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Abstract

Parkinson’s disease is the second most common neurodegenerative disorder

with a signiVcant social cost. The disease that develops over years results in

signiVcant movement related problems for the aUected. The pathogenesis how-

ever is partially understood.

Computational approaches are signiVcant in the analysis of events that are

multi-factorial. Parkinson’s Disease results from a system failure that leads to

severe degeneration in the substantia nigra , a locus in the mid-brain. Tradi-

tional approaches tend to focus on isolated sub-components of the pathogenic

pathways. However, such an approach may be inadequate to describe the

pathogenesis.

Substantia nigra neurons function on an expensive energy budget, due to a high

level of arborisation and pacemaking activity. Spontaneous oscillations of these

neurons are an important feature of motor control. Pacemaking involves the

L-type calcium channel, and could impose long-term accumulation of calcium

within its organelles. Modelling of this activity is an important part of devel-

oping an understanding of the pathogenic process. We develop a mathematical

paradigm to describe this activity with a single compartment approach.

To develop the mathematical framework we initially identify the components

that contribute to the process and investigate an appropriate mathematical

representation for the respective components. In the next part, we bring to-

gether such representation to develop a model that can reproduce measured

data. Global optimisation strategies are adopted to tune important parameters.

The model explicitly describes the dynamics of the transmembrane potential

with changes in the levels of important cations. The model is veriVed for two

major observations in literature regarding its response in the presence of chan-

nel blockers. The model is analysed for parameter bifurcation and stability of

oscillations. Finally a framework is proposed to extend the model to include

aspects of calcium homeostasis.
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CHAPTER 1
Introduction

A story has no beginning or end; arbitrarily one chooses that moment of experience

from which to look back or from which to look ahead.

Graham Greene (The End of the AUair)

For many of us who lead a ‘normal’ life, our perspective on diseases are mostly

framed within the context of an infectious disease. However for people who

are chronically debilitated with a condition like Parkinson’s disease (PD), this

framework is less useful in portraying their condition. The disease is more like

a story which started randomly in their lives without any apparent cause.

Parkinson’s disease involves progressive degeneration of neurons in the central

nervous system. The diseased individuals are likely to have some or many of

their movement-related (motor) activities restricted. PD as a clinical syndrome

was Vrst described by James Parkinson in his 1817 essay [Parkinson, 1817] and

to date its etiology1 remains elusive. Clinically, the disease is characterized by

various motor and non-motor features that can have diUerent inWuences on the

person’s normal functions. However, instances of resting tremors, rigidity, aki-

nesia2 (or bradykinesia3) and postural instability are considered fundamental

in disease diagnosis. Additionally, Wexed postures and motor freezing are also

regarded as classic features of the disease.
1Etiology : The cause, set of causes, or manner of causation of a disease or condition
2Akinesia : Loss or impairment of the power of voluntary movement
3Bradykinesia : decreased bodily movement
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Chapter 1. Introduction

It is diXcult to assess the true prevalence of PD since it is often diagnosed at

an advanced stage. Further, there is no consistent method to survey across

the globe. Methods used range from medical records to door-to-door surveys.

Incidentally, door-to-door surveys reveal a higher prevalence of the disease

pointing to the fact that this condition often does not get recorded [Wirdefeldt

et al., 2011].

Parkinson’s disease is the second most common neurodegenerative condition

after Alzheimer’s disease and according to de Lau and Breteler [2006], an esti-

mated 1% of the population in industrialised countries above the age of 60 are

aUected by PD. In the rest of the world it appears to be less prevalent. However,

reasons suggested for such observed diUerences are varied, with population

in Africa having shorter life spans and methods of survey not being standard.

Some studies in diUerent countries have suggested the prevalence of PD is com-

parable to that in industrialised countries contradicting some of the previous

results showing low prevalence [Wirdefeldt et al., 2011]. This again questions

the methodologies adopted in the diUerent surveys.

The most prominent feature of PD that emerges from various surveys is that

age of the patient is a major factor for the disease, with a mean age of onset

around 60 years [Savica et al., 2012; Collier et al., 2011]. A small percent of

the aUected population (around 5%) can be classiVed as “early onset” cases.

For such cases, symptoms appear between the age of 20 and 50 years. There

have also been suggestions that males are more susceptible to PD than women.

However, recent studies reveal a diUerence in risk factors associated with PD

between men and women [Savica et al., 2012].

As with most brain diseases, the overall burden from PD is much more than

that suggested by mortality Vgures alone. As a progressive chronic condition,

the disabling eUects persist over years aUecting the lives and careers of the

diseased. Disorders of the nervous system are considered amongst the highest

contributors to global disease burden according to the estimates of the World

Health Organisation4 (WHO). The economic costs are correspondingly large,
4An index used by the WHO, to measure overall disease burden is the DALY (disability-

adjusted life year), expressed as the number of years of healthy life lost due to ill-health, dis-
ability or early death. According to this survey, neurological disorders contributes to the global
disease burden second only to psychological disorders and are prominent in high income coun-
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1.1. Context

not only with respect to the cost of treatment, but also as a loss of productivity

of all who are concerned. The nature of the disease brings emotional concerns

along with functional and Vnancial diXculties, upsetting the lives and hence

the productivity of patients, family and carers in various measures.

The extent of disability and deterioration varies among Parkinson’s patients

owing to the heterogeneous nature of disease progression. Some of the clas-

sical motor deVcits tend to appear later in certain cases making an early di-

agnosis diXcult. However, physicians to some extent use a number of rating

scales to evaluate motor impairment and disability in PD. A few diUerent rating

scales exist in the clinical community. The UniVed Parkinson’s disease Rating

scale (UPDRS) is among the most well received of them all due to its reliability

[Goetz et al., 2007]. UPDRS based studies strongly suggest that the course of

PD is non-linear and that the rate of deterioration is variable and more rapid

in the early phase of the disease [Jankovic and Kapadia, 2001].

1.1 Context

Parkinson’s disease has not been a major focus of medical research, however,

it is becoming increasingly signiVcant owing to the increased human life ex-

pectancy in general. Although less frequent than Alzheimer’s disease and De-

mentia with Lewy body (LB); these neurodegenerative diseases have equally

relevant social concerns. PD pathogenesis is a process that spans years and

the most noticeable symptoms appear after a large number of neurons degen-

erate. For this reason, preventive measures are limited and the only option for

patients are treatments for suppressing the disabling symptoms, rather than be-

ing remedial. For an eUective therapy as well as for early preventive measures

for susceptible individuals, it is thus necessary to have a deeper understanding

of the pathogenic mechanism.

Infectious diseases are fairly easy to understand and analyse, with Koch’s pos-

tulates guiding to establish a causal mechanism [Pelczar et al., 1993]. However,

disorders like degenerative diseases are often diXcult to comprehend and es-

tablishing their etiology is generally not a straightforward task. To some ex-

tries [Organization, 2004]
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1.2. Motivation

tent, genetic forms of the disease substantiate some of the molecular aspects of

the pathology.

Experimental models have made major contributions to the understanding of

some aspects of pathogenesis in PD. These models explore biochemical path-

ways important to the survival of neurons. The experiments are carried out in

cell lines challenged with distress (chemical or genetic), to reproduce features

of neurons that degenerate in the course of this disease [Blesa et al., 2012].

For example, animal studies in PD routinely use the neurotoxin 1-methyl 4-

phenyl 1,2,3,6-tetrahydropyridine (MPTP) that can cause permanent symptoms

of PD by destroying dopaminergic neurons in the substantia nigra pars com-

pacta (SNc) of the mouse brain. The reductionist approach has unravelled dif-

ferent facets of pathogenesis, but the overall understanding remains incom-

plete. It seems diXcult to develop a detailed mechanism of disease progression

from animal models since these models do not naturally exhibit the disease.

Also, the inherent multi-factorial nature of the disease limits such models as

experiments most often focus on a speciVc aspect of the disease.

Development of cellular models is an eUective method for investigating a com-

plex pathological process. Sometimes referred to as the “system’s approach”,

such models are established by means of identifying simple molecular events

pronounced in the course of events and making connections between inter-

acting components. By doing so, one has an overall view of the pathogenic

process, and can identify distinct points of intervention with appropriate anal-

ysis of the Wow and control that exist in the network.

1.2 Motivation

Being the second most prevalent neurodegenerative condition and with an in-

crease in prevalence with age, PD becomes a signiVcant burden to a society

that has increasing life-spans. The disease, which is quite dynamic, develops

in a very unmethodical way with varying time-scales and causative factors.

Various mechanisms have been proposed for the degeneration of SNc neurons

in PD, each with a diUerent potential cause. These mechanisms proposed in-

clude factors such as mitochondrial dysfunction [Beal, 2006], misappropria-
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tion of the protein α-synuclein [Goedert, 2001], dopamine toxicity [Lothar-

ius and Brundin, 2002], genetic problems [Farrer, 2006], malfunction of protein

homeostasis mechanisms [Matsuda and Tanaka, 2010], pathogens [Braak et al.,

2003b], inWammatory responses [McGeer and McGeer, 2004], tau pathology

[Wszolek et al., 2004], to environmental factors that impact the levels of re-

active species [Przedborski and Ischiropoulos, 2005], ferric ions [Dexter et al.,

2006] etc.

Although each of these postulated causes can contribute at various phases of

the disease, their contribution to the pathogenesis is unclear. Some of the the-

ories based on these postulates may be partial and and on their own, leave

many missing links. In some instances the factors considered may not be re-

ally causative. For such cases we may need to make correlations of such factors

to the disease perfectly clear. In any case, we need to have a fundamental idea

about the disease progression.

Motor symptoms in PD become noticeable only after approximately 60% of a

group of neurons are lost from the mid-brain [Bernheimer et al., 1973]. The

selective degeneration of these neurons, the dopaminergic neurons of the SNc,

corresponds to a 80% loss of dopamine in the striatum. The loss of these neu-

rons results in the alteration of activity in the “basal ganglia” circuitry, leading

to a reduced activity in the thalamus that facilitates the initiation of movement

[Shulman et al., 2011]. Degeneration of these neurons comprise the principal

pathology of PD. Pathological changes in these neurons are also thought to be

involved in conditions of schizophrenia and depression [Swerdlow and Koob,

1987; Carlsson and Carlsson, 1990]. Animal models employed to study parkin-

sonism employ a method of killing these neurons using neurotoxins such as

MPTP. The mechanism of SNc degradation is a primary focus of research into

PD progression.

Dopamine release from SNc neurons is triggered by an intrinsic pacemaking

activity that generates periodic spiking. The reliance of SNc neurons on the L-

type calcium channel for this spontaneous activity is well documented. The en-

gagement of these channels for the pacemaking activity is postulated to cause

metabolic stress at various levels [Sulzer and Schmitz, 2007; Surmeier, 2007].

Theories that are developed to describe the degeneration of dopaminergic neu-
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rons in PD now stress on a major role for calcium regulatory activities in the

pathogenic process. One important discovery on this front is the preferential

survival of SNc neurons that express the calcium binding protein “calbindin”,

at high levels [Yamada et al., 1990]. Also, decoupling the SNc neurons from the

use of calcium channels for pacemaking has been suggested as a preventive

measure for subjects prone to neurodegeneration [Ilijic et al., 2011]. A rise in

cytosolic calcium concentration is a key activation signal in virtually all animal

cells where it triggers a range of responses including neurotransmitter release,

muscle contraction, cell growth and proliferation. SNc neurons function by an

active interplay of calcium mobility in a high energy environment. However,

this high energy demand results in lower tolerance of extra stresses. If energy

demand rises due to factors involved in progressive neurodegeneration, SNc

neurons become susceptible to damage in PD [Wellstead and Cloutier, 2011].

Environmental and genetic factors that predispose SNc neurons to degener-

ation have been associated with the activities of the mitochondria [Schapira

et al., 1989; Ikebe et al., 1990, 1995; Bender et al., 2006; Beal, 2006; HenchcliUe

and Beal, 2008]. Mitochondrial calcium uptake and release controls a large

number of cellular events [Duchen et al., 2008]. The loss of mitochondrial cal-

cium buUering has been attributed as a mechanism underlying cell damage and

death [Kiselyov and Muallem, 2008]. Taken together, these observations indi-

cate that there is an intricate arrangement of activities with respect to calcium

handling and mitochondria. Since mitochondria are the powerhouse of the

neuron, mitochondrial impairment has a critical inWuence on various neuronal

functions by virtue of its energy metabolism. Also, many of the postulated

causes of PD are metabolically linked to calcium homeostasis machinery and

energy metabolism.

One of the primary aims of our research group is to facilitate the development

of a framework that can relate miscellaneous cellular events pronounced in PD

pathogenesis. The philosophy we adopt is that PD can be considered as an in-

stance of “system failure”. This assumption is supported by the lack of a unique

identiVed cause as well as by the heterogeneity in time-scales for disease devel-

opment. As discussed previously, traditional biological approaches are useful

at a level of analysing events at the sub-cellular level. To understand the in-

teractions between the various components at the cellular level, we require
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a diUerent approach that we would now refer to as the “system’s approach”.

This approach involves the use of mathematical and engineering analysis prin-

ciples developed for physical systems, in formulating methods to be applied for

the analysis of living systems [Wellstead and Cloutier, 2012]. Along with the

complexity of the problem, the diXculty to carry out in vivo experiments also

support an approach that is non-invasive and rapid.

In the development of a systems biology design for understanding PD, we have

a framework [Wellstead and Cloutier, 2011, 2012] based on an energetic view-

point . By this design, the system is modularized into diUerent components

based on their energy properties. The design essentially compartmentalizes

the whole system into units that may be individually analyzed. In this work,

we are concerned with point of entry of Ca2+ in the system. The characteristics

of SNc membrane enables these neurons to pacemake and as a result there is

a constant Wux of Ca2+ ions into the system. There exist various mechanisms

that restricts the levels of Ca2+ within the neurons. However, it would be ideal

to understand how this arrangement would fare under conditions of stress and

what would be the price that these neurons pay for this arrangement.

1.3 Thesis Structure

The purpose of this dissertation is to develop a mathematical scheme to anal-

yse the dynamics of membrane activities of SNc that give rise to the distinct

electrophysiology in SNc neurons. The model developed should address the

following aspects:

• Spontaneous oscillations stable against slow drift in intra-cellular ion

concentrations.

• Role of calcium channel in pacemaking and energy stress.

• Demonstrate known responses to standard perturbations.

• Include features that would enable it to be used as a module in the larger

energy systems framework for PD [Wellstead and Cloutier, 2012].

Pacemaking is an emergent phenomena mediated by the properties of the par-

ticipating membrane proteins and also acts as the point of entry for neuronal

calcium. Figure 1.1 gives a concise picture of components considered for the
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membrane model. Prior to bringing together various component of the model

K  ions
Na  ions
Ca  ions

+

+

2+

PMCA
Calcium
channels

NaCax

Sodium 
channels

NaK

Potassium
channels

SK-K 
channel

Calbindin

CaCalb

Calmodulin

CaCam

Figure 1.1: A cartoon representation of the scheme of events considered in the model

as a single model, it is necessary to under the mathematical interpretations of

the component functions. The thesis is organised such that there is a logical

progression of ideas that leads to the model.

This dissertation is outlined as follows: The next chapter reviews some of the

key facets of PD detailed in literature. In addition, it examines the state-of-

the-art with respect to electrophysiological models for neurons. In the third

chapter we introduce the fundamentals of modelling ion-transport across bio-

logical membranes and discuss mathematical formulations of ion-channel ac-

tivity. The fourth chapter compares various models of facilitated membrane

transport. It also discusses some of the key mechanisms by which Ca2+ ions

are handled inside a neuron. The Vfth chapter brings together various con-

cepts discussed in chapters two to four to develop a model for pacemaking in

SNc neurons. The model is initially developed for a case of spherical geometry
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and is later modiVed to a more realistic geometry. In each instance, the cost

of active transport is calculated with respect to adenosine triphosphate (ATP)

consumption. The model is later analysed for its dynamic properties. The Vnal

chapter discuss on various insights from the thesis and also proposes an exten-

sion to the model to incorporate various intracellular components relevant to

Ca2+ handling within a neuron.

1.4 List of contributions

Given the need for a system to understand the complex pathophysiology in PD,

mathematical models intended to describe the phenomena needs to elucidate

them at a level greater than what can be achieved by current experiments. The

results presented in this thesis are currently reported in peer-reviewed journals

and attempt to bring together modeling SNc electrophysiology and modeling

at the level of energetic requirements of these neurons.

Mathematical models of ion-channels have remained fundamental to neuro-

physiology, yet a model that is universally accepted has remained elusive. This

has motivated us to study a model for voltage-gated ion channels and as pre-

liminary step, we have developed a framework to describe the steady state

conductance in chapter 3, section 3.3.3. This has been submitted to Journal of

Mathematical Biosciences as,

Febe Francis, Míriam R. García, Oliver Mason and Richard H. Middleton, A

Mathematical Model for Voltage Gated Ion-channel Stationary Conductance

A model for pacemaking in SNc neuron was initially developed for a single

compartment spherical geometry and is described in section 5.4. This work

was published as a book chapter,

Febe Francis, Míriam R. García, and Richard H. Middleton. Energetics of

ion transport in dopaminergic substantia nigra neurons. In P. Wellstead and

M. Cloutier, editors, Systems Biology of Parkinson’s Disease, pages 81-109.

Springer New York, 2012

The model is also submitted to the Physiome model repository,

10



1.4. List of contributions

A model for pacemaking in substantia nigra neurons (A simple model based

on a spherical geometry), Francis et al. 2012, http://models.cellml.org/

e/c5/francis_garcia_middleton_2012_spherical.cellml/view

The model is later reVned for a more realistic geometry of the neuron and is

discussed in section 5.5. The results of this section is reported in an article

currently under review,

Febe Francis, Míriam R. García, and Richard H. Middleton. A single Com-

partment model of pacemaking in disassociated Substantia nigra neurons.

Stability and energy analysis, Under review, Journal of Computational Neu-

roscience, 2013
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CHAPTER 2
Prior Art

In this chapter we discuss observations in literature that testify the need for a sys-

tem’ approach in descring the pathogenic process in Parkinson’s disease. We focus

on the molecular pathways implied in the degeneration of substantia nigra neurons

and their crosstalk with calcium homeostasis.

Parkinson’s disease is not a rare disease. Even though it is the second most

prevalent neurodegenerative disease in the European Union (EU) with an as-

sociated high social cost, the lack of public attention it receives is evident in

the investments made towards research initiatives to understand and counter

the condition. For example, a disease like cancer, which is less prevalent in the

EU, receives many times the investment that is directed towards PD research

[Wellstead and Cloutier, 2012]. One reason for this disinterest could be the

general disregard for geriatric conditions in society. However, this perspective

is gradually changing with longer lifespans achieved with modern healthcare

systems.

The disability associated with the disease of the motor systems has been known

since ancient times. One of the Vrst report on this ailment is in the “Charaka

Samhita” (Compendium of Charaka), an early encyclopaedia on Ayurveda, the

Indian system of medicine. References to the symptom of the disease can also

be found in the bible, some ancient Egyptian texts as well as in the writings of

the Greek physician Galen who lived around the second century AD [García,

2004]. However, it was not until 1817 that a detailed medical description of the
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Chapter 2. Prior Art

disease was published [Parkinson, 1817]. The disease was later given the name

of the author of this essay, James Parkinson, by the French neurologist Jean

Martin Charcot who also made immense contributions to the understanding of

PD. An account on the diUerent milestones in the history of PD is provided in

table 2.1.

PD is characterised by the loss of neurons and by the presence of LBs in diUer-

ent parts of the nervous system. SigniVcant sites include the peripheral and en-

teric systems, olfactory bulb, hypothalamus, dorsal nucleus of the vagus, locus

coeruleus and mid-brain dopaminergic neurons of the substantia nigra. Clinical

analysis on post-mortem brain samples of PD patients indicates extensive dam-

age of the mid-brain dopaminergic neurons (around 80 % cell loss) compared

to other non-dopaminergic neurons (around 30-50 %) with most neuronal loss

happening during the pre-clinical phase of the disease [Gonzalez-Hernandez

et al., 2010]. Even among the diUerent dopaminergic neurons of the mid-brain,

substantia nigra shows higher vulnerability compared to other neurons in the

same region. For instance, neurons of the ventral tegmental area (VTA) are

relatively spared [Surmeier, 2007].

The selective degeneration of dopaminergic neurons of the substantia nigra is

the hallmark of PD. The exceptionally high vulnerability of these neurons to

degradation is consistent with both idiopathic1 and genetic form of the disease

[Sulzer, 2007]. To understand the mechanism of neuronal death in PD, it is

essential to consider how these neurons function and how they interact with

their environment.

Basic research to understand the pathophysiology in these neurons has yet to

point out a single cause for this condition. There are many diUerent factors

and events thought to contribute to the pathogenesis. These include a range of

factors within the following broad categories:

1. defects in common neuronal functions of metabolism and maintenance

[McNaught et al., 2004; HenchcliUe and Beal, 2008; Abeliovich, 2010; Mat-

suda and Tanaka, 2010]

2. compounding extra neuronal factors such as inWammatory responses
1Idiopathic : A term used in medicine to indicate a disease or condition arising sponta-

neously or from an unknown cause
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2.1. Neurons of the substantia nigra

[McGeer and McGeer, 2004; Beal, 2006; Whitton, 2009]

3. genetic factors [Polymeropoulos et al., 1997; Cookson, 2009; Hardy et al.,

2006]

4. environmental factors [Priyadarshi et al., 2001]

As of now, Parkinsonian impairment is understood to be of heterogeneous ori-

gin, fostered by diUerent pathogenic mechanisms, converging to a similar phe-

notype. This chapter will review the current understanding of various factors

that contribute to the degeneration of substantia nigra neurons and hence to

the progression of the disease.

2.1 Neurons of the substantia nigra

The substantia nigra is positioned in the mesencephelon (mid-brain) region of

the brain and forms a part of the Basal Ganglia circuitry. The Basal Ganglia

circuitry is important in functions such as coordination of movements, proce-

dural learning and cognition. The neurons of the substantia nigra are dopamin-

ergic, that is, they synthesise and release the neurotransmitter dopamine. Both

synaptic and dendritic release of dopamine are reported for these neurons2

[Bustos et al., 2004].

The mid-brain is also home to certain other groups of dopaminergic neurons

like the neurons of the VTA and retrorubral area and many of these neurons

remain intact until the Vnal stages of PD. Although their distinction is not

typically anatomical, the diUerences between these groups lie in their biophys-

ical properties. For example, the dopaminergic neurons of these two regions

show noticeable diUerences in the action potential waveform and duration

[Klink et al., 2001] with respect to the dopaminergic substantia nigra neurons.

While substantia nigra neurons exhibit strong activation with hyperpolariza-

tion and slow potential oscillations in the sub-threshold range, these are less

pronounced for the neurons in the VTA. Substantia nigra neurons also show

variations in the levels of some of the expressed proteins [Greene et al., 2005;

Greene, 2006].
2Most neurons release neurotransmitters from their axons (synaptic release) and although

unusual, select few neurons can release from their dendrites. Substantia nigra can release
dopamine from axons and dendrites
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2.1. Neurons of the substantia nigra

Cyto-architecture of substantia nigra The substantia nigra is divided into

three diUerent parts [Di Giovanni et al., 2009] with the substantia nigra pars

compacta (SNc) forming a horizontal sheet of densely packed neurons on the

dorsal side. The neurons in this region are medium to large. The substantia

nigra pars reticulata (SNr) is a division that is more diUuse and sparse with small

and medium neurons, located between the SNc and cerebral peduncles. The

substantia nigra pars lateralis (SNl) is a small cluster of neurons that extends

along the lateral border of SNc and SNr. The neurons of SNr are medium in

size. In this thesis we are concerned with the dopaminergic neurons of SNc

that are the most aUected in PD.

2.1.1 Phenotype and physiology

The substantia nigra forms the main regulatory nucleus of the basal ganglia

network and mainly projects into the dorsal striatum. This nucleus was ini-

tially classiVed in to dorsal and ventral tier groups [Fallon and Moore, 1978;

Fallon et al., 1978] with each group projecting to diUerent areas of the striatum.

According to Damier et al. [1999a], substantia nigra was classiVed according to

the density of dopaminergic neurons. The dorsally located SNc contains dense

clusters of dopaminergic cells (nigrosomes) and is surrounded by a nigral ma-

trix that is a diUuse zone poor in dopaminergic neurons. The ventrally located

SNl
SNr
SNc

Figure 2.1: A sketch of brain cross-section showing diUerent parts of substantia nigra
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2.1. Neurons of the substantia nigra

SNr neurons are mostly GABA-ergic3 and forms one of the two primary output

nuclei of the basal ganglia system projecting to the motor thalamus (see Vgure

2.2).

Cortex 

Putamen 
D2                  D1 

SNc 

GPe 

STN 

Gpi/SNr 

Thalamus 

Brain stem 

Cortex 

Putamen 
D2                  D1 

SNc 

GPe 

STN 

Gpi/SNr 

Thalamus 

Brain stem 

(a) Normal (b) Parkinsonian 

Glutamatergic 
GABA-ergic 
Dopaminergic 

Excitatory 

Inhibitory 

Figure 2.2: A connectivity diagram of the thalamocortical circuit that houses the basal gan-
glia circuitary. (Abbreviations: GPe: globus pallidus external; GPi: globus pallidus internal;
STN: subthalamic nucleus; SNc: substantia nigra pars compacta; SNr: substantia nigra pars
reticulata). With a reduction in the supply of dopamine from SNc of the Parkinsonian brain
(broken red lines), there is a corresponding change in the strength of output from the diUerent
nuclei. Corresponding changes are reWected in the thickness of connecting lines of the circuit.

In this section we review some aspects of morphology and physiology of neu-

rons of the substantia nigra. As cellular phenotype and physiology remains a

function of expressed proteins, a dynamic environment can have tremendous

inWuence on these characteristics. Ageing is one of the most prominent fac-
3GABA : γ-aminobutyric acid
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2.1. Neurons of the substantia nigra

tor aUecting cellular physiology. Since PD is sometimes considered as a phe-

nomenon of accelerated ageing, it is crucial to have an overview of associated

changes in the disease phenotype.

Aspects of a regular healthy substantia nigra neuron

There are approximately 12,000 dopaminergic neurons in an adult rat’s SNc

[Nair-Roberts et al., 2008] with axons from a single neuron forming between

100,000 to 245,000 synapses4 [Bolam and Pissadaki, 2012]. Morphological ex-

amination of rat SNc reveal neurons with 12-25 micron soma that are either

fusiform or polygonal. The soma emits three to Vve major dendrites (see Vgure

5.2 a, b) that rapidly taper to approximately 1 µm [Tepper et al., 1987]. The

dendrites that project dorsally are often shorter than the ones that project ven-

trally. The axon emerges from one of the major dendrites approximately 30 µm

from the soma [Grace and Bunney, 1983b; Matsuda et al., 2009]. Visualization

of SNc neurons using a combination of molecular techniques by Matsuda et al.

[2009] revealed a highly arborised axon. The axon projects into the fore-brain

providing massive unmyelinated innervations that supplies dopamine.

The activity of dopaminergic substantia nigra neurons is essential for voluntary

movement control. An intrinsic pacemaker in these neurons generates spon-

taneous5 activity, which triggers dopamine release. This low-frequency tonic6

Vring is the deVning feature of substantia nigra electrophysiology and ensures a

sustained background supply of dopamine to the brain areas these neurons are

connected to. Even when isolated from the group, individual neurons exhibit

this behaviour. Interestingly, the spiking is more regular in isolation implying

that the spiking is modiVed by the cross-talk between diUerent neurons in their
4Axons arborize or branch into numerous axon terminals and these axon terminals are

connected to a neighbouring neuron by a structure called synapse, that permits the transmis-
sion of an electrical or chemical signal. Such an arrangement allows for the simultaneous
transmission of messages to a large number of target neurons within a single region of the
brain

5Spontaneous oscillation : Periodically varying state of a dynamic system in the absence
of an external force, attained irrespective of initial conditions. Spontaneous oscillations only
exist in non-linear dynamic systems and persist with Vnite amplitude.

6Tonic activity : Spiking of neurons at regular intervals that are sustained for long periods
of time, to ensure a suXcient release of the neurotransmitter
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2.1. Neurons of the substantia nigra

natural environment. This notion is conVrmed by the phenomenon of burst7

Vring, observed in response to an external stimulus. In brain-slice prepara-

tions, a molecule like N-Methyl-D-aspartate (NMDA) may be used to induce

bursting. NMDA receptors are glutamate receptors at post-synaptic cites that

opens an ion-channel when bound by an agonist. Bursting is observed in vivo,

in response to reward-related stimuli, suggesting a role in reinforced learning

and memory [Graybiel, 2005].

Diseased neurons

Even though the degeneration of dopaminergic SNc neurons remains the hall-

mark of PD, not all neurons in SNc show similar vulnerability to the disease.

There is a speciVc pattern of progression of the disease starting from the ven-

trolateral and caudal regions spreading into the dorsomedial and rostral re-

gions of SNc [Damier et al., 1999b; Braak et al., 2003a]. A quantitative analy-

sis of cell loss based on calbindin and tyrosine hydroxylase immunostaining

[Damier et al., 1999b] revealed a mean loss of 64% in dopaminergic neurons of

the Parkinsonian brain with more loss in the caudal side compared to the ros-

tral side. The average loss was maximum in SNc with the nigrosomes record-

ing signiVcant loss (95%) compared to the matrix (80%). Also, the extent of

cell loss in SNc appeared to be closely related to disease duration. The pattern

of cell loss so observed suggests a diUerential vulnerability of neurons in PD,

also the spatio-temporal pattern suggests a deVnite progressive nature of the

pathogenic process. Recent advances in imaging technology have been instru-

mental in both disease diagnosis, and understanding the changes in functional

aspects of SNc neurons in PD [Brooks, 2010]. For example, PET8 and SPECT9

measurements show dopamine deVciency in both patients as well as subjects

who are at risk of the disease.

A distinct feature of the pathogenic process that has appeared in a morphome-

tric study of SNc is related to the volume of neurons of this area [Rudow et al.,

2008]. In addition to the signiVcant loss of pigmented neurons (28%), the surviv-
7Bursting or phasic activity : In this mode of Vring, periods of rapid spiking are followed by

silent periods.
8PET : Positron emission tomography
9SPECT : Single-photon emission computed tomography
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2.1. Neurons of the substantia nigra

ing neurons exhibited signiVcant hypertrophy10 in older controls compared to

young controls. In the case of subjects with PD, the pigmented neurons rather

exhibited atrophy11 compared to all control groups. This observation suggested

hypertrophy in SNc to be a compensatory mechanism whereby normal motor

function is maintained despite the loss of neurons in normal ageing. However

in PD, the loss of neurons is substantial and hypertrophy may not be suXcient

to maintain normal motor activity. Such a condition would put the remaining

cells of the SNc under immense stress prompting their degeneration.

One of the distinct features observable in neurons with PD, LBs are discussed

in the following section.

2.1.2 Lewy Body

The typical histo-pathological hallmark of PD is the abnormal accumulation of

insoluble Vbrous material found in the neuronal soma. They are called Lewy

bodies, after Friedrich Lewy who Vrst described these entities in PD brains

[Lewy, 1912; Galloway et al., 1992]. Although a characteristic feature of the dis-

ease, these intraneuronal intracytoplasmic inclusions are not pathognomonic12.

LBs are formed by the aggregation of various proteins, with α-synuclein as a

prominent component of the spherical core [Spillantini et al., 1997]. LBs are oc-

casionally found together with thread-like Lewy neurites in the neuronal soma

and neuroaxonal spheroids [Shults, 2006].

LBs as a pathological marker are generally observed in familial forms of PD that

involve genes like α-synuclein [Polymeropoulos et al., 1997], LRRK2 [Zimprich

et al., 2004] etc. Moreover, some PD animal models generated with the help of

mitochondrial or ubiquitin proteasome system (UPS) inhibitors have demon-

strated the development of LB-like inclusions [McNaught et al., 2004; Shults,

2006]. However, it must be noted that some reported cases of PD do not exhibit

LBs [Takahashi et al., 1994] and this calls into question whether LBs are indeed

causal or consequential in the pathogenic process. LBs have also been reported
10Hypertrophy : An increase in size of cells
11Atrophy : Wasting away or degeneration of cells
12Pathognomonic : SpeciVcally characteristic or indicative of a particular disease or condi-

tion
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2.1. Neurons of the substantia nigra

Functional aspect LB Components
Cellular structure
related

α-synuclein, lipids, MAP-2, MAP-5, neuroVlaments, Chro-
mogranin, Sphingomyelin, Synaptic vesicle-speciVc protein,
Synphilin-1, Synaptophysin, Tau-protein, tubulin,

Calcium binding re-
lated

Cam kinase II, Calbindin D28K , αβ− Crystallin

Cellular recycling
related

Ubiquitin, Clusterin, heat-shock proteins, Torsin A, Ubiqui-
tin C-terminal hydroxylase

Mitochondria
related

Mitochondria, Cytochrome c, DJ-1, DorVn, NEDD8, SOD1,
SOD2

Signalling related cdk5, Chondroitin sulfate, 14-3-3 protein, IκBα, NF-κB, Tyro-
sine hydroxylase

Table 2.2: Molecules and cellular components identiVed in Lewy bodies [Shults,
2006]

in a number of other neurological disorders such as LB dementia, Alzhimer’s

disease etc.. [Schmidt et al., 1996].

Microscopy with chemical or immunochemical staining techniques have been

employed to understand the structure and composition of LBs [Shults, 2006].

They are typically 5 - 25 µm in diameter and appear to have a dense core of

Vlamentous and granular material, surrounded by a Vbrillar halo. They are a

heterogeneous assembly of various cellular components with α-synuclein and

ubiquitin being major components. Table 2.2 gives a list of diUerent cellular

components that constitute LBs, determined from diUerent studies reviewed in

Shults [2006].

Advances made in PD research using recent technological developments in

molecular biology have also complimented the understanding of LBs. For ex-

ample, stem cell technology has been employed in treating PD [Kim et al.,

2002] and subsequent observations throw light into various facets of disease

development. The routine was successful in developing grafts of functional

dopaminergic neurons. Despite being healthy, these neurons showed a ten-

dency to form LB. This suggests that it is the environment of the Parkinsonian

brain that predisposes neurons for LB formation [Kordower et al., 2008; Li et al.,
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2.2. Neurodegeneration

2008].

Of particular interest with respect to the focus of this project is the associa-

tion of calcium related pathways in the pathogenesis of PD. Since a few Ca2+-

binding proteins are detected on LBs by immunological studies (Table 2.2), we

examine how some of these proteins may be associated with LBs.

Calbindin is one important calcium-binding protein whose presence in LBs is

conVrmed by immunoreactivity. Their presence in the LB core suggests an

involvement in the early stages of LB formation. Calbindin is found to have

a synergistic association with α-synuclein which would be discussed later and

the association has a probable role in the pathology. Statistical studies also

suggest CALB1, the gene associated with calbindin, to be a susceptibility gene

for PD [Mizuta et al., 2008]. The susceptibility appears more to do with the

expression levels of calbindin and its interaction with α-synuclein than any

mutations in the gene.

One more relevant calcium-controlled protein observed in LBs are the Ca2+-

calmodulin dependent protein kinase II (CaM kinase II). CaM kinase II im-

munoreactivity was concentrated in the peripheral halos of LBs [Iwatsubo

et al., 1991; Wakabayashi et al., 2007], suggesting a late role in the formation

of LBs. Although their signiVcance in LBs is still to be elucidated, they prob-

ably have a role in phoshorylating cytoskeletal proteins that accumulate into

the LB, rendering them neutral.

2.2 Neurodegeneration

A facet common to neurodegenerative diseases is that there is a progressive

loss of speciVc groups of neurons with disease progression. In most cases,

symptoms appear to vary with the duration of the disease. During early stages

of the disease, symptoms are diXcult to diagnose and are often ignored or

misinterpreted. Diagnosis usually occurs during the later stages of the disease,

with the advent of noticeable symptoms, and by then earlier symptoms would

have become inconclusive. This type of pathogenesis often leaves few clues to

the underlying mechanisms.
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2.2. Neurodegeneration

The evolution of PD into a noticeable disease need not necessarily be a con-

tinuous process right from its inception. Being multi-factorial, PD is plausibly

staged, requiring additional causative factors to come into eUect for advancing

to the next level. For instance, cases of incidental Lewy body disease (ILBD)

are found in higher frequency among people older than 60 years compared to

PD. Such cases of ILBD are in all probability pathologies that may not have

advanced to the full clinical form of PD [Klos et al., 2006; Parkkinen et al., 2008;

Savica et al., 2010]. A proper understanding of the pathogenesis would make

way for an eUective intervention of disease progression. This necessitates a

framework to be developed that emphasises research that relates the diUerent

paths of the process.

A slow progressive loss of dopaminergic neurons is known to exist in neuro-

logically normal population [Chu and Kordower, 2007]. However in PD, the

damage is extensive and a substantial number of neurons are lost prior to de-

tectable motor symptoms. For this reason, PD is sometimes seen as an acceler-

ated ageing process [Thal et al., 2004; Chan et al., 2009; Cookson, 2009]. It was

long assumed that the appearance of systemic failure in PD starts with degen-

eration of neurons in some brain regions including the mid-brain dopaminer-

gic neurons. This view was ousted from common understanding when Braak

brought forth his framework of staging the disease development

The development of PD into a clinical diagnosable condition is a process that

spans years. It is the result of a damaging combination of various traits that

pre-dispose an individual to PD. These traits, that vary to a great extent among

individuals, start manifesting themselves in varying degrees during the pre-

physiological phase of the pathogenic process. Over time they develop into

marked physiological abnormalities giving rise to the pre-clinical phase. Such

abnormalities may sometimes be rectiVed by life’s adaptive mechanisms; some-

times persist unnoticed and in certain circumstances aggravate and join hands

with other contributing traits to proceed into the pre-motor phase of the dis-

ease. The pre-motor phase is one of the longest in PD pathogenesis. As noted

earlier, often, disease phenotypes that crop up during the pre-motor phase are

ignored or go unnoticed. By the pre-diagnostic phase of the disease most of

the associated motor symptoms are present, but not suXcient for a complete

diagnosis. By the time motor symptoms are diagnosable PD is fully developed.
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2.2. Neurodegeneration

The Pre-motor phase of PD pathogenesis The pre-motor phase of PD is dis-

tinguished by the appearance of certain physiological anomalies that can be

classiVed as ‘non-motor’ features of the disease. Clinically, the pre-motor phase

is identiVed when LBs are observed in the autonomic nervous system [Probst

et al., 2008; Braak and Del Tredici, 2008]. However, the presence of LBs need

not be a prologue for PD pathogenesis, as the case is also observed as a part

of normal ageing as well as in Incidental Lewy body disease, in which there

is an absence of clinical Parkinsonism. In addition, some components of the

peripheral nervous system (for example, Stellate ganglia, Cardiac sympathetic

neurons, Auerbach’s plexus and Adrenal medulla) exhibit LB formation during

this pre-motor phase.

During this phase some symptoms do appear that are often disregarded as gen-

eral autonomic dysfunction (Dysautonomia) often related to ageing. The symp-

toms may include problems with motility in the gastro-intestinal tract, urinary

motility, erectile dysfunction and cardiac denervation. Among these, cardiac

denervation is a signiVcant symptom as around 40% of Parkinson patients are

associated with the manifestation of this condition - orthostatic hypotension13.

The denervation may be identiVed by MIBG (meta-iodobenzylguanidine) scans.

Olfactory deVcits are an important symptom of PD that crops up during the

pre-motor phase. However their low speciVcity, and being a common condition

in general population, olfactory problems do not particularly raise any alarm

for PD. Similar observations are also made with respect to other observed

symptoms common to the pre-motor phase including anxiety, depression and

sleep disorders.

Along with a deVnite pattern observed with respect to disease progression, ob-

servations show that there is a corresponding pattern with respect to neuronal

loss in PD and this is discussed in the following section.
13Orthostatic hypotension : is a form of hypotension in which a person’s blood pressure

suddenly falls when standing up or stretching
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2.2. Neurodegeneration

2.2.1 Patterns of cell loss

Neurodegeneration in the SNc is heterogeneous with maximum damage in the

ventro-lateral part. The dorsal regions of SNc is only partly damaged. The

technique of calbindin D28K immuno-staining has yielded an understanding

of the regional speciVcity of neuronal damage in PD [Damier et al., 1999a,b].

