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1 Introduction

Noncommmtative spaces with four dimensions are an interesting way to model space-time
at small length scales. Amongst the simplest four dimensional manifolds St is. on account
of the one-point compactification of Euelidean field theories. an important model. We
focus on the fuzzy approach to noncomnmtative spaces, where the function algebra is
replaced by a sequence of finite diensional matrix algebras A; and the metrical geometry
is determined, in our case, by a Laplacian acting on “functions”™ A. We will also present a
Dirac tvpe operator that recovers the spectrum of the standard round Dirac operator on
ST in a certain limit.

The fuzzy noncommutative 4-sphere, S}, was first constructed in [1] but has been
known for some time in different settings [2]-[5] along with other 4-dimensional fuzzy
spaces [6]-[7]. The key feature of S7. is that the algebra of functions does not form a closed
associative algebra. This can be understood sinee the product of two “funmections” takes one
out of the algebra of functions of .5'}_- and a projection is necessarv to bring the product
back [}l]

Here we follow the line presented in [9] where the algebra is associative but it includes
modes which do not belong to the fuzzy 4-sphere. The quantized version of S* can be
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constructed only in an indirect manner if one demands associativity of the algebra. this is
a consequence of the fact that S* does not admit a Poisson strueture. The approach taken
here is based on the fuzzy complex projective spaces, first given in [10] and further explored
in [11] [13]. and in the fact that CP? is a fibration over S1. In this context a construction
for the scalar theory on a fuzzy 4-sphere was first carried out as a Hopf fibration in [1].
but without a method of suppressing the unwanted modes. The necessary suppression
mechanisim was supplied in [9].

A method to obtain an effective scalar field theory on S} was given in [9]. there. an
algebraic approach was taken to eliminate the unwanted modes by constructing a positive
definite operator whose kernel consists of exactly all the modes in CP3. that belong to S},
this operator was interpreted as a modification of the Laplacian. In the present work we
give a geometrical interpretation of the suppresion mechanism in terins of the fibre bhundle
picture for CP*.

In section 2 we present a brief review of the aspects needed of 'CP}\_.' and S we follow
essentially [9. 10]. Section 3 presents the construction of our case of interest, CP?, first
as a Spin(6) and then as a Spin(5) adjoint orbit. It contitmes with the caleulation of the
imvariant line elemnent and isotropy subgroup in both approaches using the Maurer-Cartan
forms of the aforementioned groups, this is done only at a particular fiducial point that
we call the "north pole”. by equivariance this suffices. Section 4 presents a one-parameter
dependent squashed Laplacian A, which fixes the syimetry of CP3. to be Spin(5) instead

of the “round” Spin(6) symumetry. This Laplacian turns out to be an interpolation of

Spin(5) and Spin(6) quadratic Casimir operators. Section 5 deals with the use of the =
product map to construct the commmutative analogue of Ajy. The metric of the squashed
CP* is obtained from the squashed Laplacian explicitely as a combination of projectors.
The line element of the bundle CP? — S is computed and reinterpeted in terms of the
found radii of the fibre and base space. In section 6. in the spirit of [14], we present a
first order operator on CP}. that projects down to the Dirac operator in a certain limit
and henee give a preseription to construct an action for fermions supressing the unwanted

degrees of freedom. Section 7 presents our conclusions.

2 Review of C'Pf and Si

In the usual construction, CPY is defined as the space of all equivalence classes [¢)] of

unit vectors ¢ € CVtL

| = 1. given by the equivalence relation: ¢ ~ ¢ if and only
it 1 = "7y for some p € (0,27]. We follow closely the presentation in [10] where the
general details are given, and specialize later to the case under study of CP?. It was shown
in [10] that each equivalence class is associated with a hermitian rank one projector in
CNFTL P = b @ ot we have then the following alternative definition of CPN

CPY = {P e Matny :P?P=P =Pl TvP =1} (2.1)

Each projector P is associated with a point in CPY, a coordinate system is introduced
by expanding the projector in the basis of matrices given by the identity and the generators
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of su(N + 1) in the fundamental representation, denoted by {A,, p=1,..., N2 +2N}:

The generators have been chosen to be orthogonal and with such normalization that their
aloehra is

4'1,. ¥ Alf ==

[

]

;-\_I_l{s’rnj']-—l_ jr.’u‘.l""—l_*l.’u‘J""II"“

The conditionsin {2.1) together with (2.2} and {2.3) result into a set of quadratic constraints
for the real coordinates ¢,

(__ (__ _ _'_\— I _ \ i J_ r.-_) _l.‘
SpSsp T m ey B '-.rn'-. T — \" (‘\ —I— J_ L.z

these constraints describe the embedding CPY —s RN 2N wherefrom the coordinates £,
can be seen to be a globally well defined overcomplete coordinate system. The metric P,
complex structure J. and Kéhler structure K on CPY were found in [10] to be given as

Pru.?’ = Jru.?"".‘f:"‘- _?Ern'-..f'
Jog = (2.5)
K = 5
Notice that the complex structure satisfies J? = —P.

