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Abstract

This thesis is concerned with the correspondence between the max algebra and

non-negative linear algebra. It is motivated by the Perron-Frobenius theory

as a powerful tool in ranking applications. Throughout the thesis, we consider

max-algebraic versions of some standard results of non-negative linear algeb-

ra. We are specifically interested in the spectral and stability properties of

non-negative matrices. We see that many well-known theorems in this context

extend to the max algebra. We also consider how we can relate these results

to ranking applications in decision making problems. In particular, we focus

on deriving ranking schemes for the Analytic Hierarchy Process (AHP).

We start by describing fundamental concepts that will be used throughout the

thesis after a general introduction. We also state well-known results in both

non-negative linear algebra and the max algebra.

We are next interested in the characterisation of the spectral properties of mat-

rix polynomials. We analyse their relation to multi-step difference equations.

We show how results for matrix polynomials in the conventional algebra carry

over naturally to the max-algebraic setting. We also consider an extension of

the so-called Fundamental Theorem of Demography to the max algebra. Using

the concept of a multigraph, we prove that a number of inequalities related

to the spectral radius of a matrix polynomial are also true for its largest max

eigenvalue.

We are next concerned with the asymptotic stability of non-negative matrices

in the context of dynamical systems. We are motivated by the relation of

P -matrices and positive stability of non-negative matrices. We discuss how

equivalent conditions connected with this relation echo similar results over

the max algebra. Moreover, we consider extensions of the properties of sets

of P -matrices to the max algebra. In this direction, we highlight the central

role of the max version of the generalised spectral radius.

ix



Contents

We then focus on ranking applications in multi-criteria decision making prob-

lems. In particular, we consider the Analytic Hierarchy Process (AHP) which

is a method to deal with these types of problems. We analyse the classical

Eigenvalue Method (EM) for the AHP and its max-algebraic version for the

single criterion case. We discuss how to treat multiple criteria within the

max-algebraic framework. We address this generalisation by considering the

multi-criteria AHP as a multi-objective optimisation problem. We consider

three approaches within the framework of multi-objective optimisation, and

use the optimal solution to provide an overall ranking scheme in each case.

We also study the problem of constructing a ranking scheme using a combi-

natorial approach. We are inspired by the so-called Matrix Tree Theorem for

Markov Chains. It connects the spectral theory of non-negative matrices with

directed spanning trees. We prove that a similar relation can be established

over the max algebra. We consider its possible applications to decision making

problems.

Finally, we conclude with a summary of our results and suggestions for future

extensions of these.
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R The set of real numbers
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CHAPTER 1
Introduction

In this chapter, we briefly discuss non-negative matrices and their relevance to

applications. We then proceed to describe the max algebra, which is the main

focus of our later work, and discuss some motivating examples. After outlining the

structure of the thesis, we conclude by summarising the principal contributions of

the work.

1.1 Introductory Remarks

Throughout this thesis, we shall deal with non-negative matrices over the max

algebra. We first discuss non-negative matrices and then describe informally

some aspects of the theory and applications of the max algebra.

1.1.1 The Class of Non-negative Matrices

Non-negative matrices are square matrices in which all the elements are greater

than or equal to zero. Non-negativity appears naturally in applications in

science and engineering. We list a few examples below.

Probability theory. Non-negative matrices are frequently used in the theory

of Markov chains. Markov chains are applied widely in communications,

1



Chapter 1. Introduction

economics, population dynamics and information retrieval [Sen06]. A

Markov chain is characterised by a transition probability matrix. This

is usually a row stochastic matrix, a non-negative matrix all of whose

rows sum to one. For more background on this theory and applications,

see [Sen06].

Economics. Non-negative matrices also arise in mathematical models of eco-

nomics. A very classical example of this is the Leontief input-output

economic model [Mey00]. The relationships between industries in an

economy are represented by the consumption matrix. This is usually a

column stochastic matrix, a non-negative matrix all of whose columns

sum to one. For a discussion of the use of non-negative matrices in

Economics, see [BP94].

Demography. In Demography, the famous Leslie distribution model is used

to predict the future female population in a given society [Mey00]. The

Leslie matrix in this model is non-negative and can be made irreducible

and primitive1 under certain conditions. For an analysis of the model in

the context of non-negative matrix theory, see [Mey00].

Mathematical Programming. Non-negative matrix theory has an impor-

tant role in certain types of Linear Complementarity Problems (LCPs).

The LCP is a powerful framework for combinatorial optimisation with

numerous applications in game theory, economics and numerical analysis

[BP94]. In particular, P -matrices, matrices all of whose principal minors

are positive, play a key role in characterising the solution of an LCP.

Look at [BP94] for more information on the connection of LCPs with

non-negative matrices.

Numerical analysis. Non-negative matrix theory is closely related with ite-

rative numerical methods, such as those used in the solution of Dirichlet

boundary value problems (see Varga [Var62] for example). In the nume-

rical solution of such boundary value problems, discretisation methods

typically lead to a large set of linear equations. A typical approach to

1A matrix A is said to be irreducible if and only if its directed graph is strongly con-

nected. A is said to be primitive if and only if, for some positive integer k , a
(k)
ij is positive

for all i, j.

2



1.1. Introductory Remarks

the solution of these is to consider an iterative method in which the

iteration matrix is transformed to be non-negative.

Web search engines. The most common example demonstrating the impor-

tance of non-negativity is provided by Google’s PageRank algorithm.

The algorithm constructs the Google matrix by using the hyperlink

structure of the web. By applying two modifications to this matrix,

it is made row stochastic, irreducible and primitive. [LM06] is among

the many references that describe the relation between the PageRank

algorithm and non-negative matrix theory.

Operations research. Non-negative matrix theory plays a key role in con-

nection with the Analytic Hierarchy Process (AHP) [Saa77a, Saa80,

Saa88]. The AHP is a widely used technique in multi-criteria decision

making problems. In the AHP, pairwise comparison matrices are posi-

tive matrices, i.e., matrices with positive elements. We dedicate Chapter

5 to the application of the max algebra in ranking schemes in the multi-

criteria AHP.

Since the class of non-negative matrices is important in applications, the pro-

perties of this type of a matrix have attracted the interest of many researchers.

In this direction, the Perron-Frobenius theory plays a central role in the cha-

racterisation of the dominant eigenvalues and eigenvectors of non-negative

and related matrices. Moreover, it has an important role in characterising the

asymptotic behaviour of the matrix powers.

The classical Perron-Frobenius theory was derived by Oscar Perron in 1907

[Per07]. It establishes results on the spectral and asymptotic properties of

positive matrices. Shortly after that, these results were generalised to certain

type of non-negative matrices by Georg F. Frobenius [Fro12]. In the past

decades a wide range of books have been written on non-negative matrix

theory [Gan59, LT85, HJ90, BP94, BR97, Mey00, Sen06]. Given the extensive

usage of the classical Perron-Frobenius theory, the basic theory was generalised

to infinite dimensional operators [Jen12] and nonlinear maps [Nus88, Lem06].

In a sense, the max-algebraic spectral theory is a special case of nonlinear

Perron-Frobenius theory [Gun03, GG04, AGL11].

3



Chapter 1. Introduction

1.1.2 The Max Algebra

The max algebra is the main focus of this thesis. By the max algebra, we mean

an algebraic structure on the non-negative numbers under the maximum and

multiplication operations. It is isomorphic to the max-plus algebra via the

natural isomorphism x → log(x). In this thesis, we only deal with the max

algebra setting. While we later describe key results in detail, we now provide

a concise historical overview of the development of the field.

One of the first appearances of using such algebraic structures is in Stephen

C. Kleene’s paper on the theory of finite automata in 1956 [Kle56]. The

first extensive analysis on the fundamentals of the theory and applications is

contained in the lecture notes of Raymond A. Cuninghame-Green [CG79].

In this context, another well-know manuscript is [BCOQ92], which speci-

fically focuses on modelling and characterising of discrete event dynamical

systems with the max-plus algebra. One of the recent textbooks in the

field is Peter Butkovič’s book [But10], which provides a broad analysis of

the max-algebraic spectral theory with illustrative examples, as well as des-

cribing the latest developments. Several variations of the max algebra have

been used in applications by different authors. Examples include the max-

plus algebra [BCOQ92, GP97, HOvdW06, ABG07, But10], the min-plus al-

gebra [BCOQ92, Pin98] and the max-min algebra [Gav97, Gav00]. Moreover,

these variations have been rediscovered independently under different names

such as extremal [Vor67, Zim77], tropical [Sim78], exotic [GP97], idempotent

[KM97, LMS01, Kri05].

Such settings provide a natural framework for analysing a broad class of dis-

crete event dynamical systems. Typical examples include the design and ana-

lysis of bus and railway timetables [HOvdW06], scheduling of high-throughput

industrial processes [CDQV85], solution of combinatorial optimisation prob-

lems [Bap95, BB03, But03] and the analysis and improvement of flow systems

in communication networks [DCMSM06]. So far, they have appeared in several

branches of mathematics such as functional analysis, optimisation, stochastic

systems and dynamic programming [BCOQ92, GP97, But03, ABG07]. In par-

ticular, tropical geometry is a recently evolving area [Mik06, BSS07, Ser09c,

JK10].

4



1.1. Introductory Remarks

The max algebra setting arises directly in applications such as the Viterbi

algorithm [BCOQ92] and is used to construct ranking schemes for the AHP

[EvdD04, EvdD10]. An attraction of the max algebra is that nonlinear prob-

lems can be described in a linear manner. Moreover, it provides us important

tools to characterise the properties of non-negative matrices. Many key results

in this context relate to extensions of the classical Perron-Frobenius theory

over non-negative linear algebra to the max algebra setting. Very early results

in this direction were obtained by [Vor67]. For a recent reference focussing

specifically on the Perron-Frobenius theorem for this setting, see [Bap98],

wherein several proofs of this fundamental theorem were presented. One of

the proofs here highlights the key role played by the so-called critical graph.

This connection with graph theory is an instance of the strong relationship

between the max algebra and combinatorics [But03].

The classical power method was modified to obtain the max eigenvalue and

max eigenvectors of non-negative irreducible matrices in [EvdD99, EvdD01].

Conditions guaranteeing convergence of the power method were also given in

these papers. More detailed results on the behaviour of the max-algebraic

powers are contained in [Ser09a, Ser09b, But10].

Problems including matrix scaling in the max algebra were described in [BS05,

SSB09, Ser11] in connection with the max-algebraic spectral theory. Re-

sults relating classes of matrix norm, the maximal cycle geometric mean and

asymptotic stability for a single matrix in the max algebra were presented in

[Lur05]. This line of research was then further extended to sets of matrices in

[Lur06, Pep08] and to infinite dimensional positive operators in [Pep09].

1.1.3 Motivating Example

We discuss the AHP to which both the classical Perron-Frobenius theory and

the max-algebraic spectral theory was applied.

The AHP is a framework designed to deal with decision making problems

involving more than one criterion. We give three basic examples below.

Buying a car: The criteria may be cost, reliability, speed, comfort and

safety. How do we choose the best car among multiple alternatives with these

in mind?

5



Chapter 1. Introduction

Choosing a university: The criteria may be teaching quality, research suc-

cess, accommodation, social life and location. How do we decide the best

university with respect to all these criteria?

Planning a vacation: The criteria may be cost of the trip, sight-seeing

opportunities, entertainment, method of travel and eating places. Which one

of these is the most important in selecting a vacation plan? (We will revisit

this example in Chapter 5.)

In the AHP, a decision problem is represented in a treelike structure consisting

of three layers. From top to bottom, these represent an overall goal, a set of

criteria and alternatives. The general principle in the AHP is to compare

alternatives in pairs with respect to each criterion and the set of criteria with

respect to the main goal. At each step a positive matrix is constructed to

represent these pairwise comparisons.

The AHP was introduced by Thomas L. Saaty in 1977 [Saa77a]. After this, it

has successfully been used in several real life problems arising in manufacturing

systems, finance, military, traffic, politics, education, business, industry and

many others [Zah86, SV01, FG01, VK06, IL11]. It is a flexible and compre-

hensive framework due to its hierarchical structure. It is also straightforward

to apply once pairwise comparisons are constructed. That’s why the AHP

applications are so extensive.

The main target in the AHP is to rank the alternatives depending on mul-

tiple criteria in a decision problem. Saaty suggested using the Perron vector

[Saa77a, Saa80, Saa86a, Saa99] of the pairwise comparison matrices. Other

approaches are also possible, for instance the Least Squares method [Chu98,

FLR03] and the Logarithmic Least Squares method [WC80, Cra87]. These are

largely based on the idea of approximating the pairwise comparison matrix

by a transitive matrix 2. A max-algebraic approach, using the max eigenvec-

tor, was proposed by Ludwig Elsner and Pauline van den Driessche in 2004

[EvdD04, EvdD10]. Recently, it has received a considerable attention as an

alternative approach [Tra11].

2A positive matrix A is said to be transitive if aijajk = aik for all i, j, k and aii = 1.

6



1.2. Thesis Overview

1.2 Thesis Overview

The overview of this thesis is as follows.

• In Chapter 2, we provide essential mathematical background on non-

negative linear algebra and the max algebra. We formally define the

eigenvalue problem and recall the Perron-Frobenius theory in each case.

Also, we discuss numerical approaches to compute the eigenvalues and

eigenvectors of a non-negative irreducible matrix.

• In Chapter 3, we consider the Perron-Frobenius theory for matrix poly-

nomials over the max algebra. We study the connection between max

matrix polynomials and multi-step difference equations. An important

result of this chapter is a max version of the Fundamental Theorem of

Demography (Theorem 3.1.3) which characterises the behaviour of the

solution of multi-step difference equations in the max algebra. Further,

we define a set of inequalities on the largest max eigenvalue of a max

matrix polynomial in terms of an n× n non-negative matrix.

• In Chapter 4, we consider asymptotic stability over the max algebra.

In this context, we introduce the class of Pmax-matrices and discuss a

number of its equivalent properties. Particularly, we discuss the relation

between the Pmax-property and the stability of delayed difference equa-

tions in the max algebra. Moreover, we extend these concepts to sets

of non-negative matrices and introduce Pmax-matrix sets. A main result

of this chapter describes a number of equivalent results for Pmax-matrix

sets and answers some stability questions for a finite set of non-negative

matrices and for discrete inclusions in the max algebra (Theorem 4.4.1).

• In Chapter 5, we explain the max algebra approach for the single crite-

rion AHP. We discuss its extension to the multi-criteria case to derive an

overall ranking scheme for the alternatives. Inspired by this, we intro-

duce a novel approach in the framework of multi-objective optimisation.

Basically, we are concerned with three types of optimal solutions for the

considered optimisation problem. A key result of this chapter shows

that Pareto optimal solutions are guaranteed to exist over the positive

orthant (Corollary 5.5.8).

7



Chapter 1. Introduction

• In Chapter 6, we consider a max version of the Matrix Tree Theorem

for Markov Chains. Specifically, we relate the max-algebraic spectral

theory of an irreducible max-stochastic matrix to the weights of directed

spanning trees in its associated digraph. A fundamental result in this

Chapter establishes the relation between a max eigenvector of the mat-

rix and the maximal weight of rooted directed spanning trees (Theorem

6.2.1). We also discuss possible applications of this result to ranking

problems.

• In Chapter 7, we summarise our results and discuss a number of open

questions related to the work of previous chapters.

1.3 The Contributions

This thesis contributes to the characterisation of the spectral and stability

properties of non-negative matrices over the max algebra. The results are

relevant to the analysis of multi-step difference equations, discrete inclusions

and ranking schemes for decision making problems.

The following journal publications were prepared during the Ph.D. study.

1. B. Benek Gursoy, S. Kirkland, O. Mason and S. Sergeev, On the Markov

Chain Tree Theorem in the Max Algebra, Electronic Journal of Linear

Algebra 26 (2013) 15-27.

2. B. Benek Gursoy, O. Mason and S. Sergeev, The Analytic Hierarchy

Process, Max Algebra and Multi-objective Optimisation, Linear Algebra

Appl. 438 (2013) 2911-2928.

3. B. Benek Gursoy and O. Mason, P 1
max and Smax properties and asymp-

totic stability in the max algebra, Linear Algebra Appl. 435 (2011) 1008-

1018.

4. B. Benek Gursoy and O. Mason, Spectral properties of matrix polynomi-

als in the max algebra, Linear Algebra Appl. 435 (2011) 1626-1636.

The following conference and workshop abstracts were presented regarding the

study in publications.
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1.3. The Contributions

1. B. Benek Gursoy, O. Mason and S. Sergeev, Application of the Max Al-

gebra to Ranking Schemes in AHP, Workshop of the LMS Joint Research

Group: Tropical Mathematics and its Applications, 2012, Birmingham,

UK.

2. B. Benek Gursoy and O. Mason, P 1
max and Smax properties and asymp-

totic stability in the tropical linear algebra, International Linear Algebra

Society (ILAS), 2011, Braunschweig, Germany.

3. B. Benek Gursoy and O. Mason, Matrix Polynomials in the Max Algebra;

Eigenvalues, Eigenvectors and Inequalities, International Linear Algebra

Society (ILAS), 2010, Pisa, Italy.
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CHAPTER 2
Fundamental Concepts

In this preliminary chapter, we introduce the general notation, definitions and some

fundamental results that will be frequently used throughout the thesis. We first

define certain types of non-negative matrices and recall the celebrated Perron-

Frobenius theorems. Then, we introduce classical concepts from graph theory and

present preliminary results on the relation between graphs and non-negative mat-

rices. The chapter concludes with some formal definitions in the max algebra and

extensions of some known results of non-negative linear algebra to the max algebra.

2.1 Non-negative Linear Algebra

To start with, we provide a basic mathematical background on the spectral

theory of non-negative matrices. We also recall a number of necessary defini-

tions concerning graph theory.

2.1.1 General Notation

R denotes the set of real numbers; Rn stands for the vector space of all n-tuples

of real numbers; Rn×n stands for the space of n×n matrices with real entries.

For x ∈ Rn and 1 ≤ i ≤ n, xi denotes the ith component of x. Similarly, for

A ∈ Rn×n and 1 ≤ i, j ≤ n, aij refers to the (i, j)th entry of A.

10



2.1. Non-negative Linear Algebra

Further, R+ = [0,∞) denotes the set of all non-negative real numbers; Rn
+

denotes the set of all n-tuples of non-negative real numbers such that

Rn
+ = {x ∈ Rn | xi ≥ 0, 1 ≤ i ≤ n}. (2.1)

Rn
+ is called the non-negative orthant. Rn×n

+ stands for the set of all n× n

matrices with non-negative real entries such that

Rn×n
+ = {A ∈ Rn×n | aij ≥ 0, 1 ≤ i, j ≤ n}. (2.2)

We use xT and AT for the transpose of x ∈ Rn and A ∈ Rn×n respectively.

For 1 ≤ i ≤ n, Ai. denotes the ith row of A and A.i denotes the ith column of

A. Ak represents the kth power of A for some k ∈ R. We use I for the n × n

identity matrix and X = diag (x1, x2, ..., xn) for an n × n diagonal matrix

given by

X =











x1 0 . . . 0

0 x2 . . . 0
...

...
. . .

...

0 0 . . . xn











where xi ∈ R (i = 1, 2, ..., n). Moreover, 1n1Tn represents a matrix with every

entry equals to one where 1n ∈ Rn
+ is the vector of all ones.

A vector x ∈ Rn is said to be positive if xi > 0 for 1 ≤ i ≤ n. This is denoted

by x > 0. If xi ≥ 0 for 1 ≤ i ≤ n, we say that x is non-negative and write

x ≥ 0 or x ∈ Rn
+.

A matrix A ∈ Rn×n is said to be positive if aij > 0 for 1 ≤ i, j ≤ n. This

is denoted by A > 0. We say that A is non-negative and write A ≥ 0 or

A ∈ Rn×n
+ if aij ≥ 0 for 1 ≤ i, j ≤ n. Notice that A > 0 doesn’t mean

A ∈ Rn×n
+ and A 6= 0. In particular, we adopt the following notation.

(i) For x, y ∈ Rn, we define x ≥ y if x− y ≥ 0 and x > y if x− y > 0;

(ii) For A,B ∈ Rn×n, we define A ≥ B if A−B ≥ 0 and A > B if A−B > 0.

2.1.2 Some Special Types of Non-negative Matrices

Here, we briefly define a number of special types of matrices in non-negative

linear algebra. We will recall these matrices throughout the section in the

11



Chapter 2. Fundamental Concepts

context of graph theory.

A matrix P ∈ Rn×n is said to be a permutation matrix if it is obtained from

the identity matrix, I ∈ Rn×n, by interchanging its rows and columns. An

example of a permutation matrix can be given by

P =








0 1 0

0 0 1

1 0 0







.

By multiplying a general 3 × 3 matrix A by P , we get

PA =








a21 a22 a23

a31 a32 a33

a11 a12 a13







.

Note that multiplication of A by P from right swaps the columns of A in a

similar fashion.

For n ≥ 2, a matrix A ∈ Rn×n is said to be reducible if there exists a permu-

tation matrix P ∈ Rn×n such that

P TAP =




B C

0 D





where B and D are square matrices. If B or D is reducible, we can apply

proper permutations to these matrices until we obtain the following form










A11 A12 . . . A1r

0 A22 . . . A2r

...
...

. . .
...

0 0 . . . Arr











(2.3)

so that each block matrix Aii(1 ≤ i ≤ r) can not be reduced further. (2.3) is

called the Frobenius normal form of A [BR91].

If A is not reducible, it is said to be an irreducible matrix. The following is

an immediate result on irreducible matrices [HJ90, BP94].

Theorem 2.1.1. For A ∈ Rn×n
+ , the following are equivalent.

(i) A is irreducible;

12



2.1. Non-negative Linear Algebra

(ii) AT is irreducible;

(iii) (I + A)n−1 > 0.

A matrix A ∈ Rn×n
+ is said to be primitive if and only if there exists some

positive number k such that Ak is positive. In this context, we define the

exponent of A as follows [HJ90, BR91, BP94].

exp(A) = min{k | Ak > 0, k ∈ R+} (2.4)

The following result describes an upper bound for exp(A) which is also known

as the Wielandt bound [WM67].

Theorem 2.1.2. If A ∈ Rn×n
+ is primitive, then exp(A) ≤ n2 − 2n + 2.

2.1.3 The Perron-Frobenius Theory

We next recall the Perron-Frobenius theory for non-negative matrices. It pro-

vides a characterisation for the spectral properties of non-negative matrices.

We start by introducing the spectral radius of a matrix.

For an n × n matrix A, the eigenequation is given by

Ax = λx (2.5)

where λ is an eigenvalue and x is an eigenvector of A (x 6= 0). We call x

a right eigenvector associated with λ. Moreover, y satisfying yTA = λyT is

called a left eigenvector associated with λ. Any nonzero linear combination of

eigenvectors corresponding to λ is also an eigenvector of A.

The eigenvalues of A can be determined by finding the roots of the characte-

ristic equation of A:

det(A− λI) = 0. (2.6)

We can represent (2.6) as an nth degree polynomial of the form
k∏

i=1
(λ− λi)mi

for k ≤ n. Here, mi is said to be the algebraic multiplicity of λi for i = 1, ..., k.

The number of linearly independent eigenvectors corresponding to λi is said

to be the geometric multiplicity of λi for i = 1, ..., k. The set of eigenvalues is

13



Chapter 2. Fundamental Concepts

called the spectrum of A and denoted by σ(A). The maximum absolute value

of the elements in the spectrum is called the spectral radius of A:

ρ(A) = max
i

{|λi| | λi ∈ σ(A)}. (2.7)

ρ(A) plays an important role in characterising the convergence of matrix po-

wers in the sense of dynamical systems. In this context, it is well-known that

lim
k→∞

Ak = 0 if and only if ρ(A) < 1 [HJ90].

Next, we describe some bounds and inequalities for the spectral radius of

A ∈ Rn×n that are taken from [HJ90]. It is well-known that ρ(A) ≤ ||A|| for

any matrix norm on Rn×n and the following hold.

ρ(A) = lim
k→∞

ρ(Ak)
1

k (2.8)

ρ(A) = lim
k→∞

||Ak|| 1

k

The second equation was introduced by Israel M. Gelfand (1913 − 2009) in

1941 [Gel41]. It is known as the Gelfand formula. It provides a link between

powers of the matrix A and ρ(A).

Next, we state the so-called Perron Theorem. It was proven by Oscar Perron

(1880 − 1975) in 1907 [Per07]. It provides a characterisation of eigenvalues

and eigenvectors of positive matrices [HJ90, Mey00].

Theorem 2.1.3. (The Perron Theorem) For A > 0, the following are

true.

(i) ρ(A) > 0;

(ii) ρ(A) ∈ σ(A);

(iii) ρ(A) has algebraic and geometric multiplicity one;

(iv) There exist positive right and left eigenvectors x, y > 0 such that Ax =

ρ(A)x and yTA = ρ(A)yT ;

(v) lim
k→∞

(
A
ρ(A)

)k
= xyT where Ax = ρ(A)x, yTA = ρ(A)yT and xTy = 1.

Briefly, if A is positive, then ρ(A) is the only eigenvalue of A in the spectrum

and there is a positive and unique eigenvector (up to a scalar multiple) cor-

responding to it. ρ(A) is called the Perron root and x is called the Perron

vector .
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2.1. Non-negative Linear Algebra

Theorem 2.1.4. (The Perron Theorem for Non-negative Matrices)

For A ∈ Rn×n
+ , the following are true.

(i) ρ(A) ∈ σ(A);

(ii) There exist non-negative and nonzero right and left eigenvectors x, y ∈
Rn

+ such that Ax = ρ(A)x and yTA = ρ(A)yT .

The Perron Theorem was extended to irreducible matrices by Ferdinand G.

Frobenius (1849−1917) in 1912 [Fro12]. In the following, we state the so-called

Perron-Frobenius theorem [HJ90, Mey00].

Theorem 2.1.5. (The Perron-Frobenius Theorem) For an irreducible

A ∈ Rn×n
+ , the following are true.

(i) ρ(A) > 0;

(ii) ρ(A) ∈ σ(A);

(iii) ρ(A) has algebraic and geometric multiplicity one;

(iv) There exist positive right and left eigenvectors x, y > 0 such that Ax =

ρ(A)x and yTA = ρ(A)yT ;

(v) If there exist h distinct eigenvalues {λ0, ..., λh−1} each with algebraic

multiplicity one and absolute value ρ(A), then λj = ρ(A)ei
2πj

h for j =

0, 1, ..., h− 1;

(vi) If h > 1, then there exists a permutation matrix P such that A can be

reduced to the following form:

P TAP =














0 A12 0 . . . 0

0 0 A23 . . . 0
...

...
...

. . .
...

0 0 0 . . . Ah−1h

Ah1 0 0 . . . 0














.

The term h in Theorem 2.1.5 is said to be the index of imprimitivity of A. It

equals to the number of eigenvalues whose absolute value equals to ρ(A). If

h = 1, then A is a primitive matrix. For primitive matrices, the result (v) of

Theorem 2.1.3 holds in addition to Theorem 2.1.5 (i)-(iv) [HJ90].
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Theorem 2.1.6. If A ∈ Rn×n
+ is primitive, then

lim
k→∞

(

A

ρ(A)

)k

= xyT > 0

where Ax = ρ(A)x, yTA = ρ(A)yT , x, y > 0 and xT y = 1.

2.1.4 Graph Theory

In this section, we recall various concepts in graph theory that will be used

later on.

An undirected graph is a pair denoted by G = (N,E) that consists of

• N : finite set of vertices;

• E : a set of edges between vertices in N .

If there exists an edge between the vertices u, v ∈ N , we write e = {u, v}. In

this notation, u and v are called endpoints. If two end points are same, then

the edge connecting them is called a loop.

A directed graph (digraph) is an ordered pair G = (N,E) consisting of a finite

set of vertices N and a set of directed edges E between vertices in N . The

edges in a directed graph are given by ordered pairs of vertices e = (u, v).

A multigraph is undirected or directed graph where there are multiple edges

between vertices. The edges in the multigraph are called multiedges.

G is called a weighted directed graph if some positive numbers are assigned to

the edges in E. Each number is said to be the weight of the corresponding

edge.

Finally, a graph consisting of a subset of vertices N and edges E of G is said

to be a subgraph of G. We illustrate these concepts in Figure 2.1.

Non-negative Matrices and Digraphs:

For A ∈ Rn×n
+ , we denote the weighted directed graph associated with A by

D(A) = (N(A), E(A)). Formally, D(A) consists of the finite set of vertices

{1, 2, ..., n} and there is a directed edge (i, j) from i to j if and only if aij > 0.
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u

v

z

(a) Undirected Graph

u

v

z

(b) Directed Graph

u

v

z

(c) Multigraph

u

v

z

(d) Multigraph

u 1

v

2 z

3

4

1

(e) Weighted Digraph

v z
3

1

(f) Subgraph of (e)

Figure 2.1: Types of Graphs

A directed path (i = i1, i2, . . . , ik = j) is a sequence of distinct vertices bet-

ween any two vertices i, j in D(A), where (ip, ip+1) is an edge in D(A) for

p = 1, . . . , k − 1. The length of a path is the number of edges on the path.

The weight of a path (i = i1, i2, . . . , ik = j) of length k − 1 is given by

ai1i2ai2i3 · · ·aik−1ik . A cycle of length k in D(A) is a closed path of the form

(i1, i2, ..., ik, i1) where i1, i2, ..., ik are in {1, 2, ..., n} and distinct. Note that a

loop (ij , ij) (1 ≤ j ≤ n) is a cycle of length 1 with weight aij ij . Moreover, the

cycles (i1, i2, ..., ik, i1), (i2, i3, ..., i1, i2), ..., (ik, i1, ..., ik−1, ik) are identical.

Let Γ denote the cycle (i1, i2, ..., ik, i1). Then, we adopt the notation

i. π(Γ) = ai1i2ai2i3 · · ·aiki1 for the weight of the cycle Γ;

ii. l(Γ) = k for the length of the cycle Γ.

For such a cycle the cycle geometric mean is given by k
√
ai1i2ai2i3 · · ·aiki1 .

Two vertices i, j ∈ N(A) is strongly connected if there exists a directed path

from i to j and from j to i. This defines an equivalence relation on the
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set of vertices. The corresponding equivalence classes are called the strongly

connected components of D(A) [BR91].

D(A) is called strongly connected if and only if there is a directed path between

any two vertices i, j in D(A). It is standard that A is an irreducible matrix

if and only if D(A) is strongly connected [HJ90]. For an irreducible matrix,

the index of imprimitivity of A corresponds to the greatest common divisor

(g.c.d.) of the lengths of all of the cycles in D(A). Specifically, if it is one,

then we say that A is a primitive matrix [HJ90]. If A is not irreducible, then

there exist more than one strongly connected components in D(A).

The distance between any two vertices i and j is the length of the shortest

path between i and j. Formally,

d(i, j) = min{l | there exists a path of length l from i to j}.

In particular, d(i, i) = 0. For an irreducible A ∈ Rn×n
+ , the diameter of D(A)

is the maximum value of the distance over all pairs of its vertices given by

d(D(A)) = max{d(i, j) | i, j ∈ N(A), i 6= j}. (2.9)

Non-negative Matrices and Multigraphs:

Given Ψ = {A1, . . . , Am} ⊂ Rn×n
+ , we write apij for the (i, j) entry of Ap for

1 ≤ p ≤ m. We write M(Ψ) for the multigraph associated with the set Ψ.

