 

control) sample A]-[(CT gene of Interest- CT Internal control) sample B] where sample B is 

the control) (Figure 6.13 (A)). It is acknowledged that presenting data as a fold 

increase or decrease as derived by ΔCT analysis can be more relevant that 

commenting on the copy number variation of a gene (Livak and Schmittgen, 2001). 

The results here showed that although most of the siRNA treatments targeting BMPR-

II showed knockdown at t=12hr and t=24hr timepoints, the level of BMPR-II 

expression in the No treatment cells appeared lower which would not be expected. As 

a result it was decided to look at comparing the expression of BMPR-II in all the 

treatment groups to the No Treatment controls (Figure 6.13 (B)). Results showed that 

the levels of BMPR-II in all treated cells were higher than in the No Treatment cells 

across all treatment groups and in many cases multi-fold increases were apparent, 

Table 6.3(B). Initial comparison to the scrambled siRNA control had shown that same 

treatment to have resulted in a knock down in expression of BMPR-II in the case of a 

number of different combinations of siRNA treatment including BMPR-II_1 20 24 

(BMPR-II siRNA; siRNA molecule 1; 20nM; analysed at t=24hr); BMPR-II_1 50 24; 

Pooled siRNA at t=12hr and t=24hr and all no treatment cells against the different 

combinations of niegative control siRNA at t=12hr and t=24hr (Figure 6.13 (A) and 

Table 6.3(A)). 

MAPK1, the positive control knockdown, used as a positive control to determine if 

the transfection procedure worked showed successful knockdown at different 

concentrations at all timepoints with A) 20nM siRNA effecting a -0.07±0.72 fold 

decrease at t=12hr and -1.825±0.81 fold decrease at t=24 and; B) 50nM siRNA 

effecting a -0.428±169 fold decrease at t=12hr and a -0.298±0.18 fold decrease at 

t=24hr (Figure 6.14). 
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6.3.2.2 Western blotting analysis of silencing of BMPR-II 

In order to validate the level of silencing seen by QPCR a second method of analysis, 

preferably quantitative, is required. In this instance it was decided to try confirming 

the knockdown achieved at an mRNA level by looking for knockdown at a protein 

level in the treated cells by means of Western Blotting. A number of commercially 

available antibodies successfully bind to BMPR-II in immunofluorescence studies and 

a number claim to successfully bind to murine BMPR-II by western blotting. Ideally 

one antibody that could do both would be used, allowing confirmation quantitatively 

by Western Blotting and visually by immunofluorescence. A number of commercially 

available antibodies were assessed for their ability to detect BMPR-II by western 

blotting; however none proved successful (Data not shown). The only limited success 

was the detection of a 37kDa isoform of the BMPR-II protein by Abgents BMPR-II 

antibody (Abgent AP2006a). It successfully detected the isoform in two different 

mouse cell lines, LA4 and MLE, in primary isolates, MAEC cells, and in human 

A549 cells (Figure 6.15). The band detected was confirmed to be an isoform of the 

BMPR-II antibody through correspondence with the antibody manufacturer. However 

this antibody could not be successfully employed as for the purposes required it 

couldn’t validate silencing of the full length protein by siRNA. 
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Table 6.2 Candidate Housekeepers 

Ribosomal 18Swas the onlyhouse keeper which could be successfully employed as an 

internal control for the purposes of analysis the differences in expression levels in the 

genes of interest. 
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Figure 6.13 BMPR-II mRNA levels after siRNA treatment                                                

(A) shows the level of BMPR-II fold differences, determined using the ΔCT method, 

in the various treatments compared to the negative siRNA control treatment. This is 

regarded as the best indicator of behaviour of the siRNA effectiveness. However 

comparison to the No Treatment cells in A shows that cells that received no treatment 

whatsoever had a lower level of BMPR-II than any treated with BMPR-II siRNA. In 

order to further examine this it was decided to also look at the effect of the siRNA 

molecules in all treatments by comparing them to the No Treatment cells as controls 

(B), where it can be seen, post treatment, that all the treatments actually resulted in an 

increase in the amount of BMPR-II mRNA. This indicates that the Hiperfect 

transfection reagent, the siRNA molecule, or a combination of the two, in and of 

themselves, have an impact on the BMPR-II mRNA expression levels in the cells. 
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Table 6.3 Fold Difference in BMPR-II expression levels compared to –ve siRNA 

control and No Treatment control. 

 

 

 

 

 

 

(A) BMPR-II mRNA compared to -ve control 

siRNA 
  

(B) BMPR-II mRNA compared to No Treatment 

Control 

Treatment 
Fold 

Difference 
S.E   Treatment Fold Difference S.E 

bmpr2_1 20 12 0.2323 0.2578   bmpr2_1 20 12 1.581 0.413 

bmpr2_1 20 24 -0.4832 1.362   bmpr2_1 20 24 2.999 0.6275 

bmpr2 1 50 12 -0.4446 0.9893   bmpr2 1 50 12 0.3998 1.58 

bmpr2 1 50 24 2.293 1.82   bmpr2 1 50 24 4.011 0.6232 

bmpr2 2 20 12 -0.7426 0.8048   bmpr2 2 20 12 0.4941 0.6399 

bmpr2 2 20 24 -1.314 1.366   bmpr2 2 20 24 1.732 0.8457 

bmpr2 2 50 12 0.0747 0.1057   bmpr2 2 50 12 0.5944 0.2765 

bmpr2 2 50 24 1.261 0.4761   bmpr2 2 50 24 3.587 2.238 

POOL 12 -0.0477 1.311   POOL 12 1.743 1.805 

POOL 24 -0.0219 0.0468   POOL 24 6.079 5.24 

No T 12 Vs si-ve20 12 -1.116 0.107   -ve 20 12 1.116 0.107 

No T 24 Vs si-ve 20 24 -6.48 5.686   -ve 20 24 6.48 5.686 

No T 12 Vs si-ve 50 12 -0.5227 0.4062   -ve 50 12 0.5227 0.4062 

No T 24 Vs si-ve 50 24 -1.329 1.494   -ve 50 24 1.329 1.494 
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Figure 6.14 MAPK1 siRNA positive control expression levels                                

MAPK1 was used as a positive control in the experiments. This shows that at a 

concentration of 20nM, the MAPK1 siRNA successfully achieved an almost 2 fold 

knockdown of the target RNA compared to the negative control siRNA. 
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Figure 6.15 Western blot analysis of a BMPR-II antibody                                                 

Of the range of commercially available BMPR-II antibodies tested, only one antibody 

was capable of protein detection by Western (Abgent AP2006a). The western blot 

above shows the antibody detecting a BMPR-II protein band at approx. 37kDa in 4 

different cell types (Lane 1= Magic Marker MWL, 2=MLE protein sample, 3=LA4 

protein sample, 4= MAEC protein sample, 5= A549 protein sample). The full length 

of the BMPR-II protein is approx 70-80kDa in mice. The antibody generated (rabbit 

polyclonal) was detecting heart lysate BMPR-II in mice at approx 115kDa. However 

as seen above the only band reliably detected across species with a strong signal to 

noise ratio and in different cell types was at approx 37kDa. In conjunction with the 

antibody manufacturer, Abgent, it was determined to be a 37kDa isoform of the full 

length BMPR-II protein. 
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6.4 Discussion: 

6.4.1 Particle Bombardment 

As a method for the transfection of cells, particle bombardment was successful and 

we reported for the first time the successful transfection of primary mouse airway 

epithelial cells using this method. However limitations are evident and refining of the 

device would be required for in-vivo work. Comparison work in our lab with various 

lipofection techniques and with the use of viral vectors (Gilbert et al., 2008) showed 

that with cell lines there exists a set of conditions returning higher transfection ratios 

with increased viability levels over that achieved by particle bombardment. However 

particle-mediated gene transfer was more efficient in MAECs than AAV5, 

Lipofectamine 2000 and SuperFect. Lentivirus pseudotyped with the vesicular 

stomatitis virus glycoprotein was the most efficient gene transfer method for both 

MAECs and BEAS-2B cells while AAV6 was most efficient for MLE-12 cells.   

Physical methods of gene delivery can circumvent many of the disadvantages 

associated with viral and non-viral methods such as immunogenicity, potential for 

oncogene activation and requirements for dividing cells and expression of specific 

receptors. The experimental procedure is relatively harsh on the cells and parameters 

require optimisation to minimise cell damage. Cells exposed to vacuum for prolonged 

periods become stressed, hypoxic and may die. The helium blast used to transfer the 

particles also has a blast effect on the cells. The spread of particles before impact must 

also be accounted for. When the microparticles are launched at the target site, they 

have to cover a distance of at least 3cm before impact with the cells making it difficult 

to specifically target areas on the culture dish and only a proportion of the dish can be 

targeted.  Only a subpopulation of total population harvested from the dishes for 

analysis after bombardment were actually targeted and extrapolation of the data 

would show a 5x increase in the level of cells transfected if only targeted cells were 

counted (hypothetically giving MLE-12 35.55% transfected; BEAS-2B 28.7% 

transfection; MAEC 25.2% transfected of the targeted cells). While cell damage was 

minimal with MLE-12 cells and BEAS-2B cells, the procedure was lethal in almost 

50% of MAECs. Further optimisation of experimental parameters may reduce the 

extent of cell damage. In tandem with a complimentary technique, such as FACS Cell 

Sorting where a small population of successfully transfected cells can be isolated from 

a larger, un-transfected, population, lower transfection rates are not so debilitating to 

the technique and would allow for the study of highly pure populations of transfected 
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cell lines over many generations. Although this may not be feasible for primary cells 

where their defining primary characteristics may be lost, in other difficult to transfect 

cell lines this would be possible for as long as the plasmid stayed successfully 

integrated in the genome. In the case of primary cells it would allow for analysis of 

protein and RNA from a purified population of plasmid transfected cells, where it is 

known that the plasmid has been successfully integrated and expressed in the cell. 

This brought the use of the gene gun device to its peak set of uses in the lab, for rapid 

testing of a plasmid and for successful transfection of a difficult cell type and was 

routinely used to rapidly test newly designed plasmids in conjunction with other steps 

such as restriction digests. However it also reveals its limitations. Although there are 

other variations of the Gene Gun available it has a number of inherent drawbacks. 

Although inert materials can be used as microcarriers, in an ideal transfection no 

external substances bar the material of interest itself would be introduced into the cell, 

lowering cost, speeding up the process, removing any unforeseen cellular responses to 

the materials and speeding up the regulatory process for the approvement of a 

potential therapy. The mechanism doesn’t allow for targeting of discreet internal areas 

of interest in an in vivo scenario, there are devices which do not require a vacuum in 

which to work but also have other constraints. Ideally a device would be small enough 

to be intubated or delivered via a scope into an animal with the ability to specifically 

target a precise area. This would allow for dedicated bombardment of a particular cell 

type, a cancer cluster or a particular membrane or epithelial layer.  

 

6.4.2 siRNA 

siRNA undoubtedly has potential for potent in vivo applications, as seen by the fact 

that different siRNA molecules are currently or have already undergone clinical trials 

(Section 6.1.1). They have the potential for targeting at the RNA level inflammatory 

triggers, receptors or products, thereby eliminating an adverse reaction and can either 

by transient or long-term in their activity. However in our hands and on the pathway 

targeted siRNA technology proved to be an unwieldy and time-consuming technique 

to successfully affect a high rate of detectable targeted knockdown. Added to this the 

inherent difficulties involved in not only getting the product successfully into the 

correct region of the lungs but doing so and monitoring cell uptake and localised cell 

effect while overcoming cell uptake problems without the use of a stabilising 

transfection reagent such as Hiperfect, and it was decided that for the goals of this 

project that protein delivery may be a more successful avenue to follow. If a 
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transfection reagent were to be used for in vivo delivery to a damaged system, the 

issues of extra burden and unintended innate reactions after repeat delivery were 

likely to become major obstacles. Other issues with siRNA such as off-target effects, 

as encountered in the hunt to identify a successful housekeeper for in vitro studies 

lead to a concern that while the delivery would be localised, off target effects induced 

in the lung such as cytokine production or cessation of such, could lead to other 

systemic or localised problems that may be difficult to detect under the auspices of 

this study. 
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6.5 Conclusion 

Particle bombardment proved to be a useful tool for the in vitro analysis of plasmid 

integration into cell lines and difficult to transfect primary cells. As a potential tool 

however for the delivery of DNA in vivo, technical difficulties with adaptation for in 

vivo use were beyond the scope of this project and there were associated issues with 

the delivery of a carrier substance and the effect of burdening the lungs with multiple 

loads. This work led to a separate successful project on physical delivery of 

therapeutics to lung in vivo (O’Dea et al- unpublished data). siRNA was also 

examined, and although it lends itself as a tool for in vivo delivery, difficulty in 

executing targeted knockdown in an in vitro setting meant that it would be more 

difficult to not only effect knockdown in vivo with the various physical barriers that 

the siRNA would encounter but also assessing its efficaciousness and the ideal of not 

having to use a transfection reagent for delivery in vivo meant that it was ruled out for 

progression to in vivo work. Both of these decisions, relating to both particle 

bombardment and siRNA, were also taken with the knowledge that tests on protein, 

both for its suitability and potential in an in vivo setting meant that in vivo work would 

focus on aerosol delivery of protein compounds to the lung. 
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7 Ex Vivo and In Vivo 

Assessment of 

Aerosolised Protein 

Therapeutics 
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7.1 Introduction 

Current progress in this project identifies aerosolised proteins as being the most likely 

strategy to efficiently and quantifiably be able to induce a therapeutic effect in an in 

vivo situation. As shown in Chapter5, protein molecules are capable of withstanding 

nebulisation intact and functional. Building on the effects seen induced by BMP4 

treatment in ALI (Chapter3) and in MAECS (Chapter5), and having determined that 

OVA induced damage was a suitable model for assessing the effect of potential BMP 

pathway modulators, I then proceeded with delivery of potential protein therapeutics 

firstly to an ex vivo model, followed by delivery in vivo to a healthy model and finally 

into a diseased model lung of OVA induced asthma. 

With the overall aim being to assess both the potential therapeutics for effect and the 

mechanism of delivery for capability a series of steps were identified. Firstly ex-vivo 

analysis of the therapeutics instilled into isolated healthy lungs was evaluated to 

determine if any particular adverse reaction to the treatments was observed in the 

airway cells or lung parenchyma and structure. Following on from this direct aerosol 

delivery to  

A healthy in vivo lung model was to be evaluated for both safety and efficacy. 

Analysis was to be preformed at t=4hr after delivery with careful monitoring of the 

animals for the duration in case of adverse reactions.  

Building on this the model, progress to a longer multiday analysis of the safety of 

delivery in a healthy model, before;  

Culminating in a multi-day analysis on the safety and efficacy of delivery in an OVA 

induced model of allergic asthma in BALB/c mice.  

The aims were to evaluate the success of the aerosol delivery mechanism, the ability 

of the potential therapeutics to induce a response and to evaluate the type of response 

induced. BMP4 was delivered to see if it could specifically induce inflammationand 

pathway activation; α-BMP4 and α-BMPR-II were delivered as potential therapeutics 

and EGF was delivered as a control protein to ensure that the effects seen were not 

non specific responses to the presence of protein in the aerosol. 

7.1.1 Plethysmography 

During restraint testing and also during the delivery of therapeutics plethysmography 

was used in order to assess lung function of the subject animals. Plethysmography can 

be carried out on animals using various methods, from unrestrained, to restrained to 

anaesthetised and tracheotomized animals. Two of the major and most common 
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measurements of lung function that provide information on bronchoconstriction 

derived from plethysmography from conscious subject plethysmography are EF50 

and Penh. EF50 is the measurement taken from conscious restrained animals, with 

physical parameters and dimensions. Penh utilises conscious unrestrained animals, but 

has no actual  physiological parameter or unit measurement (Hoymann, 2007).  

In spite of its popularity, Penh is widely condemned as a “nonsense variable”, as 

observed differences in Penh provide no information on airway conditions due to the 

fact the baseline measurements do not contain any information about the airways, As 

such fold differences in Penh are essentially meaningless (Mitzner and Tankersley, 

2003). While some studies have shown correlations with differences in pulmonary 

resistances, others have shown no such correlation to exist and have shown Penh to be 

primarily related to breathing patterns as opposed to bronchoconstrictions, and these 

can vary greatly between different species under different models of disease and 

damage (Hantos and Brusasco, 2002; Bates et al., 2004). It has also been concluded 

that unless lung volume and tidal volume are accurately recorded and measured, 

which is not possible with an unrestrained animal, Penh is not suitable as a means of 

evaluating bronchoconstriction in animals. It has been strongly advised that in the 

absence of other means of conformation of airway response to a treatment that Penh 

should not be accepted in publication as a method of evaluating airway reactivity or 

responsiveness unless there is sufficient independent confirmation of the results 

(Bates et al., 2004). 

EF50, using restrained conscious animals however, provides a mechanism of 

evaluation that correlates well with invasive measurements, which are regarded as the 

gold standard for pulmonary function analysis in mouse models (Vanoirbeek et al., 

2010). EF50 is measured in ml/sec and it is a physiological based measurement 

defined as the tidal flow at the midpoint of expiratory tidal volume, which is an 

indicator of the degree of bronchoconstriction in animal. Restrained plethysmography 

data has been shown to be capable of monitoring the bronchoconstriction in drug 

safety studies and in asthma models showing late airway responsiveness or early 

allergic response to inhaled allergens, or critically of interest in our studies, to show 

the effect of therapeutics on pulmonary endpoints and is particularly well suited to 

animals that are exposed to inhalation treatment (Hoymann, 2007). EF50, though not 

as exact as invasive forced recordings, is regarded as being especially appropriate for 

the studies involving the screening of respiratory effect in large numbers of animals 

such as used in our studies (Hoymann, 2007). The use of invasive measurements on 

anaesthetised unconscious animals offers more detailed and exact measurements but 
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is far more demanding time wise and technically, is unsuitable for use in studies with 

large animal numbers involved and doesn’t provide data from an animal in a 

condition that is any way natural. Restrained plethysmography also allows for repeat 

analysis as often as desired of an animal over a given timeframe, meaning that 

response to a treatment or therapeutics can be mapped out over hours days or months 

in individual animals. As a result it was decided for the purposes of this study to 

evaluate lung function using restrained conscious animals and EF50 measurements as 

a means of determining bronchoconstriction and other parameters to different 

treatments and therapeutics. The breakdown of the other parameters is as follows  

 Frequency: respiratory rate or breaths per minute. 

 Tidal Volume: Tidal volume is the lung volume representing the normal volume 

of air displaced between normal inhalation and exhalation when extra effort is not 

applied. 