One may obtain the fuzzy complex projective space CP¥ by considering the algebra
of funetions to be the full matrix algebra given as

Maty =[] Jeo [-] | (2.6)
- —_—  ——

whose decomposition into irreducible representations of SU(N 4 1} corresponds with the
expansion into polarization tensors of a funetion on C P\, The dimension of the matrix
algebra (2.6) is d)Y = {"t-\'),
SUN+1) are £, = E Ty TR
L, are the generators of the totally svimmetric 11‘1‘0(111(-11 le representation: the associated
N (ad(L,)) ',2, and reflects the SU(N+

1), hereafter called “round”. syimmetry of 'CP}\_‘-‘ The parameter R is a length scale that

and in the fuzzy realization they take the form ad(L,) where
Laplacian is then the quadratic Casimir operator A =

fixes the size of CP™. We will analize in what follows a deformation of the Laplacian which
breaks the round symmetry and corresponds to a Kaluza-Klein-tvpe [15] fuzzy space, first
constructed in [9], which effectively reduces a scalar field theory from CP%. to S} through
a probabilistic penalization method. To this end we shall briefly review the construetion
of S}.

[

The right-invariant vector fields induced by the action of
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2.1 S} revisited

We center our attention in the representation theory necessary to construct the 51{1 further

details can be found in [9] and [8]. Consider the Euclidean ganmma matrices of R”, {I'; : a =

1,....] 5}, they satisfy the Clifford algebra relations {I',.I';} = 24,,1. One may observe

that by defining the operators v, = %F” for some real positive munber [ the relations
o

YaXa = B*1

=]

are fulfilled. These can be interpreted as the fuzzy analogue of the embedding equations for
ST R” at the lowest level of the matrix algebra sequence. that is. the defining Spin(5)
representation (% i} I Funections on .S'}_- at this level are given by elements of the form
P = g1+ F.I', and even at this level they do not form a closed subalgebra. To solve
this difficulty the approach that we follow. taken in [9]. is to adopt the full matrix algebra

Mat,. By using the L-fold syimmetrized tensor product of the defining representation.

(L Ly and choosing as algebra of fimetions the sequence of matrix algebras formed by the
SRR | ;
products .§ 3; ) @ L‘ . the operators

o= T @21 ol+1el, @0l 4+ -+ 1212wl (2.8)

— ———
. factors svim
generalize 17, to the L-th level and satisfy the constraint
JoJo=L(L+4)1. (2.9)

We generalize the matrices v, by defining X, := S — J. which satisfy the constraint

\ fL(L+4)

X, X, = R*1. In the large L limit the algebra becomes the commutative algebra ('(S%)

as the commutators [X,, X;| vanish in the limit I — oo while the constraint remains.
However, at a finite level L the algebra of functions is still not closed. The procedure
presented in [9] is to enlarge the algebra of functions to the full matrix algebra and then
suppress the modes which are not associated with the S} degrees of freedom in the (scalar)
fields by giving them a very large excitation energy. The sequence of matrix algebras
obtained is then _qu cand we can therefore conceive .‘}’]. effectively as a deformed 'CP:;_-‘

In what follows we (um to give a geometrical interpretation of this procedure.

3 The orbit construction of CP?

In this section we present the construction of CP? following [9] as Spin(6)(= SU(4) local
isomorphism) and Spin(5) orbits and obtain the metric in terins of the Maurer-Cartan forims
of these o

groups. Hereafter we will specialize to N = 3. recalling the Lie algebra isomorphism
spin(6) = su(4) we find it convenient to replace the index g = 1....,15 in {2.2) by a
composite index = AB where each index A, B =1,2.--- .6 and the understanding that

thev appear only in antisvmmetrized form. In this manner we preserve the use of Einstein’s

'We nse evervwhere the highest-weight vector labeling for representations.
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summation convention. Following [16] the algebra (2.3) of the Spin(6) generators in the

fimdamental representation takes the form:?

MapAep = Aapops + 7 EABC DEFAEF (3.1)

+5 (0ac Npp +oppAac —opcNap —oapApo).

Aip.op is the two-index antisymimetrizer:

Aapop = 5 (0ac98p — dapdBC) - (3.2)

The d and f tensors in (2.3) can be read from (3.1):

1 ~
ff_-u_zr DEF = 3*_-1,{_« DEF-

fapcppr = dacApp.pr — 0apApc.pr +0ppAac.er —OpcAap.pr-

The projector P € Maty in {2.2) is expanded as:?
P = :1('1 +naplap), (3.3)
the constraints (2.4) take the form:
nApnap = G. (34:)

EABCDEFIARNCD = Shipp. (3.5)

By contractions of (3.4) (3.5) we get the additional identities:

nacncep = —0ap: (3.6)
capcpErnpr = 2Anapnep +napnpe — nacnpp). (3.7)
€ApoppErnApnepnEr = 48, (3.8)

Inn the coordinate svstem {nap} the geometrical objects (2.5) are

1 1 1 o
Papcp = 5Aapop + SEABCDEFREF = TMABNCD, (3.9)

1
Jipep = Z,f_.u;f 'DEFNEF

1 . _ ) ) .

= zi_f”_-w dipp —O0apNpe + 0ppliac — Opcliap ),

1 .

Kap.cp = 5 (Papop +WJapen) -

Where. as before. J. P and K stand for the complex strueture, metric and Kihler straeture
on CP?.