Thus M(Ψ) consists of the vertices {1, . . . , n} with an edge of weight apij from

i to j for every p for which apij > 0. In an abuse of notation we shall identify

the edge with its weight apij in this case. A path in the multigraph M(Ψ) is

then a sequence of vertices (i1, i2, . . . , ik) and edges apj

ij ij+1
> 0, 1 ≤ j ≤ k such

that i1, . . . , ik are in {1, 2, ..., n} and distinct and p1, . . . , pk are in {1, . . .m}.

A cycle in the multigraph M(Ψ) is a closed path of the form (i1, i2, ..., ik, i1)

where i1, i2, ..., ik are in {1, 2, ..., n} and distinct. Definitions of the path length,

weight and the cycle geometric mean are analogous to the case of a directed

weighted graph.

2.2 The Max Algebra

We next provide necessary mathematical background in the max algebra to

understand the results presented in the following chapters.
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2.2.1 General Notation

In this section, we recall general notation and basic algebraic properties of the

max algebra. The max algebra denoted by Rmax,× is an algebraic structure

consisting of the set of non-negative numbers equipped with the two basic

operations:

a⊕ b = max(a, b) (2.10)

a⊗ b = ab

Rmax,× = (R+,⊕,⊗) forms a semiring (a ring with no additive inverse) of non-

negative numbers with the operations: ⊕ and ⊗. The identity element for ⊕
is 0 i.e., a ⊕ 0 = 0 ⊕ a = a for all a ∈ R+. Moreover, ⊕ is idempotent, i.e.,

a ⊕ a = a and there is a usual order on the max algebra semiring such that

a⊕b = b implies a ≤ b for all a, b ∈ R+. The multiplication ⊗ is commutative,

i.e., a⊗ b = b⊗ a and has an identity element 1, i.e., a⊗ 1 = 1 ⊗ a = a for all

a, b ∈ R+.

For a brief list of well-known semirings, see Table 2.1 [GP97].

Rmax,× (max,×) semiring (R+,max,×)
Rmax (max,+) semiring (R ∪ {−∞},max,+)
Rmin (min,+) semiring (R ∪ {+∞},min,+)

Rmax,min (max,min) semiring (R ∪ {±∞},max,min)
Rh Maslov semiring (R ∪ {−∞},⊕h,+)

a⊕h b = h log(exp(a/h) + exp(b/h))

Table 2.1: Some well-known semirings

The max algebra is isomorphic to the max-plus algebra, which is an algebraic

structure on R ∪ {−∞} together with max and +, by the map a → ln(a)

(See Table 2.2). The name was used for the max-plus algebra setting in

several works [BSvdD93, MP00, But03, BCGG09]. However, we will only be

concerned with the max and × setting in this thesis and follow the conventions

in [Bap98].

Operations of the max algebra, ⊕ and ⊗, extend to vectors and matrices in the

same way as in conventional linear algebra [CG79, BCOQ92, Bap98, But10].

For A,B ∈ Rn×n
+ , we denote the sum by (A ⊕ B)ij = max(aij , bij) and the
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Chapter 2. Fundamental Concepts

Max algebra Max-plus algebra
a, b ln(a), ln(b)

a⊕ b : max(a, b) max(ln(a), ln(b))
a⊗ b : ab ln(a) + ln(b)

identity for ⊕: 0 −∞
identity for ⊗: 1 0

Table 2.2: The isomorphism between the max and max-plus algebra

product by (A ⊗ B)ij = max
1≤k≤n

(aikbkj) for 1 ≤ i, j ≤ n. For instance, consider

the following matrices

A =








8 3 1

5 4 2

4 5 9







, B =








7 1 9

6 2 6

8 4 1







.

Then,

A⊕ B =








8 3 9

6 4 6

8 5 9







, A⊗ B =








56 8 72

35 8 45

72 36 36







.

For x ∈ Rn
+, the matrix-vector product is defined by (A ⊗ x)i = max

1≤j≤n
(aijxj)

for 1 ≤ i ≤ n. Moreover, we denote the kth max power of A ∈ Rn×n
+ by

Ak⊗ = A ⊗A⊗ ...⊗ A
︸ ︷︷ ︸

k times

in the max algebra. Multiplication by a scalar α ∈ R+ is given by (αA)ij =

αaij for 1 ≤ i, j ≤ n. The identity matrix is the same as in conventional linear

algebra.

2.2.2 Max Version of the Perron-Frobenius Theory

Next, we describe an extension of the Perron-Frobenius theory to the max

algebra.

For an n× n non-negative matrix A, the eigenequation in the max algebra is

given by

A⊗ x = λx (2.11)
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where λ ≥ 0 is a max eigenvalue, x ≥ 0 (x 6= 0) is a max eigenvector.

We call x a right max eigenvector associated with λ. Moreover, y satisfying

yT ⊗A = λyT is called a left max eigenvector associated with λ.

For A in Rn×n
+ , the largest max eigenvalue is denoted by µ(A). It is the maxi-

mum cycle geometric mean in D(A) over all possible cycles [CG79, BCOQ92,

Bap98, Lur05, But10]:

µ(A) = max{ k

√

π(Γ) | Γ ∈ D(A) with l(Γ) = k, 1 ≤ k ≤ n}. (2.12)

In a sense, this is still true in the case where D(A) contains no cycles and

µ(A) = 0.

A cycle in D(A) whose cycle geometric mean equals to µ(A) is called a critical

cycle. Vertices that lie on some critical cycle are known as critical vertices.

The set of edges belonging to critical cycles are said to be critical edges. The

critical matrix [EvdD99, EvdD01] of A ∈ Rn×n, denoted by AC , is formed from

the submatrix of A consisting of the rows and columns of A corresponding to

critical vertices as follows.

aCij =







aij if i, j lies on a critical cycle,

0 otherwise.

DC(A) is used to designate the weighted directed graph of the critical matrix

and denoted by DC(A) = (NC(A), EC(A)) where NC(A) stands for critical

vertices while EC(A) stands for critical edges. It is said to be the critical

graph of A. We now illustrate these concepts with an example.

Example 2.2.1. Consider the following matrix

A =











1 0.25 0.2 0.5

4 0.2 0 1

1 0 0.5 0

0 0.25 1 1











.

There are ten cycles in D(A) as follows.

• Γ1 = (1, 1) with π(Γ1) = a11 = 1 and l(Γ1) = 1

• Γ2 = (2, 2) with π(Γ2) = a22 = 0.2 and l(Γ2) = 1
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Figure 2.2: D(A)

• Γ3 = (3, 3) with π(Γ3) = a33 = 0.5 and l(Γ3) = 1

• Γ4 = (4, 4) with π(Γ4) = a44 = 1 and l(Γ4) = 1

• Γ5 = (1, 2, 1) with π(Γ5) = a12a21 = 1 and l(Γ5) = 2

• Γ6 = (1, 3, 1) with π(Γ6) = a13a31 = 0.2 and l(Γ6) = 2

• Γ7 = (2, 4, 2) with π(Γ7) = a24a42 = 0.25 and l(Γ7) = 2

• Γ8 = (1, 4, 2, 1) with π(Γ8) = a14a42a21 = 0.5 and l(Γ8) = 3

• Γ9 = (1, 4, 3, 1) with π(Γ9) = a14a43a31 = 0.5 and l(Γ9) = 3

• Γ10 = (1, 2, 4, 3, 1) with π(Γ10) = a12a24a43a31 = 0.25 and l(Γ10) = 4

Then, µ(A) = max(1, 0.2, 0.5,
√

0.2,
√

0.25, 3
√

0.5, 4
√

0.25) = 1. Thus, Γ1,Γ4 and

Γ5 are critical cycles. We get the following critical matrix and critical graph

of A (Figure 2.3).

AC =








1 0.25 0

4 0 0

0 0 1







.

11 2
0 . 2 5

4 4 1

Figure 2.3: DC(A)

Next, we state the max version of the Perron-Frobenius theorems [CG79,

BCOQ92, Bap98, But10].
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Theorem 2.2.1. For A ∈ Rn×n
+ , the following are true.

(i) µ(A) ≥ 0;

(ii) There exist non-negative and nonzero right and left eigenvectors x, y ∈
Rn

+ such that A⊗ x = µ(A)x and yT ⊗ A = µ(A)yT .

Theorem 2.2.2. For an irreducible matrix A ∈ Rn×n
+ , the following are true.

(i) µ(A) > 0;

(ii) µ(A) is the unique max eigenvalue of A;

(iii) There exists positive right and left eigenvectors x, y > 0 such that A⊗x =

µ(A)x and yT ⊗A = µ(A)yT ;

(iv) x and y are unique (up to a scalar multiple) if and only if DC(A) is

strongly connected.

Briefly, if A is irreducible, then µ(A) is the unique max eigenvalue of A and

there is a positive max eigenvector corresponding to it. The eigenvector may

not be unique if the critical matrix of A is not irreducible.

Maximum Cycle Geometric Mean:

The maximum cycle geometric mean, µ(A), can be characterised as follows:

max{λ ∈ R+ | ∃x ∈ Rn
+, x 6= 0 such that A⊗ x = λx}.

We have the following immediate results for A,B ∈ Rn×n
+ :

(i) If A ≤ B, then µ(A) ≤ µ(B) [EvdD04];

(ii) µ(A) ⊕ µ(B) ≤ µ(A⊕ B);

(iii) µ(αA) = αµ(A) for α ∈ R+ [Ser09b, But10].

If µ(A) = 1, then A is called a definite matrix [But03]. If µ(A) > 0, we can

normalise A to obtain a definite matrix. We will adopt the following notation.

Â =
A

µ(A)
(2.13)
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Theorem 2.2.3. Let x be a max eigenvector of A ∈ Rn×n
+ associated with

µ(A). Let µ(A) be positive. Then, x is a max eigenvector of Â associated with

the max eigenvalue 1.

Proof: It is straightforward from the max eigenequation of A that

A⊗ x = µ(A)x if and only if Â⊗ x = x

since µ(A) > 0.

Similar to non-negative linear algebra, the max eigenvalue is closely related to

the behaviour of the max powers of a non-negative matrix. In keeping with

[Lur05], A ∈ Rn×n
+ is said to be asymptotically stable if lim

k→∞
Ak⊗ = 0. The

following is a well-known result on the stability of non-negative matrices in

the max algebra [Car71, Lur05].

Theorem 2.2.4. For A ∈ Rn×n
+ , lim

k→∞
Ak⊗ = 0 if and only if µ(A) < 1.

In the following, we present a series of inequalities for µ(A) that describe its

relation with ρ(A) and matrix norms. For the remainder of this section, note

that Ak denotes the usual kth power of a matrix and Ak⊗ denotes the kth max

power of a matrix for some k ∈ R+. Further, we denote the kth Hadamard

power of the matrix A by Ak⊙ such that (Ak⊙)ij = (aij)k for all i, j.

Let ||.|| be a vector norm on Rn
+. Following [Lur05], define a matrix norm

associated with ||.|| and A ∈ Rn×n
+ over the max algebra as follows.

η||.||(A) = sup
x 6=0

||A⊗ x||
||x|| = max

||x||=1
||A⊗ x|| (2.14)

It is shown in [Lur05] that µ(A) ≤ η||.||(A) and the following hold.

µ(A) = lim
k→∞

µ(Ak⊗)
1

k (2.15)

µ(A) = lim sup
k→∞

(η||.||(Ak⊗))
1

k

µ(A) = lim
k→∞

||Ak⊗|| 1

k

Note that the third equation in (2.15) is a max version of the Gelfand formula

in (2.8) and it is true for any matrix norm on Rn×n
+ [EvdD99, Lur05].
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Moreover, it is shown in [EvdD99] that

µ(A) = lim
k→∞

ρ(Ak⊗)
1

k = lim
k→∞

µ(Ak⊙)
1

k . (2.16)

It is known from [EJDdS88] that µ(A) ≤ ρ(A) ≤ nµ(A) and from [Fri86]

that lim
k→∞

ρ(Ak⊙)
1

k = µ(A) for A ∈ Rn×n
+ . Further information on the relation

between ρ(A) and µ(A) is given by the following fact from [Bap98].

ρ(A) = lim
k→∞

µ(Ak)
1

k . (2.17)

2.2.3 Kleene Star and Kleene Cone

In this section, we introduce two important matrices that are used in optimal

path problems in graph theory such as finding the shortest path in a given

graph [BCOQ92, HOvdW06]. Moreover, they enable us to characterise max

eigenvectors and subeigenvectors in the max algebra.

Kleene Star:

For A ∈ Rn×n
+ , consider the following series.

A∗ = I ⊕A ⊕A2
⊗ ⊕ ... ⊕An⊗ ⊕ ... (2.18)

A+ = A⊗ A∗

For µ(A) ≤ 1, the series in (2.18) converge to the following matrices respec-

tively.

A∗ = I ⊕ A⊕ A2
⊗ ⊕ ...⊕ An−1

⊗ (2.19)

A+ = A ⊕A2 ⊕ A3
⊗ ⊕ ... ⊕ An⊗

From a graph theoretic view, the (i, j)th entry of Ak⊗ denotes the maximum

weight of a path in D(A) from i to j of length k (k ≥ 1) [Car71, Bap98,

HOvdW06]. It equals to 0 if no such path exists. It follows that, a∗
ij is the

maximum weight of a path from i to j of any length for 1 ≤ i, j ≤ n when

i 6= j and a+
ij is the maximum weight of a path from i to j of any length for

all i, j.

A∗ in (2.19) is said to be the Kleene star of A when µ(A) ≤ 1. It was

introduced by Stephen C. Kleene (1909 − 1994) in 1956 [Kle56]. It is also
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called the strong transitive closure of A [But10]. A+ in (2.19) is said to be a

metric matrix [CG79], the weak transitive closure of A [But10] or the shortest

path matrix [BCOQ92].

The Kleene star of A has the following fundamental properties.

(i) a∗
ij < ∞ for all i, j since µ(A) ≤ 1;

(ii) I ≤ A∗ and a∗
ii = 1 for 1 ≤ i ≤ n;

(iii) A∗ ⊗ A∗ = A∗ for µ(A) = 1;

(iv) (A∗)∗ = A∗ for µ(A) = 1;

(v) If A ∈ Rn×n
+ is irreducible, then A∗ > 0.

The following result is well-known from [CG79, BCOQ92, Bap98, EvdD01,

EvdD04, HOvdW06, But10].

Theorem 2.2.5. Let A ∈ Rn×n
+ be an irreducible matrix with µ(A) = 1.

Assume that DC(A) has r strongly connected components. Then, the following

are true.

(i) A∗
.i is a right max eigenvector associated with µ(A) for i ∈ NC(A) (A+

.i

is a right max eigenvector associated with µ(A) for a+
ii = 1);

(ii) For i, j ∈ NC(A) (i 6= j), A∗
.i and A∗

.j are scalar multiples of each other

if i and j belong to the same strongly connected component in DC(A);

(iii) There exist r linearly independent (in a max-algebraic sense) right max

eigenvectors of A associated with µ(A).

We next illustrate Theorem 2.2.5.

Example 2.2.2. Consider the matrix given in Example 2.2.1. Then, the

Kleene star of A is given by

A∗ =











1 0.25 0.5 0.5

4 1 2 2

1 0.25 1 0.5

1 0.25 1 1











.
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It follows from Figure 2.3 that there are 2 strongly connected components in

the critical graph and NC(A) = {1, 2, 4}. The vertices 1 and 2 belong to the

same strongly connected component. Thus, A∗
.1 and A∗

.2 are scalar multiples

of each other. They are scaled so that the diagonal entry equals to one. Thus,

the first max eigenvector is
[

1 4 1 1
]T

. The vertex 4 belongs to the

second strongly connected component. Thus, A∗
.4 corresponds to the second

max eigenvector:
[

0.5 2 0.5 1
]T

.

Kleene Cone:

Next, we define max convex cones which are analogous to convex cones in the

conventional algebra. Following the notation in [BSS07], let S = {x1, x2, ..., xm}
be a subset of Rn

+. A vector y ∈ Rn
+ is a called a max combination of

{x1, x2, ..., xm} if

y =
m⊕

i=1

αixi, αi ∈ R+, xi ∈ S. (2.20)

The set of vectors {x1, x2, ..., xm} is called linearly independent in a max-

algebraic sense if none of them can be expressed as a max combination of

others. The set of all max combinations of the vectors {x1, x2, ..., xm} is de-

noted by Span(S). In particular, we adopt the notation

span⊕(A) =
n⊕

i=1

αiA.i, αi ∈ R+, A ∈ Rn×n
+ (2.21)

for the max-algebraic column span of A. y ∈ Rn
+ is a called a max convex

combination of {x1, x2, ..., xm} if

y =
m⊕

i=1

αixi, αi ∈ R+,
m⊕

i=1

αi = 1, xi ∈ S. (2.22)

S is called a max convex cone if it is closed under the max and × operations

as follows
m⊕

i=1

αixi ∈ S, αi ∈ R+, xi ∈ S. (2.23)

The set of all eigenvectors of A ∈ Rn×n
+ associated with µ(A) is called an

eigencone of A [SSB09, Ser09a, Ser09b]. It is denoted by V (A) and given by

V (A) = {x ∈ Rn
+ | A⊗ x = µ(A)x}. (2.24)
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For A ∈ Rn×n
+ with µ(A) = 1, V (A) is described by

V (A) =







⊕

i∈r(A)

αiA
∗
.i | αi ∈ R+






(2.25)

where r(A) contains exactly one index from each strongly connected compo-

nent in DC(A) [SSB09]. (Recall from Theorem 2.2.5 (ii) that if i, j ∈ NC(A)

belong to the same strongly connected component in DC(A), then A∗
.i and A∗

.j

are scalar multiples of each other.)

For an n× n non-negative matrix A, consider the following inequality

A⊗ v ≤ µ(A)v. (2.26)

v ∈ Rn
+ is called a subeigenvector of A associated with µ(A) [Gau92, SSB09].

The role of subeigenvectors in resource optimisation has been discussed in

[Gau95b]. In addition, they have applications in discrete max-plus spectral

theory [AGW05]. The set of subeigenvectors of A ∈ Rn×n
+ associated with

µ(A) is called a subeigencone of A [SSB09, Ser09a, Ser09b]. It is denoted by

V ∗(A) and given by

V ∗(A) =
{

v ∈ Rn
+ | A⊗ v ≤ µ(A)v

}

. (2.27)

It was shown in [SSB09] that if µ(A) = 1, each column of A∗ is a subeigenvector

of A. For A ∈ Rn×n
+ with µ(A) = 1, V ∗(A) is described by

V ∗(A) =







⊕

i∈r(A)

αiA
∗
.i ⊕

⊕

j∈NC(A)

αjA
∗
.j | αi, αj ∈ R+







(2.28)

where NC(A) is a set of non-critical vertices in D(A). Theorem 2.2.3 implies

that V (A) = V (Â) and V ∗(A) = V ∗(Â). The following are known results on

some geometric properties of V (A) and V ∗(A) [SSB09, Ser09c].

Proposition 2.2.6. For A ∈ Rn×n
+ , the following are true.

(i) V ∗(A) and V (A) are max convex cones;

(ii) V (A) is a max subcone of V ∗(A);

(ii) V ∗(A) is a convex cone in the conventional algebra while V (A) is not.
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Proposition 2.2.7. Let A ∈ Rn×n
+ have µ(A) = 1. Then, V ∗(A) = V (A∗) =

span⊕(A∗).

A max convex cone is called a Kleene cone if it can be represented as a max-

algebraic column span of A∗ [SSB09, Ser09c]. In the light of Proposition 2.2.7,

the authors of [SSB09] call V ∗(A) a Kleene cone.

2.2.4 Visualisation Scaling

Next, we recall diagonal similarity scaling of non-negative matrices and its con-

nection with the max algebra. A diagonal similarity scaling of A ∈ Rn×n
+ is a

matrix given by B = X−1AX where X = diag (x1, x2, ..., xn) and x1, x2, ..., xn

are some positive numbers. This scaling preserves many spectral properties

of A ∈ Rn×n
+ . In particular, µ(A) = µ(B) and there is a one-to-one correspon-

dence between V (A)(V ∗(A)) and V (B)(V ∗(B)) [BS05, SSB09, But10].

Diagonal similarity scaling has been studied by a large number of authors

since the sixties [Afr63, Afr74, FP67, FP69, ES73, ES75]. It has motivated

many works on matrix scaling problems in non-negative linear algebra and

the max algebra. In this context, the characterisation of max-balanced flows

on networks was considered in [SS90, SS91, RSS92]. In [BS05] the role of the

max algebra in finding solutions of a number of matrix scaling problems was

presented. In this direction, visualisation scaling over the max algebra was

introduced in [SSB09, But10].

A matrix A ∈ Rn×n
+ is called visualised (strictly visualised) if

aij = µ(A) for all (i, j) ∈ EC(A) (2.29)

aij ≤ µ(A)(aij < µ(A)) for all (i, j) 6= EC(A).

Visualisation scaling can be thought of as a Fiedler-Ptak scaling in a way that

the scaled matrix X−1AX is visualised if x is a subeigenvector associated with

µ(A) [Ser11]. It is well-known from [Afr63, Afr74, FP67, FP69, BS05, SSB09,

But10] that max combination of columns of A∗ can be used to obtain a visu-

alisation of a definite matrix A ∈ Rn×n
+ . Further, positive linear combination

of columns of A∗ can be used to obtain a strict visualisation of a definite

matrix A ∈ Rn×n
+ . A well-known work on these results in the max algebra
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in connection with the Kleene cone and its relative interior is [SSB09]. In

particular, we state the following result taken from this paper.

Proposition 2.2.8. For A ∈ Rn×n
+ and x ∈ V ∗(A), aijxj = µ(A)xi for all

(i, j) ∈ EC(A).

2.2.5 Max Powers of an Irreducible Matrix

We briefly discuss the behaviour of the powers of an irreducible matrix in the

max algebra. In this context, we recall necessary and sufficient conditions for

the convergence of the max-algebraic powers. We say that the sequence of

matrix powers {Ak⊗}k≥0 converges to a matrix Ā when

lim
k→∞

|a(k)
ij − āij | = 0 for all i, j.

The Cyclicity Index of A:

Let DC(A) have r strongly connected components. If r = 1, then AC is

irreducible. Further, let h be the index of imprimitivity of AC . Then, the

cyclicity index of A: cyc(A) = h. In this case, (AC)h is a direct sum of h

primitive matrices [EvdD99, EvdD01, HOvdW06]. If r > 1, each strongly

connected component in DC(A) corresponds to an irreducible block matrix.

Assume that each matrix has the index of imprimitivity equal to hi, i =

1, 2, ..., r. Then, the cyclicity index of A is the least common multiple (l.c.m.)

of these indices:

cyc(A) = l.c.m.(h1, h2, ..., hr). (2.30)

After a suitable permutation, (AC)cyc(A) can be written as a direct sum of
r∑

i=1
hi primitive matrices [EvdD99, EvdD01, HOvdW06].

The following result highlights the role of the cyclicity index of an irreducible

matrix in the behaviour of the max-algebraic powers.

The Cyclicity Theorem:

It is well-known that the max-algebraic powers of irreducible matrices are

ultimately periodic. This fact is known as the cyclicity theorem [CDQV85].

See also [BCOQ92, Sch00, HOvdW06, BCG07, Ser09b]. The cyclicity theorem

establishes a relation between the cyclicity index of an irreducible matrix and

the periodicity of its max powers.

30



2.2. The Max Algebra

Theorem 2.2.9. Let A ∈ Rn×n
+ be an irreducible matrix. Then, there exist

positive integers c and k0 such that

Ak+c
⊗ = µ(A)cAk⊗ for all k ≥ k0. (2.31)

The least c > 0 satisfying (2.31) is said to be the period of A. It is standard

that the ultimate period equals to cyc(A). Moreover, the smallest value for

k0 in (2.31) is called a transient time of A [HOvdW06, Ser09b].

The following results on the behaviour of the max powers of irreducible mat-

rices are taken from [EvdD99, EvdD01].

Theorem 2.2.10. Consider A ∈ Rn×n
+ with µ(A) = 1. Assume that its critical

matrix, AC, is the direct sum of primitive matrices. If either A is irreducible

or NC(A) = N(A), then lim
k→∞

Ak⊗ exists and Ak⊗ = Ā for sufficiently large k.

Theorem 2.2.11. Consider an irreducible matrix A ∈ Rn×n
+ with µ(A) = 1

satisfying the following conditions:

(i) NC(A) = N(A);

(ii) AC is the direct sum of primitive matrices.

Then, Ā = lim
k→∞

Ak⊗ = Ap⊗ where p is given by

p = r − 1 +
r∑

i=1

di + max
1≤i≤r

{σi − di | di ≥ 2}. (2.32)

Here, r is the number of strongly connected components in DC(A), di is the

diameter of the ith strongly connected component (See (2.9)) and σi is the

exponent of the corresponding irreducible block matrix (See (2.4)) for i =

1, 2, ..., r.

Note that Theorem 2.2.11 (ii) is enough to ensure the convergence. However,

(i) is needed for the definition of p in (2.32) [EvdD01]. The following result,

which is Corollary 2.6 of [EvdD01], describes an upper bound for p.

Corollary 2.2.12. Let A ∈ Rn×n
+ be an irreducible matrix with µ(A) = 1

satisfying the conditions (i) and (ii) in Theorem 2.2.11. Then, Ā = Ap⊗ where

p ≤ n2 − 1.
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We next illustrate Theorem 2.2.11.

Example 2.2.3. Consider the following irreducible matrix

A =











1 1/2 1 1/4

1/3 1 0 0

1 0 1 5/6

1 0 1 1











.

For A, µ(A) = 1, there are three strongly connected components in DC(A)

and NC(A) = N(A). (See Figure 2.4)

11 3
1

1
1 2 1 4 1

Figure 2.4: DC(A)

Denote the index of imprimitivity of each strongly connected component by

hi (i = 1, 2, 3). Then, h1 = g.c.d.(1, 2) = 1 and h2 = h3 = 1. Using that, we

get cyc(A) = l.c.m.(1, 1, 1) = 1. By applying the permutation matrix

P =











1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1











to AC =











1 0 1 0

0 1 0 0

1 0 1 0

0 0 0 1











,

we get the following matrix written as a direct sum of three primitive matrices,

each of which corresponds to the ith strongly connected component in DC(A).

PACP T =











1 1 0 0

1 1 0 0

0 0 1 0

0 0 0 1











=




1 1

1 1



+. 1 +. 1.

Since both conditions in Theorem 2.2.11 are satisfied, we find p = 5 as r = 3

and di = 1 for all i. Thus, Ā = A5
⊗. It follows from Theorem 2.2.9 that the

least value for k at which Ak+1
⊗ = Ak⊗ is the transient time (c = cyc(A) = 1).

It is easy to obtain by matrix multiplication that it equals to 3.
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2.2.6 Numerical Computation of Max Eigenpairs

Next, we recall some numerical algorithms to find the largest max eigenvalue

and max eigenvectors of an irreducible matrix. In the conventional algebra, the

power method is one of the most popular algorithms to find the spectral radius

and the eigenvector corresponding to it [Var62, Ste98, BF05]. Convergence of

the power method is guaranteed when the matrix is primitive.

The power method was extended to the max algebra by [BO93, EvdD99,

HOvdW06]. Basically, we start with an initial vector x(0) and repeatedly

multiply x(k) by A such that x(k + 1) = A ⊗ x(k) (k = 0, 1, ...). We search

for some c where x(k + c) is a multiple of x(k). c is the period of A in the

cyclicity theorem. In particular, if c is one, then x(k) is a max eigenvector

for some k ∈ R+. Otherwise, x(k) enters into a periodic regime: {x(k), x(k +

1), ..., x(k + c − 1)} for some k ∈ R+ [HOvdW06]. We require the critical

matrix to be a direct sum of primitive matrices to conclude convergence.

We summarise the max power method in Algorithm 1 below. Note that the

algorithm has O(n4) time complexity to calculate µ(A) and a max eigenvector

corresponding to it. We only get one max eigenvector which depends on the

selection of the initial vector [EvdD99]. We illustrate Algorithm 1 in Example

2.2.4.

Algorithm 1 Calculate µ(A) and a max eigenvector associated with µ(A)
A ∈ Rn×n

+ , irreducible, x(0) ∈ Rn
+, x(0) 6= 0

for k = 0, 1, 2, ... do
x(k + 1) = A⊗ x(k)
for c = 1 to k do

if x(k + 1) = αx(k + 1 − c) for some α > 0 then

µ(A) = α
1

c

t = k + 1 − c

x = x(t) ⊕
c−1⊕

i=1

x(t+i)
µ(A)i

end if
end for

end for
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Example 2.2.4. Consider the following irreducible matrix

A =











1 1/2 1 0

1/3 0 0 1

1 1/2 1 1

1/4 1 5/6 1/4











.

For x(0) =
[

0.091 0.202 0.460 0.707
]T

, we obtain the following sequence:

x(1) =











0.460

0.707

0.707

0.383











x(2) =











0.707

0.383

0.707

0.707











x(3) =











0.707

0.707

0.707

0.589











x(4) =











0.707

0.589

0.707

0.707











x(5) =











0.707

0.707

0.707

0.589











The algorithm stops at the 4th iteration when x(3) = x(5). Then, cyc(A) = 2,

µ(A) = 1 and the max eigenvector is x(3) ⊕ x(4) =
[

1 1 1 1
]T

.

In [EvdD01], Elsner and van den Driessche propose a new algorithm to calcu-

late µ(A) and the max eigenvectors corresponding to it. In order to find µ(A),

they implement the well-known Karp algorithm which has O(n3) time com-

plexity. The key result is the following [Kar78, BCOQ92, EvdD01, HOvdW06].

Theorem 2.2.13. Let A ∈ Rn×n
+ be an irreducible matrix. Then,

µ(A) = max
i=1,...,n

min
k=1,...,n

(

(An+1
⊗ )ij

(Ak⊗)ij

) 1

n+1−k

. (2.33)

The algorithm in [EvdD01] can be used to obtain all max eigenvectors asso-

ciated with µ(A). However, it doesn’t have an optimal time complexity.

The Floyd-Warshall algorithm is preferred to find max eigenvectors of an irre-

ducible matrix [GM84, PS98, ORE99, EvdD04]. Basically, the Floyd-Warshall

algorithm constructs paths of maximum weight from i to j in D(A) for all i, j.

It has O(n3) time complexity. We summarise it in Algorithm 2 and illustrate

in Example 2.2.5. Remark that the algorithm computes the A+ matrix.
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Algorithm 2 Calculate A+

A ∈ Rn×n
+ , irreducible

Calculate µ(A)
if µ(A) < 1 then
A0 = A

else
A0 = A/µ(A)

end if
for k = 1, ..., n do

for i = 1, ..., n do
for j = 1, ..., n do
a

(k)
ij = max(a(k−1)

ij , a
(k−1)
ik a

(k−1)
kj )

end for
end for

end for

Example 2.2.5. Consider the matrix given in Example 2.2.4. By using Al-

gorithm 2, we get

A+ =











1 1 1 1

0.833 1 0.833 1

1 1 1 1

0.833 1 0.833 1











.

It follows from Theorem 2.2.5 (i) that the first max eigenvector is A+
.1 =

A+
.3 =

[

1 0.833 1 0.833
]T

and the second max eigenvector is A+
.2 = A+

.4 =
[

1 1 1 1
]T

. Other max eigenvectors can be obtained by max combina-

tions of these.