The technique is based on the immunoreactivity of neurons against calbindin

D28K , that stains the calbindin rich neuropils and against tyrosine hydroxylase,

that stains neurons producing dopamine. By this method, the SNc neuronal

cluster is compartmentalised into a nigral matrix and nigrosomes (see 2.1.1).

60% of the neurons were distributed sparsely across the matrix that exhibited

intense calbindin staining. The remaining neurons were densely packed into

the nigrosomes embedded within the matrix. These Vve calbindin poor pockets

are independent of the distribution of dopaminergic neurons. Maximum loss

of dopaminergic neurons is observed in the nigrosomes (up to 98%) that are

located in the caudal and mediolateral part of SNc [Damier et al., 1999b]. The

loss appears to progress in the medial and rostral direction.

The seminal work of Braak and colleagues [Braak et al., 2003a] led to an un-

derstanding that PD begins as a synucleopathy outside the mid-brain in neu-

rons that are non-dopaminergic. This work suggests that α-synuclein aggrega-

tion starts in the brain either in the brain-stem or the olfactory bulb and then

spreads rostrally towards the mid-brain aUecting the substantia nigra at a later

stage of the disease. The disease, at a very late stage, progresses to other areas

of the mid-brain, basal fore-brain, and Vnally reaches regions of the neocortex.

The pathology is now understood to start much earlier with neuronal inclu-

sion being visible in neurons of the enteric nervous system and progressing in

a manner of anatomically interconnected regions [Braak and Del Tredici, 2008].

The theory of staging as proposed by Braak is still debated, based on various

observations on post-mortem samples that lack correlations to the proposed

concept [Burke et al., 2008]. However, there is a growing community that be-

lieves in a deVnite staging strategy that would help in early diagnosis of the

condition [Probst et al., 2008].
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2.3. Cellular Mechanisms leading to SNc neurodegeneration

2.3 Cellular Mechanisms leading to SNc

neurodegeneration

Structural and functional aspects of SNc implied in PD pathogenesis The

primary function of the substantia nigra neurons seems to be the constant sup-

ply of dopamine to the striatum. This supply of background dopamine is im-

portant for normal functioning of motor activities and its absence leads to the

visible symptoms of PD. Moreover, restoration of this background level of

dopamine often restores normal motor function.

To start with, we analyse possible reasons why these neurons are speciVcally

aUected in PD. From the structural perspective, neurons of the substantia nigra

are one of the most arborised of all neurons [Matsuda et al., 2009]. The arbori-

sation allows them to distribute dopamine over a wide area in the mid-brain.

This arrangement apparently has an associated metabolic demand and the cel-

lular machinery is therefore under constant metabolic strain. To compound

this metabolic strain, the activity of these neurons is continuous, producing

spikes at a frequency of 2-7 Hz.

There are other dopaminergic neurons in the mid-brain that are compara-

tively spared in PD [Damier et al., 1999b]. The observation that dopaminer-

gic neurons of the VTA, that lies close to SNc, are comparatively spared in

PD [Kish et al., 1988] has led to experiments investigating the molecular dif-

ferences between these neurons. These neurons share similar physiological

function, namely, dopamine production. However, they are functionally diUer-

ent, as they target separate regions of the brain. SNc neurons project to the

striatum (nigrostriatal pathway) and VTA neurons project to cortex and fore-

brain. Experiments by Chan et al. [2007] diUerentiate the modus operandi of

pacemaking in these two types of neurons. The spontaneous activity of SNc

neurons is driven by Ca2+ currents originating in the somatodendritic L-type

channels and to some extent by the Na+currents from the hyper-polarization

activated cyclic-nucleotide gated channel (HCN) channels; together with Ca2+

activated SK-K+channels.

Chan’s study also reviews developmental aspects of the pacemaking activity in

mice. In newborn mice, the pacemaking is driven by Na+ions in conjunction
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2.3. Cellular Mechanisms leading to SNc neurodegeneration

with HCN channels. These channels are replaced by the L-type Ca2+ channel

once the membrane potential becomes more negative with an increase in ex-

pression of Cav 1.3 α-subunit. Knock-out mice that do not express Cav 1.3 α

continued pacemaking driven by the Na+/HCN current all through their life.

VTA neurons, on the other hand, exhibit pacemaking driven by the HCN chan-

nels.

The chemical agent used in Chan’s experiment are a class of drugs given to

patients with hypertension, called dihydropyridines (DHP). DHP function by

binding to the Cav1.2 α-subunits of the cardiac calcium channels and reduce

their activity. They are also found to be eUective in suppressing L-type Ca2+

channels with the Cav1.3 α-subunit found in neurons of the mid-brain. This

concept was successfully employed in Chan’s experiment to halt pacemaking

in mice SNc. Incidentally, they observed the return of pacemaking activity

after a period of time, however the restoration of pacemaking was driven by

Na+/HCN currents.

It was also noted on an epidemiological basis that patients taking DHPs as a

drug for hypertension had lower than usual incidence of PD [Becker et al., 2008;

Ritz et al., 2010; Ilijic et al., 2011]. These observations led to an interpretation

that high cytosolic Ca2+ levels contribute to PD pathology [Surmeier, 2007].

High levels of cytosolic calcium are known to induce oxidative stress and exci-

totoxicity in neurons, a plausible trigger for the pathogenic process. Moreover,

the VTA neurons, and a few SNc neurons that are spared in PD and in animal

models of PD using MPTP, are found to express higher levels of calbindin, a

protein that buUers cytosolic Ca2+ [Sulzer and Schmitz, 2007]. However, there

are studies that Vnd no diUerence between the neurotoxic eUect of MPTP in

mid-brain dopaminergic neurons of a calbindin-deVcient mice and their wild

type variants [Airaksinen et al., 2006]. This result does not necessarily under-

mine the role of calcium in PD pathogenesis since this could also be explained

as MPTP-toxicity in neurons having a distinct mechanism, with similar pheno-

type.

For a cellular system that is very active, oxidative stress is particularly common

due to insuXcient scavenging of reactive oxygen species (ROS) generated by

an array of biochemical reactions. These species are habitually removed from
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the cells by a system of anti-oxidants. However, the eXciency of this process

depreciates with age [Mecocci et al., 2004]. In the case of nigral dopaminergic

neurons, their involvement with dopamine and associated metabolites that are

oxidative creates an additional burden in an environment that is increasingly

oxidative [Lotharius and Brundin, 2002]. An increase in mtDNA oxidation is

thought to decrease the eXciency of the electron transport chain (ETC) that

provides the cell with energy. This can lead to a positive feedback loop with

the ineXcient ETC producing more ROS. Additionally, a corresponding reduc-

tion in energy production would prove detrimental to an already stressed SNc

neuron.

The role of oxidative stress in the neuronal loss associated with PD is under-

stood from the change in levels of molecular markers for oxidative stress. For

instance, by products of lipid peroxidation, protein and DNA oxidation, and

levels of iron, which are all used as markers for the presence of oxidation are

found to be elevated in substantia nigra of the PD brain [Lotharius and Brundin,

2002]. Also, the neurotoxin 6-hydroxydopamine (6-OHDA) which is used to

generate animal models of PD is understood to create conditions of oxidative

stress and mimic early stages of the disease [Sauer and Oertel, 1994].

In addition to the energy and oxidative stresses, there are a number of factors

playing important role in SNc neurons that are signiVcant amongst the complex

web of events leading to its pathological state. There are biomolecules found

in the nigral cytosol that contribute to the stressful environment. There are

elements in the nigral cellular machinery that impair the normal functioning of

its mitochondrial system, protein handling machinery and also some features

that become signiVcant with age. Further, there are extra-neuronal factors like

inWammatory pathways that contribute to this damaging process. These traits

are discussed in the following sections.
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2.3.1 Biomolecules from the nigral cytosol implicated in

pathogenesis

α-synuclein

Neurodegenerative diseases are often characterised by the formation of protein

aggregates in the neurons14. Neuritic plaques are rare in PD. However, forma-

tion of visible protein aggregates are mostly observed. The role of such ag-

gregates in cognitive decline is as yet unclear, however the role of α-synuclein

as the chief component of such aggregates [Spillantini et al., 1997] has fuelled

studies of this protein.

α-synuclein is a soluble protein, characterised by a lipid-binding motif. These

natively unfolded proteins are abundant in neural tissues, making up to 0.1 -

0.2 % of total proteins [Probst et al., 2008]. Although its function is yet to be

identiVed, it is assumed to have a role in membrane associated processes. This

assumption is motivated by its lipophilic nature and abundance in the neu-

ropils, in close proximity to pre-synaptic terminals and synaptic vesicles. On

the other hand, α-synuclein appears not to have an essential role in neuro-

transmission because α-synuclein knockout mice have not demonstrated any

evident abnormalities [Cookson, 2009]. Recent studies suggest an activity de-

pendent role for α-synuclein in the synaptic vesicle cycle, in the assembly and

maintenance of SNARE complex15 levels [Burre et al., 2010; Greten-Harrison

et al., 2010].

Despite being known as a cytosolic protein, the presence of α-synuclein within

neuronal nuclei [Yu et al., 2007] and mitochondria [Liu et al., 2009] in some

brain regions adds to the mystery of its function. Interestingly, the name α-

synuclein is based on observations that antibodies against the protein labelled

both synapses and nuclei.

The association of α-synuclein with LBs, was Vrst reported in the work of Poly-

meropoulos et al. [1997] based on clinical studies of an early onset familial form
14Protein aggregates are not always found within neurons, β-amyloid plaques in

Alzheimer’s Disease occur in the extra cellular space
15SNARE : derived from "SNAP (Soluble NSF Attachment Protein) Receptor". Relates to

members of a large protein super-family that mediate vesicle fusion
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of the disease. A point mutation in the α-synuclein gene was identiVed in re-

ported cases, leading to an understanding of this protein’s role in PD pathogen-

esis. In the same year, Spillantini et al. [1997] reported strong immunoreactivity

of LBs for α-synuclein, conVrming the link and bringing to focus a decisive role

of α-synuclein aggregation in the disease development. α-synuclein was iden-

tiVed as the major protein component of LBs and Lewy neurites and further

studies [Spillantini et al., 1997; Shults, 2006] conVrm this notion.

Various molecular and genetic studies have brought out the diUerent scenarios

in which α-synuclein can become fatal. These include conditions of struc-

tural changes that may be caused by mutations in the α-synuclein gene [Poly-

meropoulos et al., 1997; Kim et al., 2000; Farrer, 2006], conditions of increased

expression of the protein owing to extra copies of the gene [Zhou et al., 2000;

Kirik et al., 2003] or by pathogenic transfer between neurons [Desplats et al.,

2009]. A common mechanism among them, is the increased propensity of α-

synuclein aggregation. If mutations contribute in creating more of the mis-

folded protein, higher expression levels of the protein pushes the cytosolic

concentrations to a critical level that promote aggregation [Saha et al., 2008].

Ko et al. [2008] shows that α-synuclein aggregates are not particularly toxic.

If not the product, the process itself may be responsible for the lethal turn

of events. Dynamic light scattering experiments have been instrumental in

revealing various stages of α-synuclein aggregation. α-synuclein is natively

an unfolded monomer with long-range interactions. These soluble molecules

can easily bind to membranes in an α-helical form, owing to their lipophilic

nature. In the unfolded form, with the hydrophobic regions exposed, they tend

to be aggregation-prone and form low-molecular weight oligomers that are

structurally diverse. For example, a particular α-synuclein pentamer, forms an

annular pore like structure and is known to interact with membranes to give a

channel like structure.

α-synuclein lacks a stable structure and is thus natively unfolded [Uversky

et al., 2001b]. This instability prompts it to adopt various partially folded con-

formations that are readily reversible. In addition, various chemical modiV-

cations of α-synuclein by oxidation, phosphorylation etc. and modiVcations

because of mutation can lead to other conformational changes that are not
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necessarily reversible. These partially folded molecules are unstable and can

act as seeds for the nucleation process. Such molecules are routinely cleared

by the activity of the UPS system.

The aggregation of α-synuclein is a complex process and modulated by various

factors in the cellular environment. The formation of seeds or the nucleation

phase is rate limiting and multi-factorial. We discuss in detail the inWuence of

cytosolic calcium levels on the nucleation phase towards the end of this section.

Figure 2.3 shows an approximate representation of the process of aggregation.

Seeds

α-synuclein

Oligomers &
protofibrils

Fibrils

Lewy Body
to lysosomes

to proteosomes

Figure 2.3: A cartoon representation of α-synuclein aggregation pathway: Fibril formation
is initiated with the dimerization of partially folded monomers [Uversky et al., 2001a] followed
by the formation of non-Vbrillar oligomeric intermediates. ProtoVbrils are a set of β-sheet rich
oligomers that are considered to be important in PD pathology [Lashuel et al., 2002; Volles and
Lansbury, 2003]. Eventually, these β-sheet rich protoVbrils gather to initiate Vbrilization, and
α-synuclein monomers are added to the assembly in an ordered manner. These insoluble Vbrils
pull in other Vbrils, associated proteins and cellular structures to condense into a LB.

The tendency of α-synuclein to aggregate is often modiVed by various cellu-

lar processes. This is evinced by the presence of α-synuclein oligomers along
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with membrane enriched fractions [Sharon et al., 2003; Welch and Yuan, 2003],

suggesting an inWuence of the lipid environment which is frequently oxidized

in PD. Such oligomers are also observed in vitro after conditions of oxidative

stress [Ostrerova-Golts et al., 2000] or inWammations [Gao et al., 2008]. At the

molecular level, this is seen as an enhanced tendency to aggregate following

phosphorylation [Inglis et al., 2009], proteolytic truncation by enzymes like

calpain [Dufty et al., 2007] or nitration by reactive nitrogen species that appear

during an inWammatory response [Souza et al., 2000]. Formation of α-synuclein

preVbrillar oligomers is presumed to be the primary aYiction in a number of

neurodegenerative pathways, although the exact nature of toxicity is yet to

be understood [Souza et al., 2000; Welch and Yuan, 2003; Volles and Lansbury,

2003].

One factor inWuencing the steady state levels of α-synuclein in the cytosol is

its relatively long half-life that tends to increase with age [Li et al., 2004]. The

exact mechanism of α-synuclein degradation is yet to be elucidated despite the

amount of research towards this end [Kim and Lee, 2008]. Proteolysis of α-

synuclein seem to be a function carried out by both UPS machinery as well

as lysosomes. Proteosomes appear to degrade monomeric units of the protein

and as the oligomers need a larger system for their lysis, their lysis most likely

falls to lysosomes. Vesicle mediated exocytosis is also understood to be one of

the mechanisms employed by neurons to control levels of α-synuclein in the

cytosol [Lee et al., 2005; Kim and Lee, 2008]. Even though exocytosis involves

only a small fraction of the protein, the preferential aggregation of misfolded

α-synuclein in vesicles [Lee et al., 2005] and the propensity for neuronal up-

take of extracellular α-synuclein makes exocytosis a plausible mechanism for

pathological progression of the disease among neurons [Desplats et al., 2009].

Calcium, calbindin and α-synuclein aggregation: The inWuence of Ca2+ lev-

els on α-synuclein aggregation is a signiVcant aspect of our study, as we are

looking at some of the major inWuences of Ca2+ in PD pathogenesis. Inter-

estingly, this aspect is not discussed much in the literature. However an in

vitro study of the interaction between the Ca2+ binding protein calbindin and

α-synuclein suggests an interaction that is noteworthy. The study by Zhou

et al. [2010] involved Wuorescent labelling of the two proteins, α-synuclein and
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calbindin, to understand their interaction and co-aggregation. α-synuclein ap-

peared to interact with calbindin in a Ca2+ dependent manner. Analysis of the

experimental sample by electrophoresis supported the existence of an unsta-

ble complex of α-synuclein and calbindin and the formation of this complex

appeared to hinder the Vbrillation of α-synuclein. Addition of Ca2+ further

strengthened the inhibition. However, the presence of Ca2+ in the absence

of calbindin promoted Vbrillation of α-synuclein. The experiment suggested

that Ca2+-bound calbindin functioned as a molecular chaperone that strongly

inhibited the formation of α-synuclein Vbrils. Also, calbindin was found to

co-aggregate with α-synuclein, supporting observations of the presence of cal-

bindin in Lewy Bodies.

Dopamine

Being dopaminergic, neurons of substantia nigra invariably handle dopamine

metabolism. Dopamine is a neurotransmitter of the catecholamine family and

is understood to be signiVcant in reward-driven learning in the brain. It is syn-

thesised from the amino acid ‘tyrosine’ in the cytosol by the action of enzymes

tyrosine hydroxylase (TH) and ‘DOPA decarboxylase’ and is transported into

the synaptic vesicles by means of a transporter protein. Dopamine remains in

the vesicles until a neuron signal (action potential) forces the vesicles to merge

with the cell membrane near to a synapse, thereby expelling the molecule into

the synaptic space before it binds to a dopamine receptor.

Dopamine has been suspected to be causal in PD since the molecules generated

by its catabolism are particularly oxidative and hence cytotoxic [Lotharius and

Brundin, 2002].

An important feature of dopamine homeostasis is its regulation by intracellular

Ca2+ [Mosharov et al., 2009]. The neurons of SNc seem to have higher cytosolic

dopamine compared to VTA neurons because of the higher calcium inWux dur-

ing its pacemaking activity, mediated by the Cav1.3 channel. Intracellular Ca2+

appears to upregulate dopamine homeostasis through the enzyme ‘aromatic L-

amino acid decarboxylase’ (AADC) and TH. Whether this upregulation raises

the level of intracellular dopamine above critical toxic levels remains to be in-

vestigated.
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Oxidative damage of SNc neurons by cytosolic dopamine is questionable. Re-

gional variability in neuronal loss [Damier et al., 1999b], absence of pathologi-

cal markers in certain disease phenotypes [Takahashi et al., 1994] and the fact

that L-DOPA treatment do not advance the disease progression [Fahn, 2005]

all suggest a minor role if any of dopamine as a source for oxidative damage.

Mosharov et al. [2009] postulates that dopaminergic neurons are almost resis-

tant to toxicity from cytosolic dopamine.

2.3.2 Mitochondrial Dysfunction

Mitochondria are an essential component of cellular functions with critical

roles in ATP supply, calcium buUering and in the integration of cellular sig-

nals for apoptosis. As one of the most active sites of a cell, mitochondria often

face assaults from within as well as outside. These assaults are mostly oxidative

in nature and interferes with the proper functioning of mitochondrial proteins.

Such events often result in toxic by-products which are usually kept in check.

For example, ineXciency of mitochondrial protein can lead to further accu-

mulation of oxidative species which are often controlled by the activity of the

enzyme superoxide dismutase. However, continued assaults can accumulate

such compounds leading to the malfunctioning of the organelle itself. Conse-

quently it becomes important for the cell to have proper maintenance of the

mitochondria and eXcient disposal when they malfunction. Because of their

key role in mediating cell death by apoptosis, mitochondrial well being is cen-

tral to cell survival. In this section we review some aspects of the mitochondria

important to nigral death in PD.

The involvement of mitochondrial dysfunction in Parkinson pathology became

evident with the discovery that toxins such as MPTP and rotenone may be used

to generate animal models of PD. These neurotoxins interfere with the activ-

ity of complex I of the ETC (NADH ubiquinone reductase) leading to reduced

ATP levels, build up of free radicals and ultimately cell death. Post-mortem

description of SNc neurons from PD patients conVrms a decrease in complex

I activity owing to oxidative damage [Schapira et al., 1989; Keeney et al., 2006;

Chan et al., 2009]. Also, familial forms of the disease have been associated with

proteins that are either mitochondrial or have a functional association with the
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mitochondria. These include proteins like α-synuclein, parkin, DJ-1, PINK1

(PTEN-induced kinase 1), LRRK2 (Leucine-rich repeat kinase 2) [Thomas and

Beal, 2007]. Further lines of evidence that suggest mitochondrial involvement

in PD include increase in ROS in aUected cells [HenchcliUe and Beal, 2008],

variations with respect to mitochondrial Vssion and fusion [Yang et al., 2006;

Poole et al., 2008], reduced mitochondrial membrane potential in animal models

[Gandhi et al., 2009] as well as Waws with respect to mitochondrial traXcking

[Weihofen et al., 2009]. Next we examine the relationships between mitochon-

dria and the proteins implied in PD.

2.3.2.1 Protein - mitochondria interactions implicated in PD

With the identiVcation of genetic mutations that can lead to loss of nigral

dopaminergic neurons, a few diUerent proteins have been found to have signif-

icant role in PD pathogenesis. We brieWy describe some of the genes that have

been associated with mitochondrial dysfunction in PD.

α-synuclein We have already discussed a major role that α-synuclein plays

in SNc neurodegeneration (section 2.3.1). Experiments with a mice model har-

bouring human A53T α-synuclein mutant exhibited mitochondrial accumula-

tion of the protein and thereon increased mtDNA damage and an increase in

ETC complex IV activity was noted that led to mitochondrial dysfunction [Mar-

tin et al., 2006]. The eUect seem to be complementary as use of neurotoxins that

interfere with the ETC in rodents have resulted in α-synuclein aggregation (for

example see Lee et al. [2002]). A few more eUects of α-synuclein that creates

a vicious interaction between α-synuclein, oxidative stress and mitochondrial

dysfunction have been reviewed in Banerjee et al. [2009]. These observations

suggest that both genetic and biochemical abnormalities with α-synuclein dis-

turb the normal mitochondrial physiology.

Parkin The parkin gene (PARK2) is associated with an early onset juvenile

form of PD [Kitada et al., 1998]. The parkin function as a component of the

‘ubiquitin E3 ligase’, a mediator of the polyubiquitination reaction that tags
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aggregate prone proteins with ubiquitin, so that it is acted upon by the protea-

some [Shimura et al., 2000]. The exact mechanism of how mutations in parkin

lead to neuronal death is unclear, but it was presumed that their activity is

critical in degrading one or more proteins that are toxic to these neurons.

PINK1 PTEN16-induced kinase 1 or PINK1 is a nuclear gene transcribing a mi-

tochondrial serine/threonine-protein kinase. Mutations in this gene are found

to cause an autosomal recessive form of PD which is rare, with nigral neuronal

loss and LBs [Gandhi et al., 2006; Shulman et al., 2011]. In experiments these

proteins are observed to be localised close to the mitochondria with its kinase

domain facing the inter-membrane space. Loss of PINK1 function by mutation

usually results in morphological defects in the mitochondria.

PINK1 also has a role in regulation of mitochondrial calcium eYux via the

Na+/Ca2+ exchanger [Gandhi et al., 2009]. Loss of PINK1 function limits cal-

cium homeostasis resulting in a mitochondrial calcium overload. This in turn

promotes higher ROS production and subsequent impairment of mitochondrial

respiration.

PINK1, Parkin and Mitochondrial quality control The host of mitochondria

present within a cell are known to undergo regular cycles of fusion and Vssion,

the dynamics of which maintains a functional integrity among them. This pro-

cess not only equilibrates the intra-mitochondrial contents, but also regularize

the overall eXciency between them. Additionally, as mitochondria cannot be

made de novo, the Vssion reaction is essential for mitochondrial biogenesis.

Lysosomes house the mitochondrial degradation process and any problems in

lysosomal proteolytic pathways can lead to the accumulation of mitochondrial

proteins. This process, often referred to as mitophagy is an important step

that ensures the quality of mitochondria present in a cell. This is an important

maintenance process of energy metabolism and thus, associated problems can

add to the energy stress in a neuron like substantia nigra.

As neurons require eXcient transfer of energy over longer distances compared
16PTEN : ‘Phosphatase and tensin homolog’ is a tumour suppressor gene
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to other cells, mitochondrial dynamics become particularly relevant. This ma-

chinery is critically involved in the formation of synapses and dendritic spines.

For instance, inhibition of Vssion proteins or over-expression of fusion proteins

is known to reduce synapse formation [Arduíno et al., 2011].

PINK1 and Parkin are understood to cooperate in a common pathway involved

in mitochondrial traXcking to the perinuclear region17 [Vives-Bauza et al.,

2010]. The accumulation of PINK1 in the mitochondria is understood to be a

necessary step before Parkin is recruited onto the mitochondria and a selective

accumulation of PINK1 on dysfunctional mitochondria is observed. This mech-

anism for substantia nigra neurons is relevant since both PD brains and animal

models of PD exhibit mitochondria that are swollen with disrupted cristae and

broken outer membrane [Arduíno et al., 2011].

DJ-1 DJ-1 or PARK7 is a protein reWected in early onset PD. It is a peptidase

that works as a sensor for oxidative stress [Bonifati et al., 2003]. DJ-1 is consid-

ered to be neuroprotective as it tends to reduce the accumulation of hydrogen

peroxide thereby reducing the damage resulting from ROS production [Chan

et al., 2009]. In an experiment with DJ-1 knockout mice, it was proven that DJ-1

can be neuroprotective for SNc neurons by providing oxidation protection in a

calcium stressed environment [Guzman et al., 2010]. Additionally, depending

on its oxidation state DJ-1 functions as a molecular chaperone of α-synuclein

that restricts the formation of aggregates [Zhou et al., 2006].

2.3.2.2 Implications of calcium homeostasis in mitochondrial dysfunction

Calcium is a global eUector of mitochondrial function. Hence changes in cy-

tosolic or mitochondrial calcium homeostasis are reWected in cell functions in-

volving mitochondria, in particular ATP synthesis.

It has been well established that mitochondria have a huge capacity to accu-

mulate calcium. Mitochondrial calcium uptake and release control how Ca2+

is handled within the cell. This includes the transport of Ca2+ across the cell

membranes, management of Ca2+ concentration in cytoplasmic micro-domains,
17Perinuclear region : A sub-cellular area associated with autophagy-lysosomal degradation
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frequency of oscillatory Ca2+ signals, rate of propagation of a Ca2+ signal across

larger cells and the spatial distribution of a Ca2+ signal through the volume of

a cell [Duchen et al., 2008]. This in turn inWuences events responsible for mito-

chondrial ATP synthesis via Kreb’s cycle [Nelson and Cox, 2004]. Duchen et al.

[2008] also discusses the proximity of mitochondria to cellular Ca2+ hotspots

(In neurons mitochondria are clustered in active calcium signalling zones along

axons and dendrites).

An extreme accumulation of Ca2+ within the mitochondria brings about the

opening of a large channel in the inner mitochondrial membrane, called the

permeability transition pore. Opening of the pore renders mitochondria inca-

pable of ATP production and leads to severe damage of its ultra-structure.

Altered calcium homeostasis has also been associated with lysosomal storage

diseases and bipolar disorder [Kiselyov and Muallem, 2008]. A search for a

common mechanism underlying cell death in these conditions suggest a loss of

mitochondrial Ca2+ buUering although the exact mechanism is yet to be exper-

imentally validated.

Mitochondrial dysfunction and calpain activation Observations on en-

hanced levels of calpains in the SNc and Locus coeruleus of PD patients have

revealed the involvement of these proteins in the pathogenic process. Calpains

are family of calcium-dependent, non-lysosomal cysteine protease with a reg-

ulatory role in cellular activities. They have a signiVcant part in apoptotic and

necrotic pathways. Calpain inhibition seems to improve survival rates of SNc

in animal models of PD [Esteves et al., 2010]. α-synuclein appears to be an im-

portant substrate of calpain. Esteves et al. [2010] demonstrates that calpains are

capable of increasing the toxic soluble α-synuclein oligomers and their inhibi-

tion enhances the non-toxic insoluble α-synuclein Vbrils, preventing caspase-3

activation.

2.3.2.3 Implications of oxidative stress in mitochondrial dysfunction

Reactive oxygen species (ROS) are routinely generated during mitochondrial

metabolism and participate in cellular signalling and homeostasis. Cellular an-
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tioxidant system guards against ROS toxicity, but some oxidative molecules es-

cape and cause damage to cellular biomolecules like lipids, protein and nucleic

acids. Such events tend to increase with increasing environmental stresses, as

well as with ineXciencies in the ETC. Again, there exists a positive feedback

loop between ROS generation and ETC ineXciencies (Vgure 2.4). ROS being

a promoter of somatic DNA mutations can enhance ETC ineXciencies by the

sheer proximity of its generation sites to mitochondrial DNA (mtDNA). Note

that mtDNA encodes for around 13 proteins involved in mitochondrial respira-

tion [Schapira, 2008].

Age seems to be the most important factor implied in oxidative damage of

mtDNA. For instance, it is estimated that oxidative damage to mtDNA with age

increases 15-fold compared to nuclear DNA damage increase with age [Mecocci

et al., 2004].

Figure 2.4: A positive feedback mechanism between mtDNA and ROS can arise when ROS-
induced damaged mtDNA produce defective components of the ETC, thereby increasing elec-
tron leakage in the oxidative phosphorylation process. The electrons that leak from the ETC
are captured by oxygen to form ROS. Steady state levels of ROS deVnes the system, and has
important signalling role in establishing redox homeostasis in the cell. ROS levels are regulated
by the action of molecular scavengers (antioxidants). Over time, the loop is expected to give an
exponential expansion of mtDNA mutations, which eventually causes the loss of mitochondrial
function in generating ATP.
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2.3.3 Protein homeostasis and stress in the endoplasmic

reticulum

Proteins function in a redox environment, making them susceptible to var-

ious types of chemical assaults. This makes it necessary for the system to

break down the oxidised proteins to avoid process ineXciencies and eUectively

recycle the amino acids for producing fresh proteins. The proteasomes and

endoplasmic reticulum (ER) are a major part of this maintenance process along

with the golgi apparatus and lysosomes [Nelson and Cox, 2004]. However, this

mechanism becomes less eUective with age or when chronically stressed. The

build up of proteins such as LBs in PD suggest the involvement of physiological

stress in this machinery.

Genetic linkage studies have suggested that defects in the UPS contribute to the

neurodegenerative process in PD [Betarbet et al., 2005]. For instance, the parkin

gene (which encodes an E3 ubiquitin ligase) responsible for a juvenile and early

onset parkinsonism [Kitada et al., 1998] has identiVed mutations implicating

the involvement of aberrant UPS function in sporadic form of PD. α-synuclein

aggregation was observed in a study of proteasome inhibition [Tofaris et al.,

2001] and it was also noted that an over-expression of α-synuclein aggravates

the toxic eUects of proteasome inhibitors.

One major component of cellular state controlling protein homeostasis is the

energy supply. Mitochondrial complex I damage, which could be a result of

age, oxidation or environmental factors, results in decreased levels of cellular

ATP. This has consequences in ubiquitination and protein degradation by the

UPS [Beal, 2006; Wellstead and Cloutier, 2011]. Additionally, in dopaminergic

nigral neurons, McNaught et al. [2004] observed a reduction in proteasomal

α-subunits which are essential for proteasomal assembly, with age. These fac-

tors indicate an obvious compromise of UPS function in PD pathology. An

increased instance of unwanted protein load because of a compromised recy-

cling system will impact the function of ER and golgi complex that hosts most

of the protein related activities.

A typical instance of association of ER stress with PD pathogenesis is the pres-

ence of protein dissulVde isomerase (PDI), identiVed to be an ER stress protein,
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within LBs [Conn et al., 2004]. PDIs are chaperone proteins that are expressed

during the UPR18 phase of ER stress response. These ER-contained proteins are

components of a quality-control system that ensures correct folding of proteins

for cell viability, during conditions of stress.

Arduíno et al. [2009] demonstrates how an altered mitochondrial respiratory

chain complex I activity (induced by neurotoxins such as MPTP), is linked with

ER stress response. This correspondence is believed to be a result of an al-

tered redox state of the cell, induced by an increased ROS level. Furthermore,

ER stress response communicates back to the mitochondria mediated by Ca2+.

This feedback involves the release of Ca2+ from the ER, that Vnally ends up

in the mitochondria. The resulting Ca2+ Wux can reach alarming levels dur-

ing conditions of extreme stress, and is thus a key signal in ER stress induced

apoptotic pathway.

Accumulation of misfolded or over-expressed α-synuclein within the ER is also

found to precede apoptotic events in experimental models of PD. Hoozemans

et al. [2007] provides evidence for the activation of one of the three pathways

of UPR, in LB laden dopaminergic SNc neurons from PD brains. Later, ex-

periments by Bellucci et al. [2011] conVrm this notion and suggest a role for

α-synuclein as a neuronal sensor, whose misfolding, accumulation or aggrega-

tion resulting from a condition of cellular stress was translated in to ER stress

related responses. Their results suggest that the activation of UPR in SNc can

have early beneVts, however, under conditions of extreme stress, as the re-

sponse continues, apoptotic pathways are initiated.

Protein Aggregation Polypeptides fold to speciVc proteins as a means to

achieve a state of minimum potential energy in physiological solution (con-

formational stability). The folding usually results in a characteristic three-

dimensional structure that renders the molecule functional [Alberts et al., 2002].

Any Waw with the folding process (misfolding) produces an inactive protein

that can be harmful to the system. Protein aggregation is an alternate to the
18UPR : The accumulation of misfolded proteins in the ER triggers the activation of a defence

mechanism called the unfolded protein response (UPR). In this, three independent pathways
are activated leading to the degradation of the associated protein and attenuation of protein
translation [Høyer-Hansen and Jäättelä, 2007]
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native folding process and can sometimes compete with the native process de-

pending on the thermodynamic properties of the polypeptide. In addition to

thermodynamic properties, factors that lead a protein to aggregate include con-

centration (which can be unusually high when over-expressed), mutations in

the associated genes (thereby increasing the probability of misfolding), oxida-

tion, ineXcient protein maintenance pathway, etc.

The protein aggregation scenario in PD is reWective of aforementioned factors

existing for the protein α-synuclein and we have already discussed various

facets in some of the previous sections (see 2.3.1, 2.3.2.1 ). α-synuclein over-

expression has been associated with both familial and sporadic forms of PD

[Zhou et al., 2000]. Mutations in the α-synuclein gene is one of the earliest

discoveries with respect to genetic links to PD [Polymeropoulos et al., 1997]. A

dynamic interaction between ROS and α-synuclein is understood to exist in PD

[Cloutier and Wellstead, 2012] and aspects of ineXciency in protein recycling

machinery are discussed in this section. In addition, a pathogenic transfer of α-

synuclein seeds is understood to exist between neurons [Desplats et al., 2009].

α-synuclein seeds can greatly inWuence the likelihood of protein aggregation

for being the nucleation core of the process (see Vgure 2.3).

These studies point to a condition of α-synuclein aggregation and LB forma-

tion as a result of curtailed proteasome functioning. In an energy compromised

state, a cell may divert its energy utilization to key cellular processes and pro-

tein recycling would be kept at bay. Hence an energy deVciency may be one of

the prime reasons for LB build up in mammalian neurons.

2.3.4 Ageing

As mentioned in the previous chapter, the incidence of PD is age-related. In a

study on non-human primates, Collier et al. [2011] report ageing to be the pri-

mary risk factor for the development of PD. The study reports that the degen-

eration of dopaminergic neurons in PD, follows the same cellular mechanisms

as normal ageing. In PD, however, agents that pose cellular risk accumulate

faster owing to environmental and genetic factors.

PD is often considered as a case of accelerated ageing. For instance, mtDNA
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deletions tend to increase with age and among PD cases reported, mtDNA dele-

tions are generally found to increase with time [Ikebe et al., 1990, 1995; Bender

et al., 2006; Schapira, 2008].

2.4 Computational approaches for understanding

PD etiology

The use of advances in molecular studies have enabled the scientiVc commu-

nity to understand to some extent, various aspects of PD pathogenesis. How-

ever, these observations are often limited owing to the length of the disease

process as well as the myriad variables inWuencing the process. Understanding

the relationships of these variables is demanding and often requires computa-

tional support to test possible hypotheses.

Mathematical models are developed towards this end. However, mathematical

models are often limited by the way they have been structured. Simple frame-

works are often used by biologists, however they miss the bigger picture. For

a disease like PD which can be seen as a failure of a cellular system, the corre-

sponding mathematical model should be of a framework that includes analogs

to the whole system involved in the pathogenesis.

In the previous sections, we have discussed various factors that contribute to

cell death in PD. The spread of disease has been associated with the disease

phenotype - the presence of LBs. This phenotype seems to exhibit a patho-

logical spread starting from the enteric nervous system, to the brain-stem and

ultimately into the mid-brain [Braak et al., 2003a]. The cardinal symptoms of

the disease only seem to appear after a substantial number of the dopaminer-

gic SNc neurons are lost. One of the most important question that needs to be

answered in this scenario is what makes SNc neurons predestined to death and

why is there a heterogeneity in vulnerability within the population?

The fact remains that most of the factors thought to contribute to the vulner-

ability, such as protein mishandling, oxidative stress, inWammation, mitochon-

drial dysfunction etc. are not unique to SNc neurons but are wide spread in

the nervous system. In animal models, the use of a general mitochondrial
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toxin like rotenone19 leads to selective death of SNc neurons [Sherer et al.,

2003]. Even with a genetic predisposition, the corresponding proteins like α-

synuclein, LRRK2, PINK1 etc., are widely expressed in the brain and are not

just unique to SNc. Similar arguments are valid for many other factors and

together they suggest that the pathogenic process is complex.

Identifying some of the unique aspects of SNc implied in their vulnerability

would help establish a framework that is signiVcant for describing the patho-

genesis. Some of the striking aspects of SNc that makes them vulnerable to

degeneration have been discussed in section 2.3. The axons of these neurons

are unmyelinated and immensely arborised with a large number of synapses.

This feature makes the neurons highly stressed in terms of resources, speciV-

cally energy. Secondly, these neurons show an unusual reliance on the L-type

calcium channel for its characteristic function of pacemaking creating a cal-

cium stress within them. The pacemaking again is an activity that challenges

the energy system of the neuron. Also, a limitation in available energy can

compromise a few of the non-essential pathways that maintain the neuron.

Any compromise of protein recycling can lead to conditions of material stress

in compartments such as ER and further add to the existing stress. If we try

to link the various factors implied in PD, they are directly or indirectly related

to the energy pathways of the system and frequently cross paths with the cal-

cium homeostasis network. We now look into one of the best approaches from

engineering to link a system that has components that are partially deVned.

2.4.1 A basis for model integration - metabolic energy

The metabolic activity of the brain accounts for about 20 % of the calories con-

sumed by the body [Clarke and SokoloU, 1999]. The energy spend by the brain

mostly consists of energy produced as ATP from the breakdown of glucose

molecules and its consumptions remains high even if the body is at rest or

when there is an observable physical or mental activity. Despite varying ac-

tivities of the brain, this rate of metabolism remain remarkably constant over

time [Raichle and Gusnard, 2002].
19The use of MPTP is a markedly diUerent scenario, as these molecules are taken in to the

neurons depending on the activity of the dopamine transporter which are heavily expressed in
SNc neurons [Lammel et al., 2008].
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According to the estimates of Attwell and Laughlin [2001], a large component

of energy used in the brain goes towards the propagation of neuronal signals;

this includes the generation and propagation of action potentials, restoration of

ionic Wuxes and resting potential following and excitatory event, and cycling of

neurotransmitter molecules. These estimates are comparable to experimental

observations using magnetic resonance spectroscopy techniques [Sibson et al.,

1998].

Neurons with their unique structure and physiology are by themselves hubs of

energy consumption and by an inherent pacemaking activity substantia nigra

neurons stand at the extreme upper end of the energy use spectrum. The com-

petence of these neurons depends on an eXcient energy production pathway

by mitochondrial oxidative phosphorylation from chemical energy transported

to or stored in these neurons. There are numerous factors aUecting energy

metabolism of these neurons that are as diverse as age, blood Wow rate, re-

dox environment, Ca2+ homeostasis etc. A central role for energy metabolism

in cellular activities is evident from the fact that these pathways are the most

preserved in living organisms.

Biological regulation of energy metabolism show essential features of basic

control systems, including control components (proportional, derivative, in-

tegral) and control structures (feedback, feed-forward and cascade control)

[Cloutier and Wellstead, 2010]. A systems analysis on a model developed for

energy metabolism would be thus instrumental in identifying important mech-

anisms underlying the use of energy in a neuron. A system’s framework

with energy as the unifying components have been proposed [Wellstead and

Cloutier, 2011]. This basis strikes as being appropriate because a cell metabolic

state is intimately linked to its energetic state. Furthermore, defects in mito-

chondrial dynamics are one of the most observed feature in the disease pheno-

type.