I'he relations between gamma matrices and the Spin(6) generators of the 4 representation is A ap =

%(J + [‘:]_J'—:[[‘_.;; gl where I' = {I) s =1 is the chirality and satisfies 2 =1.
"We take , . = %n_.ygn_.yg. This is a more convenient normalization for our purposes.

o
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A more compact way to express the metric in (3.9] is

1 . s
Pipcop =5 Aapcp — Qapcen) (3.10)
where:?
' 1
Qapcp = 5 (nacnpp —napnpc). (3.11)

The projector Pap.cp has rank 6. it is the basic projector onto CP?. The orthogonal
complementary projector in R' is the rank 9 projector

1
Pip.cp = 5(Aapop + Qapop). (3.12)

We also have a rank 1 projector orthogonal to CP?,
naplicn

Nipop = ————. (:
A 6 .

‘Lo’-’
—
R

Notice that Pap.cp in (3.10) and Naipeop in (3.13) give a rank 7 projector. Pap.cp +
Nag.op projects RY onto S7 which can be viewed as an SU{4} orbit over SU(3). Since they
are orthogonal and project onto CP? and U(1) this S* admits one squashing parameter,
This is a special case of the more general result that S2VH = SUN + 1)/ SU(N) and
there is always one squashing parameter associated with the sum of the CPY and normal

projectors.

3.1 CP" as an orbit under Spin(6)
We give an explicit construction of CP? as a Spin(6) orbit and analize the induced metric.
As the adjoint action of Spin(6) in the space of projectors (2.1) is transitive. CP? can be
obtained as the Spin(6) orbit of an appropriate fiducial projector PY:

P =UPU! U € Spin(6). (3.14)
For 'P'::' we choose:

il J— il X
P = 1{1 + naplas).
1 1 : -
= 11 + Py ':_ A12 + A:H + A:‘:Es_}' . ':_ o l'-r)_:'
We call the point corresponding to PU the “north pole”.
The projector (3.9) plays an essential role in any differential relations since

dnap =Papcpdnop. (3.16)

The line clement is defined as®
2 pz‘ pz 2
‘ 1 1 ‘ 1 . P 1 . e
ffh‘z = Tff”_”gffn_ug =: TJ”.EU_? =: —T Tl‘(_ff..-'\-" _)2 = TP_”g:(-;)ffh‘_”_gffh‘( . (3.17)

and justifies the appellation metric to the projector Pap.cp.

*One can then easily check that AQ = QA = Q. Q* = A and Tr[Q] = 3.
"We will Ly e ';|“_\' set R =1 for the round CP*,
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The generators A4 p transform as a rank 2 tensor under Spin(6):

nap = BicRppngp. (3.18)

) ) . . 2 _ 012 o
[t mav be shown that the line element is given as ds? = —%Tr [R YdR. N ] where AV
is the matrix with entries n% ; and we rewrite R='dR in terms of left invariant Maurer-
Cartan forms of Spin(6):® R™'dR = —ieapThp. where Typ are the generators of the

vector representation.’ The line element is henece:

2 2 0 . 2f 2 N2 2
ds® = 4R°e pPipcpeop = 4R (U’m —e24)” 4+ (€14 4+ e23)” + (€15 — e25)" +

(e16 + €25)% + (e35 — e46)? + (€36 + €45 }2)- (3.19)

[t becomes apparent from (3.19) that the orbit is a six dimensional space, as expected for
CP?. It is possible to obtain the isotropy subgroup by looking at the combinations of forims
¢ 1 which do not appear in the metrie; the corresponding combinations of generators span
the isotropy subalgebra. In the SU(4) formulation the isotropy group is easily identified as
S(U(3) x U(1)). We obtain a coset space realization for CP?

CP? = SU(4)/S

(U(3) x UL)). (3.20)

3.2 CP" as an orbit under Spin(5)

Observe that {As. a.b = 1...., 5} generate the spin(5) subalgebra of spin(6) while

A transforms as a vector under Spin(h). We define A, = Ay so we can write the

i

projector (::’,?] as:

1 T i, A
P=-1+—A+—Au. (3.21)
1 + 5 + 1 -2l
the projector (3.15) takes the form:
1 1 I : .
PV = 11 + 54'\.-‘, + B (A2 + Aay) . (3.22)

The action of Spin(5) on the space of projectors (2.1) is also transitive, hence we obtain

CP* as an orbit of (3.15) or (3.22) under Spin(5).
The function algebra of CP? is now built from the two Spin(5) representations n,
which earries the 5-dimensional representation and rn,, which carries the 10-dimensional

representation. The SO(6) invariant line element (3.17) can therefore be deformed to:

\ !

ds? = :ufnf + .'f:fnfh, (3.23)

5Tt would be more natural to use right-invariant Manrer-Cartan forms (see appendix B). since these are
<]l1;|l Ly ll]e‘ veobor [ie‘lt]h L_\;; <].lhl€'l]hh€‘€] |x‘l\'>\\.'. |>l]l |h"all] \\."l“ |>e'e‘{]l]'l\';|le‘l]l Al ll]e‘ l]\"a[‘ll] [h"ale‘. ll]v l‘e‘hllll'll]_u;

l"l_:;l]l—'ll]\';ll"l;ll]l e‘X[:[‘e‘hh'l\' s }I[‘E‘t‘{]l].l‘\"rlli‘l]l {e] [‘e‘[:l;u g the [>[‘Hju'lc>[‘h at the north P e |>_\' those at a generic

podnt .
"The normalization of the generators Tap is such that they satisfv the same Lie algebra as Aap with
identical structure constants, their matrix elements being (Taplr = {{ a1 B Ad BI).
7
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We will leave a. /4 imdetermined for the moment, so that this is the most general induced
Spin(5)-invariant line element, we will come back to this point at the end of this section

and in section 5. It is now possible to write

: — 012 F A
dn?, = =Tr [ﬂ YR, n"] . (3.24)
dn? = |R_Jsfﬂn';:f|2. (3.25)

where 1" stands for the matrix of coefficients n?,. and 7 for the cohmmn vector with
components n!.