2.3 Concluding Remarks

In this chapter, we introduced fundamental concepts and preliminary results

in non-negative linear algebra and the max algebra, thereby provided a mat-

hematical background for the following chapters. In particular,

• we recalled the celebrated Perron-Frobenius theorems;

• we described a number of definitions from graph theory and highlighted

some connections with non-negative matrices;

• we discussed fundamentals of the max-algebraic spectral theory.
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CHAPTER 3
Spectral Properties of Max

Matrix Polynomials

In this chapter, we consider max matrix polynomials of the form P (λ) = A0 ⊕
λA1 ⊕ · · · ⊕ λm−1Am−1 where A0, A1, . . . , Am−1 ∈ Rn×n

+ . We show how the Perron-

Frobenius theory for the max algebra extends to such polynomials. Applications of

this result to the convergence properties of multi-step difference equations over the

max algebra are also described. Additionally, we present a number of inequalities,

echoing similar results over the conventional algebra, for the largest max eigenvalue

of a matrix polynomial.

3.1 Motivation and Mathematical

Background

In this section, we briefly provide mathematical background on matrix poly-

nomials with non-negative coefficients over the conventional algebra. In par-

ticular, we investigate their spectral properties and discuss some applications

in the context of dynamical systems.
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3.1.1 Introduction

Matrix polynomials are polynomials with real or complex matrix coefficients

[GLR82]. They have important applications in the study of higher order

differential/difference equations arising in wide variety of fields such as sys-

tems theory [Fuh87], economic modelling [RD00], queueing theory [BLM02]

and population dynamics [LS02]. In particular, the spectral theory of matrix

polynomials was extensively studied. In [TM00], the relevance of eigenvalues

of quadratic matrix polynomials to problems in acoustics, electronics and elec-

trical circuits was highlighted.

Matrix polynomials were considered in connection with scheduling problems

and timetable analysis over the max-plus algebra [HOvdW06]. The spectral

properties of such polynomials have important implications for the stability of

timetables with respect to the propagation of delays. This theory was applied

to the modelling of the Dutch railway system [Gov05, HOvdW06].

The motivation of our study of matrix polynomials comes from their close

connection with multi-step difference equations. In this direction, the layout of

this chapter is as follows. First, we briefly review results over the conventional

algebra. Inspired by the work of Psarrakos and Tsatsomeros [PT04], in Section

3.2, we are concerned with extending spectral properties of matrix polynomials

with non-negative coefficient matrices to the max algebra. In Section 3.3, we

consider their relation with multi-step difference equations. Finally, in Section

3.4, we discuss the characterisation of the largest max eigenvalue of a max

matrix polynomial using an n × n non-negative matrix. The work contained

in this chapter has resulted in the publication: [BGM11b].

3.1.2 Perron Polynomials

Following the notation of Psarrakos and Tsatsomeros [PT04], consider a mat-

rix polynomial of the form

L(λ) = Iλm −Am−1λ
m−1 − ... − A1λ− A0 (3.1)

where Ai ∈ Rn×n
+ for 0 ≤ i ≤ m. L(λ) is called Perron polynomial of degree

m. The eigenvalue problem for L(λ) is defined by

L(λ)x = 0 (3.2)
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Chapter 3. Spectral Properties of Max Matrix Polynomials

where λ is an eigenvalue of L(λ) and x is a right eigenvector associated with it.

A vector y satisfying yTL(λ) = 0 is a left eigenvector associated with λ. The

set of eigenvalues is called the spectrum of L(λ) and denoted by σ(L(λ)). The

eigenvalues can be determined by finding the roots of the following equation

det(L(λ)) = 0. (3.3)

A classical approach to obtain the spectrum of L(λ) is called linearisation

[GLR82]. A key idea of linearisation is to associate L(λ) with a linear matrix

polynomial Iλ−CL where CL is called the companion matrix of L(λ) and has

the following form

CL =














0 I 0 ... 0

0 0 I ... 0
...

...
...

. . .
...

0 0 ... 0 I

A0 A1 ... Am−2 Am−1














∈ Rmn×mn
+ . (3.4)

An important result shown in [PT04] is that σ(L(λ)) = σ(CL). Moreover,

there is a one to one correspondence between the eigenvectors of L(λ) and CL
[PT04].

Next, we state the Perron-Frobenius theorems for Perron polynomials [PT04].

Remark that the spectral radius of L(λ) can be defined in the same way as for

a matrix. (Recall (2.7).)

ρ(L(λ)) = max
i

{|λi| | λi ∈ σ(L(λ))} (3.5)

In this section, we will denote it by ρ.

Theorem 3.1.1. Let L(λ) be a Perron polynomial defined in (3.1). Then, the

following are true.

(i) ρ ∈ σ(L(λ));

(ii) There exist non-negative and nonzero right and left eigenvectors x, y ∈
Rn

+ such that L(ρ)x = 0 and yTL(ρ) = 0.

The next result is for the irreducible case [PT04].
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Theorem 3.1.2. Let L(λ) be a Perron polynomial defined in (3.1) and CL be

the corresponding companion matrix. Suppose that CL is irreducible. Then,

the following are true.

(i) ρ > 0;

(ii) ρ ∈ σ(L(λ));

(iii) The algebraic and geometric multiplicity of ρ are one;

(iv) There exists positive right and left eigenvectors x, y > 0 such that L(ρ)x =

0 and yTL(ρ) = 0.

3.1.3 Multi-step Difference Equations

Matrix polynomials are closely related to multi-step difference equations. In

[PT04], this relationship was exploited to derive a multi-step version of the

Fundamental Theorem of Demography for the conventional algebra. For a re-

ference highlighting the role played by the classical Perron-Frobenius theory in

the Fundamental Theorem of Demography and other key results of population

dynamics, see [LS02].

Consider the multi-step difference equation of the form

uk+m = Am−1uk+m−1 + · · · + A1uk+1 + A0uk (k = 0, 1, ...) (3.6)

where Ai ∈ Rn×n
+ for all 0 ≤ i ≤ m− 1.

For an initial condition v(0) =
[

u0 u1 · · · um−1

]T ∈ Rnm
+ , the solution

is given by uk =
[

I 0 · · · 0
]

Ck
Lv(0), k ≥ 0 [PT04]. Motivated by this, a

generalisation of the Fundamental Theorem of Demography is stated as follows

[PT04].

Theorem 3.1.3. Let L(λ) be a Perron polynomial defined in (3.1) and CL be

the corresponding companion matrix in (3.4). Suppose that CL is primitive.

Further, let x, y > 0 be right and left eigenvectors of L(λ) corresponding to ρ,
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Chapter 3. Spectral Properties of Max Matrix Polynomials

normalised as follows

[

yTE1(ρ) · · · yTEm−1(ρ) yT
]











x

ρx
...

ρm−1x











= 1

where Em(λ) = I and Ei−1(λ) = λEi(λ) − Ai−1 for i = m,m − 1, ..., 2 and

λ > 0. Let {u0, u1, ...} be the solution of (3.6). Then,

lim
k→∞

uk
ρk

= yT
(

m∑

i=1

Ei(ρ)ui−1

)

x.

3.1.4 Rational Matrix Functions

Another concept discussed in [PT04] is the rational matrix function associated

with L(λ) of the form

SL(λ) = Am−1 +
1
λ
Am−2 + · · · +

1
λm−1

A0 (3.7)

where Ai ∈ Rn×n
+ for all 0 ≤ i ≤ m − 1 and λ > 0. The next result presents

a number of bounds for the spectral radius of the Perron polynomial L(λ) in

terms of SL(1) [PT04].

Proposition 3.1.4. Let L(λ) be Perron polynomial given in (3.1) and SL(λ)

be given in (3.7). Then, the following hold.

(i) ρ(SL(1)) ≤ ρ ≤ ρ(SL(1))1/m if ρ(SL(1)) ≤ 1;

(ii) ρ(SL(1))1/m ≤ ρ ≤ ρ(SL(1)) if ρ(SL(1)) ≥ 1;

(iii) ρ < 1 if and only if ρ(SL(1)) < 1;

(iv) ρ = 1 if and only if ρ(SL(1)) = 1.

Note that functions of this type were studied for non-negative compact opera-

tors in [FN91, Rau92]. The following is one of the results in these papers that

can directly be applied to Perron polynomials as follows.

Theorem 3.1.5. Let the spectral radius of L(λ) in (3.1) be positive. Further,

let CL and SL(λ) be given in (3.4) and (3.7). Then, ρ = ρ(CL) = ρ(SL(ρ)).
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3.2. Matrix Polynomials in the Max Algebra

3.2 Matrix Polynomials in the Max Algebra

In the spirit of Psarrakos and Tsatsomeros [PT04], we now consider max-

algebraic matrix polynomials and their associated companion matrices. We

argue that there is a perfect correspondence between the max-algebraic eigen-

values and eigenvectors of the polynomial and those of the companion matrix.

This allows us to apply the Perron-Frobenius theorem for the max algebra

introduced in Section 2.2.2 to obtain a corresponding result for max matrix

polynomials.

Formally, we consider polynomials given by

P (λ) = A0 ⊕ λA1 ⊕ · · · ⊕ λm−1Am−1 (3.8)

where A0, A1, . . . , Am−1 are in Rn×n
+ . We refer to P (λ) as a max matrix poly-

nomial of degree m − 1. In analogy with the definitions for the conventional

algebra presented in Section 3.1.2, we say that

(i) κ ≥ 0 is a right max eigenvalue of P (λ) with corresponding right max

eigenvector x ≥ 0 if

P (κ) ⊗ x = κmx. (3.9)

(κ, x) is then a right max eigenpair of P (λ).

(ii) τ ≥ 0 is a left max eigenvalue of P (λ) with corresponding left max

eigenvector y ≥ 0 if

yT ⊗ P (τ) = τmyT . (3.10)

(τ, y) is then a left max eigenpair of P (λ).

The key result of this section, which allows us to directly apply the Perron-

Frobenius theorem for the max algebra to obtain corresponding statements

for max matrix polynomials, is Proposition 3.2.1 below. Essentially, as was

explained in Section 3.1.2 for the conventional algebra, this establishes a one

to one correspondence between the max eigenpairs of the polynomial P (λ) in
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(3.8) and the max eigenpairs of the companion matrix of the form

CP =














0 I 0 ... 0

0 0 I ... 0
...

...
...

. . .
...

0 0 ... 0 I

A0 A1 ... Am−2 Am−1














∈ Rmn×mn
+ . (3.11)

Proposition 3.2.1. Consider the max matrix polynomial P (λ) given by (3.8)

and the corresponding companion matrix given by CP in (3.11). Then (κ, x) ∈
R+ × Rn

+ is a right max eigenpair of P (λ) if and only if (κ, x̂) ∈ R+ × Rmn
+ is

a right max eigenpair of CP , where

x̂ =











x

κx
...

κm−1x











. (3.12)

Moreover, (τ, y) ∈ R+ × Rn
+ is a left max eigenpair of P (λ) if and only if

(τ, ŷ) ∈ R+ × Rmn
+ is a left max eigenpair of CP , where

ŷ =














1
τ
AT0 ⊗ y

( 1
τ2A

T
0 ⊕ 1

τ
AT1 ) ⊗ y

...

( 1
τm−1A

T
0 ⊕ 1

τm−2A
T
1 ⊕ · · · ⊕ 1

τ
ATm−2) ⊗ y

y














. (3.13)

Proof: It is a straightforward calculation to verify that CP ⊗ x̂ is given by










κx

κ2x
...

P (κ) ⊗ x











.

Hence, if (κ, x) is a right max eigenpair of P (λ), it is immediate that CP ⊗ x̂ =

κx̂.

For the converse, it is clear that any right eigenvector of CP must be of the

form (3.12). Then equating the last rows of CP ⊗ x̂ = κx̂, we have

P (κ) ⊗ x = A0 ⊗ x⊕ κA1 ⊗ x⊕ · · · ⊕ κm−1Am−1 ⊗ x = κmx.
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For the left eigenpair statement, we have ŷT ⊗ CP given by











AT0 ⊗ y

( 1
τ
AT0 ⊕ AT1 ) ⊗ y

...
P (τ)T

τm−1 ⊗ y











T

.

Since (τ, y) is a left max eigenpair of P (λ), it follows that ŷT ⊗CP = τ ŷT . For

the converse, equating the last columns of ŷT ⊗ CP and τ ŷT , we see that

yT ⊗ P (τ)
τm−1

= τyT ⇒ yT ⊗ P (τ) = τmyT .

It follows from Proposition 3.2.1 that the largest right and left max eigenvalues

of the polynomial P (λ) coincide. We now define

µ = µ(P (λ)) (3.14)

to be the largest right (or left) max eigenvalue of P (λ). µ will be used for

µ(P (λ)) throughout this chapter. Then, µ = µ(CP ), the maximal cycle

geometric mean of D(CP ). The following results, which extend the Perron-

Frobenius theorems to matrix polynomials over the max algebra now follow

easily from combining Proposition 3.2.1 with Theorems 2.2.1 and 2.2.2.

Theorem 3.2.2. Consider the max matrix polynomial P (λ) given by (3.8)

and let CP be the corresponding companion matrix in (3.11). Further, let µ

be the largest max eigenvalue of P (λ). The following are true.

(i) µ ≥ 0;

(ii) There exist non-negative and nonzero right and left eigenvectors x, y ∈
Rn

+ such that P (µ) ⊗ x = µmx and yT ⊗ P (µ) = µmyT .

It has been pointed out in [PT04] that CP will be irreducible if A0 is irre-

ducible. Note that the irreducibility of CP only implies that the eigenvalue

µ is unique. However, in contrast with the conventional algebra, there may

be multiple eigenvectors corresponding to µ. The following result describes

the extension of Theorem 3.1.2 to max matrix polynomials for the situation

in which the eigenvector is also unique.
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Theorem 3.2.3. Consider the max matrix polynomial P (λ) given by (3.8) and

let CP be the corresponding companion matrix (3.11). Further, let µ be the

largest max eigenvalue of P (λ). Suppose that CP is irreducible. The following

are true.

(i) µ > 0;

(ii) µ is the unique max eigenvalue of P (λ);

(iii) There exists positive right and left eigenvectors x, y > 0 such that P (µ)⊗
x = µmx and yT ⊗ P (µ) = µmyT ;

(iv) x and y are unique (up to a scalar multiple) if and only if DC(CP ) is

strongly connected.

3.3 Multi-step Difference Equations in the

Max Algebra

In this section, we investigate the implications of the results of Section 3.2

for the convergence of multi-step difference equations in the max algebra.

We pursue the association of matrix polynomials with multi-step difference

equations over the max algebra. As noted in Section 3.1.1, equations of this

type have been previously studied in the max-plus setting with the view to

applications to time scheduling.

Consider the multi-step difference equation over the max algebra:

uk+m = Am−1 ⊗ uk+m−1 ⊕ · · · ⊕ A1 ⊗ uk+1 ⊕A0 ⊗ uk (k = 0, 1, ...) (3.15)

where A0, A1 · · · , Am−1 ∈ Rn×n
+ are coefficient matrices and u0, u1, ...um−1 ∈

Rn
+ are initial values. As with multi-step difference equations for the con-

ventional algebra [PT04], the system (3.15) is equivalent to the single-step

difference equation given by

v(k + 1) = CP ⊗ v(k) (k = 0, 1, ...). (3.16)

This is seen by setting v(k) =











uk

uk+1

...

uk+m−1











∈ Rmn
+ .
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(3.16) is a result of the following matrix equation:











uk+1

uk+2

...

uk+m











︸ ︷︷ ︸

v(k+1)

=














0 I 0 ... 0 0

0 0 I ... 0 0
...

...
...

. . .
...

...

0 ... ... ... 0 I

A0 ... ... ... Am−2 Am−1














︸ ︷︷ ︸

CP

⊗











uk

uk+1

...

uk+m−1











︸ ︷︷ ︸

v(k)

For a given initial condition v(0) =
[

u0 u1 · · · um−1

]T ∈ Rmn
+ , the solu-

tion of (3.16) is

v(k) = Ck
P⊗

⊗ v(0) k ≥ 0. (3.17)

Hence, the solution of (3.15) can be written in the following form:

uk =
[

I 0 · · · 0
]

︸ ︷︷ ︸

∈Rn×mn
+

⊗Ck
P⊗

⊗ v(0) k ≥ 0. (3.18)

It can be seen from (3.18) that the the behaviour of the solution depends on

the asymptotic properties of the max powers of CP .

Throughout this section, we will assume that CP is irreducible and that the

critical matrix CC
P is primitive. Therefore, it follows from Theorem 3.2.3 that

P (λ) has unique left and right max eigenpairs.

Under the above assumptions, it follows from Theorem 2.2.10 that the max

powers of the normalized companion matrix 1
µkC

k
P⊗

converge in finitely many

steps to a matrix C̄. In fact, Theorem 2.2.10 establishes that for any ir-

reducible A ∈ Rn×n
+ with AC primitive, there is some K ∈ R+ and some

Ā ∈ Rn×n
+ such that for ∀k ≥ K,

Ak⊗
µ(A)k

= Ā. (3.19)

The following lemma restates the above convergence result in terms of the

normalised max eigenvectors of A.

Lemma 3.3.1. Let A ∈ Rn×n
+ be irreducible and AC be primitive. Then there

exists some K > 0 such that

Ak⊗
µ(A)k

= x⊗ yT , for k ≥ K (3.20)
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where x > 0 and y > 0 are the unique right and left max eigenvectors of A

satisfying A⊗ x = µ(A)x,AT ⊗ y = µ(A)y and xT ⊗ y = 1.

Proof: It follows from (3.19) that there is some K > 0 and a matrix Ā such

that
Ak

⊗

µ(A)k = Ā for all k ≥ K. Now calculate A⊗ Ā:

A ⊗ Ā = A⊗ AK⊗
µ(A)K

= µ(A)
AK+1

⊗

µ(A)K+1
= µ(A)Ā.

It follows immediately that the columns of Ā are right max eigenvectors of A

and hence that Ā = x⊗ vT for some v ∈ Rn
+.

On the other hand,

AT ⊗ ĀT = AT ⊗ (AK⊗ )T

µ(A)K
= AT ⊗ (AT⊗)K

µ(A)K
= µ(A)

(AT⊗)K+1

µ(A)K+1
= µ(A)ĀT .

But, Ā = x⊗ vT and hence,

AT ⊗ v ⊗ xT = µ(A)v ⊗ xT ⇒ AT ⊗ v = µ(A)v.

Thus, v = λy for some λ ∈ R+. It is explicit that Ā ⊗ Ā = Ā. Since

Ā = λx⊗ yT , we have

λ2x⊗ yT ⊗ x
︸ ︷︷ ︸

1

⊗yT = λx⊗ yT ⇒ λ = 1.

Therefore, we conclude that v = y and Ā = x⊗ yT .

A generalisation of the so-called Fundamental Theorem of Demography was

presented in Section 3.1.3 in the conventional algebra. In the following result,

we present a max-algebraic version of this fact.

Theorem 3.3.2. Let P (λ) be the max matrix polynomial given by (3.8) and

CP be the corresponding companion matrix in (3.11); let CP be irreducible and

CC
P be primitive. Let x and y be the unique right and left max eigenvectors of

P (λ) corresponding to µ, normalised so that

[

yT ⊗ A0

µ
yT ⊗ (A0

µ2 ⊕ A1

µ
) · · · yT

]

⊗











x

µx

· · ·
µm−1x











= 1. (3.21)
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Write uk, k = 0, 1, . . . for the solution of the multi-step difference equation

(3.15) corresponding to a nonzero initial vector v(0) =











u0

u1

...

um−1











∈ Rmn
+ .

Then there is some positive integer K such that for all k ≥ K

uk
µk

=



yT ⊗




m⊕

j=1





j−1
⊕

i=0

Ai
µj−i



⊗ uj−1







⊗ x. (3.22)

Proof: Let x̂ and ŷ be the right and left max eigenvectors of CP given by

(3.12), (3.13) respectively. Lemma 3.3.1 implies that there is some integer

K > 0 such that for all k ≥ K,

Ck
P⊗

µk
= x̂⊗ ŷT

=











x

µx

· · ·
µm−1x











⊗
[

yT ⊗ A0

µ
yT ⊗ (A0

µ2 ⊕ A1

µ
) · · · yT

]

=











x⊗ yT ⊗ A0

µ
x⊗ yT ⊗ (A0

µ2 ⊕ A1

µ
) · · · x⊗ yT

µx⊗ yT ⊗ A0

µ
µx⊗ yT ⊗ (A0

µ2 ⊕ A1

µ
) · · · µx⊗ yT

...
...

...

µm−1x⊗ yT ⊗ A0

µ
µm−1x⊗ yT ⊗ (A0

µ2 ⊕ A1

µ
) · · · µm−1x⊗ yT











.

The solution of (3.15) is given by uk =
[

I 0 · · · 0
]

⊗ Ck
P⊗

⊗ v(0). It

immediately follows from the above calculation that for all k ≥ K,

uk
µk

=
[

I 0 · · · 0
]

⊗
Ck
P⊗

µk
⊗ v(0)

=
[

x⊗ yT ⊗ A0

µ
x⊗ yT ⊗ (A0

µ2 ⊕ A1

µ
) · · · x⊗ yT

]

⊗











u0

u1

· · ·
um−1











= x⊗ (yT ⊗ A0

µ
⊗ u0 ⊕ yT ⊗ (

A0

µ2
⊕ A1

µ
) ⊗ u1 ⊕ · · · ⊕ yT ⊗ um−1).
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Using the fact that yT = yT ⊗ P (µ)
µm = yT ⊗

(
A0

µm ⊕ A1

µm−1 ⊕ · · · ⊕ Am−1

µ

)

, we find

that for all k ≥ K,

uk
µk

=



yT ⊗




m⊕

j=1





j−1
⊕

i=0

Ai
µj−i



⊗ uj−1







⊗ x

as claimed.

Note that the above result implies that

lim
k→∞

uk
µk

=



yT ⊗




m⊕

j=1





j−1
⊕

i=0

Ai
µj−i



⊗ uj−1







⊗ x. (3.23)

which is a direct generalisation of Theorem 4.2 of [PT04].

In population dynamics, the spectral radius of matrix polynomials determines

the growth or decay rate of the considered population model [LS02]. In par-

ticular: if it is less than one, the population converges to zero; if it is greater

than one, the population grows to infinity; otherwise, the population stays

finite. Similar facts can be interpreted for the max-algebraic models based on

the value of µ. Essentially, the solution uk is given by µk times a constant

vector once k is large enough. This means that in the max algebra, µ com-

pletely characterises the rate of convergence or divergence of the solution for

any initial condition. The following is a direct implication of Theorem 3.3.2.

lim
k→∞

||uk|| =







0 if µ < 1,
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

yT ⊗
(

m⊕

j=1

(
j−1⊕

i=0

Ai

µj−i

)

⊗ uj−1

)]

⊗ x

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

if µ = 1,

∞ if µ > 1.

where ||.|| denotes the infinity norm of a vector on Rn
+, i.e, ||x|| = max

1≤i≤n
xi for

some x ∈ Rn
+ [PT04].

3.4 Some Bounds on µ(P (λ))

In this section, we derive a number of inequalities for the largest max eigen-

value of a max matrix polynomial in terms of the largest max eigenvalue of a

fixed matrix naturally associated with the polynomial. First, consider a max

version of the rational matrix function in (3.7) given by

SP (λ) = Am−1 ⊕ 1
λ
Am−2 ⊕ · · · ⊕ 1

λm−1
A0. (3.24)
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3.4. Some Bounds on µ(P (λ))

Following similar notation for the max eigenpairs of P (λ), we say that

(i) κ ≥ 0 is said to be a right max eigenvalue of SP (λ) with corresponding

right max eigenvector x ≥ 0 if

SP (κ) ⊗ x = κx. (3.25)

(κ, x) is then a right max eigenpair of SP (λ).

(ii) τ ≥ 0 is said to be a left max eigenvalue of SP (λ) with corresponding

left max eigenvector y ≥ 0 if

yT ⊗ SP (τ) = τyT . (3.26)

(τ, y) is then a left max eigenpair of SP (λ).

Next, we show the relation between the spectral radius of a matrix polynomial

and the corresponding rational function over the max algebra.

Proposition 3.4.1. Consider the max matrix polynomial P (λ) given by (3.8)

and the corresponding max rational matrix function given by SP (λ) (3.24).

Then (κ, x) ∈ R+ × Rn
+ is a right max eigenpair of P (λ) if and only if (κ, x)

is a right max eigenpair of SP (λ). Moreover, (τ, y) ∈ R+ × Rn
+ is a left max

eigenpair of P (λ) if and only if (τ, y) is a left max eigenpair of SP (λ).

Proof: It is a straightforward calculation to verify that

SP (λ) =
1

λm−1
P (λ).

For the right max eigenpair, take λ = κ and multiply the above equation

by x from right. The equality is immediate from the definition of right max

eigenpair of P (λ) and SP (λ) respectively. Similarly for the left max eigenpair,

take λ = τ and multiply the above equation by yT from the left. Using the

definition of left max eigenpair of P (λ) and SP (λ) respectively, we can verify

the equality.

Using the equality of max eigenpairs of P (λ) and SP (λ), Theorem 3.1.5 can

directly be extended to the max algebra as follows.
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Corollary 3.4.2. Let P (λ) given in (3.8) be a max matrix polynomial. As-

sume that µ is positive. Further, let CP be given in (3.11) and SP (λ) be given

in (3.24). Then, µ = µ(CP ) = µ(SP (µ)).

In particular, we denote SP (1) by S where S ∈ Rn×n
+ . We explore the rela-

tionship between the largest max eigenvalues of the max matrix polynomial

(3.8) and

S = A0 ⊕ A1 ⊕ · · · ⊕ Am−1. (3.27)

We next present a number of results relating µ and µ(S) that are similar to

those given in Proposition 3.1.4 for matrix polynomials over the conventional

algebra. For the remainder of this section, given a set of coefficient matrices

A0, . . . , Am−1 associated with P (λ), we write

Ψ = {A0, A1, ..., Am−1}. (3.28)

Let M(Ψ) denote the multigraph associated with the set Ψ. The maximal

cycle geometric mean in M(Ψ) is denoted by µ(M(Ψ)) analogously to the

case of a simple graph. Critical cycles are defined for M(Ψ) in the obvious

manner.

Lemma 3.4.3. Let µ(M(Ψ)) denote the maximal cycle geometric mean of

the multigraph associated with Ψ in (3.28) and let µ(S) be the maximal cycle

geometric mean of D(S) associated with S in (3.27). Then µ(M(Ψ)) = µ(S).

Proof: First it is immediate that any cycle in D(S) is also a cycle in M(Ψ).

This implies that µ(S) ≤ µ(M(Ψ)). On the other hand, if ΓM is a critical

cycle in M(Ψ) with product ap1

i1i2a
p2

i2i3 . . . a
pk

iki1
, it is clear that (i1, i2, . . . , ik = i1)

is also a cycle in D(S). Moreover, from the definition of S,

si1i2si2i3 · · · siki1 ≥ ap1

i1i2a
p2

i2i3 . . . a
pk

iki1
.

This implies that µ(S) ≥ µ(M(Ψ)). Hence µ(S) = µ(M(Ψ)) as claimed.

Before proceeding, note that the argument used above also shows that µ(M(Ψ))

= 0 if and only if µ(S) = 0.

The following result plays a central role in the proof of the main result of this

section. It shows that there is a one to one correspondence between cycles in

50



3.4. Some Bounds on µ(P (λ))

the multigraph M(Ψ) and cycles in the directed graph D(CP ). In the proof

of this result we write ci,j for the (i, j)th entry of CP .

Lemma 3.4.4. Let ΓM be a cycle in the multigraph M(Ψ) with cycle product

π(ΓM) and length j. Then there exists a cycle ΓC in D(CP ) of length k ≥ j

such that π(ΓC) = π(ΓM). Conversely, for every cycle ΓC in D(CP ) of length

k, there exists a cycle ΓM of length j in M(Ψ) with cycle product π(ΓM) =

π(ΓC) and length j ≤ k.

Proof: Let ΓM be a cycle in M(Ψ) with product

π(ΓM) = ap1

i1i2a
p2

i2i3 . . . a
pj

iji1 .

Note that for 1 ≤ s ≤ j, the entry aps

isis+1
corresponds to the entry in the

companion matrix CP given by c(m−1)n+is ,psn+is+1
. Now note that the form of

CP means that for any p with 0 ≤ p < m− 1, and any i with 1 ≤ i ≤ n, there

exists a simple path in D(CP ) from the vertex pn+ i to (m−1)n+ i. Further,

all the entries of CP used to construct this path are equal to one. It follows

immediately from this that there exists a cycle ΓC in D(CP ) whose product

is equal to π(ΓM) but whose length k may be greater than j (as extra edges

of weight 1 may have been added to define the cycle in D(CP )).

For the converse, note that any cycle ΓC of length k in D(CP ) must contain at

least one vertex corresponding to an index i with (m− 1)n+ 1 ≤ i ≤ mn (an

index from the bottom n rows of CP ). Suppose the product π(ΓC) contains j

terms from the bottom n rows of CP and is given by

c(m−1)n+i1,p1n+i2c(m−1)n+i2,p2n+i3 · · · c(m−1)n+ij ,pjn+i1

(where we have omitted terms equal to one from the product).

Then the cycle ΓM in M(Ψ) consisting of the vertices i1, . . . , ij, ij+1 = i1 and

the edges with weights

ap1

i1i2 , a
p2

i2i3 , . . . , a
pj

iji1

has length j with j ≤ k and moreover, it is immediate that π(ΓM) = π(ΓC).

Again, note that the above argument shows that µ(M(Ψ)) = 0 if and only if

µ = 0. Hence, from Lemma 3.4.3, µ(S) = 0 if and only if µ = 0. As all of
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the following results are trivial in the case where µ = µ(S) = 0, we henceforth

assume that µ 6= 0.

Corollary 3.4.5. Let µ denote the largest max eigenvalue of the max matrix

polynomial given by (3.8) and let µ(S) denote the largest max eigenvalue of

the matrix S given by (3.27). Then, there exist integers j1, j2, k1, k2 with 0 <

j1 ≤ k1, 0 < j2 ≤ k2 such that

µ(S)j1/k1 ≤ µ ≤ µ(S)j2/k2. (3.29)

Proof: First let ΓM be a critical cycle in M(Ψ) of length j1. Then the product

of ΓM is given by µ(M(Ψ))j1. From Lemma 3.4.4 there is a corresponding

cycle, not necessarily critical, ΓC in D(CP ) of length k1 ≥ j1 with the same

cycle product. It follows from the definition of µ that µ(M(Ψ))j1/k1 ≤ µ.

On the other hand, let ΓC be a critical cycle in D(CP ) of length k2. Then

as above the cycle product of ΓC is µk2 and there exists a (not necessarily

critical) cycle in M(Ψ) of length j2 ≤ k2 with the same cycle product. This

implies that

µk2/j2 ≤ µ(M(Ψ)).

Rearranging this, we see that

µ ≤ µ(M(Ψ))j2/k2 .

As µ(M(Ψ)) = µ(S) from Lemma 3.4.3 the result follows.

Next, we present a numerical example to illustrate the result in Lemma 3.4.4.

Example 3.4.1. Let P (λ) be given by

P (λ) =




0 3

0 1



⊕



0 2

4 2



λ⊕



0 1

3 5



λ2

Then, the corresponding companion matrix and S are as follows.

CP =

















0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 3 0 2 0 1

0 1 4 2 3 5

















, S =




0 3

4 5




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Consider the cycle ΓM in M(Ψ) whose product is π(ΓM) = a0
12a

1
21 = s12s21 =

12 with l(ΓM ) = 2. We get the following cycle in D(CP ):

• ΓC = (5, 2, 4, 6, 3, 5) with π(ΓC) = c52c24c46c63c35 = 12 and l(Γ1) = 5

Next, consider the cycle ΓC in D(CP ) whose product is π(ΓC) = c54c46c65 = 6

with l(ΓC) = 3. Then, we get the following cycle in M(Ψ):

• ΓM = (1, 2, 1) with π(ΓC) = a1
12a

2
21 = 6 and l(Γ1) = 2

We are now able to state the main result of this section, which provides a max

algebra version of Proposition 3.1.4.