 Total Volume:  Total volume refers  to the total volume of air displaced over the 

period that data was recorded-in this instance over a period of twenty minutes. 

 Minute Volume: refers to the average volume of air displaced over the period of 

One Minute. 

 Inspiratory time (TI): Inspiratory time is the time over which the tidal volume is 

delivered. 

 Expiratory time (TE): Expiratory time is the time over which the tidal volume is 

exhaled. 

 Relaxation time: Time between end of exhalation and start of inhalation. 

 Peak Inspiratory Flow (PIF): This is the maximal flow (or speed) achieved during 

inspiration, measured in ml/sec. 

 Peak expiratory flow (PEF): This is the maximal flow (or speed) achieved during 

expiration, measured in ml/sec. 

 EF50: Tidal mid-expiratory flow. 

 End Inspiratory pause (EIP): Time between the end of inspiration and the onset of 

expiration. 

 dV: Change in lung volume. 

The derivation of EF50 from the breathing pattern of an animal is clearly defined in 

Figure 7.1 (A, B), along with a breakdown of the various other measurements 

recorded over the duration of the experiments. 
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Figure 7.1 The derivation of measurements from a breath profile using 

restrained plethysmography 

(A) Shows the derivation of parameters from a complete breath, with (B) clearly 

showing the derivation of the relaxation time (Rt). The breakdown of the 

measurements is as follows; f is the frequency of breathing and is recorded in breaths 

per minute (BPM); TV is Tidal Volume (ml) and is the volume of air per breath; AV 

is Accumulated Volume (ml) and refers to the volume of breath over the experiment 

duration, MV is the Minute Volume (ml/min) and is the total volume recorded per 

minute; Ti is Inspiratory Time (sec); Te is Expiratory Time (sec); PIF is Peak 

Inspiratory Flow (ml/s); PEF is the Peak Expiratory Flow ml/s; RT is the Relaxation 

Time in each individual breath (sec); EIP refers to the End Inspiratory Pause (ms) in 

each breath; EEP is the End Expiratory Pause (ms) in each breath; dV is the 

Delta/difference in volume of the lung as measured over the time of the experiment; 

EF50 is the flow at the point 50% of TV is expired (ml/sec); Rinx is the Rejection 

Index and records the error occurring in data collection. Graphs reproduced from 

Biosystems XA user manual (Buxco, 2005). 
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7.1.2 Ex vivo analysis 

Ex vivo experimentation was designed to examine the effect of a known BMP 

pathway antagonist, BMP4, along with a number of controls. In total three different 

substances were delivered to isolated healthy mouse lungs from C3H mice. These 

included  

Human recombinant BMP4 protein in order to assess its effect on the BMP pathway; 

PBS as a vehicle control; 

EGF, epidermal growth factor, as a control, it is a functional protein that is not related 

to the BMP pathway and its inclusion was designed to ensure that any reaction 

assessed in the lung as a result of BMP4 delivery was as a result of its pathway 

stimulation and not as a innate immune response to an exogenous protein. 

Immunofluorescence analysis of the treated lungs was then carried out to evaluate the 

level of expression of phosphorylated Smad activity, an indicator of BMP pathway 

activation, in response to the instilled solutions. 

7.1.3 Short term analysis in vivo in a healthy lung model 

Short term analysis was carried out in order to assess the effect of both the delivery 

process and the potential therapeutics in a healthy lung model. This consisted of 

delivery via aerosol of BMP4, PBS, EGF and also HamsF12, with animals being 

sacrificed 4 hours post administration. The aim was to see if in a healthy lung the 

controls or BMP4 induced an immediate response to the delivery of any of the 

substances. This would help determine (i) if aerosol delivery was being effective and 

(ii) if the BMP4 protein was activating the pathway as we had shown in the lab in 

vitro (Section 5.3.1.3) and (iii) if there were adverse effects on the lungs. It would 

also help monitor animals for any adverse reactions. In order to fulfil these 

assessments analysis carried out included plethysmography to analyses lung function 

and breathing, immunofluorescence and H&E analysis of lung sections, total BAL 

protein analysis and rt-PCR of whole lung mRNA. 

7.1.4 Longterm analysis in vivo post delivery to healthy lung 

Building on the information gained from the short term study, delivery to a healthy 

model was carried out via aerosolisation of BMP4, EGF and PBS. The aim was to 

identify any changes that may occur over a longer time period following exposure to 

BMP4 and the controls. As such the time line for analysis was extended with delivery 

occurring at t=0hr and analysis taking place at t=24hr, t=48hr and t=72hr. Analysis 
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carried out was by means of plethysmography, H&E analysis of lung sections, 

bodyweight analysis and BAL analysis. 

7.1.5 Longterm analysis in vivo post delivery to OVA treated lung 

7.1.5.1 OVA induced Asthma in Mice 

OVA-induced asthma in mice is a well established mechanism for the study of the 

effects of asthma in mouse lung, as discussed in detail in Section 1.2.2. The 

verification of model establishment here was carried out by IgE analysis of serum 

derived from facial bleeds from a subsection of randomly chosen animals from each 

treatment group. In total two treatment groups were established and utilised for this 

study, an OVA treated group and a PBS sham control group which received PBS in 

lieu of OVA or OVA+Alum at all the treatment times. 

Immunofluorescence analysis of the expression profiles for CC10, pSmad1/5/8 and 

Smooth Actin was executed in order to ascertain the role and level of activation of the 

BMP pathway. 

The OVA model of asthma using BALB/c mice was induced by a combination of 

intravenously administered OVA+Alum (i.v.) and intranasal (i.n.) administration of 

OVA as detailed in Section 2.2.21.1 

7.1.5.2 Analysis in vivo post delivery to OVA treated lung- Long term  

OVA induced allergic asthma was induced in BALB/c mice. The animals were then 

exposed to a number of different potential therapeutic molecules related to the BMP 

pathway. In total four different substances were delivered to the diseased lung. These 

were PBS, BMP4, anti BMP4 antibody and anti BMPR-II antibody. 

PBS was utilised as a vehicle control. BMP4 has been shown in vitro and in vivo to 

induce a response via the BMP pathway. Analysis here was to determine what effect 

the delivery of exogenous BMP would have on the disease progression. Anti BMP4 

antibody was delivered in order to bind and reduce the activity level of endogenous 

BMP4, to determine if endogenous BMP4 was having an effect on the disease 

progression. Anti BMPR-II antibody was delivered to evaluate the role of the BMP 

receptor in disease progression and to determine, as was previously hypothesised, that 

temporary inactivation by means of a blocking antibody may provide a means to 

reduce the level of activity of the BMP pathway and lessen the effect of the OVA 

induced allergic asthma. 
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7.2 Results 

7.2.1 Ex vivo analysis of BMP pathway 

Ex vivo set up with exposure to the different solutions limited to four hours before 

fixation. PBS, BMP4 (2.5µg/10ml PBS) and EGF (2.5µg/10ml PBS) were nebulised, 

collected and instilled into the cannulated lungs and incubated for t=4hr at 37°C. 

Immunofluorescence analysis of the lungs was carried to evaluate the level of 

expression of phosphorylated Smad activity, an indicator of BMP pathway activation 

in response to the instilled therapeutics. pSmad1/5/8 expression and localisation in the 

different lung sections was examined (Figure 7.2). Only the BMP4 treatment induced 

a BMP pathway response, with immunofluorescence analysis showing no 

phosphorylated Smad activity in any of the other lungs examined. This indicates 

successful pathway stimulation with the 2.5µg/10ml of BMP4 solution that had been 

nebulised. 
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Figure 7.2 pSmad1/5/8 expression analysis on ex vivo mouse lung model 

pSmad1/5/8 expression analysis on ex vivo mouse lung model treated with PBS (A), 

BMP4 (B) and EGF (C) respectively. As can clearly be seen in these images there was 

no major response by the lungs after incubation for t=4hr at 37°C with either PBS or 

EGF treatments. However BMP4 treatment illicited a response by the BMP pathway 

as illustrated by an increase in the amont of pSmad1/5/8 detected in the some of the 

airways as shown. The secondary control showed no fluorescence as expected (D). 

(Arrows indicate airways Green =Alexa-488, Blue =Dapi nuclear stain). 
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7.2.2 In vivo analysis of the BMP pathway 

As mentioned the in vivo assessment of aerosolised therapeutics was carried out in 

three distinct stages: 

Short term assessment of a single delivery to healthy animals, with sacrifice and 

assessment to take place at t=4hr post aerosol administration. 

Single delivery via aerosol into healthy animals with longer assessment phases at 

t=24hr, t=48hr and t=72hr (Day1, Day2 and Day3) respectively. 

Single delivery via aerosol (PBS alone or 2.5µg of BMP4 or EGF in 10mls PBS) into 

asthmatic lungs (BALB/c mice with OVA induced allergic asthma) with assessment 

phases at t=24hr, t=72hr and t=120hr (Day1, Day3 and Day5) respectively. 

 

7.2.2.1 Short term assessment of in-vivo delivery of aerosolised proteins to C3H 

Mice (t=4hr). 

6-8 week old mice had their lung function analysed by plethysmography to establish 

baseline readings. They were exposed to an aerosol of PBS, BMP4, EGF or HamsF12 

1hour post plethysmography recordings. PBS was delivered as a vehicle control. 

BMP4 (2.5µg/10ml PBS) was delivered in order to assess its effect on the BMP4 

pathway. EGF, epithelial growth factor, was delivered as a functional protein control 

(2.5µg/10ml PBS). HamsF12 was also delivered as a control solution. At t=4hr the 

animals again had the lung function analysed by plethysmography and immediately 

after were sacrificed. 

In order to fully evaluate the effects, if any, that the different aerosolised compounds 

had on the lung the following analysis was carried out; 

 Plethysmography analysis to determine the effect on respiration lung function. 

 Lungs were paraffin embedded for immunofluorescence and H&E analysis to 

examine specific protein responses to the treatment and to evaluate any 

inflammatory response 

 Whole lung RNA was isolated for rtPCR analysis for different genes linked to 

various pathways that would reflect BMP pathway response.  

 BAL fluid protein levels were analysed to assess seepage of protein into the 

alveolar spaces. 

7.2.2.1.1 Plethysmography analysis 

Plethysmography was carried out on all animals as per Chapter2 immediately prior to 

exposure the delivery of aerosol at t=0hr. It was then repeated with each animal at 
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t=4hr, immediately after which animals were sacrificed. The difference in 

measurements at t=0hr and t=4hr were then analysed and graphed (Figure 7.3, Figure 

7.4 and Figure 7.5). Overall significant differences between treatments were observed 

in the Accumulated and Minute volume measurements (Figure 7.3 (C+D)), and in the 

peak expiratory flow (PEF) rate, Relaxation time (Rt) and EF50 measurements 

(Figure 7.4 (B, C, D)), as determined by one-way ANOVA (Table 7.3).  

Closer analysis of the results shows that the frequency of breathing (f) was most 

reduced in the BMP4 treated animals (-16.13±11bpm), though not by a statistically 

significant amount. BMP4 animals overall had a more decreased tidal volume (Tv) (-

0.04±0.01mls), accumulated volume (Av) (-286±48mls) and minute volume (Mv) 

(12.95±2.03mls/sec) compared to their t=0hr measurements than all other treatments 

(Figure 7.3 (B, C, D)). The means were significantly different in regards to Av and 

Tv, as assessed by one way ANOVA (Av=*, p<0.05; Tv=**, p<0.01) and Tukey 

multiple comparison test analysis also showed that with regard to Av and Mv, BMP4 

and HamsF12 groups also differed very significantly (**, p<0.01). A full breakdown 

of statistical analysis can be seen in Table 7.1.  

No major changes were noted in inspiratory time (Ti) measurements (Figure 7.3 (E)). 

The only group that showed a small increase at t=4hr was the PBS group 

(+0.002178±0.002456sec) whereas all other treatment groups showed a slight 

decrease on average, though this was not statistically significant. The expiratory time 

(Te) however, although not having a statistically significant difference recorded does 

show a noticeable increase in the Te required by BMP4 treated animals 

(+0.0207±0.012sec) compared to all other treatment groups (PBS 

+0.00266±0.00364sec; EGF -0.00466±0.0104sec; HamsF12 -0.003742±0.00592sec) 

(Figure 7.3 (F)). This is indicative of a possible airway response to BMP4 treatment 

and correlates with the significant differences observed in the volume measurements 

recorded by the various treatment groups.  

The difference in all treatment groups was statistically significant in regard to PIF 

overall by one way ANOVA analysis (p<0.05), and Tukey post test analysis showed 

statistically significant differences between BMP4 and HamsF12 treated animals 

(Δ=0.6811, p<0.05) (Figure 7.4 (A)). BMP4 treated animals showed a marked 

decrease in PIF post treatment at t=4hr compared to all other treatment groups, greater 

than 0.4ml/sec (-0.4507±0.0723ml/sec). The same overall pattern was seen in PEF 

(Figure 7.4 (B)). Here again animals that had BMP4 delivered to the airways showed 

the greatest decrease in PEF rate, greater than 0.4ml/sec (-0.4563±0.1296mls/sec). 
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Tukey posttest analysis showed a statistically significant difference between 

HamsF12 and BMP4 treated animals (Δ=0.6644 mls/sec, p<0.05). 

Rt analysis showed a significant difference due to treatments as determined by one 

way ANOVA (p<0.05) (Figure 7.4 (C)). BMP4 treated animals (+0.0154±0.0051sec) 

had a significantly increased (p<0.05) Rt compared to both EGF (-

0.00399±0.0048sec) and HamsF12 (-0.0232±0.003sec) treated animals. Although not 

statistically different from the PBS treatment group there was a marked difference 

between BMP4 and PBS treated animal groups with PBS showing on average a slight 

decrease (-0.0019±0.0035sec) in Rt at t=4hr in common with the decrease observed in  

EGF and HamsF12 treated animals. 

Analysis of EF50, which decreases in response to bronchoconstriction, showed the 

greatest decrease in BMP4 treated animals (0.5609±0.1243mls/sec) and Tukey 

posttest analysis showed a significant difference between BMP4 treated animals and 

those treated with HamsF12 (p<0.05) (Figure 7.4 (D)). 

EIP varied across the treatment groups with no individual treatment resulting in a 

significant difference although PBS animals on average were the only group to 

increase the pause, though only slightly (0.2655±0.2586ms) (Figure 7.4 (E)). EEP 

showed a reversed trend with PBS treated animals the only group to show a slight 

decrease in pause (Figure 7.4 (F)). Of note here, though not statistically significant, is 

the greatly increased EEP in BMP4 treated animals. While the difference in all other 

treatment groups comes to within 0.1ms of the pre-treatment recordings, BMP4 

treated animals averaged an almost 1.0ms increase in EEP (+0.9841±0.8212ms).  

The change in lung volume (dV) shows the increased or decreased capacity of the 

lungs of the treated animals after treatment (Figure 7.5 (A)). Although the differences 

were not significant is of note that only BMP4 treated animals showed a decreased 

capacity (-0.000874±0.000713mls) after treatment with all other groups averaging 

differing levels of slightly improved capacity. 

7.2.2.1.2 rt-PCR analysis of whole lung RNA 

One complete set of lungs from each treatment group was used from each group (n=1) 

to provide a quick snapshot of the level of mRNA of different proteins linked to the 

BMP pathway after treatment. The markers used were BMPR-II, CC10 and Smad3. 

GAPDH was used as a control. The levels of expression were compared to that of the 

PBS treatment group. BMP4 treatment of the animals was the only treatment to result 

in an increase in the levels of BMPR-II, CC10 and Smad3 expression (Figure 7.6 (A, 

B, C)). All other treatment options, compared to PBS, resulted in a decreased level of 
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mRNA. However it is of note that only an n=1 was available for this data, providing 

only a snap shot and not a detailed analysis of the levels of expression of these 

markers in the lung. 

7.2.2.1.3 Immunofluorescence analysis (n=2) 

With regards to analysis of the expression levels of CC10 protein in the different 

treatment groups, PBS (A), EGF(C) and HamsF12 (D) treated animals all showed a 

high level of CC10 expression compared to the BMP4 treatment group (B), which 

showed a lower level of CC10 expression (Figure 7.7 (i)). In relation to the 

immunofluorescence analysis of BMPR-II expression in PBS and BMP4 treatment 

groups, it was noted that the level of detection of BMPR-II in PBS treated animals 

exceeded that seen in BMP4 treated animals (Figure 7.7 (ii)). The expression profile 

of pSmad1/5/8 throughout the airways was assessed (Figure 7.8). While pSmad1/5/8 

activity was observed in all treatment groups it was detected at much higher levels in 

the airways of BMP4 treated animals. 

7.2.2.1.4 H&E analysis (n=2) 

H&E analysis was carried out to determine if any physiological differences could be 

noticed between the PBS and BMP4 treatment groups. However no discernable 

differences could be seen between either treatment groups in terms of inflammation or 

phenotype (Figure 7.9). 

7.2.2.1.5 BAL Fluid Protein concentration (n=2) 

Though no statistically significant differences were present it was noted that BMP4 

treated animals on average had elevated levels of protein present in the BAL than any 

other treatment group (1.65mgs/ml in BMP4 treated animals versus 1.15mgs/ml in 

EGF and HamsF12 treated animals, and 1.35mgs.ml in EGF treated animals which 

equates to an increase in protein levels of 43.5% compared to PBS and Hams F12 

groups, and 22.2% increase compared to EGF levels). 
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Figure 7.3 Plethysmography results on different treatments on C3H mice carried 

out over a t=4hr period (n=4) 

Treatment was administered at t=0hr, 1 hour post initial plethysmography readings. 

Plethysmography was repeated on the treatment groups immediately prior to harvest 

at t=4hr. Statistical analysis was carried out by one way ANOVA and a full set of 

statistical breakdown can be seen in Table 7.1.  
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Figure 7.4 Plethysmography results on different treatments on C3H mice carried 

out over a t=4hr period (n=4) 

Treatment was administered at t=0hr, 1 hour post initial plethysmography readings. 

Plethysmography was repeated on the treatment groups immediately prior to harvest 

at t=4hr. Statistical analysis was carried out by one way ANOVA and a full set of 

statistical breakdown can be seen in Table 7.1.  
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Figure 7.5 Plethysmography results on different treatments on C3H mice carried 

out over a t=4hr period (n=4) 

Treatment was administered at t=0hr, 1 hour post initial plethysmography readings. 