As before we express the line element in terms of the Spin(5) Maurer-Cartan forms
R=YIR = —ie Ty where T,y are the generators of the spin(5) subalgebra in the vector
representation.

We obtain for the line element:

63;2 _ (Ri| [Fp(]

) ab,cc

2 50 Lo, fa o
i + R 2 )‘Uu.f.l‘”r'ff | 320;‘

= f!lr.’.l"l’!r
/ an [ -2 2 2 2 i o2 i a2
= (& + 2.'?_; (v]__-) + €55 +e5; + “J:‘:) + —l.'f[u‘_w] 1+ 23] + (€13 —e2q4) ]

From (3.26) we can observe two interesting features: First, the isotropy subgroup can
be constructed as before giving the following coset space realization CP* = Spin(5)/[[ (1) x
SU(2)] and second. the space is locally of the form S? x S*: CP? is indeed a fibre bundle
with base space 1 and fibre S2. The constants a. 4 can now be reinterpeted in terms of

the squared radii of these spheres: RZ, = a 4273 and Ri.-‘g = 44 and the line element (3.23)

CE
can be written in the form
R2'J
= : : Sy : B 2y [ S L}
ds? = Ri..ufnf + Tl‘_ffnf;, — 2dn?). (3.27)
Furthermore using
dng = ngenpdingg (3.28)

one can extract the projector X.;..4 onto the S? fibre. This and related projectors are

discussed in section 5.1 below. The line element can therefore be written as

2 2 o, Boa
ds :RS.MN“—I— -l L abreddn o dingg.

[}

290

If we restrict the Maurer-Cartan forms in (3.19) to SO(5) we see that we recover the line
elemnent (3.26) with Ri._l = Rf;.g = R?.

4 Scalar field theory on S} revisited

As it was stated in section 3, CP? can be obtained as a Spin(6) or Spin(5) orbit. In order
to specifv the geometry all that is needed is to define a Laplacian. In principle we can
choose the Spin(6) or Spin(5) quadratic Casimir operators, or even a more general choice:
an interpolation between both of them:

;\'1 (:1;[)1'11[{5] + ;‘,2(:‘31“'11': 5) ‘

9 0f 20 11/0
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In [9] a prescription for a generie scalar field theory on fuzzy CP? was given. the
expression for the action reads

] Tr /1 .
S[d] = ﬁ (3{; Ayd+V [{[,]) _ (4.1)
where the full Laplacian is
; 1 —Epin(6) foitping s —Epini 6l Y
f'—\f.- = 8}?2 ((_ 2 + JI.P |‘__(_ > —C 2 _Jl) . |‘_—l.__,l

As mentioned in section 2. the algebra of functions on CP? is approximated by a sequence
] . s . : (LA LA2)(L+3)

of matrix algebras of dimension d} = === ==

The quadratic Casimir operators can be written using the adjoint action of the corre-

sponding generators

1 spine) . g o
5(_1;2[)1[][.:] — I:.UUP‘:)T_ 1‘{3}2 . I:—]:3:|
1 —Spin(5) . o2 p \
9 C 2 = 'l_”dLZJ.ra - Il__l'_l:_Jl

The normalization of J in (4.3) has been chosen so that in the fundamental representation
%;\HF, for the fundamental repre-
sentation. For the Spin{6) generators we use those in the L-fold symmmetrie tensor produet

representation .% % %‘} with the same dimension d . for Spin(5) we use the generators of

Tip = %;\_ug, [nn the same manner we have in (4.4) 7, =

the (4, &) representation, whose dimension is also d7 .

The choice (4.2) for the Laplacian can be understood analyzing the effect of the term

1 G N
o AP o —o i) AR
Ay = Y (_(_ 5 G, (4.5)
on 5} modes. After an analysis of the representation content for (2.6) it was proved in [9]
that Aj is a strictly positive operator for the non-S}- modes and has as its kernel precisely
the ‘a} modes.
1e mechanisi is one of probahilistic penalization as the probability of a field config-
Tl 1 f probabilist lizat tl bability of a field fi
uration @ can be separated into
o—S[D]—hS ]
Pld] = (4.6)
)=y 16
where

,_ / ur[tl)]{‘_,%'[d’]—f.-,s'; [®] {—l.T}

is the partition function of the model. Taking the limit i — oo makes the non-S}- modes
unreachable. The final result is that the CP}. field configurations not related to S} are
dyvnamically supressed in this limit.