2.4.2 Pacemaking models of SNc

Neurons are highly specialized cells that undergo unique challenges in carrying

out their important physiological functions. The substantia nigra neurons are

active cells and thus require large amounts of energy. Furthermore, these neu-
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rons are extremely arborised as it projects into the striatum. One aspect that

puts them in a permanent state of stress is their electrophysiology, the spon-

taneous pacemaking that ensures a continuous supply of dopamine to areas

they project to. Pacemaking is also responsible for a continued entry of cal-

cium ions into these neurons. Thus pacemaking becomes a subcomponent of a

larger framework to analyse the energy and calcium stress of these neurons.

Mathematical models have been extensively used to describe the electrophysi-

ology of SNc neurons [Amini et al., 1999; Canavier, 1999; Wilson and Callaway,

2000; Komendantov et al., 2004; Canavier and Landry, 2006; Kuznetsova et al.,

2010; Drion et al., 2011]. These models have been instrumental in elucidating

various components on the SNc membrane that work towards establishing its

characteristic electrophysiology. An important aspect of the SNc pacemaker

that these models discuss is how Ca2+ ions are signiVcant in establishing its

electrophysiology. L-type calcium channels have a central role in initiating

membrane depolarisation that sets the pacemaking cycle [Takada et al., 2001;

Chan et al., 2007]. This calcium driven mechanism of membrane oscillations

has been reported to be present in all parts of SNc neuron [Wilson and Call-

away, 2000], strongly coupled with membrane voltage.

For a cell that relies heavily on Ca2+, the disposition of these ions become de-

cisive. One of the major Vndings with respect to PD pathogenesis, is related to

the calcium handling aspects of SNc neuron. We have discussed in section 1.2

about the relative sparing of dopaminergic SNc neurons that express the Ca2+

buUering protein calbindin at high levels [Yamada et al., 1990]. The study by Ya-

mada strongly suggest a pivotal role of calcium stress in the neurodegenerative

process and for this reason, mechanisms involved in Ca2+ disposal needs to be

considered in models that aim to relate pathways leading to the degeneration

of these neurons.

Some of the mathematical models previously presented do incorporate mecha-

nisms of Ca2+ buUering [Wilson and Callaway, 2000] or removal by a calcium

pump [Amini et al., 1999]. However, most often these steps are abstract, or at

best simpliVed models are used with little attention to the dynamics of the Ca2+

pumps and/or buUers. These limitations are potentially serious in any study of

Ca2+ mechanisms in the electrophysiology and functioning of these neurons.
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Mathematical models for neuronal membrane dynamics are essentially a dy-

namical system describing various ion-transport proceeding across the plasma-

membrane. A model would represent the system well when the model compo-

nents and parameters are well identiVed. An outline of this process is to follow.

2.4.2.1 Representing ion transport across biological membranes

Living cells constantly require the exchange of molecules across their biological

membrane for their extensive functions. Biological membranes are selectively

permeable and they achieve this by means of phenomenological and structural

features embedded within them. Materials exchanged across membranes in-

clude metabolites, ions, amino acids, nucleotides and gases implied in cellular

metabolism. The distribution of the ions across the membrane (Vgure 2.5) de-

Vnes such transport phenomena.

Figure 2.5: Typical distribution of

ions across mammalian neurons

Depending upon the need for energy in such

transports, they may be classiVed into the ac-

tive or passive categories. The major trans-

porters of ionic species found on a biologi-

cal membrane are integral proteins, that may

function as ion-channels, pumps or exchang-

ers and are responsible for generating elec-

trical responses to diUerent stimuli. Electri-

cal activity of excitable cells such as neurons

are often represented by mathematical mod-

els of the functioning of these proteins. Such

models are extensively used in the study and

analysis of various brain functions including

control and cognition.

Passive transport may be considered as accel-

erated selective diUusion. Ion channels are

the most diverse and proliVc passive transporters found on the lipid mem-

branes and they allow the passage of selected ions along respective concen-

tration gradients, based on the given environmental conditions. The opening
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of such channels, which is often termed ‘gating’, involves a change of the na-

tive channel conformation to a conductive conformation. This usually takes

place under the inWuence of either a change in electric Veld or with respect to

the binding of an agonist. The former category of ion channels are said to be

voltage-gated and the later are known to be ligand-gated.

Active transport, on the other hand, involves the movement of solutes against

their concentration gradient, by coupling to a process that provides the re-

quired energy. In primary active transport, the process is coupled to the hy-

drolysis of a high energy molecule such as ATP. In secondary active transport

or co-transport, the process is usually coupled with one that utilises the electro-

chemical potential diUerence of another molecule that is transported simulta-

neously. Symport involves the co-transport of molecules in the same direction

and antiport involves the co-transport in opposite directions of the membrane.

All pathways or processes of a living cell are directly or indirectly dependent

on its energy metabolism. For an excitatory cell, many of its activities at the

membrane are governed by the levels of intracellular ATP and cyclic adenosine

monophosphate (cAMP). For instance, ATP has a direct inWuence on mem-

brane functions via membrane cation pumps. These pumps are ‘ATPases’ and

their function is critical in establishing electrochemical gradients and resting

membrane potential. Transport through ion channels can continue as long as

the electrochemical gradient persists. Also, there are certain ion-channels that

are ATP sensitive and modulation of these channels, by changes in the level

of cytosolic ATP, are reWected in the properties of action potentials produced

along the length of the membrane. Thus, ATP has an indirect inWuence on the

excitatory properties of these cells and consequently their energy metabolism.

On these grounds, ion transport has been argued to be one of the most energy

demanding processes in excitatory cells [Attwell and Laughlin, 2001].

Describing the mechanism of Ion-channel activity Ion channels are pore-

forming transmembrane protein ensembles that are responsible for regulating

or gating ion Wows across the cell membrane. Gating arises from the confor-

mational changes in the proteins that comprise the channel. These confor-

mational changes are driven by changes in the electric Veld or by molecules
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(ligands) that bind to them. For this reason, ion-channels are often classiVed

into voltage-gated and ligand-gated categories.

Technological advances in the Veld of neuroscience have enabled recording of

ion channel activities with increased precision. Patch-clamp techniques are

extensively used to study ion-channel behaviour on excitable membranes. Ion-

channel recordings by the patch-clamp are essentially of two kinds. In the

Vrst, known as ‘whole cell recording’, a macroscopic current which is the re-

sultant of the combined activities of a large number of channels is recorded.

The second method of ‘single channel recording’, records discrete changes in

the conduction of a single channel over time.

In spite of all the advances in the Veld, experiments have yet to give a complete

picture of ion channel structure and function. In the case of channel electro

physiology, the large variability and plasticity of the channels makes it very

complex to deduce a comprehensive model of the channel.

In chapter 3, we describe some of the popular modelling approaches used to

describe ion-transport through a voltage gated ion channel.

Active transport across membranes From a thermodynamic perspective,

transport is spontaneous when ions move down the overall gradient in free

energy. Unlike in passive transport where this condition exists naturally, facil-

itated transport includes those processes in which the movement against the

energy gradient is achieved by coupling with a process that provides surplus

energy to overcome the free energy barrier. Carrier proteins found on biologi-

cal membranes are sites of such energetic coupling.

The mechanism of active transport has its fundamental in the coupling of a

free energy releasing process to the work done in moving the ions against its

gradient. The energy required per transporter cycle, is the sum of work done

in transporting the ions against their electrochemical gradients.

In chapter 4, we discuss diUerent modelling approaches used to model the

pumps and exchangers present on the substantia nigra membrane. In the Vfth

chapter we bring together appropriate representations of ion-transport dis-

cussed in chapter 3 and 4 to generate a model that reproduces spontaneous
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pacemaking in a dissociated substantia nigra neuron.

Chapter Summary

In this chapter, we have made a review of important components and activities

of the substantia nigra neuron that makes it vulnerable to degradation in PD.

Rather than a single cause-single eUect phenomena, PD appears to be a failure

of an exquisite network of regulatory activities in a neuron burdened with its

structure and function. The PD phenotype is a mixed bag and, despite this het-

erogeneity, research has brought forth some underlying themes of the patho-

physiology. These include compromises made in cellular pathways that are

involved with cellular maintenance and stress management and impairment of

eXcient metabolism owing to factors that are genetic or extra-neuronal.

The sheer vastness of cellular factors involved with the pathogenesis necessi-

tates limitation of the discussion to a subset of events related to our theme.

Our discussion has omitted some aspects implied in PD like the inWuence of

inWammatory response, excitotoxicity and others. Discussions have been made

from a platform of energy metabolism on the premises of Ca2+ homeostasis

and since this theme encompasses many major landmarks of the pathological

process, this chapter has illustrated circumstances regarding substantia nigra

degeneration without much selective bias.

It is diXcult to have a simple mathematical representation of disease progres-

sion in PD. Rather, it is appropriate to have a system with various subcompo-

nents that may be connected by a few important variables. From the review in

this chapter, we have argued that calcium is an important variable to consider

and energy utilization could be the basis upon which the system is built. In the

following chapters we build a mathematical description of a particular com-

ponent of the substantia nigra metabolism, its characteristic electrophysiology

and how it relates to the calcium stress in these neurons.
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Part II

Dynamics of Ion-Transport
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CHAPTER 3
Elements of membrane conduction :

passive transport

This chapter discusses components of the model responsible for passive transport of

ionic species across the membrane (ion channels)

Introduction One of the deVning aspects of life on earth and its current di-

versity is ‘specialization’. It is a fundamental characteristic of multi-cellular

systems by which overall complexity has been distributed among its compo-

nents, thereby making individual units simpler and their interactions complex.

This specialization can be seen in all levels of life from within cells to the level

of ecosystems.

An aspect of complex organisms that has co-evolved with specialization is

‘communication’ that enables the multi-cellular structure to function as a sin-

gle unit. Communication in and among cells can be either chemical or electrical

in nature. For faster communications over longer distances, life forms use elec-

tricity as a reliable mode. A cell is ‘excitable’ when it is capable of producing or

responding to an electro-chemical signal and is distinguished by the presence

of a membrane that is polarised1. Both excitable and non-excitable cells main-
1A cell membrane is polarised when there is a diUerence in the distribution of ions or

charges across it creating a voltage gradient. At equilibrium, a resting membrane potential is
established with the cell interior negative with respect to the exterior.

52



3.1. Underlying physiology of neuronal membranes

tain a resting potential by means of specialised membrane proteins that are ion

pumps. Substantial perturbation of the voltage gradient in excitable cells can

give rise to an electrical activity, by the activation of another set of membrane

proteins that are voltage regulated ion-channels.

The electrical activity of a living system is thus a function of dynamic ionic

transport that exists across biological membranes of its excitable cells. Neu-

rons are the most distinctive among excitable cells and in this thesis we are con-

cerned with the function of a specialised group of neurons (SNc) pronounced in

PD. To understand how a neuron’s electrophysiology transcribes into its func-

tion, it is important to understand the dynamics of its membrane ion-transport.

In this chapter, we discuss the aspects of transport that are passive in nature,

i.e. transport that takes place in the direction of the electro-chemical gradi-

ent and the following chapter will discuss active transport mechanisms, that is,

those that work against the gradient.

3.1 Underlying physiology of neuronal membranes

The nervous system consists of billions of neurons that can conduct electrical

impulses. The composition of its membrane, along with its structure, enables

neuronal conduction of electrical pulses. As discussed, the particular classes

of proteins embedded in the membrane play a major role in this function. The

two key components of this are: (i) active transporters establishing the resting

membrane potential, by mechanically translocating ions across the membrane;

and, (ii) the regulated passive transporters giving rise to appropriate responses,

by forming pores and facilitating ionic diUusion. The most visible form of this

response is an action potential, which is a very rapid (milliseconds time scale)

change in membrane potential from its resting state to a positive value.

An action potential involves the opening of a few diUerent ion-channels for

a short interval. These membrane proteins are usually speciVc to a particu-

lar type of ion and their opening allows a rapid passive diUusion of this ionic

species. For example, opening of sodium channels allows a transient Wow of

Na+ions into the cell, creating a Na+current that depolarises the membrane.

Simultaneous opening of potassium channels, creates a K+current that repo-
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larises the membrane. The transmembrane potential (V ) is thus a dynamic vari-

able depending on the Wow of currents across the membrane and was originally

described with a mathematical formulation based on KirchoU’s law [Hodgkin

and Huxley, 1952]. According to this formalism of an “equivalent electrical

circuit”, the cell membrane is a capacitor (representing charge accumulation),

connected in parallel with variable conductances (representing ion transport),

with voltage sources to represent the driving forces [Hodgkin and Huxley, 1952;

DiFrancesco and Noble, 1985].

The original modelling paradigm established by Hodgkin and Huxley, uses the

net Wow of ionic currents (Is) to determine the transmembrane potential.

Cm ·
dV

dt
=
∑
s∈S

[I − Is] , (3.1)

where s ∈ S = {Na,Ca,K,A}, represents sodium, calcium, potassium and

anions, respectively. Cm is the membrane capacitance and I , any external cur-

rent injected into the membrane. In the sections to follow, we do not consider

any injection of external currents, and therefore equation 3.1 is simpliVed to

Cm ·
dV

dt
= −

∑
s∈S

[Is] , (3.2)

The Wow of ions across the cell membrane undeniably creates a change in the

concentration of participating ionic species in the cytosol. Earlier modelling

approaches did not consider the dynamics of cytosolic ionic concentrations

and in most instances they were taken as constants. As modelling methods

evolved, later models of excitable cells started to include the dynamic changes

associated with intracellular cations (for example, see DiFrancesco and No-

ble [1985]; Luo and Rudy [1994]). However, in these models, the relationship

between transmembrane potential and cytosolic concentrations was indirect.

They were related through membrane currents, as

ds

dt
=

1

zs · F · Vcyt
·
∑
x∈Xs

Is,x, (3.3)

where Xs includes all mechanisms by which species s are transported across

the membrane. Here F represents the Faraday constant, Vcyt the cytosolic

volume, and zs the valency of ionic species s.
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One diXculty with the above formulations concerns the behaviour of the model

under prolonged simulations. Since there is no direct connection between ionic

concentrations and membrane potential, numerical errors may accumulate giv-

ing rise to drifts of ion concentrations and membrane potential as well as the

existence of multiple steady states [Guan et al., 1997; Endresen et al., 2000; Hund

et al., 2001]. As an alternative, the voltage expression may be formulated using

ionic charge conservation principles [Varghese and Sell, 1997]. According to

Poignard et al. [2011], if we assume the cell volume to be constant because of

an osmotic equilibrium, we have

Cm ·
dV

dt
= Vcyt · F ·

∑
s∈S

zs
dsi
dt
. (3.4)

The algebraic equation relating transmembrane potential to intracellular con-

centrations is simply the integrated form of equation 3.4 and this paradigm of

representing the membrane dynamics is generally referred to as the “algebraic

method” [Varghese and Sell, 1997; Endresen et al., 2000; Hund et al., 2001]. Thus,

an explicit relation of the transmembrane potential in terms of ionic concen-

tration is obtained by assuming that the cell shape is retained by an osmotic

equilibrium,

V =
F · Vcyt
Cm

∑
s∈S

[zs · (si − se)] . (3.5)

Assuming that outer ionic concentrations are constant, the membrane potential

is a function of the intra-cellular ionic concentrations.

Ion Wux and equilibrium The transport of ionic species across the membrane

depends on the ionic concentration gradient and electrical Veld. This Wux can

be described by the Nernst-Planck equation in which, for a constant electric

Veld along the width of the membrane, the Wux of species s is inWuenced by

both concentration gradient and electric Veld:

Js = −Ds ·
(
ds

dx
+
zs · F
R · T

· s · V
L

)
, (3.6)

where Ds is the diUusivity of species s and V is the voltage across the mem-

brane of length L. The Nernst potential V̂s, represents the equilibrium voltage

at which the net transport of the species across the membrane is zero:

V̂s =
Vτ
zs
· ln se

si
s ∈ S, (3.7)
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where Vτ = R·T/F is a temperature deVned thermodynamic entity, the voltage

equivalent of temperature.

3.2 Modelling ion conduction

The Wow of species s through ion-channels is a passive diUusion process and

thus is dependent on the diUerence in potential energy of s across the mem-

brane. The expected rate of Wow also depends on the probability that the chan-

nel remains open (see the note that follows). This may be represented as:

Is,c = Oc · fs,c, (3.8)

where the sub-index c denotes the ion channels to be considered. Here, fs,c is

a function that deVnes the transport of species s through an open channel, c,

inWuenced by the given electrochemical Veld; and, Oc represents the probabil-

ity of channel c being open at the given membrane potential or a given ligand

concentration l in the given environment.

We describe the possible forms of both terms in equation 3.8 in this chapter.

In the subsections to follow, we have the two diUerent ways of describing the

function f ; the Vrst is a linear relationship between current and voltage and

later, is non-linear. In the next section, the diUerent mathematical formalisms

to model the open probability of a channel, Oc, are described.

Note : The switch of ion-channels between their conducting state is gener-

ally observed to be a stochastic process, biased by the driving force. Physio-

logically, this stochastic nature becomes signiVcant when the number of ion-

channels are small. Models based on discrete stochastic ion channels are found

to converge to continuous deterministic models when the ion-channel popula-

tion is suXciently large [Strassberg and DeFelice, 1993]. The use of the variable

O in the thesis implies that we are looking at a statistically signiVcant popula-

tion of ion-channels contributing to important currents in our model and any

individual stochastic events are ignored.
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3.2.1 Current equation in the circuit model : linear

conductance relationship

Hodgkin and Huxley [1952] observed that the electric current crossing a mem-

brane could be described as a sum of ionic components, of which the currents

carried by sodium and potassium were the most important. From their exper-

iments over a limited range of voltage, they showed that the conductance can

be approximated by a function linear in voltage as follows

fs,c = Gs,c · (V − V̂s), (3.9)

where Gs,c is the channel conductance.

3.2.2 Goldman-Hodgkin-Katz (GHK) current equation

In the previous approach (subsection 3.2.1), Hodgkin and Huxley considered

only the electrical drift associated with the transport of ions. However, molec-

ular diUusion of the ionic species is a readily observable phenomenon and may

be easily accounted for in an expression for the transmembrane ion Wux (see

equation 3.6). The model describing this phenomenon is commonly known

as the Goldman-Hodgkin-Katz (GHK) current equation [Goldman, 1943; Eisen-

berg, 1998; Endresen et al., 2000; Clay, 2009], although it is occasionally also

named the drift-diUusion equation or the electrodiUusion model. This model

results in a more complete mechanistic representation of ion channel currents,

though it has not yet been widely adopted in literature [Clay, 1984, 2009].

The GHK equation is generated by integrating the Nernst-Plank equation (3.6)

as,

fs,c = εs,c · z2
s · F ·

V

Vτ
·
si − se · exp

(
−zs VVτ

)
1− exp

(
−zs VVτ

) . (3.10)

Here εs,c represents the permeability of the membrane for ion s through chan-

nel c. This equation may also be expressed using the hyperbolic sine (sinh)
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function 2 as

fs,c = gs,c · zs ·
√
si · se ·

sinh
(
zs · V−V̂s2Vτ

)
sinhc

(
zs · V

2Vτ

) . (3.11)

The linear conductance relationship (equation 3.9) is a linear approximation of

the electrodiUusion model around the Nernst potential [Herrera-Valdez, 2012]

and is more commonly used in the literature . The GHK equation (equation

3.11) may be more appropriate when there are signiVcant diUerences in the

voltage and ionic concentrations inside the cell, that is, when V and or V̂s vary

signiVcantly compared with Vτ . For example, this is signiVcant when calcium

dynamics are considered.

3.3 Gating of voltage-gated ion channels

Voltage-gated ion channels have charged domains that make their structure

sensitive to variations in the external electric Veld. For a particular range of

membrane potentials they adopt a conformation with a central hole, forming a

channel for the free movement of ions. Such an ‘open’ state is further deVned

by certain ‘selectivity Vlters’ (often amino acids) that render the protein spe-

ciVc to certain ions[Beyl et al., 2007]. At other membrane potentials, the Wow

of ionic current is blocked as a result of the ‘closed’ or ‘inactive’ conformations

that the protein adopts. A channel protein can thus adopt various conforma-

tional states with varying degrees of conductance, and they can spontaneously

switch between these states. The dynamics of such switches is central to any

study that involves an ion channel.

Equation based kinetic models are useful to interpret the behaviour of a chan-

nel in a given situation. Starting with the model of Hodgkin and Huxley

[Hodgkin and Huxley, 1952], several researchers have developed theoretical

frameworks that partially explain observations made on channel activity. The

Hodgkin-Huxley formalism relies on an underlying model of average channel

conductance and their equations describe the changes of ionic permeability

with membrane potential. The model makes use of hypothetical gating parti-

cles to bring about the channel’s function, by forcing their motion with respect

2The cardinal hyperbolic sine is given by, sinhc(x) = sinh x
x
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to the electric Veld across the membrane. Although this model has been used

in many instances, hypothetical gating particles do not appear to be consis-

tent with underlying molecular mechanisms. The use of stochastic versions

of the model was based on the understanding that ion-channels are essentially

stochastic entities [Fox, 1997].

Further developments in the study of ion-channels made an attempt to give a

mechanistic description to the gating phenomena. Such models consist of non-

linear ordinary diUerential equations (ODEs): a current balance equation plus

the dynamics of conformational transitions incorporated as a ‘gating variable’

that corresponds to the state of the ion channels. Discrete-state Markov mod-

els have been used to describe the diUerent states of the ion channel [Kienker,

1989] and have found good acceptance in the literature for providing a mecha-

nistic description for the otherwise abstract Hodgkin-Huxley formalism based

models.

Markov chain models are developed on the assumption that ion channels exist

in a Vnite number of signiVcant energy states, with time - homogeneous rates

of transition between them. The model consists of a topology of allowed tran-

sitions between these states, together with the rates for these transitions. Fit-

ting single-channel recording data with a Markovian kinetic scheme has been

standard in neurophysiology for quite some time [Kienker, 1989; Milescu et al.,

2005; Sansom et al., 1989]. However, for a good agreement with experimental

data, frequently the number of closed states needed varies with the experi-

mental protocol. Markov models have advantages over the Hodgkin-Huxley

formalism with the large degree of freedom in the model structure that brings

it closer to experimental observations [Fink and Noble, 2009]. Thermodynamic

models are a two state Markovian description of channel Wipping, the rate ki-

netics of which are described by concepts in thermodynamics [Destexhe and

Huguenard, 2000; Ozer, 2004].

Fractal models [Liebovitch et al., 1987; Liebovitch, 1989] of ion channel gat-

ing provide a diUerent description of the underlying mechanism compared to

Markov models. Such models are characterised by transition rates that de-

pend on the amount of time that the channel has spent in a given state. The

DiUusion models introduced by Millhauser, justify Fractal models at a micro-
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3.3. Gating of voltage-gated ion channels

scopic level [Millhauser et al., 1988]. Statistical analysis, however, has often

favoured Markov models over Fractal models [Sansom et al., 1989; Nekouzadeh

and Rudy, 2007].

A major hurdle in modelling ion-channel gating using a Markov-jump scheme

is in the determination of an appropriate number of closed states. As the topol-

ogy space expands with the number of states, generating appropriate kinetic

schemes imposes ambiguity because it may be possible to come up with multi-

ple schemes that are consistent with a given set of data. Moreover, numerical

simulation of such models becomes increasingly CPU intensive. This limits the

usefulness of the model during both parameter estimation and multi-cellular

simulations [Fink and Noble, 2009].

An increasing complexity of the model topology thus calls for model reduction.

Kienker [1989] discusses the existence of equivalence in topologies of models

that are identiVable within the same data set. This would imply that mod-

els with a larger number of states are reducible. Keener [2009] illustrates the

possibility of reducing the complexity to stable invariant manifolds. This ap-

proach would reduce the dimension of the system without suUering from large

approximation errors. Furthermore, the time scale of the Markovian transitions

are much faster than the main time scales involved in the aggregate cell voltage

and ion behaviour [Aidley and StanVeld, 1996; Hille, 2001], which in turn oUers

options for model reduction.

Another diXculty in the acceptability of ion channel models is related to pa-

rameter identiVability. A model is said to have structurally unidentiVable pa-

rameters when multiple parameters are equally powerful in explaining ob-

served data in noise-free perfect experiments [Bellman and Åström, 1970; Wal-

ter and Pronzato, 1997; Balsa-Canto et al., 2010]. Since it is well-known that

a large segment of ion-channel models in the literature lack parameter identi-

Vability in noise experiments [Fink and Noble, 2009], fundamental studies on

structural identiVability are scarce due to the diXculty of solving the associated

set of symbolic equations [Csercsik et al., 2010, 2012].

It should be noted that most experimental protocols optimised to better the

signal-to-noise ratio [Beaumont et al., 1993; Willms et al., 1999], provide two

sets of separated data: one used to characterise the steady-state, and the other
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3.3. Gating of voltage-gated ion channels

the time constants, when dynamics are not suXciently fast to be disregarded.

With this in mind, Hodgkin-Huxley models employ empirical expressions for

both steps that are not always realistic [Willms et al., 1999]. On the other hand,

estimation in models based on Markov chains often make use of other types

of experimental protocols, and do not exploit the large range of data available

using the standard protocols.

In this section, we describe some of the popular representations of ion-channel

gating. We also give an approach to describe the stationary conductance of

an ion-channel gate with a small number of parameters. Also, the current

equation (equation 3.8) combines two distinct formulations, one for the channel

gating and the second for the transport. The choice of a particular model can

aUect the response and we seek to identify the diUerences in using a particular

transport expression (linear conductance or GHK equation) with a particular

gating model described in this section.

3.3.1 The Hodgkin-Huxley Approach

In the Hodgkin-Huxley formalism the “channel gates” are of two types: those

that activate the channels and those that inactivate them. The probability that

the channels are open (O) is thus a function of these gates:

Oc(V ) = [mc(t)]
ac · [hc(t)]bc ,

where for channel c, ac and bc are respectively the numbers and mc and hc

the fraction of activation and inactivation components in the conductive state.

The dynamics of each of the gating variables (mc, hc) may be described by a

Vrst-order diUerential equation:

dy

dt
=
y∞ − y
τy

, y ∈ {mc, hc} .

The steady state values of these variables are modelled by a Boltzmann-type

equation:

y∞ =
1

1 + exp
(
Vh,y−V

s

) ,
with the parameter Vh,y satisfying y∞(Vh,y) = 0.5 and s being the slope factor.

The slope factor is positive for activation gates and negative for inactivation
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3.3. Gating of voltage-gated ion channels

gates. The dependence of the time-constant, τy on voltage is mostly expressed

empirically, and one popular way of approximating the time constant is by a

Gaussian function [Izhikevich, 2007].

3.3.2 The Markov Approach

Background : Stable conformations of ion channels

The probability of a protein molecule adapting a particular conformation in

space is largely inWuenced by the electrical force-Veld surrounding it. When

subject to an electric Veld, charged groups within a protein will experience a

force and may attain a new electrostatic equilibrium by incorporating angular

changes in the dipoles associated with the peptide bond [Manna et al., 2007].

If the thermodynamic kinetic energy is large enough to overcome the energy

barrier, the protein takes up a new conformational state. Proteins can hence

take up a large number of conformational states separated by small energy

barriers. Despite the continuum of intermediate states, this dynamical system

would typically have only a few stable equilibria [Keener, 2009] and hence a

limited number of experimentally observable states.

Transition velocities The rate at which a protein switches between such sta-

ble states is mainly determined by the driving forces that help in overcoming

the thermodynamic energy barrier. However, there are some conformational

changes that are not regulated by either electric Veld or ligands. They may be

considered to have a constant energy barrier in the given environment, and

hence may be thought to have a uniform rate. Classical thermodynamics iden-

tiVes the rate of transition between two reaction states based on the free energy

barrier between them [Hänggi et al., 1990], as

k = k0e
−(4G)/RT (3.12)

where, k is the rate of transition between the two states, k0 is a constant, ∆G is

the free energy barrier between the two states, R is the universal gas constant

and T the absolute temperature.
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3.3. Gating of voltage-gated ion channels

Usually the free energy barrier may be dependent on the electric Veld, that is,

the membrane potential V . In this case we have

k(V ) = k0e
−∆G(V )/RT , (3.13)

Here ∆G(V) is the free energy barrier between the two states deVned by the

voltage [Milescu et al., 2005].

In the case of voltage based transition, the activation energy can be approx-

imated by using a Taylor series expansion [Destexhe and Huguenard, 2000;

Ozer, 2004], as follows:

∆G(V ) = a+ bV + cV 2 + · · ·

and the rate of transition k(V) may be written as,

k(V ) = k0e
−(a+bV+cV 2+··· )/RT . (3.14)

Here a corresponds to the free energy independent of the electric Veld and bV

corresponds to interactions between electric Veld and isolated charges and rigid

dipoles on the protein. The higher order terms correspond to the inWuence of

polarization and deformation within the protein structure as well as mechan-

ical constraints. These eUects are usually negligible as the trans-membrane

voltage variations are generally small [Destexhe and Huguenard, 2000].

In what follows, we are mainly interested in models where the free energy is

linear in the membrane potential. The eUect of temperature variations are not

relevant to model the system under consideration and may be neglected. In

this case, the following lemma, helps us derive a simple expression for voltage

regulated conformational transitions.

Lemma 1 Consider a set {∆G1(V ),∆G2(V ), . . . ,∆GM(V )} of activation ener-
gies, where each ∆Gi(V ) is aXne in V. Denote the corresponding transition rates

by {k1, k2, . . . , kM}. Then any expression of the form
∏P

p=1

(
kip (V )

kjp (V )

)
may be

expressed as e[(V−Vh)s]

Proof: see A.1
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3.3. Gating of voltage-gated ion channels

MarkovModels for conformation transitions A Markov process is a stochas-

tic series of events satisfying the property that the probability of the process be-

ing in a particular state depends only on the state of the system at the time that

immediately precedes the present state. By this property one can make predic-

tions for the process solely based on the present state. Molecular changes as-

sociated with the opening of an ion channel has been popularly demonstrated

with Markov models with discrete states [Kienker, 1989; Sansom et al., 1989;

Keener, 2009]. Consider a simple form of transition between an open and closed

state. Let O and C represent the probability that the molecule is in the corre-

sponding open and closed state at a given time. The transition between the two

states may be represented by a kinetic scheme, as follows

C
kOC // O
kCO
oo

where, kij represents the rate of transition from state j to state i. The above

kinetic scheme has a transition intensity matrix K,[
−kCO kOC

kCO −kOC

]
and a corresponding steady state probability for the channel to be in an open

state as

Oss =
1

1 + kOC
kCO

and using Lemma (1) we obtain,

Oss =
1

1 + e[(V−Vh)s]
. (3.15)

The expression is the modiVed Boltzmann’s expression used in modelling ion-

channel gating [Beyl et al., 2007; Xu and Lipscombe, 2001]. This sigmoidal

function of voltage is symmetric about the half-activation voltage, Vh. How-

ever, experimental data frequently show one or both of: (i) activation and inac-

tivation behaviour; (ii) asymmetric behaviour. Hence it is hard to Vt data with

a single Boltzmann function. This implies that use of only two states to de-

Vne the system with linear energy barriers, does not ably model experimental

observations.

Several possible ways to resolve this divergence between observed data and the

Boltzmann model are:
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3.3. Gating of voltage-gated ion channels

1. Model the system with several gates and diUerent transition rates be-

tween the Markovian open and closed states. When there are enough

channels so that the mean behaviour is very close to the deterministic

model, this approach is equivalent to a class of Hodgkin-Huxley models.

2. Model the system as a single gate having more than two macro-states

(stable conformational states)

3. Model the system as having transition rates that change with the dwell

times, leading to a fractal model

4. Model one gate with Markovian open and closed states where the energy

barrier includes non-linear terms with respect to voltage.

The third option is not considered as the system is being described as a time-

homogeneous Markov process. For the Vnal option, we show later that the use

of higher order non-linear energy models (equation 3.27) does not appear to

give simpler models, nor does it give more accurate Vts to experimental data.

3.3.2.1 Markov models with multiple gates

The opening of an individual gate may also be represented as a simple Markov

transition between two states, with voltage dependent transition rates α(V )

and β(V ) in the forward and reverse direction, respectively. We can represent

the dynamics of these transitions as,

Oc(V ) =

nc,m∏
i=1

[
m{i}c (V )

]
·
nc,h∏
j=1

[
h{j}c (V )

]
dy

dt
= αy · (1− y)− βy · y y ∈ m{i}c , h{j}c .

Here nc,m and nc,h represents the respective numbers of activation and inac-

tivation gates considered for the channel c. Approximations for these rates of

transition [Varghese and Boland, 2002] are,

α = α0 · exp

(
−zδV F

RT

)
= α0 · exp

(
−za

V

Vτ

)
(3.16)

β = β0 · exp

(
−z(1− δ)V F

RT

)
= β0 · exp

(
−zb

V

Vτ

)
(3.17)

Here, δ is a parameter that represents the location of a transition energy barrier

placed asymmetrically in the electric Veld of the membrane and thus, za and zb
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3.3. Gating of voltage-gated ion channels

are charges associated with this barrier. For activation gates, zam, zbm > 0 and

for inactivation gates, zah, zbh < 0.

Note that this model would give an open probability equivalent to the Hodgkin-

Huxley model for the condition, τy = 1/(α + β).

3.3.3 A Multiple Conformation Extension of the ‘ModiVed

Boltzmann Function’ for stationary conductance

Models developed on the basis of one Markov chain often have more than three

states for a good agreement with experimental observations [Kienker, 1989;

Milescu et al., 2005]. In such models the rate constant is often deVned with an

exponential or a Boltzmann function in voltage.

The simple two-state model involving the transition between the open and

close conformation, may be extended into a network of macro-states for further

analysis. Voltage-gated ion channels are characterised by a central pore formed

from the union of four similar subunits or domains [Aidley and StanVeld, 1996].

Each of these domains contains six transmembrane α helical structures (S1 to

S6), the segment S4 often acting as the voltage sensor [Bezanilla, 2000]. Such

a three dimensional entity often provide options for parallel transitions among

the various sub-states. In any case, transitions to the open-state are achievable.

The Master Equation and Transition Rates Here we consider the transition

network of the ion-channel as a system with a set of N stable states, marked

i = 0, 1, ..., n; with n = N − 1 closed or inactive states and 0 being the open

state. In the sections that follow, we consider models with only a single open

state, as it is logical with respect to the molecular structure of ion channels

and reWects Vne details in experiments [Liebovitch, 1989]. If Si denotes the

probability for the protein to be in state i at any time t, the system obeys the

master equation,

Ṡ = KS (3.18)

where, S = (O, S1, S2, ..., Sn) and K ∈ RN×N is a transition matrix with

kij ≥ 0 giving the rate of transit from state j to state i. The diagonal elements

satisfy, kii = −
∑N

i:i 6=j kij , to ensure the system evolves on the probability
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simplex. The entry kij 6= 0 if and only if there is a transition from state j to

state i. The stationary probability distribution S satisVes KS = 0, 1TNS = 1,

where 1N is the column vector of size N with all entries equal to one.

As is standard, we associated a directed graph with the Markov process de-

scribed by (3.18) consisting of the nodes {0, 1, . . . , n} with an edge from state

j to state i (i 6= j) if and only if kij 6= 0.

In what follows, we derive explicit formulae for the form of the stationary

vector in some simple cases; emphasising that in these cases the open state

probability O takes a particularly simple form. We also describe a general

condition on the structure of the graph associated with the Markov process

that is suXcient for this simple form to hold.

3.3.3.1 Examples with similar form of solution

Solution for a special case: A three state linear system with reversible tran-

sitions A three state transition diagram for channel opening is given below

C1

k21 // C2
k12
oo

k02 // O
k20
oo .

Here O represents an open state and C1 and C2 represent closed or inactive

conformations. The steady-state probability for the channel to be in the open

state may be deduced as

Oss =
1(

1 + k12
k21

+ k12
k21

k20
k02

) .
By using lemma 1, there exist Vh1 , s1, Vh2 , s2 such that

Oss =
1

1 + e[(V−Vh1 )s1] + e[(V−Vh2 )s2]
(3.19)

In the case of a slightly diUerent topology,

C1

k01 // O
k10
oo

k20 // C2
k02
oo

the probability of the channel to be in an open conformation would be

Oss =
1(

1 + k10
k01

+ k20
k02

)
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and once again, using lemma 1, the stationary probability of being open can be

represented in the form of equation 3.19.

Linear Networks The scheme above, can be generalized for n macrostates

depending on the position of the open state in the entire topology. A topology

involving the open state on the network extremum,

O
k10 // C1
k01
oo

k21 // C2
k12
oo Ci Cn−1

kn,n−1 // Cn
kn−1,n

oo

would have an open state stationary probability,

Oss =
1(

1 +
n∑
j=1

j∏
i=1

ki,i−1

ki−1,i

)
and a topology,

C1

k21 // C2
k12
oo

k32// · · ·Cp−1
k23

oo
k0,p−1 // O
kp−1,0

oo
kp+1,0// · · ·Cn−1
k0,p+1

oo
kn,n−1 // Cn
kn−1,n

oo

would yield,

Oss =
1(

1 +

p−1∑
j=1

j∏
i=1

ki,i+1

ki+1,i

+
n∑
j=p

j∏
i=1

ki+1,i

ki,i+1

)
In either case, with respect to the argument in lemma (1), the open state prob-

ability can be reduced and, in general, a linear system with N macro-states

related in order of their conformational transitions would have an open state

stationary probability,

Oss =
1

1 +
n∑
i=1

e(V−Vh,i)si

where, n = N − 1, is the number of transitions in the linear network.

Remark For the networks considered so far, rendering one of the transitions

irreversible, would make the network absorbing in nature. In other words,

the system would reach and never leave a Vxed conformation. Since such a

possibility is not physically reasonable for ion-channels under consideration,

this case is not considered further.
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Other networks :

More generally, consider a transition network in which a unique simple path

exists from every stable state to the open state; so in the directed graph associ-

ated with the matrix K, there is a unique path from every j 6= 0 to the node 0.

We also assume that the matrix K is irreducible [Horn and Johnson, 1985].

The celebrated Markov Chain Tree Theorem [Leighton and Rivest, 1986] allows

us to characterise the form of the steady state probability of the open state in

this case. This result is usually stated for column stochastic matrices or discrete

Markov chains; however, it is trivial to see that an exact analogue also holds for

continuous chains with matrices of the form K. We state a restricted version

of this result below but Vrst introduce some notation.

For the directed graph G associated with K, a rooted spanning tree Ti at

i ∈ {0, . . . , n} consists of the vertices {0, 1, . . . , n} and has the following prop-

erties:

1. Ti is acyclic

2. for every j 6= i, there exists exactly one outgoing edge from j

3. there exist no edge outgoing from i

We denote by w(Ti) the weight of Ti, which is given by the product of the

entries of K corresponding to the edges in Ti. For 0 ≤ i ≤ n, let Ti denote the

set of all directed spanning trees rooted at i, and deVne wi =
∑
Ti w(Ti). Note

that each wi will be a sum of terms of the form

ki1j1ki2j2 · · · kinjn (3.20)

The following result is now a simple re-wording of the Markov Chain Tree

Theorem as presented in Leighton and Rivest [1986] and elsewhere.

Theorem 1 Assume the matrix K is irreducible. The unique stationary probabil-

ity vector associated with K, π is given by

πi =
wi∑
j wj

where wi is deVned as above for 0 ≤ i ≤ n.
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If there is a unique path from every node j 6= 0 back to the node 0, then it

follows immediately that there is exactly one directed spanning tree T0 rooted

at 0 (which represents the open state). It then follows that the steady state

probability of the channel being in the open state is of the form

O =
w(T0)∑

j wj
. (3.21)

As there is only a single term of the form (3.20) in the numerator, it follows

readily by combining (3.21) with Lemma 1 that O can will take the form

O =
1

1 +
N∑
i=1

e(V−Vh,i)si

. (3.22)

A few examples of network topologies for which this form is guaranteed by

this analysis are illustrated in Vgures (3.1) and (3.2).