Plethysmography was repeated on the treatment groups immediately prior to harvest 

at t=4hr. Statistical analysis was carried out by one-way ANOVA and a full set of 

statistical breakdown can be seen in Table 7.1.                                                                                                         
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Measurement 
One-Way ANOVA 

Analysis 

Tukey Multi-comparison 

Test 

Frequency (f) - - 

Tidal Volume (Tv) - - 

Accumulated Volume (Av) ** p<0.01 
BMP4 vs. HamsF12  

**p<0.01 

Minute Volume (Mv) * p<0.05 
BMP4 vs. HamsF12  

**p<0.01 

Inspiratory Time (Ti) - - 

Expiratory Time (Te) - - 

Peak Inspiratory Flow (PIF) * p<0.05 
BMP4 vs. HamsF12 

*p<0.05 

Peak Expiratory Flow (PEF) - 
BMP4 vs. HamsF12 

*p<0.05 

Relaxation Time (Rt) * p<0.05 

BMP4 vs. HamsF12 * 

p<0.05                            

BMP4 vs. EGF *           

p<0.05 

EF50 * p<0.05 
BMP4 vs. HamsF12 

*p<0.05 

End Inspiratory Pause (EIP) - - 

End Expiratory Pause (EEP) - - 

Change in Lung Volume 

(dV) 
- - 

Rinx - - 

 

Table 7.1 Statistical analysis of plethysmography results 

Statistical analysis was carried out by one-way ANOVA and Tukey posttest analysis. 

Statistical significance with regards to one way ANOVA was observed in  

Av, Mv, PIF, Rt and EF50. 
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Figure 7.6 rtPCR analysis of whole lung mRNA analysed by densitometry  

Whole lung RNA was isolated from each of the treatment. Using GAPDH as a 

control, the levels of BMPR-II, CC10 and Smad3 mRNA were analysed via rt-PCR 

densitometry and the percentage expression in each was compared as a percentage to 

the level expressed in the PBS treated animals (n=1). 
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Figure 7.7 Immunofluorescence analysis of CC10 and BMPR-II protein 

expression in the lung  

(i) Shows the expression of CC10 in each of the treatment groups. PBS treated (A), 

EGF treated (C) and HamsF12 (D) treated all showed a high level of expression of 

CC10 protein in the airways. Though staining was also present in BMP4 treated lung 

(B) it was not as strongly expressed as it was in the other treatment groups. 

(ii) shows the expression of BMPR-II in PBS (A) and BMP4 (B) treatment groups. It 

is of note that the level of expression in PBS treated animals exceeded the level of 

expression in BMP4 treated animals. (Arrows indicate airways Green =Alexa-488, 

Blue =Dapi nuclear stain). 

 

(i) 

(ii) 
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Figure 7.8 Immunofluorescence analysis of pSMAD1/5/8 protein expression in 

the lung 

pSmad1/5/8 expression levels in PBS (A), BMP4 (B), EGF (C) and HAMS F12 

treated C3H mice. While the presence of pSmad1/5/8 was detected in all groups of 

animals, it was expressed at a noticeably higher level in the BMP4 treated mice, as 

can be seen in (B) above. (Arrows indicate airways Green =Alexa-488, Blue =Dapi 

nuclear stain). 
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Figure 7.9: H&E staining of PBS and BMP4 treated animals.  

H&E analysis showed no major change in airway morphology between the treatment 

groups. As in evidence above in PBS treated (A) and BMP4 (B) treated neither set of 

airways were showing any contrasting features, both displaying intact airways and no 

inflammation (20x magnification. Arrows indicate airways). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



292 

 

 

Figure 7.10 BAL fluid protein levels  

As was expected, PBS treated animals showed the lowest levels of protein in the BAL 

fluid along with HamsF12. BMP4 treated mice had the highest protein levels, 

approximately 0.5mgs/ml higher than either the PBS or HamsF12 treatment groups, 

with EGF falling in between the PBS and BMP4 treatments. However due to the 

small n numbers (n=2) and large error bars the difference was not reported as 

statistically significant. Statistical significance was determined by one-way ANOVA 

analysis.  
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7.2.2.2 Three Day assessment of in-vivo delivery of aerosolised proteins. 

6-8 week old C3H mice were exposed to an aerosol of BMP4, PBS and EGF over a 

twenty minute period at t=0hr as per protocol (Section 2.2.22). Animals were then 

harvested at t=24hr, t=48hr and t=72hr timepoints, referred to from here in as Day1 

Day2 and Day3 timepoints. 

7.2.2.2.1 Plethysmography analysis 

Plethysmography was carried out on all animals immediately prior to aerosol 

exposure at t=0hr and again immediately prior to endpoint harvest on Day1, Day3 and 

Day5 respectively. The differences in measurements between t=0hr and harvest were 

determined and the data was then analysed and graphed (Figure 7.11, Figure 7.12 and 

Figure 7.13). Statistical analysis was carried out by Two Way ANOVA with 

Bonferroni post test analysis. It is of note that no significant difference (p<0.05) was 

observed across any of the three day timepoints between any of the treatments either 

by two-way ANOVA analysis or by way of the Bonferroni post test analysis 

(statistical data not shown). The measurement data was scrutinised to determine if any 

notable, if not statistically significant, results could be observed. The frequency data 

showed no exceptional behaviour by any treatment group (Figure 7.11 (A)). The 

volume analysis appear to indicate that Day1 and Day2 post treatment, BMP4 treated 

animals were, by volume, inhaling less air into their lungs than compared to other 

treatment groups, though still showed an increase over t=0hr recordings for both 

(Figure 7.11 (B, C, D)). The only exception to this was in Accumulated volume where 

on Day1 the BMP4 treatment group had a lower Av than when measured prior to 

treatment commencing. All other groups across all timepoints showed an increased 

Av. The Ti and Te did not show any particular pattern associated with BMP4 

treatment (Figure 7.11 (E, F)). EGF treated animals however all showed a decreased 

Ti post treatment, the effect of which appeared to decrease over time from Day1 to 

Day3. 

It was noticed that BMP4 treated animals displayed an increasing PIF as time after 

treatment increase whereas EGF and PBS treated animals appeared to just decrease 

their PIF back towards levels of t=0hr after treatment (Figure 7.12 (A)). Perhaps of 

more significance is the fact that the PEF of all BMP4 animals was below that of the 

pre-treatment measurements at all timepoints, getting closer to approaching their 

respective t=0hr base line as the time post treatment increased (Figure 7.12 (B)). 

Neither PBS nor EGF treated animal established such a pattern. Rt showed no 

emerging patterns from analysis between treatment groups across the different 
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timepoints (Figure 7.12 (C)). EF50 however again reflects pattern seen elsewhere 

(Figure 7.12 (D)). While neither PBS or EGF treatment group establishes a clear 

pattern post treatment, all animals which were treated with BMP4 showed a decreased 

EF50, which remained lower throughout the three day period and did not look to be 

approaching the t=0hr baseline. EIP and EEP also did not establish any clear patterns 

of response to any treatment (Figure 7.12 (E) and Figure 7.12 (F)).  

In regards to the change in lung volume between initial t=0hr and harvest day, the 

PBS group establishes no clear pattern. Both EGF and BMP4 treatment groups 

however show a decrease in lung volume post treatment (Figure 7.13 (A)). With 

respect to BMP4 it appears to be rapidly approaching the established baseline by 

Day3, whereas with the EGF treated animals, it appears, while taking note of the 

standard errors, to be decreasing further as the timepoints lengthen. 

7.2.2.2.2 Bodyweight and BAL analysis 

The bodyweight of each individual animal was noted at time of death to see if 

delivery of any of the aerosol treatment had noticeable effect on the bodyweight of the 

animals. However in statistical analysis of the results no statistical differences were 

detected with respect to weight loss or weight gain between the different groups 

(Figure 7.14 (A)). The concentration of cells in the BAL was also recorded and 

analysed but here again no statistically different results were noted between treatment 

groups (Figure 7.14 (B)). The only pattern noticeable was an increase over the three 

day period of the concentration of cells in the BAL of EGF treated animals and the 

noticalbe decrease in the cell number in the Bal of BMP4 treated animals on Day3 

and Day5. 

7.2.2.2.3 H&E analysis 

H&E analysis was carried out on sections of lung from Day1 harvested treatment 

groups (Section 2.2.17.1 & 2.2.17.2) to determine if any inflammation or damage 

resulted in response to the treatments (Figure 7.15). However no differences were 

noted between any of the 3 treatment groups. 
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Figure 7.11 Plethysmography results on different treatments on C3H mice 

carried out over a 3 day period (n=4†)  

Treatment was administered at t=0hr, 1 hour post initial plethysmography readings. 

Plethysmography was repeated on the treatment groups immediately prior to harvest 

at t=24hr (Day1), t=48hr (Day2) and t=72hr (Day3). An explanation of all 

measurements can be found in Section 7.1.1.                                                                                                                      

†PBS day3 n=3, EGF day1 n=3. 
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Figure 7.12 Plethysmography results on different treatments on C3H mice 

carried out over a 3 day period (n=4†)  

Treatment was administered at t=0hr, 1 hour post initial plethysmography readings. 

Plethysmography was repeated on the treatment groups immediately prior to harvest 

at t=24hr (Day1), t=48hr (Day2) and t=72hr (Day3). An explanation of all 

measurements can be found in Section7.1.1.                                                                                                                    

†PBS day3 n=3, EGF day1 n=3. 
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Figure 7.13: Plethysmography results on different treatments on C3H mice 

carried out over a 3 day period (n=4†) 

Treatment was administered at t=0hr, 1 hour post initial plethysmography readings. 

Plethysmography was repeated on the treatment groups immediately prior to harvest 

at t=24hr (Day1), t=48hr (Day2) and t=72hr (Day3). An explanation of all 

measurements can be found in Section 7.1.1.                                                                                                                    

†PBS day3 n=3, EGF day1 n=3. 
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Figure 7.14: Bodyweight and Cell concentration of BAL Fluid 

Body weight analysis (A) of the different treatments showed that no treatment 

resulted in a statistically significant difference in bodyweight of the animals over a 72 

hour period as determined by two ways ANOVA and Bonferroni post-test comparing 

each treatment type individually. Cell concentration in the BAL fluid (B) of the 

treated animals over a 3day period, analysed the same way, was also found to produce 

no statistically significant different results. No steady pattern was observed over the 

3day post treatment period in PBS or BMP4 treated animals. The only patterns that 

emerged were a steady increase in the cell concentration in the BAL fluid of EGF 

treated animals over the time frame and on Day2 and Day3 BMP4 treated animals 

recorded noticeably less cells in their BAL fluid than any other treatment group. 
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Figure 7.15: H&E analysis of the treatment groups at t=24hr (Day 1) 

A snap shot analysis was carried out to determine if any of the treatments had a 

detectable inflammatory effect on the epithelium 24 hours after exposure to the 

aerosol treatment. However no damage was detected in any treatment group (n=2) 

with PBS treated (A), BMP4 treated (B) and EGF treated (C) lungs all showing lungs 

healthy in appearance (Arrows indicate airways). 
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7.2.2.3 OVA induced model of Asthma in Mice- Model Establishment and 

targeted delivery of potential therapeutics 

7.2.2.3.1 OVA induced Model of Asthma in ice 

7.2.2.3.1.1 Immunofluorescence analysis of OVA induced Asthma in Mice. 

Immunofluorescence analysis of the expression profiles for CC10, pSmad1/5/8 and 

Smooth Actin was executed on PBS treated control animals and OVA treated allergic 

Asthma model animals (Figure 7.16 and Figure 7.17). Immunofluorescence analysis 

of CC10 expression determined that while both groups of animals expressed CC10, 

the expression levels were higher in the Group2 OVA treated animals (Figure 7.16). 

Localisation of expression was consistent between both groups and confined to the 

airways. pSmad1/5/8 analysis showed a much greater expression of pSmad1/5/8 in 

Group2 OVA treated animals throughout the airways, compared to only low level and 

sporadic fluorescence detected in Group1 PBS treated animals (Figure 7.17 (A)). 

Increased pSmad1/5/8 activity is linked to activation of the BMP pathway with BMP 

binding to the receptors triggering phosphorylation of the Receptor Smads Smad1, 

Smad5 and Smad8. Smooth muscle actin showed no difference in expression levels or 

localisation between the two groups (Data not shown).  
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7.2.2.3.2 Five Day assessment of in-vivo delivery of aerosolised proteins to OVA 

induced models of asthma. 

Animals were treated with OVA as described in Chapter2 to establish an OVA model 

of asthma in 6-8week old BALB/c mice. One group of control animals also had the 

OVA model of asthma established and one control group of animals acted as a sham 

control, receiving PBS instead of OVA. In total, four groups of animals were treated 

with OVA to establish the asthma model before being treated by aerosol with PBS, 

BMP4 (2.5µg/10ml PBS), α-BMP4 Antibody (2.5µg/10ml PBS)  and α-BMPR-II 

antibody (2.5µg/10ml PBS) respectively, at t=0hr, 24 hours after the last OVA 

administration. Data was collected and animals sacrificed from each treatment group 

at t=24hr, t=72hr and t=120hr, referred to as Day1, Day3 and Day5 from this point 

forward. The OVA and PBS control animals, which received no aerosol treatment, 

had plethysmography analysis carried out on Day0 and all other analysis was carried 

out on Day5 along with the remaining treatment group animals.  

7.2.2.3.3 Plethysmography analysis of Treatment Groups 

Statistical analysis of the plethysmography data was carried out by two-way ANOVA 

and Bonferroni post-test analysis and is detailed in Table 7.3. In brief, two-way 

ANOVA determined that the type of treatment administered to the animals caused a 

significant difference in lung function with regards to frequency, Te, and Rt (Figure 

7.18 (A), Figure 7.18 (F), and Figure 7.19 (C)). 
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With respect to plethysmography data on frequency, it was observed that the 

frequency of breathing in BMP4 treated animals was below that of the animals the 

same animals at t=0hr at all three timepoints (Day1 -9.16±5.69bpm; Day2 -

11.48±10.84bpm; Day5 -15.52±0.14bpm) (Figure 7.18 (A)). This differed to the 

response of PBS treated animals (increased bpm on Day1 and Day3) and notably, to 

that of α-BMP4 treated animals (increased bpm at all timepoints) which both showed 

an increased frequency of breathing post administration off the respective aerosols.  

Also of note, α-BMPR-II treatment, with the exception of Day3, showed the same 

pattern of decreased frequency over the analysis timeframe as BMP4 treated animals. 

The tidal volume of all animals analysed increased over the analysis timeframe and no 

particular difference was noted between treatment groups (Figure 7.18 (B)). With 

respect to the accumulated volume, all animals increased their Av compared to their 

t=0hr timepoints (Figure 7.18 (C)). However at Day1 the BMP4 treatment group has a 

noticeably less improved Av than the other treatment groups. The exact same pattern 

was noted in the Minute volumes of the different treatment groups (Figure 7.18 (D)). 

The Ti shows no statistically significant differences across the groups (Figure 7.18 

(E)). At Day1 all groups irrespective of treatment group appear to respond in a similar 

fashion. However on Day3 the Ti of BMP4 treated animals, though still shorter that 

the t=0hr measurement, is not anywhere as short as seen in any other treatment group, 

PBS, α-BMP4 and α-BMPR-II inclusive. On Day5 it is the only treatment group to 

have an increased Ti (+0.0021±0.0007sec) compared to its t=0hr measurements. Te 

showed a statistically relevant difference between treatment groups (Figure 7.18 (F)). 

On Day1 and Day3 the PBS treatment group shows a decreased Te whereas BMP4 

treated animals show an increased Te across the same timepoints. Both treatment 

groups show an increased Te on Day5 however. Also of note is the response of the 

animals treated with α-BMP4, which directly contrasts that of BMP4 treated animals. 

Whereas BMP4 treated animals show an increase Te over all timepoints, α-BMP4 

treated animal show a decreased Te over all timepoints. It is also noted that the α-

BMPR-II treatment resulted in a similar profile of Te to BMP4 treated animals and 

contrasted with that of α-BMP4 and of PBS treatment groups over Day1 and Day3. 

The differences in the α-BMPR-II animals were not as consistent over time as with 

BMP4 and α-BMP4 treated animals. 

With regard to PIF, it is of note that the flow rate increase from t=0hr in BMP4 

treated animals at Day1 was approximately half that of all other treatment groups 

(Figure 7.19 (A)). The other pattern of note is the contrasting nature of the profiles of 

the BMP4 and α-BMP4 treatment groups. PEF shows no major differences over the 
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entire 5 day period, the only difference of note being with PBS treatment animals on 

Day5 (Figure 7.19 (B)). Of note on Day1 however is the fact that BMP4 treated 

animals show less than half the increase in flow rate compared to any other treatment 

group at the same time point. Rt showed a significant difference across the different 

groups as a result of treatment (Table 7.3) (Figure 7.19 (C)). BMP4 treated animals’ 

show a markedly different profile to PBS treated animals on Day1 and Day5, and to 

α-BMP4 treated animals across all timepoints. BMP4 treated animals show an 

increase in Rt whereas PBS and α-BMP4 treated animals show a decline in Rt relative 

to t=0hr measurements. Animals treated with α-BMPR-II showed a similar profile to 

BMP4 treated animals. EF50 also shows an interesting set of results (Figure 7.18 (D)). 

The EF50 profile (-note: an increase in EF50 indicates a decrease in 

bronchoconstriction) shows that EF50 in all treatment groups at all times, with the 

exception of PBS treated animals on Day5, showed an increase in flow rate compared 

to their respective t=0hr measurements. The EF50 profile of BMP4 and α-BMPR-II 

treatment groups are very similar, whereas at Day1 and Day3 the improvement in 

EF50 is notably better in the PBS and α-BMP4 treatment groups. EIP shows BMP4 

treated animals to have, on Day3 and Day5, noticeably longer EIP than any other 

treatment groups (Figure 7.19 (E)). EEP however shows no particular differences 

between any treatment groups with no distinguishing patterns emerging (Figure 7.19 

(F)). The change in lung volume on Day1 shows BMP4 treated animals to be the only 

treatment group to record a decrease in  lung volume compared to t=0hr (Figure 7.20 

(A)). All other groups show an increase in lung volume on Day1. With respect to all 

treatment groups it approaches the baseline measurement of t=0hrs at Day5 with the 

exception of the α-BMP4 antibody treatment group where it drops below the baseline 

measurement by Day5. 

7.2.2.3.4 Plethysmography analysis of control groups 

At t=0hr plethysmography analysis was carried out on the control groups alongside all 

the treatment groups as per protocol (Section 2.2.16). This was performed in order to 

assess the effect that OVA induced asthma brought about in lung function compared 

to healthy animals. OVA treatment resulted in a number of statistically significant 

differences between the control groups (Figure 7.21) (Table 7.3). Statistically 

significant differences were noted in Tv, Av, Mv, PEF and EIP. 