11/0
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5 Geometric analysis of the supression mechanism

The product of matrices together with a map to functions induces a noncomnmitative
product on functions, this is the “product [10]. This useful tool allows us to access the
commutative limit explicitely. Let M. Mo be two matrices of dimension u’}{ and M (n),

My(n) be the corresponding funetions obtained by the mapping:
Mi(n) :=Tr (Pr(n)M) (5.1)

Prin)is constructed by taking the L-fold tensor product of P defined in (2.2}, it provides
a map to functions at the level L.
The *-product is then defined through:

I:."llir] # ."llfg:} (n) = Tr (’PLI::N:IJEJ :ll}g) . (5.2)

For CPV the *-product can be written as a finite series of derivatives on the coordinates
1. for our purposes we will use the preseription given in [10].

nap = 4Tr(Pr(n)JTan) . (5.3)

The commutator of 74 p maps into the right-invariant vector fields:
LapM(n) = Tr (Pr(n) [ Tan. 1)) (5.4)
= 2 ip.cpdopMin) (5.5)

The images of (4.33-(4.4) under the *-product map are:

[ - e o o

SCSPRONT = [j_”_;. [j_”_;._-’uﬂ 2 COM(n) = —dre M(n), (5.6)

1 —Snhin(h) = - BN P . | p —t

SOOI = [7 K m] 5 COM(n) = —4rs M(n). (5.7)

where

kg = Japcpdop (Vapprier) (5.8)

= Pop.prdondpr + Japop(Uopd appr)ier (5.9)

Ky = ‘]uh.( -”{)( ) I::J”hIJ{.“J(.'{)J{."J{.' :I :I') l”:l

Now. we are interested in extracting the metric tensor comparing the relevant contin-

uons Laplacian with the general form:

L= 0, (\.--’(_;(_;f“- a,_,) (5.11)
VG ' '
= GRO,0, +(0,G") D, + =G (a,.! \.--"(_;) o, (5.12)

\ T

- . . LY _ . (6 . .
When we retain the full Spin(6)-symumetry we have the Laplacian C'", the associated metric

tensor is just P ap.cp as can be seen from a straightforward calculation of rg:

Ko = 5p + epnpadapdon —napdap. (5.13)

10
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If one retains only the Spin(h) syimetry, the following expressions are found

l 1
. 2 a 4
Rg = uf? + d + ”t f?”tfuduf?(—)t d + )”u”fu (-)uf?dt -u'”'fa‘—)u‘—)fa (5 J—‘l)

_'”'ufndufn - -'”-u‘-)u

| L, 1 | o o
Ry = L)u{; + d ”u”f:duc (—)f:c + anc'u'”'f:cfc)uf:q d — n-.::'r'r'c'fat)ufnt)t' I:J J-J:I

1 o 3 ,. ,.
_Bn-unfﬁ‘—)ud{? - Zn-uf‘?duf? - '”-u‘—)u-

5.1 The vertical and horizontal projectors

The vertical and horizontal projectors can be constructed explicitely in our coordinate
system in a Spin(5j-covariant manner. The coordinates n 4z break up under Spin(b) as
., and n,. These are the basic objects we will need to build projectors. From (3.6) they

satisfy
Naelpe = Op — Tigliy, = P, (5.16)
Naian = 0. (5.17)
Nty = 1. (5.18)

Py is a rank 4 projector. it projects R? — S?. the usual contimnmm embeding of S1in R
and its orthogonal complement is Pjh = O — P, = nany. Defining

1. . 1, . A
('fr)tlf?-t' = 6( Mgty — '”‘u”‘f?t'_)' (Juf? ed — )l: e Tlhd — '?'utf”'f?t'_) (5 lﬁ)]l
we ()})H(‘I'V(‘ L’hell’
1
) ) . n - n . . 1 e e
2(2tlfi.z'(2c'cf.z' = IFclfn:c'cf = at_f)cu'lp{nf - oucfﬂ-{; + ")EJJJF:“ f)fng-ﬂ,tf_)- (520)

Where P, .; projects R'Y — S it is therefore the metric on S, the horizontal projector.
We can then define the projectors X and W:

}iufa:t'ur = l: 4“{? i(lr ]P‘uf::c'ur - ('2(!{?:('(1?\_)' ('5'21\)

I\..'l l—'-l\..'l —

Y'uf?:t'tf = ( 4uf? cd T IFDuF?:t'tf + (Juf?:t'tf\_)- (522)

Notice the ranks Tr[X] = 2 and Tr[Y] =

To see that these are orthogonal projectors one needs to observe that
(-Jt:fn:c'cf(-gc'cf:t'_i" = ‘4uf::t'_f" - IFDuf::t'_i"- (525)

The tensor X,p..q is the projector onto the fibres of CP? as an S? bundle over S?. it is the
vertical projector. X, Y and P are complementary and add up to the identity in R0, A ;.
It is straightforward to write the projector to the bundle, P, .z : R'Y — CP? as

1 . ) .
—(Aupeed + Papred — Qubred)- (5.24)

Puf?.t'cf ‘t\“uh s ilr + ]P-Uh " ilr - )

Using these projectors we construet an ansatz for the metrie of the squashed CP3.