3.3.3.2 Numerical analysis and low order approximation

We have observed so far that, in many cases of interest, open-state probabilities

of ion-channels may be expressed in a similar form to the modiVed Boltzmann

equation, but with a sum of exponentials replacing the single exponential term

as in equation 3.22. The value of N is generally not less than the number of

transition macro-states. The ambiguity in the value of N (which is mainly

dependent on the network structure) together with computational and identi-

Vability issues for large N motivate us to consider models with small N . Of

course, when considering such approximations, we potentially open up inac-

curacies in the model [Liebovitch, 1989], and it is therefore important to check

that any such reduction still accurately captures the observable behaviour of

the system.

A good way of approximating the model would be to search for the minimum

number of exponential terms that yields a good Vt for experimentally observed

ion channel current-voltage characteristic data. Let us denote the M -vector of

ionic currents obtained from patch clamp experiments on a certain channel by

Im ∈ RM . Let Vm ∈ RM be the corresponding voltage vector. In order to Vt

these data to equation 3.22, the distance between the experimental data and the
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3.3. Gating of voltage-gated ion channels

model needs to be minimized. The distance may be measured as square of the

L2 norm:

J(Im, I(Vm)) = ‖Im − I(Vm)‖2
2 =

m∑
j=1

(
Imj − I(V m

j )
)2

where I(Vm) ∈ RM is the vector of ionic current predicted by the model, given

membrane potentials in the vector Vm. Imj and V m
j are respectively the jth

position in vectors Im and Vm. Let gmax be the maximal conductance of the

channel and V ∗, the equilibrium potential of the ion transported by the chan-

nel. Mathematically, this optimization problem can be formulated as follows:

min
{Vh,i}Ni=1,{si}Ni=1,gmax

J(Im, I(Vm)) (3.23)

subject to the conductance expression:

I(Vj) =
gmax(Vj − V ∗)

1 +
N∑
i=1

e(V−Vh,i)si

∀j = 1, ..,m (3.24)

and with bounds that are physiologically justiVed.

In this context, there are two signiVcant facets of this optimization problem (i)

Although the cost function is convex in I(Vj), the voltage-dependence is non-

linear and this can bring forth a possibility for non-convexity. (ii) The number

of dominant conformations that the protein adopts is usually unknown and

hence the order of the exponentials, N is unknown.

To guarantee that the global best Vt to the data is achieved, an initial guess at

the unknown constants should be carefully selected. It is possible to give an

initial estimate of Vh values from the current-voltage characteristics, positioned

centrally over the range of values at which the curve shows steady activation or

inactivation. The steepness of the tangent drawn at this estimated voltage may

be used as an initial estimate of the slope value. Alternatively, the recently de-

veloped global optimization Scatter Search based methodology, SSm GO [Egea

et al., 2009], can be used. This algorithm combines a population-based meta-

heuristic method with a local optimization.

Regarding the number of exponentials, the aim is to curtail the number of con-

formational transitions so that it leads to minimum parameters to Vt the data.
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3.3. Gating of voltage-gated ion channels

For this purpose an algorithm was implemented which calculates the global

optimum for several order of exponentials until an accurate Vt is obtained. As

the problem is ill-posed, we impose a numerical restriction as the stop criteria

for the optimizer. The algorithm starts at N = 1 and progressively increases

until the best Vt between the model and the data has a relative error less than

ε times the original data. The measure considered is again the square of the L2

norm and mathematically, this criterion may be formulated as:

J(Im, I(Vm)) < ‖εIm‖2
2

The choice of ε is subjective3 and for all the cases we have considered, a good

Vt is obtained by setting ε = 0.10.

Interestingly, for all these cases we have examined, a maximum of two expo-

nentials, i.e. N = 2 was required. The data could be accurately Vtted by using

a two dimensional state space (N = 1) for simple symmetric data-plots, and

for all other cases, a three dimensional state space (N = 2) could accurately

explain the data (see Vgure 3.3). This would imply that, to a large extent, volt-

age gated ion-channels can be adequately modelled as dwelling predominantly

among three diUerent macro-states even if they are able to change between

several conformations. The time that the protein dwells in some of these states

may be considerably smaller than that of the three dominant conformations.

The three macrostates may incorporate some of the eUects of the minor con-

formations rather than completely negating their inWuences; as reWected from

the data-Vts.

With the above argument we propose the following equation for the open state

probability corresponding to a three state system,

Oss =
1

1 + e[(V−Vh1 )s1] + e[(V−Vh2 )s2]
(3.25)

as a good approximation to represent the stationary probability of voltage gated

ion-channels to remain open. The channel current may hence be calculated

with the following equation:
3The optimizer included a global stochastic optimization, and a stop criteria was required

on the basis of a “reasonable behaviour” with respect to our objectives. Since the problem that
we pose to solve here poses uncertainty, the “reasonable behaviour” is quite subjective and we
choose to stop the optimization by providing a numerical target.
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3.3. Gating of voltage-gated ion channels
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Figure 3.3: Steady state Current-voltage relations for KCNH5 (a), KCNH7 (b) and KCNB1 (c)
class of potassium channels expressed in oocytes, from the study by Zou et al. [2003] Vtted
with equation 3.24
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3.3. Gating of voltage-gated ion channels

Ii =
gmax,i(V − V ∗i )

1 + e{V−Vh,1(i)}s1(i) + e{V−Vh,2(i)}s2(i)
(3.26)

where, Ii is the channel current; V ∗i , the reversal potential of ion i; V , the

membrane potential; gmax,i, the maximal conductance of the channel for the

ion i and Vh,1(i), s1(i), Vh,2(i), s2(i) being the parameters for the activation

function as deVned by equation 3.25.

Fitting of experimental data to the model Most papers in the literature fol-

low the voltage step protocol where steady-state voltage-current characteristics

are obtained independently of the ion channel dynamics. Several were selected

for utilizable data on single channel studies. We collect data from both, station-

ary conductance obtained from peak currents (with improved signal-to-noise

ratio Beaumont et al. [1993]) or from raw steady-state measurements. Data

were extracted from the published curves using the Enguage Digitizer 4.1. The

digitized data sets were Vt by equation 3.26. The global scatter search algo-

rithm, SSm GO [Egea et al., 2009], implemented in MATLAB, was used for

making the Vts. The resulting data Vts are presented in Vgures 3.3 and sum-

marized in table 3.1. In all cases, with N ≤ 2, we are able to represent the

observed data using the model structure proposed.

Table 3.1: Parameters of current-voltage characteristics of a few ion-channels from Zou et al.
[2003], Vtted using equation 3.25

Figure Channel type Vh1 (mV ) s1 (mV ) Vh2 (mV ) s2 (mV ) gmax (µA/mV )
3.3a Kv10.2 -64.5494 -0.17538 -29.4952 -0.02195 0.1009
3.3b Kv11.3 -41.6897 -0.11727 -6.79872 0.053344 0.0630
3.3c Kv2.1 40 -0.021769 3.51185 -0.13161 0.0476

Model IdentiVability A mathematical model implemented for a biological

phenomenon is assured to have uniquely estimated parameters if the model

structure ensures identiVability [Walter and Pronzato, 1997]. Conventionally,

ion-channel data has limited interpretations by producing indistinguishable

models [Kienker, 1989]. In-silico representation of ion-channel dynamics has

yet to come up with a model for the reason that the model structure needs to

be tweaked each time to incorporate experimental observation. This indeed is

a question of parameter identiVability. The model presented in this thesis, is

76



3.3. Gating of voltage-gated ion channels

found to have structurally output locally identiVable (s.o.l.i) parameters (see A.2

for formal deVnition), according to the following lemma.

Lemma 2 The model for ion channel open state probability described by means

of a Markov chain with three macro-states [equation (3.25)] is s.o.l.i by the Taylor

approximation of fourth order.

Proof: see A.2

3.3.4 The Thermodynamic Approach

The estimation of the open-state probability of voltage-gated ion channels to an

equation of the form (3.22) is equivalent to a steady-state approximation of the

Hodgkin-Huxley formalism. However, as we seek to look beyond the Hodgkin-

Huxley formalism for a good mechanistic description, the given model need to

be compared with eUorts made to represent the system on a realistic perspec-

tive. A thermodynamic formalism comes close to this requirement. Although

the fundamentals are in place, such models [Destexhe and Huguenard, 2000]

show very poor performance in even small extrapolations from the given data

(Figure 3.4 ). We would also argue that the biophysical basis of the multiple

conformation model is much clearer than that of a Taylor’s series dual con-

formation model used in the thermodynamic formalism [Destexhe and Hugue-

nard, 2000; Ozer, 2004].

Ozer [2004, 2007] modiVed the non-linear model to a functional form by lump-

ing the diUerent transitions in the protein to a single event. The model, which

uses a sum of Gaussian distributions, seems to give the best Vt for experimental

data. The steady-state open probability of ion-channels, written with respect

to this model, may be arrived using equation (8) of Ozer [2007] as,

O =
1

1 +

n∑
i=1

α0,ie
[(V−Vα,i)sα,i]2

n∑
i=1

β0,ie
[(V−Vβ,i)sβ,i]2

(3.27)

77



3.3. Gating of voltage-gated ion channels

Figure 3.4: Current-voltage relationship of ion-channels obtained from the studies of Zou
et al. [2003] Vtted with a third order non-linear model and our model presented in equation
3.24. The non-linear model appear to overVt the data. On extrapolation the non-linear model
behaves worse because in this particular case, the channel is not expected to conduct at higher
membrane potentials.

where, n was deVned as the number of distinct transitions deVned by diUerent

energy barriers. It should be noted that Ozer [2007] was also able to get accept-

able Vts with two transitions. The problem with this model, however, seems to

be in the existence of practically unidentiVable parameters, as is the case with

majority of the existing Markov Models [Fink and Noble, 2009]. Further, if no

manipulation is carried out to collect groups of parameters that are not identi-

Vable only with stationary data, the model requires the Vtting of a minimum of

twelve parameters (provided two macro-transitions (n = 2) gives an acceptable

Vt).

3.3.5 A diUerent approach towards modelling membrane

ion-conduction

The diUerent modelling paradigms in the literature that are popular with elec-
trophysiologists have their basis in the equivalent circuit representation popu-
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3.3. Gating of voltage-gated ion channels

larised by Hodgkin and Huxley. But there are certain observations with respect
to neuronal electrophysiology that these models do not explain [Heimburg,
2010b]. This includes

• Mechanical activation of neurons [Heimburg, 1998].

• Changes in membrane dimension observed with an action potential [Iwasa et al.,

1980].

• Axonal propagation of action potential [Heimburg and Jackson, 2005].

– These models assume that in unmyelinated axons a steadily propagating

solution exists, in which the shape of the voltage spike is preserved in time

• Reversible Heat:

– According to Hodgkin-Huxley, there should always be heat dissipation

(Ions moving from a region of high energy to low energy), which is much

larger than the capacitive energy of the pulse. Experimentally the net heat

release is found to be negligible [Ritchie and Keynes, 1985].

• EUect of anaesthetics on neuronal transmission [Overton, 1901].

These observations suggest several questions with respect to the modelling of

neuronal activity: (a) Does a constant membrane capacitance make sense? (b)

Is the transport of ions across the membrane fast enough to account for the

speed of nerve pulse propagation (c) Is the Hodgkin-Huxley formalism consis-

tent with the underlying thermodynamics? (d) Is neuronal activity really an

ion-channel phenomenon?

The last question is based on an observation that the lipid membrane itself can

conduct, subject to mechanical and electrical perturbations. Furthermore, this

conduction shows quantized current events, which is typical of ion-channels.

Also, the ionic permeability is observed to increase greatly at the melting tem-

perature of the membrane [Papahadjopoulos et al., 1973], as well as by doping

the membrane with a few diUerent proteins such as gramicidine A [Ivanova

et al., 2003].

These observation have led Heimburg [2010a], to a totally diUerent paradigm

for modelling ion-channels. According to this theory, ion-channels are formed

by the physical changes observed in the lipid membrane in response to changes

in a few diUerent thermodynamic variables around its melting transition. This

observation is based on the fact that lipid membranes have transition temper-
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3.4. An appropriate channel model

atures close to physiological temperatures. Protein-lipid interfaces are regions

experiencing high Wuctuations and the hydrophobic interactions between the

proteins and membrane can inWuence the melting behaviour in these inter-

faces. Accordingly, a protein with a large hydrophobic matching length gives

maximum likelihood of channel formation.

The theory is yet to gain ground in the area of membrane electrophysiology.

However, it remains a fact that no experiments have ever been conducted on

protein ion-channels in the absence of lipid membrane. If further experimental

work conVrms this model of condution, it will take some time to develop a

proper mathematical model for this type of ionic conduction.

3.4 A model for channel conduction appropriate

for describing the neuronal membrane system

From what we have seen so far, the transmembrane potential remains the most

signiVcant determinant of ion channel activity. The relationship of voltage and

the dynamics of ion-channels is complex and for this reason, there have been

numerous interpretations of this activity by diUerent approaches. The predom-

inant approach for modelling ion-channels in the past years have been based

on the Hodgkin-Huxley approach. Although several models that were devel-

oped since this model had better description of the mechanisms involved, the

Hodgkin-Huxley model remains the primary choice for many in the study of

neuronal physiology. This is essentially due to its ease of use and the rela-

tively small number of unknown parameters needed to describe the channel

behaviour.

Suggested alternatives for the Hodgkin-Huxley model also involve similar ki-

netic formalisms. Although there are other approaches emerging in this area

of study (for example, the lipid-ion channel model, see 3.3.5), they are yet to

reach maturity and need experimental validation. The utility of these models

depend on their predictive capabilities, as a good model with its estimated pa-

rameters should describe the channel dynamics well, even outside the range

in which the experiments are conducted. Thus experimental conditions along

with model formulation dictate the parameters estimated and in most cases,
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3.4. An appropriate channel model

limit the model’s ability to predict channel dynamics. From this perspective,

single-channel recordings have been considered as the best approach to ex-

plore channel kinetics [Sakmann and Neher, 2009]. However, the recordings

and analysis of this method is found to be extremely diXcult. Further, as dis-

cussed previously, when there are suXciently large number of channels on the

membrane, continuous deterministic models can easily approximate such phe-

nomena which otherwise require a stochastic model.

To develop a typical representation for the activity at a neuron’s membrane, we

need to consider many diUerent ion-channels. Since it remains an ambitious

procedure to experimentally determine the kinetic parameters for the activity

of a single type of ion-channel, determining the same for a set of channel types

becomes very complex. As a result, when models are developed to represent

neuronal activity, investigators frequently tend to use established models of

channel gating for that particular channel type from the literature. Hodgkin-

Huxley gating models appear to be the most popular in this respect on account

of vast data that has been generated with experiments designed on this concept.

In spite of the fact that the experiments need not necessarily be on the same

tissue type or physiological condition, such adaptations have given reasonable

representation of the electrophysiology in many neuron types. For our case,

of developing a model for SNc membrane electrophysiology, as we do not have

access to wet lab experiments, appropriate models and data in the literature are

used for the respective ion channels.

In our model for SNc neurons, we aim to have a model which gives an appro-

priate abstraction of the dynamics of ions involved in its characteristic electro-

physiology. For the current equation, we prefer the use of the electrodiUusion

equation (equation 3.11) of ionic conduction, since it is a more realistic repre-

sentation of ion Wow dynamics than the linear conductance relationship (equa-

tion 3.9). However, most models in the literature for various ion-channels have

their models for channel gating parametrised using the linear conductance re-

lationship. It is therefore important to know if the use of such parameters with

the electrodiUusion model yields some advantage.

Figure 3.5 shows the diUerence in the response of models with the same gating

equations and parameters, but with the two diUerent current equations, in the

81



3.5. Gating of Ligand-gated ion channels

−100 −80 −60 −40 −20 0 20 40 60
−1

−0.8

−0.6

−0.4

−0.2

0

V (mV)

N
or

m
al

is
ed

 P
ea

k 
C

ur
re

nt

 

 

Linear conductance model
Electrodiffusion model

Figure 3.5: Comparisson of responses when two diUerent forms of the current equation was
used along a gating scheme of the Hodgkin-Huxley model. Normalised peak inward currents of
sodium channels are plotted against the applied test potential, for a command voltage involving
a holding potential of -100 mV and depolarizing voltage pulses at the test potential of 5 ms
duration.
The gating of this fast transient Na+channel is described by the Hodgkin-Huxley approach
with,
m∞ = 1

1+exp(−(V+40)/15)

τm = 0.04 + 0.46 exp
(
−(V+38)2/900

)
h∞ = 1

1+exp((V+62)/7)

τh = 1.2 + 7.4 exp
(
−(V+67)2/400

)
[Izhikevich, 2007]

same physiological environment. The gating parameters have supposedly been

estimated with the linear conductance relationship. There is an apparent diUer-

ence in the response between the two current expressions and it would require

a diUerent set of parameters with the electrodiUusion equation to get a simi-

lar response of the linear relationship. Consequently, in the larger model that

we develop for the dynamics at the SNc membrane, for channels using gating

parameters estimated with the linear conductance relation, the same relation

(equation 3.9) is used for obtaining the channel current. For all other cases, we

employ the electrodiUusion relationship (equation 3.11).

3.5 Gating of Ligand-gated ion channels

Ligand gated ion-channels are transmembrane allosteric proteins that respond

to the binding of an activator molecule (often a neurotransmitter or Ca2+ ion)
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3.5. Gating of Ligand-gated ion channels

by opening a pore that enables the free diUusion of a selected ion. In neurons,

such channels are mostly localised near synapses and play an important role in

neurotransmission.

Although there are a few diUerent types of ligand gated channels found on neu-

ronal membranes, we concentrate on channels that have a role in the genera-

tion and sustenance of spontaneous oscillations. Ligand gated channels on the

dendrites, such as the NMDA receptor, have a major role in neuron to neuron

synaptic transmission. In this thesis, we aim to develop a model for the spon-

taneous pacemaking in SNc neurons and for this we use recordings obtained

from an experiment with an acutely isolated neuron. As the SNc neurons are

isolated they tend to lose minor dendrites and thus are free from the inWuence

of above mentioned ligand gated channels found at the synapses. Hence, such

ligand gated channels are not considered further.

3.5.1 Calcium gated channels

Calcium-activated potassium channels are gated by intracellular calcium ions,

thereby coupling intracellular calcium levels and membrane potential. During

the refractory period, the slow afterhyperpolarization that follows an action

potential is driven by the activation of calcium-activated potassium channels.

Afterhyperpolarization limits the Vring frequency of repetitive action poten-

tials (spike-frequency adaptation) and is essential for normal neurotransmis-

sion [Xia et al., 1998].

SNc dopaminergic neurons have at least two forms of potassium currents that

are controlled by intra-cellular calcium [Silva et al., 1990; Moran et al., 2006]:

(i) the apamin - sensitive, small-conductance (SK), calcium - activated potas-

sium current and (ii) the apamin - insensitive large-conductance (BK) calcium

- activated potassium current that is blocked by tetraethylammonium. The BK

channel current is less important for producing the slow underlying oscilla-

tions as they are less sensitive to cytosolic calcium and are hence excluded

from our model.

SK channels are voltage-independent and activated by sub-micro molar con-

centrations of intracellular calcium, and are not gated by calcium binding di-
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Figure 3.6: Comparison of the steady state response of the SK-type potassium channel using
the parameters from two diUerent observations. Broken lines represent response using param-
eters from Kuznetsova et al. [2010] and straight lines represent response using parameters from
Xia et al. [1998]. The Vgure on the right is an expanded view of the region of interest.

rectly to the channel α-subunits. Instead, the functional SK channels are het-

eromeric complexes with calmodulin, which is associated with the α-subunits

in a calcium-independent manner [Xia et al., 1998]. These two components are

thought to have been structurally and functionally paired at an early stage of

eukaryotic evolution. Hence it can be reasonably assumed that calcium indi-

rectly controls the functioning of these channels via calmodulin.

A popular way of modelling SK-channel gating is by using the Hill expression

[Wilson and Callaway, 2000]:

Ok,sk =
Cani

Kn
0.5 + Cani

(3.28)

Prior attempts to model the pacemaking of dopaminergic neurons [Wilson and

Callaway, 2000; Kuznetsova et al., 2010] have employed K0.5 of 0.25 µM and a

Hill coeXcient (n) of 4. An experiment conducted on SK channels co-expressed

with calmodulin [Xia et al., 1998], suggests parameters of K0.5 = 0.35 µM and a

Hill coeXcient = 4.2. A comparison of response generated by using these pa-

rameters are given in Vgure 3.6. Although the model show similar response at

high Ca2+ concentration, at the expected range of Ca2+ concentration (0.01µM

- 0.15µM ) the picture is diUerent. The model with parameters obtained in the

presence of calmodulin responds slowly to increasing Ca2+, which is expected

of a secondary inWuence.
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3.5. Gating of Ligand-gated ion channels

Chapter Summary In this chapter, we have presented aspects of modelling

passive ion transport on neuronal membrane, through ion-channels. From the

seminal work of Hodgkin and Huxley [1952], ion-channel research has evolved

to diverse paradigms of representing this protein activity. However, a represen-

tative model incorporating major characteristics is still elusive. Despite being

mechanistically limited the Hodgkin-Huxley models traditionally enjoy wide

acceptance and a huge knowledge-base has been developed for diUerent ion-

channels based on this approach. In this chapter, we have also attempted at de-

veloping a reduced Markov representation of ion-channel dynamics, but needs

actual experiments to analyse its utility. Some of the concepts discussed in this

chapter shall be put to use in subsequent chapters for developing a framework

to describe the pacemaking activity of SNc neurons.
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CHAPTER 4
Elements of facilitated transport

and calcium metabolism

This chapter discusses components of the model that are responsible for facilitated

and active transport across the membrane (pumps and exchangers) as well as cellu-

lar elements responsible for handling calcium

In the previous chapter we discussed ion-channels, that is, passive transporters

of ionic species. When materials are transported in and out of the cell, it is

important to retain a functional state that is characteristic to the cell. In partic-

ular, when the transport of ions has been the result of a stimulus, it is essential

to transfer back some of the ions to allow the cell to revert to the original

operating state. Again, when the ionic species in question is an entity like

calcium, which has an important signalling role within cells; there should be

mechanisms by which concentrations are restricted to levels required for nor-

mal functioning. In this section, we consider some of the important carrier

proteins signiVcant to our model. We also examine some of the mechanisms

that are important in calcium homeostasis.

Facilitated transport in excitable cells Extrusion of cations from cells against

their gradient eventuates essentially by two transport mechanisms. Calcium

ATPases of the plasma membrane (PMCA) and endoplasmic reticulum (ERCA
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Figure 4.1: A cartoon illustrating transporters on the plasma membrane.

or SERCA1) are active transporters which expel calcium from the cytoplasm

with energy from the hydrolysis of ATP (Vgure 4.1). Likewise, the sodium-

potassium (NaK) uses the energy from ATP hydrolysis to transport sodium

and potassium ions against their gradient. On the other hand, plasma mem-

brane sodium-calcium exchanger (NaCax) and mitochondrial sodium-calcium

exchanger (NaCam) are ‘anti-porters’ which utilize the gradient of sodium to

extrude calcium. A third mechanism exists in the mitochondria to transport

calcium released from the endoplasmic reticulum into its inner matrix. The

mitochondrial uniporter opens in response to a stimulus and allow the free

Wow of calcium along its gradient.

The PMCA are a high-aXnity calcium removal system that makes up for small

and moderate changes of calcium concentration from its control level. Exces-

sive changes in calcium levels are however handled by the low aXnity NaCax.

Again, the activation of PMCA is comparatively slow and hence the relative

contribution of NaCax to calcium removal is more important during the early

stages of calcium increase [Sedova and Blatter, 1999]. Further in this section,

we detail the functional aspects of these transport processes from an energetic

perspective.
1SERCA is the calcium pump on the sarcoplasmic reticulum (SR), the ER found in smooth

and striated muscles, which mostly function as a Ca2+ handling organelle. The calcium ATPases
of the ER are conventionally named SERCA as they were Vrst studied in muscle cells.
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4.1. Energetics of exchange

4.1 Energetics of exchange

The free energy changes in a system are directly related to the changes in

its molecular components. The Vrst derivative of the Gibbs free energy with

respect to the molar concentration of component ‘ni’ at constant temperature

and pressure
([

∂G
∂n

]
T,p

)
, is called its chemical potential µi (for neutral species)

or the electrochemical potential, µ̄i (for charged species). In the presence of an

electric Veld of potential Φ, the electrochemical potential of an ionic species ‘s’

is given by [Schultz, 1980],

µ̄s = µ0
s +RT ln[s] + zsFΦ

where µ0
s represents the standard chemical potential, R the gas constant, T

the ambient temperature, zs the valency of s, [s] the concentration of s and

F Faraday’s constant. Electrochemical potential is a measure of energy and

its diUerence acts as the driving force for the transport of molecules across a

given cross-section. Ionic transport across a membrane [Nelson and Cox, 2004]

is driven by the electrochemical gradient that exist along its thickness and a

transport against this gradient requires energy.

The energy required to translocate any ion s, from the cytosol (i) to the ex-

tracellular environment (e) is given by the diUerence in the electrochemical

potentials of the species across the membrane, or

∆Gs = µ̄s,e − µ̄s,i = RT ln
se
si
− zsFV.

The term V is the membrane potential, which is the diUerence in electrical

potential between the interior and the exterior of a biological cell. The Vrst

term can be written in terms of the Nernst potential of the ion (V̂s) and hence

we have,

∆Gs = zsF
(
V̂s − V

)
. (4.1)

For the case of co-transport, consider the transport of the ion s1 coupled to

the transport of a second ion, s2. The transport of the ion s1 is against its

gradient, say from the interior to the exterior of the cell where there is a higher

concentration of s1. The energy that this process requires is gathered from the

free energy gain associated with transport of s2 in the direction of its gradient.
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4.1. Energetics of exchange

For the transport to be favourable the energy gradient for s2 should be greater

than the gradient of s1, or,

ns2∆Gs2 > ns1∆Gs1 ,

where ns represents the moles of s transported. If “Γs1s2” is the coupling co-

eXcient for the exchange (moles of s2 exchanged per mole of s1 transported),

we have

zs2Γs1s2(V̂s2 − V ) > zs1(V̂s1 − V ).

For transporters that are molecular pumps (ATPases), the energy consumed per

pump cycle is determined from the ratio of the concentrations of MgATP2 to

its hydrolysis products:

∆GMgATP = ∆G0
MgATP +RT ln

[MgADP ][Pi][H+]

MgATP
. (4.2)

∆G0
MgATP the free energy under standard conditions, is related to the equilib-

rium constant for the hydrolysis reaction according to

∆G0
MgATP = −RT lnKMgATP.

Under normal physiological conditions of living cells ∆GMgATP is negative, im-

plying a release of energy.

Most often the transport of cations by ATPases is a co-transport. For exam-

ple, the sodium pump co-transports both Na+and K+ions against their gradient.

Calcium ATPases antiport a proton

∆Gpump = ξ1∆Gs1 + ξ2∆Gs2

where ξ1/ξ2 is the coupling ratio of transport. Under normal physiological con-

ditions when [−∆GMgATP < ∆Gpump], the pump runs in the forward direction.

When the free energy of hydrolysis drops such that ∆GMgATP + ∆Gpump = 0,

transport ceases as equilibrium is reached. When this total energy become

negative, the pump reverses and the electrochemical gradient of the ions can

be used to generate ATP. This is a condition that exists for ATP production
2ATP is mostly ionized in solution and in cells they exist mostly as a complex with Mg2+.

MgATP is the biologically active form of ATP.

89



4.2. The sodium calcium exchanger

in the proton pumps of the mitochondria. For the plasma membrane ATPases

this may be achieved only by manipulating the ion concentrations to abnor-

mal levels. This has been demonstrated for the sodium-potassium pump in an

experiment on erythrocytes [Glynn and Lew, 1970].

Factors inWuencing the rate of transport Although the rate of transport is

often dictated by the energy limits imposed by thermodynamics, there may

be other factors that need to be accounted for. Most mathematical models are

limited by the experiments they are based on, and no model to date accounts

for all the phenomena relevant to transporter kinetics. Some of the key features

that may inWuence a transporter model include:

• The aXnity of the cations and counter-ions to the binding site

• The voltage dependent transition : Kinetic models developed for trans-

porters using Markov jump schemes usually lump the voltage depen-

dence on select transitions

• The sequence of binding

• Presence of secondary modiVers that alter the binding rate (eg. Ca2+ bind-

ing on PMCA is modulated by calmodulin)

• Allosteric modulation of these enzymes by the cations themselves (eg.

intracellular Ca2+ modulate NaCax)

• Modulation by metabolites (eg. Glucose modulates NaK)

• Modulation by pH

In the following sections, we discuss the three transporters (NaCax, NaK and

PMCA) with a major role in the electrophysiology of neuronal membranes.

The functioning of these proteins have been described by a few diUerent math-

ematical formalisms that are either empirical or mechanistic. We give a basic

comparison of these models and look for an apt representation that may be

used in our model for SNc pacemaking.

4.2 The sodium calcium exchanger

NaCax is an antiporter responsible for transporting calcium across a membrane

against its gradient by using the electrochemical gradient of sodium. In the
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4.2. The sodium calcium exchanger

calcium exit mode, the exchange is deVned as an external sodium (Nae) de-

pendent calcium eYux, which implies a process of Ca2+ extrusion constrained

by the binding of Na+to the outward facing side of the protein. The hydroly-

sis of ATP is not required to power the calcium extrusion directly, although it

is necessary to maintain sodium gradient. Moreover, cytosolic ATP seems to

slightly inWuence the kinetics by phosphorylating the exchanger and altering

its aXnity for the ions [Blaustein and Lederer, 1999].

Scheme of events for NaCax exchange : Structural studies of the exchanger

suggests the existence of two major conformational states for the protein [Liao

et al., 2012]. In the Vrst state, the calcium binding site faces the interior of the

cell and in the second state, the calcium binding site faces the exterior. Such

observations suggest a cyclic, ping-pong-like enzyme mechanism in which ex-

tracellular sodium and intracellular calcium bind alternatively as the exchanger

cycle progresses [Kappl et al., 2001; Fujioka et al., 2000].

Coupling ratio : It has been long understood that the eYux of Ca2+ was ac-

tivated by the cooperative action of more than two Na+ions [Blaustein, 1974].

Further experiments on cardiac cells conVrmed that the coupling ratio between

Na+and Ca2+ was greater than 2, suggesting the exchange to be electrogenic 3.

Various experiments aimed at establishing the stoichiometry have suggested a

coupling ratio of 3 Na+:1 Ca2+. In some rare cases a ratio of 4 Na+: 1 Ca2+ has

been observed [Mullins, 1979].

Total change in the Gibb’s free energy. For a coupling ratio of 3 Na+:1 Ca2+,

we have ∆Gexchanger = 3∆GNa −∆GCa and hence by equation 4.1, we have

∆Gnaca = F (3V̂Na − 2V̂Ca − V ) = F (V̂naca − V ). (4.3)

Here, V̂naca is the eUective reversal potential, a resultant of the gradient of

sodium in the forward direction and the gradient of calcium in the reverse
3A transport of cations is said to be electro-neutral when the Wow of charges in one direc-

tion is balanced by the counterWow of an equal number of charges in the opposite direction.
Otherwise the transport is said to be electrogenic
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4.2. The sodium calcium exchanger

direction and the diUerence, V̂naca − V , gives the apparent driving force for

transport. Calcium eYux would be favoured when V̂naca > V and in the op-

posite case, calcium entry to the cell would be favoured. When a neuron is

not excited, V̂naca is more positive than the resting membrane potential; the

exchanger will work in calcium extrusion/ sodium inWux mode in resting neu-

rons. During an action potential NaCax brieWy works in calcium entry/ sodium

exit mode, as the membrane potential changes signiVcantly.

Voltage Dependence : The binding of the individual cations to the exchanger

is generally considered voltage independent (although mobility of cations,

along with the binding and associated changes in protein conformation, are

to some extent inWuenced by the changes in the voltage across the membrane)

and these steps are mostly deVned by the ion-protein aXnity. Models of the

exchanger that use the Markov scheme, usually assign the voltage dependence

to steps that involve a major conformational change of the protein.

For a full elementary charge crossing the electric Veld with a single-rate lim-

iting transition, the voltage dependence of Na+-Ca2+ exchange currents have

been observed to be less steep than one would expect from Eyring’s transition-

state theory [Eyring, 1935],

rate ∝ exp

(
eV

RT

)
.

Most models of the exchanger incorporate a parameter δ, to accommodate this

observation.

rate ∝ exp

(
δeV

RT

)
.

The parameter δ has been best explained as an entity that represents the po-

sition of the energy-barrier located asymmetrically in the electric Veld of the

cell membrane. Based on their experimental observations, Niggli and Lederer

[1993] notes a diUerence in values for the energy-barrier position parameter

δ, in the forward and reverse directions. Accordingly the report indicates that

a single asymmetrically located energy barrier is not suXcient to explain the

molecular mechanism of the exchanger. This suggests a need for having dis-

tinct voltage dependent steps in the conformational change of the protein and
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4.2. The sodium calcium exchanger

strongly supports the existence of a cyclic mechanism, which we later adopt in

the ping-pong model.

Dependence on intracellular Ca2+: The concentration of Ca2+ within the cell

is quite small, and hence it is quite possible that the net rate of transport is lim-

ited by the binding of intracellular calcium to the transporter. Further, there is

evidence for the transporter being activated at an allosteric site by intracellu-

lar Ca2+ [Bers et al., 2003]. This allosteric activation4 to some extent biases the

exchanger to operate in the forward mode. Also recent evidence (e.g. [Beaugé

and DiPolo, 2009]) points to the signiVcance of this regulatory mechanism in

establishing the ping-pong exchange scheme.

Dependence on extracellular Ca2+ and Na+: At the extracellular facing side

of the protein the existence of competitive binding between Ca2+ and Na+has

been reported in Blaustein and Lederer [1999].

Dependence on intracellular Na+: Na+seems to inhibit the exchanger at high

concentration at the intracellular side as noted in some experiments [Blaustein

and Lederer, 1999]. However, in these experiments concentrations used are way

beyond what would be observed in normal physiology. For this reason, this

eUect need not be considered for modelling the exchanger under the normal

physiological range of Na+.

4.2.1 Mathematical models of sodium-calcium exchange

Research on ion-transport across membranes is dominated by studies on ion-

channels and for this reason, the standards of experimenting and modelling

are based on the research on these entities. Modelling facilitated transport of

antiporters, such as sodium-calcium exchangers, is a little more complicated,

and experiments on the lines of ion-channels that are conducted for such pro-

teins oUer limited insights to their function. The various features that we have
4Allosteric activation refers to the activation of a protein by an eUector molecule at a site

other than its active site.
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discussed above cannot easily be incorporated in such models. For this reason,

the functioning of these proteins are expressed in diUerent ways. Such models

are often an outcome of attempts at modelling cardiac pacemaking and may be

typically empirical such as the popular model of Luo and Rudy [1994] or phe-

nomenological as the Kyoto model [Matsuoka et al., 2007]. In this section, we

discuss some of the popular attempts to represent exchanger function.

Quantitative models of sodium calcium exchange predict the exchanger current

to be the diUerence between the unidirectional calcium Wuxes or

Inaca = κnaca (Calcium inWux - Calcium eYux) .

For the exchanger, with a transport stoichiometry,

3Na+
e + Ca2+

i

α // 3Na+
i + Ca2+

e
β
oo ,

the transport is deVned by the concentration diUerences of Na+and Ca2+ across

the membrane. Most models of NaCax takes into account the dependence of

such transitions on the electric Veld, represented by the membrane potential

V . In general, we may relate the activation energy for this transition to voltage

based on Eyring’s rate theory [Eyring, 1935] and thus, rates of calcium trans-

port are represented as,[
dCa

dt

]
entry

= βNa3
iCae

= λNa3
iCae exp

[
δV

V̂τ

]
and [

dCa

dt

]
eYux

= λNa3
eCai exp

[
(δ − 1)V

V̂τ

]
,

where δ is a factor due to the position of the energy barrier located asymmet-

rically in the electric Veld of the membrane. An approximate value for δ is 0.35

[Luo and Rudy, 1994].

Hence,

Inaca = knaca

(
Na3

iCae exp

[
δV

V̂τ

]
−Na3

eCai exp

[
(δ − 1)V

V̂τ

])
. (4.4)
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DiFrancesco-Noble model This popular model is a simpliVcation of an ear-

lier model by Mullins [1977]. In Mullins’ model, an analytical expression for

the exchange is developed from a model that requires binding of Na+onto the

carrier protein, to induce Ca2+ binding and subsequent translocation. The ex-

pression provides a quantitative description of the Ca2+ Wuxes for the system at

equilibrium.

The elaborate mathematics of the Mullins model is simpliVed by DiFrancesco

and Noble [1985] for their model on cardiac pacemaking. In this model, with a

coupling ratio of 3, the exchanger current may be represented by,

Inaca = κnaca

exp
(
δ VVτ

)
Na3

iCae − exp
(

(δ − 1) VVτ

)
Na3

eCai

(1 +Dnaca [Na3
iCae +Na3

eCai])
(
1 + Cai

0.0069

) . (4.5)

In these equations δ (approximately 0.35) is the position of the energy barrier

that controls the voltage dependence of the exchanger. Dnaca, the denominator

factor for sodium-calcium exchange current, has a value of 0.001 in the model.

Luo-Rudy model According to Luo and Rudy [1994], DiFrancesco and Noble

model does not correctly represent the dependence on external Na+and Ca2+.

Furthermore, it does not consider the saturation of the exchanger current at

very negative potentials. Their modiVcation of the D-N model is as follows,

Inaca = κnaca
1

K3
m,Na +Na3

e

1

Km,Ca + Cae

1(
1 +Ksat exp

(
(δ − 1) VVτ

))
[
exp

(
δ
V

Vτ

)
Na3

iCae − exp

(
(δ − 1)

V

Vτ

)
Na3

eCai

]
,

(4.6)

where the parametersKm,Na andKm,Ca are the respective dissociation constants

of external Na+and Ca2+ (87.5 mM and 1.38 mM respectively);Ksat is a saturation

factor and δ is the position of the energy barrier.

The saturation eUects observed by Luo and Rudy are later critiqued by Niggli

and Lederer [1993] as an error in conclusion made from experimental observa-

tions. They account for the saturating eUects observed in these experiments by

correlating it with changes in sub-sarcolemmal calcium concentrations due to

physical diUusion limits.
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Endresen model Endresen et al. [2000] put forth a model that is derived di-

rectly from free energy considerations. His model may be derived from the

general equation (equation 4.4) for the sodium-calcium exchange with a value

of δ = 0.5

In this case, the equation 4.4 may be written as

Inaca = k1

√
Na3eNa

3
iCaeCai

[
Na

3
2
e Ca

1
2
i

Na
3
2
i Ca

1
2
e

exp

(
0.5V

V̂τ

)
− Na

3
2
i Ca

1
2
e

Na
3
2
e Ca

1
2
i

exp

(
−0.5V

V̂τ

)]

= k1

√
Na3eNa

3
iCaeCai

[
exp

(
V − 3V̂Na + 2V̂Ca

2V̂τ

)
− exp

(
−V − 3V̂Na + 2V̂Ca

2V̂τ

)]

= knaca

√
Na3eNa

3
iCaeCai sinh

(
V − 3V̂Na + 2V̂Ca

2V̂τ

)
.

Kyoto model The Kyoto model [Matsuoka et al., 2007] of transport of Ca2+

and Na+ions across the exchanger involves the transition of the protein among

six diUerent protein binding states. States E1 and E2 correspond to the two

diUerent conformation of the protein. State E†2 is achieved with the binding of

Na+on E2 at the extra-cellular binding site. With suXcient activation by the

external electric Veld, the protein changes conformation to E†1 exposing the

bound Na+to the intra-cellular space. Dissociation of the bound Na+yields state

E1. Intracellular Ca2+ attaches toE1 to form stateE∗1 . This state can revert back

to the original conformation by a voltage dependent transition and dissociation

of bound Ca2+ on the extra cellular side.

This six state model can be easily be lumped into a two state model as seen in

Vgure 4.2. The following equations describe the model.

Let e1,e∗1,e†1,e2,e∗2 and e†2 represent the fraction of exchanger proteins in the re-

spective states. We have

y = e∗1 + e1 + e†1, 1− y = e∗2 + e2 + e†2.