7.2.2.3.5 Immunofluorescence analysis of treatment and control groups 
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The expression profile of four different proteins was analysed by immunofluorescence 

in sections from lungs harvested in response to the different treatments of PBS, 

BMP4, α-BMP4 and α-BMPR-II (Section 2.2.6 & 2.2.17). The protein expressions 

examined were PCNA, pSmad1/5/8, Smad4 and Smad8. Smad8 was not detected in 

any sections analysed so data was not included. A full breakdown of 

immunofluorescence analysis results can be seen in Table 7.5. 

PCNA: PCNA expression, where detected, was localised to the alveolar regions of the 

lungs (Figure 7.22 and Figure 7.23).  

With regards to PBS treated animals, PCNA was not detected in the alveolar region 

on Day1 and moderate levels of expression were detected in the alveolar region on 

Day3. Day5 was not determined. BMP4 treated animals showed no expression on 

Day1 in common with PBS treated animals, and on Day3 had a moderate level of 

PCNA expression. By Day5 the level of abundance of PCNA expression in the 

alveolar region was significant. PCNA expression in α-BMP4 treated lungs was at a 

moderate level in the alveolar region on Day1, higher than what was detected in either 

of the PBS or BMP4 treated animals. On Day3 the level of expression was significant 

in the alveolar region, and again far higher than what was detected in any of the other 

treatment groups including that of α-BMPR-II. Day5 was not determined. α-BMPR-II 

treated animals were non-determined on Day1. On Day3 the lungs expressed very low 

levels of PCNA and by Day5 this was had increased to a moderate level of expression 

resembling the levels seen in the BMP4 and PBS lungs on Day3. 

 

pSmad1/5/8: pSmad1/5/8 protein expression, where detected, was located in the 

airways of the lungs and not in the alveolar regions (Figure 7.24 and Figure 7.25). 

In PBS treated animals the level of pSmad1/5/8 detected in the airways on Day1 was 

very low, and by Day3 the level detected had increased to a moderate level of 

abundance/expression. In BMP4 treated animals, pSmad1/5/8 expression was detected 

at all three timepoints. At the available comparable timepoints of Day1 and Day3, the 

amounts of pSmad1/5/8 detected in BMP4 treated animals was higher than that of the 

PBS control group. On Day1 the level detected was low, but by Day3 the level 

detected escalated to high. On Day5 the level had reduced in comparison to Day3 and 

a low level of expression was recorded. α-BMP4 treated animals displayed levels of 

expression on par with what was recorded in BMP4 treated animals, with a low-

moderate level of expression on Day1 and a moderate level of expression recorded on 

Day3. α-BMPR-II treatment on Day3 recorded a moderate level of expression, similar 

to what was observed in PBS treated animals on Day3. On Day5, as seen in BMP4 
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treated animals the level of expression dropped and only a small amount of protein 

was detected.   

Smad4: Where expressed, Smad4 was found to be located predominantly in the 

alveolar region, though airway expression was also recorded in certain samples 

(Figure 7.26 and Figure 7.27). 

On Day1 in the PBS treatment group no Smad4 was detected in the lungs. On Day3 a 

moderate level of expression was recorded in the alveolar region. BMP4 treated 

animals expressed, consistently throughout the timepoints against all other treatment 

groups, the highest level of the Co-Smad, Smad4, expression. On Day1 and Day5 the 

level of expression was high and the localisation of the Smad4 protein was in the 

alveolar regions of the lungs. On Day3 the level of expression was again high in the 

alveolar region but there was additional low level expression occurring tin the 

airways. α-BMP4 treated animals also had a high level of expression on Day1 on 

Smad4 in the alveolar region of the lungs. On Day3 the level detected was lower and 

recorded as moderate, but there was additional low level expression recorded in the 

airways of lungs from this treatment group. Day5 was not determined. α-BMPR-II 

was not determined on Day1 but Day3 revealed in a moderate level of expression in 

the alveolar region and, in common with BMP4 and α-BMP4 treatment groups, a 

small level of Smad4 expression was detected in the alveolar region. By Day5 the 

expression was restricted to the alveolar region once more and the level of expression 

was moderate, in contrast to the high level detected in BMP4 treated animals. 

 

Immunofluorescence analysis was also used to evaluate the differences in protein 

expression of PCNA, pSmad1/5/8, Smad4 and Smad8 in the control groups- OVA 

only and PBS sham control-these animals received no aerosol treatments. These lungs 

were harvested at the same time as lungs from the Day5 treatment group. 

pSmad1/5/8 expression in the OVA lungs was low but higher than in the PBS treated 

animal where only trace amounts of the protein were detected (Figure 7.28 (i)).Where 

detected, the protein was located in the airways and none was found to be expressed 

in the alveolar regions. PCNA expression was very low in the PBS treated animals in 

general. Localisation was restricted to the alveolar regions near the extremities of the 

lungs, and was not found in the central regions. OVA treated animals however 

expressed a high level of PCNA protein. Localisation was in the alveolar regions and 

spread throughout the entire lung, not just the outer regions as seen in the PBS 

animals (Figure 7.28 (ii)). 
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Smad4 analysis showed no expression of the protein in the PBS treated animals. OVA 

lungs expressed high levels of the Co-Smad protein, with localisation restricted to the 

alveolar regions of the lungs (Figure 7.29 (i)). The Receptor Smad, Smad8, was also 

analysed.  In this instance Smad8 was detected at a moderate level in the airways of 

the OVA lungs. PBS control lungs showed no expression of Smad8 (Figure 7.29 (ii)). 

A summary of the data is available in Table 7.5. 

7.2.2.3.6 Bodyweight and BAL analysis  

Bodyweight of every animal from the aerosol treated OVA groups was recorded 

immediately after sacrifice.  Two-way ANOVA and Bonferroni posttest analysis were 

carried out to determine any significant differences as a result of treatment type. No 

significant differences were found in bodyweight analysis (Figure 7.30 (A)). The 

percentage of viable cells in the different treatment groups BAL fluid was analysed 

and no statistical difference here was noted between any of the groups, nor was any 

statistical difference noted in the cell concentration of the BAL fluid. Although it was 

noted that α-BMP4 treated animals, especially at Day1, but also on Day3, had a 

greater cell concentration in the BAL than any other treatment type. Body weight 

analysis and cell concentration of the OVA and PBS control animal treatment groups 

were also recorded. With regard to bodyweight there was a very significant difference 

as a result of OVA treatment in the body weight of the animals (p<0.005) (Figure 7.31 

(A)). No statistical difference was noted between the differing cell concentration 

averages recorded in the BAL fluid of both treatment groups but it was noted that as 

expected, the OVA treated animals showed a higher cell concentration average than 

that of the PBS control group (Figure 7.31 (B)). 

7.2.2.3.7 Cytospin analysis 

Cytospins were prepared from the BAL fluid of treated groups of animals on Days 1, 

3 and 5. Visual comparison of the cytospins showed no major change in the profile of 

cells expressed in the BAL fluids in the different treatment groups, as can be seen in 

Figure 7.32. 

 

7.2.2.3.8 Western blot analysis of whole lung protein  

After BAL was harvested lungs were snap frozen in liquid Nitrogen and stored at -

80°C. Later the lungs were then homogenised and the protein isolated as per Section 

2.2.18. Protein concentration was determined by Bradford assay and 20µg protein 

from each sample was loaded per lane in 12% SDS page gels (Section 2.2.8). Actin 
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was used as housekeeper and the protein blots were probed for the presence of Actin 

and the proteins of interest, Smad4 and pSmad1/5/8, as can be seen in Figure 7.32 (A, 

B, C). Densitometry was carried out on the detected bands and the results graphed as 

per Figure 7.33 (D and E). The results were analysed by one-way ANOVA and a full 

breakdown of statistical results can be seen in Table 7.6.  

pSmad1/5/8 statistical analysis showed that treatment had an extremely significant 

effect on the levels of the protein in the different treatment groups (p<0.001). It was 

noted that every timepoint BMP4 treated animals showed a higher level of 

pSmad1/5/8 expression than any other treatment group. At Day1 and Day5 α-BMP4 

treated animals showed a greater than half fold decrease in the level of expression 

than PBS treated animals. α-BMPR-II treated animals consistently expressed the least 

amount of pSmad1/5/8 compared to all other groups at all timepoints. 

In relation to Smad4 expression, although treatment resulted in a significant effect 

across all treatment groups (p<0.05), no individual treatment group over the course of 

the experiment a distinct pattern of increased or decreased expression relative to the 

PBS control. 

pSmad1/5/8 was also analysed in the control OVA and PBS groups as can be seen in 

Figure 7.34. T-test analysis was performed on the results but no significant difference 

was noted between the two groups. It was noted however that the OVA control group, 

as was anticipated, showed on average a higher, though not statistically significant, 

level of pSmad1/5/8 than the PBS control group. 
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Figure 7.16 CC10 immunofluorescence in OVA model of Asthma 

CC10 staining was observed in the airways of both Control and OVA exposed 

animals. However it was detected at a higher level in Group2, the OVA exposed 

asthma model, though this difference was not quantifiable. 
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Figure 7.17 pSmad1/5/8 immunofluorescence n OVA model of Asthma 

pSmad1/5/8 was more evident in Group2 OVA treated animals than in Group1 

controls. Occasionally airways in Group1 animals displayed small amounts of 

localised phosphorylated Smads, though in general, as seen in B and C, no 

pSmad1/5/8 was detected in Group1 animals and the staining in evidence here was 

tissue autoflouresence. Group2 animals however displayed an abundant amount of 

pSmad1/5/8  staining in the airways as can clearly be seen in G, H, I and J above, 

indicated by the bright white in the airways. Arrows also indicate areas of 

fuorescence, the duller white seen in the alveolar regions is auto-fluorescence. 
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Figure 7.18 Plethysmography results on different treatments on OVA induced 

Asthma BALB-C mice carried out over a 5 day period (n=4†) 

Treatment was administered at t=0hr, 1hr post initial plethysmography readings. 

Plethysmography was repeated on the treatment groups immediately prior to harvest 

at t=24hr, t=72hr and t=120hr. Statistical analysis was carried out by twoway 

ANOVA and a full statistical breakdown can be seen in Table 7.2.Graphs show the 

difference in readings between t=0hr and time of harvest, Day1, 3 or 5 respectively.                                                                                                                    

†PBS day1 n=3, BMP4 day5 n=3, α-BMPR-II day5 n=3. 
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Figure 7.19 Plethysmography results on different treatments on OVA induced 

Asthma BALB-C mice carried out over a 5 day period (n=4†) 

Treatment was administered at t=0hr, 1 hour post initial plethysmography readings. 

Plethysmography was repeated on the treatment groups immediately prior to harvest 

at t=24hr, t=72hr and t=120hr. Statistical analysis was carried out by two-way 

ANOVA and a full statistical breakdown can be seen in Table 7.2. Graphs show the 

difference in readings between t=0hr and time of harvest, Day1, 3 or 5 respectively.                                                                                                              

†PBS day1 n=3, BMP4 day5 n=3, α-BMPR-II day5 n=3. 
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Figure 7.20 Plethysmography results on different treatments on OVA induced 

Asthma BALB-C mice carried out over a 5 day period (n=4†) 

Treatment was administered at t=0hr, 1 hour post initial plethysmography readings. 

Plethysmography was repeated on the treatment groups immediately prior to harvest 

at t=24hr, t=72hr and t=120hr. Statistical analysis was carried out by two-way 

ANOVA and a full statistical breakdown can be seen in Table 7.2. Graphs show the 

difference in readings between t=0hr and time of harvest, Day1, 3 or 5 respectively.                                                                                                               

†PBS day1 n=3, BMP4 day5 n=3, α-BMPR-II day5 n=3. 
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Measurement Two-Way ANOVA Analysis Bonferroni Post Test 

  Interaction Treatment Time   

Frequency (f) - * - - 

Tidal Volume (Tv) - - - - 

Accumulated Volume (Av) - - - - 

Minute Volume (Mv) - - - - 

Inspiratory Time (Ti) - - - - 

Expiratory Time (Te) - * - - 

Peak Inspiratory Flow (PEF) - - - - 

Peak Expiratory Flow (PIF) - - - - 

Relaxation Time (Rt) - * - - 

EF50 - - - - 

End Inspiratory Pause (EIP) - - - - 

End Expiratory Pause (EEP) - - - - 

Change in Lung Volume 

(dV) 
- - - - 

Rinx - - - - 

 

Table 7.2 Plethysmography analysis of Treatment Groups 

Analysis was carried out by two way ANOVA with Bonferroni post test analysis on 

plethysmography data from OVA induced allergic asthma lungs exposed to an aerosol 

of either PBS, BMP4, αBMP4 antibody or αBMPR-II antibody. Two-way ANOVA 

revealed significant differences in f, Tv, Te and Rt between different treatment groups 

overall- ie there was a significant difference between PBS vs. BMP4 vs. α-BMP4 vs. 

αBMPR-II overall . Bonferroni posttest analysis between individual treatments, ie, 

BMP4 treated vs. Anti- BMP4 etc., did not show any further significant differences 

between individual treatment types. 
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Figure 7.21 Plethysmography results on OVA induced Asthma BALB-C mice 

Plethysmography carried out after completion of OVA treatment and immediately 

prior to treatments commencing (n=4 for OVA and PBS groups). Statistical analysis 

was carried out by t-test between all readouts and a full set of statistical breakdown 

can be seen in Table 7.3. An explanation of all measurements can be found in Section 

7.1.1.  
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 Measurement 
T-Test 

Analysis 

Frequency (f) - 

Tidal Volume (Tv) * 

Accumulated Volume (Av) * 

Minute Volume (Mv) * 

Inspiratory Time (Ti) - 

Expiratory Time (Te) - 

Peak Inspiratory Flow (PIF) - 

Peak Expiratory Flow (PEF) * 

Relaxation Time (Rt) - 

EF50 - 

End Inspiratory Pause (EIP) * 

End Expiratory Pause (EEP) - 

Change in Lung Volume 

(dV) 
- 

Rinx - 

 

Table 7.3 Plethysmography analysis of Control Groups 

Statistical analysis was carried out by way of t-test in order to determine if the onset 

of OVA induced asthma in the lung could, without challenge, be successfully detected 

by plethysmography. This showed that a number of measurements were statistically 

different between the two groups, including Tv, Av, Mv, PEF and EIP. 
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Figure 7.22 PCNA expression levels in aerosol exposed OVA lung 

(see overleaf for Figure Legend) 
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Figure 7.22 PCNA expression levels in aerosol exposed OVA lung 

PCNA expression levels in OVA animals treated with aerosolised: PBS, BMP4, 

αBMP4 and α-BMPR-II.  

Day1: PCNA was not detected in PBS or BMP4 treated animals at a significant level, 

with the airways showing only Auto-fluorescence and predominantly no PCNA 

(sporadic trace amounts were found) in evidence in the Alveoli. PCNA staining was 

apparent α-BMP4 treated animals however. PCNA was detected in PBS and BMP4 

treated animals at a moderate level compared to other sections examined, with 

staining restricted to the alveolar regions.   

Day3: No staining was apparent in the airways. PCNA staining in α-BMP4 treated 

animals was significant when compared to other sections examined, with an 

abundance of staining apparent in the alveolar regions of the lungs. Staining was also 

visible in the α-BMPR-II animals; however it was at a lower level than that seen in 

any of the other treatment groups examined.  

Day5: staining restricted to the alveolar regions.  No staining was apparent in the 

airways. Compared to other sections in the treatment groups examined, PCNA was 

moderately abundant in the α-BMPR-II treated animals, but highly abundant in the 

BMP4 treated animals.  

Arrows indicate some areas of actual PCNA fluorescence where present. 
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Figure 7.23 Dapi counterstain for PCNA expression levels in aerosol exposed 

OVA lung  

Dapi counterstain to PCNA expression analysis (Figure 7.22) PCNA expression levels 

in OVA animals treated with aerosolised: PBS, BMP4, αBMP4 and α-BMPR-II 

(Figure 7.22).  
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Figure 7.24 pSmad1/5/8 expression levels in aerosol exposed OVA lung 

pSmad1/5/8 expression levels in OVA animals treated with aerosolised: PBS, BMP4, 

αBMP4 and α-BMPR-II.  

Day1: By comparing all treatment groups the levels of staining in Day1 treatment 

groups can be described as very low in PBS treated animals, low in BMP4 treated 

animals, though more than seen in PBS treated. pSmad1/5/8 staining was slightly 

more abundant again in animals treated with α-BMP4.  

Day3: pSmad1/5/8 was detected in all treatment groups. It was least abundant in α-

BMP4 treated animals and most abundant in BMP4 treated animals. Both PBS and α-

BMPR-II treated groups of animals had moderate levels of pSmad1/5/8 present, 

though not to the same level as seen in BMP4 treated animals. 

Day5: pSmad1/5/8 was detected in both BMP4 (A) and α-BMPR-II (B) treated. 

Compared to other sections in the treatment groups examined, pSmad1/5/8 was 

detected at a low level in both the BMP4 (A) and α-BMPR-II (B) treated animals. 

Arrows indicate some areas of actual pSmad1/5/8 fluorescence where present. 
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Figure 7.25 Dapi counterstain for pSmad1/5/8 expression levels in aerosol 

exposed OVA lung  

Dapi counterstain to pSmad1/5/8 expression levels in OVA animals treated with 

aerosolised: PBS, BMP4, αBMP4 and α-BMPR-II (Figure 7.24). 
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Figure 7.26 Smad4 expression levels in aerosol exposed OVA lung  

Day1: Levels of Smad4 in Day 1 treatment groups can be described as not present in 

PBS treated animals, detected at high levels in BMP4 treated animals and detected at 

high levels in α-BMP4 treated animals, though not as high as in BMP4 treated lungs. 

Staining was evident in the alveolar regions of examined lungs, not airways. 

Day3: Smad4 detected in all treatment groups. In the PBS treatment group Smad4 

appeared only in the alveolar region and at a moderate level of abundance. In BMP4, 

α-BMP4 and α-BMPR-II treatment groups Smad4 was detected at very low levels in 

airways, located sporadically in some airways in individual cells. In alveolar regions 

of these treatment groups, Smad4 was detected at high levels in BMP4 treated animals 

and at lower, moderate levels in α-BMP4 and α-BMPR-II treated animals. 

Day5: Smad4 was detected in both BMP4 and α-BMPR-II treated. Compared to other 

sections in the treatment groups examined, Smad4 was detected at a high level in 

BMP4 treatment group and at a moderate level in α-BMPR-II treated animals. 