11
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For completeness we also give the complex structure of CP? in the Spin(5) fornmlation.
we start by defining

1 .
I:an:c'cf = I(Ru Mg — r‘:ufnf:c' + Rnf'”'tu' - -'Pfu'”'ucf_)
- 1
1 1 1 1 1 3
I:f?:c'cf — 5(R;¢-”facf - R;J”f:c' + ﬂ;tf”ut' - ﬂ:g-”ucf_)
and noting that
EI{J:!'_?PI—:'_?"H'J = _}guh:c'd- E:f::z'_i"ﬂ'_i":ghE;f;:c'cf = _Erfn:c'cf-
EI{J:!'_?PI—:'_?"H'J = _Pclfn:c'cf and E:f::z'_i"ﬂ'_i":ghE;f;:c'cf = _Erfn:c'cf-
One constructs J =T 4+ T resulting into:
1 P - - - P PJ— PJ— PJ— N .r h r\
Juf::c'cf = 1( Oaelbd — QadMbe + Obdae — Ohellad + ac thd — mf”-fu'—i_ b llae — L ”-ucf_]l . l:_'J —'J_:I

It is easv to prove that
J=_P. (5.26)
We return now to the discussion regarding the Laplacian. For the deformed case., which
possesses only Spin(5) symumetry. the corresponding Laplacian acting on functions is £3.
we have
/ Spini(6) HeSpin(s) ~Spin (6 (e oy
.-’Ajrf = — ((1 ! +|'I (_)(_.121 S (_.121 ' )) (52()

and the mapping is:

1 .
Tr (PL(m)Ay 1) =: 5 LEM (n). (5.28)
then
— L} = Ko+ h (255 — Ke) . (5.29)

Our ansatz for the metric tensor related to £2 is the following:”
I =

QIFDuf::t'ur n (h n l) }guf::c'tf QIP.\clf::c'tf }iuf::c'ur

Guf?:t'tf — — + (5 30)
RZ RZ R"’.Q
the tensor ¥ 5.0 = X g0 18 recovered from the combination
1 . 1 1 N
2”-‘3 — Hg = adﬁh )”uf?”t tfdut ‘—)fuf - ”u”f?(—)ut d{u - ”uf?‘—)uf? (551)

by comparing the term in second derivatives in (5.31) against the fi-dependent term
in (5.30), X p..00.50.4. and we find that X thus obtained is indeed the fibre metric we
had previously identified in (5.21). 1

_ 1 1. _ . . .
‘\guf::c'cf = 5‘4uf::c'ur - 1 I:_f)ut"r'r'f:”'ur - f)ucf”f:”c' + f}f:cfnu'”-t' - f)fnc"”-u'”'tfj
1 . ) .
_z I: Maclthd — ”-ucf'”-f:c'} . (552)

"It should be mentioned that since S does not even admit an almost-complex structure, so T is not a
complex structure on it.

“Donble indices in P apeq and Ko peq are raised and lowered nsing A% Y and A apicq. the complex structure
J 15 thus an up-down tensor.
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In order to invert the metric tensor (5.30) we observe that PX = XP = X, hence the
covariant metric tensor is a linear combination of X and P. in fact

y - 2
(-\. _ P2 r-]Pu-r.l.r'ff J- W v R ]Pu-r.l.r'rf P2 wr S
T abed — 41| B m*ﬂuh:rrfj - 7—, + ]_&,';Ef&“.f,.;,-,f DD
- W - o ~v g i ¥ J
satisfies the required condition: GG ... = P,

6 Fermion fields

A fuzzy four-dimensional fermion field has the representation content:

w111\ (LLL\_ (LL_L o

It is shown in [9] that the algebra of fuzzy functions decomposes as

‘L L L 'L L
(—_) 5 —_)) &9 (? ——_)) = @{H Ti. ():l . (()2)

=AM
hence, the relevant decomposition is

S A A Ly /1 o1y /1 11
( 3 in.n ) = (n—l—g.n—l—g.ﬁ -\;-(;I—I—E.n—?—i -\;-(n—g.n—g.a

[
P~

[S]
bol =

The restrictions below show when these representations appear in the decomposition. The
spinor field decomposes into components W = W ¢ Wy W
For a Dirac operator on ‘a} we propose the linear spinor operator in the spirit of [14]

given by the ansatz

DF = ﬁ.lf.?[:flf,?- ] +24 h {?r’!’,!,r,[:]”,r,. ] — Tap [1-7.”3' ]:' ) IIU_LII

where 745 are the Spin(6) generators in the fundamental representation {%. é %} and o,

are the corresponding Spin(5) generators. The operator ) ; can be expressed in terms of
the differences of Casimir operators Cy == 2([7.-] + 3)% and €y = 2[J.-]*.

By “completing the square” we may rewrite the operator [J; purely in terms of

Lo - Spin(5) ~Spin(6) . .
quadratic Casimir operators. Note that [CP"7.CP"™] = 0 as can be readily verified
. “pinl Gl . Ol s rpeh . . Ol iy s . .

v expanding out GP'™ in Spin(5) indices in a Spin(5) invariant manner. [t is then
. o ) 2,
clear that both Casimir operators can be sinmltaneously diagonalized in the appropriate

basis. In order to compute the spectrim of the given operator (6.4) we use the following

IR 1 1 e
mE 5D (n —5-mtg . (6.5)

(n—l—%.n—l—%.%) = @(F?+%.FF?+%)~ (6.6)

reductions under Spin(5)

. ; . ; n—1 P
1 1 1
(n —l—;.n — 3.—3) = @ ((H +

| =

14 of 20 11/0



15 of 20

Wherefrom we find the decompositions

i \
1

T
N
i I:L'+%.-’I-'+%:I.