If kd,cai, kd,cae, kd,nai and kd,nae represent the dissociation constants of the corre-

sponding ions, we have
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kd,cai =
e1Cai
e∗1

, kd,cae =
e2Cae
e∗2

, kd,nai =
e1Na

3
i

e†1
, kd,nae =

e2Na
3
e

e†2
.

If P (e∗1) represent the fraction of lumped conformation, y in the E∗1 state, we

have

P (e∗1) =
e∗1

e∗1 + e1 + e†1
=

Cai
kd,cai

Cai
kd,cai

+ 1 +
Na3i
kd,nai

=
1

1 + kd,cai

Cai

(
1 +

Na3i
kd,nai

) =
1

1 + kd,cai

Cai

(
1 +

[
Nai
kd,nai

]3
) ,

similarly, we have

P (e†1) =
1

1 +
[
kd,nai

Nai

]3 (
1 + Cai

kd,cai

) ,
P (e∗2) =

1

1 + kd,cae

Cae

(
1 +

[
Nae
kd,nae

]3
) ,

P (e†2) =
1

1 +
[
kd,nae

Nae

]3 (
1 + Cae

kd,cae

) .
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Figure 4.2: Sodium-calcium exchanger transport scheme according to the Kyoto model. The
six state model of Na+-Ca2+ exchange (left) was lumped into a two state model (right) assuming
that the ion-binding steps are fast and the trans-membrane steps are rate limiting.
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parameter value units
kdne 87.5 mM
kdni 8.75 mM
kdce 1.38 mM
kdci 0.00138 mM
δ 0.32 -

Table 4.1: Parameters for the reduced two-state Kyoto model for sodium calcium exchanger
from Matsuoka et al. [2007]

The apparent rates of transitions between the two states of the lumped model

is given by

k+ = α+P (e∗1) + β−P (e†1),

k− = α−P (e∗2) + β+P (e†2),

where α and β are transition rates between the two major conformations The

subscript ‘+’ signiVes the Ca extrusion /Na inWux mode and vice-versa. The

model attributes the charge carrying step to the transport of Na+ions and hence

the transport rates and current is written as

α+ = 1, α− = 1,

β+ = exp

(
−δ V
Vτ

)
β− = exp

(
(1− δ) V

Vτ

)
,

Inaca = knaca

[
β−e

†
1 − β+e

†
2

]
= knaca

[
β−P (e†1)y − β+P (e†2)(1− y)

]
. (4.7)

The diUerent parameters of the model are given in table 4.1

The modiVed Kyoto Model The original Kyoto model employs the rates in

such a way that both α+ and α− are both assigned a value of 1. This would only

be true if these rates were voltage-independent. However various experiments

suggest that Ca2+ translocation is indeed voltage dependent Kappl et al. [2001].

For this reason, for a realistic consideration, the rates are modiVed by assigning

the voltage dependence of the transport on these rates as well [Francis et al.,

2012]. Thus,

α+ = exp

(
−δα

V

Vτ

)
, α− = exp

(
(1− δα)

V

Vτ

)
,
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β+ = exp

(
−δβ

V

Vτ

)
, β− = exp

(
(1− δβ)

V

Vτ

)
,

where the parameters δα and δβ denote the position of the free energy barrier

located asymmetrically in the electric Veld.

Kyoto model modiVed with Ca2+i allosteric eUects The Markov model de-

scribed above may be modiVed to incorporate the allosteric regulation of the

exchanger by intracellular Ca2+ [Fujioka et al., 2000]. According to this model,

which is modiVed for a coupling ratio of 3:1, we have two additional inactive

states I1 and I2. The exchanger enters the inactive state I1 from state E†2. The

exchanger may enter the I2 state from any of the E2 states but not from the E1

states (see Vgure 4.2). With these additional states, the equations are modiVed

as follows:

dI1

dt
= a1 · P (e†2) · (1− y − I1 − I2)− b1 · I1,

dI2

dt
= a2 · (1− y − I1 − I2)− b2 · I2,

where the allosteric binding rates are given by

f =
Cai

Cai + 0.004
,

a1 = 0.002 · f + 0.0015 · (1− f),

b1 = 0.0012 · f + 0.0000005 · (1− f),

a2 = 0.00003 · f + 0.01 · (1− f),

b2 = 0.09 · f + 0.0001 · (1− f).

4.2.2 A comparison between the diUerent models of

sodium-calcium exchange

A basic comparison between the models discussed in this section are provided

in table 4.2.

The diUerences in the response of these models to the control variables i.e. the

voltage and the concentrations of the participating cations are understood from
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Model 1 2 3 4 5

Voltage dependence yes yes yes yes yes

InWuence of cations ∗

Ca2+
i (a) (a) (a) (b) (b)

Ca2+
e (a) (b) (a) (b) (b)

Na+
i (a) (a) (a) (b) (b)

Na+
e (a) (b) (a) (b) (b)

Allosteric eUect of Ca2+
i yes∗∗ no no no yes

Saturation at no yes no no no
higher voltages
∗ The dependence of exchanger current on the respective cations is based on
their concentration. Additionally their binding onto the protein can have an
inWuence on the model. Here models are classiVed based on how model incor-
porates these concepts. (a) suggest that the model has a concentration term
alone, (b) suggests that model includes an aXnity parameter in addition to the
concentration term
∗∗ One of the terms in the DiFrancesco-Noble equation can be considered as a
representation of the allosteric eUect of Ca2+

i

Table 4.2: A comparison between diUerent models for NaCax (1) DiFrancesco-Noble model (2)
Luo-Rudy model (3) Endresen model (4) Kyoto model/modiVed Kyoto model (5) Kyoto model
with allosteric calcium inhibition

the responses of these variables to a step change in voltage. For a step change

of voltage in the physiological range, we Vnd comparable responses from these

models (Vgure 4.3a). There is a notable diUerence in the response from the

model of Endresen and the original Kyoto model. The exchanger is expected

to exhibit a change of operating direction at positive potentials. However, the

Endresen model does not exhibit this. The original Kyoto model displays a

dramatic response to change in voltage and has relatively smaller current com-

pared to rest of the models around the resting potential (which may be a nu-

merical issue with respect to the scaling, but if appropriately scaled that would

make the exchanger have large currents at positive potentials or in other words

this model would work heavily in the opposite direction at an action potential

overshoot ). However the modiVed Kyoto model, which includes all the volt-

age dependencies, appears to behave reasonably with respect to changes in the

membrane potential.

All models are comparable with changes in the concentration of intracellular

Na+, extracellular Ca2+ and Na+, in the expected physiological range (Vgures
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(a) InWuence of membrane potential

(b) InWuence of intracellular Ca2+

Figure 4.3: Comparison of models for sodium-calcium exchanger : InWuence of voltage
and ionic-concentrations on the response from the diUerent models of the sodium-calcium
exchanger. The diUerent models considered include the Luo-Rudy exchanger model (LR),
DiFrancesco-Noble model (DN), Endresen model (Endr) and the Kyoto model (Kyotooriginal)
as well as its modiVed version used in our chapter (KyotomodiVed) and the modiVcation with the
allosteric activation of Cai (Kyotoallo)
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(c) InWuence of intracellular Na+

(d) InWuence of extracellular Ca2+

Figure 4.3: Comparison of models for sodium-calcium exchanger - continued

102



4.2. The sodium calcium exchanger

(e) InWuence of extracellular Na+

Figure 4.3: Comparison of models for sodium-calcium exchanger - continued

4.3c,4.3d and 4.3e). In the case of intracellular Ca2+ (Vgure 4.3b), the Endresen

model displays little eUect. The rest of the models are comparable, however

the dynamics involved make the Markov models slower than the rest. This

can prove detrimental when Ca2+
i goes to zero, as the steady state models in-

stantly reverse direction whereas the Markov model continues the exchange

numerically, leading to negative concentrations. The allosteric modiVcation of

the Kyoto model of the exchanger does not seem to give any distinct advan-

tage in this situation. Moreover, the exchangers are expected to work more

rapidly than pumps and hence it would be ideal to have a model that shows

instantaneous response to changes in concentrations.

The selection of a suitable model of NaCax to be included in developing a model

for membrane pacemaking in SNc neuron has to be made based on the max-

imum mechanistic criteria it would satisfy and minimum modelling and dy-

namic problems it would impose. The Endresen model is ruled out because

it does not bring about the reversal of direction of the protein’s operation at

positive potentials. The Luo-Rudy model has an unwanted saturation criteria,

the original Kyoto model has a problem with voltage dependence and the al-
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losteric Kyoto model does not seem to add any distinct advantage other than

making the modelling more complex. The DiFrancesco-Noble model has the

advantage of having a faster response, a feature that is expected of NaCax, com-

pared to the modiVed Kyoto model, in spite of its mechanistic detailing. The

DiFrancesco-Noble model will therefore be considered later in the full model

of neuronal electrochemical dynamics.

4.3 The sodium-potassium ATPase

The sodium pump or the Na+/ K+ATPase is responsible for the formation and

maintenance of electrochemical gradient in animal cells. The enzyme trans-

ports three molecules of Na+from and two K+into the intracellular space for

every molecule of ATP hydrolysed. Experiments indicate that the rate of trans-

fer of this ATPase shows very little dependence on voltage. The main step in

the chain that shows some voltage dependence is the dissociation of Na+into

the external space Rakowski et al. [1997].

Scheme of events Rakowski et al. [1997] gives a good picture of the mecha-

nism by which these pumps function. The sodium pump exists in two confor-

mational states characterized by diUerences in their interactions with the ions

and ATP. Sodium and ATP bind with very high aXnity to the E1 conformation.

Equilibrium binding of two sodium ions facilitates the electrogenic binding of

the third sodium ion. The phosphorylation of the enzyme in this bound state

leads to a conformational change, which renders the sodium ions open to the

external space. Unbinding and release of sodium ions leads to the binding of

potassium ions on to the E2 conformation. This then leads to the dephosphory-

lation of the enzyme and a conformational change. The equilibrium binding of

the ATP molecule to this structure promotes the release of the potassium ions

and completes the cycle (see Vgure 4.4).

In this cycle, the rate limiting step is the release of the Vrst sodium ion into

the extracellular space. This is mostly because release of this Vrst ion is based

on the prevailing electro-chemical forces. The release of next two Na+ions
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4.3. The sodium-potassium ATPase

are typical dissociation. For this reason, the voltage dependence of the pump

function is mostly assigned with the Vrst step.

Coupling ratio A coupling ratio of 3 Na+:2 K+is well accepted.

Total change in the Gibb’s free energy If V̂atp represents the voltage equiv-

alent of free energy change associated with ATP hydrolysis (see equation 4.2),

we have ∆Gatp = F V̂atp. Therefore, for a coupling ratio of 3:2, the total change

in Gibbs free energy is

∆Gnak = ∆Gatp + 3∆GNa + 2∆GK = F (V̂atp + 3V̂Na − 2V̂K − V ).

For the normal levels of molecules implied in ATP hydrolysis within the cells,

∆Gnak is usually negative and favours the spontaneous operation of this pump.

4.3.1 Mathematical models of the sodium-potassium pump

D’Francesco-Noble model The model of DiFrancesco and Noble [1985], pro-

vides a Michaelis - Menten type dependence on the extracellular potassium and
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Figure 4.4: Functioning of sodium-potassium ATPase captured as an eight state Markov
model. The scheme of events may be lumped into two-states that reWect the major conforma-
tional change of the protein
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4.3. The sodium-potassium ATPase

intracellular sodium. The current is given by the equation

Inak = Knak
1

1 +
(
km,ke

Ke

) 1

1 +
(
km,nai

Nai

) . (4.8)

The parameters are given in table 4.3

Luo-Rudy model This model considers only the forward functioning of the

pump and uses a coupling ratio of 3 Na+: 2 K+. The model is an improvement

over the DiFrancesco and Noble [1985] model by including a function that is

voltage dependent.

Inak = Knak · fnak
1

1 +
(
km,nai

Nai

)1.5

1

1 +
(
km,ke

Ke

) . (4.9)

Here, fnak is a function that gives the fraction of functioning pumps at the given

voltage,

fnak =
1

1 + 0.1245 exp
(
−0.1 V

Vτ

)
+ 0.0365 · σnak exp

(
− V
Vτ

) ,
and σnak is a factor that relates the inWuence of voltage dependence on the

external sodium concentration,

σnak =
1

7

[
exp

(
Nae
67.3

)
− 1

]
.

The diUerent parameters of the model are given in table 4.3.

Endresen model The model of Endresen et al. [2000] considers only the free

energy changes associated with the transport. According to this model the

pump current is given by

Inak = Knak tanh

(
V + 2V̂K − 3V̂Na − V̂atp

2Vτ

)
. (4.10)
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4.3. The sodium-potassium ATPase

parameter value units
DiFrancesco and Noble [1985] model
km,nai 40 mM
km,ke 1 mM
Luo and Rudy [1994] model
km,nai 10 mM
km,ke 1.5 mM
Endresen et al. [2000] model
V̂atp -450 mV

Table 4.3: A list of parameters used in diUerent models of the sodium-potassium pump

Kyoto model The Kyoto model for NaK may be derived similar to the way

in which the sodium-calcium exchanger has been done in the previous section.

The important equations for this model (Vgure 4.4) are given below

Inak = Knak[α+P(E∗1)y − α−P(E∗2)(1− y)], (4.11)

dy
dt = k−(1− y)− k+y,

k+ = α+P(E∗1) + β−P(E†1), k− = α−P(E∗2) + β+P(E†2),

P(E∗1) = 1

1+ 4.05
Nai

(
1+

Ki
32.88

) , P(E†1) = 1

1+ 32.88
Ki

(
1+

Nai
4.05

) ,

P(E∗2) = 1
1+ 69.8

NaeU
(1+ Ke

0.258)
, P(E†2) = 1

1+ 0.258
Ke

(
1+

NaeU
69.8

) ,

NaeU = Nae exp(−0.82 VVτ ),

α+ = 0.37
1+0.0.094/[atp] , α− = 0.04 (ms−1).

Smith-Crampin model Smith and Crampin [2004] made use of a lumping

scheme to produce a 4-state model from a 15-state model (Vgure 4.5) while

maintaining the thermodynamic properties in the original model of Läuger and

Apell [1986]. The pump current according to this model can be summarised as

follows

Inak = Knak · vcyc (4.12)

where the clockwise pump rate vcyc is given by

vcyc =
α+

1 α
+
2 α

+
3 α

+
4 − α−1 α−2 α−3 α−4

Σ
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4.3. The sodium-potassium ATPase

Figure 4.5: The Smith-Crampin model of sodium-potassium ATPase. The 15 state model on
the left and the reduced 4-state model on the right

Σ = α−1 α
−
2 α
−
3 + α+

1 α
−
2 α
−
3 + α+

1 α
+
2 α
−
3 + α+

1 α
+
2 α

+
3

+α−2 α
−
3 α
−
4 + α+

2 α
−
3 α
−
4 + α+

2 α
+
3 α
−
4 + α+

2 α
+
3 α

+
4

+α−3 α
−
4 α
−
1 + α+

3 α
−
4 α
−
1 + α+

3 α
+
4 α
−
1 + α+

3 α
+
4 α

+
1

+α−4 α
−
1 α
−
2 + α+

4 α
−
1 α
−
2 + α+

4 α
+
1 α
−
2 + α+

4 α
+
1 α

+
2 .

The diUerent rates are given by

α+
1 = k+1 Na

3
i

(1+Nai)3+(1+Ki)2−1
α−2 = k−1 [MgADP ]

α+
2 = k+

2 α−2 = k−2 Na
3
e

(1+Nae)3+(1+Ke)2−1

α+
3 = k+3 K

2
e

(1+Nae)3+(1+Ke)2−1
α−3 = k−3 [Pi][H+]

1+MgATP

α+
4 = k+4 MgATP

1+MgATP
α−4 = k−4 K

2
i

(1+Nai)3+(1+Ki)2−1

and the dimensionless concentrations are given by

Nai =
Nai
Kd,nai

Nae =
Nae
Kd,nae

Ki =
Ki

Kd,ki
Ke =

Ke

Kd,ke
MgATP =

[MgATP ]

Kd,mgatp
.

The voltage dependence is contained within the sodium transport function of

the pump as,

Kd,nae = K0
d,nae exp

(
(1 +4)V

3Vτ

)
Kd,nai = K0

d,nai exp

(
4V
3Vτ

)
,

where 4 is the voltage dependence partition factor. The parameters of this

model are given in table 4.4
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4.3. The sodium-potassium ATPase

parameter value units parameter value units
Smith and Crampin [2004] model Oka et al. [2010] model
k+

1 1.05 ms−1 k+
1 1.253 ms−1

k−1 0.172 ms−1mM−1 k−1 0.139 ms−1mM−1

k+
2 0.481 ms−1 k+

2 0.139 ms−1

k−2 0.04 ms−1 k−2 0.014 ms−1

k+
3 2 ms−1 k+

3 6.96 ms−1

k−3 79.3 ms−1mM−2 k−3 13920 ms−1mM−2

k+
4 0.32 ms−1 k+

4 0.522 ms−1

k−4 0.04 ms−1 k−4 0.348 ms−1

K0
d,nai 2.49 mM K0

d,nai 5 mM
K0

d,nae 15.5 mM K0
d,nae 26.8 mM

Kd,ki 0.5 mM K0
d,ki 18.8 mM

Kd,ke 0.213 mM K0
d,ke 0.8 mM

Kd,mgatp 2.51 mM Kd,mgatp 0.6 mM
4 -0.031 - 4Nai -0.14 -

4Nae 0.44 -
4Ki -0.14 -
4Ke 0.23 -

Table 4.4: A list of parameters used in two diUerent Markov models of sodium-potassium
pump

Oka model The Smith and Crampin [2004] model has been modiVed by Oka

et al. [2010] to include the dependence of voltage on both the internal and

external binding rates of ions as,

Kd,nae = K0
d,nae exp

(
4NaeV

Vτ

)
Kd,nai = K0

d,nai exp

(
4NaiV

Vτ

)
Kd,ke = K0

d,ke exp

(
4KeV

Vτ

)
Kd,ki = K0

d,ki exp

(
4KiV

Vτ

)
The parameters of this model are given in table 4.4

4.3.2 A comparison between the diUerent models of

sodium-potassium pump

A basic comparison between the models discussed in this chapter is provided in

table 4.5. As in the case of NaCax, the response of the diUerent models for NaK

is made from step changes of the control variables (Figure 4.6). The models ex-

hibit signiVcantly diUerent behaviours in response to changes in extracellular
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4.4. The Plasma membrane calcium ATPase

Model 1 2 3 4 5

Voltage dependence no yes yes yes yes

InWuence of cations ∗

K2+
i - - (a) (b) (b)

K2+
e (b) (b) (a) (b) (b)

Na+
i (b) (b) (a) (b) (b)

Na+
e - (b) (a) (b) (b)

Voltage dependence on Nae no yes no yes no

EUect of ATP no no no yes yes

EUect of pH no no no no yes
∗ The dependence of pump current on the respective cations is based on their con-
centration. Additionally their binding onto the protein can have an inWuence on the
model. Here models are classiVed based on how model incorporates these concepts.
(a) suggest that the model has a concentration term alone, (b) suggests that model
includes an aXnity parameter in addition to the concentration term

Table 4.5: A comparison between diUerent models of NaK (1) DiFrancesco-Noble model (2)
Luo-Rudy model (3) Endresen model (4) Kyoto model (5) Smith-Crampin model/Oka model

Na+and K+and intracellular K+. The Smith-Crampin model is largely indepen-

dent of membrane potential but has larger response to changes in intracellular

Na+compared to the other models. Being a Markov model, the Kyoto model

exhibits reasonable dynamics with respect to the changes in variables.

Unlike exchangers, pumps are not expected to have a rapid response for small

changes in the concentration of the molecules they transport. Moreover, for a

model that is aimed at understanding the energetics of transport in makes more

sense to a model that includes the mechanistic details and one that is inWuenced

by ATP. For these reasons, we use the Kyoto model for the NaK ATPase in our

model of SNc pacemaking.

4.4 The Plasma membrane calcium ATPase

The PMCA is a membrane protein responsible for the eYux of calcium ions

against their gradient, powered by the energy associated with the hydrolysis

of an ATP molecule. It binds tightly to calcium ions (has a high aXnity, with a

Km of 100 to 200 nM) but does not remove calcium at a very fast rate.
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4.4. The Plasma membrane calcium ATPase

(a) InWuence of membrane potential

(b) InWuence of intracellular Na+

Figure 4.6: Comparison of models for the sodium-potassium pump : InWuence of voltage and
ionic-concentrations on the response from the diUerent models of the sodium-potassium pump.
The diUerent models considered include the Luo-Rudy exchanger model (LR), DiFrancesco-
Noble model (DN), Endresen model (Endr), the Kyoto model (Kyotooriginal) and the Smith-
Crampin Model (SC)
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4.4. The Plasma membrane calcium ATPase

(c) InWuence of intracellular K+

(d) InWuence of extracellular K+

Figure 4.6: Comparison of models for the sodium-potassium pump - continued
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4.4. The Plasma membrane calcium ATPase

(e) InWuence of extracellular Na+

Figure 4.6: Comparison of models for the sodium-potassium pump - continued

The active transport of calcium ions mediated by these proteins may be ap-

proximately represented as,

Ca2+
i

α
88
Ca2+

e

ATP
Mg2+,H2O %%

ADP + iP

The free energy changes signiVcant to this transport are

∆GCa = RT ln
Cae
Cai
− zCaFV = zCaF (V̂Ca − V ) (4.13a)

∆Gatp = −RT ln(κatp) = RT ln
[Mg.ADP ][iP ]

[Mg.ATP ]
= FVatp (4.13b)

where κatp is the equilibrium constant for ATP hydrolysis (approximately 105

M). Vatp is a voltage equivalent of the hydrolytic energy. The ATP to ADP

ratio is around 1000 [Nicholls and Ferguson, 1992] in the cytoplasm and the

Mg.ATP/Mg.ADP ratio around 2300 [Manchester, 1980]. The inorganic phos-

phate concentration is assumed to be around 10 mM (An experiment in cardiac

cells by Wu et al. [2008] shows that it varies between 0.3mM to 18mM ). Ac-

cordingly, the value of Vatp is roughly −330mV at normal physiological tem-
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4.4. The Plasma membrane calcium ATPase

peratures. (The value used in Endresen et al. [2000], is around−450mV , which

would imply a very high ATP/ADP ratio).

Transport is feasible when it is favourably coupled to the energy from ATP hy-

drolysis, or when Γpmca∆Gatp > ∆GCa ; Γpmca being the coupling co-eXcient

(Γpmca = 1 mole of ATP per mole of calcium transported). For the condition of

feasibility (see section 4.1), the apparent driving energy is

∆Gpmca = F (Vatp + 2V̂Ca − 2V ).

Since Vatp is much larger than other terms in the equation, the voltage de-

pendence of the pump is apparently small. There are only two ways that net

transport can be voltage dependent. Either a rate-limiting step in the transport

cycle is itself voltage dependent or a voltage dependent step controls the level

of an intermediate enzyme entering the rate-limiting step.

An important feature of PMCA activity is its regulation by the calcium sig-

nalling protein calmodulin (CaM). CaM reversibly binds and activates PMCA

in a calcium dependent manner. This association is understood to stimulate

the release of an auto-inhibitory domain from the ATP-binding site of PMCA

[Osborn et al., 2004], thereby increasing its aXnity and turnover rate.

4.4.1 Mathematical models of PMCA

Hill-equation type models One of the most popular way of representing cal-

cium pump activity is to use the Hill-equation/ Michaelis-Menten formulation.

The mathematical representation of PMCA’s function has often been with such

simple equations similar to the one in the Luo-Rudy model [Luo and Rudy,

1994]. These models represent the pump in terms of a binding process between

the ions and the protein. According to such a model,

Ipmca = Kpmca
Cani

Cani + knpmca
. (4.14)

Kpmca is the maximal amplitude of the pump current, n is the Hill coeXcient:

number of calcium molecules bound, kpmca is the aXnity (half maximal concen-

tration). PMCA has an apparent Hill coeXcient of ∼ 2 and the aXnity factor is

inWuenced by the presence of calmodulin.
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4.4. The Plasma membrane calcium ATPase

Model derived from Endresen model The concepts used in Endresen et al.

[2000] for developing a model for the Na+/K+pump may be extended to arrive

at a model for PMCA. Accordingly, the PMCA current equation becomes

Ipmca = Kpmca · tanh

(
2V − 2V̂Ca − V̂atp

2Vτ

)
. (4.15)

Kyoto model Models using Markov principles can explain the binding pro-

cess, incorporate voltage dependence if needed and can incorporate Vner de-

tails of the mechanism, such as inWuence of calmodulin on PMCA activity. The

Kyoto model [Matsuoka et al., 2007] is a four-state illustration of the transport

mechanism of PMCA. This is further reduced to a two-state model by assuming

fast binding of calcium ions (Figure 4.7). This model also includes the depen-

dence of the pump on the presence of calmodulin. The model is as follows:
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Figure 4.7: PMCA transport scheme

Ipmca = kpmca.Apmca

[
α+y

1 +
kpmca,cai

Cai

−
α−(1− y)

1 + 2
Cae

]
(4.16)

dy
dt

= k−(1− y)− k+y

k+ =
α+−β−

1+kpmca,cai/Cai
+ β− k− =

α−−β+
1+2/Cae

+ β+

P(E∗1) = 1
1+kpmca,cai/Cai

P(E1) = 1− P(E∗1)

P(E∗2) = 1
1+2/Cae

P(E2) = 1− P(E∗2)
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Apmca = 10.56 [cacam]
[cacam]+0.00005

+ 1.2 (pA)

kpmca,cai = (180−6.4)×10−5

1+[cacam]/0.00005
+ 6.4× 10−5 (mM)

4.5 Cytosolic systems involved in calcium

metabolism

The eXcient management of the temporal and spatial intracellular calcium is

critical to living systems and involves the eUective collaboration of all partic-

ipating components. The network of metabolic activity involved in handling

calcium may be categorized into (a) calcium entry systems (b) cytosolic com-

partments involved with calcium release and uptake, referred to as the calcium

stores, (c) buUers of calcium, and (d) calcium extrusion systems.

The calcium entry system involves a group of membrane proteins that aid in

the entry of Ca2+ along its gradient when appropriately stimulated. This in-

cludes a group of voltage gated calcium channels, ligand gated calcium chan-

nels, store operated calcium channels and Ca2+ mobilizing networks. Ca2+

can be sourced either from extra-cellular space or internal membrane bound

stores, predominantly the endoplasmic reticulum (ER) and to a small extent

the mitochondria. Release from these store is primarily activated by Ca2+ it-

self and often termed calcium-induced calcium release (CICR) and is central

to the mechanism of intra-cellular calcium signalling. This pathway involves

the activation of various channels including the InsP3 receptor (InsP3R) and

ryanodine receptor (RyR) families by the corresponding stimuli, a system of

Ca2+-mobilizing messengers regulated by various factors. Ca2+ itself can be a

major regulating factor for these messengers.

On the other hand, the calcium extrusion system involves membrane proteins

that are calcium-ATPases or exchangers. This include PMCA, ERCA, NaCax

as well as NaCam.

Cytosolic calcium transients evoked by the concerted activity of entry and exit

systems are eUectively handled by entities that aid in buUering the concen-

tration of calcium. These buUers include calcium binding proteins such as

calbindin that act as mobile buUers and organelles such as the ER and mito-
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chondria that operate as calcium stores. The ratio of free to bound calcium in

the cytosol is characteristic to a cell and is inWuenced by the expression levels

of the mobile buUers. This is important to determine the amplitude and du-

ration of calcium signals, as well as in limiting the spatial spreading of local

signals.

4.6 BuUering of intracellular calcium

Calcium - dependent signalling pathways control several cellular processes

[Nelson and Cox, 2004]. Hence, it is essential for the cell to regulate the levels

of intra-cellular calcium. In addition to being spatially limited, the response

of the calcium extrusion apparatus to a sudden upsurge of calcium, is very

slow. For this reason, cells require calcium buUering mechanisms to cushion

such eUects. These buUers are categorized as either mobile or stationary. The

mobile buUers constitute a group of proteins such as calbindin with molecular

weights of the order of 15 kDa. The Ca2+ they carry are taken up ultimately by

organelles such as the endoplasmic reticulum and mitochondria, which act as

Vxed buUers.

The mobile buUers bind Ca2+ with a time constant estimated to be in the mil-

lisecond range or less and for this reason, free Ca2+ concentrations can be eas-

ily related to the association and dissociation constants of the buUer. Calcium

buUers aUect both Wuxes and diUusion of free Ca2+ in the cytosol and con-

sequently, have a signiVcant role in cells whose functioning is subject to the

dynamics of free cytosolic Ca2+. In spite of this, calcium binding proteins are

an often neglected constituent of the cytosolic network involved in calcium

homeostasis. A large number of studies on the pathogenesis in PD [Surmeier,

2007] show the importance of calcium within neurons of the SNc neuron. Ac-

cordingly, we argue that models developed for relating activities in the SNc to

its degeneration should include calcium handling.

The dopaminergic neurons of the SNc do not have a high intrinsic calcium

binding capacity. According to observations of Foehring et al. [2009], up to 1%

of Ca2+ entering the neuron remains free at steady state. These neurons are

known to express traditional calcium binding proteins and data suggests that
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neurons of the SNc that express high levels of calbindin are less vulnerable to

damage in PD [Yamada et al., 1990; Damier et al., 1999b].

Pacemaking models of the SNc have often taken into account the inWuence

of buUers. Amini et al. [1999] takes into account a single representative buUer

and assume linear binding dynamics. Wilson and Callaway [2000] assumes that

buUers are non-saturable and adopts a simple representation for the eUect of

both mobile and Vxed buUers. Kuznetsova et al. [2010] implicitly model calcium

buUering by deVning a control parameter that gives the fraction of free Ca2+ in

the respective compartments.

In our model we employ the binding dynamics of two calcium-binding proteins

that appear to be signiVcant in the generation of spontaneous membrane ac-

tivity. Calbindin is a fast buUer of Ca2+ and its signiVcance in these neurons

is evident. Calmodulin, which is the primary decoder of Ca2+ levels within the

cell, is also taken into account, as levels of the calcium-calmodulin complex

deVne other calcium dependent mechanisms in the cell.

4.6.1 Calbindin

Calbindin D28k is a member of the EF-hand family of Ca2+ binding proteins,

characterised by a binding motif formed by twelve amino acids brought to-

gether by the spatial arrangement of Vfth (E) and sixth (F) α - helix of the

polypeptide chain. This protein is capable of binding up to four Ca2+ in the EF-

hands of the respective loops. These proteins are widely expressed in tissues

transporting Ca2+ such as the epithelial-absorptive cells of the intestine and the

distal tubular epithelial cells of the kidney [Christakos et al., 1989]. They are

also expressed widely in neurons. The nomenclature Calbindin D28k indicates

its vitamin D dependence and its apparent molecular weight [Wasserman et al.,

1968]. In the brain however, its synthesis is found to be independent of Vitamin

D.

Calbindin molecules are predominantly distributed in the cytosol, even though

their size does allow them to passively diUuse into the cell nucleus. The re-

sistance to their diUusion is mostly because they are anchored close to Ca2+

hotspots by strong chemical gradients. Calbindin’s exact role in Ca2+ dependent
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processes is yet to be unravelled. It is not sure if it does have a signalling role

in metabolic pathways. However, their association with cytoskeletal structures

[Sayer et al., 2000] and the existence of calbindin-binding proteins [Leathers

and Norman, 1993] prove that they function more than just as a fast Ca2+ buUer.

Calbindin in PD pathogenesis A central role of Ca2+ in pathways leading to

degeneration of SNc neurons in PD was ascertained with the report on neu-

rons that are spared from degeneration in this disease. In a landmark study by

Yamada et al. [1990], it was discovered that a sub-population of SNc neurons

that was calbindin rich survived in PD. One mechanism by which calbindin

would help the neurons survive would be by buUering excess intracellular Ca2+,

thereby limiting Ca2+ induced toxicity in these group of neurons. A second way

calbindin enhances neuronal viability is by having a direct impact on metabolic

activities speciVc to PD, such as α-synuclein aggregate formation.

Although the report by Yamada et al. [1990] brought to light the involvement of

Ca2+- pathways in the disease, the involvement of calbindin was not explored in

detail. Recently, genetic analysis using Single-nucleotide polymorphism (SNP)

revealed a statistically signiVcant identiVcation of CALB1, the gene involved

with calbindin synthesis, as a susceptibility gene for the disease [Mizuta et al.,

2008]. This analysis also suggested that CALB1 is associated with PD indepen-

dently of the gene SNCA, the gene involved with α-synuclein expression.

Later, in vivo studies suggested an altogether diUerent dynamics between cal-

bindin and α-synuclein [Zhou et al., 2010]. This study discussed in 2.3.1 showed

that calbindin acts as a molecular chaperone that suppress the formation of

α-synuclein Vbrils. The study describes the dynamics that exist between α-

synuclein, Ca2+ and calbindin in the formation of aggregates. Free Ca2+ was

found to enhance Vbrillation rates of α-synuclein, in the absence of calbindin.

However, with calbindin in its vicinity, Vbril forming tendency of α-synuclein

was greatly reduced with increase in free Ca2+. It was also noted that the Vb-

rillation inhibition capacity of calbindin was Ca2+-dependent.

Ca2+ binding dynamics The dynamics of binding of calcium to the fast buUer

calbindin, is modelled using mass action kinetics. Although the protein has
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four diUerent binding sites for Ca2+, due to their fast binding rates, it is assumed

that the binding sites act independently of one other.

Ca+ Calb o
kcalb,d

kcalb,b

/ CaCalb,

with CaCalb representing the bound complex. The kinetic parameters for the

high aXnity binding is adapted from Nagerl et al. [2000] (Table 4.6),

Jcalb = kcalb,b · Cai · Calb− kcalb,d · CaCalb. (4.17)

4.6.2 Calmodulin

Calmodulin is the primary sensor of intracellular Ca2+ variations in eukaryotes

and is involved in many regulatory Ca2+-dependent signalling pathways. This

17 kDa acidic protein acts as an intermediate messenger that decodes Ca2+

signals, by virtue of its structural change upon sequestering Ca2+ [Symersky

et al., 2003]. The binding of four Ca2+ ions reveals two hydrophobic patches

that speciVcally bind to calmodulin binding domains5 on target proteins, al-

lowing the molecule to wrap around its target. The signiVcance of calmodulin

in metabolism can be realized if we look at the diversity of cellular events it

mediates, including a number of metabolic pathways, ion transport, cell main-

tenance and apoptosis, memory, immune response etc.

Figure 4.8: The role of calmodulin as a calcium sensor has to do with its conformational
change. Note how the backbone of calmodulin is extended when Ca2+ binds to it. Figure from
Vetter and Leclerc [2003].

5The calmodulin binding domains show a propensity to form a basic amphiphilic α-helix,
that have hydrophobic regions complimentary to the one on the Ca2+-calmodulin complex
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Structure and its signiVcance Calmodulin is a protein whose structure has

been highly conserved among eukaryotes [Catalano and O’Day, 2008]. Ca2+-

free apo-calmodulin is made of two globular domains each containing two

Ca2+-binding sites that are EF-hand motifs. These domains are connected by

a Wexible α-helix. This compact apo-form is converted to an extended dumb-

bell shaped form on binding with Ca2+ [Zhang et al., 1995] (see Vgure 4.8).

The hydrophobic patches that lie buried between the α-helical segments in

the apo-conformation, are revealed with the binding of Ca2+ and makes the

molecule ready for Ca2+-signal transduction. Although the four binding re-

gions are formed from homologous sequences, there is a noticeable diUerence

in the binding rates at the carboxy- (C) and amino- (N) terminal of the protein.

The C-terminal lobe appears to have a higher aXnity to Ca2+ Vetter and Leclerc

[2003]. The high aXnity site binds Ca2+ at lower concentrations, whilst the low

aXnity site binds only with a higher surge in cytosolic Ca2+ levels.

Calmodulin in PD pathogenesis Unlike calbindin, which has been directly

implicated in PD development, calmodulin does not seem to have a direct af-

fect on the pathogenic pathways. However, as the immediate eUector of Ca2+

in calcium-signalling cascade, it is heavily involved in mechanisms leading to

the degeneration of the neurons. Again, with a direct inWuence on membrane

proteins like PMCA, ER CA and SK-type K+channel, they are involved with the

membrane electrophysiology of these neurons.

Another instance when calmodulin was possibly implicated in PD pathogene-

sis came from an immunoreactivity study on Lewy body [Iwatsubo et al., 1991].

A protein positioned downstream of calmodulin in the calcium - signalling cas-

cade, calcium-calmodulin dependent protein kinase II (CaMK-II) was reported

to be present on halos of LBs. However, since they were found on the periph-

ery of LBs, it is hard to decipher their exact role in the process. This peripheral

location of CaMK-II suggests a possible neuroprotective role. Martinez et al.

[2003] had identiVed α-synuclein as a potential substrate of calmodulin, with

the activated form accelerating the Vbrillation rates of α-synuclein in vitro.

However, it remains to be seen whether activated CaMK-II promotes Vbrilla-

tion in vivo. Furthermore, this seems highly unlikely as Ca2+-calmodulin im-

munoreactivity has not been observed in the core of a LB.
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Figure 4.9: Dynamics of calcium - calmodulin buUering

Parameter Value Unit Source
kcalb,b 10 1/mM.ms Nagerl et al. [2000]
kcalb,d 2 × 10−3 1/ms Nagerl et al. [2000]
kcb 12,000 1/mM2.ms Tadross et al. [2008]
kcd 0.003 1/ms Tadross et al. [2008]
knb 3.7 × 10−6 1/mM2.ms Tadross et al. [2008]
knd 3 1/ms Tadross et al. [2008]

Table 4.6: Kinetic parameters for calcium buUering

Calcium binding dynamics Ca2+ has four binding sites on calmodulin. Of

these two are located on the C-terminal lobe and the remaining two on the

N-terminal. However, the binding and dissociation rates to each of these lobes

are diUerent. We model the binding of calcium [Tadross et al., 2008] as a four

state Markov process involving the simultaneous association of Ca2+ at each

lobe. The model is further reduced to two states, assuming quasi-steady state

for the intermediary states (Figure 4.9). The Wux may be deVned as,

Jcam = αcam · Cam− βcam · CaCam, (4.18)

where the rate constants, αcam and βcam are deVned by cytosolic Ca2+ concen-

tration as follows:

αcam = k′cb · k′nb ·
(

1

k′cb + knd
+

1

k′nb + kcd

)
,

βcam = kcd · knd ·
(

1

k′cb + knd
+

1

k′nb + kcd

)
,

k′cb = kcb · [Cai]2,

k′nb = knb · [Cai]2.

Table 4.6 gives the values of the kinetic parameters of calcium buUering.
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4.7 Organelles implied in calcium homeostasis

The system of proteins on the neuronal membrane involved in pumping back

calcium from the cytosol to the extracellular space has limited capacity. Also,

having a large number of ATPases on the membrane adds to the metabolic

burden of the cell. The same argument holds for the case of having a controlled

level of mobile calcium buUers within the cytosol, in addition to some of them

having important signalling roles. Any additional Ca2+ needs to be sequestered

into near neutral spaces wherein the Ca2+ would have limited metabolic impact.

ER and mitochondria assume this role of removing Ca2+ from the cytosol and

playing important roles in calcium homeostasis by its controlled release.

4.7.1 The Endoplasmic Reticulum

The endoplasmic reticulum (ER) together with the mitochondria forms an in-

tracellular network of dynamic interactions that controls metabolic Wow, pro-

tein transport and calcium homeostasis. The ER is an organelle involved with

a wide range of cellular processes. One of its primary role is as a calcium

store and is responsible for regulating calcium signals at local and global levels

[Berridge, 2002]. Its physical spread and continuity as well as absence of Vxed

luminal calcium buUers, enable ER in disseminating Ca2+ quickly across the

length and breadth of the neuron [Park et al., 2000]. In some cell types it acts

as the most important source of calcium signals through the process of CICR.

The release of Ca2+ from ER is often positioned close to the plasma membrane

near a calcium transporter or in the close proximity of mitochondria or other

sites signiVcant in calcium controlled pathways. This makes ER a bridge that

connects various calcium hotspots and prevents a larger diUusion of Ca2+ in the

cytosol.

