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Abstract

The theory of metric Diophantine approximation can be studied from many

different perspectives. The problems studied in this thesis all concern ques-

tions on integer polynomials. Simultaneous rational approximation to integer

polynomials is studied in the p-adic metric. Next, the nature of the closest

root to an argument of a leading polynomial is studied in the Euclidian and

p-adic metrics. Finally the nature of regular systems for third degree poly-

nomials is investigated.
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Notation

Notation that is used extensively throughout this document is listed below

to assist the reader.

P (x) =
∑n

i=0 aix
i, ai ∈ Z i = 1..n an integer polynomial of degree n

H(P ) = max0≤j≤n |aj| the height of an integer polynomial

R(P,Q) = amn b
n
m

∏
1≤i≤n

∏
1≤j≤m(αi − βj) the resultant of two polynomials

D(P ) = a2n−2
n

∏
1≤i<j≤n(αi − αj)2 the discriminant of a polynomial

a� b a < Kb K > 0 constant

a� b a > Kb K > 0 constant

a � b a� b and a� b

SP (α) the set of all numbers closest to a root α of P

Pn(H) P ∈ Z[z], degP = n,H(P ) = H
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Chapter 1

Introduction and notation

1.1 Introduction

One of the main goals of Diophantine approximation is to investigate the

quantity |x− p
q
|, where x is a real number and p, q ∈ Z, q 6= 0. This was ini-

tially investigated in the 19th century by Dirichlet and Liouville who proved

results on rational approximation.

Theorem 1.1 (Dirichlet). Let x and Q be real numbers with Q ≥ 1. There

exists a rational number p
q

with 1 ≤ q ≤ Q such that∣∣∣x− p

q

∣∣∣ < 1

qQ
.

If x is irrational, then there exist infinitely many rational numbers p
q

such

that ∣∣∣x− p

q

∣∣∣ < 1

q2
.

Classical results in Diophantine approximation have been adapted and

extended to cover a wide range of different perspectives including approxima-

tion by algebraic numbers, approximation on manifolds and approximation



under different metrics. Some open questions in these topics are investigated

in this thesis.

In this Chapter is introduced the necessary background information re-

quired in the thesis. The first section will give some Lemmas due to Sprindžuk

[85] on the topic of metric Diophantine approximation. The topic is intro-

duced and some of the historical development of the subject is explained.

Also the framework is provided to develop the ideas presented in later chap-

ters. The second section will define the p-adic numbers, and some essential

concepts of p-adic number theory including the p-adic field and the com-

pleteness of the p-adic field. Again, some Lemmas that are useful are stated.

Of particular interest is Hensel’s Lemma. The third section will provide the

definitions of different types of measure and dimension which are used exten-

sively throughout, including Hausdorff Dimension and some related Lemmas

necessary for Chapter 3.

Chapter 2 provides a brief history of the subject and in Chapter 3 the

p-adic version of a Theorem on simultaneous Diophantine approximation on

polynomials, proved in [32], is studied.

In Chapter 4 different versions of a problem of Nesterenko are considered.

This problem was first introduced by Y.V. Nesterenko and presented at the

International Conference of Number Theory in Shaulyai (Lithuania, 2008).

The question is to determine for an integer polynomial P , whether the root

α1 of P belongs to the p-adic field or is in the extension.

For some important problems in transcendental number theory it is nec-

essary to know whether the root of a polynomial α1 is a real or complex

number. Knowledge of the nature of α1 admits the use of regular systems in

tackling the following problems: the Hausdorff dimension of the set of x ∈ R,
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for which, for w > n, the inequality |P (x)| < H−w has infinitely many so-

lutions in polynomials P (see [3], [20]); generalising the divergence case of

Khintchine’s Theorem to polynomials (see [6],[24]); solving the inequality

|x−α1| < ε0 for almost all x and integer algebraic numbers α1 (see [37]). For

the latter problem if α1 ∈ R the solutions lie in an interval of length 2ε0. On

the other hand, if α1 ∈ C \R, we know nothing about the set of solutions as

it could be a disc in the complex plane with centre α1 and radius ε0, which

need not intersect the real axis at all.

In the second section of Chapter 4 the results of Nesterenko in the p-adic

domain are improved. The approach used here uses the discriminant of the

polynomial.

A small result that generalizes Nesterenko’s problem to R × Q∗p is also

proved. Specifically, if an integer polynomial P simultaneously satisfies

|P (x)| < H−w1 , |P (w)|p < H−w2 (1.1)

what can we say about the roots of P?.

Finally, a problem of Bugeaud [35] is studied in Chapter 5. The question

posed concerns the length of intervals for which a regular system of real

algebraic numbers of degree 3 can be constructed.

1.2 Definitions and notation

In all cases unless otherwise stated, P ∈ Z[x] is the polynomial

P (x) =
n∑
i=0

aix
i, ai ∈ Z i = 1 . . . n, an 6= 0. (1.2)

7



The height H = H(P ) of a polynomial of degree n is defined as

H = H(P ) = max
0≤j≤n

|aj|. (1.3)

Throughout this document, it will further be assumed that when used, x ∈ R;

if α is a root of a polynomial P then α ∈ C and if w is a root of P , then

w ∈ Q∗p.

Also, hcf(a, b) will be used to denote the highest common factor of the non-

zero integers a and b.

The resultant of two non-constant integer polynomials, P (x) =
∑n

l=0 alx
l,

and Q(x) =
∑m

k=0 bkx
k, is defined as

R(P,Q) = amn b
n
m

∏
1≤i≤n

∏
1≤j≤m

(αi − βj) (1.4)

where P (αi) = 0 and Q(βj) = 0. It should be clear that R(P,Q) = 0 if

and only if P and Q have a common root. A special case of the resultant

R(P, P ′) where P ′ is the derivative of P is called the discriminant, and is

defined below. The discriminant of the polynomial P will be written as

D(P ), and defined as

D(P ) = a2n−2
n

∏
1≤i<j≤n

(αi − αj)2. (1.5)

The discriminant D(P ) = 0 if and only if P ′ and P have a common root,

that is, if P has a root of multiplicity larger than 1.

In their recent article, Johnson and Kollár [64] noted that the discriminant

as a tool had moved to the periphery of the study of polynomials of a single

variable from its central position in the mid-nineteenth century. They state

“for example, resultants were removed from the fourth edition of van der

Waerden’s classic Algebra in 1959, and have not appeared in subsequent
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editions.” Recently both have again been used in proofs in the theory of

metric Diophantine approximation.

Given positive real numbers, a and b, the Vinogradov notation a � b

(a � b) is used when there exists a positive constant K such that a < Kb,

(respectively a > Kb). If a � b and a � b then a and b are said to be

comparable, which is denoted a � b.

A polynomial P will be called leading if it satisfies

|an| � H(P ). (1.6)

For each t ∈ R let

||t|| = min{|t− r| : r ∈ Z} = dist(t,Z)

and for each x = (x1, . . . , xk) ∈ Rk, let

||x|| = max{||x1||, . . . , ||xk||}.

The supremum norm will be denoted by | . |, that is, for a vector x ∈ Zn,

|x| = max{|x1|, . . . , |xn|}.

1.3 Lemmas on polynomials

Consider integer polynomials as defined in (1.2). Fix ε0 = ε0(n,H(P )) > 0.

If |P (x)| < ε0 , then it is possible to obtain an upper bound for |x− α1|, see

[85] where α1 is the closest root of P to x. For each zero αk of P we associate

the set SP (αk) as

SP (αk) = {x ∈ C : |x− αk| = min
1≤i≤n

|x− αi|(k = 1, 2, . . . , n)}, (1.7)
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i.e. the set of all numbers whose distance to αk is closer than to any other root

of P . The sets SP partition C for each polynomial except at the boundary.

In this thesis the following Lemmas are used. When they are listed with-

out proof, their proofs can be found in the cited texts. The first Lemma is

often referred to as Gelfond’s Lemma.

Lemma 1.1 ([35], Lemma A.3). Let P1, P2, . . . , Pk be polynomials of degree

n1, . . . , nk respectively, and let P = P1P2 . . . Pk. Let n = n1 + n2 + . . . + nk.

Then

2−nH(P1)H(P2) . . . H(Pk) ≤ H(P ) ≤ 2nH(P1)H(P2) . . . H(Pk).

Lemma 1.2 ([85], Lemma 2). Let P be an integer polynomial of degree n

and let x be a number (real or complex) such that x ∈ SP (α1). Then

|x− α1| < 2n|P (x)||P ′(α1)|−1. (1.8)

Proof. The proof is short so it will be included. As x ∈ SP (α1), it follows

that

|α1 − αi| ≤ |α1 − x|+ |αi − x| ≤ 2|x− αi|, for i = 2, . . . , n. (1.9)

Hence

|P ′(α1)| = an
∏

2≤i≤n

(α1 − αi)| < 2nan
∏

2≤i≤n

|x− αi| =
2n|P (x)|
|x− α1|

and the result follows.

Lemma 1.3. Let x ∈ SP (α1) where α1 is a root of order s of the polynomial

P , an integer polynomial of degree n. Then

|x− α1| < 2
n−s
s (|P (x)||an|−1

∏
j≥s+1

|α1 − αj|−1)1/s. (1.10)
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Proof. Again, as the proof is short it is included for convenience. Since

x ∈ SP (α1), using (1.9)

|α1 − αj| ≤ 2|x− αj|, 2 ≤ j ≤ n.

Then from the decomposition P (x) = an(x− α1)s(x− αs+1) . . . (x− αn) we

obtain

|x− α1|s = |P (x)|(|an|
∏
j≥s+1

|x− αj|)−1 ≤ 2n−s|P (x)||an|−1
∏
j≥s+1

|α1 − αj|−1

and the result follows directly. .

Lemma 1.4. Suppose P ∈ Q[x] is an irreducible polynomial over Q. Then

P does not have repeated roots in C.

Proof. Suppose P ∈ Q[x] is irreducible over Q, but has a repeated root

β ∈ C. Consider the derivative P ′ of P . Clearly P ′ ∈ Q[x]. Since P is

irreducible and P ′ has degree less than P , it must be that P and P ′ are

coprime. Thus, by Euclid’s algorithm there exist polynomials, S and T in

Q[x] such that

S(x)P (x) + T (x)P ′(x) = 1. (1.11)

However, β ∈ C is a repeated root of P . Thus

P (x) = (x− β)2G(x),

where G(x) is a polynomial with coefficients in C. Differentiating we see that

P ′(x) = (x− β)2G′(x) + 2(x− β)G(x).