+ =

{ | 1 (I
5 . \nt+s.0m—5.—5 | P
FR SR AR N ) . (6.8)
! N .\.I N N
\ p

e kY
(0. 9 )

=10

The spectrum of the operator £, corresponding to the component ¥g has no coun-
terpart in the known spectrim for the Dirac operator on S, therefore this component
corresponds to degrees of freedom extraneous to the S* and it will, in fact. be completely
supressed by our dynamical mechanisin, The contributions to U and V_ in the kernel
of D =20.[Tw."| — caplTag. ] reproduce a cutoff version of the canonical spectrum of
Dirac operator on the round S,

In detail we have the following eigenvalues, caleulated with the expressions found in

appendix A

1 1y . =~ . (n4+Ln+l Ly
T -Ir 30 B e ) R -
AL L= n+24 fum) 0 (il n =0
\ i |
I . ; T .\ |n—z.n—: . ; PP
Dn;v =(—n—1+hm)l 3 n o> 1. (6.10)
k - ' T n—g.amts : k

1y ~ (ntin—Li -1y
D Y ={1l4+hin+m+Lpe 222 n=1
D}. y \ + \ + + 1, Ij:.'-l-%.rr.--f—%].'\ =
L 7 | | |
—= == . Ay s —5.—5) —
Yy =14+ him—n4+250 2 22 n > 1
Dj' [i.'—%.-'}.'-i—%].'\.l . + R + o [;.-—%.n.-—k%].l\.l -

In the large h limit the portion of the spectrum not in the kernel of [0 is sent to infinity.
the remaining low lying spectrum coincides with the spectrum of the Dirac operator on S
up to a truncation [17], namely

2 ( i 1 i 2 i i 3 )
2 L J‘ FAS 2 Y } !
3 ‘

{xn+2) : n=0.1,--- . L =1} U{L+2}, deg(n+2)=

The degeneracies have been calculated using the formulae in appendix A, clearly one has
deg(n+ 2) = dim(n + 5. 5).
A fermionic action mayv be now be written for a free spinor field with mass M as

] T _ . :

Sy = — (V(D; + M), (6.11)

“r.\_ LN ) J . !

We remark that the deformed spinor operator [); is not a Dirac operator on CP* with
a squashed metrie, our purpose here is to find a suitable operator for Fermions on fuzzy
S*. The operator we have found has similarities to higher spin Dirac operators introduced
in [18]. As in the case of the scalar theory the statistical penalization mechanisim will
suppress the functional degrees of freedom in the spinor field ¥ which are not associated

T .‘:'-}rjl,_. )
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Ome can check that when maped to funections the operator Dy is mapped to . 5. cdfed
and since n, is in the kernel of this operator any function of n, is in the kernel. It sees
only the dependence on n,;. The parameter h is similarly related to the radius of the §2
fibres and for large h we are shrinking the fibres relative to the S base.

7 Conclusions

We review the construction of fuzzy CP? presented in [10]. The main motivation to dis-
cretize this 6 dimentional space is due to its relation to S*. a compactification of R*.

The standard construction of CP? involves Spin{6) syvimmetry, giving as result a
“round” version of CP*. We gave a different construction of CP* and its fuzzyv version

! is manifiest. The isotropy group was

as a Spin(5) orbit where the local structure % x
found to be ST

polation of the Spin(6) and Spin(5) quadratic Casiirs was introduced as the Laplacian. we

(2) < UU7{1). Following the results obtained in [9] in which a convenient inter-

interpret the deformation parameter i introduced in [9] in terms of the radii of a squashed
CP?. From the point of view of a scalar field theory this procedure can be interpreted as a
Kaluza-Klein construction. where the entire space is non-trivial fibre bundle with base S*
and fibre 52, and in the large i limit the radius of the S? fibres is sent to zero.

Along the wav we constructed the complex structure of CP? as a Spin(5) orbit. The
square of the complex sturcture gives minus the CP? projector and it naturally splits into
parts which give the S1 base and S? fibres.

Using *-product map techniques we have presented an explicit manner to extract
the metric of the space under consideration from its Laplacian. The explicit form of the
deformed metric tensor &, was obtained. Examining the resulting line element ds? we
found the ratio between radii:

R g2 J.

B (I+h)
The limit /i — oo corresponds to shrinking the 5?2 fibres down to zero size, while the limit
h — —1 makes the fibres infinitely large.