The Ca2+ stored within the ER (luminal calcium, Ca2+
er ) also have important reg-

ulatory roles. A basal level of Ca2+
er is required for protein folding, as ER protein

processing pathways involve a number of calcium-dependent chaperones re-

sponsible for the folding and packaging of proteins. Also, emerging results in

the Veld of apoptosis research suggest an important regulatory role for Ca2+
er in

the susceptibility of a cell to apoptosis [Berridge, 2002].
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In SNc neurons, the ER forms an extensive network throughout the somato-

dendritic tree [Schwyn and Fox, 1974]. The involvement of ER activities with

the degeneration of SNc neurons in PD came to focus with the discovery of an

ER stress protein in the Lewy Bodies [Conn et al., 2004] (Also see Section 2.3.3).

The involvement of the ER as a centre of cellular calcium homeostasis neces-

sitates including the luminal mechanism of Ca2+ handling, in models aimed at

understanding Ca2+-regulated pathways of the disease. Even though there are

various models developed for relating the electrophysiology and involvement

of Ca2+ in neurons of the substantia nigra, there is apparently no model linking

them to the internal calcium-handling aspects. In this thesis, we aim to develop

a basic framework that involves this aspect.

4.7.1.1 Calcium uptake by the ER

The clearance of calcium from cytosol into intracellular stores is usually against

the electrochemical gradient and therefore requires the system to expend en-

ergy. The calcium ATPases of the ER (ERCA) transports Ca2+ from the cy-

tosol to the ER lumen by a coupled ATP hydrolysis. The molecular mechanism

by which the ERCA act is similar to that of the PMCA, with a cyclic process

of transformation between two major conformational states [Wuytack et al.,

2002]. However, the rate at which ERCA moves Ca2+ is inWuenced by pro-

teins found in the lumen and cytosol. For example, the buUering of Ca2+
er by

calsequestrin, a luminal Ca2+ binding protein, considerably reduces the eUec-

tive concentration gradient against which this pump operates. As with PMCA,

the Ca2+- calmodulin complex has a positive impact on the pump kinetics [PiW

et al., 1984]. Immunocytochemical studies indicate an abundance of ERCA in

SNc neurons [Patel et al., 2009].

The uptake of Ca2+ ions by ERCA may be modelled with a simple Michaelis -

Menten type kinetics such as in Tiveci et al. [2005] or using a detailed dynamics

akin to the Kyoto model for PMCA, given in Matsuoka et al. [2007].
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4.7.1.2 Calcium release by the ER

The release of Ca2+ from the ER is brought about by two sub-families of ligand

gated calcium channels. One of these channels are activated by levels of Ca2+

in the cytosol and is dubbed as the ryanodine receptor (RyR). The other chan-

nel is regulated by the levels of inositol trisphosphate (InsP3) and is known as

the InsP3R. In addition to these, there is a notable mechanism responsible for

steady state luminal Ca2+ levels and involves a leak of Ca2+ from the ER mem-

brane surface. The exact mechanism behind ER leakage of Ca2+ is yet to be

explored.

Mobilization of Ca2+ from ER has an important functional implication in the

somatodendritic dopamine release in SNc neurons [Patel et al., 2009]. Both

InsP3R and RyR have been observed in these neurons by immunocytochemistry

and their functioning makes the neurons less dependent on extra-cellular Ca2+

for neurotransmitter release.

Luminal calcium leak The process of calcium leak from ER was revealed in

an experiment following the inhibition of ERCA [Hofer et al., 1996]. The in-

hibitors of InsP3R , RyR, and other known Ca2+ release mechanisms had no ef-

fect on the rate of this leak [Hofer et al., 1996; Lomax et al., 2002; Camello et al.,

2002]. A few diUerent molecules seem to have some eUect on this phenomena

including ATP, glutathione, Ni2+. However these eUects were not universally

observed and varied between cell types [Camello et al., 2002].

The primary eUector of leak of Ca2+ from the lumen appears to be the level of

Ca2+
er itself. In the majority of the cell types studied, even though this passive

leak is capable of completely depleting the lumen within minutes, there seems

to be a regulatory mechanism in place that apparently slows down the leak

as Ca2+
er level goes below 40 µM [Mogami et al., 1998]. The kinetics of luminal

calcium leak seem to be inWuenced by the saturation of probable moderators

by Ca2+
er , that drive the mechanism at the ER membrane. Additionally, the max-

imum leak rate appears to be cell dependent [Camello et al., 2002].

125



4.7. Organelles implied in calcium homeostasis

Calcium induced calcium release (CICR) The mechanism of CICR is brought

about by RyR and with this mechanism a small, but substantial release of cal-

cium is observed into the cytosol from the ER . In neurons of the substantia

nigra, RyR appears to be preferentially distributed at the margins of the neu-

ronal body closer to the plasma membrane and to a smaller extent throughout

the cytoplasm of the soma. The distribution of the surface RyRs also parallels

the distribution of L-type calcium channels suggesting a positional coupling

between the two [Patel et al., 2009] driven by strong calcium gradients. This po-

sitioning enables CICR by minimal calcium entry in the vicinity of the plasma

membrane and the mechanism is thought to amplify cytosolic Ca2+ levels in

conditions of insuXcient transmembrane Ca2+ inWux.

InsP3 mediated calcium release InsP3 is an important second messenger in-

volved in the release of Ca2+ from intra-cellular stores. It is formed from the

hydrolysis of a membrane phospholipid, phosphatidylinositol 4,5-bisphosphate

by phospholipase C (PLC) as a result of a signalling cascade initiated by an

external signal. The cytosolic Ca2+ has an eUect on the activation of PLC by

a positive feedback, enhancing the production of InsP3 and in turn enhancing

the release of Ca2+ from ER [Meyer and Stryer, 1991; Oancea and Meyer, 1998].

The dynamic interaction between InsP3 and Ca2+ in ER and cytosol is capable

of spontaneous calcium waves within the cytosol [Lavrentovich and Hemkin,

2008], however this is often regulated by events at the plasma membrane. Com-

plex calcium oscillations in non-excitable cells are often described by means of

this dynamic interaction [Marhl et al., 2000].

In SNc neurons, immunostaining for InsP3R displayed a homogeneous distri-

bution of the protein throughout the cytoplasm in the soma and proximal

dendrites and an absence of these proteins in the distal dendrites [Patel et al.,

2009]. The Ca2+ released by the InsP3R mediated process, usually enters a re-

gion formed by a close association of ER and mitochondria, referred to as the

micro-domain [Csordás et al., 2006].
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4.7.2 A signiVcant calcium micro-domain between ER and

mitochondria

In a cell, the position of its organelles has important functional implications.

Most often, the cellular constituents are placed in a manner that would impose

minimum energy expenditure in the cell. With respect to the calcium handling

system of a neuron, the participating elements are often brought together by

strong calcium gradients as well as certain cytoskeletal structures. One of most

noticed among these is an association between ER and mitochondria and is

referred to as a quasi-synaptic organization [Csordás et al., 1999]. Although

there were suggestions of a physical link between the two organelles, recent

developments in the Veld has identiVed the presence of molecular structures

responsible for this association [Hayashi et al., 2009]. This physical association

has been termed ‘mitochondria-associated ER membrane’ (MAM) and has been

implicated in various metabolic activities of the cell and in particular calcium

homeostasis.

The micro-domain so formed is characterised by the presence of membrane

proteins that transport Ca2+ on organelles that surround the micro-domain.

The ER face of the domain is most often occupied by the InsP3R and at times

by the RyR. The mitochondrial face of the domain is occupied with the calcium

uniporter system. This functional arrangement is critical for the functioning

of the uniporter, which requires µM levels of Ca2+ to activate. When InsP3R

is activated, it creates a local transient upsurge in Ca2+, suXcient to activate

the uniporter. This arrangement is also critical in apoptosis, when molecules

associated with apoptosis such as cytochrome c activate InsP3R . This acti-

vation leads to a sustained Ca2+ surge at the micro-domain, overloading the

mitochondria.

A set of proteins that act as molecular chaperones is understood to regulate

this association and in turn modulate the Ca2+ uptake rate of the mitochondria

with metabolic implications [Hayashi et al., 2009].
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4.7.3 Mitochondria

The mitochondrion is an important component of the calcium handling cellu-

lar machinery, as it sequesters Ca2+ during an upsurge, stores it eXciently, and

slowly releases Ca2+ to the cytosol when the cell recovers. This mitochondrial

activity contributes in shaping both the amplitude and spatio-temporal pat-

terns of the calcium signals [Werth and Thayer, 1994; Duchen, 1999; Duchen

et al., 2008]. The mitochondria are often found in the proximity of ER and

plasma membrane [Boldogh and Pon, 2007; Pizzo and Pozzan, 2007], creating

a local hotspot of high Ca2+ that aid in transport of Ca2+ into its inner matrix

through a calcium uniporter.

The ability of mitochondria to store large amounts of Ca2+ within its matrix

arise from the fact that the ingested Ca2+ forms a precipitate with phosphate,

which is co-transported along the uniporter system [Kirichok et al., 2004].

These precipitates are observable with electron microscopy and are thought

to be formed by a nucleation process initiated by a mitochondrial protein. The

detailed mechanism by which precipitation occurs is yet to be conVrmed.

Calcium sequestered into the mitochondria has important physiological eUects

on the cell’s energetics and survival. To begin with, an increase in the levels of

mitochondrial calcium (Ca2+
mit), stimulates Ca2+ sensitive dehydrogenases of the

Kreb’s cycle6, thereby enhancing the rate of NADPH and ATP synthesis. How-

ever, an increase in Ca2+
mit level above a certain threshold has a direct inWuence

on the mitochondrial membrane potential. A reduction in mitochondrial mem-

brane potential with increasing Ca2+
mit reduces the eUectiveness of the electron

transport chain and lowers ATP production. An overload of Ca2+
mit can disrupt

the mitochondrial membrane potential leading to the release of proteins like

cytochrome c from the inner mitochondrial membrane into the cytosol. This

promotes events leading to apoptosis.

The mitochondrial membrane potential (∆ψ) is an important parameter that

deVnes the physiological state of a mitochondria and in turn indicate a cell’s
6Ca2+ sensitive dehydrogenases of the Kreb’s cycle includes pyruvate dehydrogenase, isoc-

itrate dehydrogenase amd α-ketoglutarate dehydrogenase. These enzymes are associated with
the important rate limiting steps of the cycle and their activations controls the rate of ATP
synthesis in the mitochondria [Nelson and Cox, 2004]
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health or distress. It signiVes a cell’s capacity to generate ATP by oxidative

phosphorylation. Along with the mitochondrial pH gradient, it imparts the

required driving force to transport protons in to the mitochondria. The mito-

chondrial membrane potential also has a signiVcant role in mitochondrial Ca2+

sequestration as well as in the regulation of ROS production. When this poten-

tial is upset by means of protonophores, Ca2+ is released from the mitochodria

and further uptake of Ca2+ from the cytosol is disrupted [Werth and Thayer,

1994].

A mitochondrial membrane potential between 150 - 180 mV is typical in nor-

mal cells. However, under conditions of cellular stress, the mitochondrial mem-

brane potential is usually altered by the perturbed levels of intracellular cations,

thereupon leading to changes in ATP production. An extreme stress can bring

about a complete collapse of this regulatory system leading to apoptosis.

As the ultimate store of cellular Ca2+, mitochondria have a crucial role in cal-

cium homeostasis. Mitochondria employ an electrogenic carrier called the

calcium uniporter to transport exogenous Ca2+ into the mitochondrial ma-

trix, across the inner mitochondrial membrane (IMM). This transport is usu-

ally coupled with a co-transport of inorganic phosphate that together with

the accumulated Ca2+, form osmotically inactive precipitates within the matrix.

Ca2+ is eventually released back into the cytosol by the activity of antiporters

(Na+/Ca2+ or H+/Ca2+ exchangers) found on the IMM.

4.7.3.1 Calcium uptake by the mitochondria

Mitochondrial uptake of Ca2+ involves a complex system of proteins spanning

its two membranes. The system consists of a uniporter mechanism driven by

the steep membrane potential that exists in the inner mitochondrial membrane.

This low-aXnity uniporter works more like an ion-channel that is highly selec-

tive and inwardly rectifying [Kirichok et al., 2004]. The system which remains

in a deactivated state at low cytosolic Ca2+ levels, assembles at high Ca2+ up-

surge enabled by the ER - mitochondrial micro-domain arrangement, promot-

ing the uniporter proteins to form a Ca2+ conducting channel. This consists of

a gated pore with a Ca2+ binding site on the cytosolic side of the inner mito-
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chondrial membrane [Starkov, 2010].

The exact molecular identities of the uniporter system had remained elusive for

some time. Recent advances in molecular techniques has enabled the identiVca-

tion of the proteins involved in the regulation of this process. A genome-wide

search for authentic mitochondrial proteins that satisVed expected properties

of the uniporter, has yielded the identity of important proteins contributing

to the process [De Stefani et al., 2011; RaUaello et al., 2012]. The chief pro-

tein of this system, dubbed as MCU (for mitochondrial calcium uniporter), is a

40 kDa protein, and is found localized in the inner mitochondrial membrane.

This protein tends to enhance mitochondrial Ca2+ uptake on over-expression

[De Stefani et al., 2011].

Even before the molecular identities of major proteins involved in this system

were established, ongoing research had outlined the dynamics of the uniporter.

It is now understood that the calcium uptake system operates in two modes.

In the calcium-uniporter mode (CU mode), the system is able to take in Ca2+

only when the concentrations rise to µM range. The existence of the micro-

domain helps this mode of operation. However, mitochondria are also capable

of quickly responding to calcium signals in the nM range even when isolated, in

the absence of a micro-domain [Picard et al., 2011]. This response of mitochon-

dria is attributed to a rapid mode of Ca2+ uptake (RaM mode). This mechanism

postulates Ca2+ binding onto an external trigger site, initiating a short transient

of high Ca2+ conductivity [Starkov, 2010; Bazil and Dash, 2011] (see Vgure 4.10).

According to the scheme of events from this proposal, Bazil and Dash [2011]

has developed a four state Markov scheme to describe the kinetics of the Ca2+

uptake system of the mitochondria.

4.7.3.2 Calcium release from the mitochondria

The Na+/Ca2+ antiporter of the mitochondria functions as the primary exit

point for Ca2+
mit and has an important role in mitochondrial calcium homeosta-

sis. Similar to the plasma membrane Na+/Ca2+ exchanger, its mitochondrial

counterpart is also found to be a cytosolic Na+dependent Ca2+ exchange. Al-

though its kinetics are not yet completely understood, it is thought to be highly
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Figure 4.10: Scheme of events proposed by Starkov [2010] for the Ca2+ uptake mechanism of
the mitochondrial Ca2+ uniporter system. According to this scheme, Ca2+ is required to initiate
an activation cycle beginning with a transient high Ca2+ conductive state. This state achieved
by the rearrangement of participating proteins, can undergo a conformational change eliciting
a slow uptake mode or the uniporter mode, if the Ca2+ concentration remains elevated in the
µM range. Once the external Ca2+ falls below a threshold, the complex dissociates to its original
state. Image from Bazil and Dash [2011]

dependent on the environmental pH [Baysal et al., 1991]. As research is yet to

uncover the facets of this exchanger, literature on the activity of this protein is

limited. However, there are a few mathematical representations of its activity

ranging from models based on the Hill function [Wingrove and Gunter, 1986],

Kyoto model [Kim and Matsuoka, 2008] to detailed Markov models [Pradhan

et al., 2010].

Concluding remarks In this chapter, we have discussed the diUerent ways in

which active and facilitated transport across membrane structures are math-

ematically described. In the literature, there is no single preference among

these models. Some models are simple, and are used frequently in larger mod-

els. However, they do not completely describe the mechanism of the system.

Models that incorporate mechanistic details are often larger and bring in com-

putational and analytical complexities. We have done a basic comparison to

understand how some of these models fare in a given situation. This has helped

eliminate some models as not suitable for our purposes. However, with the re-

maining model choices there is no absolute winner. In chapter 6, we consider

using some of these models for a larger framework of building a mathematical

formalism to describe pacemaking in SNc neurons.

131



Part III
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CHAPTER 5
The substantia nigra pacemaker

In this chapter we bring together various concepts discussed previously, to develop a

mathematical description of the pacemaking activity observed in SNc neurons. We

initially discuss various facets of the electrophysiology in these neurons and identify

membrane components that contribute towards these activites. As a Vrst step, a

model is developed by considering a simple geometric design of the neuronal soma.

Later the model is improved upon by a change in design of the model geometry that

is closer to the structure of these neurons. The model is analysed for its dynamics as

well as implied energy usage.

Introduction Oscillations are an important feature of the functioning brain

and are signiVcant for information processing in the brain. DiUerent brain re-

gions often house neurons that are capable of pacemaking, that is, exhibit stable

oscillations. The functioning of these neurons are deVned by their phenotype,

in other words, they express membrane proteins responsible for a variety of

ionic membrane transport mechanisms.

The autonomous tonic pacemaking of SNc neurons is a unique feature that

enables them to indirectly control motor activity. As each action potential

prompts the release of dopamine from these neurons, the oscillations ensure a

continual supply of dopamine to the striatum, signiVcant for the normal func-

tioning of such motor activities. These neurons are also known to switch from

this pacemaking mode to a bursting mode, when stimulated. Such events are
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often associated with rewarding stimulus and are associated with spatial learn-

ing and temporal processing [Da Cunha et al., 2003; Matell and Meck, 2000].

Conventionally, neuronal pacemaking is modelled as the result of events at the

neuronal membrane. Although events within a cell play a role in the dynamics

of membrane potential, the majority of models in the literature do not consider

them within their framework. This is true even in the case of SNc neurons.

With a few signiVcant models developed for these neurons [Amini et al., 1999;

Canavier, 1999; Wilson and Callaway, 2000; Komendantov et al., 2004; Canavier

and Landry, 2006; Kuznetsova et al., 2010; Drion et al., 2011], there are few mod-

els that discuss how intracellular levels of participating cations are aUected by

the diUerent membrane currents and vice versa. Although it is diXcult to in-

corporate all cellular events contributing to the intracellular ionic dynamics,

to model pacemaking activity, it may be suXcient to include the most signiV-

cant events that contribute towards establishing the electrical rhythm in these

neurons. We could do this by an extensive model that considers all major sub-

components that contribute or by a reduced model just by considering events

closer to the membrane. We Vrst attempt to model this activity based on the

events that take place in the vicinity of the cell membrane.

In this chapter, we give a mathematical representation of the pacemaking ac-

tivity of SNc neurons. Starting with a discussion on the observed electrophysi-

ology of these neurons and elements contributing towards this, we start with a

simple geometric design to develop the model. Later we switch to a realistic ge-

ometric design for the model and discuss diUerent aspects of SNc pacemaking

implied by the identiVed parameters of the model.

5.1 Ionic conduction at the SNc membrane

As for any neuron, the contribution of SNc towards the functioning of the

animal brain, is characterised by its electrophysiology. SNc neurons have a

characteristic pattern of spiking which is the result of a combination of its

intrinsic membrane properties and extrinsic signals, through synaptic inputs.

Ion-transport mechanisms present at the membrane, with its highly non-linear

properties, result in a coordinated ensemble of ionic currents (Na+, K+and Ca2+),
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that underlies the changes in the membrane potential. In this section, we dis-

cuss the characteristics of SNc electrophysiology and diUerent ion-channels

that are understood to contribute to the dynamics.

5.1.1 Electrophysiology of substantia nigra neurons

Midbrain dopaminergic neurons including SNc neurons are characterised by

broad action potentials and a spontaneous Vring pattern [Komendantov et al.,

2004]. The action potential generated has distinct components: (1) a slow de-

polarization involving a pacemaker like conductance, (2) a short initial segment

spike which involves a low threshold spike probably originating at the axon

hillock, (3) a longer somatodendritic spike, with a higher threshold , and (4) a

long lasting afterhyperpolarization [Grace and Bunney, 1983a]. In extracellular

recordings, the initial segment spike and the somatodendritic spike are seen as

separate peaks.

In isolation (in vitro), SNc neurons Vre at a highly regular pattern at low-

frequency. However, this is rarely observed in vivo as the neurons Vre at a

less regular pattern, still at a similar frequency. Burst Vring is also observed

in vivo from time to time, in addition to this background Vring. This mode of

Vring may be generated in vitro by stimulating the glutamate receptors with an

agonist such as NMDA.

The background Vring in SNc is a slow (1-8 Hz) process that is triggered from

a high threshold of around -40 mV . To achieve this, the neuronal membrane

needs to be depolarised from its resting potential (which is around -57 mV ).

The process of spike generation is considered to be comprised of both Na+and

Ca2+- dependent conductances, as spiking is lost by blocking either of the cur-

rents by the administration of respective channel blocker. The background Vr-

ing is thought to be driven by a sub-threshold oscillation that is observed when

the spike generating conductances are blocked by pharmaceutical agents [Ping

and Shepard, 1996]. This oscillation, which is commonly known as the slow os-

cillatory potential (SOP) is understood to be made up of a Ca2+-K+mechanism

mediated by the L-type calcium channel and SK-type potassium channel [Har-

ris et al., 1989; Wilson and Callaway, 2000]. A SOP is also observed in dendrites

although at a slightly faster rate [Wilson and Callaway, 2000].
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5.1. Ionic conduction at the SNc membrane

An increase in activity of the dopaminergic neuron is accompanied by a change

in the pacemaking pattern, from a single-spike mode to burst Vring [Grace and

Bunney, 1984b,a]. One noticeable diUerence between burst Vring in SNc and

other neurons is that the burst is with respect to the interspike interval. This

gap is comparatively longer in SNc and the burst cannot be generated easily un-

like other neurons, in vitro, by somatic current injections [Richards et al., 1997].

On the other hand, intense bursting may be induced in vivo, with spikes that

progressively decrease in amplitude and increase in spiking interval [Hyland

et al., 2002]. Glutamatergic synaptic inputs play a major role in the generation

of bursting activity [Grace and Bunney, 1984a] and may be mimicked in exper-

iments with the help of NMDA. Also, interfering with GABA (γ-aminobutyric

acid) receptors induce bursting [Tepper et al., 1995], suggesting a role for GABA

in the inhibition of SNc neurons. Experiments to analyse bursting in these

neurons achieve this by bath application of NMDA (for example, see Ibanez-

Sandoval et al. [2007]).

The involvement of a Ca2+ and K+currents in bursting has been demonstrated

when bursting was suppressed with the application of a Ca2+ chelator and a SK-

channel blocker [Grace and Bunney, 1984a]. However, Ca2+ does not appear to

be critical, since Ca2+-independent bursts have been demonstrated even with

the chelation of cytosolic Ca2+, in vitro with the application of an NMDA bath.

In essence, the electrical activity at the SNc membrane appears to be the result

of a dynamic interaction of components responsible for the transport of ions

across the membrane. Among the diUerent ions, Ca2+, Na+and K+appears to be

the most signiVcant. The alterations in the transport of these ions are based on

the electrochemical properties of the respective transporter proteins and their

concerted action is critical in deVning the neuron properties. A model for these

interactions would involve a good identiVcation and description of these units.

Also, it is important to understand the dynamic properties of the resulting sys-

tem, that lends it the expected behaviour under a given perturbation. Such

perturbations are discussed later in the chapter.

In tune with the theme of this thesis, we are concerned with how best we

could relate the basal activity of these neurons to energy models that would

be developed to understand PD pathogenesis. For this reason, we concentrate
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5.1. Ionic conduction at the SNc membrane

on developing a model for the background Vring activity and seek means to

estimate the average energy use. For developing an electrophysiological model

we need to understand the participating components that contribute to the

characteristic electrophysiology. In the next section, we discuss on how these

elements are elucidated.

5.1.2 Ion channels on SNc membrane contributing to its

spontaneous activity

The development of mathematical models to represent neuronal activity, ne-

cessitates identiVcation of the appropriate category of ion-channels involved.

This identiVcation process remains one of the biggest challenges in the devel-

opment of electrophysiological models for neurons. Traditionally this is under-

stood from studies involving channel blockers, but the resolving power of these

experiments is not always good. The analysis can be limited for a variety of rea-

sons, including problems with experimental design and set up, non-speciVcity

of the blocker molecule towards a range of channel proteins, variability in the

expression levels of target proteins in the region of interest etc.

In the case of SNc neurons, such experiments (for example, see Ibanez-Sandoval

et al. [2007]) have revealed the involvement of various channels contributing to

the pacemaking in these neurons. This includes tetradotoxin (TTX) sensitive

sodium channels, high voltage activated calcium channels (sensitive to Cal-

cicludine and dihydropyridines), T-type calcium channel (blocked by NiCl2),

Apamin sensitive SK-type calcium activated potassium channel, Tetraethylam-

monium (TEA) sensitive BK-type calcium activated potassium channel and ZD

7288 sensitive HCN channel.

Experiments with channel blockers have given rise to a number of mathemat-

ical models describing SNc electrophysiology. However, there exists a lack of

agreement between these models on the formulation for the respective ion-

channel activity. Apparently, only models coming from the same research

group show some consistency in the kind of mathematical paradigms used. In

table 5.1, we compare the diUerent ion channels employed by some of the pop-

ular models in literature. As we can see from this comparison (table 5.1), there
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5.1. Ionic conduction at the SNc membrane

Channel Model number
1 2 3 4 5 6 7 8

Sodium conductance
Transient 7 X X X X X X X
HCN (h-type) X 7 7 X* X* 7 7 7

Leak X X X X* X* X X* X*
potassium conductance
SK-Type X 7 X X X X X X
BK-Type 7 7 7 7 X 7 7 7

Delayed rectiVer X X X X X X X X
Inward rectiVer X 7 7 X 7 7 7 7

A-Type X 7 X X X X 7 7

HCN (h-type) X 7 7 X* X* 7 7 7

Leak X 7 X X* X* X X* X*
Calcium conductance
L-Type X 7 X X X X X X
T-Type X 7 X 7 7 7 7 7

N-Type X 7 X 7 7 7 7 7

HVA-Type X 7 7 X X 7 7 7

Leak X 7 X 7 7 X 7 7

Pumps and exchangers
NaCax X 7 7 7 7 7 7 7

NaK X X X 7 7 X 7 7

PMCA X 7 X 7 7 7 7 X
Others
Electrode currents 7 X 7 7 7 X X 7

Synaptic input currents 7 X X 7 7 7 X X

Table 5.1: List of ion-channels appearing in various models for SNc in literature (1) Amini
et al. [1999] (2) Canavier [1999] (3) Komendantov et al. [2004] (4) Chan et al. [2007] (5) Guzman
et al. [2009] (6) Kuznetsova et al. [2010] (7) Oster and Gutkin [2011] (8) Drion et al. [2011]. * In
this case, the Na+and K+components are lumped for a mixed current

is no real consistency in the use of ion-channels among the diUerent models.

The conductances that appear in majority of the models include the transient

sodium, L-type calcium, potassium delayed rectiVer and SK-type potassium

channels that are activated by Ca2+. Most models avoid using pumps and ex-

changers, and since these models are mostly in the diUerential form, aspects of

ionic charge conservation can be conveniently neglected.

Advances in the Veld of molecular biology has enabled the identiVcation of

proteins that are expressed by an organism. This provides an alternative to

the rather indirect and tedious methods for assessing ion-channels expressed
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5.1. Ionic conduction at the SNc membrane

in a neuron. Analysis of such expression proVles indicate that SNc neurons

express a wide variety of cation channels, some of which play a signiVcant

role in its autonomous pacemaking behaviour. Based on the datasets of Moran

et al. [2006] and Lesnick et al. [2007], Table 5.2 provides a comprehensive list of

the type of cation channels expressed in the SN neuron on account of the α -

subunits expressed.

Table 5.2: Channels of substantia nigra

A list of cation channel α sub-units expressed in Human substantia nigra

based on the datasets of Moran et al. [2006] and Lesnick et al. [2007]

Channel type Human gene IUPHAR receptor

Family : Voltage-gated calcium channels

L-type CACNA1C Cav1.2

CACNA1D Cav1.3

T-type CACNA1G Cav3.1

CACNA1I Cav3.3

P/Q-type CACNA1A Cav2.1

N-type CACNA1B Cav2.2

Family : Voltage-gated sodium channels

SCN1A Nav1.1

SCN2A Nav1.2

SCN3A Nav1.3

SCN9A Nav1.7

SCN11A Nav1.9

Family : Voltage-gated potassium channels

Shaker-related delayed rectiVer KCNA1 Kv1.1

KCNA6 Kv1.6

Shab-related delayed rectiVer KCNB1 Kv2.1

Shaw-related delayed rectiVer KCNC1 Kv3.1

KCNC4 Kv3.4

Shal-related A-type channel KCND2 Kv4.2

KCND3 Kv4.3

Inward-rectifying channel KCNH2 Kv11.1

KCNH7 Kv11.3

Slowly activating outward rectiVer KCNH8 Kv12.1

Family : Inwardly rectifying potassium channels

Inward-rectiVer KCNJ2 Kir2.1

Continued on Next Page. . .
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Table 5.2 – Continued

Channel type Human gene IUPHAR receptor

KCNJ10 Kir4.1

KCNJ14 Kir2.4

G protein-coupled KCNJ6 Kir3.2

inward-rectiVer KCNJ9 Kir3.3

Family : Calcium-activated potassium channels

BK channel KCNMA1 KCa1.1

SK channel KCNN2 KCa2.2

KCNN3 KCa2.3

KCNT2 KCa4.2

KCNN2 KCa2.2

Family : Two-P potassium channels

Tandem pore domain channel KCNK1 K2p1.1

KCNK10 K2p10.1

KCNK12 K2p12.1

KCNK17 K2p17.1

Family : Cyclic nucleotide-regulated channels

Hyperpolarization-activated cyclic HCN1 HCN1

nucleotide gated channel HCN2 HCN2

HCN4 HCN4

Other channels

Voltage-independent, nonselective NALCN -

channel mostly responsible for

sodium leak

Two pore segment channel TPCN1 TPC1

TPCN2 TPC2

The protein expression proVle results are quite consistent with the selection

of ion-channels based on channel block studies. Although it is possible to

model and connect all the diUerent channels that are apparently expressed in

a neuron, there are issues with such an approach. The Vrst diXculty is in hav-

ing a complex model with large number of components which, in turn, would

make the model less comprehensible and appropriate for analysis. Next, a large

number of parameters would likely result in identiVability problems. In such

cases, even when a set of parameters are able to reproduce the experiments

used for calibration, there can exist other families of parameter values that also
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reproduce the data. Parameters identiVed may not necessarily have a physi-

cal meaning and in turn make the model limited in its predictive capabilities

[Balsa-Canto et al., 2010].

Additionally, an important limitation of neuron models is the need for adapta-

tion of electrophysiological characteristics of the ion-channels involved. Most

often such characteristics are obtained from experiments that are not necessar-

ily conducted with the same organism for which the larger model is developed

(for example see Amini et al. [1999]). Even with these proteins being func-

tionally conserved among species, there exist species to species diUerences in

their post translational processing and variations in the choice of sub-units

for their quaternary structure. Also, some of the post translational processing

are tissue speciVc. Such diUerences, though subtle, are reWected in the dy-

namic response of these channels. Further, experiments on ion-channels are

frequently conducted in conditions that are diUerent from their native physio-

logical environment. Parameters identiVed from such experiments when used

in larger models, may lead to skewed interpretations of the phenomenon. On

these grounds, mathematical models of neurons are necessarily simpliVcations

that may represent some observable aspects of neuronal behaviour, but where

many lower level details are treated in a simpliVed manner.

Thus, to develop our model we limit the selection of model components to a

small number suXcient to reproduce the characteristic electrophysiology ob-

served in SNc. Ion-channels were initially selected based on the criteria that

they have been both used previously in modelling studies (table 5.1) as well as

appear to be expressed in SNc neuron (table 5.2). Later in sections 5.4.2 and

5.5.2, when parameters were estimated , we eliminate some of these channels

that do not appear to contribute signiVcantly towards the measurable neuronal

activity. The next type of components used in the model, membrane pumps

and exchangers, are responsible for ionic charge conservation. We select only

those proteins that contribute the most in the transport of cations considered

in our model. The third type of model components are mobile calcium buUers

that are understood to be present near Ca2+ entry points of the membrane. De-

tails of selection made on type of transport components are discussed later, as

we discuss the model. Figure 1.1 gives a sketch of components considered for

the model and Vgure 5.1 is an extension showing the intricate relation of this
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membrane system to the energy and calcium management in the neuron.
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Figure 5.1: Schematic view showing the relationship of our model (marked oU within dashed
lines) with energy and calcium management system of the neuron

5.2 Theory of pacemaking

The very Vrst attempt to analyse the electrophysiology of dopaminergic neu-

rons took place 40 years ago [Bunney et al., 1973], in which a few diUerent

techniques were adopted to deVne the system of these neurons. Substantial

research has taken place over the span of years to describe the diUerent be-

havioural aspects of these neurons and a few attempts have been made to

mathematically describe this system (see table 5.1). In this section we discuss

the methodology that we adopt to develop a basic model to describe the back-
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ground Vring in SNc neurons and how we may roughly estimate the energy

expenditure of this recurring process.

5.2.1 Modelling approaches

To develop a model for describing the pacemaking at the SNc membrane, we

propose an approach that is technically a little diUerent from many of the es-

tablished models. One of the major diUerences with established models is in

the use of the algebraic form of the voltage equation (see equation 3.5). By the

use of algebraic form for calculating the membrane potential, in addition to

having one dimension less in the state space, we also have a model which is

more stable against slow drift in intracellular ion concentration often seen with

the diUerential form (equation 3.2). Alternatively, we may use the modiVed

diUerential form (equation 3.4) which incorporates ionic charge conservation

principles and is stable against such drifts.

Next, owing to signiVcant diUerences in the ion dynamics inside the cell, we

prefer to use an electro diUusion model for channel conduction (equation 3.11)

compared to the commonly used linear conductance relationship (equation 3.9).

This is particularly important in the case of Ca2+ ions due to the large driving

force of transport that exist for these ions across the membrane. Also, we use

Markov models for the ionic pumps to incorporate the nuances of the limiting

steps that control the dynamics of these proteins.

In the subsequent step, global optimisation strategies are used to identify im-

portant parameters of the model. The resulting model is then validated against

observed behaviours for a set of perturbations.

5.2.2 Metabolic cost of membrane oscillations

A non-linear dynamic system is capable of spontaneous oscillations when it is

an open system, i.e, there is a continuous Wow of energy through the system

from its environment [Strogatz, 2001]. In the case of neurons, oscillations at

the membrane are driven by the energy supplied from its metabolic activities.

Furthermore, neuronal oscillations are electrochemical in nature and they in-

volve both the passive Wow of ions with respect to the electrochemical gradient,
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together with active (that is energy demanding) Wows against the natural elec-

trochemical gradient. The active transport mechanisms are demanding with

respect to energy metabolism. In this section, we look for a simple mathemati-

cal formalism that can provide rough estimates of energy use at the membrane,

owing to its spontaneous activity.

Estimates of energy use The transport and distribution of ions across the

membrane, to maintain a functional state, involves proteins that use energy to

transport ions against their gradient. The ATPase activity is directly coupled

to ATP hydrolysis. The two ATPases in our model work towards maintain-

ing the steady state levels of the cations and their activity is dependent on the

availability of ATP for hydrolysis as well as their aXnities for the respective

cations. PMCA expels Ca2+ ions from the cytosol brought in by calcium chan-

nels at the membrane (as well as the intra-cellular stores, which is not included

in the present model). NaK works to remove Na+ions brought in by the action

of sodium channels and NaCax. It also brings in K+ions due to the coupled

activity.

The energy-transduction associated with membrane excitation may be quan-

tiVed according to the concepts laid down by Attwell and Laughlin [2001], in

which such calculations are used to compare diUerent functional aspects of

neuronal signalling. Accordingly, we have

dATPuse

dt
=

[Inak + Ipmca]

FVcyt
(5.1)

IfATPspike represents the ATP consumed per spike by the SNc neuron, we have

ATPspike =
1

FVcyt

tspike∫
0

(Inak + Ipmca) dt (5.2)

Note: If we consider the pacemaking oscillations to be stable, we have the

transport of cations bound for a spike, i.e.

tspike∫
0

d(Si) = 0, S = {Na+, K+, Ca2+} .
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Accordingly, we may also calculate the energy use as ATP, from the corre-

sponding current expressions.

5.3 Cellular geometry and relevance to

mathematical modelling

Models developed for neuronal electrophysiology, predominantly use the dif-

ferential form (equation 3.2) to described the variations in the membrane po-

tential. The dynamics are then described by the variations in the current Wow

through the various channels considered for describing the membrane in the

model. Most models assume Vxed concentration of the participating cation

species (or explicitly by assuming constant Nernst potentials for the corre-

sponding ions). In some cases, when the dynamics of Ca2+ ions become sig-

niVcant to the model, the corresponding dynamics are included; but the rest

of the ionic species are retained at a steady concentration. The advantage of

this approach is that the cell geometry is irrelevant to the model, save that the

surface area is often implicitly incorporated with the conductance parameter

(for example, see Guzman et al. [2009]). In such cases, the conductance is often

expressed as a density function (Siemens per square centimetre).

However, when it comes to having a model involving the dynamics of ionic

concentration within the neuron, i.e. with the algebraic form of the voltage

equation (equation 3.5) or the diUerential form that considers ionic charge con-

servation (equation 3.4), the geometry deVned parameters become signiVcant

to the model.

One aspect that is least pronounced in established models of pacemaking is

how the cell geometry inWuences the model. It is now an accepted fact that

diUerent regions of a neuron contribute distinctively towards the overall elec-

trophysiology. For example, the signiVcance of the axon hillock as the site for

impulse-generation is widely accepted [Coombs et al., 1957]. Moreover, stud-

ies have shown that ion-channels are not uniformly distributed over neuronal

membranes [Takada et al., 2001; Patel et al., 2009], instead, they are conVned to

speciVc locations along the neuronal membrane. This in turn has an impact on

the electrophysiology of the neuron.
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The simplest of mathematical approaches to represent neuronal function re-

gards the whole neuron as a single geometrical unit or compartment. Although

in most cases, the geometry is typically not mentioned, the model implicitly

considers a spherical or cylindrical shape for this unit [Sala and Hernández-

Cruz, 1990; Wilson and Callaway, 2000; Sterratt et al., 2011]. Only models that

consider the contributions from the neuron’s anatomical subdivisions, do in-

corporate additional structural features. In most cases this is achieved by multi-

compartment models which include representations for dendritic trees, soma,

axon hillock and axon. The use of equivalent cylindrical representations are

very popular in this regard, in modelling neuronal electrophysiology [Komen-

dantov et al., 2004; Wilson and Callaway, 2000; Kuznetsova et al., 2010]. A

realistic compartmentalisation would call for a large number of compartments

and the complexity may be compounded by the type of neuron and its intricate

dendritic trees [Fohlmeister and Miller, 1997].

In the case of SNc neurons however, its profuse axonal arborisation, as de-

tailed in Matsuda et al. [2009], would mean that it is nearly impossible to

come up with a realistic multi-compartmental model. However, considering

the fact that axonal processes have minimum contribution to the initiation of

spikes, this may be ignored, akin to previous modelling attempts [Komendan-

tov et al., 2004; Kuznetsova et al., 2010]. An interesting aspect of SNc spiking is

the demonstrated ability to pacemake even without its dendritic components

[Hainsworth et al., 1991; Puopolo et al., 2007]. This implies that the compo-

nents responsible for the initiation and sustenance of regular spiking are found

on the soma and its immediate extensions, including the axon hillock. This

makes it possible to develop a model with essentially a single compartment,

incorporating important channels responsible for pacemaking.

Again, in the sections to follow, we employ data obtained from spontaneous

pacemaking recorded in an acutely dissociated neuron [Puopolo et al., 2007], to

identify model parameters. For these reasons, we deVne this single compart-

ment, called the pacemaking unit.
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The Pacemaking Unit

We propose to initially build a single compartment model, the functioning unit

of which would be termed as the pacemaking unit (PMU). The single com-

partment that we consider for our model does not necessarily include all the

anatomical subdivisions observed in SNc neurons. However, it is assumed to

have all the functional components (ion-channels) responsible to initiate and

sustain the regular membrane oscillations. We initially build a model the tra-

ditional way, assuming the unit to be of a regular spherical geometry. Later on,

we incorporate a more physiologically realistic geometry.