Arrows indicate some areas of actual Smad4 fluorescence where present. 
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Figure 7.27 Dapi counterstain for Smad4 expression levels in aerosol exposed 

OVA lung  

Dapi counterstain to Smad4 expression levels in OVA animals treated with 

aerosolised: PBS, BMP4, αBMP4 and α-BMPR-II (Figure 7.26). 
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  Day1 Day3 Day5 

PCNA        

PBS Not detected 
Moderate level of 

expression-Alveolar 
Not Determined 

BMP4 Not detected 
Moderate level of 

expression- Alveolar 

High level of 
abundance/expression- 

Alveolar 

α-BMP4 
Moderate alveolar 

expression 

High level of 
abundance/expression- 

Alveolar 
Not Determined 

α-BMPR-II Not Determined 
Very low level of 

expression- Alveolar 
Moderate level of 

expression- Alveolar 

pSmad1/5/8       

PBS 
Very low level of 

expression- Airway 
Moderate Airway 

expression 
Not Determined 

BMP4 
Low level of 

expression- Airway 

High level of 
abundance/expression-

Airway 

Low level of expression-
Airway 

α-BMP4 
Low/moderate level of 

expression-Airway 

High level of 
abundance/expression-

Airway 
Not Determined 

α-BMPR-II Not Determined 
Moderate level of 
expression-Airway 

Low level of expression-
Airway 

Smad4       

PBS Not detected 
Moderate alveolar 

expression 
Not Determined 

BMP4 
Highest level of 

abundance/expression- 
Alveolar 

Highest level of 
abundance/expression- 
Alveolar. Small amount 

of airway expression 
detected. 

High level of 
abundance/expression- 

Alveolar 

α-BMP4 
High level of 

abundance/expression- 
Alveolar 

Moderate level of 
expression- Alveolar. 

Small amount of 
airway expression 

detected. 

Not Determined 

 
 

α-BMPR-II Not Determined 

Moderate level of 
expression- Alveolar. 

Small amount of 
airway expression 

detected. 

Moderate level of 
expression- Alveolar 

Table 7.4 Immunofluorescence analysis of OVA induced asthmatic BALB/c mice after 

exposure to potential therapeutics 

Samples which could not be analysed were marked as ‘Not Determined’.  
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Figure 7.28 Day5 pSmad1/5/8 and PCNA protein expression analysis of the OVA 

treated control versus the PBS control group 

(i)  Day5 pSmad1/5/8 protein expression; PBS control group showed almost no 

pSmad1/5/8 expression in airways-predominantly auto-fluorescence is shown in (B). 

Very low levels of protein were seen in OVA model (A). Corresponding Dapi images 

can be seen in C, D. 

(ii)  Day5 PCNA protein expression; Very little PCNA was in evidence in PBS 

control group, with only small amounts of PCNA being detected in the extremities of 

the lung region as indicated in B. The OVA group however had a high level of 

expression of PCNA throughout all the alveolar regions of all lungs examined (A). 

Corresponding Dapi images can be seen in C, D. Arrows indicate detected protein.                                                                                                                                                                         

(i) 

(ii) 
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Figure 7.29 Day5 Smad4 and Smad8 protein expression analysis of the OVA 

treated control versus the PBS control group 

(i)  Day5 Smad4 protein expression; No Smad4 protein was in evidence in the PBS 

control group, as indicated in B. The OVA group however had a high level of 

expression of Smad4 throughout all the alveolar regions of all lungs examined (A). 

Corresponding Dapi images can be seen in C and D.                                                                                                                                                    

(ii) Day5 Smad8 protein expression; PBS control group showed no Smad8 protein 

expression in the airways or alveoli; predominantly auto-fluorescence is shown in B. 

A moderate level of expression was seen in the OVA model (A) however, located in 

the airways. Corresponding Dapi images can be seen in C and D. 

Arrows indicate detected protein. 

(ii) 

(i) 
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Treatment Group OVA PBS 

Protein Analysed     

PCNA  

High level of 

abundance/expression- 

Alveolar 

Very low level of 

expression- Alveolar-Only 

at edge of lungs 

pSmad1/5/8 
Low level of expression- 

Airway 

Very low level of 

expression- Airway 

Smad4 

High level of 

abundance/expression- 

Alveolar 

Not detected 

Smad8 
Moderate level of 

expression-Alveolar 
Not detected 

           

Table 7.5 Immunofluorescence analysis of Control groups 

OVA induced asthma in lungs resulted in increased levels of PCNA and pSMAD1/5/8 

in the lungs compared to PBS control animals. OVA lungs also contained high levels 

of Smad4 and moderate levels of Smad8 where neither protein was detected to any 

noticeable level in PBS control animals as determined by immunofluorescence 

analysis. 
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Figure 7.30 Body weight (n=4†) and BAL fluid (n=3‡) analysis results 

No significant difference was observed in bodyweights between the treated groups or 

within the individual treatments when analysed by two-way ANOVA and Bonferroni 

post-tests. No pattern was evident either showing that in OVA treated animals no 

treatment resulted in a statistically significant weight gain or weight loss. Due to 

missing values two ways ANOVA could not be used to analyse Cell %viability or cell 

number. No patterns were evident in the % viability of the cells present in the BAL 

also. With regards to cell number however it appeared that, although not statistically 

significant, α BMP4 resulted in a greater influx of cells into the BAL fluid over the 

first 3 days before returning to a level closer to that of the other treatments by day5.             

† Body weight: PBS Day1 n=3; α-BMP4 Day5 n=3; α-BMPR-II day3 n=3. 

‡BAL fluid analysis: PBS day1 n=2; α-BMP4 Day1, 3, 5 n=2; α-BMPR-II Day3 Data 

not available. 
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Figure 7.31 Analysis of the Bodyweight of the OVA group vs. the PBS control 

group  

There was a significant difference (p<0.005) in body weight between the two groups 

of animals (A). No significant difference was found in the cell concentration in the 

BAL fluid (B). 
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Figure 7.32 Cytospin images form OVA induced asthmatic lungs after aerosol 

delivery of potential therapeutics 

Cytospins were taken from the BAL fluid of the 4 different treatment groups over 

days 1, 3 and 5. No data was available for Day1 α-BMPR-II. No major differences in 

cell populations were observed in the Cytospins. 
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Figure 7.33 Actin, Smad4 and pSmad1/5/8 Western Blots and densitometry 

results from whole lung protein analysis (n=2†)  

All lanes were loaded with equal amounts of whole lung protein (20µg/lane). Actin 

was used as housekeeper, against which the expression levels of the target proteins 

were measured. Lungs treated with PBS were then used as the standard against which 

levels of the target proteins were measured against from the other treatment groups. 

The image above shows Actin (A), Smad4 (B) and pSmad1/5/8 (C) western blots. The 

graphs below show the fold expression levels of pSmad1/5/8 (D) and Smad4 (E) in 

each of the treatment groups at the three different timepoints. As analysed by two-way 

ANOVA the treatments were responsible for extremely significant (p<0.0001) 

differences in the fold expression levels of pSmad1/5/8 across the different treatment 

groups, and a significant effect (p<0.05) on Smad4 expression. Full statistical analysis 

can be seen in Table 7.6. Numbers 1-25 indicate corresponding individual samples. 

†PBS Day1 n=1; BMP4 Day5 n=1; α-BMP4 Day5 n=1. 
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Two-Way ANOVA Analysis 

Bonferroni Post Test 
Interaction Treatment Time 

pSmad1/5/8 * *** ** 

Day3 PBS vs. BMP4 ***p<0.001 

Day1 BMP4 vs. α-BMP4 ** p<0.01 

Day3 BMP4 vs. α-BMP4 ***p<0.001 

Day1 BMP4 vs.                

α-BMPR-II 
** p<0.01 

Day3 BMP4 vs.                

α-BMPR-II 
***p<0.001 

Day5 BMP4 vs.                

α-BMPR-II 
* p<0.05 

Smad4 - * ** 

Day3 PBS vs. BMP4 * p<0.05 

Day3 PBS vs. α-BMP4 ** p<0.01 

Day3 BMP4 vs.               

α-BMPR-II 
* p<0.05 

Day3 αBMP4 vs.             

α-BMPR-II 
** p<0.01 

Table 7.6 Western blot analysis of whole lung protein 

Western blotting in combination with densitometry revealed a significant level of 

difference between treatments by way of two-way ANOVA analysis and further 

specific differences could be seen by way of Bonferroni posttest analysis. 
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Figure 7.34 pSmad1/5/8 expression levels in control animals. 

pSmad1/5/8 expression levels were not significantly different, as determined by t-test 

analysis. A greater amount of pSmad1/5/8 was found in the OVA treated animals 

compared to the PBS control animals as would be expected, though this was not 

statistically significant. 
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7.3  Discussion 

7.3.1  Ex vivo analysis 

Ex vivo analysis was established to determine the scale of effect, if any, the delivery 

of exogenous BMP4 ligand would have on the murine lung. In order to ensure that the 

delivery process, the model itself or the presence of extra protein irregardless of type 

or structure was not responsible for the activation of the target BMP pathway PBS and 

EGF were delivered as a vehicle and protein control respectively alongside the BMP4 

ligand. The analysis of the lungs by immunofluorescence revealed pathway activation 

as a result of BMP4 delivery as seen by the phosphorylation of pSmad1/5/8. This 

result validated the progression of the delivery process into an aerosol delivery to an 

in vivo model and demonstrates the potential for ex vivo analysis as an intermediate 

step for the progression from in vitro to in vivo assessment of therapeutics. 

7.3.2  In vivo analysis 

Short-term in vivo delivery of aerosolised proteins to C3H mice. 

The short time frame for analysis allowed a view of the early onset reaction in vivo to 

the delivery of aerosolised therapeutics. Plethysmography data obtained from the test 

subjects showed that BMP4 delivery provided a unique profile in comparison to the 

treatment controls, most notably in regard to the Av, Te, PIF, Rt and EEP. Taken 

together these results showed that the aerosol delivery of BMP4 induced a negative 

effect in the lungs of healthy mice when examined 4hr post delivery. As expected 

excess BMP4 ligand in a healthy lung was detrimental to the performance of the lung, 

and, extrapolated, bad for the overall health of the animal. Before and after analysis of 

lung function showed that BMP4 treated animals were the only subject group to suffer 

from decreased lung volume as a result of the treatment administered. rtPCR analysis 

of whole lung RNA showed that BMP4 treatment resulted in an increase in BMPR-II 

mRNA. This correlates with data obtained by others (Section 1.2.4) showing that 

delivery of BMP4 ligand could induce the increased expression of BMPR-II in the 

lung. This offers a potential treatment for PAH where loss of functional BMPR-II 

expression has detrimental effects on the lungs. An observed increase in CC10 

expression correlates with an increase in activity by Clara cells as a result of the 

BMP4 treatment. 

In contrast both HamsF12 and EGF treated animals both trended in the opposite 

direction to BMP4 indicating that the results were ligand specific and not related to 

either the delivery process or a non specific reaction to the presence of protein in the 
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lung. While this rtPCR data is on its own inconclusive (n=1) the trends relay the 

expected effects and support the further analysis of the effects of BMP4 delivery in 

vivo over a longer timeframe. Analysis of the lungs by immunofluorescence revealed 

that CC10 expression and BMPR-II expression was lower in BMP4 treated animals. 

This is a mirror of the observed results in rtPCR data. However in conjunction with 

that data it would appear to suggest that 4hr post exposure to BMP4 ligand there is a 

temporary decrease in the level of available CC10 and BMPR-II. This is combined 

with a major increase in the level of activity of the BMP pathway as determined by 

immunofluorescence detection of pSmad1/5/8 which is directly attributable to the 

delivery of the exogenous BMP4. There for the decrease in available BMPR-II for 

binding could be due to the fact that much of the available BMPR-II molecules were 

already bound by endogenous BMP ligands and CC10 protein may have been 

depleted and the increase in mRNA levels would support this. 

H&E analysis determined that no major structural insult resulted from either the 

aerosol delivery process or the delivery of the BMP4 molecule. BAL analysis also 

determined that BMP4 treatment resulted in the greatest presence of protein in the 

BAL, again showing a physiologically relevant difference resulting from specific 

ligand inhalation. 

This study determined that the inhalation of BMP4 could activate the BMP pathway 

in vivo in the mouse lung and at the given concentration was sufficient to induce 

effect without stimulating a non specific inflammatory response. It also validated the 

delivery process, demonstrating that the nebulisation and delivery of a naked protein 

could be successfully carried out to mice in vivo. 

7.3.3  3 Day assessment of in vivo delivery of aerosolised proteins to 

C3H mice. 

Building on the observations from the short time course experiment it was decided to 

determine how the delivery of  a single dose of BMP4 ligand at a single concentration 

may effect the lungs of healthy mice at t=24hr, t=48hr and t=72hr post delivery. 

Plethysmography analysis of the animals determined no significant differences across 

control and treated animals as a result of the different treatments. This could be due to 

the fact that the differences observed in the short time course experiments may have 

subsided by the time analysis began. However BMP4 treated animals showed some 

distinct, if not statistically significant, profiles with regard to lung function analysis by 

plethysmography. Noticeably they displayed a decreased lung volume capacity at 

t=24hr compared to t=0hr measurements. BMP4 treated animals also displayed 
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increasing PIF after treatment compared to the decrease observed in EGF and PBS 

treated animals. Notably PEF of all BMP4 animals was below that of the pre-

treatment recordings at all timepoints and EF50 also established a distinct profile 

resulting from BMP4 treatment. The individual components of the plethysmography 

data taken together shows that aerosolised delivery of BMP4 has a distinct 

physiological effect on the respiratory function of healthy animals that does not result 

from the delivery process alone-as attested by the delivery of PBS- orby the presence 

of any protein in the aerosol as determined by the delivery of the EGF control. 

Bodyweight and BAL analysis of the treated animals did not reveal much distinct 

patterning resulting from the delivery of the different aerosol combinations, though in 

the BAL analysis a slight steady increase in the cell number detected in the BAL was 

observed over the 3 days post treatment whereas the BAL of BMP4 animals at t=48hr 

and t=72hr contained noticeably less cells compared to the other treatment groups. 

This shows again that the delivered protein was initiating a distinct cellular effect in 

the lungs providing a treatment specific result.  H&E analysis confirmed that in 

healthy lungs the treatment with different aerosols at the concentrations used had no 

effect on the structure of the lungs and no inflammation or destruction of the airways 

was evident as a result of the treatment. These results showed that in healthy mice 

BMP4 delivery at the physiologically relevant delivery concentrations used had no 

major inflammatory or negative effect on lung function or structure. However it did 

have a distinct effect, though not statistically significant, in regards to both lung 

function and BAL fluid cell content. In a healthy model where tight junctions and 

lung clearance mechanisms are intact with normal functional BMP signalling 

occurring, the effect of a once off physiologically relevant dose of BMP4 would not 

have been expected to result in a different outcome. It does however validate the 

progression of analysis into a diseased lung where tight junctions and clearance 

mechanisms are less effective and where deregulated BMP signalling is expected to 

be occurring. 

7.3.4  Establishment of an OVA model of disease and a 5 Day 

assessment of in vivo delivery of aerosolised proteins to an 

OVA induced model of asthma in BALB/c mice. 

7.3.4.1 Establishment of OVA induced model of Asthma in BALB/c mice. 

Immunofluorescence evaluation of the OVA lung showed BMP pathway activation as 

seen by the greatly increased activity of the phosphorylated receptor Smads 1, 5 and 



336 

 

8. This indicates that the BMP pathway is potentially contributing to the inflammatory 

damage and remodelling characteristic of allergic asthma. As such it provides an ideal 

platform model for the evaluation of potential therapeutics selected to interfere with 

this pathway via direct delivery of proteins to the affected cells via aerosolisation. 

Immunofluorescence analysis in combination with other markers of inflammation and 

damage should then enable effective determination of the success of potential 

therapeutics in limiting either the effects of, or activation of, this pathway. 

 

7.3.4.2 5 Day assessment of in vivo delivery of aerosolised proteins to an OVA 

induced model of asthma in BALB/c mice.  

In this study the effect of BMP4 was analysed in an inflammation based model of 

lung disease in mice-OVA induced Asthma. The effect of BMP4 and the other BMP 

related antibodies were assessed in terms of lung function, pathway responses, 

bodyweight and BAL analysis and by Western Blot analysis of whole lung protein in 

the exposed animals. PBS was delivered as a delivery control, BMP4 as an active 

signalling ligand, α-BMP4 antibody as was delivered to determine if it may decrease 

the effects occurring in the model by binding to endogenous BMP4 present in the 

lungs and α-BMPR-II was delivered with the expectation that it may bind to any 

expressed BMPR-II molecules that were available, preventing or diminishing the 

capacity of endogenous BMP signalling to promote further pathway activation in the 

damage model. 

Plethysmography analysis showed that different treatments did result in statistically 

significant different lung function profiles with regard to Frequency, Expiration Time, 

and Relaxation Time. However the last treatment with OVA occurred 24 hours before 

the exposure of the animal model to any treatment. Therefore it should be noted that 

where an improvement in lung function is observed across all groups the level of 

improvement, particularly on Day1, may be a very important indicator as animals 

lung function may be recovering from the last exposure to OVA anyhow. Therefore 

the degree of recovery is important. 

Of note especially is the decreased total lung volume in animals treated with BMP4 

ligand on Day1 post treatment, where it showed that increased BMP4 signalling 

exacerbated the damage seen in the lungs, whereas α-BMP4 and notably α-BMPR-II 

antibodies showed a profile more in line with that seen in the PBS control animals. 

Most notably, over all the lung function measurements analysed is the fact that, with 

faint exception α-BMP4 and the control PBS treated animals shared the best lung 



337 

 

function profiles. Interestingly, BMP4 and α-BMPR-II, one activating the pathway 

and one possibly inhibiting its activation, show similar distinct responses in a number 

of areas of lung function such as Te, PEF, Rt, f and EIP. This could show that BMP4 

treatment stimulates the increased inflammatory response occurring as a result of 

OVA treatment. α-BMPR-II effects may be due to the fact that non specific blocking 

of the BMP pathway is resulting in actuation of non canonical signalling pathways 

that are eliciting a similar response to circulating ligand or that pathway in activation 

is causing a response in other pathways to damage occurring in the OVA lungs. It 

may also demonstrate that inhibition of the pathway prevents negative feedback 

mechanisms from inhibiting the effects of endogenous BMP4 involvement. 