It is clear that P (β) = P ′(β) = 0. Substituting β for x in (1.11) gives a

contradiction.
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1.4 Definition of p-adic numbers and intro-

ductory concepts

The p-adic numbers were first described by Kurt Hensel in 1897 [59]. A

comprehensive introduction to the p-adic numbers can be found in many

texts; see [55] for example.

Definition 1.1. Fix a prime number p. A p-adic number is defined as

w =
+∞∑
r=−∞

crpr (1.12)

where c ∈ {0, . . . , p− 1}.

Every non-zero rational can be expressed uniquely in the form pma
′
where

m ∈ Z and a
′

is a rational number whose numerator and denominator are

coprime to p.

Using this, the p-adic metric is defined below. The notion of ‘distance’

in this metric measures how many times p divides either the numerator or

denominator of a ∈ Q. Before defining the metric, the concepts of valuations

and absolute values, in a p-adic sense, must be introduced.

Definition 1.2. A valuation vp : k → R ∪ {∞} is a function from a field k

to the extended real line such that

i) vp(ab) = vp(a) + vp(b);

ii) vp(a+ b) ≥ min(vp(a), vp(b));

iii) vp(0) =∞.

An immediate consequence of i) above is that vp(
a
b
) = vp(a)− vp(b).

Definition 1.3. Fix a prime number p ∈ Z. The p-adic valuation on Z is

the function

vp : Z \ {0} → R
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where vp(n) is the unique integer satisfying

n = pvp(n)n′ with p - n′.

This can be extended to the rationals; if a = pn u
v
∈ Q and p does not divide

uv then vp(a) = n.

Definition 1.4. An absolute value is a function | � |p : k → R+ such that

i) |x|p = 0 if and only if x = 0;

ii) |xy|p = |x|p|y|p

and either

iiia) |x+ y|p ≤ |x|p + |y|p or

iiib) |x+ y|p ≤ max(|x|p, |y|p) hold.

Definition 1.5. For x ∈ Q, the p-adic absolute value of x is

|x|p = p−vp(x)

for x 6= 0, and we use the convention |0|p = 0.

If two absolute values define the same topology they are said to be equivalent.

Definition 1.6. The p-adic field is the completion of Q with respect to the

p-adic metric.

Theorem 1.2 (Ostrowski). Every non-trivial absolute value on Q is equiv-

alent to one of the absolute values | |p, where either p is a prime number or

p =∞. The case p =∞ corresponds to C.

13



1.4.1 Hensel’s Lemma

The Theorem known as “Hensel’s Lemma” describes one of the most impor-

tant algebraic properties of the p-adic numbers. Basically, it says that in

many circumstances one can decide quite easily whether a polynomial has

roots in the set of p-adic numbers, Qp. The test involves finding an “ap-

proximate” root of the polynomial, and then verifying a condition on the

derivative.

Theorem 1.3 (Hensel’s Lemma, [27], Page 134, Lemma 6.17). Let P be

a polynomial with coefficients in Zp, let x0 ∈ Zp and |P (x0)|p < |P ′(x0)|2p.

Then as n→∞ the sequence

xn+1 = xn −
P (xn)

P ′(xn)

tends to some root w ∈ Qp of the polynomial P and

|w − x0|p ≤
|P (x0)|p
|P ′(x0)|2p

< 1.

1.5 Measure and dimension

1.5.1 Hausdorff dimension and measure

A more refined measure than the Lebesgue measure is frequently required in

the investigation of number theoretic problems. For example, the Liouville

numbers are of Lebesgue measure zero, as is the set of very well-approximable

numbers (which are defined in 1.8). It is known that the set of Liouville

numbers is a strict sub-set of the set of very well approximable numbers but

Lebesgue measure cannot distinguish between the size of these sets.
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The Hausdorff dimension which was introduced by F. Hausdorff in 1912, is

sufficiently refined to distinguish between the two sets used in the example

above.

Definition 1.7 (Hausdorff Dimension). Let E be a set in Rn and s a non–

negative real number. Given δ > 0, a δ–cover of E is a countable collection

of sets Ci, each with diameter less than δ, such that E ⊆ ∪∞i=1Ci. Define

Hs
δ(E) = inf

∑
Ci∈C

(diamCi)
s

where the infimum is taken over all δ–covers of E. The Hausdorff outer

s–measure Hs(E) is limδ→0Hs
δ(E) and the Hausdorff dimension dimE is

defined as

dimE = inf{s : Hs(E) = 0}.

Further details can be found in [27, 53]. Diagrammatically, the graph of

measure against dimension can be represented as follows:

∞

0 dim s
s

Hs(U)

pppppppp
pppppppp
pppppppp
pppppppp
ppp

So at the Hausdorff dimension s, the measure changes from ∞ to 0.
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1.5.2 Borel-Cantelli Lemma

The Borel-Cantelli Lemma is an important tool in proving many Theorems in

metrical Diophantine approximation. For convenience the convergence half

is stated and proved here.

Lemma 1.5 (Borel-Cantelli). Let (Ω, µ) be a measure space with µ(Ω) finite

and let Aj, j ∈ N be a family of measurable sets. Let

A∞ = {ω ∈ Ω : ω ∈ Aj for infinitely many j ∈ N},

and suppose the sum
∞∑
j=1

µ(Aj) <∞. (1.13)

Then µ(A∞) = 0.

Proof.

It is readily verified that A∞ can be written as

A∞ =
∞⋂
n=1

∞⋃
j=n

Aj

or

A∞ = lim supAj.

Clearly A∞ is measurable since it is a countable intersection of measurable

sets. We have

µ(A∞) ≤ µ(
∞⋂
j=n

Aj)

for every n ≥ 1. Hence

µ(A∞) ≤
∞∑
j=n

µ(Aj) (1.14)
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for every n ≥ 1. As the sum converges, the right hand side can be made

arbitrarily small by taking n sufficiently large. Thus

µ(A∞) = 0 (1.15)

as required.

1.5.3 Well-approximable numbers and regular systems

Diophantine approximation began as a study of how closely real numbers

could be approximated by rational numbers. Classical results arising from

this study have been generalised to approximation by algebraic numbers and

Diophantine approximation on manifolds.

Definition 1.8. A number x is said to be very well-approximable if there

exists a positive real number ε > 0 such that,∣∣∣x− p

q

∣∣∣ < 1

q2+ε

for infinitely many rational numbers p
q
.

A more general error function ψ defines the set of ψ-approximable points

as follows:

Definition 1.9. The set W (m,n, ψ) of ψ-approximable points x ∈ Rmn is

defined for a positive valued function ψ as,

W (m,n, ψ) = {X ∈ Rmn : |qX − p| < ψ(|q|), for i.m. q ∈ Zm,p ∈ Zn}.

Here X is an m × n matrix, q is a row vector, p is a column vector, and ψ

is the approximating function. If ψ is of the form

ψ(r) = r−τ , τ > 0

17



then the set will be denoted by W (m,n, τ), and referred to as the set of

τ -approximable points.

In [3] Baker and Schmidt introduced the idea of regular systems and

proved the regularity of real algebraic numbers of given degree. This allowed

them to obtain the lower bound for the Hausdorff dimension of the set of real

numbers which are approximated by algebraic numbers with a given order

of approximation. A regular system will now be defined and will then be

referred to in Chapter 5.

Definition 1.10. Let Γ be a countable set of real numbers and N : Γ → R

be a positive function. The pair (Γ, N) is called a regular system if there exist

constants c1 = c1(Γ, N) > 0 such that for any interval I ⊂ R there exists

a sufficiently large number T0 = T0(Γ, N, I) > 0 such that for any integer

T > T0 there exist γ1, γ2, . . . , γt in Γ ∩ I such that

N(γi) ≤ T ; 1 ≤ i ≤ t;

|γi − γj| > T−1; 1 ≤ i < j ≤ t;

t > c1|I|T.

(1.16)

Given a function ψ : R+ → R+, monotonic decreasing, with ψ(r) ≤ 1
2r

for large r, and a set

Λ(Γ, N, ψ),= ξ ∈ R : |ξ − p

q
< ψ(q2) for i.m.

p

q
∈ Γ,

modifying Lemma 1 from [3], Rynne [80] showed that a lower bound for the

Hausdorff Dimension of Λ(Γ, N, ψ) can be established.

Theorem 1.4 ([80]). Suppose that the system (Γ, N) is regular. Let ψ :

R+ → R+ monotonic decreasing, with ψ(x) ≤ 1
2x

for large x. Let s0 =

sup s : lims→∞ xψ(x)s =∞, then

dim Λ(Γ, N, ψ) ≥ s0.

18



In [3] Baker and Schmidt showed that the set of rational numbers p
q
, gcd(p, q) =

1, together with the function N(p
q
) = q2 is a regular system. Further results

will be discussed in Chapter 2. Regular systems will also be used in Chapter

5 and the relationship between the interval I and T0 will be investigated.
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Chapter 2

Historical overview

2.1 Introduction

The history of Diophantine approximation is well recorded in general num-

ber theory texts such as Hardy and Wright, [57] which cover the classical

results of Gauss, Dirichlet, Liouville and Kronecker. Dedicated books on the

topic have also been written, such as Cassels’ tract [40] with an emphasis on

rational approximation to a single real number and simultaneous rational ap-

proximation, and other specialist books such as [58] in which is discussed the

general metric theory of Diophantine approximation, and Bernik and Dod-

son’s book, [27] where the metrical theory of approximation on manifolds

is considered. Bugeaud [35] has also written on the topic, but focuses on

approximation to algebraic numbers. Waldschmidt [88] recently published

a comprehensive overview of the recent developments in metric Diophantine

approximation. Related topics in number theory such as continued fractions,

the geometry of numbers and p-adic number theory are important tools in the

investigation of problems in Diophantine approximation, and have numerous
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texts available, for example [40], [55], [57], [58], [60].

The relationship between real numbers x and rationals p
q

is well under-

stood. When x is algebraic, the τ -approximable theory is essentially com-

plete, through many classical results which stem from Dirichlet’s result (1.1),

culminating with the results of K.F. Roth [79].

Theorem 2.1 (Roth). Let α be a real algebraic number and let ε > 0. Then

there are only finitely many rational numbers p
q
, q ≥ 1 such that∣∣∣α− p

q

∣∣∣ ≤ 1

q2+ε
.

Another approach is to investigate relationships which hold for almost

all numbers, which started with Khintchine [65] and evolved into the theory

of metric Diophantine approximation. In metric Diophantine approximation

the solution sets of Diophantine inequalities is considered in terms of the

measure on that set. If a set X has measure 0, it’s complement Xc is said to

have full measure, and almost all points of the solution set lie in XC .