Theorem 3.4.6. Let P (λ) be the max matrix polynomial in (3.8) and S be

given in (3.27). Further, µ is the largest max eigenvalue of P (λ) and µ(S) is

the largest max eigenvalue of S. Then, the following hold.

(i) µ(S) < 1 if and only if µ < 1;

(ii) µ(S) > 1 if and only if µ > 1;

(iii) µ(S) = 1 if and only if µ = 1.

Proof: This result follows immediately from the identity

µ(S)j1/k1 ≤ µ ≤ µ(S)j2/k2

established in Corollary 3.4.5.

The following Corollary is obtained immediately from Corollary 3.4.5.

Corollary 3.4.7. Let µ denote the largest max eigenvalue of the max matrix

polynomial given by (3.8) and let µ(S) denote the largest max eigenvalue of

the matrix S given by (3.27).

µ(S) > 1 ⇒ µ ≤ µ(S) (3.30)

µ(S) < 1 ⇒ µ ≥ µ(S)

µ(S) = 1 ⇒ µ = µ(S)
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Theorem 3.4.6 shows that µ = µ(S) when µ(S) = 1. In the next result, we

give a necessary condition for µ = µ(S) when µ(S) 6= 1.

Corollary 3.4.8. Let µ denote the largest max eigenvalue of the max matrix

polynomial given by (3.8) and let µ(S) denote the largest max eigenvalue of

the matrix S given by (3.27). If µ(S) 6= 1 and µ = µ(S), then µ = µ(Am−1).

Proof: Consider µ = µ(S).

Case 1 : Let µ(S) > 1. Using Corollary 3.4.5, we have µ ≤ µj2/k2 ⇒ µ1−j2/k2 ≤
1. This is only possible when j2 = k2. This means that there is some critical

cycle in D(CP ) whose product only contains terms from the last n rows of CP .

This immediately implies that all the terms in this product are in Am−1, so in

this case µ = µ(Am−1).

Case 2 : Let µ(S) < 1. As above, using Corollary 3.4.5, we have µj1/k1 ≤ µ ⇒
1 ≤ µ1−j1/k1. This is only possible when j1 = k1. As in Case 1 this implies

that µ = µ(Am−1)

As a final point, we note that the converse of the previous result does not hold.

Specifically, the example below has µ = µ(Am−1) with m = 2 but µ 6= µ(S).

Example 3.4.2.

CP =

















0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0.2 1 0.1 1 0.5 3

2 1 0.2 1.5 0.1 1

0.3 2 2 2 5 0.6

















⇒ µ = 2.8231

A1 =








1 0.5 3

1.5 0.1 1

2 5 0.6








⇒ µ(A1) = 2.8231

S =








1 1 3

2 1 1

2 5 2








⇒ µ(S) = 3.1072
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3.5 Concluding Remarks

Our main goal in this chapter was to extend the spectral theory of non-negative

matrix polynomials to the max algebra. In this context,

• we extended results on Perron polynomials to the max algebra;

• we derived convergence results for the solution of multi-step difference

equations over the max algebra;

• we proved a number of results giving inequalities for the largest max

eigenvalue of a max matrix polynomial.
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CHAPTER 4
Asymptotic Stability in the

Max Algebra

In this chapter, we introduce the class of Pmax-matrices for the max algebra and

derive some properties of these that echo similar results for P -matrices in the con-

ventional algebra. We obtain results elucidating the relationship between the Pmax-

property, Smax-property and the stability of delayed difference equations. Moreover,

we define Pmax-matrix sets, the row-Pmax-property and the Smax-property of a fi-

nite set of non-negative matrices. We describe a number of equivalent results for

Pmax-matrix sets and relate these concepts to stability questions for sets of matrices

and discrete inclusions with delay.

4.1 Motivation and Mathematical

Background

In this section, we are concerned with P -matrices over the conventional al-

gebra. We define the row-P -property and S-property of sets. We briefly

recall some results on the stability of positive switched dynamical systems

and discrete linear inclusions.
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4.1.1 Introduction

A principal submatrix of order i of an n × n matrix A is a matrix formed

by deleting n − i rows and the corresponding n − i columns (with the same

indices) of A (i ∈ {1, 2, ..., n}). A principal minor of order i of A is the

determinant of a principal submatrix of order i of A. A ∈ Rn×n is said to be

a P -matrix (P0-matrix) if the principal minors of order i are positive (non-

negative) for 1 ≤ i ≤ n. In other words, A is a P -matrix (P0-matrix) if all of its

principal submatrices have positive (non-negative) determinant. P -matrices

were introduced by Fiedler and Pták in [FP62].

For a complex number λ, we adopt the notation Re(λ) for the real part of

λ. Then, we say that A is positive-stable if Re(λ) > 0 for all λ ∈ σ(A)

[HJ90]. The results to be presented in this section relate most directly to

characterisations of P -matrices in terms of matrix stability within the class

of so-called Z-matrices. A is a Z-matrix if aij ≤ 0 for all i, j(i 6= j). It

is well-known that for a Z-matrix A, the following conditions are equivalent

[FP62, HJ90, BP94].

Theorem 4.1.1. Let A ∈ Rn×n be a Z-matrix. Then, the following are equ-

ivalent.

(i) A is a P -matrix;

(ii) A is positive-stable;

(iii) For every non-zero x ∈ Rn there is some i with xi(Ax)i > 0;

(iv) Every principal submatrix of A is positive-stable;

(v) There exists some v > 0 with Av > 0.

Property (i) above is usually referred to as the P -property while Property (v)

is referred to as the S-property of the matrix [FP62, FP66]. A Z-matrix with

Property (ii) is said to be an M-matrix [HJ90].

The class of P -matrices has been extensively studied due to its importance

in fields such as statistics, optimisation and dynamical systems [Par83, HS98,

Sou06, CPS09]. The relevance of such matrices to the linear complementarity
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problem is well documented and details can be found in [CPS09]. P -matrices

are also intimately connected with the stability theory of positive linear sys-

tems, with the long-term behaviour of Lotka-Volterra systems in ecological

modelling [HS98] and with chemical reaction systems [BDB07]. Yet another

context in which P -matrices play a role is in the study of globally univalent

functions, motivated by applications in Economics and Biology [Par83, Sou06].

Results on asymptotic stability of a non-negative matrix in the max algebra

were discussed in [Lur05]. The analyses in this work was then extended to

sets of non-negative matrices in [Lur06, Pep08]. Here, a max algebra version

of the generalised spectral radius for sets of matrices was defined and results

were presented in the context of stability and convergence properties of discrete

linear inclusions. More recently, the class of Z andM-matrices were considered

in connection with the solution of matrix equations over the max algebra

[BSS12].

Inspired by Song, Gowda and Ravindran [SGR99], we shall be concerned with

extending results concerning P -properties of single matrices and sets of mat-

rices to the setting of the max algebra. In this direction, the layout of this

chapter is as follows. First, we briefly give the main results over the conven-

tional algebra. In Section 4.2, we show that equivalences analogous to (i) -

(v) in Theorem 4.1.1 also hold in the max algebra. Moreover, we explore the

connection between matrix stability in the max algebra and max-algebraic dy-

namical systems. In Section 4.4, we extend the results for sets of matrices in

[SGR99] to the max algebra. The work contained in this chapter has resulted

in the publication: [BGM11a].

4.1.2 P -matrix Sets, Row-P -property and S-property

Song, Gowda and Ravindran extended the P -property and S-property of a

single matrix to sets of matrices in [SGR99]. Specifically, they introduced

the row-P -property and showed the relation between the row-P -property and

S-property of a set.

Throughout this chapter, Ψ denotes a set of non-negative matrices in Rn×n
+ .

We recall the notation from (3.28) that

Ψ = {A1, A2, ..., Am} (4.1)
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where each Ai ≥ 0 and Ai 6= 0 for some i ∈ {1, 2, ..., m}.

Following the notation in [SGR99] we define the row representative set of Ψ

as follows

Ψ̂ = {M ∈ Rn×n
+ | for 1 ≤ j ≤ n there exists Aij ∈ Ψ with Mj. = (Aij )j.}

(4.2)

where Mj. denotes the jth row of M . Briefly, the matrices M ∈ Ψ̂ are formed

by choosing corresponding rows from some Aij ∈ Ψ where 1 ≤ ij ≤ m. This

is illustrated by the following simple example.

Example 4.1.1. Consider the matrices in R2×2
+ given by

A1 =




1/2 1/3

4/5 1/4



 A2 =




2/3 0

1 5/8



 .

For Ψ = {A1, A2}, it is easy to see that Ψ̂ = {A1, A2,M1,M2} where

M1 =




1/2 1/3

1 5/8



 M2 =




2/3 0

4/5 1/4



 .

Note that the results of Song, Gowda and Ravindran [SGR99] are for a set

of general n × n matrices. However, we recall the following definitions for

Ψ given in (4.1). The row-P -property and S-property of Ψ are described as

follows [SGR99].

(i) Ψ has the row-P -property (row-P0-property) if every matrix in Ψ̂ is a

P -matrix (P0-matrix);

(ii) Ψ has the S-property if there is v > 0 such that Av > 0 for all A ∈ Ψ.

Note that Ψ ⊂ Ψ̂. Thus, if Ψ has the row-P -property (row-P0-property), each

matrix in Ψ is automatically a P -matrix (P0-matrix). In this direction Ψ is

called a P -matrix set (P0-matrix set) [SGR99].

The following result demonstrates that Theorem 4.1.1 (iii) holds uniformly for

all matrices in Ψ [SGR99].

Theorem 4.1.2. Let Ψ ⊂ Rn×n
+ be given in (4.1). Then, Ψ has the row-P -

property if and only if for every non-zero x ∈ Rn
+ there is some i ∈ {1, 2, ..., n}

with xi(Ax)i > 0 for all A ∈ Ψ.
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The following result states the equivalence of the row-P -property and S-

property for a compact set of Z-matrices [SGR99].

Theorem 4.1.3. Let Ψ ⊂ Rn×n
+ be given in (4.1) and be a set of Z-matrices.

Then, the following are equivalent.

(i) Ψ has the row-P -property;

(ii) There exists some v > 0 such that Av > 0 for all A ∈ Ψ.

4.1.3 On the Stability of Positive Switched Linear

Systems

The results on P -matrix sets in [SGR99] echo similar results on the existence

of a common linear copositive Lyapunov function in the context of switched

dynamical systems.

Let a continuous-time linear system be given by

ẋ(t) = Ax(t), x(0) = x0, 0 ≤ t < ∞ (4.3)

where x ∈ Rn is called the state vector and A ∈ Rn×n is referred as the system

matrix. (4.3) is said to be a positive system if x(t) ∈ Rn
+ for all t ≥ 0 for any

x0 ∈ Rn
+. It follows from [FR00] that (4.3) is positive if and only if A is a

Metzler matrix , i.e., aij ≥ 0 for all i, j when i 6= j. It is well known that the

asymptotic stability of the positive system (4.3) is characterised by whether

or not the matrix A is Hurwitz (meaning that all of its eigenvalues lie in the

open left half plane) [GSM07, MS07, KMS09].

A positive switched linear system is formed by a set of continuous-time positive

linear systems and a switching mechanism that arbitrarily switches between

them. More generally, one can consider positive differential inclusions of the

form

ẋ(t) ∈ {A(t)x(t), A(t) ∈ {A1, A2, ..., Am}}, x(0) = x0, 0 ≤ t < ∞ (4.4)

where Ai is a Metzler matrix for 1 ≤ i ≤ m. It is well known that Lyapunov

theory is a powerful tool for stability analysis of the systems of this type.

In particular, the authors of [MS07] studied the existence of common linear
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copositive Lyapunov functions for a pair of continuous-time positive linear

systems. Their results were then extended to a finite set of continuous-time

positive linear systems in [KMS09]. Following [MS07], the function V (x) =

vTx is a common linear copositive Lyapunov function for (4.4) if and only if

v ∈ Rn satisfies the following

(i) v > 0;

(ii) ATi v < 0 for all 1 ≤ i ≤ m.

The existence of such a Lyapunov function is a sufficient condition for the

stability of (4.4). The following result, which is essentially a special case of

Theorem 4.1.3, defines an equivalent condition for its existence [KMS09].

Theorem 4.1.4. Let A1, A2, ..., Am ∈ Rn×n be Metzler and Hurwitz. Then,

the following are equivalent.

(i) Any matrix in the row representative set of {AT1 , AT2 , ..., ATm} is Hurwitz;

(ii) There exists some v > 0 such that ATi v < 0 for all 1 ≤ i ≤ m.

4.1.4 Generalised Spectral Radius

The generalised spectral radius plays a key role when extending the results in

[SGR99] to the max algebra.

Two different concepts have been proposed to generalise the spectral radius to

sets of matrices: the generalised spectral radius [DL92] and the joint spectral

radius [RS60]. They are respectively defined for a bounded set of n×n complex

matrices (there exists an upper bound on the norms of the matrices in the set)

denoted by
∑

as follows.

ρ(
∑

) = lim
k→∞

sup



 sup
A∈
∑k

ρ(A)





1

k

(4.5)

ρ̂(
∑

) = lim
k→∞



 sup
A∈
∑k

||A||




1

k

(4.6)
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Here,
∑k denotes the set of all products of matrices from

∑
of length k ≥ 1 and

||.|| is any matrix norm on Cn×n. Note that (4.5) and (4.6) are generalisation

of the fundamental formulae relating the spectral radius of an n×n matrix in

(2.8). It has been proven by [BW92] that ρ(
∑

) = ρ̂(
∑

) for any bounded set
∑

.

These concepts have been studied by several authors in [BW92, HS95, LW95,

Gur95, Wir02]. They have various applications in wavelet theory [HS95] and

discrete inclusions [Wir02]. In particular, the role of the generalised spectral

radius in the stability analysis of discrete inclusions was investigated in [Gur95,

Wir02]. Following the notation in these papers, consider the discrete linear

inclusion of the form

x(k + 1) ∈ {A(k)x(k), A(k) ∈
∑

}, x(0) = x0, k = 0, 1, .... (4.7)

A sequence {x(k)}k≥0 is said to be a solution of (4.7) starting with an initial

condition x(0) = x0 if for all k ≥ 0 there exists some A(k) ∈ ∑
such that

x(k + 1) = A(k)x(k). Then, we obtain x(k) = A(k − 1)A(k − 2)...A(0)x0 for

some k. The convergence of the solution to the origin can be characterised as

follows: lim
k→∞

A(0)A(1)...A(k − 1) = 0 for all k ≥ 0 if and only if ρ(
∑

) < 1

[Gur95, Wir02].

A max algebra version of the generalised spectral radius, which plays a cen-

tral role in determining stability and convergence properties of discrete linear

inclusions and nonhomogeneous matrix products over the max algebra was

introduced in [Lur06]. Subsequent work showing the connection between the

max version of the generalised spectral radius and the conventional spectral

radius of Hadamard powers was presented in [Pep08].

Let Ψ be given by (4.1). Then, the max version of the generalised and joint

spectral radius of Ψ are respectively given by

µ(Ψ) = lim
k→∞

sup

(

max
A∈Ψk

⊗

µ(A)

) 1

k

(4.8)

µ̂(Ψ) = lim
k→∞

(

max
A∈Ψk

⊗

η||.||(A)

) 1

k

(4.9)

where Ψk
⊗ denotes the set of all products of matrices from Ψ of length k ≥ 1

in the max algebra. Formally,

Ψk
⊗ := {Aj1

⊗ · · · ⊗ Ajk
: ji ∈ {1, 2, ..., m} for 1 ≤ i ≤ k}. (4.10)
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Since all vector norms are equivalent on a finite dimensional space, µ̂(Ψ) =

lim
k→∞

(

max
A∈Ψk

⊗

||A||
) 1

k

for any matrix norm ||.|| [Lur05]. Note that (4.8) and (4.9)

are generalisations of the formulae relating the largest max eigenvalue of an

n×n non-negative matrix in (2.15). It has been shown in [Lur06] that µ(Ψ) =

µ̂(Ψ) is true for the finite set Ψ. Moreover, some of the inequalities for the

largest max eigenvalue discussed in Section 2.2.2 can be extended to the max

generalised spectral radius. For instance, µ(Ψ) ≤ ρ(Ψ) ≤ nµ(Ψ) [Lur06]. The

following result shows the connection between the max generalised spectral

radius and the asymptotic behaviour of products of matrices from Ψ [Lur06].

Theorem 4.1.5. Let Ψ be given by (4.1). Then, the following are equivalent.

(i) lim
k→∞

Aj1
⊗ · · · ⊗ Ajk

= 0 where ji ∈ {1, 2, ..., m} for 1 ≤ i ≤ k;

(ii) µ(Ψ) < 1.

4.2 The class of Pmax-matrices

In this section, we define the class of Pmax-matrices. Further, we demonstrate

the relationship between these matrices and the stability properties of matrices

and difference equations in the max algebra. The results presented here echo

similar facts presented in Theorem 4.1.1 for the conventional algebra.

We deal with the permanent of a matrix in order to form the analogue of P -

matrices since the notion of a determinant does not directly extend to the max

algebra because of the minus sign [Bap95, But03]. Note that the max version

of the permanent plays an important role in the linear assignment problem

[BB03].

Let Sn denote the set of all permutations of the numbers 1, 2, ..., n and σ be a

permutation in Sn. Formally, the max permanent is given by

permax(A) = max
σ∈Sn

n⊗

i=1

ai,σ(i). (4.11)

Simply, for A =




a11 a12

a21 a22



 ∈ R2×2
+ , permax(A) = max(a11a22, a12a21).
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Chapter 4. Asymptotic Stability in the Max Algebra

A ∈ Rn×n
+ is said to be a Pmax-matrix if permax(B) < 1 for all principal sub-

matrices B of A. We next relate the Pmax-matrices with the matrix stability

over the max algebra. The specific notion of matrix stability considered here

is that explored in [Lur05] and corresponds to asymptotic stability of the

discrete-time system

x(k + 1) = A⊗ x(k), x(0) = x0, k = 0, 1, .... (4.12)

We say that (4.12) is asymptotically stable if all solutions x(k) converge to zero

as k tends to ∞. As with discrete-time systems in the conventional algebra,

the largest max eigenvalue is intimately related to the asymptotic stability

of (4.12). As stated in Theorem 2.2.4, asymptotic stability is equivalent to

µ(A) < 1.

The following theorem presents some equivalent conditions for A ∈ Rn×n
+ to

be a Pmax-matrix.

Theorem 4.2.1. Let A ∈ Rn×n
+ . Then, the following are equivalent:

(i) A is a Pmax-matrix;

(ii) A is asymptotically stable, that is, µ(A) < 1;

(iii) For each x 6= 0 in Rn
+, there exists an i ∈ {1, 2, ..., n} such that (A⊗x)i <

xi;

(iv) For all principal submatrices B of A, µ(B) < 1;

(v) There exists a vector v > 0 such that A⊗ v < v.

Proof:

(i) ⇐⇒ (ii) Assume that we have permax(B) < 1 for all principal submatrices

B of A. Let (i1, i2, ..., ik, i1) be a critical cycle in D(A). (If there is no cycle in

D(A) then µ(A) = 0 and we are done.) Further, let B ∈ Rk×k
+ be the principal

submatrix of A corresponding to i1, i2, ..., ik. Then we have

ai1i2ai2i3 ...aiki1 = b1,σ(1)b2,σ(2)...bk,σ(k) ≤ permax(B)

for some permutation σ ∈ Sk. It follows immediately that µ(A) < 1.
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For the converse, assume µ(A) < 1. So, all cycle products of any length in

D(A) are less than 1. Let a principal submatrix B ∈ Rk×k
+ of A be given with

permax(B) equal to bi1,σ(i1)bi2,σ(i2)...bik ,σ(ik) for some 1 ≤ i1, i2, ..., ik ≤ n. Since

σ ∈ Sk is a permutation and can be written as a product of cyclic permuta-

tions, it follows that permax(B) can be decomposed into cycle products. It is

immediate that permax(B) < 1.

(ii) ⇐⇒ (iii) Let µ(A) < 1. Suppose that there exists x 6= 0 in Rn
+ such that

(A ⊗ x)i ≥ xi for each i ∈ {1, 2, ..., n}. Then A ⊗ x ≥ x. This implies that

Ak⊗ ⊗ x ≥ x for some x 6= 0 in Rn
+. Thus, as k → ∞, the kth power of A

doesn’t converge to zero which contradicts µ(A) < 1 (Theorem 2.2.4).

Conversely, assume (iii) and let i1, i2, ..., ik, ik+1 = i1 be a cycle of length k

with the cycle product ai1i2ai2i3 ...aiki1 in D(A) for i1, i2, ..., ik ∈ {1, 2, ..., n}.

(If D(A) contains no cycles, then µ(A) = 0 and we are done.) Define x ∈ Rn
+

as follows:

xi2 = 1

xij =
xij−1

aij−1ij

, j = 3, ..., k

xi1 =
xik
aiki1

xp = 0, p 6= {i1, i2, ..., ik}.

By assumption there exists some index i with (A ⊗ x)i < xi. Clearly i must

be in {i1, i2, ..., ik}. Consider the following two cases.

• i = i1 ⇒ ai1i1xi1 ⊕ ai1i2xi2 ⊕ ... ⊕ ai1ikxik < xi1 . Since xi1 =
xik

aiki1

6= 0,

it easily follows from the second term in the left side that ai1i2xi2 < xi1 .

Hence,

ai1i2xi2 <
xik
aiki1

=
xi2

ai2i3ai3i4 ...aiki1
⇒ ai1i2ai2i3 ...aiki1 < 1.

• i = ij(1 < j ≤ k) ⇒ aij i1xi1 ⊕ aij i2xi2 ⊕ ... ⊕ aij ikxik < xij . Similarly, it

follows from the (j + 1)th term that

aij ij+1
xij+1

< xij ⇒ aij ij+1

xij
aij ij+1

< xij ⇒ 1 < 1.
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The second condition is not possible. As a result, we have ai1i2ai2i3 ...aiki1 < 1.

As this is true for any cycle in D(A), it follows that µ(A) < 1.

(ii) ⇐⇒ (iv) First, let µ(A) < 1. Then, all cycle products in D(A) are less

than one. Let a principal submatrix B∗ of A be given and let Γ be a critical

cycle in D(B∗). Since Γ also defines a cycle in D(A), π(Γ) < 1. As Γ was

arbitrary, µ(B∗) < 1.

For the converse, let µ(B) < 1 for all principal submatrices B of A. Since A

is a principal submatrix of order n, it is immediate that µ(A) < 1.

(ii) ⇐⇒ (v) First, suppose µ(A) < 1. Let 1n ∈ Rn
+ denote the vector of all

ones. We can choose ǫ > 0 so that µ(A+ ǫ1n1Tn ) < 1. Since A + ǫ1n1Tn is an

irreducible matrix, it follows from Theorem 2.2.2 on the max version of the

Perron-Frobenius theorem that there is some v > 0 with (A + ǫ1n1Tn ) ⊗ v =

µ(A+ ǫ1n1Tn )v < v. It follows immediately that

A ⊗ v ≤ (A+ ǫ1n1Tn ) ⊗ v < v.

For the converse, assume that there exists v > 0 satisfying A ⊗ v < v. As

above, choose ǫ > 0 so that

(A + ǫ1n1Tn ) ⊗ v < v.

As (A + ǫ1n1Tn ) is irreducible, A + ǫ1n1Tn has a positive left max eigenvector

w > 0. Multiplying both sides of the above equation with wT from the left,

we see that

wT ⊗ (A + ǫ1n1Tn ) ⊗ v < wT ⊗ v.

Since w is the left max eigenvector of A + ǫ1n1Tn , it follows that µ(A +

ǫ1n1Tn )wT ⊗ v < wT ⊗ v.

But wT ⊗ v > 0 which implies directly that

µ(A) ≤ µ(A+ ǫ1n1Tn ) < 1.

This completes the proof.

We call Property (i) in Theorem 4.2.1 the Pmax-property and Property (v)

the Smax-property of a matrix in the max algebra. The following example

illustrates Theorem 4.2.1.
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Example 4.2.1. Let a 3 × 3 matrix be given by

A =








1/2 1/3 0

0 3/5 1/4

1/5 1/6 2/3







.

There are three first order principal submatrices: a11 = 1/2, a22 = 3/5 and

a33 = 2/3 all of which are less than one. Thus, automatically all have max

permanent less than one.

There are three second order principal submatrices:

A12 =




1/2 1/3

0 3/5



 , permax(A12) = 3/10 < 1;

A13 =




1/2 0

1/5 2/3



 , permax(A13) = 1/3 < 1;

A23 =




3/5 1/4

1/6 2/3



 , permax(A23) = 2/5 < 1.

The third order principal submatrix is A where permax(A) = max(a11a22a33,

a11a23a32, a12a21a33, a12a23a31, a13a21a32, a13a22a31) = 1/5 < 1.

Hence, A is a Pmax-matrix. For A, µ(A) = 0.667 and µ(B) < 1 where B ∈
{a11, a22, a33, A12, A13, A23, A}. Moreover, for v =

[

1/5 1/3 1/4
]T

, A⊗v <
v.

We are next concerned with the relation of the Pmax-property to the stability of

delayed difference equations over the max algebra. In [HS00], it was shown for

the conventional algebra that off-diagonal delays had no effect on the stability

of a differential equation if and only if −A is a P -matrix where A is the system

matrix. We shall prove a corresponding fact for difference equations in the

max algebra without restricting diagonal delays to be zero.

Consider the delayed system of difference equations given by

xi(k + 1) =
n⊕

j=1

aijxj(k − τij), k ≥ 0, i = 1, 2, ..., n (4.13)

where A ∈ Rn×n
+ and τij ≥ 0 are non-negative integers for all 1 ≤ i, j ≤ n.

Theorem 4.2.2. Consider the system of delayed difference equations (4.13)

where τij ≥ 0 for all i, j. The following are equivalent:
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(i) A is a Pmax-matrix;

(ii) (4.13) is asymptotically stable for all τij ≥ 0;

(iii) (4.13) is asymptotically stable for some τij ≥ 0.

Proof: We shall prove that (i) implies (ii) and that (iii) implies (i). The

implication (ii) ⇒ (iii) is trivial.

(i) ⇒ (ii): Assume that A is a Pmax-matrix. Define the state vector by

x(k) =
[

x1(k) x2(k) · · · xn(k)
]T ∈ Rn

+. Let τij ≥ 0 be any set of non-

negative integer delays and suppose that the delays τij take values in the set

{0, 1, ..., τmax} for all 1 ≤ i, j ≤ n, where τmax = max
i,j

τij .

As all delays are non-negative integers less than or equal to τmax, we can write

the delayed system in (4.13) in the following form

x(k + 1) = A0 ⊗ x(k) ⊕ A1 ⊗ x(k − 1) ⊕ ...⊕ Aτmax
⊗ x(k − τmax) (4.14)

where the matrices Ap(p = 0, 1, ..., τmax) in Rn×n
+ are defined as follows. The

(i, j)th entry of Ap is equal to aij if τij = p and all other entries of Ap are zero.

Note that

A = A0 ⊕ A1 ⊕ ... ⊕ Aτmax
.

By setting x̂(k) =
[

x(k − τmax) x(k − τmax + 1) · · · x(k)
]T ∈ R

n(τmax+1)
+ ,

we see that the stability of (4.13) is equivalent to the stability of













x(k − τmax + 1)

x(k − τmax + 2)
...

x(k)

x(k + 1)














︸ ︷︷ ︸

x̂(k+1)

=














0 I 0 ... 0 0

0 0 I ... 0 0
...

...
...

. . .
...

...

0 ... ... ... 0 I

Aτmax
... ... ... A1 A0














︸ ︷︷ ︸

C

⊗














x(k − τmax)

x(k − τmax + 1)
...

x(k − 1)

x(k)














︸ ︷︷ ︸

x̂(k)

where C ∈ R
n(τmax+1)×n(τmax+1)
+ is the companion matrix associated to (4.13).

As A is a Pmax-matrix it follows from Theorem 4.2.1 that µ(A) < 1. Since

A = A0 ⊕A1 ⊕ ...⊕Aτmax
, it follows from Theorem 3.4.6 that µ(C) < 1. Thus,

the system (4.13) is asymptotically stable. As this is true for any delays

τij ≥ 0, we conclude that (ii) holds.

68



4.3. The class of P 0
max-matrices

(iii) ⇒ (i): Now assume that for some integer values of τij ≥ 0, the system

(4.13) is asymptotically stable. Then we can proceed as above to write the

system in the form (4.14). By assumption the companion matrix C associated

with the system will have µ(C) < 1. It then follows from Theorem 3.4.6 that

µ(A) < 1 and hence that A is a Pmax-matrix by Theorem 4.2.1.

This completes the proof.

4.3 The class of P 0
max-matrices

In this section, we define the class of P 0
max-matrices. Recall that P0-matrices

are introduced in [FP62] in the conventional algebra. They are also described

in [HJ90, BP94] in the context of matrix stability.

We say that A ∈ Rn×n
+ is a P 0

max-matrix if permax(B) ≤ 1 for all principal

submatrices B of A. Equivalent conditions for Pmax-matrices stated in Theo-

rem 4.2.1 can also be stated for P 0
max-matrices that echo similar results over

the conventional algebra. We next present these conditions in Theorem 4.3.1

below. Notice that Property (iii) in this theorem shows that a P 0
max-matrix

can be converted into a Pmax-matrix by a small perturbation.

Theorem 4.3.1. Let A ∈ Rn×n
+ . Then, the following are equivalent:

(i) A is a P 0
max-matrix;

(ii) µ(A) ≤ 1;

(iii) αA is a Pmax-matrix for all 0 < α < 1;

(iv) For each x 6= 0 in Rn
+, there exists an i ∈ {1, 2, ..., n} such that (A⊗x)i ≤

xi;

(v) For all principal submatrices B of A, µ(B) ≤ 1;

(vi) There exists a vector v > 0 such that A⊗ v ≤ v.

Proof:

(i) ⇐⇒ (ii) Assume that we have permax(B) ≤ 1 for all principal submat-

rices B of A. Following the same approach in the proof of Theorem 4.2.1,
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let (i1, i2, ..., ik, i1) be a critical cycle in D(A) and B ∈ Rk×k
+ be the prin-

cipal submatrix of A corresponding to i1, i2, ..., ik. Then, ai1i2ai2i3 ...aiki1 =

b1,σ(1)b2,σ(2)...bk,σ(k) ≤ permax(B) for some permutation σ ∈ Sk. We automati-

cally get µ(A) ≤ 1.

Next, assume that µ(A) ≤ 1. Let B ∈ Rk×k
+ be a principal submatrix of

A where permax(B) = bi1,σ(i1)bi2,σ(i2)...bik ,σ(ik) for some 1 ≤ i1, i2, ..., ik ≤ n.

Similar to the proof of Theorem 4.2.1, permax(B) can be written as a union

of several cycles products in D(A). Since all cycle products of any length in

D(A) are less than 1, it follows immediately that permax(B) ≤ 1.

(i) ⇐⇒ (iii) Assume that A ∈ Rn×n
+ is a P 0

max-matrix. Then, µ(A) ≤ 1 from

(ii). Let α be in (0, 1). Then, µ(αA) = αµ(A) < µ(A) ≤ 1. Thus, αA is a

Pmax-matrix from (ii) in Theorem 4.2.1.