(a) (b)

(c)

(d)

50
 μ

m

30 μm

30 μm

Figure 5.2: Geometrical aspects considered for the pacemaking unit of SNc (a) Micrograph
of a immuno-stained SNc from Matsuda et al. [2009] (b) Micrograph of SNc neuron from Tepper
[2010] (c) spherical geometry (d) Hyperbolic tetrahedral geometry
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Case I : The classical geometry - sphere A preliminary approach to develop a

simpliVed model for neurons, is to use a model with all its conductances lumped

into a single spherical compartment that represents the neuronal soma. For our

model we consider a spherical soma that is 30 microns wide and assume to be

having all components necessary for the spontaneous activity.

Case II : The realistic geometry - hyperbolic tetrahedron Anatomical stud-

ies have established that the dopaminergic SNc neurons has a pyramidal shaped

soma 12-30 microns in diameter with 3 to 6 major dendrites (Vgure 5.2 a,b).

These dendrites extend 10 to 50 microns from the soma before they bifurcate

[Grace and Bunney, 1983a]. The axon rises from one of these major dendrites.

We deVne the geometry of PMU on this basis, as well as from various mi-

crographs observed in literature [Matsuda et al., 2009; Tepper, 2010]. The unit

which mostly comprised of the SNc soma, is a unique structure capable of spon-

taneous pacemaking.

The neuronal soma is assumed to be more of a tetrahedron than of other ge-

ometrical forms. As discussed before, it is diXcult and impractical to include

the entire dendritic tree to make an exact geometric construct for this neuron.

However, it would be a good idea to include the dendritic regions in the imme-

diate vicinity of the soma, so that it includes regions like axon hillock that has

a high density of ion-channels responsible for the characteristic electrophys-

iology. Moreover, it is reasonable to assume that these regions are preserved

on the neuron, even when it is acutely dissociated. This addition would now

make the unit look more like a hyperbolic tetrahedron, with a high surface-

to-volume ratio. A two-dimensional representation of this pacemaking unit is

provided in Vgure 5.2 (d).

In the following sections we attempt to model the pacemaking activity of the

SNc neuron. In the Vrst stage, we develop a crude model based on a spherical

geometry of the PMU, to understand the components contributing towards the

dynamics at the neuron’s membrane. In the second stage, we reVne the model

further using a more realistic geometry, the hyperbolic tetrahedron.
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5.4 A mathematical model of SNc pacemaking with

membrane components based on a spherical

PMU

In the preliminary stage of modelling the pacemaker activity, the SNc PMU is

considered to be a sphere of 30 microns, with its membrane comprising of com-

ponent necessary for initiating the spontaneous activity. We base our model

on the recorded data of pacemaking obtained by Puopolo et al. [2007], and its

associated ionic currents quantiVed by voltage-clamp studies.

The results of this section appear in Francis et al. [2012].

5.4.1 Channels selected for the spherical model

For our model (see Figure 1.1), we select channels based on observed expres-

sion in SNc neurons (table 5.2) and their reported inWuence in generating the

pacemaking current (Amini et al. [1999]; Wilson and Callaway [2000]; Puopolo

et al. [2007]; Kuznetsova et al. [2010], also see table 5.1). These includes a rep-

resentative sodium channel, three types of calcium channels (L-type, T-type

and high voltage activated (HVA) type), a calcium dependent potassium chan-

nel (SK), three types of voltage-gated potassium channels (delayed rectiVer, in-

ward rectiVer and A-type transient channel), HCN channel and a leak channel.

A sodium-calcium exchanger, along with a calcium and sodium pump, works

towards establishing ionic gradients across the membrane. We also include two

mobile calcium buUers that are important for the calcium dynamics.

5.4.2 Parameter estimation

Puopolo et al. [2007] describes spontaneous Vring in dissociated dopaminergic

neurons of the substantia nigra, and provides useful information on sodium and

calcium currents from dynamic clamp experiments. In particular, Puopolo’s

data can be put to use to estimate signiVcant parameters for the correspond-

ing ion-channels. In the work of Puopolo et al. [2007], experimental currents

of sodium and calcium were measured from acutely dissociated dopaminergic
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neurons of substantia nigra, capable of spontaneous pacemaking. It should be

noted that both currents recorded are always negative, which implies a persist-

ing inward Wow of Na+and Ca2+ respectively. From the perspective of dynam-

ical systems, a biochemical arrangement exhibiting spontaneous oscillations

involve stable limit cycles. For this to be realized, the sum of net current in a

cycle should be zero. Since the data has only negative currents1, we assume

that data do not include the contribution of pumps and exchangers.

Estimation of parameters was carried out sequentially, beginning with the data

on sodium current. As SNc neurons express a few diUerent variants of proteins

responsible for sodium conductance, it is not practical to have representations

for each sub-type. Instead, we model a component representing the cumulative

behaviour of these channel sub-types. The TTX sensitive sodium current ob-

served by Puopolo et al. [2007] is modelled by using a Markovian gating scheme

(equation 3.17) for this representative sodium channel.

Calcium channels, on the other hand, have varied voltage dependences and

their speciVc contribution to the net calcium current needs to be accounted for

separately. Again, the nature of the available data makes it diXcult to estimate

all parameters for calcium channels in an identiVable manner. Because of this,

gating models of the T-type and HVA calcium channel were adopted from the

literature. Parameters for the Hodgkin-Huxley gating of low voltage activated

L-type channels (Cav1.3) were identiVed from experimental data. The HVA

current is representative of the high voltage activated L-type channel (Cav1.2),

and P/Q type channel.

In the next stage, parameters for the cation pumps, exchanger and potassium

channels were estimated by Vtting against the command voltage, which was

used in the experiment of Puopolo et al. [2007] for generating the current char-

acteristics. To avoid identiVability issues, the number of diUerent Potassium

channel types was kept to a minimum and their parameters adopted from the

literature.

Although the use of a linear conductance model is more popular, the GHK

equation is better suited when mass Wuxes are concerned. Again, the same gat-
1Note that, in the data, currents of sodium and calcium are always negative. This would

mean that, according to equation 3.3, there will be an accumulation of both cations.
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ing parameters of a channel can evoke moderately diUerent responses when

used along with the two separate formulations for channel current. For this

reason, we employ the linear conductance relation (equation 3.9) to express

only those channel currents in our model for which the gating parameters cor-

respond to models in the literature that employ the linear relationship. For the

rest we employ the GHK equation (equation 3.11).

To optimise the parameters of the model that best Vts the data, a global opti-

mization algorithm, SSm GO [Egea et al., 2009] was put to use. This algorithm

combines a population based meta-heuristic method with a local optimization.

Parameter bounds were based on physiological grounds. As cost functions, we

used a sum of common least square functionals with proper weight coeXcients

to force better solution in those experiments with less uncertainty [Walter and

Pronzato, 1997]. Parameter bounds were based on physiological grounds.

On the design of cost functions Design of the cost function was a complex

procedure as the modeling study was limited in available data and the weight

coeXcients often evolved with the selected objectives. Some of the objectives,

based on which the cost functions were designed, include

• Oscillations are present in the desired range of frequency and amplitude

• There is minimum drift in the concentration of intracellular concentra-

tion

• By introducing a sodium channel block, the model gives oscillations with

smaller amplitude

• The model stops oscillating with the block of L-type channels and re-

sumes oscillations with an increase in cAMP concentration

Often the parameter search space had to be modiVed to have a balance between

selected criteria and speed of optimization, however in most instances they

were kept in a range that was physiologically justiVed. As an exception, we

had to particularly extend the allowed range of variation in the intra-cellular

calcium concentration, such that the model reproduced the electrical activity

with enough detail. For instance, restricting the allowed variations of intra-

cellular calcium in a range as observed experimentally by Wilson and Callaway

[2000] (50-250 nM) kept us from a good solution. It was required to raise the
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upper bound of calcium concentration to 1000 nM for an acceptable solution.

5.4.3 Model Outcomes

Currently available models of pacemaking in SNc have adequately represented

experimental studies with pharmacological manipulations and reproduced sig-

niVcant features of the functioning of the neuron. However, the inWuence

of molecular entities that balance the Wux of important cations, namely the

pumps, exchangers and buUers, are mostly ignored in these models (see table

5.1).

In addition, the electrical activity of an individual neuron is frequently repre-

sented by means of the dynamics of the membrane potential. However, this

overlooks the fact that membrane potential is directly determined by the mem-

brane capacitance and ionic concentrations. The response of the system is ul-

timately a function of prevailing electrical forces and molecular diUusion. For

this reason, our model is based on the dynamics of the important ions involved,

rather than dynamics of membrane voltage. As a result, in common with other

electro-physiological models of membrane potential in the algebraic form [En-

dresen et al., 2000; Hund et al., 2001; Poignard et al., 2011], our model provides

more representative insights into the processes involved.

5.4.3.1 Some important features of the model

The role of calcium as the major charge carrier for spontaneous pacemaking in

SNc neurons has been demonstrated by various studies involving pharmaceu-

tical blockers, as well as experiments involving calcium imaging [Wilson and

Callaway, 2000; Ibanez-Sandoval et al., 2007]. Results (see Figure 5.3) that Vt

our model, conVrm that L-type calcium channels that open at relatively depo-

larized membrane potentials (Cav1.3) are the most crucial in driving sponta-

neous pacemaking [Putzier et al., 2009].

From the calcium data Vts, the contribution from the L-type calcium channel

appeared to be the most important. The HVA calcium channels, however, seem

to have a small role in supporting the somatic calcium spikes. The T-type cal-
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Figure 5.3: Data Vts of currents in acutely dissociated SNc neurons determined using the
action potential clamp technique (a) Fitting of the Tetrodotoxin-sensitive sodium current us-
ing Markovian gating dynamics and GHK current equation (b) Fitting of the cobalt-sensitive
current by employing Hodgkin-Huxley type gating dynamics and GHK current equation

cium channels apparently have a limited role during spiking, however they

were important in maintaining the levels of calcium during the inter-spike in-

terval. According to Verkhratsky and Toescu [1998], among excitatory neurons,

L-type calcium channels are predominantly harboured in the soma, whereas

the high voltage activated N and P/Q calcium channels are mostly observed on

dendrites and pre-synaptic terminals. Hence it is possible that the HVA current

of the soma is mostly due to the high voltage activated L-type channel (Cav1.2)

rather than P/Q type channels.
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Figure 5.4: (a) Simulated response of the model with the spherical geometry of the PMU:
Membrane potential, Channel currents contributing to the pacemaking for a single spike and
Corresponding currents from the molecular transport mechanisms responsible for maintaining
ionic Wuxes. (b) Simulated block of fast sodium current by TTX (gna is set to zero from 1000
ms). (c) Simulated block of L-type and HVA calcium channels. (gca,l and gca,hva are set to zero
from 1000 ms, an increase in cAMP concentration from 4200 ms revives the pacemaking, now
driven by sodium currents activated by the HCN channels).

The contribution of the diUerent currents in generating the spontaneous pace-

making is shown in Figure 5.4 a. The role of calcium currents in the generation

of oscillation has been demonstrated by blocking the fast sodium currents by

the application of Tetrodotoxin (TTX) (Figure 5.4 b). The TTX blocking action

is implemented in our model by setting the value of sodium conductance (gNa)

to zero. This leads to a dampening of oscillations from a spike-Vring mode
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as demonstrated in some of previous experiments [Amini et al., 1999; Ibanez-

Sandoval et al., 2007].

Another important feature that may be noticed (see Vgure 5.4) and mentioned

by Chan et al. [2007], is that SNc neurons can switch back to spontaneous pace-

making even without relying on the L-type channel. An increase in the level

of cAMP activates the HCN channels to a higher degree and makes them drive

pacemaking. As we shall see later, this switch could have important energy

implications.

5.4.3.2 Energy implications

Figure 5.5 shows the variations of average ATP use by the pumps calculated

from the model. In particular, it shows that there is a substantial reduction in

the use of energy when the neurons switch from a Ca2+ dependent mode of

pacemaking to a Na+dependent mode. This reduction in energy requirement

supports the recent proposal [Guzman et al., 2009; Chan et al., 2009] to employ

drugs, that are used to treat hypertension by blocking L-type calcium channels,

as a preventive measure against the progression of PD in prospective patients.

Our energy budget predictions in Figure 5.5 suggest that this would reduce

the energy stress on vulnerable SNc neurons through a reduced calcium entry.

However, the reduced calcium entry may have other biochemical implications.

5.5 A mathematical model of SNc pacemaking with

membrane components based on a realistic

PMU

One of the striking feature of a neuron is its highly irregular geometric struc-

ture. But it is this structure that enables the unique physiological activities of

these cells. However, mathematical models framed for describing their elec-

trophysiology typically ignore the structure. As discussed before, use of the
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Figure 5.5: Average energy usage by membrane transport proteins calculated from the model
(a) Normal pacemaking mode of SNc neurons when the L-type calcium current drives pace-
making (b) Pacemaking is driven by the HCN channels when the L-type calcium channels are
blocked.

diUerential form of the voltage expression (equation 3.2), circumvents the need

of considering structural aspects for describing the model.

In the previous section, we gave a model for SNc activity with a simple geo-

metrical structure. However, a sphere of 30 microns implies a cell volume of

14.13 pl. This value of cell volume is signiVcantly higher than expected for the

neuronal perikaryon (If we consider the soma to be a regular tetrahedron of

edge 30 microns, the volume would just be 3.2 pl). Further, neurons are known

to have a high surface area to volume ratio and the sphere is the most regu-

lar structures with the lowest surface area to volume ratio. Also, our previous

model did not consider the fact that the cytosol occupies only a fraction of the

cell volume.

Hund et al. [2001] suggests that if charges are conserved, the choice of method

(diUerential or algebraic) does not inWuence the behaviour of the system. In

the case of using the algebraic form, we need to be cautious with the choice

of initial conditions and the integration constant, as the model tends to be

sensitive to this choice particularly during numerical simulation. With our
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previous model with the spherical geometry, this particular aspect limited our

parameter estimation procedure. For the model with the realistic geometry we

adopt the modiVed diUerential form that explicitly relates the transmembrane

potential to the dynamics of intracellular concentrations (equation C.1), in spite

of having an additional state variable.

Keeping these aspects in mind we modify our existing model for a diUerent

PMU geometry, a hyperbolic tetrahedron with a characteristic dimension of

50 microns (see Vgure 5.2) and for the voltage expression we use the diUeren-

tial method with ionic charge conservation principles. As before, we assume

the PMU to be in an osmotic equilibrium with its environment, so that cell

dimensions are preserved in the course of the process. Membrane-bound sub

compartments within the cell take up a substantial space of the cell. For this

reason, we consider the cytoplasmic volume to be a fraction of the cell volume.

Design parameters based on this geometry are provided in table 5.3.

Item Symbol Value (Units) Reference

Characteristic dimension, soma ds 30 (µm) Matsuda et al. [2009]
Characteristic dimension, PMU dpmu 50 (µm) Tepper [2010]
Volume, PMU Vpmu 5 (pl) approximated
Surface area-to-volume ratio, PMU Spmu 16.667(µm−1) Vtted
Volume fraction, Cytosol φcyt 0.5 Alberts et al. [2002]

Table 5.3: A list of parameters realted to the geometry of the realistic model

5.5.1 Channels selected for the HT model

We follow the same principle as described in section 5.4.1 in selecting the chan-

nels. However, we now eliminate a few of the channels that did not appear to

contribute much to the electrical characteristics of our model. This includes

both the T-type and HVA Ca2+ channels, A-type K+channel as well as the potas-

sium conductance through the HCN channel.

5.5.2 Parameter estimation

The parameters for the sodium and calcium currents were identiVed as in the

previous section from the data of Puopolo et al. [2007]. As we have no change in
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the model with respect to the TTX-sensitive sodium currents, the results of the

previous section was used. In the case of calcium currents, experiments were

initially repeated with both L-type and T-type current components to identify

the respective parameters. However, the contribution from the T-type calcium

channel was found to be insigniVcant towards the net calcium current. Hence,

the T-type component was eliminated and parameters were Vne tuned with

only the L-type component for the calcium current.

In the Vnal Vtting, model tuning parameters were estimated from the data for

command voltage, that was previously used for generating the current char-

acteristics (Table C.2). These parameters include conductance parameters for

channels and transporters on the membrane and concentrations of buUer pro-

teins in the cytosol. They are a reWection of the density of diUerent transport

proteins and are bound to change according to the choice of design parame-

ters, to match the expected behaviour of the system. Finally, the model was

validated by blocking diUerent ion channels and conVrming that the model re-

sembles the expected behaviour in a SNc neuron.

As in the previous case, we have used the global optimization algorithm, SSm

GO [Egea et al., 2009], to identify the parameters of this model. Also, for the re-

maining channels, the parameters for their dynamic gating were adapted from

literature. Although this is not the optimum routine for identifying various

channel parameters for the model, for the reason discussed before, limitation

in the data available to develop the model forces this measure to avoid identi-

Vability issues.

5.5.3 Model outcomes

A model for SNc pacemaking was developed based on the recordings of Puopolo

et al. [2007] on acutely dissociated neurons. The model includes a represen-

tative sodium channel that is sensitive to TTX. Ca2+ ions enter through L-

type calcium channel and expelled by means of a sodium-calcium exchanger

(NaCax) and a calcium pump (PMCA). The dynamics of K+transport are con-

trolled by three potassium channels, the delayed rectiVer and internal recti-

Ver being voltage controlled and the SK-type being calcium concentration con-

trolled. The levels of Na+and K+are kept in check by the action of the sodium-
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potassium pump (NaK). We have considered only transport of Na+through

the cAMP-dependent HCN channels as their range of activity is closer to the

Nernst potential of K+ions and we do not expect signiVcant Wow of K+ions

through this channel.

5.5.4 Dynamic behaviour
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Figure 5.6: The response of the model with the realistic PMU geometry using estimated pa-
rameters. The tuning parameters of the model were Vt from data on pacemaking in dissociated
neurons by Puopolo et al. [2007] including the spontaneous spikes in its membrane potential,
(a) TTX sensitive sodium currents (b) and cobalt sensitive calcium currents. The model shows
stable limit cycles in the concentration of the cations involved (d,e,f)

The model was calibrated for obtaining normal pacemaking exhibited by SNc

neurons. In order to assess the validity of the model, it was calibrated for

obtaining behaviour expected of these neurons with respect to two diUerent

channel blockers. The presence of TTX, a sodium channel blocker has been

reported to block the spiking currents and the neuron is expected to demon-

strate slow oscillations driven by calcium currents [Amini et al., 1999; Ibanez-

Sandoval et al., 2007]. Also, the presence of L-type calcium channel blockers

like dihydropyridines is reported to abolish the pacemaking activity, but may
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be reinstated with an increase in cytosolic cAMP levels [Chan et al., 2007].

These observations are experimented in the mathematical model by setting the

corresponding channel conductance to zero.

Figure 5.6 shows the model simulation proVles generated using the estimated

parameters and the experimental data used for the calibration: 5.6.a using pace-

making voltage that was later used as command voltage in the experiment of

Puopolo et al. [2007] for analysing the Na+and Ca2+ currents, 5.6.b TTX sensi-

tive Na+ion channel currents and 5.6.c cobalt sensitive Ca2+ ion channel cur-

rents. These Vgures show the goodness of the diUerent estimations, where we

note the correct match of the spiking frequency, as well as the main features of

the spiking save for voltage, Na+channel current and Ca2+ channel current. In

the model, voltage is calculated as a function of ionic concentrations, where the

intracellular cationic species (Ca2+, Na+and K+) show the limit cycles in Vgures

5.6.d, 5.6.e and 5.6.f.

What we have in our model is only sodium conductances that are sensitive to

TTX. The deactivation of sodium channels by TTX need not necessarily be

equally eUective on all subtypes of sodium channels [Goldin, 1999; Du et al.,

2009]. There are reports on neuron to neuron variability for the extent of block

in SNc neurons [Puopolo et al., 2007]. Studies involving blocking sodium con-

ductance with TTX have shown a cessation of the spontaneous activity [Choi

et al., 2003] and in many other cases a very slow oscillatory behaviour (SOP)

was observed. On these grounds, sodium channels that are not blocked by TTX

are in all probability contributing to SOPs.

SOPs were also observed when the TTX block study was carried out in an

NMDA bath [Ibanez-Sandoval et al., 2007]. Since NMDA is applied to mimic

glutamate input, for the neuronal soma this is equivalent to receiving dendritic

inputs as Na+ions. For this reason, a partial revival of sodium channel conduc-

tance from the blocked condition should lead to SOP. To analyse this our model

was simulated by initially completely blocking the TTX sensitive Na+current

and later partially restoring this particular conductance. Figures 5.7, 5.8 and

5.9 shows the model behaviour when the sodium channels are inhibited in the

presence of TTX and exhibits a slow oscillation in membrane potential with a

partial revival of sodium channels.
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These proVles support the observations made from some of the previous mod-

elling studies on these neurons [Amini et al., 1999; Wilson and Callaway, 2000;

Kuznetsova et al., 2010; Drion et al., 2011] and justiVes the selection of ion-

channels. Although the currents through the sodium channels (Ina) and potas-

sium delayed rectiVer (Ik,dr) contribute to visible spikes, the underlying rhythm

seem to be set by the concerted eUort of currents through calcium channels

(Ica,l) with the potassium SK-type channel (Ik,sk) and internal rectiVer (Ik,ir),

with ample support from membrane pumps and exchangers. This rhythm set

by a pacemaker-like slow depolarisation was given the term ‘slow oscillatory

potential’ (SOP) [Amini et al., 1999].

The SOP is calcium dependent and may be abolished by blocking the calcium

currents (results not shown). Of particular interest is the dynamics of cation

pumps during the SOP (Figure 5.8) which was not very pronounced in earlier

models [Amini et al., 1999] which employed a simple Michaelis-Menten type

expression for the pump’s action or models that did not use them at all [Wilson

and Callaway, 2000; Kuznetsova et al., 2010]. This experiment testiVes to the

role of calcium ions in initiation of pacemaking and the signiVcance of mem-

brane pumps and exchangers in establishing the background oscillations that

underlie pacemaking.

The blockade of L-type calcium channel currents (Ica,l) by DHP is achieved

by subjecting the channel conductance (gca,l) to zero, in the model. DHP block

keeps the system from spontaneous oscillations, and the pacemaking reappears

with an increase in the levels of cAMP in the cytosol (Vgure 5.10). This is in

accordance with the observation made by Chan et al. [2007] on mouse neurons.

According to their theory, the block of L-type calcium channels brings about a

drop in cytosolic Ca2+ levels, which in turn lifts the restriction imposed on the

calcium-inhibited isoforms of the enzymes adenylyl cyclase. These enzymes

catalyse the production of cAMP from ATP molecules at the membrane un-

der the inWuence of G proteins as a part of the G protein signalling cascade.

With reduced concentration of Ca2+ in the cytosol, an increase in cAMP would

shift the voltage dependence of HCN channels that are allosterically regulated

by these signalling molecules. This shift in voltage dependence re-establishes

pacemaking, however with the help of Na+ions.
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Figure 5.7: Blocking fast sodium channels by TTX brings forth the slow oscillatory activity
that underlay the spontaneous pacemaking activity of SNc neurons (a) The TTX block was sim-
ulated by reducing the sodium channel conductance to zero at 10 seconds, the sodium currents
were partially recovered from 60 seconds to simulate a partial block by TTX. The spiking wave
is replaced by slow oscillations with a partial block. (b),(e) The currents responsible for spiking
activity, the fast sodium and delayed rectiVer potassium currents are silenced with the TTX
block (c) The calcium channels have an important role in sustaining the oscillations. These
channels are ably supported by the potassium channels (d,f).

The proposed model eUectively links the energy allocation for ion concentra-

tion maintenance of SNc neurons with its pacemaker Vring by means of the ac-

tivity of ion-exchange proteins at the neuronal membrane. As discussed above,

the switch from a calcium driven pacemaking mode to a sodium driven mode

should eUectively reduce the energy load on these neurons owing to the pre-
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Figure 5.8: Contribution of membrane transporters observed with the block of fast sodium
channels by TTX

vailing concentration gradients of these ions. Also, neuronal excitability is

strongly dependent on cytosolic calcium levels with higher cytosolic calcium

leading to lower excitability. This is mostly due to calcium dependent steps

in the membrane electrophysiology that have larger response time. When the

mode of pacemaking switches to the sodium-driven mode, there is a signiVcant

reduction in the intracellular Ca2+ levels (Vgure 5.10 f). This in turn makes the

cell excitable and we see an increased spiking rate. In spite of increased Vring

rates, we see that the ATP use at the membrane is considerably less (Vgure 5.10

e, Vgure 5.11)
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Figure 5.9: Oscillations in intracellular cation concentrations with the block of fast sodium
channels by TTX

5.6 Model Analysis

5.6.1 Channel conductance parameters and oscillation

dynamics : Bifurcation Analysis

In the model developed for describing the pacemaking in SNc neurons, we have

a system of currents that control the membrane potential by their varied gat-

ing mechanisms that are, in turn, controlled by the changes in the intracellular

ionic concentrations. As the magnitude of the ionic currents decides the ex-

tent of this synergy, the corresponding parameters, namely the channel con-

ductances, deVnes the properties of this dynamic system. For this reason, we

Vrst aim to study how these parameters inWuence the oscillatory properties of
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Figure 5.10: The response of the model with realistic PMU geometry when L-type calcium
channels are blocked (a) The spontaneous pacemaking at the SNc membrane ceases with the
introduction of L-type calcium channel blocker at 1 sec. In the simulations this is achieved
by setting the L-type calcium channel conductance to zero. The pacemaking is re-established
by an increase in cAMP concentration from 2 sec. (b) The L type calcium currents completely
ceases with the block, however T type calcium channels are more active owing to a membrane
that is more hyperpolarized. (c) There is higher sodium inWux through sodium channels and the
HCN channels (d). The HCN channels are activated by both hyperpolarization and increased
cAMP levels. (e) The cell consumes less energy as ATP per spike however, at an increased
spiking rate. (f) There is stable limit cycles in calcium levels in both cases, with the L-type
channel blocked calcium levels are reduced by an order of magnitude.

the model and thereby, investigate the precise role of these currents in normal

pacemaking.

Biologically speaking, the parameter describing the channel conductance com-

bines two pieces of information, (a) the amount or number of proteins ex-

pressed by the neuron that comprise the channel and (b) the capacity or max-

165



5.6. Model Analysis

Figure 5.11: DiUerence in energy use patterns observed with the two modes of pacemaking in
SNc neurons. In the control condition, the L-type calcium channels are active and the transport
of Ca2+ ions drives the pacemaking. With the block of these channels by DHP, pacemaking
is lost. However an increase in cytosolic cAMP revives pacemaking, driven by the Na+ions
transported through the HCN channel. Levels of cAMP modulate the pace and energy use
associated with this continuous spiking.

imal conductance of each channel. Supposing that the capacity of a particular

channel type is consistent in a neuron, the conductance parameter is essen-

tially a measure of expression level of each channel. This is again consistent

with the general view that protein abundance levels point to the cellular state,

for being the functionary of cellular processes.

The expression of a particular protein is characteristic to a cell type and reg-

ulated at various levels of cellular metabolism [Alberts et al., 2002]. Further,

the process of protein expression is not a continuous process within a cell,

instead it is discrete with respect to the metabolic state of the cell. Simulta-

neously, there is a continued interaction of proteins with metabolites such as

free-radicals that aUect their viability. Cellular maintenance mechanisms are

responsible for the degradation of proteins that are non-functional or beyond
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their half-life. Such variability in the turnover of ion-channels have a role in

variations of spiking rates of excitable cells and has been experimentally ob-

served in myocytes [Ponard et al., 2007]. Hence, it is essential to understand

how variations in the conductance parameter that are estimated would inWu-

ence the properties of our model. Towards this, 1-dimensional bifurcation anal-

ysis with these parameters can be a useful tool to develop insights regarding

such variations.

Bifurcation For a non-linear dynamical system, a bifurcation is a qualitative

change in its dynamic behaviour when some system parameter is changed. For

a n-dimensional dynamical system given by

ẋ = f(x, ϕ) (5.3)

with state variables x ∈ Rn and parameters ϕ ∈ Rp, a bifurcation occurs at

some value of the bifurcation parameter ϕ = ϕ0, when at the parameter value

ϕ1 close to ϕ0, the system displays a markedly diUerent dynamic behaviour.

The change of behaviour is theoretically interpreted as a change in the number

or type of attractors2 of the dynamical system. A bifurcation can aUect the

stability of a periodic behaviour of the system.

Bifurcation observed in SNc neurons include cessation or generation of pace-

maker activity as well as switching of pacemaker activity to bursting activity.

In this section, we are mainly concerned with how the change of a few impor-

tant conductance parameters aUects the stability of the pacemaking activity.

For this, we numerically search for properties that are representative of the

dynamics of the system, at a given parameter value. This includes the peak

(maximum) and basal (minimum) values of the membrane potential at steady

state which are denoted PMP and BMP respectively, the average cycle time (λ)

at the steady state as well as standard deviation of λ (σλ). The variations of

these properties may be summarized as follows
2Attractor : An attractor is a region in state-space towards which a system variable evolves

over time according to the dynamic properties of the system. A set that behaves the opposite
is called a repeller. Equilibrium points and limit cycles are examples of attractors.

167



5.6. Model Analysis

−100

−50

0

50

V
 (

m
V

)

g
cal

0 1000 2000 3000 4000 5000 55005500
−1000

0

1000

cy
cl

e 
le

ng
th

 (
m

s)

g
cal

BMP

PMP

Figure 5.12: Bifurcation diagram : gcal

Type PMP and BMP λ σλ

Quiescence (equilibrium point) Coalesce 0 0

Pacemaking (limit cycle) Distinct positive small

Bursting (limit cycle) Distinct positive large

5.6.1.1 Results

We explore the eUect of changing some of the important channel conductances

that have been pronounced important for the pacemaking activity in SNc. This

includes the conductances of the Na+channels, L-type Ca2+ channels as well as

the SK-type K+channels. We also look for the eUect of changing the density of

the membrane pumps and exchangers in the model.

Figure 5.12 shows an approximate bifurcation diagram constructed from the

variables that represents system properties (PMP,BMP,λ and σλ), as functions

of bifurcation parameters. From the diagram, we see that gcal is a signiVcant

parameter for the neuron as a reduction in its value causes cessation of pace-

making activity when the other conductances are kept constant. An increase

of the conductance gcal appears to switch the mode to bursting. However, it is

not straightforward to assess the dynamics with an increased conductance of

the L-type channel as the dynamics of Ca2+ within the model is intricate.
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Figure 5.13: Bifurcation diagram : gna

Figure 5.13 shows the bifurcation diagram constructed for the bifurcation pa-

rameter gna We see that small changes in gna from the nominal value (see

table C.2) does not change the behaviour of the system and the system ap-

pears to be capable of generating stable oscillations between a range gcal values

(700 − 1200nS), albeit at a diUerent frequency. However, the pacemaking is

ceased with a substantial reduction of this conductance, making it an essential

component of the model. We see that in an intermediate range of this param-

eter (approximately between 400 − 500nS), we see a diUerent behaviour, in

which we Vnd a slow wave of reduced amplitude, corresponding to the SOP

observed in a previous experiment. An increase in the density of these chan-

nels can result in bursting behaviour. This is comparable to the application

of NMDA on these neurons that apparently increases the Wow of Na+into the

PMU via dendritic inputs and change the mode of Vring from pacemaking to

bursting [Ibanez-Sandoval et al., 2007].

The conductance of the SK-type K+channel is unimportant compared to the

Na+and Ca2+ channels. With the current value of this parameter in the model,

small variations do not seem to signiVcantly aUect pacemaking (Vgure 5.14).

Also, with the present conVguration of ion-channels, removing this channel

does not appear to cease pacemaking. The SK type K+channels have been

understood to have an important role in determining the frequency of pace-

making by mediating the calcium-dependent afterhyperpolarization [Surmeier
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Figure 5.15: Bifurcation diagram : knaca

et al., 2005].

The model behaviour appears to be highly sensitive to the value of the conduc-

tance of the sodium-calcium exchanger. The bifurcation diagram (Vgure 5.15)

suggests that this transporter is signiVcant for setting the mode and speed of

the membrane spiking activity. At lower densities of this protein, the pacemak-

ing is less regular. A critical level of the exchanger need to be reached before

this irregular mode changes to the regular spiking mode, as evinced by the cor-

responding λ and σλ. Higher densities of the exchanger appear to destroy the
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Figure 5.16: Bifurcation diagram : kpmca

oscillations.

Much as the role of calcium exchanger is critical to the nature of oscillations,

the calcium pump does not appear really critical for initiation of pacemaking.

The system appears to be robust with regards to change in the density of PMCA

as seen in the bifurcation graph, (Vgure 5.16). Again, being a Ca2+ handling

machinery, it is a little diXcult to asses the signiVcance of this transporter from

a single parameter bifurcation diagram. This is probably because the sodium-

calcium exchanger have a faster response to changes in calcium concentration

and it will require a drastic increase in calcium concentration to analyse the

inWuence of PMCA. Also, the buUers of calcium act to maintain a steady level of

Ca2+. Taken together, calcium regulatory mechanisms work towards reducing

the energy impact of calcium entering the system.

The sodium pump on the other hand contributes signiVcantly to the activity of

these neurons (Vgure 5.17). The neuron seems to be requiring a critical density

of these transporters before it can switch to regular oscillations.

Remarks In this section we have investigated some of the dynamical proper-

ties of the pacemaker model with respect to some of the conductance param-

eters, by a 1-dimensional bifurcation analysis. We have examined the role of

sodium currents, L-type calcium current and SK-type potassium current as well
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Figure 5.17: Bifurcation diagram : knak

as ionic currents across the pumps and exchanger. Most of these conductances

were critical in the initiation of stable oscillations in these neurons. Given

the fact that the bifurcation study handled only a single parameter at a time,

the results are mostly suggestive of the impact of each component around the

nominal value.

5.6.2 Limit Cycle Analysis

In the second part of this section we aim to understand the stability of our

model with respect to its periodic oscillations. One of the deVning aspect of

SNc pacemaking is its spontaneous spiking and such self-sustained oscillations

imply the existence of a stable limit cycle. Any perturbation to the model from

the equilibrium must then make the system return to this limit cycle. For a

complex model that we have at hand, a visual depiction of this process is not an

easy task. Instead, we numerically Vnd the monodromy matrix of the local time

varying linearisation of a cycle and the eigenvalues of this matrix are employed

to predict the stability and convergence of the limit cycle [Viswanath, 2001].

The monodromy matrix Consider a system of ODEs,

ẋ = f(x, ϕ), x ∈ Rn, ϕ ∈ Rp. (5.4)
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This system has a periodic solution if the solution is a closed trajectory, i.e.,

x(t+T ) = x(t) for all real t and the smallest value of T (T > 0), for which this

holds is called the “period”.

If ψt(x0) denotes the solution of (5.4) at time t starting from x0 at time t = 0,

then the Monodromy matrix is deVned as,

M =
∂ψT (x)

∂x

∣∣∣∣∣
x=x0

(5.5)

and may be obtained as the solution of the variation equation at time T. The

variation equation is obtained by perturbing the system in the neighbourhood

of a point ψ∗ on the periodic solution ψ(t) of the system. Upon linearisation

we have, ẏ(t) = A(t) · y, where A(t) is the Jacobian of f around x(t). If Y (t) is

the fundamental solution of this linear equation with Y (0) = I ,

dY (t)

dt
=
∂f(x)

∂x

∣∣∣∣∣
x(t)

· Y (t), Y (0) = I, (5.6)

then M = Y (T ).

The monodromy matrix and its eigenvectors depend on the choice of the initial

conditions, whereas its eigenvalues (λm) does not depend on this and is invari-

ant with respect to change of variables. The linear stability of the periodic orbit

can be determined from the eigenvalues of the Monodromy matrix, which are

also called the characteristic multipliers of the system. For a system exhibiting

autonomous oscillations, one of the characteristic multipliers is always 1, and

corresponds to perturbations along the periodic orbit. If |λm| < 1, the closed

orbit is considered linearly stable and attracting [Hale and Lunel, 1993].

Thus, the spectral properties of the Monodromy matrix can provide informa-

tion regarding the components of the system. For a periodic system close to

a stable limit cycle (as a simple periodic orbit), the trajectories in state space

should converge to the limit cycle. For a stable limit cycle, the largest eigen-

value is generically unity, and the magnitude of the second largest eigenvalue

gives an estimate of the rate of convergence to the cycle. The magnitude of

the eigenvector corresponding to the second largest eigenvalue can identify

the components contributing to the fast and slow dynamics in the system. This
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analysis is only valid for small deviations from the limit cycle, but is a useful

numerical technique for studying stability.

From the numerical analysis, we observe that for our proposed model based on

the realistic PMU geometry (see Appendix C), with the estimated parameters,

the oscillations converge to a stable limit cycle. The results of this analysis is

given in table 5.4.

Table 5.4: Limit Cycle stability

(a) Leading eigenvalues of monodromy matrix (estimated via numerical
simulation)

i |λi|
1 1
2 0.9868
3 0.9377
4 0.9258
5 0.4273
6 0.1101

(b)Properties from the second largest eigenvalue

State Normalised eigenvector corresponding
to the second largest eigenvalue

V 8.7e-7
Cai -255.56
Nai -0.0005
Ki -1.93e-6
Cam 42.608
Calb 88.4
mna 0.0005
hna 0.0072
Ohcn 3.183
mcal 0.0034
mkdr -0.0004
Onk -0.0004
Opc -1.153e-5

For our model, the largest eigenvalue is indeed at 1. However, the second

largest eigenvalues is very close to one, which suggests that the rate of con-
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vergence to the limit cycle would be very slow. The normalised magnitude

of the eigenvector corresponding to the second largest eigenvalue (table 5.4 b)

suggests the variables contributing to the slow dynamics involve components

that correspond to the calcium dynamics, including the buUers, and the HCN

channel.

Chapter summary We have presented an introduction to the characteristics

of the SNc membrane that enable these neurons to pacemake. This activity en-

sures a continuous supply of dopamine to the striatum for its normal function-

ing. As an initial step towards modelling the membrane electrophysiology we

set forth to identify important membrane proteins on the neuron’s membrane

that are crucial in the diUerent ionic transports that contribute towards the

membrane dynamics, by analysing protein expression proVles and comparing

with various observations in the literature. The model is constructed based on

a geometric approximation of the functioning unit and for this we consider two

diUerent approaches. In the Vrst, we consider the unit to be a simple spherical

entity that represent the neuron’s soma and build our model on this assump-

tion. Important parameters are identiVed with a global search algorithm to

match with electrophysiological observations in the literature [Puopolo et al.,

2007]. Since this geometry does not match that of a neuron, the model is a Vrst

step in identifying important components contributing to the electrophysiol-

ogy.

In the second approach, we replace the spherical geometrical basis with an

abstract representation of the neurons geometry which is closer to the volume

and surface relationship of the functional module of a real neuron. Some of the

components in the previous model were eliminated or changed, due to their

behaviour and contribution to the overall response, and the parameters were

re-estimated for the change in geometry and components. Both models were

calibrated for expected behaviour of these neurons under a sodium channel

blocker (TTX) as well as a L-type calcium channel blocker (DHP).

The dynamic properties of the Vnal model was analysed with respect to some

of the estimated parameters using a simple one dimensional bifurcation anal-

ysis. This analysis helped identify parameters contributing to the stable oscil-
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lations and parameters that dictated the spiking rate. In the second analysis

the model was examined for stability, by analysing the properties of emanant

limit cycles using the spectral properties of the Monodromy matrix. The model

was observed to be capable of producing stable and spontaneous oscillations, a

property observed with the actual neurons.
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CHAPTER 6
Conclusion

In this chapter, we summarise the contributions made in this manuscript and give

recommendations for possible extensions to those results.

6.1 Summary

In this thesis we developed a mathematical framework to study the mechanism

of spontaneous oscillations in substantia nigra neurons with an emphasis on

calcium regulation. Towards this end, important components of the model

were identiVed and analyses were made on existing formulations to represent

their mechanistic description in the best way possible.

Chapter 1 set the stage and discussed why systems research on PD is timely. A

look at the economics of this disease and its increasing prevalence in today’s

world suggested a burden that society will have to handle in the near-future.

The heterogeneity seen with respect to age, cause and symptoms, together with

the multi-factorial nature of the disease, suggests that the use of computational

tools and systems approaches are essential to understand its pathogenesis.