Khintchine’s famous result states that given a decreasing function ψ(q)

then for almost all x the inequality∣∣∣x− p

q

∣∣∣ < ψ(q)

q

has at most finitely or infinitely many solutions p
q

depending on whether the

sum
∑∞

q=1 ψ(q) converges or diverges.

Theorem 2.2 (Khintchine). Let ψ : R+ → R+ be a function such that ψ is

decreasing. Then the Lebesgue measure |W (ψ)| of W (ψ) satisfies

∣∣(W (ψ))
∣∣ =

 0 if
∑∞

r=1 ψ(r) <∞,

full if
∑∞

r=1 ψ(r) =∞.
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In 1931 Jarnik published a refinement of Khintchine’s Theorem [61] where

the Lebesgue measure was replaced with the Hausdorff f -measure, Hf .

Theorem 2.3 (Jarnik). Let f be a dimension function such that r−1f(r)→

∞ as r → 0 and r−1f(r) is decreasing. Let ψ be a real positive decreasing

function. Then

Hf (W (ψ)) =

 0 if
∑∞

r=1 rf(ψ(r)) <∞,

∞ if
∑∞

r=1 rf(ψ(r)) =∞.

where m(w(ψ)) denotes the Lebesgue measure of the ψ-approximable

numbers.

After rational approximation to a single number, one may investigate

the algebraic approximation properties of real or complex numbers. In this

context, the problems may focus on either the distance |x−α| between a given

real or complex number x, and algebraic numbers α, or on the size of |P (x)|

where P is a non-zero integer polynomial. The two different perspectives give

rise to two different classifications of the real numbers.

For a real number x, a given positive integer n, and a real number H ≥ 1,

Mahler [72] defined the quantity,

wn(x,H) := min{|P (x)| : P ∈ Z[x], H(P ) ≤ H, deg(P ) ≤ n, P (x) 6= 0}.

(2.1)

Let

wn(x) = lim sup
H→+∞

− logwn(x,H)

logH
. (2.2)

and

w(x) = lim sup
n→+∞

wn(x)

n
. (2.3)

Thus wn(x) is the largest real number w for which there exist infinitely many
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integer polynomials P of degree at most n satisfying

0 < |P (x)| ≤ H(P )−w. (2.4)

With this notation, Mahler set up the following classification of the real

numbers:

Definition 2.1 (Mahler). Let x ∈ R. Define x to be an

A− number, if w(x) = 0;

S − number, if 0 < w(x) < +∞;

T − number, if w(x) = +∞ and wn(x) < +∞ for any n ≥ 1;

U − number, if w(x) = +∞ and wn(x) = +∞ for any n ≥ n0.

In 1962, Sprindžuk [85] extended this classification to the complex numbers.

Let ζ ∈ C and define

w̃n(ζ,H) := min{|P (ζ)| : P ∈ Z[X], H(P ) ≤ H, deg(P ) ≤ n, P (ζ) 6= 0};

w̃(ζ,H) = lim sup
n→+∞

log log( 1
wn(ζ,H)

)

log n

and

w̃(ζ) = sup
H≥1

w̃(ζ,H).

If w̃(ζ) = +∞, then let H0 denote the smallest integer such that w̃(ζ,H0) =

+∞. If no such H0 exists, define H0 to be +∞. Next, let

µ̃(ζ,H) = lim sup
n→+∞

− logwn(ζ,H)

nw̃(ζ)
,

and

µ̃(ζ) = lim sup
H→+∞

µ̃(ζ,H)

logH
.

Using these, he gave the following definition
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Definition 2.2 (Sprindžuk). A complex number ζ is defined as an

Ã− number if w̃(ζ) < 1 or w̃(ζ) = 1 and µ̃(ζ) = 0;

S̃ − number if 1 < w̃(ζ) < +∞ or if w̃(ζ) = 1 and µ̃(ζ) > 0;

T̃ − number if w̃(ζ) = +∞ and H0(ζ) = +∞;

Ũ − number if w̃(ζ) = +∞ and H0(ζ) < +∞.

Both classifications given by 2.1 and 2.2 are based on two parameters, the

degree and height of the polynomial, and both parameters approach infin-

ity. The differences between the classifications relate to the implementation

where Mahler first let the height H approach infinity and then the order n

of the polynomial. Sprindžuk’s approach was to let the order of the polyno-

mial approach infinity before the height of the polynomial. Sprindžuk also

established [83] that the Ã− numbers are precisely the algebraic numbers.

In 1932, Koksma proposed an alternative classification to Mahler’s that

preceded Sprindžuk’s. Koksma’s classification of numbers is based on the

idea of approximation of a real number ξ by algebraic numbers. For a given

positive integer n, and a real number H ≥ 1, the value w∗n is defined as the

distance of the closest algebraic number to ξ of degree less than n and height

less than H, i.e.

w∗n(ξ,H) = min{|ξ − α| : α real algebraic, deg(α) ≤ n,H(α) ≤ H,α 6= ξ}.

Here, H(α) denotes the height of the algebraic number, which is the maxi-

mum coefficient of the minimal polynomial of α.

If

w∗n(ξ) = lim sup
H→∞

− log(w∗n(ξ,H))

logH

and

w∗(ξ) = lim sup
H→∞

w∗n(ξ)

n
,
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then w∗n(ξ) is the supremum of the real numbers w for which there exist

infinitely many real algebraic numbers α of degree at most n satisfying

0 < |ξ − α| ≤ H(α)−w−1. (2.5)

The relationship between Mahler’s and Koksma’s classifications is discussed

in Section 3.4 of [35], and Sprindžuk’s classification in Section 8.1 of the same

book.

Algebraic and polynomial approximations are closely related. It is well

understood that the value of an irreducible polynomial close to an algebraic

number ζ has a small value, and also that a polynomial taking a small value at

ζ, is likely to have a root close to ζ. This relationship is not fully understood

yet however, and specific problems of this nature are investigated later in the

thesis.

2.2 Polynomial and simultaneous approxima-

tion to a single number

A simple application of Dirichlet’s box principle yields the existence of poly-

nomials with small values at a given real point. For example:

Lemma 2.1 ([35] Lemma 8.1). Let ξ be a complex number, n be an integer

with n ≥ 2 and H be a real number. Then there exists a positive constant c,

depending only on ξ, such that for any sufficiently large H there is a non-zero

integer polynomial P with degP ≤ n, H(P ) ≤ H, satisfying |P (ξ)| ≤ H−cn.

There are variants and special cases of this Lemma. The fact that the expo-

nent n above cannot be improved was shown by Sprindžuk [85] who proved
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that for each ε > 0 there are only finitely many non-zero integer polynomials

of degree at most n satisfying

|P (ξ)| ≤ H(P )−n−ε (2.6)

except on a set of Lebesgue measure zero.

For each real number ξ two exponents ωn(ξ) and ω̂n(ξ) are defined: ωn(ξ)

is defined in (2.3) above and ω̂n(ξ) is a generalisation of ω(ξ) where H−ω is

replaced with N−ω for N ≥ 1.

From Lemma 2.1 it follows that for any n ≥ 1 and for any ξ ∈ R, which

is not algebraic of degree ≤ n,

n ≤ ωn(ξ) ≤ ω̂n(ξ) (2.7)

In fact in [85] Sprindžuk proved that

Theorem 2.4. For all real numbers ξ,

n ≤ ωn(ξ) ≤ ω̂n(ξ) (2.8)

and for almost all real numbers ξ

n = ωn(ξ) = ω̂n(ξ) (2.9)

for all n ≥ 1.

If ξ is an algebraic irrational, Schmidt [82] proved

Theorem 2.5. Let n ≥ 1 be an integer and let ξ an algebraic number of

degree d > n. Then

ωn(ξ) = ω̂n(ξ) = n.

Finally, Davenport and Schmidt [41] proved
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Theorem 2.6. For any real number ξ which is transcendental or algebraic

of degree at least n+ 1,

ω̂n(ξ) ≤ 2n− 1.

2.3 Metrical results on polynomial curves.

In 1932 Mahler [72], following his fundamental study of the theory of tran-

scendental numbers, formulated the conjecture that for any ε > 0 the in-

equality

|P (x)| < H(P )−n−ε (2.10)

has at most a finite number of solutions in integer polynomials P of degree n

for almost all x ∈ R, where H(P ) is the height of P. This famous conjecture

motivated a lot of research which developed both the theory of transcen-

dental numbers and metric Diophantine approximation on manifolds. Some

important results are described below.

2.3.1 Results connected to Mahler’s conjecture.

In 1980, Bernik [19] proved certain conjectures posed by Sprindžuk ([85, pp

159–160]), while proving Mahler’s conjecture. Sprindžuk asked three ques-

tions which are described below. Let v(Ω1,Ω2, . . . ,Ωn) denote the supremum

of the set of numbers v such that

|a1Ω1 + . . .+ anΩn| < H−v, where H = max(|a1|, . . . , |an|).

Problem A. Let m1,m2, . . . ,mn be distinct natural numbers. Let ω be

a transcendental number and let vn(ω) be the function v(Ω1,Ω2, . . . ,Ωn)
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defined above, with the parameters

Ω1 = ωm1 ,Ω2 = ωm2 , . . . ,Ωn = ωmn .

Does the equation vn(ω) = n, (n = 1, 2 . . . ) hold for almost all real ω regard-

less of the choice of the numbers m1,m2, . . . ,mn?

Problem B.1. Let n1, n2, . . . , nk be arbitrary natural numbers; ωi be tran-

scendental numbers for i = 1, . . . , k and let vn(ω1, ω2, . . . , ωk) be the function

v(Ω1,Ω2, . . . ,Ωk) defined above, with Ωj = ω
ij
1 for j = 1, 2, . . . , k where

i1, i2, . . . , ik satisfy the conditions

0 ≤ i1 ≤ n1, 0 ≤ i2 ≤ n2, . . . , 0 ≤ ik ≤ nk

with i1 + i2 + · · · + ik 6= 0. Let n = (n1 + 1)(n2 + 1) . . . (nk + 1) − 1. Does

the equation

v(ω1, . . . , ωk) = n

hold for almost all ω̄ regardless of the choice of numbers n1, n2, . . . , nk?

Problem B.2.Letm be an arbitrary natural number and let vn(ω1, ω2, . . . , ωk)

be the function v(Ω1,Ω2, . . . ,Ωk) defined above, with

Ωj = ωi11 ω
i2
2 . . . ω

ik
k (j = 1, 2, . . . , k)

where i1, . . . , ik satisfy the conditions

0 6= i1 + i2 + . . .+ ik ≤ m, with ij ≥ 0, j = 1, . . . , k.