For the converse, assume that αA ∈ Rn×n
+ is a Pmax-matrix for any α ∈ (0, 1).

Similarly, it is immediate from (ii) in Theorem 4.2.1 that αµ(A) < 1. Let

α converge to one. Then, we automatically have µ(A) ≤ 1. Thus, A is a

P 0
max-matrix from (ii).

(i) ⇐⇒ (iv) Assume that A ∈ Rn×n
+ is a P 0

max-matrix. Then, αA is a Pmax-

matrix for all 0 < α < 1 from (iii). It follows from Theorem 4.2.1 (iii) that

for each x 6= 0 in Rn
+, there exists an i ∈ {1, 2, ..., n} such that (αA⊗x)i < xi.

By letting α converge to one, we get (A⊗ x)i ≤ xi.

Next, let for each x 6= 0 in Rn
+, there exists an i ∈ {1, 2, ..., n} such that

(A ⊗ x)i ≤ xi. Let α be in (0, 1). It is straightforward that (αA ⊗ x)i <

(A ⊗ x)i ≤ xi implies (αA ⊗ x)i < xi. Then, αA ∈ Rn×n
+ is a Pmax-matrix

for any α ∈ (0, 1) from Theorem 4.2.1 (iii). Thus, A ∈ Rn×n
+ is a P 0

max-matrix

from (iii).

(i) ⇐⇒ (v) First, let A ∈ Rn×n
+ is a P 0

max-matrix and B ∈ Rk×k
+ be a principal

submatrix of A for 1 ≤ k ≤ n. Then, αA ∈ Rn×n
+ is a Pmax-matrix for all

α ∈ (0, 1) from (iii). Moreover, αB ∈ Rk×k
+ a principal submatrix of αA

for 1 ≤ k ≤ n since α is a scalar. It follows from Theorem 4.2.1 (iv) that

µ(αB) < 1 for all k ∈ {1, 2, ..., n}. By letting α converge to one, we get

µ(B) ≤ 1 for all principal submatrices B of A.

The converse is immediate.
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(i) ⇐⇒ (vi) Assume that A ∈ Rn×n
+ is a P 0

max-matrix. Then µ(A) ≤ 1 from

(ii). We choose ǫ > 0 and define a positive matrix B ∈ Rn×n
+ as follows

bij =







ǫ if aij = 0,

aij otherwise.

for all i, j so that µ(B) ≤ 1. Since B is irreducible, it follows from Theorem

2.2.2 on the max version of the Perron-Frobenius theorem that there is some

v > 0 with B ⊗ v = µ(B)v ≤ v. As A ≤ B, it follows immediately that

A⊗ v ≤ v.

Now assume that there exists v > 0 satisfying A ⊗ v ≤ v. Let α be in (0, 1).

Then, αA ⊗ v < A ⊗ v ≤ v. Since αA ⊗ v < v for some v > 0, αA is a

Pmax-matrix from (v) in Theorem 4.2.1 and A is a P 0
max-matrix from (iii).

4.4 The Row-Pmax-property and

Smax-property of Sets of Matrices

In the spirit of the results recalled in Section 4.1.2, we extend the Pmax-

property of a matrix to sets of non-negative matrices. We derive analogous

results to the equivalence of (i), (ii), (iii) and (v) established in Theorem 4.2.1.

Further, we are concerned with the relation between the row-Pmax-property

for sets of matrices, the Smax-property and the stability of discrete inclusions

in the max algebra.

Let Ψ ⊂ Rn×n
+ denote the finite set of n × n non-negative matrices defined in

(4.1) and Ψ̂ ⊂ Rn×n
+ denote the row representative set of Ψ given by (4.2).

The following two definitions play a central role in what follows.

(i) Ψ has the row-Pmax-property (row-P 0
max-property) if every matrix M ∈ Ψ̂

is a Pmax-matrix (P 0
max-matrix).

(ii) Ψ has the Smax-property if there is v > 0 such that Ai ⊗ v < v for all

i ∈ {1, 2, ..., m}.
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Following the notation in Section 4.1.2, if Ψ has the row-Pmax-property (row-

P 0
max-property), then each Ai ∈ Ψ is also a Pmax-matrix (P 0

max-matrix). In

this case, Ψ is said to be a Pmax-matrix set (P 0
max-matrix set).

In our main result, Theorem 4.4.1 below, we shall present some facts relating

Pmax-matrix sets and the stability of discrete inclusions in the max algebra.

The generalised spectral radius for the max algebra will play a key role in

what follows. Formally, we consider a max version of the inclusion given in

(4.7) as follows:

x(k + 1) ∈ {Ap ⊗ x(k), p = 1, 2, ..., m}, x(0) = x0, k = 0, 1, ... (4.15)

associated with the set of matrices Ψ given in (4.1). We say that (4.15)

is asymptotically stable if all solutions x(k) converge to zero as k tends to

∞. As with discrete linear inclusions in the conventional algebra, the max

generalised spectral radius is intimately related to the asymptotic stability

of (4.15). As stated in Theorem 4.1.5, asymptotic stability is equivalent to

µ(Ψ) < 1.

Before stating our main result, we make the following definitions. Given Ψ in

(4.1), we recall the notation from (3.27) that

S = A1 ⊕A2 ⊕ ... ⊕ Am. (4.16)

Moreover, we consider the max convex hull of Ψ given by

COmax(Ψ) = {
m⊕

i=1

αiAi | αi ≥ 0, 1 ≤ i ≤ m and
m⊕

i=1

αi = 1}. (4.17)

We say that COmax(Ψ) is asymptotically stable if µ(A) < 1 for all A ∈
COmax(Ψ). In particular, we are interested in relating the asymptotic sta-

bility of COmax(Ψ) with the Smax-property of Ψ.

The next result shows the relationship between the row-Pmax-property, the

Smax-property and the stability of discrete inclusions with delay for the max

algebra.

Theorem 4.4.1. Let Ψ be a set of n×n non-negative matrices given by (4.1)

and Ψ̂ be the row representative set of Ψ given by (4.2). Then the following

are all equivalent:
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(i) Ψ has the row-Pmax-property;

(ii) The max generalised spectral radius µ(Ψ) < 1;

(iii) The max generalised spectral radius µ(Ψ̂) < 1;

(iv) Ψ has the Smax-property;

(v) COmax(Ψ) is asymptotically stable;

(vi) The delayed difference inclusion given by

xi(k+1) ∈ {
n⊕

j=1

apijxj(k−τij), p = 1, 2, ..., m}, k ≥ 0, i = 1, 2, ..., n (4.18)

is asymptotically stable for all τij ≥ 0 for 1 ≤ i, j ≤ n.

Before proving this result, we shall state two key propositions. First, we relate

the stability of the matrix S given by (4.16) to the Smax-property of the set

Ψ̂.

Proposition 4.4.2. Let S be the matrix given by (4.16) and v > 0 be given.

Then, S ⊗ v < v is equivalent to M ⊗ v < v for all M ∈ Ψ̂.

Proof: Let v > 0 be given and let M be a matrix in Ψ̂. From the definition

of Ψ̂, for each j ∈ {1, 2, ..., n} there exists some Aij ∈ Ψ with 1 ≤ ij ≤ m such

that Mj. = (Aij )j.. It is explicit that for all j, if S ⊗ v < v, then

Mj. ⊗ v = (Aij )j. ⊗ v ≤ Sj. ⊗ v < vj .

Hence, M ⊗ v < v for all M ∈ Ψ̂.

For the converse, if M ⊗ v < v for all M ∈ Ψ̂, Ai ⊗ v < v for all Ai ∈ Ψ since

every matrix is also a row representative of itself. Thus, we observe that

m⊕

i=1

Ai ⊗ v <
m⊕

i=1

v ⇒ S ⊗ v < v.

The next proposition is a restatement of a result of [Gau95a] for the max-plus

algebra, which was phrased in the language of discrete event systems. In the

interests of clarity and completeness we have provided a direct max-algebraic
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proof below. It is an important result stating that the max generalised spectral

radius of a finite set in Rn×n
+ can be calculated using the largest max eigenvalue

of an n × n non-negative matrix.

Proposition 4.4.3. Let Ψ be a set of n × n non-negative matrices given by

(4.1). Let S be the matrix given by (4.16). Then, µ(Ψ) = µ(S).

Proof: We shall first show that µ(Ψ) ≤ µ(S). Consider some ψ ∈ Ψk
⊗. It is

explicit that ψ ≤ Sk⊗. Then, we have µ(ψ) ≤ µ(Sk⊗). Since this is true for any

ψ, we can write

max
ψ∈Ψk

⊗

µ(ψ) ≤ µ(Sk⊗).

Taking kth root and lim sup
k→∞

of both sides, we obtain

lim sup
k→∞

(max
ψ∈Ψk

⊗

µ(ψ))
1

k ≤ lim sup
k→∞

µ(Sk⊗)
1

k = µ(S),

where the final equality follows from (2.15). Thus, we have µ(Ψ) ≤ µ(S).

To complete the proof, we show that µ(S) ≤ µ(Ψ). Let Γ be a critical cyc-

le of length p in D(S) with product π(Γ) = si1i2si2i3...sipi1 (i1, i2, ..., ip ∈
{1, 2, ..., n}). Since S = A1 ⊕ A2 ⊕ ... ⊕ Am, it follows that there are indices

j1, j2, ..., jp ∈ {1, 2, ..., m} such that

µ(S)p = π(Γ) = aj1

i1i2a
j2

i2i3 ...a
jp

ipi1 ≤ (Aj1
⊗ Aj2

⊗ ...⊗ Ajp
)i1i1 .

Write M = Aj1
⊗ Aj2

⊗ ...⊗ Ajp
. Then, M ∈ Ψp

⊗. For all r ≥ 1,

(M r
⊗)i1i1 ≥ µ(S)pr.

Note that M r
⊗ ∈ Ψpr

⊗ and the above relation implies that max
ψ∈Ψpr

⊗

µ(ψ)
1

pr ≥ µ(S).

Let k = pr. If we take lim sup
k→∞

of both sides, we obtain

lim sup
k→∞

(max
ψ∈Ψk

⊗

µ(ψ))
1

k ≥ µ(S).

Thus, we have µ(S) ≤ µ(Ψ).

So, µ(S) = µ(Ψ) as claimed.

Proof:(Theorem 4.4.1) We will show that each of the conditions from (i)

to (vi) is equivalent to µ(S) < 1.
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(i) : First, denote the multigraph associated with the set Ψ by M(Ψ). Recall

that it consists of the vertices {1, 2, ..., n} with an edge of weight apij from i

to j for every Ap ∈ Ψ with 1 ≤ p ≤ m for which apij > 0. With analogous

definitions to the case of a simple graph, µ(M(Ψ)) denotes the maximal cycle

geometric mean of M(Ψ).

Now, assume that Ψ has the row-Pmax-property. Then, µ(M) < 1 for all

M ∈ Ψ̂. This implies that all cycle products in M(Ψ) are less than one. It

follows from Lemma 3.4.3 that µ(M(Ψ)) = µ(S). So, we obtain that µ(S) < 1.

For the converse, assume that µ(S) < 1. Then, from Theorem 4.2.1 there

exists a vector v > 0 such that S ⊗ v < v. It automatically follows from

Proposition 4.4.2 that µ(M) < 1 for all M ∈ Ψ̂. So, every M ∈ Ψ̂ is a

Pmax-matrix. Thus, Ψ has the row-Pmax-property.

(ii) : It is immediate from Proposition 4.4.3 that µ(Ψ) < 1 if and only if

µ(S) < 1.

(iii) : Let µ(Ψ̂) < 1. Then, for all M ∈ Ψ̂, we get µ(M) < 1 since µ(Ψ̂) =

µ(
⊕

M∈Ψ̂

M) from Proposition 4.4.3. Thus, every M ∈ Ψ̂ is a Pmax-matrix

from Theorem 4.2.1. Hence, Ψ has the row-Pmax-property. From (i), we

automatically have µ(S) < 1.

For the converse, let µ(S) < 1. From the definition of Ψ̂, for each j ∈
{1, 2, ..., n} there exists some Aij ∈ Ψ with 1 ≤ ij ≤ m such that Mj. = (Aij )j..

Then, for every M ∈ Ψ̂, we have M ≤ S. By taking max sum of both sides

so that µ(Ψ̂) = µ(
⊕

M∈Ψ̂

M), we obtain µ(Ψ̂) ≤ µ(S) < 1.

(iv) : First, assume that Ψ has the Smax-property. Then, there exists a vector

v > 0 such that Ai ⊗ v < v for 1 ≤ i ≤ m. As in the proof of Proposition

4.4.2 if we add both sides from 1 to m such that
m⊕

i=1
Ai ⊗ v <

m⊕

i=1
v, we obtain

S ⊗ v < v. Thus, µ(S) < 1.

For the converse, assume that µ(S) < 1. Then, there exists a vector v > 0

such that S ⊗ v < v from Theorem 4.2.1. It implies that Ai ⊗ v ≤ S ⊗ v < v

for 1 ≤ i ≤ m. Thus, Ψ has the Smax-property.

(v) : Let COmax(Ψ) be asymptotically stable. Notice that S ∈ COmax(Ψ). We

immediately see that µ(S) < 1.
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Now, let µ(S) < 1. Since A ≤ S for all A ∈ COmax(Ψ), COmax(Ψ) is asymp-

totically stable.

(vi) : Following the same procedure as in Theorem 4.2.2, we can define τmax =

max
i,j

τij and rewrite (4.18) in the following form

x(k+ 1) ∈ {Bp
q ⊗ x(k− q)}, k ≥ 0, p ∈ {1, 2, ..., m}, q ∈ {0, 1, ..., τmax} (4.19)

where the matrices Bp
q in Rn×n

+ are defined as follows. The (i, j)th entry of Bp
q

is equal to apij if τij = q and all other entries of Bp
q are zero. Note that

Ap = Bp
0 ⊕ Bp

1 ⊕ ...⊕ Bp
τmax

for 1 ≤ p ≤ m. By setting x̂(k) = (x(k − τmax), x(k − τmax + 1), ..., x(k))T ∈
R
n(τmax+1)
+ , we see that the inclusion (4.19) is equivalent to the inclusion

x̂(k + 1) ∈ {Cp ⊗ x̂(k)}, k ≥ 0, p ∈ {1, 2, ..., m} (4.20)

where

Cp =














0 I 0 ... 0 0

0 0 I ... 0 0
...

...
...

. . .
...

...

0 ... ... ... 0 I

Bp
τmax

... ... ... Bp
1 Bp

0














for 1 ≤ p ≤ m.

Then By Proposition 4.4.3, (4.20) is asymptotically stable if and only if µ(C1⊕
C2 ⊕ ...⊕ Cm) < 1.

Define C̄ = C1 ⊕ C2 ⊕ ...⊕ Cm and write

C̄ =














0 I 0 ... 0 0

0 0 I ... 0 0
...

...
...

. . .
...

...

0 ... ... ... 0 I

B̄τmax
... ... ... B̄1 B̄0














.

Then for i = 0, . . . , τmax, B̄i =
m⊕

p=1
Bp
i . It follows from Theorem 3.4.6 that

µ(C̄) < 1 if and only if

µ(
τmax⊕

i=0

B̄i) < 1.
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However
τmax⊕

i=0

B̄i =
τmax⊕

i=0

m⊕

p=1

Bp
i

=
m⊕

p=1

τmax⊕

i=0

Bp
i

=
m⊕

p=1

Ap = S.

Thus we have shown that (4.20) is asymptotically stable if and only if µ(S) <

1. This completes the proof.

The above result establishes that Ψ has the Smax-property if and only if

µ(M) < 1 for all M in Ψ̂, thus furnishing a max-algebraic version of The-

orem 4.1.3 on the relation of row-P -property and S-property in the conven-

tional algebra and Theorem 4.1.4 on linear copositive Lyapunov functions.

The equivalence of (ii) and (v) shows that asymptotic stability of the inclu-

sion (4.15) is equivalent to the asymptotic stability of the max-convex hull of

the set Ψ. Note that as in Theorem 4.2.2, point (vi) above is also equivalent

to the asymptotic stability of (4.20) for some τij ≥ 0.

We illustrate Theorem 4.4.1 below.

Example 4.4.1. Consider the set Ψ = {A1, A2} ⊂ R2×2
+ and the row repre-

sentative set Ψ̂ = {A1, A2,M1,M2} ⊂ R2×2
+ given in Example (4.1.1). Since

µ(Ai) < 1 and µ(Mi) < 1 for i = 1, 2, Ψ has the row-Pmax-property.

For v =
[

1/2 2/3
]T

, Ai⊗v < v for i = 1, 2. Thus, Ψ has the Smax-property.

Moreover, S =




2/3 1/3

1 5/8



 where µ(S) = 2/3. Since µ(Ψ) = µ(Ψ̂) = µ(S),

(ii) and (iii) hold.

Example 4.4.2. Consider the set Ψ = {A1, A2} ⊂ R2×2
+ where

A1 =




1/2 4/3

0 1/4



 , A2 =




2/3 0

1 5/8





with µ(Ai) < 1 for i = 1, 2. For M1 =




1/2 4/3

1 5/8



 ∈ Ψ̂, µ(M1) ≮ 1. Thus,

the row-Pmax-property doesn’t hold. (v) implies that the max convex hull of

Ψ is not asymptotically stable. Indeed, µ(A1 ⊕ 0.8A2) ≮ 1.
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Finally in this section, we present a max-algebra version of Theorem 4.1.2.

Proposition 4.4.4. Let Ψ be a set of n × n non-negative matrices given by

(4.1). Ψ has the row-Pmax-property if and only if for any x 6= 0 in Rn
+, there

exists an index k(1 ≤ k ≤ n) such that (Ai⊗x)k < xk for every matrix Ai ∈ Ψ

(1 ≤ i ≤ m).

Proof: Let Ψ have the row-Pmax-property. Assume that there exists an x∗ 6= 0

in Rn
+ such that for every index j with 1 ≤ j ≤ n there is Aij ∈ Ψ satisfying

(Aij ⊗ x∗)j ≥ x∗
j . It is obvious that (S ⊗ x∗)j ≥ x∗

j . For each j, there exists

an index k ∈ {1, 2, ..., n} such that sjkx∗
k ≥ x∗

j . Since sjk = a
ij
jk for some

ij ∈ {1, 2, ..., m}, we have (Aij )j. ⊗x∗ ≥ x∗
j . We can then construct M ∈ Ψ̂ by

setting Mj. = (Aij )j. and it is clear that M ⊗ x∗ ≥ x∗. This contradicts the

assumption that every matrix in Ψ̂ is a Pmax-matrix.

Conversely, let M ∈ Ψ̂ be given and let x 6= 0 be in Rn
+. Then, there is some

k such that (Ai ⊗ x)k < xk, ∀i ∈ {1, 2, ..., m}. Since it is true for all Ai ∈ Ψ,

we also have (S ⊗ x)k < xk. It implies that (M ⊗ x)k < xk. Hence, M is a

Pmax-matrix. Thus, Ψ has the row-Pmax-property. This completes the proof.

4.5 Concluding Remarks

Our main goal in this chapter was to extend the class of P -matrices and

P -matrix sets to the max algebra and investigate the relationship between

these concepts and the asymptotic stability of delayed difference equations

and inclusions over the max algebra. In this context,

• we defined Pmax-matrices (P 0
max-matrices) over the max algebra;

• we extended a number of properties of P -matrix sets to the max algebra;

• we derived some stability results for sets and discrete inclusions over the

max algebra.
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CHAPTER 5
The AHP, Max Algebra and

Multi-objective Optimisation

In this chapter, we are interested in the application of the max algebra to the A-

nalytic Hierarchy Process (AHP). We consider a novel approach to derive a single

ranking scheme for alternatives in the multi-criteria AHP. In particular, we extend

the single objective optimisation problem based on the max algebra to the general

multi-criteria AHP. In this context, we consider three optimisation problems associ-

ated with a set of error functions corresponding to a set of symmetrically reciprocal

matrices (SR-matrices). Respectively: we relate the existence of globally optimal

solutions to the commutativity properties of the matrices; we show that min-max

optimal solutions are intimately related to the generalised spectral radius; and we

prove that Pareto optimal solutions are guaranteed to exist. We present a practical

example to compare the rankings generated by these Pareto solutions to those of

the classical AHP.

5.1 Motivation and Mathematical

Background

In this section, we explain the classical Analytic Hierarchy Process (AHP) and

illustrate Saaty’s Eigenvalue method (EM) [Saa77a]. Moreover, we recall the
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max algebra approach suggested by Elsner and van den Driessche [EvdD04,

EvdD10].

5.1.1 Introduction

The AHP is a method widely used for decision making problems involving

more than one criterion. It was originally developed by Thomas L. Saaty

in the early 1970s [Saa77a]. It is used to rank the alternatives in a decision

problem. It consists of a three layer hierarchical structure: the overall goal is

at the top; the criteria are in the next level; and the alternatives are in the

bottom level. See Figure 5.1.

Goal

Criterion 1 Criterion 2 Criterion 3

Alternative 1 Alternative 2 Alternative 3 Alternative 4

Figure 5.1: Hierarchical structure of the AHP

The AHP has a quite large number of interesting applications. One of the ear-

liest applications, which was developed by Saaty, involved deciding a strategic

plan for the future of Sudan’s transportation system [Saa77b]. Since then,

the AHP has been applied to various resource allocation problems. See for

instance [RG95] for its consideration in the allocation of energy resources.

Another application of the AHP describes how it can be used in the process

of selecting questions from a database for an examination system in educa-

tion [MNO95]. One application in which the AHP was used for selecting the

best web site for online advertising is described in [Nga03]. Some of the re-

cent applications of the AHP appear in the banking sector. For instance,

it was used to evaluate the performance of Turkish banks with respect to

both financial and non-financial factors [SBK09]. For more applications, see

[Zah86, SV01, FG01, VK06, IL11] and references therein.

The essence of the AHP can be described as follows. Given n alternatives we

construct a pairwise comparison matrix (PC -matrix), A > 0 for each criterion,
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in which aij indicates the strength of alternative i relative to alternative j for

that criterion. In the AHP, aij is assigned from the fundamental 1 − 9 scale

[Saa77a]. See Table 5.1.

Table 5.1: 1 − 9 Scale

Strength Definition
1 Equal Importance
3 Moderate Importance
5 Strong Importance
7 Demonstrated Importance
9 Extreme Importance

2, 4, 6, 8 Intermediate values

Furthermore, ratios arising from the 1 − 9 scale can be assigned to aij .

A PC -matrix with the property that

aijaji = 1 for all i, j(i 6= j) and aii = 1 for all i (5.1)

is called a symmetrically reciprocal matrix (SR-matrix) [Far07]. Given n al-

ternatives, n(n − 1)/2 pairwise comparisons are required to construct such a

matrix by a decision maker. An example of an SR-matrix is given in (5.2).

Here, the first alternative is slightly more important than the second, ex-

tremely important compared to the third and the third alternative is strongly

more important than the second.

A =








1 2 9

1/2 1 1/5

1/9 5 1








(5.2)

Note that the SR notation was used for strongly regular matrices in the max

algebra by Butkovič [But94]. Here, we follow Farkas’ notation in the AHP con-

text [Far07]. We would also like to note that there is an additive version of an

SR-matrix which is anti-symmetric in the sense that aij = −aji for all i, j(i 6=
j) and aii = 1 for all i [Tra11]. However, we are only interested in the multi-

plicative version (5.1) throughout this chapter.

Once an SR-matrix is constructed, the next step in the AHP is to derive a

vector (w1, . . . , wn) of positive weights, which can be used to rank the alter-
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natives, with wi quantifying the weight of alternative i. For two alternatives

i, j ∈ {1, 2, ..., n},

• if wi > wj, then i is preferred to j. This is denoted by i > j;

• if wi < wj, then j is preferred to i. This is denoted by j > i;

• if wi = wj , then i and j are equally preferred. This is denoted by i = j.

Example 5.1.1. Let w be given by [0.8 1 0.5]T . Since w2 > w1 > w3, we

get the ranking: 2 > 1 > 3.

The ideal situation is where the SR-matrix describing pairwise comparisons

is of the form aij = wi/wj for all i, j. In this case A is said to be a transitive

matrix. Formally, this means

aijajk = aik for all i, j, k(i 6= j, i 6= k, j 6= k) and aii = 1 for all i. (5.3)

In the matrix form,











1 w1/w2 · · · w1/wn

w2/w1 1 · · · w2/wn
...

...
. . .

...

wn/w1 wn/w2 · · · 1











. (5.4)

For a general SR-matrix A, aij > 1 and ajk > 1 does not imply aik > 1.

This creates a problem in ranking the alternatives. It is then necessary to

approximate A with a transitive matrix T , where tij = wi/wj for some positive

weight vector w = (w1, . . . , wn).

The problem in the AHP is then how to derive w or T given A. Several

approaches have been proposed including Saaty’s suggestion to take w to be

the Perron vector of A [Saa77a] or the approach of Farkas et al. [FLR03], which

chooses w to minimise the Euclidean error
∑

i,j
(aij − xi/xj)2. Other variant of

this idea is to take the entrywise logarithmic transformation of the Euclidean

error and minimise
∑

i,j
(log aij − log xi + log xj)2 with respect to x [Cra87]. A-

nother well-known approach which was proposed by Dahl in [Dah05] is to select

w as a solution of the following optimisation problem: inf
x

max
i,j

aijxj

xi
. A recent
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approach introduced by Elsner and van den Driessche [EvdD04, EvdD10] is to

select w to be the max-algebraic eigenvector of A. This is similar in spirit to

Saaty’s approach [Saa77a] and also uses the same error measure as [Dah05].

Our motivation in this chapter comes from the max algebra approach for the

single criterion AHP described in [EvdD04, EvdD10]. Instead of mimicking

Saaty’s Eigenvalue Method (EM), we consider a different approach cast in the

framework of multi-objective optimisation and max-algebraic spectral theory.

In this direction, the layout of this chapter is as follows. First, we briefly review

the EM with an illustrative example and discuss the max algebra approach

for the one criterion case. In Section 5.2, we address the ranking problem by

considering the multi-criteria AHP as a multi-objective optimisation problem.

In Section 5.3, we investigate the existence of a single transitive matrix with

a minimum distance to all matrices in the set of SR-matrices simultaneously.

We remark that this amounts to finding a common subeigenvector of the

given matrices. As this will not in general be possible, we consider two other

questions. The first in Section 5.4 is concerned with obtaining a transitive

matrix that minimises the maximal distance to any of the given SR-matrices.

In this section, we also extend the results in [EvdD04, EvdD10] for an SR-

matrix to the set of SR-matrices. The second question in Section 5.5 concerns

the existence of a transitive matrix that is Pareto optimal for the given set of

matrices. The work contained in this chapter has resulted in the publication:

[BGMS13].

5.1.2 Saaty’s Eigenvalue Method

For a transitive matrix T given in the form of (5.4), the following eigenequation

is satisfied by w:

Tw = nw. (5.5)

All eigenvalues of T are zero except n. Moreover, it follows from Theorem

2.1.3 (The Perron Theorem) that there exists a unique eigenvector (up to a

scalar multiple) associated with n. In this direction, ρ(T ) = n and w is the

Perron vector of T .

Saaty’s rationale was as follows [Saa86b, Saa90, Saa99]. A small perturba-

tion of a positive matrix generates a small perturbation of the eigenvector
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corresponding to an unrepeated eigenvalue. He suggested therefore that the

Perron vector of an SR-matrix corresponding to the Perron root can be used

as a weight vector:

Aw = ρ(A)w. (5.6)

As A is positive, w in (5.6) is unique (up to a scalar multiple) (Theorem

2.1.3). He also proposed a way to measure the inconsistency of the pairwise

comparisons in the SR-matrix. The difference between ρ(A) and n is used

to calculate a ratio called the consistency ratio [Saa08, Saa90]. If it is bigger

than a desired value, then the pairwise comparisons are reconsidered .

For the classical AHP involving multiple criteria, the Eigenvalue Method (EM)

is as follows. A set of SR-matrices is constructed: one for each criterion. One

additional SR-matrix is constructed based on comparisons of the different cri-

teria. Once weight vectors are obtained for each individual criterion, these

are then combined using the entries of the weight vector for the criteria-

comparison matrix. As an illustration, we take the following numerical ex-

ample from [Saa77a] and show how the Perron vectors of the SR-matrices are

used to construct an overall weight vector.

Example 5.1.2. The problem is to decide where to go for a one week vacation

among the alternatives:

1. Short trips;

2. Quebec;

3. Denver;

4. California.

Five criteria are considered:

1. cost of the trip;

2. sight-seeing opportunities;

3. entertainment;

4. means of travel;
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5. dining.

The SR-matrix for the criteria and its Perron vector are given by

C =














1 1/5 1/5 1 1/3

5 1 1/5 1/5 1

5 5 1 1/5 1

1 5 5 1 5

3 1 1 1/5 1














and w =














0.179

0.239

0.431

0.818

0.237














.

The above matrix C describes the pairwise comparisons between the different

criteria. For instance, as c21 = 5, criterion 2 is rated more important than

criterion 1; c32 = 5 indicates that criterion 3 is rated more important than

criterion 2 and so on. The vector w contains the weights of the criteria; in

this method, criterion 4 is given most weight, followed by criterion 3 and so

on. Thus, we get the ranking: 4 > 3 > 2 > 5 > 1 for the criteria.

The SR-matrices, A1, ..., A5, for each of the 5 criteria, their Perron vectors and

corresponding ranking schemes are given below. For instance, for criterion 1,

the first alternative is preferred to the second as the (1, 2) entry of A1 is 3.

Similarly, for criterion 3, the 4th alternative is preferred to the 1st as the (4, 1)

entry of A3 is 2.

For the cost of the trip:

A1 =











1 3 7 9

1/3 1 6 7

1/7 1/6 1 3

1/9 1/7 1/3 1











, w(1) =











0.877

0.46

0.123

0.064











, 1 > 2 > 3 > 4

For the sight-seeing opportunities:

A2 =











1 1/5 1/6 1/4

5 1 2 4

6 1/2 1 6

4 1/4 1/6 1











, w(2) =











0.091

0.748

0.628

0.196











, 2 > 3 > 4 > 1
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For the entertainment:

A3 =











1 7 7 1/2

1/7 1 1 1/7

1/7 1 1 1/7

2 7 7 1











, w(3) =











0.57

0.096

0.096

0.81











, 4 > 1 > 2 = 3

For the means of travel:

A4 =











1 4 1/4 1/3

1/4 1 1/2 3

4 2 1 3

3 1/3 1/3 1











, w(4) =











0.396

0.355

0.768

0.357











, 3 > 1 > 4 > 2

For the dining:

A5 =











1 1 7 4

1 1 6 3

1/7 1/6 1 1/4

1/4 1/3 4 1











, w(5) =











0.722

0.642

0.088

0.242











, 1 > 2 > 4 > 3

Next, a matrix is constructed such that the ith column correspond to the

weight vector w(i) associated with the SR-matrix Ai (i = 1, 2, ..., 5). It is then

multiplied by the Perron vector of C.











0.877 0.091 0.57 0.396 0.722

0.46 0.748 0.096 0.355 0.642

0.123 0.628 0.096 0.768 0.088

0.064 0.196 0.81 0.357 0.242
























0.179

0.239

0.431

0.818

0.237














=











0.919

0.745

0.862

0.757











Then, the overall weight vector gives the ranking: 1 > 3 > 4 > 2.