We have also proposed a linear spinorial operator on S}, based on the same geometric
structure as the scalar case. and identified the relevant spinor subspaces that contain the
correct spectrum of the Dirac operator on ', up to a truncation. This operator acts on
four component spinors and does not correspond to a Dirac operator on CP”. though it is a
well defined first order operator on CP? and its fuzzy version. As with scalar fields. spinor
fields on S} have additional degrees of freedom in the construction, however all become
of arbitrarily large mass as the parameter h is sent to infinity and so are dynamically

suppressed.
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A Casimir operators and dimensions

The quadratic Casimir operators for Spin(6) and Spin(5) found in [19-21] were used,

S pinid) \ ; ; ; . p 13
! (. ma,ms) = mf + mﬁ +m3 + 4y + 2me, (A1)
Spin( 5 ; 3 i a3 . 1% F an

(_12.l (my,m2) = my(my +3) +ma(me + 1), (A.2)

which for the involved representations amount to

[ ; \ ; \
(‘Hlm“ Yin,n, 0) = 2n(n+ 3). (A3
G 11 l" A
(13[)1[]I i) ( n _I_ —n4+ =, ;) — ‘)“,“ _|__L _|_ - I:__JL.-L_:I
—Spin(6) ' 1 1 1 oy o 7 AR
G (n + 3 n— 573~ 2nin+3) + 1 {AD)
(s 1 1 5
— ! i B
corme (n +s.m+ 5 | =nn+4) +mim+2) + 5. (A.6)
~Bpin(5) ' 1 1 g By / Y ! P A
(O (n — 5 m + _3) =nn+2)+mim+2) — 5 (A.T)
We rewrite the square taking into account the following normalization:
TaAR 2 1 ~Spin () 111 15 . 'y
= - — =)= {AR)
2 22 27272 8 B
| b
- - —~Spin(6) \ CA A
(Tap. [Tap 1l = 5 @(-121 (n.n.0). (A9)
T n=0
Some useful fornmilae for the dimensions of representations we deal with are
ditn (my,mo,ma) = F {mf - mz +4my — 2ma + 3) (A 10)
X { f— m{—l——lml —|—-l) {mz—mf—l—?mz —|—1)
. \ Loy 2, 4 . FA 11)
dim (my . me) = 8 (mi—m3+3m; —ma+ 2} (A.11)
X {(2my+3)(2ma+ 1) .
dim (n,0) = g (n+1)(n+2)(2n+3), (A.12)
dim (n,n,0) = p (n+ lu (n4+2)7(2n43). (A.13)
o f 1 11 1 . o . . :
dim (n—l—_—.n—l—_—._— =—-(n+D(n+2y"(n+3). (A 14)
. ’ l l l l i 1% 7 Yo a0 a0 { 1 A
dimm | n + Sn—s.—5 | = 6” (n+1)(n+2)(n+3)(2n+3), (A.15)
dim ( —|— =, m —|— 5l =5mn+4)—mim+2)+3) (A.16)
e e i)
x{n+2)(m+1j.
’ 1 2. . . . .
dim (n —g.om+ 5| =5+ —mim+2)(n+1) (A7)
e e (e
® I o+ ll .
16
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. s = e . . sl 5 Spini6) .
The spinor components in (6.7)-(6.9) are eigenvectors of (70 pin(3 - ) which
appear as a part in the r.h.s. of (6.4):
__.)CH'pill[:": | C‘.pil][fi] U (7 :t_ T il l;: ’.--) / 4+ By + 5 I (n il lﬂ l_’]
2C. — o= 2m{im+2)+ - 2’z
2 2 I.::I:%r:-f—%]:l: N ! 4 lr:l:I u‘+%]:|:

e Yy ‘ 1 1 r 'l') ’ 1 1
aeopin(i) Spini ) \IHH— 3 M—5:73) _ 2 Dnlim Y _J ‘!I_J‘.'-i-g.i.'—a.—
(' 2 02 ) I[i.-+ rJ‘+—|II Zn+2m{m+2) + 4 I[J"-i—%.rj'—f—_
.)C pin( 5 CH'pil][fi] Ili tt+3. J‘-—%-—%] ’ 2 + Ynlm + 9 11 Ili + 5 , RiE- )
= — | - —
2 2 ji—— rJ‘+—I" - - - 4 [r.-—%.m ’
B Right-invariant Maurer-Cartan forms
The Spin(6) right-invariant Manrer-Cartan forins are defined by dRR™" = —i€,5T 5. they
are dual to the right-invariant vector fields
< €ap. Lop >=1Pap.cop. (B.1)
and 4
P.ipcp = 6 Tr([Tap. N[Ten, NY). (B.2)
By noticing the relations
1 —Spin(5) " . (T3 9
5(— 2 = Lrur.lPu-r.':r'rfLr'rf- Il_B")_JI
1 ~Bpin(6) ; \
_.T)(—Q = L.'J.uf—wun’ + 2 ]Puruu’ 'L.’ de "_B-'L_;'

it follows that the line elements corresponding to these operators are respectively

2 2 IFHF.IHJ' i Y
“f“_‘.:_) = eh-r.lPu-rJ:r'rfe?'rf_' {f‘qfi = e!-r.l (1_\” n rr!' + erf Il_B'.'r)_JI

From here we obtain the line element (3.26) associated with Aj:

—2 2 e ahicd . F X
”F"" - 'J:R egh ( ;) + J_ + h ) Q-;;- L_B.(.)_,'

[n order to fix a normalization for the radii we define the line element (3.17) by choosing
2 ‘2 2
ds” = —dnapdnap = AR €pPacnéon (B.7)

and split it up under Spin(5) as:

’ 2 5 2 ’
52 = B (o + T T2 it (“1“ e (D)

We can then read off from (3.23) Ri._l = o + 2/7 and Ri.g = 4/4. Finally using (4.2} we find,
as before,
Rz

2 2 2
Ra=R.  Rha={

({ B.9 )
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