Let n =
(
m+k
k

)
− 1. Does the equation

v(ω1, . . . , ωk) = n

hold for almost all ω̄ = (ω1, ωs, . . . , ωk)?
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Further work to [19] gave rise to generalisations and applications [49],[78].

In 1989 V. Bernik [22], in considering these problems, established a general-

isation of Mahler’s question.

Theorem 2.7 (Bernik 89). Given a monotonic function Ψ : N → R+ such

that
∞∑
h=1

Ψ(h) (2.11)

converges, then for almost all ψ ∈ R,

|P (ψ)| < H(P )−n+1Ψ(H(P )) (2.12)

has only finitely many solutions in P ∈ Z[x] with degP ≤ n.

For n = 1, Theorem 2.7 is equivalent to Khintchine’s Theorem and the

divergence case holds as well as the convergence case. The divergence case

for any n was established by Beresnevich [8] who showed that if

∞∑
h=1

Ψ(h) (2.13)

diverges, then for almost all real ξ, (2.12) has infinitely many solutions P ∈

Z[x] with degP = n.

2.4 Metrical results on manifolds

Many of the metrical results concerning polynomials have been generalised to

manifolds. In their book in 1999, Bernik and Dodson [27] influenced research

on Diophantine approximation on manifolds. This text was in turn, an ex-

tension of Sprindžuk’s book [86] which gave the first systematic account of

the then emerging theory of metric Diophantine approximation on manifolds.
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Many results in Diophantine approximation such as Khintchine’s Theo-

rem are of a metrical nature, that is they hold on a set of full or zero measure.

As embedded manifolds are of measure zero in the ambient space Rn, it is

appropriate to work with the relative measure induced by the manifold. For

any S ⊂M , the induced Lebesgue measure of S relative to M will be denoted

by |S|.

The set Sτ (M) of simultaneously τ–approximable points lying on an m–

dimensional manifold M embedded in Rn is defined by

Sτ (M) = {x ∈M : ||qx|| < |q|−τ for infinitely many q ∈ Z},

i.e. Sτ (M) = M
⋂
W (1, n, τ). There is a natural dual to this set, namely

Lτ (M) where

Lτ (M) = {x ∈M : ||q.x|| < |q|−τ for infinitely many q ∈ Zn}.

Obviously any element of Qn lying on M is in Sτ (M) for all τ . Correspond-

ingly, the intersection of M with a rational hyperplane given by the equation

q.x = p (for p ∈ Z and q ∈ Zm) is contained in Lτ (M) for all τ . Any other

points in either Sτ (M) or Lτ (M) lie “close” to infinitely many of these points

or planes.

A manifold M embedded in Rn is said to be extremal if |Sτ (M)| = 0 for

τ > 1/n or equivalently (using Khintchine’s Transference principle [27]) if

|Lτ (M)| = 0 for τ > n. Manifolds satisfying various geometric, analytic and

number theoretic properties have been shown to be extremal.

Using trigonometric sums, Sprindžuk proved the following Theorem on

extremal manifolds [85].

Theorem 2.8. Given integers m,n, 1 ≤ n ≤ m, let Ω be a domain in Rm,
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and let fj = fj(t1, . . . , tm) : Ω → R (1 ≤ j ≤ n) be real functions defined on

Ω that satisfy the following conditions:

a) The partial derivatives
∂2fj
∂ti∂tk

are continuous in Ω (1 ≤ j ≤ n, 1 ≤

i, k ≤ m);

b)The Jacobian

det

(
∂2fj
∂ti∂tk

)
j,k=1,2,...,m

6= 0

almost everywhere in Ω;

c) Every linear combination

φ(tk) = c1
∂2f1

∂t1∂tk
+ . . .+ cn

∂2fn
∂tn∂tk

with ci ∈ Z, is locally monotonic. If the conditions a), b) and c) hold then

the manifold Γ containing the set of points (t1, . . . , tm, f1(t), . . . , fn(t)) is ex-

tremal.

A more general result is due to Kleinbock and Margulis [67] who proved

that a non–degenerate manifold is extremal. This has been extended by

Kleinbock to a larger class of manifolds in [66]. Non–degeneracy is a gen-

eralisation of the idea of non-zero curvature and means that for almost all

points on the manifold there exists l ∈ N such that the partial derivatives of

an appropriate parametrisation up to order l span Rn. If the error function

q−τ is replaced with a general non–increasing function ψ then the dual set

is denoted Lψ(M). It has been shown (see [10, 14, 28]) that for any non–

degenerate manifold M the set Lψ(M) satisfies a ‘zero–one’ law. That is,

depending on the divergence or convergence of a certain sum, the set has full

or zero Lebesgue measure respectively. (This proves the Baker–Sprindžuk

conjecture.)
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One would expect that as τ increases the size of the sets Lτ and Sτ

should decrease and this leads naturally to questions concerning Hausdorff

dimension in the case of zero Lebesgue measure. It was proved by R. C. Baker

in [5] that for any planar curve C with non–zero curvature everywhere except

on a set of Hausdorff dimension zero, the Hausdorff dimension, dimLτ (C) of

Lτ (C) for τ ≥ 2 is

dimLτ (C) =
3

τ + 1
.

(When τ ≤ 2, Lτ (C) = C by Dirichlet’s Theorem.) In higher dimensions,

Bernik [20] obtained the Hausdorff dimension n+1
τ+1

for Lτ (C) when C is the

Veronese curve, Vn = {(x, x2, . . . , xn) : x ∈ R}. Also, the Hausdorff dimen-

sion of Lτ (M) was shown to be m−1 + n+1
τ+1

for m–dimensional C3 manifolds

M with m ≥ 2 on which there are two non–vanishing principal curvatures

except on a set of Hausdorff dimension m − 1 [46]. This dimension is a

lower bound when M is extremal and C1 [44]. The upper bound is still an

open question. On the other hand, very little is known about the set Sτ (M)

although there does exist a Khintchine type Theorem for 2-convex C3 mani-

folds [47] and an asymptotic formula holds under fairly restrictive curvature

conditions [48], for further details see [27].

In 2006 [15] Beresnevich, Dickinson and Velani refined the requirements

on Khintchines’s Theorem [65], allowing the removal of one condition on the

error function, ( that x→ Ψ(x) is decreasing). In the same paper they also

established Khintchine-type results for the Hausdorff measure of the lim-sup

sets

KS(Ψ) = lim sup
j→+∞

{ξ ∈ E : |ξ − αj| < Ψ(j)} (2.14)

where S = (αj) is an optimal regular system on E, a bounded open real

interval.
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In [17] Beresnevich and Velani established a general inhomogeneous mass

transference principle allowing results on the Hausdorff measure of Diophan-

tine approximation problems to be inferred from similar results regarding the

Lebesgue measure.

Subsequent to this, in 2007, Beresnevich, Dickinson and Velani proved

the following Theorem in [16]

Theorem 2.9. Let ψ : N → (0,∞) be monotonic. Let Γ be a C3 planar

curve with non-vanishing curvature, defined on a bounded domain, i.e. has

finite length L. If

A2(ψ,Γ) = {(x, y) ∈ Γ : max{‖qx‖, ‖qy‖} ≤ ψ(q) holds for i. m. q ∈ N},

(2.15)

then the length |A2(ψ,Γ)| of A2(ψ,Γ) satisfies

 0 if Σ∞h=1hψ(h) <∞

L if Σ∞h=1hψ(h) =∞.

For sufficiently large τ there also exist results for the unit circle centred

at the origin [42], the parabola [9] and quadric surfaces [50]. Unlike R. C.

Baker’s result [5] which holds for all polynomial curves in R2 there is no

single formula for all τ > 1
n

for the Hausdorff dimension of Sτ (M).

2.5 Results in the p-adic metric

In 1932 Mahler [72], following his fundamental study of the theory of tran-

scendental numbers described above, also proposed a classification of p-adic

numbers that coincides with the classification (2.1) above but where x is in

Qp rather than R. This is discussed extensively in [35, Section 9.3].
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In 1945 Jarnik [63] proved a p-adic generalisation of Khintchine’s Theorem

[65], and in 1955 Lutz [71] extended Jarink’s result to systems of Linear

forms. In 1965 Sprindžuk [84] also considered the p–adic analogue of Mahler’s

conjecture and proved the following Theorem:

Theorem 2.10 (Mahler-Sprindžuk). The inequality

|P (w)|p < H(P )−1−n−ε

has only a finite number of solutions in rational integer polynomials P of

degree n for almost all w ∈ Qp.

For general n, Bernik, Dickinson and Yuan [26] proved the p-adic inhomoge-

neous analogue of Theorem 2.10. They showed that:

Theorem 2.11. For any d ∈ R,

|P (w) + d|p < H(P )−n−1−ε (2.16)

has only a finite number of solutions in rational integer polynomials P of

degree n for almost all w ∈ Qp.

In 2006, using the ubiquity frameworks constructed in [15] Beresnevich,

Dickinson and Velani were able to establish the p-adic equivalent of the earlier

results established by Dickinson and Velani [45] discussed above.

2.6 Summary.

This brief overview of the development of the theory of metric Diophantine

approximation contains essential results that are used in the following chap-

ters. The development of these results however also provide many of the

tools and techniques that are used in obtaining the results that follow.
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Chapter 3

On simultaneous rational

approximation to a p-adic

number and its integral powers

3.1 Introduction

This work on the Hausdorff dimension of p-adic approximable numbers on

polynomials was undertaken during a visit to the Institut de Recherche

Mathématique Avancée, Université de Strasbourg, in January 2010. Support

for the visit was provided by a Ulysess grant, and the material presented here

forms part of a paper published in the Edinburgh Math. Journal, [33].

For a positive integer n and a p–adic number w, let λn(w) denote the

supremum of the real numbers λ such that there are arbitrarily large positive

integers q such that ||qw||p, ||qw2||p, . . . , ||qwn||p are all less than q−λ. Here,

||x||p denotes the infimum of |x−n|p as n runs through the integers. The set

of values taken by the function λn was studied in [33].
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Some Lemmas that are important in the development of Theorem 3.2 below

are stated first. These were first published in [43], and as the approach used

is informative for the proof of Theorem 3.2, they are also proved here for

convenience. Some definitions are needed:

Definition 3.1. Let Γ = {(x, y) ∈ [0, 1] × I : y = P (x)} where P is an nth

degree polynomial and I ⊂ R is some suitable interval.

Let

ω(α) = sup(τ : α ∈ W (1, 1, τ)).