5.1.3 Max Algebra Approach

The max algebra approach to the AHP was first suggested by Elsner and

van den Driessche in 2004 [EvdD04]. Specifically, w is taken to be a max

eigenvector of the SR-matrix A corresponding to µ(A):

A⊗ w = µ(A)w. (5.7)
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This is similar in spirit to Saaty’s approach and also generates a transitive

matrix that minimises the maximal relative error max
i,j

|aij − xi/xj |/aij. As

noted in [EvdD10], minimising this functional is equivalent to minimising

eA(x) = max
1≤i,j≤n

aijxj/xi. (5.8)

We next make a number of observations on the max-algebraic spectral pro-

perties of SR-matrices. Notice that an SR-matrix A is irreducible. Thus, µ(A)

is positive and unique from Theorem 2.2.2. Moreover, there exists a positive

max eigenvector (not necessarily unique) corresponding to it. Since aii = 1 for

all i ∈ {1, 2, ..., n}, we get µ(A) ≥ 1. Further if all cycle products of length 3

equal to 1 (aijajkaki = 1 for all i, j, k ∈ {1, 2, ..., n}), then all cycle products of

any length are 1. In this case, µ(A) = 1 and A is a transitive matrix [EvdD04].

Note that for a transitive matrix, its max eigenvector and Perron vector are

the same.

While our interest is in SR-matrices and the AHP, we shall describe results

for general irreducible matrices where appropriate. Some of these results can

be generalized to reducible matrices. Results of this type, obtained by Sergĕı

Sergeev, are in [BGMS13].

For notation, we denote the set of all n-tuples of positive real numbers by

int(Rn
+) = {x ∈ Rn | xi > 0, 1 ≤ i ≤ n}. (5.9)

For an irreducible matrix A ∈ Rn×n
+ and a real number r > 0, we will consider

the following set, which was introduced in [EvdD10]

CA,r = {x ∈ int(Rn
+) | A⊗ x ≤ rx}. (5.10)

For the special case of r = µ(A), CA,µ(A) is denoted by CA [EvdD10]

CA = {x ∈ int(Rn
+) | A ⊗ x ≤ µ(A)x}. (5.11)

Not only does a max eigenvector w minimises (5.8) but also any vector from

the set CA minimises it. Thus, (5.11) is said to be a minimum error requirement

set for A and the following holds [EvdD04, EvdD10].

µ(A) = min
x∈int(Rn

+
)
eA(x) = eA(w) for any w ∈ CA. (5.12)
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Note that (5.12) was introduced in [CG79] in the context of linear program-

ming. It was recently studied in [Kri05] for idempotent linear algebra.

We next recall the definition of the normalised set of CA,r from [EvdD10]

DA,r = {x ∈ int(Rn
+) | x ∈ CA,r, x1 = 1}. (5.13)

As above, DA is used to denote the special case where r = µ(A).

The relations between the sets CA,r, the error function (5.8) and µ(A) were

clarified in [EvdD10] and are recalled in the following propositions.

Proposition 5.1.1. Let A ∈ Rn×n
+ be an irreducible matrix. Then:

(i) CA,r 6= ∅ ⇐⇒ r ≥ µ(A);

(ii) x ∈ CA,r ⇐⇒ eA(x) ≤ r.

In particular, CA 6= ∅ for an irreducible matrix A. However, it may not in

general be possible to obtain a unique ranking scheme from the set CA. The

following result defines a necessary and sufficient condition for the uniqueness.

Recall that AC denotes the critical matrix and NC(A) denotes the set of

critical vertices in the critical digraph DC(A).

Proposition 5.1.2. Let A ∈ Rn×n
+ be an irreducible matrix. x ∈ CA is unique

(up to a scalar multiple) if and only if AC is irreducible and NC(A) = N(A).

In particular, CA is the same as V ∗(A) defined in (2.27) since A is irreducible.

Recall from Section 2.2.3 that V ∗(A) is a subeigencone of A associated with

µ(A). In addition, it follows from Proposition 2.2.7 that V ∗(A) = span⊕(Â∗)

where Â = A
µ(A)

and Â∗ is the Kleene star of Â. Throughout this section,

we use the notation CA of [EvdD10]. It follows from [EvdD10, BS05] that x

is in CA if and only if there exists a vector x(0) ∈ Rn
+, x(0) 6= 0 such that

x = Â∗ ⊗ x(0). We can calculate such a vector x by using Algorithm 3 below.

We next revisit Example 5.1.2 and highlight some issues that arise in the max-

algebraic setting; in particular, the issue of non-unique ranking is raised. In

the next Chapter, we discuss some ideas on how to deal with this issue.
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Algorithm 3 Calculate x ∈ CA
A : SR-matrix, x(0) ∈ Rn

+, x(0) 6= 0
for i = 1, ..., n− 1 do
x(i) = A

µ(A)
⊗ x(i− 1)

end for
x = x(0) ⊕ x(1) ⊕ ... ⊕ x(n − 1)

Example 5.1.3. Let C,A1, . . . , A5 be as in Example 5.1.2. By following the

same way in Example 2.2.1, we find DC(C). We see that CC is irreducible and

NC(C) = {1, 2, 3, 4}. Since all vertices are not critical, there exist multiple

vectors in CC from Proposition 5.1.2. It follows from Theorem 2.2.5 that there

exists a unique max eigenvector. It is given by

[

1 1.495 2.236 3.344 0.897
]

with the ranking 4 > 3 > 2 > 1 > 5.

By using Algorithm 3, we can find others vectors in CC giving at least three

more rankings: 4 > 5 > 3 > 2 > 1, 4 > 3 > 2 > 5 > 1 and 4 > 3 > 5 > 2 > 1.

For 1 ≤ i ≤ 3, NC(Ai) = N(Ai) and ACi is irreducible. Thus, there exists a

unique vector in CAi
which is the max eigenvector of Ai. We list each w(i) ∈ CAi

and the corresponding ranking below.

w(1) =
[

1 0.522 0.136 0.071
]

with the ranking 1>2>3>4.

w(2) =
[

1 8.801 7.746 2.272
]

with the ranking 2>3>4>1.

w(3) =
[

1 0.181 0.181 1.587
]

with the ranking 4>1>2=3.

For A4, NC(A4) = {1, 2, 4} and AC4 is irreducible. For A5, NC(A5) = {1, 3, 4}
and AC5 is irreducible. There exist multiple vectors in CA4

and CA5
. A4 and

A5 have unique max eigenvectors. We list these eigenvectors as follows.

w(4) =
[

1 0.825 1.211 0.909
]

with the ranking 3>1>4>2.

w(5) =
[

1 0.760 0.108 0.329
]

with the ranking 1>2>4>3.

Then, we construct the following coefficient matrix in the same way as in

Example 5.1.2. As a weight vector for A, we choose the vector that produces
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the same ranking with the Perron vector of C from the set CC .











1 1 1 1 1

0.522 8.801 0.181 0.825 0.76

0.136 7.746 0.181 1.211 0.108

0.071 2.272 1.587 0.909 0.329











⊗














1

1.495

2.236

3.344

1.114














=











3.344

13.161

11.583

3.549











The overall weight vector gives the ranking: 2 > 3 > 4 > 1. It was 1 > 3 >

4 > 2 for the EM. Although both approaches can produce same schemes for

local rankings, the overall ranking scheme can be different.

5.2 Multi-criteria AHP and Multi-objective

Optimisation

The application of the max algebra to the AHP is motivated in [EvdD04,

EvdD10] by the following considerations. First, it is observed that, for an

SR-matrix A, vectors in the set CA minimise the function (5.8) and hence the

relative error. Based on this observation, these vectors are used to construct

transitive matrices to obtain an overall ranking of the alternatives in the deci-

sion problem. In light of the properties of CA, this is justified by the fact that

the transitive matrices constructed in this way are closest to the original SR-

matrix A in the sense of the relative error. Thus, the approach to construct

a ranking vector for a single SR-matrix taken in [EvdD04, EvdD10] amounts

to solving the following optimisation problem.

min
x∈int(Rn

+
)
{eA(x)}. (5.14)

Throughout this chapter, we are concerned with extending the max algebra

approach to the general AHP with n alternatives and m criteria within the

framework of multi-objective optimisation. Formally, we are given m SR-

matrices; one for each criterion. Let Ψ in (5.15) denote the set of these matrices

by (Recall the notation from (4.1))

Ψ = {A1, A2, ..., Am}. (5.15)

For each Ai ∈ Ψ, there is an error function eAi
: int(Rn

+) → R+ defined as

in (5.8). In contrast to the approach taken in the classical AHP, we view
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the construction of a ranking vector for the m criteria as a multi-objective

optimisation problem for the error functions eAi
, 1 ≤ i ≤ m.

5.3 Globally Optimal Solutions

To begin with, we seek a vector that simultaneously minimises all of the

functions eAi
for Ai ∈ Ψ. Such a vector is said to be a globally optimal

solution for the multi-objective optimisation problem.

min
x∈int(Rn

+
)
{eAi

(x)}, i = 1, 2, ..., m. (5.16)

For each Ai ∈ Ψ, the set of vectors that minimise eAi
: int(Rn

+) → R+ is

precisely CAi
in (5.11). Formally,

CAi
= {x ∈ int(Rn

+) | Aix ≤ µ(Ai)x}, i = 1, 2, ..., m. (5.17)

Hence, the problem of finding a vector x ∈ int(Rn
+) that simultaneously mini-

mises all the error functions eAi
amounts to determining when

m⋂

i=1

CAi
6= ∅.

Equivalently, x simultaneously minimises all the error functions if and only if

it is a common subeigenvector of Ai for all i ∈ {1, 2, ..., m}. The remainder

of this section is divided into two parts: we first consider the existence of

common subeigenvectors for arbitrary non-negative irreducible matrices in

the next subsection; we then specialise to sets of SR-matrices and globally

optimal solutions of the optimisation problem (5.16).

5.3.1 Common Subeigenvectors of Irreducible

Matrices

First of all, we consider the general problem of finding a common subeigenvec-

tor for a set of non-negative irreducible matrices (not necessarily SR-matrices).

Our results are clearly related to the work in [KSS12] concerning the inter-

section of eigencones of commuting matrices over the max and non-negative

algebra.
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We adopt the following notation (Recall the notation from (4.16)).

S = A1 ⊕A2 ⊕ ... ⊕ Am. (5.18)

Note that S is irreducible if at least one Ai is irreducible and µ(S) > 0 if

at least one µ(Ai) > 0. In an abuse of notation, we denote the max sum of

Âi = Ai

µ(Ai)
(1 ≤ i ≤ m) by

Ŝ =
m⊕

i=1

Âi. (5.19)

Theorem 5.3.1. Consider the set Ψ ⊂ Rn×n
+ in (5.15). Assume that each

Ai ∈ Ψ is irreducible. Then, the following are equivalent.

(i) µ(Ŝ) = 1;

(ii) There exists some x ∈ int(Rn
+) with Ai ⊗ x ≤ µ(Ai)x for all Ai ∈ Ψ;

(iii) µ(Aj1
⊗ · · · ⊗ Ajk

) ≤ µ(Aj1
) · · ·µ(Ajk

) where 1 ≤ ji ≤ m for 1 ≤ i ≤ k.

(We say that µ is submultiplicative on Ψ).

Proof: (i)⇒(ii): First, assume that µ(Ŝ) = 1. Then, there exists x ∈ int(Rn
+)

such that Ŝ ⊗ x = x since Ŝ is irreducible. Thus, Âi ⊗ x ≤ Ŝ ⊗ x = x for all

Ai ∈ Ψ. Hence, Ai ⊗ x ≤ µ(Ai)x for all i.

(ii)⇒(iii): Suppose that there exists some x ∈ int(Rn
+) with Ai ⊗ x ≤ µ(Ai)x

for all Ai ∈ Ψ. Pick some ψ ∈ Ψk
⊗ such that ψ = Aj1

⊗ Aj2
⊗ · · · ⊗ Ajk

where

1 ≤ ji ≤ m for 1 ≤ i ≤ k. Then,

ψ ⊗ x = Aj1
⊗ Aj2

⊗ ... ⊗Ajk
⊗ x

≤ µ(Ajk
)Aj1

⊗ Aj2
⊗ ... ⊗Ajk−1

⊗ x

...

≤ µ(Ajk
)µ(Ajk−1

)...µ(Aj2
)Aj1

⊗ x

≤ µ(Ajk
)µ(Ajk−1

)...µ(Aj2
)µ(Aj1

)x.

Writing r = µ(Aj1
)µ(Aj2

)...µ(Ajk
), we see that x ∈ Cψ,r from the definition

(5.10). Hence, Cψ,r 6= ∅. Point (i) in Proposition 5.1.1 implies that r ≥ µ(ψ).

Thus, µ(Aj1
)µ(Aj2

)...µ(Ajk
) ≥ µ(Aj1

⊗Aj2
⊗ ... ⊗ Ajk

).
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(iii)⇒(i): Consider the set of normalised matrices

Ψn = {Â1, Â2, ..., Âm} (5.20)

where µ(Âi) = 1 for all i ∈ {1, 2, ..., m}. Pick some ψ ∈ Ψn
k
⊗. As µ is

submultiplicative on Ψ, it is automatically submultiplicative on Ψn. Thus, we

have µ(ψ) ≤ 1. As this is true for any ψ ∈ Ψn
k
⊗, it follows that

max
ψ∈Ψn

k
⊗

µ(ψ) ≤ 1.

Taking the kth root and lim sup
k→∞

of both sides, we see that the generalised

spectral radius

µ(Ψn) ≤ 1.

Proposition 4.4.3 then implies that µ(Ŝ) ≤ 1. Furthermore, since µ(Ŝ) ≥
µ(Âi) = 1 for all i ∈ {1, 2, ..., m} we obtain µ(Ŝ) = 1.

Following Theorem 5.3.1, we simply list steps for deriving a common subeigen-

vector.

Algorithm 4 Find a common subeigenvector of A1, A2, ..., Am
Ai : SR-matrix, i ∈ {1, 2, ..., m}
Calculate µ(Ai) for all Ai ∈ Ψ by using Karp’s algorithm.
Normalise each matrix and obtain Âi for all i.
Find Ŝ =

m⊕

i=1
Âi and calculate µ(Ŝ).

if µ(Ŝ) = 1 then
x ∈ CŜ is a common subeigenvector. (use Algorithm 3)

else
There is no subeigenvector.

end if

Example 5.3.1. For two irreducible matrices (SR-matrices) given by

A =











1 8 1/4 7

1/8 1 6 1/4

4 1/6 1 4

1/7 4 1/4 1











and B =











1 4 5 9

1/4 1 1/8 9

1/5 8 1 1/8

1/9 1/9 8 1











.

By using Algorithm 4, we get x =
[

1 0.721 0.693 0.667
]

is common

subeigenvector.
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Note that the equivalence (i) and (ii) in Theorem 5.3.1 can be regarded as a

special case of [HS03] Theorem 2.5 in the context of simultaneous non-negative

matrix scaling. See also [BS05] Theorem 3.5 for an extension. The problem

in these works is to find a diagonal matrix X > 0 such that XAiX−1 ≤ Bi for

i = 1, . . . , m. In this context, our problem amounts to finding X = diag (x)

where x ∈ int(Rn
+) such that

X−1AiX ≤ µ(Ai)1n1Tn for all i (5.21)

(X−1AiX)kl = µ(Ai) for all i and (k, l) ∈ EC(Ai).

In the terminology of [SSB09, But10], this yields a simultaneous visualisa-

tion of all matrices in Ψ (See Section 2.2.4 for the definition of visualisation

scaling.).

The following result represents a relation of the critical graphs of two non-

negative irreducible matrices in the context of simultaneous visualisation.

Proposition 5.3.2. Let A,B ∈ Rn×n
+ be irreducible with µ(A) = µ(B) = 1.

If µ(A⊕ B) = 1, then

(i) aij = bij for all edges (i, j) ∈ EC(A) ∩ EC(B);

(ii) aijbji = 1 for (i, j) ∈ EC(A) and (j, i) ∈ EC(B).

Proof: As, µ(A) = µ(B) = 1, it follows that Â = A and B̂ = B. Thus,

Ŝ = A ⊕ B. From the assumption, we obtain µ(Ŝ) = 1. It now follows from

Theorem 5.3.1 that there exists some x ∈ int(Rn
+) with A⊗x ≤ x, B⊗x ≤ x.

Let X = diag (x) and consider the diagonally scaled matrices

X−1AX, X−1BX.

From the choice of X it is immediate that

X−1AX ≤ 1n1Tn , X−1BX ≤ 1n1Tn . (5.22)

(i): Let (i, j) ∈ EC(A) ∩ EC(B) be given. It follows from Proposition 2.2.8

that aijxj = xi and bijxj = xi.

aijxj
xi

=
bijxj
xi

= 1.
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Hence

aij = bij =
xi
xj

and this completes the proof.

(ii): Let (i, j) ∈ EC(A) and (j, i) ∈ EC(B). From Proposition 2.2.8, we get

aijxj = xi and bjixi = xj .

aijxj
xi

=
bjixi
xj

= 1,

and hence

aijbji =
aijxj
xi

· bjixi
xj

= 1.

We next recall the following result, which was established in [KSS12] and shows

that commutativity is a sufficient condition for the existence of a common

eigenvector for irreducible matrices.

Proposition 5.3.3. Consider the set Ψ ⊂ Rn×n
+ in (5.15). Assume that each

Ai ∈ Ψ is irreducible and moreover that

Ai ⊗ Aj = Aj ⊗Ai for 1 ≤ i, j ≤ m. (5.23)

Then there exists some x ∈ int(Rn
+) with Ai ⊗ x = µ(Ai)x for 1 ≤ i ≤ m.

The next corollary is an immediate consequence of Proposition 5.3.3 and the

fact that for an irreducible matrix A, the set CA is the subeigencone V ∗(A),

which coincides with the eigencone V (Â∗).

Corollary 5.3.4. Consider the set Ψ ⊂ Rn×n
+ in (5.15). Assume that each

Ai ∈ Ψ is irreducible and moreover that

Â∗
i ⊗ Â∗

j = Â∗
j ⊗ Â∗

i for 1 ≤ i, j ≤ m. (5.24)

Then there exists some x ∈ int(Rn
+) with Ai ⊗ x ≤ µ(Ai)x for 1 ≤ i ≤ m.

5.3.2 SR-matrices and Globally Optimal Solutions

In the remainder of this section, we will only focus on SR-matrices. We first

present the following corollary of Theorem 5.3.1 which develops the concept

95



Chapter 5. The AHP, Max Algebra and Multi-objective Optimisation

of simultaneous visualisation for SR-matrices. Before stating it, we define the

anticritical graph of an SR-matrix to consist of the edges EC(A) given by:

(i, j) ∈ EC(A) ⇔ (j, i) ∈ EC(A). (5.25)

Corollary 5.3.5. Consider the set Ψ ⊂ Rn×n
+ in (5.15). Assume that each

Ai ∈ Ψ is an SR-matrix. If any of the equivalent statements of Theorem 5.3.1

holds, then there exists some x ∈ int(Rn
+) such that for X = diag (x) and

1 ≤ i ≤ m, we have

µ−1(Ai) · 1n1Tn ≤ X−1AiX ≤ µ(Ai) · 1n1Tn . (5.26)

In particular,

(X−1AiX)kl = µ(Ai) for all (k, l) ∈ EC(Ai)

(X−1AiX)kl = µ−1(Ai) for all (k, l) ∈ EC(Ai).
(5.27)

Proof: (We drop the subscript for the ease of use.) Let Theorem 5.3.1 (ii) hold

for all A ∈ Ψ. Then, there exists some x ∈ int(Rn
+) such that A⊗ x ≤ µ(A)x

for all A ∈ Ψ. The right-hand side inequality of (5.26) follows by setting

X = diag (x). For the remaining left-hand side inequality of (5.26), we observe

that x−1
i aijxj ≤ µ(A) is equivalent to x−1

j a−1
ij xi ≥ µ−1(A) for all A ∈ Ψ. Then,

we apply a−1
ij = aji since A is an SR-matrix.

Let (k, l) ∈ EC(A) for some A ∈ Ψ. Then, it directly follows from Proposition

2.2.8 that aklxl = µ(A)xk. Since (k, l) ∈ EC(A), (l, k) ∈ EC(A) from (5.25).

Similarly, using the SR-matrix property, we get alkxk = µ(Ai)−1xl. Then,

(5.27) follows by setting X = diag (x).

Remark 5.3.1. We note that two distinct SR-matrices A,B in R2×2
+ cannot

have a common subeigenvector. Let

A =




1 a

1/a 1



 , B =




1 b

1/b 1





and assume that A 6= B. Clearly, µ(A) = µ(B) = 1 and Ŝ = A ⊕ B. If

a > b, then 1/a < 1/b and µ(Ŝ) = a/b > 1. If b > a, then 1/b < 1/a and

µ(Ŝ) = b/a > 1. In both cases, µ(Ŝ) 6= 1. Hence by Theorem 5.3.1, A and B

do not have a common subeigenvector.
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Remark 5.3.2. Consider a 3 × 3 SR-matrix A. It is immediate that all cycle

products of length one and two in D(A) are equal to 1. Further, there are two

possible cycle products of length 3 in D(A): a12a23a31 and a13a32a21. As A is

an SR-matrix, it follows that

a12a23a31 =
1

a13a32a21
.

Since µ(A) ≥ 1, at least one of the above products must be greater than or

equal to 1 and DC(A) must contain either (1, 2, 3, 1) or (1, 3, 2, 1). In this case,

one of the cycles of length three is critical, and the other cycle is anticritical.

We conclude that NC(A) = N(A) and AC is irreducible. It follows from

Proposition 5.1.2 that A has a unique subeigenvector (up to a scalar multiple)

in CA which is its max eigenvector.

Proposition 5.3.3 shows that commuting irreducible matrices possess a com-

mon max eigenvector. We now show that for 3×3 SR-matrices, commutativity

is both necessary and sufficient for the existence of a common subeigenvector.

Theorem 5.3.6. Let a set {A,B} ⊂ R3×3
+ of SR-matrices be given. Write

Ŝ = Â⊕ B̂. The following are equivalent.

(i) µ(Ŝ) = 1;

(ii) A and B commute;

(iii) There exists a vector x ∈ int(Rn
+) with A⊗ x ≤ µ(A)x, B ⊗ x ≤ µ(B)x.

Proof: The equivalence of (i) and (iii) follows immediately from Theorem

5.3.1 so we will show that (ii) and (iii) are also equivalent.

(ii) ⇒ (iii) follows immediately from Proposition 5.3.3. We prove (iii)⇒(ii).

First note that it follows from Remark 5.3.2 that for distinct i, j, k, the edges

(i, j), (j, k) are either both critical or both anti-critical for A. The same is

true for B. Calculating X−1AX and X−1BX where X = diag (x), it follows

from Theorem 5.3.1 and Corollary 5.3.5 that aijbjk = bijajk = µ(A)µ(B)xi/xk
or aijbjk = bijajk = µ(A)µ−1(B)xi/xk for any distinct i, j, k. Thus,

aijbjk = bijajk (5.28)
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for any i, j, k ∈ {1, 2, 3}, k 6= i, k 6= j, i 6= j. It now follows from (5.28) that

for i 6= j

(A⊗ B)ij = aiibij ⊕ aijbjj ⊕ aikbkj

= bijajj ⊕ biiaij ⊕ bikakj

= (B ⊗A)ij

where k 6= i, k 6= j. Rewriting (5.28) as ajibik = bjiaik, it follows readily that

bikaki = aijbji and aikbki = bijaji. It now follows that for 1 ≤ i ≤ 3,

(A⊗B)ii = aiibii ⊕ aijbji ⊕ aikbki

= biiaii ⊕ bijaji ⊕ bikaki

= (B ⊗ A)ii

Thus, A⊗ B = B ⊗ A as claimed.

It is straightforward to extend the above result to an arbitrary finite set of

SR-matrices in R3×3
+ .

Theorem 5.3.7. Let a set {A1, . . . , Am} ⊂ R3×3
+ of SR-matrices be given.

Write Ŝ = Â1 ⊕ · · · ⊕ Âm. The following are equivalent.

(i) µ(Ŝ) = 1;

(ii) Ai ⊗ Aj = Aj ⊗ Ai for all i, j;

(iii) There exists a vector x ∈ int(Rn
+) with Ai ⊗ x ≤ µ(Ai)x for all i.

Proof: As above, the equivalence of (i) and (iii) follows immediately from

Theorem 5.3.1 so we will show that (i) and (ii) are also equivalent.

(ii) ⇒ (i) follows immediately from Proposition 5.3.3. To show that (i) ⇒ (ii),

suppose µ(Ŝ) = 1. Then it follows that for all i, j,

Âi ⊕ Âj ≤ Ŝ

and hence that µ(Âi ⊕ Âj) ≤ 1. As µ(Âi ⊕ Âj) ≥ 1, it is immediate that

µ(Âi ⊕ Âj) = 1
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for all i, j in {1, . . . , m}. It follows immediately from Theorem 5.3.6 that

Ai ⊗ Aj = Aj ⊗ Ai

for 1 ≤ i, j ≤ m as claimed.

We note with the following example that commutativity is not a necessary

condition for 4 × 4 SR-matrices to possess a common subeigenvector.

Example 5.3.2. Consider the SR-matrices given in Example 5.3.1. They have

a common subeigenvector. However, it can be readily verified that A ⊗ B 6=
B ⊗ A.

5.4 Min-max Optimal Solutions

In general, given a set of SR-matrices, it will not always be possible to find a

single vector x that is globally optimal in the sense considered in the previous

section. With this in mind, we next consider a different notion of optimal

solution for the multiple objective functions eAi
: int(Rn

+) → R+, 1 ≤ i ≤ m.

In fact, we consider the following optimisation problem.

min
x∈int(Rn

+
)

{

max
1≤i≤m

eAi
(x)
}

. (5.29)

We are seeking a weight vector that minimises the maximal relative error

where the maximum is taken over the m criteria. Note that since we later

show that there always exists such a minimum point, we use min notation

instead of inf. In the following, we first consider extensions of the results in

Section 5.1.3 for an irreducible matrix to a set of irreducible matrices. We

then relate min-max optimal solutions to the max generalised spectral radius.

5.4.1 Max Generalised Spectral Radius

Inspired by the approach to the single criterion problem, we associate a set

CΨ,r with a set Ψ of irreducible matrices and show how the properties of CA,r
in (5.10) for a single irreducible matrix extend to this new setting.

For r > 0, define

CΨ,r = {x ∈ int(Rn
+) | eAi

(x) ≤ r for all Ai ∈ Ψ} =
m⋂

i=1

CAi,r. (5.30)

99



Chapter 5. The AHP, Max Algebra and Multi-objective Optimisation

We also consider the set of normalised vectors:

DΨ,r = {x ∈ CΨ,r | x1 = 1}. (5.31)

We will use the notations CΨ for CΨ,µ(Ψ) and DΨ for DΨ,µ(Ψ) where µ(Ψ) is the

max generalised spectral radius of Ψ. The following result shows that the set

CΨ,r and the set CS,r are equal. This will allow us to readily extend algebraic

and geometric properties of CA,r established in [EvdD10] to sets of matrices.

Theorem 5.4.1. Consider the set Ψ ⊂ Rn×n
+ given by (5.15). Assume that

Ai is irreducible for 1 ≤ i ≤ m and let S be given by (5.18). Then:

CΨ,r = CS,r.

Proof: Let x be in CΨ,r be given. Then, eAi
(x) ≤ r which implies Ai⊗x ≤ rx

for each Ai ∈ Ψ from (ii) in Proposition 5.1.1. Taking the maximum of both

sides from 1 to m, we see that S ⊗ x ≤ rx. It follows that x ∈ CS,r. Thus,

CΨ,r ⊂ CS,r.

Now choose some x ∈ CS,r. Then eS(x) ≤ r from (ii) in Proposition 5.1.1.

Since eAi
(x) ≤ eS(x) ≤ r for all 1 ≤ i ≤ m, we obtain x ∈ CΨ,r. Thus,

CS,r ⊂ CΨ,r. Hence CΨ,r = CS,r.

The following corollary extends Proposition 5.1.1 to a set of irreducible mat-

rices Ψ. Noting that µ(Ψ) = µ(S) from Theorem 4.4.3, it is an immediate

consequence of Theorem 5.4.1.

Corollary 5.4.2. Consider the set Ψ ⊂ Rn×n
+ given by (5.15). Assume that

Ai is irreducible for 1 ≤ i ≤ m and let S be given by (5.18). Then:

(i) CΨ,r 6= ∅ ⇐⇒ r ≥ µ(Ψ);

(ii) x ∈ CΨ,r ⇐⇒ eS(x) ≤ r.

Since Theorem 5.4.1 establishes that CΨ,r = CS,r, it is immediate that we also

have DΨ,r = DS,r, CΨ = CS and DΨ = DS. Therefore, studying these sets for a

collection of irreducible matrices reduces to studying the sets associated with

the single matrix S. This fact means that the properties of CA,r discussed in
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Theorem 1 of [EvdD10] can be directly extended to CΨ,r. We use the following

notation.

xj = (xj1, ..., x
j
n)T where x ∈ int(Rn

+), j ∈ R.

x ◦ y = (x1y1, ..., xnyn)T where x ∈ int(Rn
+), y ∈ int(Rn

+).

ΨT = {AT1 , AT2 , ..., ATm}.

Theorem 5.4.3. Assume that all matrices in the set Ψ ⊂ Rn×n
+ given in

(5.15) are irreducible. Let S be given by (5.18). Then:

(i) x ∈ CΨ,r ⇔ x−1 ∈ CΨT ,r;

(ii) If x, y ∈ CΨ,r then

a. γx+ (1 − γ)y ∈ CΨ,r∀γ ∈ [0, 1]. (CΨ,r is a convex cone.)

b. xγ ◦ y1−γ ∈ CΨ,r∀γ ∈ [0, 1].

c. (xp + yp)1/p ∈ CΨ,r∀p ∈ R, p 6= 0.

d. x⊕ y ∈ CΨ,r. (CΨ,r is a max convex set.)

e. x−1 ⊕ y−1 = (min(xi, yi)) ∈ CΨ,r.

(iii) DΨ,r is compact; DΨ is a convex polytope.

(iv) The vector x = (xi) = (min(yi, y ∈ DΨ)) is in DΨ. If in addition

1 ∈ NC(S), then x is a max eigenvector of S.

(v) Fot y = (yi) = (max(zi, z ∈ DΨ)), y−1 is in DΨT . If in addition 1 ∈
NC(S), then y−1 is a max eigenvector of ST .

(vi) DΨ consists of only one vector if and only if SC is irreducible and

NC(S) = N(S).

Proof: We only prove statement (i). As CΨ,r = CS,r from Theorem 5.4.1, the

others are immediate from Theorem 1 of [EvdD10].

(i): From Proposition 5.1.1 (ii), x ∈ CΨ,r if and only if max
i,j

sijxj/xi =

max
i,j

sTji(1/xi)/(1/xj) ≤ r. Since ST = AT1 ⊕ AT2 ⊕ ... ⊕ ATm, CΨT ,r = CST ,r

from Theorem 5.4.1. Thus, it is equivalent to x−1 ∈ CΨT ,r.

We remark that the sets CΨ,r and DΨ,r have appeared under various names

like Kleene cones [SSB09] (See Section 2.2.3 for the definition of the Kleene

cone.), tropical polytropes [JK10], or zones [Min04].
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5.4.2 Minimum Error Requirement Set for

SR-matrices

First, we state the following immediate result on the relation of eS(x) and

eAi
(x) for i = 1, 2, ..., m.