Immunofluorescence analysis of lung sections from treated animals was analysed at 

the relevant timepoints for PCNA, pSmad1/5/8 and Smad4. With relation to BMP4 

treatment it is of note that most timepoints and analysis determined BMP4 to have 

induced an effect distinct from that observed with the other treatments. α-BMP4 

treatment generally resulted in slightly higher or lower levels of expression compared 

to BMP4. This may be due to two main reasons; the first is that the α-BMP4 antibody 

is binding a small amount of the endogenous protein before becoming saturated and 

results in a similar response but to a different level of severity. The second, alternative 

reason is that the α-BMP4 antibody is binding a significant amount of the endogenous 

BMP4 upon delivery, resulting in activation of a feedback mechanism stimulating 

further secretion of the ligand which would again result in the slightly different profile 

of the immunofluorescence targets analysed at the different timepoints. Sequential 

exposure to the α-BMP4 antibody at different doses and at multiple timepoints could 

help further elucidate the response observed. 

The results from the treatment with α-BMPR-II were also noteworthy, resulting in 

much less BMP pathway related activation along with less of a response from PCNA 

compared to all other treatment groups. This was especially notable in comparison to 

lungs in receipt of BMP4 aerosol where the greatest observable differences occurred 

at Day3 and Day5. Overall the data suggests that delivery of α-BMPR-II antibody 

successfully binds the receptor in vivo and can reduce the effects of BMP signalling in 

an inflammation model of disease. However two highly important timepoints required 

for full analysis, PBS treated animals on Day5 and α-BMPR-II antibody treated 

animals on Day1, were non determinable and would need to be re examined in more 

detail. 

BAL and bodyweight analysis of the animals undergoing the various treatments failed 

to show any marked differences between the treatment groups.  Whole lung protein 
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analysis however did shed further light on the study. With regard to pSmad1/5/8 

expression levels in the lung, total protein levels in the BMP4 treatment group were 

the highest detected showing that in an OVA induced model of inflammation in the 

lung, exogenous BMP4 will further stimulate the pSmad1/5/8 response. Of regard 

also is the fact that in relation to the quantity of both pSmad1/5/8 and Smad4, α-

BMPR-II antibody treated animals expressed less than all other treatment groups, 

including that of the PBS control group. This shows that α-BMPR-II antibody 

delivery may curtail the Smad response in an inflammation damaged lung. 
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7.4  Conclusion. 

The last treatment with OVA occurred 24 hours before exposure to any treatment. 

Therefore it should be noted that where an improvement in lung function is observed 

across all groups the level of improvement, particularly on Day1, may be a very 

important indicator as animals lung function may be recovering from the last exposure 

to OVA anyhow. Therefore the degree of recovery is important. In comparing the 

OVA only with no Treatment on Day 5 to the 2 available timepoint comparisons, 

BMP4 and α-BMPR-II treated animals it can be seen that BMP4 treatment appeared 

to correlate closely with the OVA animal whereas α-BMPR-II exhibited less pathway 

activity. This could mean that BMP4 activity kept the level of activity of the pathway 

activated, whereas α-BMPR-II decreased the level of activity. Given that there was an 

effect observed on the level of activity of the protein pathways as determined by 

immunofluorescence and by the analysis provided through plethysmography and in 

order to gain a better understanding of the effect of the aerosolised protein treatments 

a number of different experimental additions would be recommended for inclusion on 

the results gained from this experiment. The timepoints would be shortened to a 

t=4hr, t=24hr and t=48hr and t=72hr to get a better picture of the more immediate 

response. 

 Also a multiple dosing regime of the therapeutics would be introduced, both 

throughout OVA administration to determine if the onset of damage was lessened and 

also after OVA administration to see if the effects were reversible. In addition the 

strength of the dosages would also be modified to determine if a dosage threshold 

needs to be crossed in order for a successful reversion to a healthy phenotype. 

Methacholine challenge would also be introduced into future studies to help obtain a 

more complete picture of the level of effect of the potential therapeutics on the level 

of damage and recovery repair occurring in different treatment groups across different 

timepoints.  

We showed through progressive modelling that the BMP pathway is capable of being 

targeted for activation through aerosol delivery of recombinant human BMP4 protein. 

It was shown to be antagonistic to the recovery of the lung in the dosages applied 

under both normal and inflamed conditions. That it is effective in stimulating an effect 

on the pathway may be of benefit in other models of lung disease such as PAH where 

it may help increase the levels of functional BMPR-II expression or in diseases such 

as emphysema where the pathway was shown to be quiescent in mouse models and 

where BMP pathway stimulation may encourage proliferation of cells and regrowth of 
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damaged tissue and cells. Delivery of α-BMPR-II antibody was also shown, in a 

model of OVA induced lung inflammation, to be of possible therapeutic benefit. 

However in combination with studies in healthy animals it is of note that general 

inhibition of the pathway by blocking the BMPR-II functional epitope may have 

unforseen consequences related to other signalling cascades and would need to be 

more closely examined in any future work. 

The entire process related to the delivery of the various treatments to the animals in 

vivo also showed the capabilities of the Aeroneb Pro system in conjunction with the 

novel chamber developed by Buxco for the delivery of naked protein in vivo that 

retained their functionality and activity, and their capability to induce specific 

reactions in target pathways. 
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8 Conclusions & future 

directions 
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Our studies here have demonstrated the BMP pathway is activated in an in vivo 

primate model of allergic asthma. Further to this we were able to show in both human 

and primate ALI studies involving primary airway cells that BMP4 ligand can induce 

pathology in cultured cells. In order to develop a system for more detailed 

examination of the involvement of the BMP pathway in disease pathology and to 

determine a method for modulation of the effects, it was necessary to establish a 

working lab model in mice that would facilitate such work. This led to the 

establishment of an OVA induced model of lung inflammation which showed BMP 

pathway involvement, and also led to the confirmation of the lack of BMP pathway 

activity in elastase induced emphysematous lung.  

Once pathway activation had been confirmed in the murine model, the next 

progression was to establish a means of evaluating the role of BMP4 in the pathology 

and to develop a means for targeted delivery of therapeutics that may prevent 

pathology from progressing and potentially restore a healthy lung phenotype in the 

damage model. A number of different mechanisms for achieving therapeutic effect 

were analysed. DNA therapies based on particle bombardment were determined to 

have an in vitro applicability in the delivery of plasmid encoding DNA to cells in 

culture, but device limitations precluded the use of the method in vivo. However this 

work led to the progression of a separate study in the lab which has resulted in the 

development of direct delivery device suitable for in vivo applications capable of 

delivering DNA and protein based therapeutics directly to specific regions of the lung. 

For the study here, aerosol delivery was determined to be the best mechanism for the 

delivery of potential therapeutics to the lung. To this end a novel chamber device was 

fully characterised and a new model restraint was developed in order to improve 

delivery of any potential therapeutics to mouse models. Different therapies based 

around siRNA, DNA and protein were then examined for robustness and suitability. 

While all were determined to be suitable for aerosolisation, protein based therapeutics 

offered the most robust potentially most clinically relevant means of developing a 

therapeutic for interfering with the BMP pathways activation and for being 

measurable for effect. The potential was first examined using aerosolised BMP4 

ligand in vitro on cell cultures where it was shown to stimulate pathway activation, 

before progression to ex vivo healthy lungs, and then in vivo to healthy animals, where 

aerosolised BMP4 was shown to induce a ligand specific effect in the lungs. Building 

on this it was decided to determine what effect exogenous BMP4 would have on the 

established OVA damage model that had already shown BMP pathway involvement 

in its pathology. Because we had shown not only ligand but functional antibodies to 
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retain functionality after nebulisation, it was decided to target the damage model not 

only with ligand but with antibodies against various BMP pathway components 

including endogenous BMP4 and against BMPR-II. It was shown that all the 

delivered proteins had specific effects on the measurement of lung functionality as 

well as different measurements of disease progression, showing aerosol delivery of 

BMP pathway targeting drugs to be a potentially viable mechanism for interfering 

with and regulating BMP pathway involvement in disease. 

 

Future experimentation should include the multiple delivery of different dosage 

concentrations of BMP pathway related proteins and antibodies to various models of 

lung disease, not only in disease models showing pathway involvement such as OVA 

induced asthma, but including models such as elastase induced emphysema to see if 

pathway activation may  promote a healing phenotype. Further analysis of 

downstream affects and of the mRNA profiles of specific cell types such as Clara 

cells that are subject to these treatments would be of great benefit to the progression 

of the understanding of the involvement and effect of the various treatments in the 

different models of disease. ALI interface studies using cells derived from genetically 

derived models of lung disease would also allow screening for a fundamental 

understanding of the pathways involvement in a wide variety of different diseases. 

Another potentially interesting future focus would be for the use of a nebuliser 

capable for the aerosolisation of small cells. This could allow for the delivery of 

genetically modified cells to damaged lungs that are programmed to release certain 

cytokines or receptors to encourage regeneration and healthy restoration of the 

damaged lung. 
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Figure 8.1 Thesis Contribution  

In total, this thesis provided  a measurable contribution towards the building of a 

dedicated approach to the identification of strategies to target the BMP signalling 

pathway in lung disease, all the way through from basic research in cell lines up to 

and including the identification of partners for both medical device development and 

for GMP certified therapeutic production. Key targets and potential treatment areas 

were identified in specific diseases and potential targets other airway diseases 

identified as being potentially successful targets for follow on work. 
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8.1 Publications 

Gilbert, J. L., J. Purcell, et al. (2008). "Comparative evaluation of viral, nonviral and 

physical methods of gene delivery to normal and transformed lung epithelial cells." 

Anticancer Drugs 19(8): 783-788. 

 Few studies have directly compared the efficiencies of gene delivery methods 

that target normal lung cells versus lung tumor cells. We report the first study 

directly comparing the efficiency and toxicity of viral [adeno-associated virus 

(AAV2, 5, 6) and lentivirus], nonviral (Effectene, SuperFect and 

Lipofectamine 2000) and physical [particle-mediated gene transfer (PMGT)] 

methods of gene delivery in normal mouse lung cells and in mouse 

adenocarcinoma cells. Lentivirus pseudotyped with the vesicular stomatitis 

virus glycoprotein was the most efficient gene transfer method for normal 

mouse airway epithelial cells [25.95 (+/-3.57) %] whereas AAV6 was most 

efficient for MLE-12 adenocarcinoma cells [68.2 (+/-3.2) %]. PMGT was 

more efficient in normal mouse airway epithelial cells than AAV5, 

Lipofectamine 2000 and SuperFect. AAV5 displayed the lowest transfection 

efficiency at less than 10% in both cell types. PMGT was the only method that 

resulted in significant toxicity. In summary, for all of the gene delivery 

methods examined here, lung tumor cells were transfected more easily than 

normal lung cells. Lipofectamine 2000 is potentially highly selective for lung 

tumor cells whereas AAV6 and lentivirus vesicular stomatitis virus 

glycoprotein may be useful for gene delivery strategies that require targeting 

of both normal and tumor cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



346 

 

9 Bibliography 

Adi, S., Adi, H., Tang, P., Traini, D., Chan, H.-k. and Young, P. M. (2008) 'Micro-

particle corrugation, adhesion and inhalation aerosol efficiency', European Journal of 

Pharmaceutical Sciences 35(1-2): 12-18. 

Aneja, M. K., Geiger, J. P., Himmel, A. and Rudolph, C. (2009) 'Targeted gene 

delivery to the lung', Expert Opin Drug Deliv 6(6): 567-83. 

Avdalovic, M. V., Putney, L. F., Schelegle, E. S., Miller, L., Usachenko, J. L., Tyler, 

N. K., Plopper, C. G., Gershwin, L. J. and Hyde, D. M. (2006) 'Vascular remodeling 

is airway generation-specific in a primate model of chronic asthma', Am J Respir Crit 

Care Med 174(10): 1069-76. 

Balemans, W. and Van Hul, W. (2002) 'Extracellular regulation of BMP signaling in 

vertebrates: A cocktail of modulators', Developmental Biology 250(2): 231-250. 

Bates, J., Irvin, C., Brusasco, V., Drazen, J., Fredberg, J., Loring, S., Eidelman, D., 

Ludwig, M., Macklem, P., Martin, J. et al. (2004) 'The use and misuse of Penh in 

animal models of lung disease', Am J Respir Cell Mol Biol 31(3): 373-4. 

Beck-Broichsitter, M., Gauss, J., Packhaeuser, C. B., Lahnstein, K., Schmehl, T., 

Seeger, W., Kissel, T. and Gessler, T. (2009) 'Pulmonary drug delivery with 

aerosolizable nanoparticles in an ex vivo lung model', Int J Pharm 367(1-2): 169-78. 

Benezra, R., Davis, R. L., Lockshon, D., Turner, D. L. and Weintraub, H. (1990) 'The 

protein Id: a negative regulator of helix-loop-helix DNA binding proteins', Cell 61(1): 

49-59. 

Beppu, H., Ichinose, F., Kawai, N., Jones, R. C., Yu, P. B., Zapol, W. M., Miyazono, 

K., Li, E. and Bloch, K. D. (2004) 'BMPR-II heterozygous mice have mild pulmonary 

hypertension and an impaired pulmonary vascular remodeling response to prolonged 

hypoxia', Am J Physiol Lung Cell Mol Physiol 287(6): L1241-7. 

Bitonti, A. J., Dumont, J. A., Low, S. C., Peters, R. T., Kropp, K. E., Palombella, V. 

J., Stattel, J. M., Lu, Y., Tan, C. A., Song, J. J. et al. (2004) 'Pulmonary delivery of an 

erythropoietin Fc fusion protein in non-human primates through an immunoglobulin 

transport pathway', Proc Natl Acad Sci U S A 101(26): 9763-8. 

Bivas-Benita, M., Ottenhoff, T. H., Junginger, H. E. and Borchard, G. (2005) 

'Pulmonary DNA vaccination: concepts, possibilities and perspectives', J Control 

Release 107(1): 1-29. 

Bloom, B., Cohen, R. A. and Freeman, G. (2009) 'Summary health statistics for U.S. 

children: National Health Interview Survey, 2007', Vital Health Stat 10(239): 1-80. 

Boers, J. E., Ambergen, A. W. and Thunnissen, F. B. (1999) 'Number and 

proliferation of clara cells in normal human airway epithelium', Am J Respir Crit 

Care Med 159(5 Pt 1): 1585-91. 

Braasch, D. A., Jensen, S., Liu, Y., Kaur, K., Arar, K., White, M. A. and Corey, D. R. 

(2003) 'RNA interference in mammalian cells by chemically-modified RNA', 

Biochemistry 42(26): 7967-75. 

Brandenberger, C., Rothen-Rutishauser, B., Muhlfeld, C., Schmid, O., Ferron, G. A., 

Maier, K. L., Gehr, P. and Lenz, A. G. (2010) 'Effects and uptake of gold 

nanoparticles deposited at the air-liquid interface of a human epithelial airway model', 

Toxicol Appl Pharmacol 242(1): 56-65. 

Brodie, T. and Adalat, S. (2006) 'Unilateral fixed dilated pupil in a well child', Arch 

Dis Child 91(12): 961. 

Brown, J., Mellis, C. M. and Wood, R. E. (1985) 'Edetate sodium aerosol in 

Pseudomonas lung infection in cystic fibrosis', Am J Dis Child 139(8): 836-9. 



347 

 

Buckley, S., Shi, W., Driscoll, B., Ferrario, A., Anderson, K. and Warburton, D. 

(2004) 'BMP4 signaling induces senescence and modulates the oncogenic phenotype 

of A549 lung adenocarcinoma cells', Am J Physiol Lung Cell Mol Physiol 286(1): 

L81-6. 

Buxco (2005) 'BioSystem XA for Windows User Manual Analyser Reference', Buxco 

Biosystem XA User manual. 

Campuzano, S. (2001) 'Emc, a negative HLH regulator with multiple functions in 

Drosophila development', Oncogene 20(58): 8299-307. 

Chatburn, R. L. and McPeck, M. (2007) 'A new system for understanding nebulizer 

performance', Respir Care 52(8): 1037-50. 

Chrystyn, H. (2007) 'The Diskus: a review of its position among dry powder inhaler 

devices', Int J Clin Pract 61(6): 1022-36. 

Chu, Q., St George, J. A., Lukason, M., Cheng, S. H., Scheule, R. K. and Eastman, S. 

J. (2001) 'EGTA enhancement of adenovirus-mediated gene transfer to mouse 

tracheal epithelium in vivo', Hum Gene Ther 12(5): 455-67. 

Chu, Q., Tousignant, J. D., Fang, S., Jiang, C., Chen, L. H., Cheng, S. H., Scheule, R. 

K. and Eastman, S. J. (1999) 'Binding and uptake of cationic lipid:pDNA complexes 

by polarized airway epithelial cells', Hum Gene Ther 10(1): 25-36. 

Clark, A. R. (1995) 'The Use of Laser Diffraction for the Evaluation of the Aerosol 

Clouds Generated by Medical Nebulizers', International Journal of Pharmaceutics 

115(1): 69-78. 

Coles, S. J., Judge, J. and Reid, L. (1982) 'Differential-Effects of Calcium-Ions on 

Glycoconjugate Secretion by Canine Tracheal Explants', Chest 81(5): S34-S36. 

Coppe, J. P., Smith, A. P. and Desprez, P. Y. (2003) 'Id proteins in epithelial cells', 

Exp Cell Res 285(1): 131-45. 

Cowley, E. A., Govindaraju, K., Guilbault, C., Radzioch, D. and Eidelman, D. H. 

(2000) 'Airway surface liquid composition in mice', Am J Physiol Lung Cell Mol 

Physiol 278(6): L1213-20. 

Coyne, C. B., Kelly, M. M., Boucher, R. C. and Johnson, L. G. (2000) 'Enhanced 

epithelial gene transfer by modulation of tight junctions with sodium caprate', Am J 

Respir Cell Mol Biol 23(5): 602-9. 

Crapo, J. D., Barry, B. E., Gehr, P., Bachofen, M. and Weibel, E. R. (1982) 'Cell 

Number and Cell Characteristics of the Normal Human-Lung', American Review of 

Respiratory Disease 126(2): 332-337. 

Cryan, S. A. (2005) 'Carrier-based strategies for targeting protein and peptide drugs to 

the lungs', AAPS J 7(1): E20-41. 

Danesh, S. M., Villasenor, A., Chong, D., Soukup, C. and Cleaver, O. (2009) 'BMP 

and BMP receptor expression during murine organogenesis', Gene Expr Patterns 9(5): 

255-65. 

Davies, R. J. and Morrell, N. W. (2008) 'Molecular mechanisms of pulmonary arterial 

hypertension: role of mutations in the bone morphogenetic protein type II receptor', 

Chest 134(6): 1271-7. 

de Boer, A. H., Gjaltema, D., Hagedoorn, P. and Frijlink, H. W. (2002) 

'Characterization of inhalation aerosols: a critical evaluation of cascade impactor 

analysis and laser diffraction technique', Int J Pharm 249(1-2): 219-31. 

de Vries, T. W., Rottier, B. L., Gjaltema, D., Hagedoorn, P., Frijlink, H. W. and de 

Boer, A. H. (2009) 'Comparative in vitro evaluation of four corticosteroid metered 

dose inhalers: Consistency of delivered dose and particle size distribution', Respir 

Med 103(8): 1167-73. 