Hence, if τ > ω(α), then α /∈ W (1, 1, τ).

Now define Γ(α), and Sτ (Γ(α)) as

Γ(α) = {(x, y) ∈ [0, 1]2 : y = x2 + α},

and

Sτ (Γ(α)) = {(x, y) ∈ Γ(α) :
∣∣∣x− p

q

∣∣∣ < q−τ ,
∣∣∣y − r

q

∣∣∣ < q−τ for i.m. p, q, r ∈ Z}

Lemma 3.1 ([43]). Assume τ > 1.

Sτ (Γ(α)) = ∅ for τ > 2ω(α) + 1.

Proof. Let (x, y) ∈ Sτ (Γ(α)), so that there exists ρ, ε > 0 where

x =
p

q
+ ε

y =
r

q
+ ρ

where ε = ε(p
q
) and ρ = ρ( r

q
), and ε, ρ = O(q−τ−1), for infinitely many

p, q, r ∈ Z. Then
r

q
+ ρ =

p2

q2
+ 2ε

p

q
+ ε2 + α.
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Hence

q2α− rq + p2 = O((q)
(1−τ)

2 )

which is impossible for infinitely many p, q, r ∈ Z if τ > 2ω(α) + 1, and the

result follows directly. 2

The ideas from Lemma 3.1 were subsequently generalised, and then used in

[32] to prove a more general result, to calculate the Hausdorff Dimension of

the set of simultaneously τ -approximable points on polynomial curves in Rn.

Let

Γ = {(x, P1(x), . . . , Pn−1(x)) ∈ Rn : Pj ∈ Z[x]}

be a polynomial curve in Rn. Let dj = degPj and let d = maxj=1,...,n−1 dj then

for polynomial curves and more general polynomial surfaces the following

Lemma, originally proved in [32] applies:

Lemma 3.2. Let Γ represent any polynomial curve or surface of the form

Γ = {(x,y) ∈ Rm × Rn−m : y1 = P1(x), . . . , yn−m = Pn−m(x)}

where Pi ∈ Z[x]. Let di = degPi and assume without loss of generality that

d1 ≤ d2 ≤ · · · ≤ dn−m = d. Define

Sτ (Γ) = {(x) ∈ Γ : ||qx|| < |q|−τ for infinitely many q ∈ Z}.

Let (x,y) ∈ Sτ (Γ). If

|Dxi − ti| < D−τ and |Dyj − rj| < D−τ

for i = 1, . . . ,m, j = 1, . . . , n −m, τ > d − 1, D a sufficiently large integer

and ti, rj ∈ Z, then the point
(
t1
D
, . . . , tm

D
, r1
D
, . . . , rn−m

D

)
lies on Γ.
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Proof. Let (x,y) ∈ Γ so that yj = Pj(x), j = 1, . . . , n−m. If (x,y) ∈ Sτ (Γ)

then

|xi − ti/D| < D−τ−1 for i = 1, . . . ,m

|yj − rj/D| < D−τ−1 for j = 1, . . . , n−m.

Hence, xi − ti/D = εi and yj − rj/D = ηj for some εi and ηj with |εi|, |ηj| <

D−τ−1. Let ε = (ε1, . . . , εm). As

yj = Pj(x) = Pj(t/D + ε) for j = 1, . . . , n−m

it follows that
rj
D

+ ηj = Pj

(
t

D

)
+Rj(ε)

where Rj(ε) = O(|ε|) is the sum of the remaining terms. Multiplying through

by Ddj , where dj is the degree of Pj, gives

rjD
dj−1 +Ddjηj = DdjPj(t/D) +DdjO(|ε|)

so that

|rjDdj−1 −DdjPj(t/D)| = |DdjO(|ε|)−Ddjηj| = O(Ddj−τ−1)

and the LHS is an integer. For sufficiently large D the RHS is less than 1

which implies that the LHS must equal zero. Therefore

rj
D

= Pj

(
t

D

)
and the point (t/D, r/D) lies on Γ for τ > d− 1.

With this Lemma, the authors were then able to prove the following Theorem.

Theorem 3.1. For τ > max(d− 1, 1) the Hausdorff dimension of Sτ (Γ) is

dimSτ (Γ) =
2

d(τ + 1)
.
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Theorem 3.1 was proved by obtaining the upper and lower bounds separately.

The upper bound were found using covering and counting arguments and the

lower bound by adapting the classical set of well approximable numbers. The

latter is not best possible for τ < d− 1, but holds for all τ > 2/d− 1.

Define the curve Γ ⊂ Znp as Γ = {(w,w2, . . . , wn) ∈ Znp}. The set of

points (w, η2, . . . , ηn) ∈ Γ which satisfy the inequalities |qw− r|p ≤ |q, r, t|−τ

and |qηi − ti|p ≤ |q, r, t|−τ for infinitely many q, r ∈ Z and t ∈ Zn−1 will be

denoted by Wτ (Γ).

Theorem 3.2. Let n ≥ 2 be an integer. Then,

dimWτ (Γ) =
2

nτ
.

Theorem 3.2 is a p-adic analogue of Theorem 3.1, and quite similar to

that of Theorem 3.1. The proof of Theorem 3.2 is restricted to the Veronese

curve as opposed to more general integer poloynomial curves. It is expected

that the proof also holds for general integer polynomial curves.

3.2 Proof of Theorem 3.2

We will use the notation |a, b, c| to denote the maximum of |a|, |b| and |c|.

If a is a vector then |a| is the maximum of the vector entries. To prove

the Theorem, it is first necessary to determine the Hausdorff dimension and

measure of Wτ (Γ). The proof relies on the following Lemma which shows

that if (w,η) ∈ Wτ (Γ) then the rational approximants (r/q, t/q) also lie on

Γ for τ sufficiently large. This Lemma is a p-adic version of Lemma 3.2.

Lemma 3.3. Let (w,η) ∈ Wτ (Γ) so that there exist infinitely many D, r ∈ Z,

t ∈ Zn−1 such that |Dw− r|p < |D, t, r|−τ and |Dηi− ti|p < |D, r, t|−τ . Then

(r/D, t/D) ∈ Γ.
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Proof. Let (w,η) ∈ Wτ (Γ). Hence ηi = wi and there exist integers ti, r and

D such that |Dw − r|p < |D, t, r|−τ and |Dηi − ti|p < |D, r, t|−τ . Therefore,

|w − r/D|p < |D, t, r|−τ |D|−1
p and |ηi − t/D|p < |D, t, r|−τ |D|−1

p and there

exist ε1, . . . , εn ∈ Qp, such that w − r/D = ε1 and ηi − ti/D = εi for

i = 2, . . . , n with |εi|p < |D, t, r|−τ |D|−1
p . Then,

ηi = ti/D + εi = wi = (r/D + ε1)i = (r/D)i +R(ε1)

where R is a polynomial with each term containing ε1. Hence, ti/D −

(r/D)i = R(ε1)− εi so that

Di−1ti −Di(r/D)i = Di(R(ε1)− εi).

Clearly |R(ε1)|p ≤ |ε1|p < |D, t, r|−τ |D|−1
p . Thus,

|Di−1ti −Di(r/D)i|p ≤ |D|i−1
p |D, t, r|−τ .

The LHS is a rational integer and therefore has a finite p–adic expansion.

Thus, if τ is sufficiently large then the LHS will be zero. Let α be the

largest power of p occurring in the p-adic expansions of r, t and D. Then the

maximum power of p in the p-adic expansion of Di−1ti is iα. Similarly, the

maximum power of p in Di(r/D)i is iα. Note that |D, t, r| � pα so that if

τ > n, we have |D, t, r|−τ |D|p < p−nα which is enough to prove the Lemma.

The proof of the Theorem also uses the following Theorem from [15]. This

Theorem, which is the p-adic analogue of the main result in [45], is the p-adic

equivalent of a generalised Jarnik Theorem 2.3.

Theorem 3.3 (Theorem 16, [15]). Let f be a dimension function such that

r−mnf(r)→∞ as r → 0 and r−mnf(r) is decreasing. Furthermore, suppose
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that r−(m−1)nf(r) is increasing. Let ψ be a real, positive, decreasing function.

Then

Hf (Wp(m,n, ψ)) =

 0 if
∑∞

r=1 f(ψ(r))ψ(r)−(m−1)nrm+n−1 <∞

∞ if
∑∞

r=1 f(ψ(r))ψ(r)−(m−1)nrm+n−1 =∞.
(3.1)

Now the structure of Wτ is considered. Define the point Prq as

Prq =

(
r

q
, . . . ,

rn

qn

)
=

(
rqn−1

qn
, . . . ,

rn

qn

)
.

If the highest common factor of r and q is 1 then the common denominator

of Prq is qn. Let h = (r, q) with r = r1h and q = q1h. Then

Prq =

(
r1q

n−1
1

qn1
, . . . ,

rn1
qn1

)
= Pr1q1 .

We may therefore assume without loss of generality that (r, q) = 1. If

Ξ = (w, η2, . . . , ηn) ∈ Wτ (Γ) and τ > n, then Ξ must be approximated

by infinitely many points Prq with (r, q) = 1 and must satisfy the inequalities

|qnξ − rqn−1|p < |qn, rn|−τ ,

|qnη2 − r2qn−2|p < |qn, rn|−τ , . . . ,

|qnηn − rn|p < |qn, rn|−τ .

The proof of the Theorem now follows that in [32]. First, we move from the

set Wτ (Γ) to the set

Vτ (Γ) = {ξ ∈ I : (ξ,η) ∈ Wτ (Γ)}.

For all ξ ∈ Zp,

|ξ1 − ξ2|p = max
i
|ξi1 − ξi2|p
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for all i = 1, 2, . . . , n. Thus, there is a bi–Lipschitz transformation between

any ball B(ξ, r) ⊂ Zp and the image of that ball on Γ. To determine the

Hausdorff dimension and measure of Wτ (Γ) it is therefore enough to find the

Hausdorff dimension and measure of Vτ (Γ). It can be readily verified that

the inclusions⋂∞
N=1

⋃
k>N

⋃
|q,r|=k B(r/q, |rn, qn|−τ ) ⊂ Vτ (Γ) ⊂⋂∞

N=1

⋃
k>N

⋃
|q,r|=k B(r/q, |rn, qn|−τ |qn|−1

p )
(3.2)

hold. (Note that |D|−1
p ≥ 1.)

The fact that dimWτ (Γ) ≥ dimVτ (Γ) ≥ 2
nτ

and the fact that the Hausdorff

2/nτ measure is infinite follow directly from Theorem 3.3 by putting ψ(r) =

r−nτ and f(r) = rs. It is therefore only necessary to prove the upper bound

for the Hausdorff dimension.