Lemma 5.4.4. Let Ψ ⊂ Rn×n
+ be a set of irreducible matrices given by (5.15).

For x ∈ int(Rn
+), eS(x) = max

1≤i≤m
eAi

(x).

Proof: Using the definition of S in (5.18),

eS(x) = max
i,j

(a1
ij ⊕ a2

ij ⊕ ... ⊕ amij )xj/xi

= max
i,j

(max(a1
ij, a

2
ij , ..., a

m
ij ))xj/xi

= max(max
i,j

a1
ijxj/xi,max

i,j
a2
ijxj/xi, ...,max

i,j
amijxj/xi)

= max
i,j

a1
ijxj/xi ⊕ max

i,j
a2
ijxj/xi ⊕ ...⊕ max

i,j
amijxj/xi

= eA1
(x) ⊕ eA2

(x) ⊕ ...⊕ eAm
(x)

Corollary 5.4.2 has the following interpretation together with Lemma 5.4.4 in

terms of the optimisation problem given in (5.29).

Proposition 5.4.5. Consider the set Ψ given by (5.15). Assume that Ai is

irreducible for 1 ≤ i ≤ m. Then:

(i) µ(Ψ) = min
x∈int(Rn

+
)

(

max
1≤i≤m

eAi
(x)
)

;

(ii) x solves (5.29) if and only if x ∈ CΨ.

Proof: Corollary 5.4.2 shows that there exists some x ∈ int(Rn
+) with

max
1≤i≤m

eAi
(x) ≤ r

if and only if r ≥ µ(Ψ). (i) follows from this observation. The result of (ii) is

then immediate from the definition of CΨ.

Inspired by Proposition 5.4.5, we call CΨ as a minimum error requirement set

for Ψ. We illustrate Proposition 5.4.5 below.
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Example 5.4.1. Consider the SR-matrices given in Example 5.3.1.

S = A⊕ B =











1 8 5 9

1/4 1 6 9

4 8 1 4

1/7 4 8 1











where µ(S) = 8.3203. The vector x =
[

1 1 0.962 0.924
]T

is in CΨ. We

see that eS(x) = 8.3203.

5.5 Pareto Optimal Solutions

Thus far, we have considered two different approaches to the multi-objective

optimisation problem associated with the AHP. In this section we turn our

attention to what is arguably the most common framework adopted in multi-

objective optimisation: Pareto Optimality [Mie99, Bew07].

As above, we are concerned with the existence of optimal points for the set

of objective functions eAi
, for 1 ≤ i ≤ m associated with the set Ψ of SR-

matrices. A Pareto optimal point for eA1
, . . . , eAm

has the property that any

other point that decreases one of the functions must increase the value of

another function.

5.5.1 Existence of Pareto Optimal Solutions

We first recall the notion of weak Pareto optimality.

Definition 5.5.1. w ∈ int(Rn
+) is said to be a weak Pareto optimal point

for the functions eAi
: int(Rn

+) → R+(1 ≤ i ≤ m) if there does not exist

x ∈ int(Rn
+), x 6= w such that

eAi
(x) < eAi

(w)

for all i = 1, 2, ..., m.

The next lemma shows that every point in the set CΨ is a weak Pareto optimal

point for eA1
, . . . , eAm

.
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Lemma 5.5.1. Let Ψ ⊂ Rn×n
+ given by (5.15) consist of irreducible matrices.

Any w ∈ CΨ is a weak Pareto optimal point for eA1
, . . . , eAm

.

Proof: Let w ∈ CΨ be given. Then eAi
(w) ≤ µ(Ψ) for 1 ≤ i ≤ m. If there

exists some x ∈ int(Rn
+) such that eAi

(x) < eAi
(w) for 1 ≤ i ≤ m, then for

this x

eAi
(x) < µ(Ψ)

for 1 ≤ i ≤ m. This contradicts Proposition 5.4.5.

We next recall the usual definition of a Pareto optimal point.

Definition 5.5.2. w ∈ int(Rn
+) is said to be a Pareto optimal point for the

functions eAi
: int(Rn

+) → R+(1 ≤ i ≤ m) if x 6= w, eAi
(x) ≤ eAi

(w) for

1 ≤ i ≤ m implies eAi
(x) = eAi

(w) for all 1 ≤ i ≤ m.

We later show that the multi-objective optimisation problem associated with

the AHP always admits a Pareto optimal point. We first present some simple

facts concerning such points.

Theorem 5.5.2. Let Ψ ⊂ Rn×n
+ given by (5.15) consist of irreducible matrices.

Then:

(i) If w ∈ CΨ is unique (up to a scalar multiple), then it is a Pareto optimal

point for eA1
, . . . , eAm

;

(ii) If w ∈ CAi
is unique (up to a scalar multiple) for at least one i ∈

{1, 2, ..., m}, then it is a Pareto optimal point for eA1
, . . . , eAm

.

Proof: (i) Assume that w ∈ CΨ is unique (up to a scalar multiple). Pick

some x ∈ int(Rn
+) such that eAi

(x) ≤ eAi
(w) for all i. Then, eAi

(x) ≤ µ(Ψ)

for all i which implies that x ∈ CΨ. Thus, x = αw for some α ∈ R+. Hence,

eAi
(x) = eAi

(w) for all i and w is a Pareto optimal point.

(ii) Assume that for some Ai ∈ Ψ, w ∈ CAi
is unique up to scalar multiple.

Suppose x ∈ int(Rn
+) is such that eAj

(x) ≤ eAj
(w) for all 1 ≤ j ≤ m. In

particular, x ∈ CAi
, and this implies that x = αw for some α ∈ R. Further,

it is immediate that for any other Aj ∈ Ψ (i 6= j), we have eAj
(x) = eAj

(w).

Thus, w is a Pareto optimal point.
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By Theorem 5.4.3 (vi), condition (i) implies that NC(S) = N(S) and SC is

irreducible. By Proposition 5.1.2, condition (ii) implies that NC(Ai) = N(Ai)

and ACi is irreducible for some Ai ∈ Ψ.

Corollary 5.5.3. Let the set Ψ ⊂ Rn×n
+ given by (5.15) consist of SR-

matrices. For n ∈ {2, 3}, any w ∈ CAi
(1 ≤ i ≤ m) is a Pareto optimal

point for eA1
, . . . , eAm

.

Proof: Notice that from Remark 5.3.2 for 3 × 3 case, there exists a unique

subeigenvector (up to a scalar multiple) in each CAi
for 1 ≤ i ≤ m. This is

also true for the 2 × 2 case because NC(A) = N(A) and AC is irreducible.

The result directly follows from (ii) in Theorem 5.5.2.

The following example demonstrates point (i) in Theorem 5.5.2.

Example 5.5.1. Consider the following matrices given by

A =











1 9 1/4 2

1/9 1 6 3

4 1/6 1 1/4

1/2 1/3 4 1











B =











1 1/2 4 1/8

2 1 3 2

1/4 1/3 1 5

8 1/2 1/5 1











.

The S matrix is given by

S =











1 9 4 2

2 1 6 3

4 1/3 1 5

8 1/2 4 1











.

By following the same way in Example 2.2.1, we find DC(S). We see that

NC(S) = N(S) and SC is irreducible. By Theorem 5.4.3, there is a unique

vector, w, (up to a scalar multiple) in CΨ. We obtain this vector by using

Algorithm 3. Then, w =
[

1 0.758 0.861 1.174
]T

.

Figure 5.2 shows the values of eA(x) and eB(x) at w and at several points

from the sets CA, CB and from int(Rn
+). Pareto optimality is observed at w

where eA(w) = 6.817 and eB(w) = 6.817. In general, eA(w) and eB(w) are not

necessarily equal. We specifically choose this example to illustrate the role of

the Pareto optimal point. For instance, it can be seen from the graphic that

for any point x ∈ CB , eB(x) < eB(w) while eA(x) > eA(w).
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Figure 5.2: Refer to Example 5.5.1

Our objective in the remainder of this section is to show that the multi-

objective optimisation problem associated with the AHP always admits a

Pareto optimal solution. We first recall the following general result giving

a sufficient condition for the existence of a Pareto optimal point with respect

to a set E ⊂ Rn [Bew07]. Essentially, this is a direct application of the fact

that a continuous function on a compact set always attains its minimum.

Theorem 5.5.4. Let E ⊆ Rn be nonempty and compact. Let a set {f1,

. . . , fm} of continuous functions be given where

fi : E → R+

for 1 ≤ i ≤ m. There exists w ∈ E such that x ∈ E, fi(x) ≤ fi(w) for

1 ≤ i ≤ m implies fi(x) = fi(w) for 1 ≤ i ≤ m.

This result follows from elementary real analysis and the observation that

if w minimises the (continuous) weighted sum
m∑

i=1
αifi(x) where αi > 0 for

1 ≤ i ≤ m, then w must be Pareto optimal for the functions f1, . . . , fm. A

point w satisfying the conclusion of the theorem is said to be Pareto optimal

for f1, . . . , fm with respect to E.

In essence the above result shows that for any multi-objective optimisation

problem with continuous objective functions defined on a compact set, there
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exists a point that is Pareto optimal with respect to the given set. To apply

the above result to the AHP, we first note that for a set Ψ of SR-matrices, DΨ

is compact from Theorem 5.4.3 (iii). Moreover, each function eAi
is continuous

on DΨ as it is a composition of continuous functions. We will also prove this

by using the definition of continuity.

Lemma 5.5.5. The error functions eAi
: int(Rn

+) → R+(1 ≤ i ≤ m) are

continuous on DΨ.

Proof: Take some A ∈ Ψ. (we drop the subscript to make the subsequent

notation clearer.) Let the sequence xk ∈ DΨ satisfy lim
k→∞

xk = x0 where

x0 ∈ DΨ. We must show that eA(xk) → eA(x0) as k → ∞.

As DΨ ⊂ int(Rn
+), for all i, j,

aijxk
j

xk
i

→ aijx0
j

x0
i

as k → ∞. Suppose that eA(x0) =

max
i,j

aijx0
j

x0
i

= apqx0
q

x0
p

for some p, q ∈ {1, 2, ..., n}. Then apqxk
q

xk
p

→ apqx0
q

x0
p

as k → ∞.

Let ǫ > 0 be given. Then there exists some N1 such that for k ≥ N1,

apqx
k
q

xkp
≥ apqx

0
q

x0
p

− ǫ.

Thus, for k ≥ N1,

eA(xk) ≥ apqx
k
q

xkp
≥ eA(x0) − ǫ.

On the other hand, for all i, j, we know that
aijx0

j

x0
i

≤ apqx0
q

x0
p

. As
aijxk

j

xk
i

→ aijx0
j

x0
i

as

k → ∞, there exists some N2 such that for k ≥ N2,

aijx
k
j

xki
≤ apqx

0
q

x0
p

+ ǫ

for all i, j. This implies that eA(xk) ≤ eA(x0) + ǫ for all k ≥ N2. Choosing,

N = max{N1, N2}, we see that for k ≥ N ,

eA(x0) − ǫ ≤ eA(xk) ≤ eA(x0) + ǫ.

As ǫ > 0 was arbitrary, we immediately see that lim
k→∞

eA(xk) = eA(x0).

We now show that any point in DΨ that is Pareto optimal with respect to

DΨ is also Pareto optimal with respect to the set int(Rn
+). Although we don’t

specifically use the SR property in the following, we assume Ψ to consist of

SR-matrices as we are primarily interested in the AHP application.

107



Chapter 5. The AHP, Max Algebra and Multi-objective Optimisation

Lemma 5.5.6. Consider the set Ψ in (5.15) and assume that Ai is an SR-

matrix for 1 ≤ i ≤ m. Let w be a Pareto optimal point for eA1
, . . . , eAm

with

respect to DΨ. Then, w is also Pareto optimal for eA1
, . . . , eAm

with respect to

int(Rn
+).

Proof: Assume that w ∈ DΨ is a Pareto optimal point with respect to DΨ.

Suppose x ∈ int(Rn
+)\CΨ. Then from the definition of CΨ (5.30), it follows

that

eAi0
(x) > µ(Ψ) for some i0. (5.32)

As w ∈ DΨ, eAi
(w) ≤ µ(Ψ) for 1 ≤ i ≤ m. It follows immediately from (5.32)

that for any x /∈ CΨ, it cannot happen that eAi
(x) ≤ eAi

(w) for 1 ≤ i ≤ m.

Let x in CΨ be such that

eAi
(x) ≤ eAi

(w) for 1 ≤ i ≤ m.

As eAi
(λx) = eAi

(x) for all λ > 0, 1 ≤ i ≤ m, and w is Pareto optimal with

respect to DΨ, it follows that eAi
(x) = eAi

(w) for 1 ≤ i ≤ m.

Our next step is to show that there exists a point x ∈ DΨ that is Pareto

optimal with respect to DΨ.

Proposition 5.5.7. Consider the set Ψ in (5.15) and assume that Ai is an

SR-matrix for 1 ≤ i ≤ m. There exists x ∈ DΨ that is Pareto optimal for

eA1
, . . . , eAm

with respect to DΨ.

Proof: First note that DΨ 6= ∅ since µ(Ψ) > 0. Theorem 5.4.3 shows that

DΨ is compact. Furthermore, the functions eAi
: DΨ → R+(1 ≤ i ≤ m) are

continuous as shown in Lemma 5.5.5. Theorem 5.5.4 implies that there exists

w in DΨ that is Pareto optimal with respect to DΨ.

Combining Proposition 5.5.7 with Lemma 5.5.6, we immediately obtain the

following result.

Corollary 5.5.8. Consider the set Ψ in (5.15) and assume that Ai is an

SR-matrix for 1 ≤ i ≤ m. There exists x ∈ DΨ that is Pareto optimal for

eA1
, . . . , eAm

with respect to int(Rn
+).
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Corollary 5.5.8 means that there exists a vector x of positive weights that

is simultaneously Pareto optimal and also optimal in the min-max sense of

Section 5.4.2 for the error functions eAi
, 1 ≤ i ≤ m.

5.5.2 Pareto Optimisation Problem

As has been discussed above, our approach to construct an overall ranking

vector for m given SR-matrices amounts to solving the following optimisation

problem.

min
x∈DΨ

{eAi
(x)}, i = 1, 2, ..., m. (5.33)

Recall that the solution of the following weighted sum

min
x∈DΨ

m∑

i=1

αieAi
(x). (5.34)

where αi > 0 for 1 ≤ i ≤ m is a Pareto optimal solution for (5.33). This app-

roach is called the weighted sum method , which is one of the most commonly

used approaches for multi-objective optimisation problems [Mie99]. The idea

in the weighted sum method is to take a linear combination of the objective

functions with positive weights. This leads to a constrained optimisation prob-

lem with one objective function that can be solved using standard methods

and software such as MATLAB.

In (5.34), we choose α as a max eigenvector of the criteria-comparison matrix.

Recall from Section 5.1.3 that the max eigenvector of this matrix can be used

as a weight vector for the criteria with respect to the main goal. Thus, αi is

the weight of the criterion i for the error function eAi
(x) associated with the

SR-matrix Ai for 1 ≤ i ≤ m.

To illustrate, we revisit Example 5.1.2.

Example 5.5.2. Let C,A1, . . . , A5 be as in Example 5.1.2. We first observe

that

µ(Ŝ) = 4.985.

So, there is no common subeigenvector for Ai, i = 1, 2, ..., 5.
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For the solution of min
x∈DΨ

5∑

i=1
αieAi

(x), we first find α. We know from Example

5.1.3 that there is a unique max eigenvector of C given by

α =














1

1.495

2.236

3.344

0.897














with the ranking 4 > 3 > 2 > 1 > 5.

Next, we find the S matrix.

S =











1 7 7 9

5 1 6 7

6 2 1 6

4 7 7 1











Note that NC(S) = {1, 3, 4} and SC is irreducible. It follows from Theorem

5.4.3 (vi) that there is not a unique vector in DΨ. In this case, we find

several Pareto optimal points giving at least two possible distinct rankings:

1 > 3 > 4 > 2 and 1 > 3 > 2 > 4.

Notice that the first ranking scheme is the same as the one obtained from the

classical EM used in Example 5.1.2. We see that α3 and α4 are the two highest

weight factors that are applied to eA3
(x) and eA4

(x). Thus, they increase the

effect of these error functions which correspond to the SR-matrices A3 and A4.

If we analyse the local rankings associated with these matrices in Example

5.1.2, we see that 4 > 2 for both matrices.

The second ranking scheme is also reasonable. Similarly, from the local rank-

ing schemes, we see that 2 > 4 for A1, A2 and A5. In particular, 2 is preferred

to all other alternatives for A2.

5.6 Concluding Remarks

Our main goal in this chapter was to develop a new approach for ranking

alternatives in the multi-criteria AHP based on the max algebra, thereby

combining the max-algebraic spectral theory and multi-objective optimisation.

In this context,
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• we presented results on the existence of a single transitive matrix with

a minimum distance to all SR-matrices in the set simultaneously and

related these with the commutativity properties of matrices;

• we proved that the generalised spectral radius provides a lower bound

on the maximal error in approximating a set of SR-matrices with a

transitive matrix;

• we showed that it is always possible to find a Pareto optimal point for

which the maximal error is minimal.
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CHAPTER 6
Max Eigenvectors, Directed

Spanning Trees and Ranking

In this chapter, we are concerned with the matrix tree theorem for Markov chains.

We consider its max-algebraic extension. In particular, we relate the max-algebraic

spectral properties of an irreducible max-stochastic matrix to the maximal weights

of rooted directed spanning trees (RSTs) in its associated digraph. We show that

the vector of maximal RST weights is always a max eigenvector of the matrix. We

also present some results relating this vector to the rows of the Kleene star. Finally,

we discuss possible applications of our results to ranking problems.

6.1 Motivation and Mathematical

Background

In this section, we provide a brief introduction to the so-called Markov Chain

Tree Theorem and introduce a number of definitions and results concerning

rooted directed spanning trees (RSTs) of irreducible matrices.
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6.1.1 Introduction

A Markov chain is a stochastic process over a set of states denoted by S =

{1, 2, ..., n} [Sen06]. It is considered as a process without memory so that the

probability of being in a state at a given time depends only on the previous

state. If we let aij denote the probability of moving from state i to state j, then

the chain can be represented by a matrix A ∈ Rn×n
+ where n is the number

of the states in S. Given a vector x in which xi represents the probability

of being in state i initially, x(t) = Atx represents the probability of being in

state i at time t for 1 ≤ i ≤ n. The behaviour of the Markov chain as t tends

to infinity is of particular interest.

The transition probability matrix A is generally a non-negative and row stoc-

hastic matrix. If A is irreducible, the chain possesses a unique stationary

distribution vector (Theorem 2.1.5) which is the solution of

xTA = xT ,
∑

1≤i≤n

xi = 1. (6.1)

Recall from Section 2.2.6 that x can be found by the power method. The

classical matrix tree theorem for Markov chains provides an alternative way

to calculate the stationary distribution vector.

The original Matrix Tree Theorem goes back to the work of Kirchhoff [Kir47].

It provides a characterisation for the number of spanning trees in a graph

based on the determinant of an n × n matrix. Since then, variants of it have

been studied in the context of electrical networks. A version of this theorem for

irreducible Markov chains (referred to as the Markov Chain Tree Theorem)

relates the stationary distribution of an irreducible Markov chain with the

weights of directed spanning trees of its associated digraph. This core result

has appeared in a variety of different contexts. See [Shu75, KV80, FW84,

AT89, Bro89, Ald90, Son99, GP01, Wic09]. One of the earliest appearances of

this result is provided by Frĕıdlin and Wentzell [FW84] (Translation of Russian

ed., Nauka, Moscow, 1979). It was independently discovered by [Shu75] in

connection with flow-graph methods. It was also stated in [KV80] in the

context of biological modelling. For another reference which discusses its

extension to general, not necessarily irreducible Markov chains, see Leighton

and Rivest [LR82].
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The motivation of our study of the matrix tree theorem for Markov chains

comes from its connection with the spectral theory of non-negative matrices

and graph theory so that it provides a different characterisation of the Perron

vector of an irreducible matrix. In this direction, the layout of this chapter

is as follows. First, we describe necessary notation and preliminary results

related to RSTs of irreducible matrices. We also state the Markov Chain

Tree Theorem over the conventional algebra. In Section 6.2, we derive its

max-algebraic version. In Section 6.3, we discuss how to associate our main

result with the max-algebraic spectral theory. In particular, we consider its

connection with the Kleene star of an irreducible max-stochastic matrix. In

Section 6.4, we discuss the possibility of applying of these results to decision

making problems. The work contained in this chapter has resulted in the

publication: [BGKMS13].

6.1.2 Directed Spanning Trees

We denote the weighted directed graph of A ∈ Rn×n
+ by D(A) = (N(A), E(A)).

We say that the edge e = (i, j) is outgoing from i and write t(e) = i. A

spanning subgraph T = (N(A), ET ) of D(A) is a directed spanning tree rooted

at i ∈ {1, . . . , n} if the following conditions are satisfied:

(i) for every j 6= i in {1, . . . , n}, there is exactly one outgoing edge e ∈ ET

with t(e) = j;

(ii) there is no edge e ∈ ET with t(e) = i;

(iii) the subgraph (N(A), ET ) contains no directed cycle.

We recall that directed spanning trees are also referred to as rooted branchings

or arborescences by some authors [BR91].

Given a directed spanning tree T = (N(A), ET ), the weight of T is given by

the product of the weights of the edges in T and is denoted by π(T ). We adopt

the notation Ti for the set of all directed spanning trees of D(A) rooted at i

for 1 ≤ i ≤ n. We demonstrate these concepts with the following example.
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Example 6.1.1. Consider the following 3 × 3 matrix

A =








1 1/2 2/3

1/4 0 1

1 1/3 1/9







. (6.2)

There are three directed spanning trees rooted at 1 as shown in Figure 6.1.

Let T1 = {T (1)
1 , T

(2)
1 , T

(3)
1 }.

2

3

1

1

1

3

2

1 /3

1

1 /4

2

1

1 /4

3

1

Figure 6.1: T1 = {T (1)
1 , T

(2)
1 , T

(3)
1 }

• T
(1)
1 : (2, 3), (3, 1) with π(T (1)

1 ) = a23a31 = 1

• T
(2)
1 : (3, 2), (2, 1) with π(T (2)

1 ) = a32a21 = 1/12

• T
(3)
1 : (2, 1), (3, 1) with π(T (3)

1 ) = a21a31 = 1/4

Directed spanning trees rooted at 2 and 3 are constructed in the same way.

For future use, we record the following simple facts concerning directed span-

ning trees.

Lemma 6.1.1. Let A ∈ Rn×n
+ be irreducible. Then for every i ∈ {1, . . . , n},

there exists a directed spanning tree rooted at i.

Proof: To begin with, let P1 be a directed path of maximal length ending

at i. If N(P1) = {1, . . . , n}, then P1 is a directed spanning tree rooted at i.

Otherwise, choose j 6∈ N(P1) and let Q1 be the shortest directed path in D(A)

from j to P1. Let P2 be the union of P1 and Q1. Again, if N(P2) = {1, . . . , n}
then P2 will be a directed spanning tree rooted at i. Otherwise, we repeat

the above procedure and as the number of vertices in D(A) is finite, we must

eventually arrive at a directed spanning tree rooted at i as claimed.
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Lemma 6.1.2. Let A ∈ Rn×n
+ be irreducible and let T = (N(A), ET ) be a

directed spanning tree of D(A) rooted at i ∈ {1, . . . , n}. Then for each j 6= i

in {1, . . . , n}, there exists a unique directed path from j to i in T .

Proof: Let j 6= i be given. There exists a unique edge (j, i1) in ET outgoing

from j. If i1 6= i, there exists a unique outgoing edge from i1, (i1, i2). Contin-

uing in this fashion, we construct a sequence of vertices j = i0, i1, i2, . . . such

that (ij , ij+1) ∈ ET for j = 0, 1, . . .. As T is acyclic, the vertices i0, i1, i2, . . .

are distinct. Hence, the process must terminate at some vertex iP , which has

no outgoing edge in ET . Hence, iP = i and j = i0, i1, . . . , iP = i is a directed

path from j to i. To see uniqueness, suppose there is a distinct path

j = j0, j1, . . . , jQ = i

from j to i. Let k be the smallest integer such that jk+1 6= ik+1. As the

paths are distinct, such a k exists. But then ik = jk has two outgoing edges

(ik, ik+1), (ik, jk+1) in ET , which is a contradiction.

6.1.3 Matrix Tree Theorem for Markov Chains

In this section, we state the matrix tree theorem for Markov chains, also known

as the Frĕıdlin and Wentzell formula [FW84, Son99]. This classical result links

the weights of directed spanning trees in the graph associated with an irre-

ducible chain to its stationary distribution. The stationary distribution of the

chain is essentially a normalised left eigenvector of the corresponding transi-

tion probability matrix. With this theorem, we see that it can be expressed

in terms of the weights of RSTs of its associated digraph .

Recall that a matrix A ∈ Rn×n
+ is said to be a row stochastic matrix if all of

its row sums equal to one. Formally,
∑

1≤j≤n
aij = 1 for 1 ≤ i ≤ n.

The classical matrix tree theorem for Markov chains can be stated as follows.

Theorem 6.1.3. Let A ∈ Rn×n
+ be an irreducible (row) stochastic matrix.

Define w ∈ Rn
+ by

wi =
∑

T∈Ti

π(T ). (6.3)
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Then ATw = w. In particular, w
n∑

i=1

wi

is the unique stationary distribution of

the Markov chain with transition matrix A.

6.2 Matrix Tree Theorem for Markov Chains

in the Max Algebra

In the main result below, we show via a direct combinatorial argument that

Theorem 6.1.3 extends to the max algebra.

Motivated by Theorem 6.1.3, we first consider an irreducible matrix A in Rn×n
+

which is row stochastic in a max-algebraic sense. Formally, we assume that

for 1 ≤ i ≤ n, max
1≤j≤n

aij = 1 or using the max-algebraic notation

A ⊗ 1n = 1n.

In a convenient abuse of notation, we refer to matrices satisfying the above

condition as max-stochastic. Our main result shows that Theorem 6.1.3 ex-

tends in a natural way to the max-algebra.

Theorem 6.2.1. Let A ∈ Rn×n
+ be an irreducible max-stochastic matrix. De-

fine the vector w by

wi =
⊕

T∈Ti

π(T ), 1 ≤ i ≤ n. (6.4)

Then

AT ⊗ w = w.

Proof: We first show that AT ⊗ w ≤ w. To this end, let i ∈ {1, . . . , n} be

given. Then as aii ≤ 1, it is immediate that

aiiwi ≤ wi. (6.5)

Now consider j 6= i. We can write

wj = ai1j1
ai2j2

· · ·ain−1jn−1
(6.6)

where the edges (i1, j1), . . . , (in−1, jn−1) correspond to a maximal directed

spanning tree T rooted at j. Then

ajiwj = ajiai1j1
ai2j2

· · ·ain−1jn−1
(6.7)
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As j 6= i, it follows that there is an outgoing edge from i in T . Hence, i = ip

for some p ∈ {1, . . . , n− 1}. Moreover aipjp
≤ 1 which implies that

ajiwj ≤ ajiai1j1
· · ·aip−1jp−1

aip+1jp+1
· · ·ain−1jn−1

. (6.8)

If aji = 0, then it is immediate that ajiwj ≤ wi. On the other hand, if aji > 0,

the right hand side of (6.8) corresponds to the set of edges

E ′ = {(j, i), (i1, j1), . . . (ip−1, jp−1), (ip+1, jp+1), . . . , (in−1, jn−1)}.

Consider the spanning subgraph T ′ = (N(A), E ′). There is exactly one out-

going edge from every k 6= i in N(A) and no outgoing edge from i. Assume

that there is a cycle in T ′. It must contain the edge (j, i) otherwise it would

define a cycle in the original spanning tree T . However there is no outgoing

edge from i in T ′. We get a contradiction. So, T ′ is acyclic. Therefore, the

right hand side of (6.8) is the weight of a directed spanning tree rooted at i.

From the definition of w, this immediately implies that ajiwj ≤ wi for every

j 6= i. Combining this with (6.5) yields immediately that (AT ⊗w)i ≤ wi. As

this is true for any i, we see that AT ⊗ w ≤ w.

To complete the proof, we show that AT ⊗w ≥ w. Let i ∈ {1, . . . , n} be given.

Then as wi is the weight of a maximal directed spanning tree, Ti, rooted at i,

we can write

wi = ai1j1
ai2j2

· · ·ain−1jn−1
.

The edges in the spanning tree corresponding to the above expression are

Ei = {(i1, j1), . . . , (in−1, jn−1)}.

As A is a max-stochastic matrix by assumption, we know that aij = 1 for

some j. If j = i, then

(AT ⊗ w)i ≥ aiiwi = wi.

Now suppose j 6= i. Consider the set S of indices

S = {ip | jp = i}.

As Ei defines a directed spanning tree rooted at i, S is non-empty by Lemma

6.1.1. We need to consider two cases.
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First, suppose that j ∈ S (i.e. there is an outgoing edge from j to i). Then

consider the set of edges

E ′
i := {(i1, j1), . . . , (ip−1, jp−1), (i, j), (ip+1, jp+1), . . . , (in−1, jn−1)}

where we replace (j, i) by (i, j) in Ei. We claim that E ′
i defines a directed

spanning tree rooted at j. It is clear that there is exactly one outgoing edge

from each vertex other than j and that j has no outgoing edge. Moreover,

the digraph determined by E ′
i is acyclic. To see this, first note that any cycle

in T ′
i must contain the edge (i, j) as otherwise it would define a cycle in the

spanning tree Ti. As there is no outgoing edge in E ′
i from j, it follows that T ′

i

must be acyclic as claimed. As aij = 1, it follows that

π(T ′
i ) = ai1j1

· · ·aip−1jp−1
aip+1jp+1

· · ·ain−1jn−1
. (6.9)

Moreover, as T ′
i is rooted at j, it follows that

wj ≥ π(T ′
i )

and hence that

(AT ⊗ w)i ≥ ajiwj = aipjp
wj ≥ aipjp

π(T ′
i ) = wi.

We still need to consider the case where j 6∈ S (i.e. the distance from j to i is

greater than one). As Ti is a directed spanning tree rooted at i, it follows from

Lemma 6.1.2 that there exists a unique ip ∈ S for which there is a directed

path in Ti from j to ip. Consider the set of edges E ′
i where, as before, we

replace the edge (ip, jp) (where jp = i) with the edge (i, j). Let T ′ denote

the associated spanning subgraph. Then there is exactly one outgoing edge

from each vertex other than ip in T ′ and there is no outgoing edge from ip.

Furthermore, if there exists a cycle in T ′, it must contain the edge (i, j) as

otherwise it would define a cycle in T . This would then imply that there exists

a directed path in T ′ from j to i, all of whose edges are also edges in T . This

is impossible however, as the only such path in T contains the edge (ip, jp)

which is not an edge in T ′. Therefore T ′ is indeed a directed spanning tree

rooted at ip whose weight π(T ′) is given by (6.9). As argued for the previous

case, wip ≥ π(T ′) and

(AT ⊗ w)i ≥ aipiwip = aipjp
wip ≥ aipjp

π(T ′) = wi.

119



Chapter 6. Max Eigenvectors, Directed Spanning Trees and Ranking

We have shown that

(AT ⊗ w)i ≥ wi

for any i ∈ {1, . . . , n}. Hence AT ⊗ w ≥ w. This completes the proof.

In [BGKMS13], we present an alternative proof for Theorem 6.2.1 using a pro-

cedure that can be seen as an instance of the Maslov dequantization [LM98].