Deed, R. W., Armitage, S. and Norton, J. D. (1996) 'Nuclear localization and 

regulation of Id protein through an E protein-mediated chaperone mechanism', J Biol 

Chem 271(39): 23603-6. 



348 

 

Denker, B. M. and Nigam, S. K. (1998) 'Molecular structure and assembly of the tight 

junction', Am J Physiol 274(1 Pt 2): F1-9. 

Derynck, R. and Zhang, Y. E. (2003) 'Smad-dependent and Smad-independent 

pathways in TGF-beta family signalling', Nature 425(6958): 577-84. 

Di, K., Wong, Y. C. and Wang, X. (2007) 'Id-1 promotes TGF-beta1-induced cell 

motility through HSP27 activation and disassembly of adherens junction in prostate 

epithelial cells', Exp Cell Res 313(19): 3983-99. 

Eblaghie, M. C., Reedy, M., Oliver, T., Mishina, Y. and Hogan, B. L. (2006) 

'Evidence that autocrine signaling through Bmpr1a regulates the proliferation, 

survival and morphogenetic behavior of distal lung epithelial cells', Dev Biol 291(1): 

67-82. 

Eimon, P. M. and Harland, R. M. (1999) 'In Xenopus embryos, BMP heterodimers are 

not required for mesoderm induction, but BMP activity is necessary for dorsal/ventral 

patterning', Dev Biol 216(1): 29-40. 

Elhissi, A. M., Faizi, M., Naji, W. F., Gill, H. S. and Taylor, K. M. (2007) 'Physical 

stability and aerosol properties of liposomes delivered using an air-jet nebulizer and a 

novel micropump device with large mesh apertures', Int J Pharm 334(1-2): 62-70. 

Epstein, M. M. (2006) 'Are mouse models of allergic asthma useful for testing novel 

therapeutics?', Exp Toxicol Pathol 57 Suppl 2: 41-4. 

Fanucchi, M. V., Plopper, C. G., Evans, M. J., Hyde, D. M., Van Winkle, L. S., 

Gershwin, L. J. and Schelegle, E. S. (2006) 'Cyclic exposure to ozone alters distal 

airway development in infant rhesus monkeys', Am J Physiol Lung Cell Mol Physiol 

291(4): L644-50. 

Farrell, P. M. (2008) 'The prevalence of cystic fibrosis in the European Union', J Cyst 

Fibros 7(5): 450-3. 

Fong, S., Debs, R. J. and Desprez, P. Y. (2004) 'Id genes and proteins as promising 

targets in cancer therapy', Trends Mol Med 10(8): 387-92. 

Fujita, M., Ye, Q., Ouchi, H., Nakashima, N., Hamada, N., Hagimoto, N., Kuwano, 

K., Mason, R. J. and Nakanishi, Y. (2004) 'Retinoic acid fails to reverse emphysema 

in adult mouse models', Thorax 59(3): 224-30. 

Geller, D. E. (2005) 'Comparing clinical features of the nebulizer, metered-dose 

inhaler, and dry powder inhaler', Respir Care 50(10): 1313-21; discussion 1321-2. 

Ghazanfari, T., Elhissi, A. M., Ding, Z. and Taylor, K. M. (2007) 'The influence of 

fluid physicochemical properties on vibrating-mesh nebulization', Int J Pharm 339(1-

2): 103-11. 

Ghosh-Choudhury, N., Woodruff, K., Qi, W., Celeste, A., Abboud, S. L. and Ghosh 

Choudhury, G. (2000) 'Bone morphogenetic protein-2 blocks MDA MB 231 human 

breast cancer cell proliferation by inhibiting cyclin-dependent kinase-mediated 

retinoblastoma protein phosphorylation', Biochem Biophys Res Commun 272(3): 705-

11. 

Gibbs, R. A. Rogers, J. Katze, M. G. Bumgarner, R. Weinstock, G. M. Mardis, E. R. 

Remington, K. A. Strausberg, R. L. Venter, J. C. Wilson, R. K. et al. (2007) 

'Evolutionary and biomedical insights from the rhesus macaque genome', Science 

316(5822): 222-34. 

Gilbert, J. L., Purcell, J., Strappe, P., McCabe, M., O'Brien, T. and O'Dea, S. (2008) 

'Comparative evaluation of viral, nonviral and physical methods of gene delivery to 

normal and transformed lung epithelial cells', Anticancer Drugs 19(8): 783-8. 

Gordon, K. J. and Blobe, G. C. (2008) 'Role of transforming growth factor-beta 

superfamily signaling pathways in human disease', Biochim Biophys Acta 1782(4): 

197-228. 

Hagio, T. (1998) 'Optimizing the particle bombardment method for efficient genetic 

transformation', Jarq-Japan Agricultural Research Quarterly 32(4): 239-247. 



349 

 

Hantos, Z. and Brusasco, V. (2002) 'Assessment of respiratory mechanics in small 

animals: the simpler the better?', J Appl Physiol 93(4): 1196-7. 

Harkema, J. R., Carey, S. A. and Wagner, J. G. (2006) 'The nose revisited: A brief 

review of the comparative structure, function, and toxicologic pathology of the nasal 

epithelium', Toxicologic Pathology 34(3): 252-269. 

Hassel, S., Eichner, A., Yakymovych, M., Hellman, U., Knaus, P. and 

Souchelnytskyi, S. (2004) 'Proteins associated with type II bone morphogenetic 

protein receptor (BMPR-II) and identified by two-dimensional gel electrophoresis and 

mass spectrometry', Proteomics 4(5): 1346-58. 

Heijerman, H., Westerman, E., Conway, S., Touw, D. and Doring, G. (2009) 'Inhaled 

medication and inhalation devices for lung disease in patients with cystic fibrosis: A 

European consensus', J Cyst Fibros 8(5): 295-315. 

Heinemann, L. (2008) 'The failure of exubera: are we beating a dead horse?', J 

Diabetes Sci Technol 2(3): 518-29. 

Heinemann, L. (2010) 'New ways of insulin delivery', Int J Clin Pract Suppl(166): 29-

40. 

Heiser, W. C. (2004) 'Delivery of DNA to cells in culture using particle 

bombardment', Methods Mol Biol 245: 175-84. 

Heldin, C. H., Miyazono, K. and ten Dijke, P. (1997) 'TGF-beta signalling from cell 

membrane to nucleus through SMAD proteins', Nature 390(6659): 465-71. 

Herpin, A. and Cunningham, C. (2007) 'Cross-talk between the bone morphogenetic 

protein pathway and other major signaling pathways results in tightly regulated cell-

specific outcomes', FEBS J 274(12): 2977-85. 

Hess, D. R. (2008) 'Aerosol delivery devices in the treatment of asthma', Respir Care 

53(6): 699-723; discussion 723-5. 

Heubner W, D. J. S., Laquer E (1924) 'Über inhalation von insulin. ', Klin 

Wochenschr(51): 2342–2343. 

Hillman, K. M. and Twigley, A. (1984) 'Aerosol EDTA to eliminate respiratory-tract 

pseudomonas', Lancet 2(8394): 99. 

Hindi, K. M., Ditto, A. J., Panzner, M. J., Medvetz, D. A., Han, D. S., Hovis, C. E., 

Hilliard, J. K., Taylor, J. B., Yun, Y. H., Cannon, C. L. et al. (2009) 'The 

antimicrobial efficacy of sustained release silver-carbene complex-loaded L-tyrosine 

polyphosphate nanoparticles: characterization, in vitro and in vivo studies', 

Biomaterials 30(22): 3771-9. 

Hogan, B. L. (1996) 'Bone morphogenetic proteins in development', Curr Opin Genet 

Dev 6(4): 432-8. 

Hollnagel, A., Oehlmann, V., Heymer, J., Ruther, U. and Nordheim, A. (1999) 'Id 

genes are direct targets of bone morphogenetic protein induction in embryonic stem 

cells', J Biol Chem 274(28): 19838-45. 

Houghton, A. M., Mouded, M. and Shapiro, S. D. (2008) 'Common origins of lung 

cancer and COPD', Nat Med 14(10): 1023-4. 

Hoymann, H. G. (2007) 'Invasive and noninvasive lung function measurements in 

rodents', J Pharmacol Toxicol Methods 55(1): 16-26. 

Hyatt, B. A., Shangguan, X. and Shannon, J. M. (2002) 'BMP4 modulates fibroblast 

growth factor-mediated induction of proximal and distal lung differentiation in mouse 

embryonic tracheal epithelium in mesenchyme-free culture', Dev Dyn 225(2): 153-65. 

J.B. Fink, D. S. a. J. P. (2001) 'Comparison of a nebulizer using a novel aerosol 

generator with a standard ultrasonic nebulizer designed for use during mechanical 

ventilation', American Thoracic Society 97th International Conference San Francisco, 

CA. 

Jakiela, B., Brockman-Schneider, R., Amineva, S., Lee, W. M. and Gern, J. E. (2008) 

'Basal cells of differentiated bronchial epithelium are more susceptible to rhinovirus 

infection', Am J Respir Cell Mol Biol 38(5): 517-23. 



350 

 

Johnson, J. C., Waldrep, J. C., Guo, J. and Dhand, R. (2008) 'Aerosol delivery of 

recombinant human DNase I: in vitro comparison of a vibrating-mesh nebulizer with 

a jet nebulizer', Respir Care 53(12): 1703-8. 

Johnson, L. G., Mewshaw, J. P., Ni, H., Friedmann, T., Boucher, R. C. and Olsen, J. 

C. (1998) 'Effect of host modification and age on airway epithelial gene transfer 

mediated by a murine leukemia virus-derived vector', J Virol 72(11): 8861-72. 

Johnson, L. G., Vanhook, M. K., Coyne, C. B., Haykal-Coates, N. and Gavett, S. H. 

(2003) 'Safety and efficiency of modulating paracellular permeability to enhance 

airway epithelial gene transfer in vivo', Hum Gene Ther 14(8): 729-47. 

Karaulanov, E., Knochel, W. and Niehrs, C. (2004) 'Transcriptional regulation of 

BMP4 synexpression in transgenic Xenopus', EMBO J 23(4): 844-56. 

Kariyawasam, H. H., Xanthou, G., Barkans, J., Aizen, M., Kay, A. B. and Robinson, 

D. S. (2008) 'Basal expression of bone morphogenetic protein receptor is reduced in 

mild asthma', Am J Respir Crit Care Med 177(10): 1074-81. 

Katoh, Y. and Katoh, M. (2008) 'Hedgehog signaling, epithelial-to-mesenchymal 

transition and miRNA (review)', Int J Mol Med 22(3): 271-5. 

Kendall, M., Mitchell, T. J., Costigan, G., Armitage, M., Lenzo, J. C., Thomas, J. A., 

von Garnier, C., Zosky, G. R., Turner, D. J., Stumbles, P. A. et al. (2006) 

'Downregulation of IgE antibody and allergic responses in the lung by epidermal 

biolistic microparticle delivery', J Allergy Clin Immunol 117(2): 275-82. 

Klein, T. M., Wolf, E. D., Wu, R. and Sanford, J. C. (1987) 'High-Velocity 

Microprojectiles for Delivering Nucleic-Acids into Living Cells', Nature 327(6117): 

70-73. 

Kobinger, G. P., Weiner, D. J., Yu, Q. C. and Wilson, J. M. (2001) 'Filovirus-

pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in 

vivo', Nat Biotechnol 19(3): 225-30. 

Koli, K., Myllarniemi, M., Vuorinen, K., Salmenkivi, K., Ryynanen, M. J., Kinnula, 

V. L. and Keski-Oja, J. (2006) 'Bone morphogenetic protein-4 inhibitor gremlin is 

overexpressed in idiopathic pulmonary fibrosis', Am J Pathol 169(1): 61-71. 

Kreda, S. M., Pickles, R. J., Lazarowski, E. R. and Boucher, R. C. (2000) 'G-protein-

coupled receptors as targets for gene transfer vectors using natural small-molecule 

ligands', Nat Biotechnol 18(6): 635-40. 

Kretzschmar, M. and Massague, J. (1998) 'SMADs: mediators and regulators of TGF-

beta signaling', Curr Opin Genet Dev 8(1): 103-11. 

Kumar, R. K. and Foster, P. S. (2002) 'Modeling allergic asthma in mice: pitfalls and 

opportunities', Am J Respir Cell Mol Biol 27(3): 267-72. 

Lambrecht, B. N. and Hammad, H. (2003) 'Taking our breath away: dendritic cells in 

the pathogenesis of asthma', Nat Rev Immunol 3(12): 994-1003. 

Langlands, K., Down, G. A. and Kealey, T. (2000) 'Id proteins are dynamically 

expressed in normal epidermis and dysregulated in squamous cell carcinoma', Cancer 

Res 60(21): 5929-33. 

Legssyer, R., Huaux, F., Lebacq, J., Delos, M., Marbaix, E., Lebecque, P., Lison, D., 

Scholte, B. J., Wallemacq, P. and Leal, T. (2006) 'Azithromycin reduces spontaneous 

and induced inflammation in DeltaF508 cystic fibrosis mice', Respir Res 7: 134. 

Lentz, Y. K., Worden, L. R., Anchordoquy, T. J. and Lengsfeld, C. S. (2005) 'Effect 

of jet nebulization on DNA: identifying the dominant degradation mechanism and 

mitigation methods', Journal of Aerosol Science 36(8): 973-990. 

Lenzer, J. (2006) 'Inhaled insulin is approved in Europe and United States', BMJ 

332(7537): 321. 

Li, B. J., Tang, Q., Cheng, D., Qin, C., Xie, F. Y., Wei, Q., Xu, J., Liu, Y., Zheng, B. 

J., Woodle, M. C. et al. (2005) 'Using siRNA in prophylactic and therapeutic 

regimens against SARS coronavirus in Rhesus macaque', Nat Med 11(9): 944-51. 



351 

 

Lian, W. N., Chang, C. H., Chen, Y. J., Dao, R. L., Luo, Y. C., Chien, J. Y., Hsieh, S. 

L. and Lin, C. H. (2007) 'Intracellular delivery can be achieved by bombarding cells 

or tissues with accelerated molecules or bacteria without the need for carrier particles', 

Exp Cell Res 313(1): 53-64. 

Liu, J., Shi, W. and Warburton, D. (2000) 'A cysteine residue in the helix-loop-helix 

domain of Id2 is critical for homodimerization and function', Biochem Biophys Res 

Commun 273(3): 1042-7. 

Liu, Y., Martindale, J. L., Gorospe, M. and Holbrook, N. J. (1996) 'Regulation of 

p21WAF1/CIP1 expression through mitogen-activated protein kinase signaling 

pathway', Cancer Res 56(1): 31-5. 

Livak, K. J. and Schmittgen, T. D. (2001) 'Analysis of Relative Gene Expression Data 

Using Real-Time Quantitative PCR and the 2-[Delta][Delta]CT Method', Methods 

25(4): 402-408. 

Lucey, E. C., Keane, J., Kuang, P. P., Snider, G. L. and Goldstein, R. H. (2002) 

'Severity of elastase-induced emphysema is decreased in tumor necrosis factor-alpha 

and interleukin-1beta receptor-deficient mice', Lab Invest 82(1): 79-85. 

Luthje, L., Raupach, T., Michels, H., Unsold, B., Hasenfuss, G., Kogler, H. and 

Andreas, S. (2009) 'Exercise intolerance and systemic manifestations of pulmonary 

emphysema in a mouse model', Respir Res 10: 7. 

MacNeish, C. F., Meisner, D., Thibert, R., Kelemen, S., Vadas, E. B. and Coates, A. 

L. (1997) 'A comparison of pulmonary availability between Ventolin (albuterol) 

nebules and Ventolin (albuterol) Respirator Solution', Chest 111(1): 204-8. 

Manoharan, M. (2004) 'RNA interference and chemically modified small interfering 

RNAs', Curr Opin Chem Biol 8(6): 570-9. 

Marriott, C., MacRitchie, H. B., Zeng, X. M. and Martin, G. P. (2006) 'Development 

of a laser diffraction method for the determination of the particle size of aerosolised 

powder formulations', Int J Pharm 326(1-2): 39-49. 

Martinez-Palomo, A., Meza, I., Beaty, G. and Cereijido, M. (1980) 'Experimental 

modulation of occluding junctions in a cultured transporting epithelium', J Cell Biol 

87(3 Pt 1): 736-45. 

Martonen, T. B., Smyth, H. D., Isaacs, K. K. and Burton, R. T. (2005) 'Issues in drug 

delivery: concepts and practice', Respir Care 50(9): 1228-52. 

Massague, J. (1998) 'TGF-beta signal transduction', Annu Rev Biochem 67: 753-91. 

Massari, M. E. and Murre, C. (2000) 'Helix-loop-helix proteins: regulators of 

transcription in eucaryotic organisms', Mol Cell Biol 20(2): 429-40. 

Masterson, J. and O'Dea, S. (2007) 'Posttranslational truncation of E-cadherin and 

significance for tumour progression', Cells Tissues Organs 185(1-3): 175-9. 

Masterson, J. C., Molloy, E. L., Gilbert, J. L., McCormack, N., Adams, A. and O'Dea, 

S. (2010) 'Bone morphogenetic protein signalling in airway epithelial cells during 

regeneration', Cell Signal. 

McCray, P. B., Jr., Zabner, J., Jia, H. P., Welsh, M. J. and Thorne, P. S. (1999) 

'Efficient killing of inhaled bacteria in DeltaF508 mice: role of airway surface liquid 

composition', Am J Physiol 277(1 Pt 1): L183-90. 

McKay, K. O. and Hogg, J. C. (2002) 'The contribution of airway structure to early 

childhood asthma', Med J Aust 177 Suppl: S45-7. 

Mills, P. R., Davies, R. J. and Devalia, J. L. (1999) 'Airway epithelial cells, cytokines, 

and pollutants', Am J Respir Crit Care Med 160(5 Pt 2): S38-43. 

Mitchell, J., Newman, S. and Chan, H. K. (2007) 'In vitro and in vivo aspects of 

cascade impactor tests and inhaler performance: a review', AAPS PharmSciTech 8(4): 

E110. 

Mitchell, J. P. and Nagel, M. W. (2003) 'Cascade impactors for the size 

characterization of aerosols from medical inhalers: their uses and limitations', J 

Aerosol Med 16(4): 341-77. 