Lemma 3.4.

dimVτ (Γ) ≤ 2

nτ
.

Proof. Using the RHS of (3.2) gives a cover of Vτ (Γ) for each n so that

Hs(Vτ (Γ)) �
∑
k>N

∑
r,q:max(r,q)=k

|rn, qn|−τs|qn|−sp

�
∑
k>N

 ∑
r,q:max(r,q)=q=k

|rn, qn|−τs|qn|−sp +
∑

r,q:max(r,q)=r=k

|rn, qn|−τs|qn|−sp


�

∑
k>N

(
kk−nτs|k|−nsp + k−τns

k∑
q=1

|q|−nsp

)
.

Consider the second sum
∑

k>N k
−τns∑k

q=1 |q|−nsp first and choose α be such
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that pα ≤ k < pα+1. Then, as |k|p = 1 if p does not divide k, we have

k∑
q=1

|q|−nsp =
∑

q≤k,p6 | q

1 +
∑

q≤k:p|q and p2 6 | q

pns + · · ·+
∑

q≤k:pα|q

pαns

� k +
k

p
pns +

k

p2
p2ns + · · ·+ k

pα
pαns

� k
α∑
i=0

pi(ns−1) � k

for s > 2
nτ

and τ > n ≥ 2. Now, using the same arguments consider the first

sum
∑

k>N kk
−nτs|k|−nsp to obtain∑

k>N

kk−nτs|k|−nsp �
∑

k>N :p 6 | k

k1−nτs +
∑

r>N :p 6 | r

(pr)1−nτspns +
∑

r>N :p 6 | r

(p2r)1−nτsp2ns + . . .

�
∑
k>N

k1−nτs
∞∑
i=0

pi(1+ns−nτs).

The last geometric series converges if s > 1
nτ−n . For τ > n ≥ 2 it is easy to

show that 2
nτ
> 1

nτ−n . Thus if s > 2
nτ

then both the sums converge which is

enough to prove dimWτ (Γ) = dimVτ (Γ) ≤ 2
nτ

for τ > n. This implies that

dimEλ ≥ 2
nλ

which completes the proof of Theorem 3.2.

It is now possible to obtain the dimension of Eλ, where

Eλ = lim
k→∞

Wλ(Γ) \Wλ+1/k(Γ).

Clearly, Eλ ⊂ Wλ(Γ) so that dimEλ ≤ 2
nλ

. Also, H2/nλ(Wλ(Γ)) = ∞, and

H2/nλ(Wλ+1/k(Γ)) = 0 for all n ≥ 1. Thus, H2/nλ(Wλ(Γ) \Wλ+1/k(Γ)) =∞.
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Chapter 4

On a problem of Nesterenko:

examining the closest root to

an argument of a polynomial

4.1 Introduction

In this chapter, a result originally considered by Y.V. Nesterenko is examined.

The material presented in the first section forms the main part of a paper

published in the International Journal of Number Theory, [34]. The problem

is to determine, for an integer polynomial P , which roots α of P belong to

the real numbers R. In the second section, the same problem is examined

for the p-adic field. The results slightly improve Nesterenko’s earlier work.

The final section studies the same problem for simultaneous approximation

in the real and p-adic fields.
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4.2 Main results and remarks

Recall the sets

SP (αj) = {x ∈ R : |x− αj| = min1≤m≤n |x− αm|},

where 1 ≤ j ≤ n. From now on it will be assumed without loss of generality

that x ∈ SP (α1).

The following two Theorems concern results which hold for x ∈ R and x ∈

SP (α1).

Theorem 4.1. Let P ∈ Z[x] be a leading polynomial of degree n, n ≥ 2,

with discriminant D(P ) 6= 0. If

|P (x)| < H−w (4.1)

for w > 2n− 3 and sufficiently large H and x ∈ SP (α1), then α1 ∈ R and

|x− α1| � H−w+n−2. (4.2)

Corollary 4.1. If P (x) =
∏k

i=1 Ti(x)si, where the Ti are irreducible polyno-

mials, and degree Ti ≤ ni, and D(P ) = 0 then Theorem 4.1 holds with (4.2)

replaced by

|x− α1| � H(Ti)
−w+ni−2 for some i, 1 ≤ i ≤ k, (4.3)

where w > 2ni − 3.

Note that the condition w > 2n− 3 in Theorem 4.1 cannot be arbitrarily

improved. To illustrate this, consider the following example.

Example 1. Let Pn be the leading polynomial

Pn(x) = xn−2((b2 + 1)x2 + 2bx+ 1) = xn−2R2(x), b ∈ Z, b > 1.
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The height of Pn is H(Pn) = b2 + 1. The polynomial Pn has complex roots

−b±i
b2+1

and a real root 0 of order n− 2. Let x0 = − b
b2+1

. Then

R2(x0) = (b2 + 1)x2
0 + 2bx0 + 1 =

1

b2 + 1
= H−1,

where |x0| = b
b2+1
≤
√
b2+1
b2+1

= H−1/2. Hence,

|Pn(x0)| = |x0|n−2H−1 ≤ H−n/2.

Since the distance from x0 to 0 is b
b2+1

, the roots −b±i
b2+1

are the closest roots

to x0. The upshot is that in Theorem 1 we cannot take w ≤ n/2. It would

be interesting to know if either of the bounds n
2

and 2n− 3 is sharp; this is

the subject ongoing research.

When D(P ) = 0, if H(Ti) has a very small value then (4.3) is a poor

upper bound. We are able to prove a more general result than Corollary 1

but the downside is that the resulting upper bound is not as strong as (4.2).

Theorem 4.2. Let P be a leading integer polynomial of degree n, n ≥ 2, and

D(P ) = 0. Let |P (x)| < H−w, then for w > 2n− 3 and sufficiently large H,

the closest root α1 to x belongs to R and

|x− α1| � H−(w+1)/n. (4.4)

Preliminaries

As P is a leading polynomial, by definition

|an| � H. (4.5)

From this and the well known property |αi| � H
|an| it further follows that

|αj| � 1, j = 1, . . . , n; (4.6)
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i.e. the roots of P are bounded.

Reorder the other roots of P so that

|α1 − α2| ≤ |α1 − α3| ≤ . . . ≤ |α1 − αn|.

Proof of Theorem 4.1

Consider a polynomial P satisfying D(P ) 6= 0 and (4.1). Since D(P ) is

always an integer,

|D(P )|1/2 ≥ 1.

By definition,

D(P ) = (an)2n−2
∏

1≤j≤n

(α1 − αj)2
∏

2≤i<j≤n

(αi − αj)2

and using

P ′(α1) = an(α1 − α2) . . . (α1 − αn)

it follows that

D(P ) = (an)2n−4((an)2
∏

1≤j≤n(α1 − αj)2)(
∏

2≤i<j≤n(αi − αj)2)

= (an)2n−4|P ′(α1)|2
∏

2≤i<j≤n(αi − αj)2

which implies that

D(P )
1
2 = |an|n−2|P ′(α1)|

∏
2≤i<j≤n |αi − αj| � |an|n−2|P ′(α1)|,

so that

|P ′(α1)| � H−n+2 (4.7)

and, using (1.8),

|x− α1| � H−w+n−2. (4.8)
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Assume that α1 is a complex root of P . Then its conjugate is also a root of P .

For simplicity, let α2 = ᾱ1. Using (4.8) and the fact that |x−α1| = |x−α2|,

it follows that

|α1 − α2| ≤ |x− α1|+ |x− α2| � H−w+n−2. (4.9)

Using (4.9) and (4.6), it further follows that

1 ≤ |D(P )|1/2 = |an|n−1|α1 − α2|
∏n

j=3 |α1 − αj|
∏

2≤i<j≤n |αi − αj|

� |an|n−1H−w+n−2 � H−w+2n−3.

(4.10)

If w > 2n − 3 clearly 4.10 is false. Thus α1 is a real root of P and satisfies

(4.8). 2

Proof of Corollary 4.1

Consider the polynomial P satisfying D(P ) = 0 and (4.1). If D(P ) = 0, then

P has repeated roots, and Lemma 1.4 implies that P is reducible. Write P

as a product of irreducible polynomials Ti(x) ∈ Z[x]:

P (x) =
k∏
i=1

T sii (x).

Since D(P ) = 0 and Ti is an irreducible polynomial there exists an index l,

1 ≤ l ≤ k such that sl ≥ 2.

The next objective is to show that for some index j, 1 ≤ j ≤ k, the

inequality

|Tj(x)| < 2nw/2H−w(Tj) (4.11)

holds. Assume the contrary, so

|Tj(x)| ≥ 2nw/2H−w(Tj) for all j, 1 ≤ j ≤ k.
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By Lemma 1.1,

|P (x)| ≥
k∏
j=1

(2nw/2H−w(Tj))
sj ≥ 2nw(

∑k
j=1 sj/2−1)H(P )−w ≥ H(P )−w

which contradicts (4.1). Thus (4.11) holds.

Hence as D(Tj) 6= 0, by the same argument as in the proof of Theorem

4.1, there exists a real root α1 of Tj when w ≥ 2nj−3 satisfying (4.3). Clearly

P (α1) = 0. 2

Proof of Theorem 4.2

Let P ∈ Z[x] satisfying D(P ) = 0, and (4.1) and write

P (x) =
k∏
i=1

T sii (x), si ≥ 1, (4.12)

where Ti is an irreducible polynomial, of degree ni, i = 1, . . . , k.

Case 1. If k = 1 then P (x) = T s11 and s1 ≥ 2 since D(P ) = 0 and T is

irreducible. In this case deg T1 = n/s1 ∈ N, and H(T1) � H(P )1/s1 . From

(4.1), we get |T1(x)| � H(T1)−w.

For n1 = 1, (i.e. T1 is a linear polynomial,) the estimate for |x− α1| can

be calculated directly as follows. Let T1(x) = d1x + d0 so that an = dn1 . By

(4.5) it is clear that |d1| � H(P )1/n and

|x+ d0/d1| < H(T1)−w|d1|−1 � H(P )−(w+1)/n. (4.13)

Now, assume that n1 ≥ 2, and let α1 be the closest root of T1 to x. Since

D(T1) 6= 0 and 2 ≤ s1 ≤ n/2 the same method as in the proof of Theorem 1

can be used for T1 to show that for w > 2n/s1 − 3 the root α1 belongs to R

and the estimate

|x− α1| � H(T1)−w−2+n/s1 � H(P )−(w+2)/s1+n/s21 := H(P )f(s1,w)
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holds. Maximising f(s1, w) over the domain w > 2n − 3 and 2 ≤ s1 ≤ n/2,

gives

|x− α1| � H(P )−2w/n. (4.14)

Case 2. Assume that k ≥ 2 and suppose that s1 = 1. Rewrite (4.12) in the

form

P (x) = T1(x)
k∏
i=2

T sii (x) = T1(x)P1(x) (4.15)

where each Ti is irreducible. Again the approach used is to assume α1 is

non-real and establish a contradiction.