Although the objective of this research was to establish a mathematical scheme

for the pacemaking activity of substantia nigra neurons that may be later in-

corporated into a larger framework of energy metabolism in these neurons, we

need to have a fundamental idea about the pathogenic process. The literature

regarding the molecular characteristics of substantia nigra neurons and its sig-
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niVcance in PD is broad and an all-encompassing review is very diXcult. For

this reason, we have examined and discussed literature directly relevant to our

study. In chapter 2 we have presented this review on the molecular aspects of

the pathogenic process and related various observations in the light of calcium

homeostasis.

Chapter 3 was concerned with identifying an appropriate representation for

the passive form of membrane ion-transport through ion-channels. Popu-

lar approaches to model ion-channels like the Hodgkin-Huxley models and

Markov models were studied. A simple kinetic expression was developed for

channel gating by deVning this functional aspect from physical transitions in

protein structure. The proposed model which works reasonably well for fast

ion-channels and was found to be identiVable with a small number of param-

eters. Because of the diXculty to get good experimental data for the channels

required for our model, it was decided to follow the conventional Hodgkin-

Huxley formalism from the literature.

In chapter 4 diUerent models for active ion-transport were compared with re-

spect to their compliance with the expected behaviour. Although not very

straight forward to express mathematically, Markov models on pumps and ex-

changers were found to work best with respect to the observations made in

literature. The chapter also discussed about the diUerent components in the

cytosol, ER and mitochondria that work towards maintaining a steady level of

calcium within the neuron.

The model for substantia nigra pacemaking was arrived at in two steps in chap-

ter 5. Initially a simple geometry, capable of pacemaking spontaneously, was

considered for the unit. Model components that are ion-channels were decided

based on protein expression data and previous observations made in literature.

Some of these channels were modelled and parametrised based on available

data and for the rest appropriate models and parameters were adopted. The

diUerent components were brought together to generate the voltage proVle ex-

pected of these neurons and the conductance parameters were tuned accord-

ingly. A global search algorithm was used to identify the diUerent tuning pa-

rameters to match the available data. In the second step the regular geometry

of the pacemaking unit was replaced with a more realistic geometry to match
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the dimensions of the SNc soma. The procedure was repeated but this time

eliminating some of the components whose contribution to the model was ob-

served to be minimal. A realistic model with the appropriate parameters was

analysed Vrst with a one dimensional bifurcation study for some of the conduc-

tance parameters. In the next analysis, numerical simulations were performed

on the Monodromy matrix of the local time varying linearisation to predict the

stability and convergence of the limit cycle.

In the following section 6.2 we present the framework for a model that may

be employed to extend our model described in chapter 5 in such a way that

it includes aspects on how Ca2+ is handled within the neuron and how the

pacemaking may be linked to the energy metabolism. This multi-compartment

model may be used for in silico experiments concerning the pathology.

6.2 Suggested extension for the membrane model

with calcium dynamics

The Wow of calcium across neuronal membranes and compartments is crucial

for the normal functioning of a neuron. The eXciency of this system is compro-

mised due to a range of natural events such as ageing and extrinsic cues such

as toxins. Beyond a point, such perturbations to calcium homeostasis can lead

to a tipping point beyond which the death of the neuron becomes inevitable.

Understanding the diUerent points of control in this system can lead to preven-

tive as well as therapeutic interventions for a neurodegenerative disease like

PD.

6.2.1 Calcium at the crux of neuronal survival

In chapter 2, we reviewed some of the important molecular aspects of PD

pathogenesis. The wide range of biological factors implied in the process and

the very slow nature of disease progression suggests that the neuron have

more than a few regulatory points that need to be compromised before the

disease state is established. An interesting observation is that many of these
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pathogenic pathways interact with the calcium homeostasis machinery culmi-

nating in a calcium mediated apoptotic process.

The role calcium plays in neurodegeneration depends on the state of health

of the neuron. As mentioned, calcium plays the role of a regulatory molecule

of critical events. Disturbance of this equilibrium can see calcium changing

tracks to be the facilitator of oxidative stress through a few diUerent mech-

anisms. For instance, lipid peroxidation which is a common phenomena in

neuronal damage impairs the ion-transport proteins leading to further inWux

of calcium. This in turn raises more ROS from the accumulation of calcium

in the mitochondria. Elevated levels of calcium is also understood to inter-

fere with the energy metabolism, activation of enzyme oxygenases etc. that

enhances the oxidative environment inside the cell [Mattson and Chan, 2003].

Calcium can indirectly promote apoptosis by activating calpains that degrade

a range of cytoskeletal structures and metabolic proteins. These proteins can

mediate apoptosis by directly activating caspases in a cascade of events [Nixon,

2003]. Calcium can have also directly promote apoptosis by activating some of

the pro-apoptotic proteins including caspases and by the release of cytochrome

c from mitochondrial membranes [Fiskum et al., 2006].

In addition to the various molecular components that work to maintain con-

trol levels of Ca2+, the design and arrangement of cellular space is in such a

way that Ca2+ sparks are restricted within allocated sub-cellular spaces gener-

ally referred to a microdomains. Mitochondria lie at the farthest point of this

cascade and the information passed on by the levels of calcium are integrated

in the mitochondria with a speciVc cellular response. Since mitochondria are

the source of energy for the cell, this response to Ca2+ inWuences many other

pathways that may or may not be directly linked with Ca2+ homeostasis.

Most studies with regards to the pathophysiology of SNc neurons involves

isolated sets of biochemical reactions/interactions which is a part of a larger

network. There are signiVcant crosstalk between the diUerent pathways that

constitute this network and this aspect is often ignored when experiments are

designed. Mathematical modelling to some extent can overcome limitations of

experiments that have been conducted on separate sub-networks. In our work

we have developed a model for membrane events that contribute and interact
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with a larger system of substantia nigra physiology. The immediate step to fol-

low would be to connect it with the intracellular system that relate this activity

to energy metabolism as well as cell degeneration. This could be carried out

by extending the present model by including components of the neuronal ma-

chinery involved with the regulation of Ca2+ ions within its environment. In

the following section, we describe the framework for a model that may be put

to use to this end.

6.2.2 An extension of the pacemaking model detailing

intracellular calcium dynamics

The model developed to describe the pacemaking (Appendix C) had a very ba-

sic representation of calcium handling closer to the membrane. In fact, the

model considers only the fast buUers and did not consider aspects like calcium-

induced calcium release described in section 4.7.1.2. Additionally as discussed

in the previous section, accumulation of calcium in the mitochondria is crit-

ical to the survival of the cell. A detailed model that assimilates aspects of

pacemaking and calcium handling would be the next step in understanding

energetic constraints of the pacemaking process on substantia nigra neurons.

In this section we bring forth a proposal for a model that can be build on the

diUerent concepts described previously.

6.2.2.1 Model description

Figure 6.1 gives a picture of the multi-compartmental model that may be devel-

oped towards this end. The model typically compartmentalises the cytoplasm

into distinct regions on the basis of spatial restriction of Ca2+ in a typical neu-

ron. “Compartment A” corresponds to sub-cellular space(s) existing between

ER and the plasma membrane and is distinguished with the presence of mem-

brane transporters of Ca2+ that are spatially tethered around a Ca2+ hotspot

[Parekh, 2008]. “Compartment R” represents the ER that tunnels Ca2+ across

the various sub-cellular locations. “Compartment M” represents mitochondria

that function as the ultimate sink for Ca2+. “Compartment D” applies to the

microdomains formed as a result of the spatial arrangement of mitochondria
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Figure 6.1: A cartoon representation of calcium related pathways presented on a cross-
section of the neuronal soma. The model is constituted of the following compartments :
(A) microdomain formed between plasma membrane and ER, (R) ER, (C) cytosol, (M) mitochon-
dria, (D) microdomain formed between ER and mitochondria and (E) extra-neuronal space
and the following components :
(1) calcium channels, (2) PMCA, (3) NaCax, (4) calcium buUers, (5) buUer-calcium complex, (6)
ERCA, (7) RyR, (8) InsP3R, (9) mitochondrial uniporter, (10) NaCam

along Ca2+ release points on the ER [Csordás et al., 1999, 2006]. “Compartment

C” represents the bulk of the cytosol minus the microdomains.

There is a dynamic exchange of ions on the plasma membrane due to the ac-

tion of the various ion transport proteins that we have discussed in the previous

model. Figure only illustrates the Wuxes associated with calcium considered for
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the model. For the other cation species, sodium and potassium we follow the

transport schemes that were employed in the previous model (Appendix C),

with concentration terms appropriately subscripted for the compartment con-

sidered. We may well assume that there is a steady state in the concentrations

of Na+and K+in compartment C and the membrane potential is the resultant of

the dynamics of all ions in compartment A

dV

dt
=
FVcyt
Cm

[
2
dCaA
dt

+
dNaA
dt

+
dKA

dt

]
(6.1)

and may be represented by modifying equations B.1.2 as

dCaA
dt

= J1 − J2 − J3 − J4 − J6 + J7

dNaA
dt

= Jm,Na

dKA

dt
= Jm,K

The Wuxes Jm,Na and Jm,K has the same meaning as given in B.1.3.

We now describe the various calcium Wuxes between the diUerent compart-

ments present in the model.

J1: calcium entry through the plasma membrane Ca2+ enters the neuron

mainly through membrane calcium channels and from the experience of the

previous model we need consider only the voltage gated L-type channel. The

dynamics are provided in table C.1.

J2: calcium exit through pumps The dynamics of PMCA pumping Ca2+ in

to the extra neuronal space may be described using the modiVed Kyoto model

described in B.1.6.

J3: calcium exit through membrane exchanger The co-transport of Ca2+ and

Na+along NaCax may be described with the DiFrancesco-Noble model given in

C.1.5
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J4: calcium buUering Models for the fast buUering of Ca2+ in compartment A

with proteins calbindin and calmodulin may be described with equations given

in B.1.8 and B.1.9 respectively.

J6: calcium uptake by the ER The eUective sequestering of Ca2+ in to the

inert luminal space is carried out by the Ca2+ ATPases on the ER membrane

(ERCA) and may be modelled with a simple model provided in [Tiveci et al.,

2005].

Jr,lk: calcium leak from ER As the primary eUector of leak from ER is the

luminal Ca2+ concentration, this Wux may be modelled as

Jr,lk = kr,lk (Caer − Cac)

J7: calcium induced calcium release This Wux is caused by the activation

of RyR by the inWux of Ca2+ into the sub-membrane space through the L-type

calcium channel. This positive feedback should supplement the activity of the

calcium channels in creating the transient Ca2+ surge. In the previous model,

since this activity was not included, the estimated channel conductance is likely

to have been over-estimated. The three state Markov scheme used in the Kyoto

model [Matsuoka et al., 2007] may be employed to describe RyR activation.

Jrr: calcium diUusion in the ER This may be described with a simple diUu-

sion expression.

J8: calcium release from the ER The release of calcium from the ER by the

InsP3R may be represented by the concepts used in Marhl et al. [2000].

J9: calcium uptake by the mitochondria This Wux may be modelled based on

the four state Markov model described in Bazil and Dash [2011].
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J10: calcium release by the mitochondria using an exchanger A detailed

model of NaCam is diXcult to be implemented. For the sake of brevity a Hill

type expression (for example Wingrove and Gunter [1986]), may be employed

to represent this component.

Jac and Jdc: calcium diUusion into the cytosol from the microdomains A

and D The free diUusion of calcium from the microdomains into the bulk of

cytosol may be described by a simple diUusion expression with corresponding

driving forces, (Caa − Cac) and (Cad − Cac) respectively.

6.3 Suggestions for future work

In the previous section we have introduced a prospective model to augment the

analysis on the pacemaking activity that would illuminate energy and calcium

metabolism of SNc neurons. The existing model is a good starting point for

this expanded model. However we need to re-estimate a few of the parameters

to incorporate the nuances of the additional features that are being explored.

One advantage of having the cytoplasm compartmentalised with respect to the

calcium hotspots is that we can limit the larger variation in the intracellular

Ca2+ observed with our model (Vgure 5.6) to a range that is comparable to ob-

servations made in this regard (for example Foehring et al. [2009]).

One of the primary objective with the model would be to troubleshoot a few

diUerent situations that are key to the understanding of the pathogenic mech-

anism. One of the important observation made in our review is regarding the

signiVcance of the Ca2+ binding protein calbindin in SNc cytoplasm. As a buUer

they are neuroprotective in conditions of extreme calcium inWux such as exci-

totoxicity or stroke [Mattson, 2007]. Zhou et al. [2010] suggests from an in

vitro study, the existence of a synergy between α-synuclein and calbindin that

prevents the formation of α-synuclein protoVbrils in a Ca2+ dependent manner

(see 2.3.1), which also appear neuroprotective.

But what we are interested in is an observation made in the same experiment

regarding the propensity of calbindin to be co-aggregated with α-synuclein.

Immunostaining experiments have also demonstrated the presence of calbindin
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in LB core. Taking these observations together, there is a probability that ac-

cumulation of α-synuclein into LBs creates a transient condition of calbindin

shortage in the SNc cytoplasm and alter the steady state levels of Ca2+ in diUer-

ent compartments of the neuron. α-synuclein accumulation, being a process

that may be initiated by a few diUerent factors, can continue for a longer pe-

riod of time, pushing the mitochondrial Ca2+ levels to alter the regulatory role

of this cation to a diUerent level as mentioned in 6.2.1.

A second aspect is that we can have a better estimate of energy use with the

extended model, as it incorporates a few more components that utilize energy

to maintain the equilibrium. Additionally, with a calcium block study the new

model becomes even more relevant as are a substantial number of components

involved with Ca2+ homeostasis pathways with an appetite for energy. The

model may be modiVed in a manner that it can communicate with the inte-

grative dynamic model developed to study energy metabolism using in vivo

experiments [Cloutier et al., 2009; Wellstead and Cloutier, 2012].

The model may also be extended in various manners to incorporate diUerent

aspects that are not incorporated in the model at the moment. Such extensions

could include mitochondrial pathways pronounced in ATP generation, path-

ways relevant to the intracellular pH and osmotic aspects and so forth. Prior to

such attempts it would be best to have an experimental design to work along

with the model for hypotheses made.

6.4 To Conclude

Human civilization has Wourished into what it is today from a fundamental

instinct to expand its knowledge horizon. The pursuit of knowledge has always

been a risky ride into the deep mysteries of existence, on a wave of available

knowledge. For most parts, the boundaries have broadened owing to initiatives

that add new perspectives to tried and tested theories and methods.

The road to a theory for PD pathogenesis is still being laid out. New intersec-

tions and diversions add to the knowledge base. However at times, they tend

to burden the process by creating meandering Wow of information, thereby di-

verting focus away from a wholesome picture. The ever-growing community
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of seekers need means of correlating such staggered information, to coordinate

their eUorts to a meaningful end. An approach that accounts the whole system

should be a rightful step towards this direction.
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APPENDIX A
Steady state open probability in

Markovian Ion-channel Model

A.1 Proof of Lemma 1

Proof The proof is trivial and can be derived from the proprieties of the expo-

nentials. If ‘k1’ and ‘k2’ are the rates of two separate transitions appearing in a

transition network, their corresponding ratio could be written as,

k1(V )

k2(V )
=
k1,0

k2,0

e−((a2−a1)+(b2−b1)V+··· )/RT (A.1)

This expression takes the form of equation 3.14. In conjunction with the rea-

soning provided in section (3.3.2), we may approximate equations (3.14) and

(A.1) by neglecting higher order terms as:

k(V ),
k1(V )

k2(V )
= e[(V−Vh)s] (A.2)

where s represents the slope at a voltage of Vh. The product of rate ratios may

also be approximated as follows:∏[
ki(V )

kj(V )

]
=

[
e{(V−V̂h,a)ŝa}e{(V−V̂h,b)ŝb} · · ·

]
= e[(V−V̂h,a)ŝa+(V−V̂h,b)ŝb+··· ]

= e[(V−Vh)s]
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A.2 Model IdentiVability

To study the parameter identiVability of a model [given by equation 3.25], let

us consider the following general mathematical structure:

M(θ) : y(θ) = f(θ, x)

where θ ∈ Rnθ is the set of parameters to be estimated and y(θ) ∈ R and

x ∈ R denote the output and input of the system, respectively. In addition, let

us denote the search space of the parameter by Θ ⊆ Rnθ .

DeVnition 1 The modelM(θ) is said to be structurally output globally iden-

tiVable (s.o.g.i) , if for any θ̃ ∈ Θ, except for points on a subset of Θ of measure

zero, and for all x ∈ R:

y(θ, x) ≡ y(θ̃, x) =⇒ θ ≡ θ̃

If the same conditions is fulVlled only in the neighbourhood of θ then the param-

eters will be structurally output locally identiVable (s.o.l.i.)

This deVnition is quite general and is often diXcult to put into practice. One

of the usual approaches in such instances is the "Taylor approach" [Walter and

Pronzato, 1997] where both outputs y(θ, x) and y(θ̂, x) are approximated by a

Taylor expansion around a point x∗ ∈ R. If we denote by Unx∗ the ball around

x∗, where the Taylor approximation of order n holds; the general identiVability

deVnition is therefore:

DeVnition 2 The model M(θ) is said to be s.o.g.i in x ∈ Unx∗ if the system of

equations: [
∂iy(θ, x)

∂xi

]
x=x0

=

[
∂iy(θ̃, x)

∂xi

]
x=x0

∀i = 1, ...n (A.3)

has an unique solution. In the same way, the model will be s.o.l.i in x ∈ Unx∗ if a
Vnite number of solution is obtained.
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A.2. Model IdentiVability

Proof of Lemma 2 It has to be proved that, the ion channel open state proba-

bility represented by the equation,

G(θ) =
1

1 + e(V−Vh1 )s1 + e(V−Vh2 )s2
(A.4)

is s.o.l.i for any V ∈ UnV ∗ , by using the Taylor approximation of fourth or-

der. It may be noted that studying the identiVability property for G(θ) with

parameters

θ = [Vh,1, s1, Vh,2, s2] ∈ R4 θ̃ = [Ṽh,1, s̃1, Ṽh,2, s̃1] ∈ R4

is equivalent to studying this property for the model

M(θ) = e(aV+b) + e(cV+d), θ = [a, b, c, d]

where

a = s1, b = −Vh1s1, c = s2, d = −Vh2s2

ã = s̃1, b̃ = −Ṽh1 s̃1, c̃ = s̃2, d̃ = −Ṽh2 s̃2

Therefore, the system of equations built by using (A.3) leads to:

eaV0+b + ecV0+d = eãV0+b̃ + ec̃V0+d̃ (A.5a)

aeaV0+b + cecV0+d = ãeãV0+b̃ + c̃ec̃V0+d̃ (A.5b)

a2eaV0+b + c2ecV0+d = ã2eãV0+b̃ + c̃2ec̃V0+d̃ (A.5c)

a3eaV0+b + c3ecV0+d = ã3eãV0+b̃ + c̃3ec̃V0+d̃ (A.5d)

with the following two solutions obtained with Mathematica software [Wol-

fram Research, 2008]:

a = c̃, b = d̃, c = ã, d = b̃

a = ã, b = b̃, c = c̃, d = d̃

Therefore, the system is s.o.l.i in the neighbourhood of V ∗ where the Taylor

approximation holds.

Corollary 1 If the model (A.4) is constrained with the following condition:

s1 > s2

it is trivial to see that the system (A.5)now has only one solution and the model is

s.o.g.i. for almost all V ∈ UnV ∗ .
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APPENDIX B
Model equations and parameters for

the spherical PMU geometry

B.1 Model equations

B.1.1 Membrane Potential

V =
FV

cyt

Cm
[Ki −Ke + 2(Cai − Cae) +Nai −Nae +AoU] (B.1)

where, V
cyt

= φcyt · Vpmu ; Cm = Csp ·Apmu.

B.1.2 Ion dynamics

dCai
dt

= Jm,Ca − (Jcalb + 4Jcam)

dNai
dt

= Jm,Na
dKi

dt
= Jm,K

B.1.3 Membrane ion Wuxes

Jm,Ca =
1

zCaVcyt

(
ICa + 2Ipmca − 2Inacax

)
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B.1. Model equations

Jm,Na =
1

zNaFVcyt
(3Inak + 3Inacax + INa)

Jm,K =
1

zKFVcyt
(IK − 2Inak)

B.1.4 Membrane ion-channel currents

ICa = (gca,lOca,l + gca,tOca,t + gca,hvaOca,hva) ·
√
CaeCai ·

sinh
(
V−V̂Ca
Vτ

)
sinhc

(
V
Vτ

)
IK = (gk,skOk,sk + gk,hcnOhcn) ·

√
KeKi ·

sinh
(
V−V̂K
2Vτ

)
sinhc

(
V

2Vτ

)
+ (Gk,drOk,dr + Gk,aOk,a + Gk,irOk,ir) · (V − V̂K)

INa = (gnaOna + gna,hcnOhcn + gna,leak) ·
√
NaeNai ·

sinh
(
V−V̂Na

2Vτ

)
sinhc

(
V

2Vτ

)

The gating dynamics of the diUerent channels are laid out in table B.1

Table B.1: Gating dynamics

Gating dynamics of diUerent ion channels used in the spherical model

# Channel type Open probability Source

Voltage-gated calcium channels

1 L type

Oca,l = mca,l · hca,l

dmca,l

dt =
1/(1+exp(V+15

−7 ))−mca,l

10·exp
(
−[V+86.4

23.2 ]
2
)
+0.943

hca,l = 0.00045
0.00045+Cai

Vtted, based on

Amini et al. [1999]

2 T type

Oca,t = mca,t · hca,t

dmca,t

dt =
1/(1+exp(V+63

−1.5 ))−mca,t

65·exp
(
−[V+68

6 ]
2
)
+12

dhca,t

dt =
1/(1+exp(V+76.2

3 ))−hca,t

50·exp
(
−[V+72

10 ]
2
)
+10

Amini et al. [1999]

Continued on Next Page. . .
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B.1. Model equations

Table B.1 – Continued

# Channel type Open probability Source

3 high voltage acti-

vated (HVA) type
Oca,hva = mca,hva · hca,hva

dmca,hva

dt =
1/(1+exp(V+10

−10 ))−mca,hva

0.1·exp
(
−[V+62

13 ]
2
)
+0.05

dhca,hva

dt =
1/(1+exp(V+48

5 ))−hca,hva

0.5·exp
(
−[V+55.6

18 ]
2
)
+0.5

Amini et al. [1999]

Voltage-gated sodium channels

4 Representative

Ona = m3
na · hna

dmna
dt = 1.965 · e(

1.7127·V
Vτ ) · (1−mna)

−0.0424 · e(
−1.5581·V
Vτ ) ·mna

dhna
dt = 0.0001 · e(

−2.4317·V
Vτ ) · (1− hna)

−0.5296 · e(
1.1868·V
Vτ ) · hna

Vtted

Calcium-gated potassium channel

5 SK-type Ok,sk =
Ca4.2i

Ca4.2i +0.000354.2
Xia et al. [1998]

Voltage-gated potassium channels

6 Delayed rectiVer

Ok,dr = m3
k,dr

dmk,dr

dt =
1/(1+exp(V+25

−12 ))−mk,dr

18/(1+exp(V+39
8 ))+1

Amini et al. [1999]

7 A-type

Ok,a = m3
k,a · hk,a

dmk,a

dt =
1/(1+exp(V+43

−24 ))−mk,a

2·exp
(
−[V+50

23.45 ]
2
)
+1.1

dhk,a

dt =
1/(1+exp(V+56

8 ))−hk,a

20

Amini et al. [1999]

8 Internal rectiVer

Ok,ir = 1/(1+exp(V+90
12.1 )) Chan et al. [2007]

Continued on Next Page. . .
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B.1. Model equations

Table B.1 – Continued

# Channel type Open probability Source

Family : Cyclic nucleotide-regulated channels

9 HCN

dOhcn
dt = kf,hcnOhcn − kr,hcn(1−Ohcn)

kf,hcn = kf,freeP(C) + kf,bnd(1− P(C))
kr,hcn = kr,freeP(O) + kr,bnd(1− P(O))

P(C) = 1/[1+cAMP/0.001163]

P(O) = 1/[1+cAMP/0.00145]

kf,free = 0.006
1+exp((V+87.7)/6.45)

kr,free = 0.08
1+exp(−(V+51.7)/7)

kf,bnd = 0.0268
1+exp((V+94.2)/13.3)

kr,bnd = 0.08
1+exp(−(V+35.5)/7)

based on Chan et al.

[2007]

B.1.5 Plasma membrane sodium calcium exchanger (NaCax)

The model uses the modiVed Kyoto model for Na+- Ca2+ exchange (see Vgure
4.2)

Inacax = knacax

[
k3,xmP(E†1,xm)yxm − k4,xmP(E†2,xm)(1− yxm)

]
dyxm

dt
= βxm(1− yxm)− αxmyxm

βxm = k2,xmP(E∗2,xm) + k4,xmP(E†2,xm)

αxm = k1,xmP(E∗1,xm) + k3,xmP(E†1,xm)

P(E∗1,xm) =

[
1 +

kxm,cai

Cai

(
1 +

[
Nai
kxm,nai

]3)]−1

P(E†1,xm) =

[
1 +

[
kxm,nai

Nai

]3(
1 +

Cai
kxm,cai

)]−1

P(E∗2,xm) =

[
1 +

kxm,cae

Cae

(
1 +

[
Nae
kxm,nae

]3)]−1

P(E†2,xm) =

[
1 +

[
kxm,nae

Nae

]3(
1 +

cae
kxm,Cae

)]−1
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B.1. Model equations

k1,xm = exp (−δxm,caV/Vτ) k2,xm = exp ((1− δxm,ca)V/Vτ)

k3,xm = exp ((1− δxm,na)V/Vτ) k4,xm = exp (−δxm,naV/Vτ)

B.1.6 Plasma membrane calcium ATPase (PMCA)

The model makes use of the Kyoto model for PMCA, to describe its activity

(see Vgure 4.7)

Ipmca = Kpc
[
k1,pcP(E∗1,pc)ypc − k2,pcP(E∗2,pc)(1− ypc)

]
dypc

dt
= βpc(1− ypc)− αpcypc

βpc = k2,pcP(E∗2,pc) + k4,pcP(E2,pc)

αpc = k1,pcP(E∗1,pc) + k3,pcP(E1,pc)

P(E∗1,pc) =

[
1 +

Kpc,i

Cai

]−1
P(E1,pc) = 1− P(E∗1,pc)

P(E∗2,pc) =

[
1 +

Kpc,e

Cae

]−1
P(E2,pc) = 1− P(E∗2,pc)

k1,pc = [1 + 0.1/[ATP]]
−1

Kpc,i =

[
180− 6.4

1 + CaCam/0.000,05
+ 6.4

]
× 10−5

Kpc = κpmca

[
10.56× CaCam

CaCam+ 0.000, 05
+ 1.2

]

B.1.7 Plasma membrane sodium-potassium ATPase (NaK)

The model uses the modiVed Kyoto model to describe the dynamics of NaK
(see Vgure 4.4)

Ink = Knk
[
k1,nkP(E∗1,nk)ynk − k2,nkP(E∗2,nk)(1− ynk)

]
dynk

dt
= βnk(1− ynk)− αnkynk
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B.1. Model equations

βnk = k2,nkP(E∗2,nk) + k4,nkP(E†2,nk)

αnk = k1,nkP(E∗1,nk) + k3,nkP(E†1,nk)

P(E∗1,nk) =

[
1 +

Knk,nai

Nai

(
1 +

Ki

Knk,ki

)]−1
P(E†1,nk) =

[
1 +

Knk,ki

Ki

(
1 +

Nai
Knk,nai

)]−1
P(E∗2,nk) =

[
1 +

Knk,nae

NaeU

(
1 +

Ke

Knk,ke

)]−1
P(E†2,nk) =

[
1 +

Knk,ke

Ke

(
1 +

NaeU

Knk,nae

)]−1
NaeU = Naee

(−0.82V
Vτ ) k1,nk =

0.37

1 + 0.094/[ATP]

B.1.8 Ca2+ BuUering by Calbindin

Jcalb = kcalb,bCaiCalb− kcalb,dCaCalb

Calbtotal = Calb+ CaCalb

dCalb

dt
= −Jcalb

B.1.9 Ca2+ BuUering by Calmodulin

Jcam = αcamCam− βcamCaCam

Camtotal = Cam+ CaCam

dCam

dt
= −Jcam

αcam = Kcb
camK

nb
cam

[
1

Kcb
cam + knd

cam
+

1

kcd
cam +Knb

cam

]
βcam = kcd

camk
nd
cam

[
1

Kcb
cam + knd

cam
+

1

kcd
cam +Knb

cam

]
Kcb

cam = kcb
camCa

2
i

Knb
cam = knb

camCa
2
i
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B.2. Model parameters

B.2 Model parameters

Table B.2: Parameters used in the spherical model

Parameter Symbol Value (Units) Reference

Physical and chemical constants
Faraday’s Constant F 96485.31 (C/mol)
Gas Constant R 8314.472 (J/Kmol.K)
Calcium valency zCa 2
Sodium valency zNa 1
Potassium valency zK 1
Common constants in literature
Extracellular calcium Cae 1.8 (mM ) Puopolo et al. [2007]
Extracellular sodium Nae 137 (mM ) Puopolo et al. [2007]
Extracellular potassium Ke 5.4 (mM ) Puopolo et al. [2007]
SpeciVc membrane capacitance Csp 0.9 (µF/cm2) Gentet et al. [2000]
Cytosolic calcium diUusivity DCa 5.3× 10−6 (cm2/s) Donahue and Abercrombie

[1987]
Other design parameters
Characteristic dimension, soma ds 30 (µm) Matsuda et al. [2009]
Volume, PMU Vpmu 14.14 (pl)
Body temperature T 37 (oC)
Cytosolic ATP [ATP] 2 (mM )
Fraction of cytosol considered φcyt 1
Na+-Ca2+ exchanger
Energy barrier parameter δxm,ca 0.68 Niggli and Lederer [1993]

δxm,na 0.32 Niggli and Lederer [1993]
Dissociation constants Kxm,nai 8.75 (mM ) Matsuoka et al. [2007]

Kxm,nae 87.5 (mM ) Matsuoka et al. [2007]

Kxm,cai 0.00138 (mM ) Matsuoka et al. [2007]

Kxm,cae 1.38 (mM ) Matsuoka et al. [2007]
Na+- K+ATPase
Reaction rates k2,nk 0.04 (ms−1) Matsuoka et al. [2007]

k3,nk 0.01 (ms−1) Matsuoka et al. [2007]

k4,nk 0.165 (ms−1) Matsuoka et al. [2007]
Dissociation constants Knk,nai 4.05 (mM ) Matsuoka et al. [2007]

Knk,nae 69.8 (mM ) Matsuoka et al. [2007]

Knk,ki 32.88 (mM ) Matsuoka et al. [2007]

Knk,ke 0.258 (mM ) Matsuoka et al. [2007]
Ca2+ ATPase
Reaction rates k2,pc 0.001 (ms−1) Matsuoka et al. [2007]

k3,pc 0.001 (ms−1) Matsuoka et al. [2007]

k4,pc 1 (ms−1) Matsuoka et al. [2007]
Dissociation constants Kpc,e 2 (mM ) Matsuoka et al. [2007]
BuUer Dynamics
Calbindin reaction rates kcalb,b 10000 (1/mM.s) Nagerl et al. [2000]

kcalb,d 2 (1/s) Nagerl et al. [2000]
Continued on Next Page. . .
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B.2. Model parameters

Table B.2 – Continued

Parameter Symbol Value (Units) Reference

Calmodulin reaction rates kcb
cam 1.2× 107 (1/mM2.s) Tadross et al. [2008]

kcd
cam 3 (1/s) Tadross et al. [2008]

knb
cam 3.7× 109 (1/mM2.s) Tadross et al. [2008]

knd
cam 3000 (1/s) Tadross et al. [2008]

Estimated parameters: Channel conductances
L-type Ca2+ channel gca,l 1158.2 (nS)
T-type Ca2+ channel gca,t 10 (nS)
HVA Ca2+ channel gca,hva 78.5 (nS)
Na+channel gna 395.14 (nS)
SK-type K+channel gk,sk 15 (nS)
K+delayed rectiVer Gk,dr 10 (nS)
K+inward rectiVer Gk,ir 5 (nS)
K+A-type channel Gk,a 0.2234 (nS)
HCN channel, Na gnahcn 3 (nS)
HCN channel, K gkhcn 10 (nS)
Na+leak gna,leak 0.0039 (nS)
NaCax knacax 25 (pA.ms)
NaK knak 200 (pA.ms)
PMCA kpmca 10 (pA.ms)
Estimated parameters: BuUering
Total cytosolic calmodulin Camtotal 0.0489 (mM )
Total cytosolic calbindin Calbtotal 0.002 (mM )
Initial conditions
Cytosolic Ca2+ Cai 0.00015 (mM )
Cytosolic Na+ Nai 6 (mM )
Cytosolic K+ Ki 140 (mM )
Cytosolic calbindin Calb 0.0011 (mM )
Cytosolic calmodulin Cam 0.0487 (mM )
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APPENDIX C
Model equations and parameters for

the realistic PMU geometry

C.1 Model equations

C.1.1 Membrane Potential

dV

dt
=
FVcyt
Cm

[
2
dCai
dt

+
dNai
dt

+
dKi

dt

]
(C.1)

where,

Vcyt = φcyt · Vpmu
Apmu = Spmu · Vpmu
Cm = Csp ·Apmu

C.1.2 Ion dynamics

See equations in section B.1.2.

C.1.3 Membrane ion Wuxes

See equations in section B.1.3.
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C.1. Model equations

C.1.4 Membrane ion-channel currents

ICa = (gca,lOca,l) ·
√
CaeCai ·

sinh
(
V−V̂Ca
Vτ

)
sinhc

(
V
Vτ

)
IK = (gk,skOk,sk) ·

√
KeKi ·

sinh
(
V−V̂K
2Vτ

)
sinhc

(
V

2Vτ

) + (Gk,drOk,dr + Gk,irOk,ir) · (V − V̂K)

INa = (gnaOna + gna,hcnOhcn + gna,leak) ·
√
NaeNai ·

sinh
(
V−V̂Na

2Vτ

)
sinhc

(
V

2Vτ

)

The gating dynamics of the diUerent channels used in the model are laid out in

table C.1

Table C.1: Gating dynamics

Gating dynamics of diUerent ion channels used in the spherical model

# Channel type Open probability Source

Voltage-gated calcium channels

1 L type

Oca,l = mca,l · hca,l

dmca,l

dt =
1/(1+exp(V+15

−7 ))−mca,l

7.68·exp
(
−[V+65

17.33 ]
2
)
+0.723

hca,l = 0.00045
0.00045+Cai

Vtted, based on

Amini et al. [1999]

Voltage-gated sodium channels

2 Representative see table B.1, 4

Calcium-gated potassium channel

3 SK-type see table B.1, 5

Voltage-gated potassium channels

4 Delayed rectiVer see table B.1, 6

5 Internal rectiVer see table B.1, 8

Family : Cyclic nucleotide-regulated channels

6 HCN see table B.1, 9
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C.1.5 Plasma membrane sodium calcium exchanger (NaCax)

The model uses the DiFrancesco-Noble concept for the Na+-Ca2+ exchange in-
stead of the modiVed Kyoto used earlier for a faster response

Inacax = κnacax

exp
(
δxm

V
Vτ

)
Na3iCae − exp

(
(δxm − 1) VVτ

)
Na3eCai

(1 +Dxm [Na3iCae +Na3eCai])
(
1 + Cai

0.0069

)

C.1.6 Plasma membrane calcium ATPase (PMCA)

The model makes use of the Kyoto model as described before in section B.1.6.

C.1.7 Plasma membrane sodium-potassium ATPase (NaK)

The model uses the modiVed Kyoto model to describe the dynamics of NaK as

described before in section B.1.7.

C.1.8 Ca2+ BuUering by Calbindin

The equations described in section B.1.8 is used.

C.1.9 Ca2+ BuUering by Calmodulin

The equations described in section B.1.9 is used.

C.2 Model parameters

Table C.2: Parameters used in the spherical model

Parameter Symbol Value (Units) Reference

Physical and chemical constants
Faraday’s Constant F 96485.31 (C/mol)
Gas Constant R 8314.472 (J/Kmol.K)
Calcium valency zCa 2
Sodium valency zNa 1
Continued on Next Page. . .
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C.2. Model parameters

Table C.2 – Continued

Parameter Symbol Value (Units) Reference

Potassium valency zK 1
Common constants in literature
Extracellular calcium Cae 1.8 (mM ) Puopolo et al. [2007]
Extracellular sodium Nae 137 (mM ) Puopolo et al. [2007]
Extracellular potassium Ke 5.4 (mM ) Puopolo et al. [2007]
SpeciVc membrane capacitance Csp 0.9 (µF/cm2) Gentet et al. [2000]
Cytosolic calcium diUusivity DCa 5.3× 10−6 (cm2/s) Donahue and Abercrombie

[1987]
Design parameters : geometry
Characteristic dimension, soma ds 30 (µm) Matsuda et al. [2009]
Characteristic dimension, PMU dpmu 50 (µm) Tepper [2010]
Volume, PMU Vpmu 5 (pl)
Surface-to-volume ratio, PMU Spmu 16.667 (µm−1)
Volume fraction, Cytosol φcyt 0.5 Alberts et al. [2002]
Other design parameters
Body temperature T 37 (oC)
Cytosolic ATP [ATP] 2 (mM )
Anionic oUset AoU 15.2377 (mM )
Na+-Ca2+ exchanger
Energy barrier parameter δxm 0.35 DiFrancesco and Noble [1985]
Denominator factor Dxm 0.001 DiFrancesco and Noble [1985]
Na+- K+ATPase
Reaction rates k2,nk 0.04 (ms−1) Matsuoka et al. [2007]

k3,nk 0.01 (ms−1) Matsuoka et al. [2007]

k4,nk 0.165 (ms−1) Matsuoka et al. [2007]
Dissociation constants Knk,nai 4.05 (mM ) Matsuoka et al. [2007]

Knk,nae 69.8 (mM ) Matsuoka et al. [2007]

Knk,ki 32.88 (mM ) Matsuoka et al. [2007]

Knk,ke 0.258 (mM ) Matsuoka et al. [2007]
Ca2+ ATPase
Reaction rates k2,pc 0.001 (ms−1) Matsuoka et al. [2007]

k3,pc 0.001 (ms−1) Matsuoka et al. [2007]

k4,pc 1 (ms−1) Matsuoka et al. [2007]
Dissociation constants Kpc,e 2 (mM ) Matsuoka et al. [2007]
BuUer Dynamics
Calbindin reaction rates kcalb,b 10000 (1/mM.s) Nagerl et al. [2000]

kcalb,d 2 (1/s) Nagerl et al. [2000]
Calmodulin reaction rates kcb

cam 1.2× 107 (1/mM2.s) Tadross et al. [2008]

kcd
cam 3 (1/s) Tadross et al. [2008]

knb
cam 3.7× 109 (1/mM2.s) Tadross et al. [2008]

knd
cam 3000 (1/s) Tadross et al. [2008]

Estimated parameters: Channel conductances
L-type Ca2+ channel gca,l 2101.2 (nS)
Na+channel gna 907.68 (nS)
SK-type K+channel gk,sk 2.2515 (nS)
Continued on Next Page. . .
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C.2. Model parameters

Table C.2 – Continued

Parameter Symbol Value (Units) Reference

K+delayed rectiVer Gk,dr 31.237 (nS)
K+inward rectiVer Gk,ir 13.816 (nS)
HCN channel gnahcn 51.1 (nS)
Na+leak gna,leak 0.0053 (nS)
NaCax knacax 0.0166 (pA.ms)
NaK knak 1085.7 (pA.ms)
PMCA kpmca 2.233 (pA.ms)
Estimated parameters: BuUering
Total cytosolic calmodulin Camtotal 0.0235 (mM )
Total cytosolic calbindin Calbtotal 0.005 (mM )
Initial conditions
Cytosolic Ca2+ Cai 0.00015 (mM )
Cytosolic Na+ Nai 6 (mM )
Cytosolic K+ Ki 140 (mM )
Cytosolic calbindin Calb 0.0011 (mM )
Cytosolic calmodulin Cam 0.0487 (mM )
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