352 

 

Mitzner, W. and Tankersley, C. (2003) 'Interpreting Penh in mice', J Appl Physiol 

94(2): 828-31; author reply 831-2. 

Miyazono, K., Kamiya, Y. and Morikawa, M. (2010) 'Bone morphogenetic protein 

receptors and signal transduction', J Biochem 147(1): 35-51. 

Molloy, E. L., Adams, A., Moore, J. B., Masterson, J. C., Madrigal-Estebas, L., 

Mahon, B. P. and O'Dea, S. (2008) 'BMP4 induces an epithelial-mesenchymal 

transition-like response in adult airway epithelial cells', Growth Factors 26(1): 12-22. 

Morrell, N. W. (2006) 'Pulmonary hypertension due to BMPR2 mutation: a new 

paradigm for tissue remodeling?', Proc Am Thorac Soc 3(8): 680-6. 

Myles, C., Sorscher, E. and Matalon, S. (2002) 'Enhancement of adenovirus-mediated 

gene transfer in lungs and epithelial cells by EGTA', Chest 121(3 Suppl): 35S. 

Nadithe, V., Rahamatalla, M., Finlay, W. H., Mercer, J. R. and Samuel, J. (2003) 

'Evaluation of nose-only aerosol inhalation chamber and comparison of experimental 

results with mathematical simulation of aerosol deposition in mouse lungs', J Pharm 

Sci 92(5): 1066-76. 

Nickoloff, B. J., Chaturvedi, V., Bacon, P., Qin, J. Z., Denning, M. F. and Diaz, M. O. 

(2000) 'Id-1 delays senescence but does not immortalize keratinocytes', J Biol Chem 

275(36): 27501-4. 

Norton, J. D., Deed, R. W., Craggs, G. and Sablitzky, F. (1998) 'Id helix-loop-helix 

proteins in cell growth and differentiation', Trends Cell Biol 8(2): 58-65. 

O'Connor, T. (2008) Ireland Needs Healthier Airways and Lungs-the Evidence Irish 

Thoracic Society. 

Ortega, A., Domingo, J. L., Gomez, M. and Corbella, J. (1989) 'Treatment of 

experimental acute uranium poisoning by chelating agents', Pharmacol Toxicol 64(3): 

247-51. 

Park, C., Lavine, K., Mishina, Y., Deng, C. X., Ornitz, D. M. and Choi, K. (2006) 

'Bone morphogenetic protein receptor 1A signaling is dispensable for hematopoietic 

development but essential for vessel and atrioventricular endocardial cushion 

formation', Development 133(17): 3473-84. 

Patton, J. S., Fishburn, C. S. and Weers, J. G. (2004) 'The lungs as a portal of entry 

for systemic drug delivery', Proc Am Thorac Soc 1(4): 338-44. 

Pauls, E. and Esté, J. A. (2004) 'RNA interference as a tool for target validation', Drug 

Discovery Today: Technologies 1(2): 135-140. 

Phalen, R. F., Oldham, M. J. and Wolff, R. K. (2008) 'The relevance of animal models 

for aerosol studies', J Aerosol Med Pulm Drug Deliv 21(1): 113-24. 

Pickles, R. J., McCarty, D., Matsui, H., Hart, P. J., Randell, S. H. and Boucher, R. C. 

(1998) 'Limited entry of adenovirus vectors into well-differentiated airway epithelium 

is responsible for inefficient gene transfer', J Virol 72(7): 6014-23. 

Pilcer, G., Vanderbist, F. and Amighi, K. (2008) 'Correlations between cascade 

impactor analysis and laser diffraction techniques for the determination of the particle 

size of aerosolised powder formulations', Int J Pharm 358(1-2): 75-81. 

Pinkerton, K. E. and Joad, J. P. (2000) 'The mammalian respiratory system and 

critical windows of exposure for children's health', Environ Health Perspect 108 

Suppl 3: 457-62. 

Plopper, C., St George, J., Cardoso, W., Wu, R., Pinkerton, K. and Buckpitt, A. 

(1992) 'Development of airway epithelium. Patterns of expression for markers of 

differentiation', Chest 101(3 Suppl): 2S-5S. 

Plopper, C. G. and Hyde, D. M. (2008) 'The non-human primate as a model for 

studying COPD and asthma', Pulm Pharmacol Ther 21(5): 755-66. 

Ririe, K. M., Rasmussen, R. P. and Wittwer, C. T. (1997) 'Product Differentiation by 

Analysis of DNA Melting Curves during the Polymerase Chain Reaction', Analytical 

Biochemistry 245(2): 154-160. 



353 

 

Rogers, C. S., Abraham, W. M., Brogden, K. A., Engelhardt, J. F., Fisher, J. T., 

McCray, P. B., Jr., McLennan, G., Meyerholz, D. K., Namati, E., Ostedgaard, L. S. et 

al. (2008) 'The porcine lung as a potential model for cystic fibrosis', Am J Physiol 

Lung Cell Mol Physiol 295(2): L240-63. 

Rosendahl, A., Pardali, E., Speletas, M., Ten Dijke, P., Heldin, C. H. and Sideras, P. 

(2002) 'Activation of bone morphogenetic protein/Smad signaling in bronchial 

epithelial cells during airway inflammation', Am J Respir Cell Mol Biol 27(2): 160-9. 

Rubin, L. J. (1997) 'Primary pulmonary hypertension', N Engl J Med 336(2): 111-7. 

Ruzinova, M. B. and Benezra, R. (2003) 'Id proteins in development, cell cycle and 

cancer', Trends Cell Biol 13(8): 410-8. 

Ryther, R. C., Flynt, A. S., Phillips, J. A., 3rd and Patton, J. G. (2005) 'siRNA 

therapeutics: big potential from small RNAs', Gene Ther 12(1): 5-11. 

Sabet, M., Miller, C. E., Nolan, T. G., Senekeo-Effenberger, K., Dudley, M. N. and 

Griffith, D. C. (2009) 'Efficacy of aerosol MP-376, a levofloxacin inhalation solution, 

in models of mouse lung infection due to Pseudomonas aeruginosa', Antimicrob 

Agents Chemother 53(9): 3923-8. 

Schaefer, B. M., Koch, J., Wirzbach, A. and Kramer, M. D. (2001) 'Expression of the 

helix-loop-helix protein ID1 in keratinocytes is upregulated by loss of cell-matrix 

contact', Exp Cell Res 266(2): 250-9. 

Schelegle, E. S., Gershwin, L. J., Miller, L. A., Fanucchi, M. V., Van Winkle, L. S., 

Gerriets, J. P., Walby, W. F., Omlor, A. M., Buckpitt, A. R., Tarkington, B. K. et al. 

(2001) 'Allergic asthma induced in rhesus monkeys by house dust mite 

(Dermatophagoides farinae)', Am J Pathol 158(1): 333-41. 

Schelegle, E. S., Miller, L. A., Gershwin, L. J., Fanucchi, M. V., Van Winkle, L. S., 

Gerriets, J. E., Walby, W. F., Mitchell, V., Tarkington, B. K., Wong, V. J. et al. 

(2003) 'Repeated episodes of ozone inhalation amplifies the effects of allergen 

sensitization and inhalation on airway immune and structural development in Rhesus 

monkeys', Toxicol Appl Pharmacol 191(1): 74-85. 

Schell, J. and Van Montagu, M. (1977) 'The Ti-plasmid of Agrobacterium 

tumefaciens, a natural vector for the introduction of nif genes in plants?', Basic Life 

Sci 9: 159-79. 

Schmidt, C. R., Gi, Y. J., Patel, T. A., Coffey, R. J., Beauchamp, R. D. and Pearson, 

A. S. (2005) 'E-cadherin is regulated by the transcriptional repressor SLUG during 

Ras-mediated transformation of intestinal epithelial cells', Surgery 138(2): 306-12. 

Schmittgen, T. D. and Livak, K. J. (2008) 'Analyzing real-time PCR data by the 

comparative C(T) method', Nat Protoc 3(6): 1101-8. 

Selam, J. L. (2008) 'Inhaled insulin: promises and concerns', J Diabetes Sci Technol 

2(2): 311-5. 

Shannon, J. M. and Hyatt, B. A. (2004) 'Epithelial-mesenchymal interactions in the 

developing lung', Annu Rev Physiol 66: 625-45. 

Shefi, O., Simonnet, C., Baker, M. W., Glass, J. R., Macagno, E. R. and Groisman, A. 

(2006) 'Microtargeted gene silencing and ectopic expression in live embryos using 

biolistic delivery with a pneumatic capillary gun', J Neurosci 26(23): 6119-23. 

Shen, S. C. (2010) 'A new cymbal-shaped high power microactuator for nebulizer 

application', Microelectronic Engineering 87(2): 89-97. 

Shi, C., Zhu, Y., Ran, X., Wang, M., Su, Y. and Cheng, T. (2006) 'Therapeutic 

potential of chitosan and its derivatives in regenerative medicine', J Surg Res 133(2): 

185-92. 

Shi, W., Chen, H., Sun, J., Chen, C., Zhao, J., Wang, Y. L., Anderson, K. D. and 

Warburton, D. (2004) 'Overexpression of Smurf1 negatively regulates mouse 

embryonic lung branching morphogenesis by specifically reducing Smad1 and Smad5 

proteins', Am J Physiol Lung Cell Mol Physiol 286(2): L293-300. 



354 

 

Shi, W., Xu, J. and Warburton, D. (2009) 'Development, repair and fibrosis: what is 

common and why it matters', Respirology 14(5): 656-65. 

Siekmeier, R. and Scheuch, G. (2008) 'Inhaled insulin--does it become reality?', J 

Physiol Pharmacol 59 Suppl 6: 81-113. 

Sikder, H. A., Devlin, M. K., Dunlap, S., Ryu, B. and Alani, R. M. (2003) 'Id proteins 

in cell growth and tumorigenesis', Cancer Cell 3(6): 525-30. 

Snider, G. L., Ciccolella, D. E., Morris, S. M., Stone, P. J. and Lucey, E. C. (1991) 

'Putative role of neutrophil elastase in the pathogenesis of emphysema', Ann N Y Acad 

Sci 624: 45-59. 

Song, E., Zhu, P., Lee, S. K., Chowdhury, D., Kussman, S., Dykxhoorn, D. M., Feng, 

Y., Palliser, D., Weiner, D. B., Shankar, P. et al. (2005a) 'Antibody mediated in vivo 

delivery of small interfering RNAs via cell-surface receptors', Nat Biotechnol 23(6): 

709-17. 

Song, L., Yan, W., Chen, X., Deng, C. X., Wang, Q. and Jiao, K. (2007) 'Myocardial 

smad4 is essential for cardiogenesis in mouse embryos', Circ Res 101(3): 277-85. 

Song, Y., Jones, J. E., Beppu, H., Keaney, J. F., Jr., Loscalzo, J. and Zhang, Y. Y. 

(2005b) 'Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-

mutant mice', Circulation 112(4): 553-62. 

Steinman, R. A., Hoffman, B., Iro, A., Guillouf, C., Liebermann, D. A. and el-

Houseini, M. E. (1994) 'Induction of p21 (WAF-1/CIP1) during differentiation', 

Oncogene 9(11): 3389-96. 

Stewart, D. J. (2005) 'Bone morphogenetic protein receptor-2 and pulmonary arterial 

hypertension: unraveling a riddle inside an enigma?', Circ Res 96(10): 1033-5. 

Su, D., Zhu, S., Han, X., Feng, Y., Huang, H., Ren, G., Pan, L., Zhang, Y., Lu, J. and 

Huang, B. (2009) 'BMP4-Smad signaling pathway mediates adriamycin-induced 

premature senescence in lung cancer cells', J Biol Chem 284(18): 12153-64. 

Tang, J., Gordon, G. M., Nickoloff, B. J. and Foreman, K. E. (2002) 'The helix-loop-

helix protein id-1 delays onset of replicative senescence in human endothelial cells', 

Lab Invest 82(8): 1073-9. 

Taraseviciene-Stewart, L. and Voelkel, N. F. (2008) 'Molecular pathogenesis of 

emphysema', J Clin Invest 118(2): 394-402. 

Teichert-Kuliszewska, K., Kutryk, M. J., Kuliszewski, M. A., Karoubi, G., Courtman, 

D. W., Zucco, L., Granton, J. and Stewart, D. J. (2006) 'Bone morphogenetic protein 

receptor-2 signaling promotes pulmonary arterial endothelial cell survival: 

implications for loss-of-function mutations in the pathogenesis of pulmonary 

hypertension', Circ Res 98(2): 209-17. 

ten Dijke, P., Korchynskyi, O., Valdimarsdottir, G. and Goumans, M. J. (2003) 

'Controlling cell fate by bone morphogenetic protein receptors', Mol Cell Endocrinol 

211(1-2): 105-13. 

Tsuji, T., Ibaragi, S., Shima, K., Hu, M. G., Katsurano, M., Sasaki, A. and Hu, G. F. 

(2008) 'Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-

AP1 promotes tumor cell local invasion but suppresses distant colony growth', Cancer 

Res 68(24): 10377-86. 

Urist, M. R. (1965) 'Bone: formation by autoinduction', Science 150(698): 893-9. 

Vanoirbeek, J. A., Rinaldi, M., De Vooght, V., Haenen, S., Bobic, S., Gayan-

Ramirez, G., Hoet, P. H., Verbeken, E., Decramer, M., Nemery, B. et al. (2010) 

'Noninvasive and invasive pulmonary function in mouse models of obstructive and 

restrictive respiratory diseases', Am J Respir Cell Mol Biol 42(1): 96-104. 

Virchow, J. C., Crompton, G. K., Dal Negro, R., Pedersen, S., Magnan, A., 

Seidenberg, J. and Barnes, P. J. (2008) 'Importance of inhaler devices in the 

management of airway disease', Respir Med 102(1): 10-9. 



355 

 

Wagner, D. H., Ramanathan, S., Taylor, M. L., Brown, A. B., Wobker, M. E. S. and 

Prior, M. W. (2009) 'The thermodynamics of high shear blending', Powder 

Technology 193(2): 195-199. 

Walters, R. W., Grunst, T., Bergelson, J. M., Finberg, R. W., Welsh, M. J. and 

Zabner, J. (1999) 'Basolateral localization of fiber receptors limits adenovirus 

infection from the apical surface of airway epithelia', J Biol Chem 274(15): 10219-26. 

Warburton, D. and Bellusci, S. (2004) 'The molecular genetics of lung morphogenesis 

and injury repair', Paediatr Respir Rev 5 Suppl A: S283-7. 

Ward, C., Forrest, I. A., Murphy, D. M., Johnson, G. E., Robertson, H., Cawston, T. 

E., Fisher, A. J., Dark, J. H., Lordan, J. L., Kirby, J. A. et al. (2005) 'Phenotype of 

airway epithelial cells suggests epithelial to mesenchymal cell transition in clinically 

stable lung transplant recipients', Thorax 60(10): 865-71. 

Weaver, M., Dunn, N. R. and Hogan, B. L. (2000) 'Bmp4 and Fgf10 play opposing 

roles during lung bud morphogenesis', Development 127(12): 2695-704. 

West, J., Fagan, K., Steudel, W., Fouty, B., Lane, K., Harral, J., Hoedt-Miller, M., 

Tada, Y., Ozimek, J., Tuder, R. et al. (2004) 'Pulmonary hypertension in transgenic 

mice expressing a dominant-negative BMPRII gene in smooth muscle', Circ Res 

94(8): 1109-14. 

Williams, R. S., Johnston, S. A., Riedy, M., Devit, M. J., Mcelligott, S. G. and 

Sanford, J. C. (1991) 'Introduction of Foreign Genes into Tissues of Living Mice by 

DNA-Coated Microprojectiles', Proceedings of the National Academy of Sciences of 

the United States of America 88(7): 2726-2730. 

Wozney, J. M., Rosen, V., Celeste, A. J., Mitsock, L. M., Whitters, M. J., Kriz, R. W., 

Hewick, R. M. and Wang, E. A. (1988) 'Novel regulators of bone formation: 

molecular clones and activities', Science 242(4885): 1528-34. 

Wrana, J. L. and Attisano, L. (2000) 'The Smad pathway', Cytokine Growth Factor 

Rev 11(1-2): 5-13. 

Yang, X., Castilla, L. H., Xu, X., Li, C., Gotay, J., Weinstein, M., Liu, P. P. and 

Deng, C. X. (1999) 'Angiogenesis defects and mesenchymal apoptosis in mice lacking 

SMAD5', Development 126(8): 1571-80. 

Yokota, Y. (2001) 'Id and development', Oncogene 20(58): 8290-8. 

Yu, P. B., Beppu, H., Kawai, N., Li, E. and Bloch, K. D. (2005) 'Bone morphogenetic 

protein (BMP) type II receptor deletion reveals BMP ligand-specific gain of signaling 

in pulmonary artery smooth muscle cells', J Biol Chem 280(26): 24443-50. 

Zelenin, A. V., Alimov, A. A., Titomirov, A. V., Kazansky, A. V., Gorodetsky, S. I. 

and Kolesnikov, V. A. (1991) 'High-velocity mechanical DNA transfer of the 

chloramphenicolacetyl transferase gene into rodent liver, kidney and mammary gland 

cells in organ explants and in vivo', FEBS Lett 280(1): 94-6. 

Zelenin, A. V., Alimov, A. A., Zelenina, I. A., Semenova, M. L., Rodova, M. A., 

Chernov, B. K. and Kolesnikov, V. A. (1993) 'Transfer of foreign DNA into the cells 

of developing mouse embryos by microprojectile bombardment', FEBS Lett 315(1): 

29-32. 

Zelenin, A. V., Titomirov, A. V. and Kolesnikov, V. A. (1989) 'Genetic 

transformation of mouse cultured cells with the help of high-velocity mechanical 

DNA injection', FEBS Lett 244(1): 65-7. 

Zhang, X., Shan, P., Jiang, D., Noble, P. W., Abraham, N. G., Kappas, A. and Lee, P. 

J. (2004) 'Small interfering RNA targeting heme oxygenase-1 enhances ischemia-

reperfusion-induced lung apoptosis', J Biol Chem 279(11): 10677-84. 

Zhu, N. L., Li, C., Huang, H. H., Sebald, M., Londhe, V. A., Heisterkamp, N., 

Warburton, D., Bellusci, S. and Minoo, P. (2007) 'TNF-alpha represses transcription 

of human Bone Morphogenetic Protein-4 in lung epithelial cells', Gene 393(1-2): 70-

80. 



356 

 

Ziegler, J. and Wachtel, H. (2005) 'Comparison of cascade impaction and laser 

diffraction for particle size distribution measurements', J Aerosol Med 18(3): 311-24. 

 

 