Let α1 ∈ C \ R be a root of the polynomial T1. As α1 is complex, its

conjugate is also a root. For simplicity, let α2 = ᾱ1. Thus deg T1 ≥ 2.

Clearly degP1 = n−n1. And, since D(P ) = 0 and T1 does not have repeated

roots, P1 has at least two common roots, so n ≥ 4 and n1 ≤ n − 2. Let

H(T1) = H(P )λ, 0 ≤ λ ≤ 1, so that by Lemma 1.1, H(P1)� H(P )1−λ.

By definition the polynomials T1(x) = tn1x
n1 + . . .+ t1x+ t0 and P1(x) =

pn−n1x
n−n1 + . . .+ p1x+ p0 do not have common roots. Denote (from 1.4) by

R(T1, P1) the resultant of T1 and P1. Then R(T1, P1) 6= 0 and R(T1, P1) ∈ Z.

In this case,

R(T1, P1) = tn−n1
n1

pn1
n−n1

∏
1≤i≤n1, n1+1≤j≤n

(αi − αj).

Hence,

1 ≤ |R(T1, P1)| � Hλ(n−n1)+(1−λ)n1

∏
1≤i≤n1, n1+1≤j≤n

|αi − αj|. (4.16)

Since |αj| � 1, 1 ≤ j ≤ n, ∏
3≤i≤n1, n1+1≤j≤n

|αi − αj| � 1. (4.17)
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From (4.16) and (4.17) it follows that∏
n1+1≤j≤n

|α1 − αj||α2 − αj| � H−λ(n−n1)−(1−λ)n1 (4.18)

and for the same reason∏
n1+1≤j≤n

|α1 − αj| � H−λ(n−n1)−(1−λ)n1 . (4.19)

The following facts will also be needed:

if αj ∈ R then |α1 − αj| = |ᾱ1 − αj|;

if αj ∈ C \ R then |ᾱ1 − αj| = |α1 − ᾱj|.

Using these, (4.18) gives∏
n1+1≤j≤n

|α1 − αj|2 � H−λ(n−n1)−(1−λ)n1 . (4.20)

Now Lemma 1.3, for s1 = 1, implies that

|x− α1| � |P (x)||an|−1
∏

2≤k≤n1

|α1 − αk|−1

︸ ︷︷ ︸
(4.21′)

∏
n1+1≤k≤n

|α1 − αk|−1.︸ ︷︷ ︸
(4.21′′)

(4.21)

An upper bound for (4.21′′) follows from (4.20). The discriminant D(T1) of

T1 is used together with (4.6) to estimate (4.21′) so that

1 ≤ |D(T1)|1/2 = tn1−1
n1

∏
1≤i<j≤n1

|αi − αj| � Hλ(n1−1)
∏

2≤k≤n1

|α1 − αk|. (4.22)

Thus, ∏
2≤k≤n1

|α1 − αk| � H−λ(n1−1) (4.23)

and using (4.6) again,
∏

3≤k≤n1
|α1 − αk| � 1 so that

|α1 − α2| � H−λ(n1−1). (4.24)
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In several places the following approach is used to establish upper bounds

on a function of the height of P . A domain from the minimum to maximum

allowable values of both λ and n is defined. The maximum value of the func-

tion being considered is evaluated on this domain which gives the required

maximum value of the bounds.

On combining (4.1), (4.20)–(4.24) and the fact that |α1−α2| ≤ 2|x−α1|

we have

1 ≤ 2|α1 − α2|−1|x− α1| � Hf1(λ,n1) := H−w−1+λ(n1−2)+(λn+n1)/2.

Define the domain

D1 = {(λ, n1) : 0 ≤ λ ≤ 1 and 2 ≤ n1 ≤ n− 2}

for n ≥ 4. Then, the maximum of f1 on D1 is −w + 2n− 6; i.e.

1 ≤ 2|α1 − α2|−1|x− α1| ≤ H−w+2n−6

which is a contradiction for w > 2n− 6 and sufficiently large H.

Now as α1 ∈ R, no conjugate root exists in (4.15). Hence the index n1

satisfies 1 ≤ n1 ≤ n− 2.

In a similar approach to above, define the function

f2(λ, n1) = −w − 1− λ(n1 − 1) + λ(n− n1) + (1− λ)n1

on the domain

D2 = {(λ, n1) : 0 ≤ λ ≤ 1 and 1 ≤ n1 ≤ n− 2}.

Using (4.1), (4.18), (4.23), and (4.21), we obtain

|x− α1| � Hf2(λ,n1) ≤ H−w+n−2, (4.25)
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since the maximum value of f2(λ, n1) on D2 is −w + n− 2.

Case 3. Assume k ≥ 2 and s1 ≥ 2. Rewrite the polynomial P as

P (x) = T s11 (x)P2(x), where P2(x) =
k∏
i=2

T sii (x).

Let α1 be a root of T1 and degT1 = n1 so that degP2 = n − n1s1. Again

suppose that α1 ∈ C \ R. For simplicity, let α2 = ᾱ1, the conjugate of α1.

Then n ≥ 2s1 + 1 ≥ 5 and 4 ≤ 2s1 ≤ n1 ≤ n − 1. Let H(T1) = H(P )λ/s1 ,

0 ≤ λ ≤ 1, so that, by Lemma 1.1, H(P2)� H(P )1−λ .

Since T1 is irreducible over Q, then T1 has no multiple roots over C. Thus,

n∏
j=2

|α1 − αj| =
∏

2≤j≤n1/s1

|α1 − αj|s1
∏

n1+1≤j≤n

|α1 − αj|.

This, with Lemma 1.3, for s = s1 gives

|x− α1| � H(P )
−w−1
s1

∏
2≤j≤n1/s1

|α1 − αj|−1
∏

n1+1≤j≤n

|α1 − αj|−1/s1 . (4.26)

By definition, the discriminant of T1 satisfies

1 ≤ |D(T1)|1/2 = H(P )λ(n1/s1−1)/s1
∏

1≤i<j≤n1/s1

|αi − αj|.

It follows via (4.6) that∏
2≤j≤n1/s1

|α1 − αj| � H(P )−λ(n1/s1−1)/s1 (4.27)

and in particular that,

|α1 − α2| � H(P )−λ(n1/s1−1)/s1 . (4.28)

Since the resultant of T1 and P2 does not equal zero, it follows that

1 ≤ |R(T1, P2)| � Hλ(n−n1)/s1H(1−λ)n1/s1
∏

1≤i≤n1/s1, n1+1≤j≤n

|αi − αj|. (4.29)

53



Therefore, from (4.6) and (4.29)∏
n1+1≤j≤n

|α1 − αj||α2 − αj| � H−λ(n−n1)/s1−(1−λ)n1/s1 (4.30)

and also, ∏
n1+1≤j≤n

|α1 − αj| � H−λ(n−n1)/s1−(1−λ)n1/s1 . (4.31)

In a similar manner to (4.20) in Case 2, the following holds∏
n1+1≤j≤n

|α1 − αj| � H
−λ(n−n1)−(1−λ)n1

2s1 . (4.32)

Define a function

f3(λ, n1) = −w + 1

s1

+
2λ(n1 − s1)

s2
1

+
λ(n− n1) + (1− λ)n1

2s2
1

on the domain

D3 = {(λ, n1) : 0 ≤ λ ≤ 1 and 2s1 ≤ n1 ≤ n− 1}

and a function

f4(s1) = −w + 1

s1

+
4n− 3− 4s1

2s2
1

on the interval I1 =
[
2, n−1

2

]
. Note that the function f3(λ, n1) has a maximum

value of f4(s1) on D3 and, for w > 2n− 3, the maximum value of f4(s1) on

I1 is
−2w − 2

n− 1
+

4n− 2

(n− 1)2
.

Then, using the formulae (4.1), (4.26), (4.27), (4.28), (4.32) and the fact that

|α1 − α2| ≤ 2|x− α1|, it follows that

1 ≤ 2|α1 − α2|−1|x− α1| � Hf3(λ,n1) ≤ Hf4(s1) ≤ H
−2w−2
n−1

+ 4n−2

(n−1)2 . (4.33)

This is a contradiction for w > 2n − 3, n ≥ 3, and sufficiently large H
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so again α1 ∈ R. Again, therefore, to find the distance of x to α1, as in

case 2, we know that no conjugate root exists, and the index n1 runs from

s1 ≤ n1 ≤ n− 1.

Let

f5(λ, n1) = −w + 1

s1

+
λ(n− n1 − s1)

s2
1

.

Using the formulae (4.1), (4.26), (4.27), and (4.31), we obtain

|x− α1| � H(P )f5(λ,n1) ≤ H(P )
−w+1

s1
+n−1

s21 < H(P )
−w
n−1 , (4.34)

where the right hand side of (4.34) is a straightforward consequence of max-

imizing f5(λ, n1) on

D4 = {(λ, n1) : 0 ≤ λ ≤ 1 and s1 ≤ n1 ≤ n− 1}.

Now, by (4.34), for w > 2n− 3 and 2 ≤ s1 ≤ n− 1 we get

|x− α1| � H
−w
n−1 . (4.35)

Combining (4.14), (4.13), (4.25) and (4.35), for w > 2n − 3 and sufficiently

large H, the estimates

|x− α1| � max{H−w+n−2, H
−w
n−1 , H−2w/n, H−(w+1)/n} = H−(w+1)/n

hold, for x ∈ SP (α1). This completes the proof of the Theorem.

2

4.3 Nesterenko’s problem in Zp.

In [77] Y. Nesterenko discussed the solvability of the equation P (x) = 0 in

the ring of p-adic integers Zp and proved the following result:
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Theorem 4.3 (Nesterenko). If |P (x)|p ≤ e−8n2
H−4n, where n = degP , H =

H(P ), then there exists a p-adic number γ such that P (γ) = 0, |x−γ|p < 1.

This result can be improved for p–adic leading polynomials. Such a poly-

nomial satisfies

|an|p � 1. (4.36)

Theorem 4.4. Let P be a p–adic leading integer polynomial of degree n.