It was suggested and contributed by Sergĕı Sergeev. See [BGKMS13] for the

details.

The vector w defined in Theorem 6.2.1 will be called the max-spanning-tree

eigenvector of A. We next present some numerical examples to illustrate

Theorem 6.2.1 each will be referred later.

Example 6.2.1. Consider the following max-stochastic matrix

A =











1 3/4 5/6 0

1/2 1 1/4 9/10

0 0 1 7/8

1/3 0 1 4/5











. (6.10)

1

1

23 /4
3

5 /6

1 /2

1

1 /4

4

9 / 1 0

1

7 /8

1 /3 1

4 /5

Figure 6.2: D(A) for (6.10)

Let Ti be the max-spanning-tree rooted at i for i = 1, 2, 3, 4. Then,

• T1 : (3, 4), (2, 4), (4, 1) w1 = π(T1) = a34a24a41 = 21/80

• T2 : (3, 4), (4, 1), (1, 2) w2 = π(T2) = a34a41a12 = 7/32

• T3 : (1, 3), (2, 4), (4, 3) w3 = π(T3) = a13a24a43 = 3/4

• T4 : (2, 4), (1, 3), (3, 4) w4 = π(T4) = a24a13a34 = 21/32
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Hence, w =











21/80

7/32

3/4

21/32











and AT ⊗ w = w.

Example 6.2.2. Consider the following max-stochastic matrix

A =











2/5 1 2/5 0

1 1/4 3/4 5/6

0 0 9/10 1

1/2 0 1 3/5











. (6.11)

1

2 /5

21
3

2 /5

1

1 /4

3 /4

4

5 /6

9 / 1 0

1

1 /2 1

3 /5

Figure 6.3: D(A) for (6.11)

Let Ti be the max-spanning-tree rooted at i for i = 1, 2, 3, 4. Then,

• T1 : (3, 4), (4, 1), (2, 1) w1 = π(T1) = a34a41a21 = 1/2

• T2 : (3, 4), (4, 1), (1, 2) w2 = π(T2) = a34a41a12 = 1/2

• T3 : (1, 2), (2, 4), (4, 3) w3 = π(T3) = a12a24a43 = 5/6

• T4 : (1, 2), (2, 4), (3, 4) w4 = π(T4) = a12a24a34 = 5/6

Hence, w =











1/2

1/2

5/6

5/6











and AT ⊗ w = w.

6.3 Max-spanning-Tree Eigenvector and

Kleene Star

We have shown that the vector of maximal rooted spanning trees is always

a left max eigenvector of a max-stochastic matrix. However, in contrast to

121



Chapter 6. Max Eigenvectors, Directed Spanning Trees and Ranking

the conventional algebra, the irreducibility of A is not sufficient to guarantee

uniqueness (up to scalar multiple) of the max eigenvector. This naturally

leads to the question of how to identify the max-spanning-tree eigenvector

using tools of the max-algebraic spectral theory such as the Kleene star. We

next consider this question.

Recall that we denote the critical digraph of A ∈ Rn×n
+ by DC(A) = (NC(A),

EC(A)) where NC(A) is the set of critical vertices and EC(A) is the set of

critical edges. Moreover, recall that Theorem 2.2.5 shows the connection of

the max eigenvectors of A with columns of the Kleene star A∗. By applying it

to AT , the same relation also holds between the left max eigenvectors of A and

rows of A∗. Notice that NC(A) = NC(AT ), µ(A) = µ(AT ) and (AT )∗ = (A∗)T .

We adopt the notation A∗
i. for the ith row, and the notation A∗

.i for the ith

column of the matrix A∗.

We will now make a number of observations on the Kleene star of max-

stochastic matrices. Notice that a max-stochastic matrix has max eigenvalue

1, and aij ≤ 1 for all i, j. This implies that µ(A) = 1, and that aij = 1 for

(i, j) ∈ EC(A). Recall from Section 2.2.4 that such matrices are called visu-

alized. Note that the max-stochastic matrices have an additional property:

each vertex in D(A) has an outgoing edge with weight 1.

The Kleene star of a definite visualised matrix (and hence of a max-stochastic

matrix) has a very specific structure, as described, for example, in Proposition

4.1 of [SSB09], which we now recall. Before stating it, we recall a number of

necessary definitions from [SSB09]. Define DC∗(A) to be the directed graph

formed by adding trivial graphs each consisting of just one non-critical vertex

to DC(A) (we add one such graph for each non-critical vertex). Let DC∗(A)

have r′ strongly connected components with vertex sets N1, . . . , Nr′ where Nα

denotes the set of vertices corresponding to the component α of DC∗

(A) for

1 ≤ α ≤ r′.

For 1 ≤ α, β ≤ r′, denote by Aαβ the submatrix of A formed from the rows

with indices in Nα and from the columns with indices in Nβ. Let Ared be the

r′ × r′ matrix with entries ared
αβ = max{aij | i ∈ Nα, j ∈ Nβ}. We now state

Proposition 4.1 of [SSB09] below.

Proposition 6.3.1. Let A ∈ Rn×n
+ be a definite visualised matrix and r′ be
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the number of strongly connected components of DC∗(A). Then,

1. ared

αα = 1 for all 1 ≤ α ≤ r′ and ared

αβ ≤ 1 (resp. ared

αβ < 1 for α 6= β),

where α, β ∈ {1, 2, ..., r′};

2. For 1 ≤ α, β ≤ r′, the corresponding (α, β)-submatrix of A∗ is equal to

A∗
αβ = ared

αβ
∗
1α1β

T , where ared

αβ
∗

is the (α, β)th entry of (Ared)∗, and 1α1β
T

is the (α, β)-submatrix of 1n1Tn .

From Proposition 6.3.1, we get the following form for A∗ by applying suitable

permutations to rows and columns [SSB09].

A∗ =











1111
T ared

12
∗
1112

T ... ared
1r′

∗
111r′

T

ared
21

∗
1211

T 1212
T ... ared

2r′

∗
121r′

T

...
...

. . .
...

ared
r′1

∗
1r′11

T ared
r′2

∗
1r′12

T ... 1r′1r′
T











. (6.12)

The following is an immediate consequence of Proposition 6.3.1.

Corollary 6.3.2. Let A ∈ Rn×n
+ be an irreducible max-stochastic matrix.

Then for all i, j ∈ NC(A) belonging to the same strongly connected compo-

nent in DC(A),

(i) a∗
ij = 1;

(ii) A∗
.i = A∗

.j;

(iii) A∗
i. = A∗

j..

Before deriving the main result of this section, which is Theorem 6.3.5, we

introduce a number of preliminary results.

Lemma 6.3.3. Let A ∈ Rn×n
+ be an irreducible max-stochastic matrix. Then,

for 1 ≤ i ≤ n, min
1≤j≤n

a∗
ji = min

q∈NC(A)
a∗
qi.

Proof: Let i ∈ {1, . . . , n} be given. It is immediate that

min
1≤j≤n

a∗
ji ≤ min

q∈NC(A)
a∗
qi. (6.13)
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To show the reverse inequality, consider some l /∈ NC(A). We claim that

there exists a path from l to some k ∈ NC(A) of weight 1. As A is max-

stochastic, there exists at least one outgoing edge from l of weight 1, alk1
= 1.

Moreover, as l is not critical, k1 6= l. If k1 is critical, we are done. If not, then

there exists k2 6∈ {l, k1} with ak1k2
= 1. Continuing in this fashion, we must

eventually arrive at some vertex k = kp which is in NC(A). By construction,

l, k1, . . . , kp = k is a path of weight 1.

a∗
ki is the maximal weight of a path between k and i. Using the path cons-

tructed above from l to k of weight 1, and remembering that all the entries of

A are less than or equal to 1, it is easy to see that we can construct a path

from l to i whose weight is at least a∗
ki. It follows that

a∗
li ≥ a∗

ki ≥ min
q∈NC(A)

a∗
qi.

As this must hold for any l 6∈ NC(A), we have that

min
1≤j≤n

a∗
ji ≥ min

q∈NC(A)
a∗
qi. (6.14)

Combining (6.14) and (6.13) yields the result.

Lemma 6.3.4. Let A ∈ Rn×n
+ be an irreducible max-stochastic matrix. As-

sume that DC(A) is strongly connected. Let w be the max-spanning-tree eigen-

vector of A. Then for all i ∈ NC(A), wi = 1.

Proof: Let i ∈ NC(A) be given. Choose any k1 ∈ NC(A)\{i}. As NC(A) is

strongly connected, µ(A) = 1 and A is max-stochastic, there exists a path P1,

from k1 to i of weight 1, consisting of vertices in NC(A). If N(P1) 6= NC(A),

choose k2 ∈ NC(A)\N(P1), and let Q1 be the shortest path in DC(A) from k2

to P1. Set P2 to be the union of P1 and Q1. Continuing in this way, we can

construct a directed tree T1 of weight one, rooted at i, with N(T1) = NC(A).

If NC(A) = N(A), we are done.

Otherwise, to complete this to a spanning tree of weight 1, let j1 6∈ NC(A)

be given. As A is max-stochastic there exists some edge (j1, p1) in D(A) of

weight 1. In fact, it is easy to see that there exists a directed path P ′
1 from

j1 to NC(A) of weight 1, consisting of non-critical vertices. Let T2 be the

union of T1 and P ′
1. If N(T2) = {1, . . . , n}, then T2 is a directed spanning tree
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rooted at i of weight 1. Otherwise, we can choose j2 /∈ N(T2) and repeat the

previous step, choosing a path from j2 to N(T2) consisting of edges of weight

one and vertices not in N(T2). Continuing in this fashion we will arrive at a

directed spanning tree T rooted at i of weight 1. As A is max-stochastic, it

follows that T is maximal and hence that wi = 1 as claimed.

The next result, which is the main result of this section, shows the relationship

between the max-spanning-tree eigenvector and rows of the Kleene star of A.

Note that minimum is taken entry-wise.

Theorem 6.3.5. Let A ∈ Rn×n
+ be an irreducible max-stochastic matrix. Let

w be the max-spanning-tree eigenvector of A. Then, the following are true.

(i) w ≤ min
q∈NC(A)

A∗
q.;

(ii) If DC(A) is strongly connected then w = A∗
q. for all q ∈ NC(A);

(iii) If DC(A) has no more than two components and NC(A) = N(A), then

w = min
q∈NC(A)

A∗
q..

Proof:

(i) Consider a maximal spanning tree T rooted at i (1 ≤ i ≤ n) with weight

wi. There exists a path in T from j to i for 1 ≤ j ≤ n, i 6= j. Let π(j, i) be

the weight of this path. Then,

wi ≤ π(j, i) ≤ a∗
ji for all j ∈ {1, 2, ..., n}.

Thus, wi ≤ min
1≤j≤n

a∗
ji. Using Lemma 6.3.3, we have wi ≤ min

q∈NC(A)
a∗
qi.

(ii) If there exists one strongly connected component in DC(A), then it follows

from Theorem 2.2.5 (i) that there exists a positive vector x > 0 such that

A∗
i. = x for all i ∈ NC(A). We claim w = x. It follows from Theorem 2.2.5

(ii) that w is a scalar multiple of x. Combining point (iii) of Corollary 6.3.2

with Lemma 6.3.4, we see that w = x.

(iii) Assume thatDC(A) has two strongly connected components andNC(A) =

N(A). It follows from Corollary 6.3.2 that there exist linearly independent (in

a max-algebraic sense) vectors v, u such that every row of A∗ is equal to vT
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or uT . Let DC
v (A), DC

u (A) denote the corresponding strongly connected com-

ponents of DC(A). Using Corollary 6.3.2 again, (after possibly relabelling the

vertices in DC(A)), we can assume that

v =


















1
...

1

vp+1

...

vn


















, u =


















u1

...

up

1
...

1


















In this case, DC
v (A) consists of vertices from 1 to p while DC

u (A) consists

of vertices from p + 1 to n. Denote NC
v (A) = {1, 2, ..., p} and NC

u (A) =

{p+ 1, p+ 2, ..., n}.

We need to show that

w = min(u, v) =


















u1

...

up

vp+1

...

vn


















. (6.15)

From (i), we know that w ≤ min(u, v). Hence, it is enough to show that for

each i ∈ {1, . . . , n}, there exists a spanning tree rooted at i of weight ui if

i ≤ p and of weight vi if i ≥ p+ 1.

First, let i ∈ {1, . . . , p} be given. For any j0 ∈ {p + 1, . . . , n}, there exists

a path P0 in D(A) from j0 to i of weight a∗
ji = ui. Next, note that for any

k 6= i in {1, . . . , p}, as P0 terminates in DC
v (A), there exists a shortest path

Q0 in DC
v (A) (necessarily of weight 1) from k to P0. Set P1 to be the union

of P0 and Q0. Repeat this process until we have included all the vertices in

{1, . . . , p}. This will yield a directed tree T1 rooted at i of weight ui, which

includes all the vertices in DC
v (A).

Next note that as P0 and hence T1 contains j0, which lies in DC
u (A), we can

mimic the previous steps in DC
u (A). First pick some k1 in DC

u (A) that is not

in N(T1) and choose a shortest path R1 in DC
u (A) from k1 to T1. If the union
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of T1 and R1 does not contain all vertices in {p+1, . . . , n}, repeat this process;

eventually, we arrive at a directed spanning tree, rooted at i, of weight ui.

The argument to establish that there exists a directed spanning tree rooted

at each i ∈ {p+ 1, . . . , n} of weight vi is identical.

We next illustrate Theorem 6.3.5 (i) and (iii).

Example 6.3.1. Consider the matrix given in Example 6.2.1. There exist

three strongly connected components in DC(A) and NC(A) = {1, 2, 3} where

NC
1 (A) = {1}, NC

2 (A) = {2} and NC
3 (A) = {3}. The Kleene star of A is given

by

A∗ =











1 3/4 5/6 35/48

1/2 1 9/10 9/10

7/24 7/32 1 7/8

1/3 1/4 1 1











.

The left max eigenvectors are A∗
1., A

∗
2. and A∗

3..

Recall that w =











21/80

7/32

3/4

21/32











. Then, w ≤ min
q∈NC(A)

A∗
q. =











7/24

7/32

5/6

35/48











.

Example 6.3.2. Consider the matrix given in Example 6.2.2. There exist

two strongly connected components in DC(A) and NC(A) = {1, 2, 3, 4} where

NC
1 (A) = {1, 2} and NC

2 (A) = {3, 4}. The Kleene star of A is given by

A∗ =











1 1 5/6 5/6

1 1 5/6 5/6

1/2 1/2 1 1

1/2 1/2 1 1











.

The left max eigenvectors are A∗
1. and A∗

3..

Recall that w =











1/2

1/2

5/6

5/6











. Note that w = min
q∈NC(A)

A∗
q..

As a final point, we note that Theorem 6.3.5 (iii) does not hold when NC(A) 6=
{1, 2, ..., n} or when there exists more than two strongly connected components
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in DC(A). Specifically, the example below for the former case shows that

w 6= min
q∈NC(A)

A∗
q..

Example 6.3.3. Consider the following 3 × 3 matrix

A =








1 1/4 1/3

3/4 1 2/3

1 0 0







. (6.16)

1

1 2
1 /4

3
1 /3

3 /4

1

2 /3

1

Figure 6.4: D(A) for (6.16)

Let Ti be the max-spanning-tree rooted at i for i = 1, 2, 3. Then,

• T1 : (2, 1), (3, 1) w1 = π(T1) = a21a31 = 3/4

• T2 : (3, 1), (1, 2) w2 = π(T2) = a31a12 = 1/4

• T3 : (2, 1), (1, 3) w3 = π(T3) = a21a13 = 1/4

There exist two strongly connected components in DC(A) and NC(A) 6=
N(A). NC

1 (A) = {1} and NC
2 (A) = {2}. The Kleene star of A is given

by

A∗ =








1 1/4 1/3

3/4 1 2/3

1 1/4 1







.

The left max eigenvectors are A∗
1. and A∗

2..

Note that w =








3/4

1/4

1/4








and w 6= min
q∈NC(A)

A∗
q. =








3/4

1/4

1/3







.
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6.4 Applications to the AHP and Voting

In this section, we briefly discuss the application of Theorem 6.2.1 to ranking

schemes in the single criterion Analytic Hierarchy Process (AHP) and voting

problems.

6.4.1 Single Criterion AHP

We first show how the results of the previous sections can be used to provide a

max-algebraic characterisation of maximal RST vectors for general irreducible

non-negative matrices.

Proposition 6.4.1. Let A ∈ Rn×n
+ be irreducible. Let the diagonal matrix D

be given by

di = max
1≤j≤n

aij .

Further let w be max-spanning-tree eigenvector of A. Then

AT ⊗ w = Dw (6.17)

where D = diag (d1, d2, ..., dn).

Proof: Let Â = D−1A where A ∈ Rn×n
+ is irreducible. Then Â is irreducible

and max-stochastic. Consider a spanning tree T̂i = (N(A), E ′) in D(Â) rooted

at i ∈ {1, 2, ..., n} where

E ′ = {(i1, j1), (i2, j2), ..., (in−1, jn−1)}.

It is clear that the weight of T̂ takes the form

âi1j1
· · · âin−1jn−1

=
1

di1di2 · · · din−1

ai1j1
· · ·ain−1jn−1

where {i1, . . . , in−1} = {1, . . . , n}\{i}. In fact, it is clear that there is a bi-

jective correspondence between spanning trees Ti in D(A) rooted at i and

spanning trees T̂i rooted at i in D(Â) for 1 ≤ i ≤ n with

π(T̂i) =
di

det(D)
π(Ti). (6.18)

It follows that if we write ŵ for the max-spanning-tree eigenvector of Â, then

ŵ =
D

det(D)
w. (6.19)
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As Â is max-stochastic, we know from Theorem 6.2.1 that ÂT ⊗ŵ = ŵ. Noting

that ÂT = ATD−1, we can use (6.19) to rewrite this as

1
det(D)

AT ⊗ w =
D

det(D)
w.

The result follows immediately.

Now recall the AHP from Chapter 5. Suppose that A is an SR-matrix where

aij indicates the relative strength of alternative i to alternative j. A central

question in the AHP was to determine a weight vector w in which wi represents

the weight given to alternative i. Saaty [Saa77a] suggested to take w to be

the Perron vector of A. Elsner and van den Driessche [EvdD04, EvdD10]

suggested selecting w from the set of vectors, including the max-algebraic

eigenvector, that minimises the functional (5.8) given by

eA(x) = max
1≤i,j≤n

aijxj/xi.

Recall that the set of vectors that minimise (5.8) is denoted by CA in (5.11)

(the subeigencone of A with respect to µ(A)). See Section 5.1.3 for the details.

In this context, a spanning tree in D(AT ) rooted at i represents an accumula-

tion of relative scores with respect to all other alternatives in {1, . . . , n}. With

this in mind, a reasonable choice of weight vector w is the max-spanning-tree

eigenvector of AT . From Proposition 6.4.1, we know that w must solve the

generalised max-eigenvector equation

A ⊗ w = Dw (6.20)

where D is diagonal and satisfies di = max
1≤j≤n

aji. It is worth noting that such a

w does not minimise the maximal relative error functional given in (5.8) and

may give different rankings to the schemes considered there. On the other

hand, it has the advantage that the max-spanning-tree eigenvector is unique,

while the optimisation problem explained in Section 5.1.3 may give rise to

multiple rankings.

Next, we present an illustrative example and compare rankings from the Per-

ron vector [Saa77a], the max algebra approach [EvdD04, EvdD10] and the

max-spanning-tree eigenvector of AT which satisfies (6.20).
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Example 6.4.1. Consider the following SR-matrix

A =











1 1/2 3 2

2 1 1/2 4

1/3 2 1 1/5

1/2 1/4 5 1











. (6.21)

Let x be the Perron vector of A, v be in CA and w be the max-spanning-tree

eigenvector of AT . All are normalised.

x =
[

1 1.322 0.689 0.931
]T

with the ranking 2 > 1 > 4 > 3.

Since NC(A) = {2, 3, 4} and AC is irreducible, Â∗
.2, Â

∗
.3 and Â∗

.4 are multiples

of each other and correspond to the max eigenvector of A from Theorem 2.2.5

(ii). For v =
[

1 1.949 1.14 1.667
]T

, we get the ranking: 2 > 4 > 3 > 1.

By using Algorithm 3, we find subeigenvectors producing at least three more

possible distinct rankings: 1 > 2 > 4 > 3, 2 > 1 > 4 > 3 and 2 > 4 > 1 > 3.

w =
[

1 1.667 0.667 0.833
]T

with the same ranking with the Perron vec-

tor.

6.4.2 Judges and Competitors

Next, we consider a particular type of voting problem. Suppose that we have a

set of m judges and n competitors. Each judge is asked to give the competitors

a score between 0 and 1 with the highest ranked competitor scoring a 1 and

the others scored accordingly. Moreover, each competitor is asked to score the

judges in the same way. The judges scores will generate a matrix J ∈ Rm×n
+

with a row for each judge, while the competitors’ scores will generate a matrix

C ∈ Rn×m
+ with a row for each competitor’s scores.

Consider now the matrix Ĉ = C ⊗ J in Rn×n
+ . For 1 ≤ p, q ≤ n, consider the

entry

ĉpq = max
1≤r≤m

cprjrq.

Each product cprjrq can be viewed as an indirect score given by competitor p

to competitor q via judge r. Thus the entry ĉpq is the maximal such score over

all judges. It is easy to see that the matrix Ĉ will be max-stochastic. The

max-spanning-tree eigenvector w associated with D(Ĉ) can be used to rank
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the competitors and Theorem 6.2.1 shows that w is a max eigenvector of ĈT .

Similar remarks apply to the matrix Ĵ = J ⊗ C in Rm×m
+ . In this case, the

max-spanning-tree eigenvector of D(Ĵ) can be used to rank the judges and

Theorem 6.2.1 shows that it is a max eigenvector of ĴT .

Example 6.4.2. Assume that we have three judges and four competitors.

The following matrices represent judges scores to competitors and competitors

scores to judges.

J=

C1 C2 C3 C4

J1 1 1/2 1/3 0

J2 1/2 1 0 1/5

J3 1 1/2 1/2 1/4

C=

J1 J2 J3

C1 1/6 1 1/4

C2 0 1 1/2

C3 1/3 2/3 1

C4 1/5 1 1/2

Ĉ =











1/2 1 1/8 1/5

1/2 1 1/4 1/5

1 2/3 1/2 1/4

1/2 1 1/4 1/5











For Ĉ, we have w =











1/2

1

1/4

1/5











with the ranking 2 > 1 > 3 > 4 for competitors.

Ĵ =








1/6 1 1/3

1/12 1 1/2

1/6 1 1/2








For Ĵ , we have w =








1/12

1

1/2








with the ranking 2 > 3 > 1 for judges.

6.5 Concluding Remarks

Our main goal in this chapter was to extend the so-called matrix tree the-

orem for Markov chains to the max algebra and investigate the relationship
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between the max-spanning-tree eigenvector and rows of the Kleene star of the

corresponding max-stochastic matrix. In this context,

• we defined the class of max-stochastic matrices over the max algebra;

• we presented a max version of the matrix tree theorem for max-stochastic

matrices;

• we discussed possible applications of this theorem to ranking problems

and showed that it is always possible to find a unique ranking scheme.
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CHAPTER 7
Conclusions and Future Work

In this final chapter, we summarise the results presented throughout the thesis and

suggest directions for future research related to the work described here.

7.1 Summary

Recently, there has been great interest in the correspondence between the max

algebra and non-negative linear algebra which was the motivation of the work

presented in this thesis. We can divide the presented work into two parts. In

the first part, we introduced theoretical results on the spectral and stability

properties of non-negative matrices in the max algebra. Our main concern

here was matrix polynomials and sets of matrices. In the second part, we dis-

cussed applications to ranking problems. Our primary interest here was in the

association of the max-algebraic spectral theory with constructing a ranking

scheme for the alternatives in the Analytic Hierarchy Process (AHP). We will

now review the work in the preceding chapters, highlighting the motivation

and main contributions accomplished in the thesis.

We started with a brief introduction to the class of non-negative matrices

and the max algebra in Chapter 1. We recalled several examples to motivate

the work carried out in this thesis. In particular, we focused on the AHP
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to emphasize the role of the Perron-Frobenius theory and the max-algebraic

spectral theory in applications to ranking problems.

In Chapter 2, we reviewed relevant definitions and preliminary results on which

our work in this thesis rests. We recalled the celebrated Perron-Frobenius the-

ory. We highlighted the relation of non-negative matrices with graph theory.

We introduced essential tools in the max algebra that played important roles

in proving the results developed in the subsequent chapters. Particularly, we

stated a max version of the Perron-Frobenius theory and discussed numerical

algorithms for the solution of the max eigenvalue problem.

In Chapter 3, we were motivated by the work of Psarrakos and Tsatsomeros

[PT04]. We extended their main results on the Perron-Frobenius theory for

matrix polynomials to matrix polynomials defined over the max algebra. We

derived convergence results for multi-step difference equations over the max

algebra analogous to those for the conventional algebra. We presented a num-

ber of results relating the largest max eigenvalue of a max matrix polynomial

P (λ). In particular, we showed that it can be characterised by using the

largest max eigenvalue of an n × n matrix. We emphasized the role of the

multigraph of the coefficient matrices of the polynomial in this analysis.

In Chapter 4, motivated by the work of Song, Gowda and Ravindran [SGR99],

we defined the class of Pmax-matrices and showed how some basic properties

of P -matrices in the conventional algebra extend to the max algebra. Further,

the relation between the Pmax-property, the Smax-property and the stability of

delayed difference equations over the max algebra was described. We extended

the Pmax-property of a matrix to sets of non-negative matrices in the spirit

of [SGR99]. We showed that the relation between P -matrix sets and the

S-property for Z-matrices in the conventional algebra extends to this new

setting. We highlighted the role of the max generalised spectral radius in

this extension. We explored the implications of the row-Pmax-property for

the stability of max-convex hulls, as well as delayed and undelayed difference

inclusions defined over the max algebra.

In Chapter 5, building on the work of Elsner and van den Driessche [EvdD04,

EvdD10], we considered a max-algebraic approach to the multi-criteria AHP

within the framework of multi-objective optimisation. [EvdD04, EvdD10]

characterise the max eigenvectors and subeigenvectors of a single SR-matrix
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as solving an optimisation problem with a single objective. We extended

this work to the multi-criteria AHP by directly considering several natural

extensions of this basic optimisation problem to the multiple objective case.

Specifically, we presented results on three types of optimal solutions: globally

optimal solutions; min-max optimal solutions; Pareto optimal solutions. In

each case, the optimal solution was used to construct a ranking scheme for the

alternatives in the process. We related the existence of globally optimal solu-

tions to the existence of common subeigenvectors and highlighted connections

between this question and commutativity. We established the connection be-

tween the max generalised spectral radius and min-max optimal solutions. We

proved the existence of Pareto optimal solutions and showed that it is possible

to simultaneously solve the Pareto and min-max optimisation problems.

Finally, in Chapter 6, we derived a max-algebraic version of the Markov Chain

Tree Theorem (the Frĕıdlin and Wentzell formula) for a max stochastic matrix

[FW84]. We observed that the maximal weights of rooted directed spanning

trees in its associated digraph is a left max eigenvector. We were concerned

with relating the max-spanning-tree eigenvector to the max-algebraic spectral

theory. In particular, we showed its connection with rows of the Kleene star

of the matrix. We discussed possible applications of our results to decision

making problems to derive a unique ranking scheme.

7.2 Directions for Future Research

In this final section, we discuss a number of questions that arise from the work

of this thesis.

One of the main results in Chapter 3 describes how the behaviour of the so-

lution of multi-step difference equations depends on the max powers of the

associated companion matrices (Theorem 3.3.2). In this result, we assumed

that the conditions in Theorem 2.2.10 hold in order to conclude convergence.

Recall that Theorem 2.2.10 and Theorem 2.2.11 define conditions for the con-

vergence of the max-algebraic powers of irreducible matrices in a finite num-

ber of steps and Corollary 2.2.12 describes an upper bound for the required

number of steps. The idea of applying these results to companion matrices

CP ∈ Rmn×mn
+ of type (3.11) gives rise to a number of interesting questions
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due to their special structure:

1. When is CC
P primitive?

2. When do the following convergence conditions defined in Theorem 2.2.11

hold?

(i) NC(CP ) = {1, 2, ..., mn}
(ii) CC

P is a direct sum of primitive matrices

3. Is there a better bound for the number of finite steps required for conver-

gence than (mn)2 − 1 in Corollary 2.2.12?

Another possible direction for future work is to investigate the potential for

extending the results of Chapter 3 to sets of matrix polynomials over the

max algebra. In particular, it would be interesting to investigate whether the

results of Section 3.4 could be extended to the generalized max spectral radius

studied in Section 4.1.4. Recall that the generalised spectral radius of a set

can be calculated by the largest max eigenvalue of an n×n matrix in the max

algebra (Proposition 4.4.3). In this direction, we ask the following questions:

1. What is µ(P̂ ) where P̂ = {P1(λ), P2(λ), ..., Pl(λ)}?

2. Can the relation defined in Proposition 4.4.3 for the max version of the

generalized spectral radius for sets of matrices be defined for the set of

max matrix polynomials?

3. Do similar relations between µ(P (λ)) and µ(S) in Section 3.4 hold for

µ(P̂ ) and µ({S1, S2, ..., Sl})?

In Section 5.1.3, we explained the max algebra approach of Elsner and van den

Driessche [EvdD04, EvdD10] for the single criterion AHP. In their approach,

a max eigenvector or a subeigenvector from the minimum error requirement

set CA of an SR-matrix A is used as a weight vector for the alternatives. In

contrast to the classical Eigenvalue Method (EM) for the AHP, this approach

does not in general give rise to a unique ranking vector (Proposition 5.1.2).

If x ∈ CA is not unique (up to a scalar multiple), we may get more than one

ranking scheme. Thus, we have the following obvious question:
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Given multiple vectors in CA of an SR-matrix A, which one should be

chosen as a weight vector for the alternatives?

Sergĕı Sergeev suggested applying the max-balancing scaling [SS90, SS91,

RSS92] mentioned in Section 2.2.4 as a means of ranking alternatives. The

max-balancing vector always exists and is unique for an irreducible matrix.

Furthermore, it strictly visualises the matrix so that it is in the minimum

error requirement set of A. Thus, it can be used as a weight vector for the

alternatives. This leads us to the following question:

Is there an interpretation of the max-balancing scaling in terms of pair-

wise comparisons in the AHP?

In Chapter 5, we suggested a novel approach for the multi-criteria AHP

based on combining the max algebra approach of Elsner and van den Driess-

che [EvdD04, EvdD10] and multi-objective optimisation. In Section 5.5, we

showed that Pareto optimal solutions play a central role in determining an

overall ranking scheme for the alternatives. These solutions in general will

not be unique (Example 5.5.2). In view of this, it is natural to ask the follo-

wing question:

Given a set of SR-matrices A1, A2, ..., Am, is it possible to characterise

the Pareto set for the max-algebraic errors eAi
: int(Rn

+) → R+(1 ≤ i ≤
m) and decide which vectors in it to choose as a weight vector for the

alternatives?

In Chapter 6, we were concerned with max-stochastic matrices and discussed

possible applications of these matrices in decision making problems. It would

be interesting to investigate the potential of these ideas to be applied in the

multi-criteria AHP and other ranking problems such as the Judges and Com-

petitors scenario discussed above.

In finishing, this thesis has hopefully demonstrated that while the max algebra

is now a well-developed research field with a rich body of results, there is no

shortage of challenging open questions in the area.
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