Then if

|P (w)|p < H−w2 (4.37)

for w2 > 2n − 2, and for sufficiently large H > H0(n), it follows that the

closest root γ1 of P to w ∈ Zp belongs to Qp and

|w − γ1|p < 1. (4.38)

Preliminary setup and auxilliary Lemmas

Let P ∈ Pn have roots γ1, γ2, . . . , γn in Q∗p, where Q∗p is the smallest field

containing Qp and all algebraic numbers. Then, from (4.36) it follows that

|γi|p � 1, i = 1, . . . , n; (4.39)

i.e. the roots are bounded. This follows from Lemma (6.6) in [27].

Define the p-adic equivalent of the previously defined sets SP (α) as

Tp(γk) = {w ∈ Zp : |w − γk|p = min
1≤i≤n

|w − γi|p}, 1 ≤ k ≤ n.

Consider the set Tp(γk) for a fixed k and for ease of notation assume that

k = 1. Next, reorder the other roots so that

|γ1 − γ2|p ≤ |γ1 − γ3|p ≤ . . . ≤ |γ1 − γn|p.

A Lemma proved by Bernik, which is a generalisation of a Lemma by

Sprindžuk [85] is also needed.
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Lemma 4.1 (Bernik). [19] Let w ∈ TP (γ1). Then

|w − γ1|p < min
1≤j≤n

(|P (w)|p|P ′(γ1)|−1
p

j∏
k=2

|γ1 − γk|p)1/j.

The Theorem can now be proved.

Proof of Theorem 4.4. Two cases must be dealt with separately: D(P ) 6=

0 and D(P ) = 0.

Case I. First consider a polynomial P satisfying D(P ) 6= 0 and (4.37), and

assume that |P ′(w)|2p ≤ |P (w)|p. We will obtain a contradiction. Using

(4.39), we get |P ′(w)|p < H−w2/2.

It is well known that |D(P )| = |∆|
|an| , where

∆ =



an an−1 an−2 . . . a1 a0 0 . . . 0

0 an an−1 an−2 . . . a1 a0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 an an−1 an−2 . . . a1 a0

nan (n− 1)an−1 (n− 2)an−2 . . . a1 . . . 0 . . . 0

0 nan (n− 1)an−1 (n− 2)an−2 . . . a1 0 . . . 0

0 0 . . . 0 nan (n− 1)an−1 (n− 2)an−2 . . . a1


.

Hence the determinant,

|∆| ≤ |an|((2n− 2)!(nH)2n−2 + n(2n− 2)!(nH)2n−2)

= |an|(2n− 2)!(n+ 1)(nH)2n−2 ≤ 2n2n−1(2n− 2)!H2n−2|an|,

using the fact that |ai| ≤ H, i = 0, 1, . . . , n. Thus, |D(P )| ≤ c1(n)H2n−2,

where c1(n) = 2n2n−1(2n− 2)!. This implies that

|D(P )|p ≥ c−1
1 (n)H−2n+2. (4.40)

At this point, for convenience, define the number sj as

n∏
k=j+1

|γ1 − γk|−1
p = Hsj . (4.41)
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Using Lemma 4.1, |an|p � 1 and (4.37),

|w − γ1|p ≤ min1≤j≤n(|P (w)|p|P ′(γ1)|−1
p

∏j
k=2 |γ1 − γk|p)1/j

< min1≤j≤n(H−w2|an|−1
p

∏n
k=j+1 |γ1 − γk|−1

p )1/j

≤ min1≤j≤n(H−w2|an|−1
p Hsj)1/j

� min1≤j≤nH
−w2+sj

j .

Define σ(P ) as the cylinder of points w satisfying

|w − γ1|p � min
1≤j≤n

H
−w2+sj

j .

Let θj =
w2−sj
j

and denote by θ0 the maximum value of θj, j = 1, . . . , n.

Now the polynomial P ′ is expanded as a Taylor series and each term is

estimated on σ(P ). Thus

P ′(w) = P ′(γ1) +
n∑
j=2

((j − 1)!)−1P (j)(γ1)(w − γ1)j−1,

|P (j)(γ1)(w − γ1)j−1|p � H−sj+(n−j)ε1H−θ0(j−1).

As θ0 ≥ θj, this implies that

|P (j)(γ1)| � H−sj+(n−j)ε1+ j−1
j

(−w2+sj) ≤ H−w2/2+(n−2)ε1 for 2 ≤ j ≤ n.

Thus,

|P ′(γ1)|p ≤ max
2≤j≤n

{|P ′(w)|p, |P (j)(γ1)(w − γ1)j−1|p} � H−w2/2+(n−2)ε1

for H > H0(n).

Expressing the discriminant D(P ) in the form

|D(P )|p = |an|2n−2
p

∏
1≤i<j≤n

|γi − γj|2p = |an|2n−4
p |P ′(γ1)|2p

∏
2≤i<j≤n

|γi − γj|2p

and using the facts that |γi|p � 1 and |an|p ≤ 1, we obtain

|D(P )|p � |P ′(γ1)|2p.
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This contradicts (4.40) for w2 > 2n− 2 + 2(n− 2)ε1 and sufficiently large H.

Therefore, |P ′(w)|2p > |P (w)|p holds for w2 > 2n − 2 + 2(n − 2)ε1, and case

I follows immediately from Hensel’s Lemma 1.3. Hence, there exists a root

γ1 ∈ Qp of P such that |w − γ1|p ≤ |P (w)|p/|P ′(w)|2p < 1.

Case II. Consider the polynomial P satisfying D(P ) = 0. First, P is de-

composed into irreducible polynomials Ti(w) ∈ Z[w], i.e.

P (w) =
k∏
i=1

T sii (w).

It will be shown that for some index j, 1 ≤ j ≤ k,

|Tj(w)|p < 2nw2/2H−w2(Tj). (4.42)

Assume the opposite, so that

|Tj(w)|p ≥ 2nw2/2H−w2(Tj) for all j, 1 ≤ j ≤ k.

Then, by Lemma 1.3,

|P (w)|p ≥
k∏
j=1

(2nw2/2H−w2(Tj))
sj ≥ 2nw2(

∑k
j=1 sj/2−1)H(P )−w2 ≥ H(P )−w2

which contradicts (4.37). Thus (4.42) holds.

Hence, applying the same method as in Case I for Tj, D(Tj) 6= 0, which

satisfies (4.42), it follows that there exists a p-adic number γ1 such that

|w − γ1| < 1 and Tj(γ1) = 0. This implies P (γ1) = 0. 2

4.4 A result in the real and p-adic metrics

In this section a generalisation of the previous results is considered. The

problem of Nesterenko in R× Zp is investigated. The approach uses bounds
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on the derivatives of the polynomial when expanded as a Taylor series, and

some of the ideas in Sprindžuk’s book [85].

4.4.1 Statement of the Theorem

A polynomial is leading and p-adic leading if both

|an| > c1H(P ), |an|p � 1 (4.43)

hold. The following result is proved:

Theorem 4.5. Let P ∈ Z[x] be leading and p–adic leading, of degree n

and let the discriminant D(P ) 6= 0. If at some point (x,w) ∈ R × Q∗p the

inequalities

|P (x)| < H(P )−w1 , |P (w)|p < H(P )−w2 (4.44)

and x ∈ SP (α1) or w ∈ SP (γ1), hold for

w1 + w2 > 2n− 3, (4.45)

w1 > 0, w2 > 0, and sufficiently large H > H0(n), then the root γ1 of P

closest to w belongs to Qp and

|w − γ1|p < 1 (4.46)

or the root α1 of P closest to x belongs to R and

|x− α1| � H(P )−w1−w2/2+n−2. (4.47)

It should be noted that this result is consistent with Theorem 4.1 when

the result is restricted to the real case.
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4.4.2 Preliminary setup and auxiliary Lemmas

Let Pn(H) be the set of polynomials P ∈ Pn satisfying (4.43) for which

H(P ) = H. Let P ∈ Pn(H) have roots α1, α2, . . . , αn in C and roots

γ1, γ2, . . . , γn in Q∗p, where Q∗p is the smallest field containing Qp and all

algebraic numbers. Then, from (4.43) and [85], it follows that

|αi| � 1, |γi|p � 1, i = 1, . . . , n;

i.e. the roots are bounded. Recall the following definitions:

SP (αj) = {x ∈ R : |x− αj| = min
1≤i≤n

|x− αi|},

TP (γk) = {w ∈ Qp : |w − γk|p = min
1≤i≤n

|w − γi|p}.

We consider the sets SP (αj), TP (γk) for a fixed set j, k and for simplicity we

will assume that j = k = 1. Reorder the other roots of P so that

|α1 − α2| ≤ |α1 − α3| ≤ . . . ≤ |α1 − αn|,

|γ1 − γ2|p ≤ |γ1 − γ3|p ≤ . . . ≤ |γ1 − γn|p.

From now on it will be assumed without loss of generality that x ∈ SP (α1)

and w ∈ Tp(γ1). In many places in the proof of the Theorem the values of

the polynomials will be estimated by expanding the polynomial as a Taylor

series. To obtain an upper bound on the terms in the Taylor series (and for

other purposes) the following Lemma (proved in [19] and [68]) will be used.

Lemma 4.2. If P ∈ Pn then

|x− α1| ≤ 2n|P (x)||P ′(α1)|−1;

|w − γ1|p ≤ |P (w)|p|P ′(γ1)|−1
p ;

|x− α1| ≤ min
2≤j≤n

(
2n−j|P (x)||P ′(α1)|−1

j∏
k=2

|α1 − αk|

) 1
j

;
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and

|w − γ1|p ≤ min
2≤j≤n

(
|P (w)|p|P ′(γ1)|−1

p

j∏
k=2

|γ1 − γk|p

) 1
j

.

4.4.3 Proof of Theorem 4.5.

Firstly, assume that |P ′(w)|2p > |P (w)|p. In this case Hensel’s Lemma

(1.3) can be applied to obtain a p-adic root γ1 of P such that |w − γ1|p <

|P (w)|p/|P ′(w)|2p < 1.

Secondly, assume that |P ′(w)|2p ≤ |P (w)|p. From (4.44) it follows that

|P ′(w)|p < H−w2/2. Then Lemma 4.2, is used together with |an|p � 1, (4.44)

and (4.43) to obtain

|w − γ1|p ≤ min1≤j≤n(|P (w)|p|P ′(γ1)|−1
p

∏j
k=2 |γ1 − γk|p)1/j

< min1≤j≤n(H−w2|an|−1
p

∏n
k=j+1 |γ1 − γk|−1

p )1/j

≤ min1≤j≤n(H−w2|an|−1
p Hsj)1/j

� min1≤j≤nH
−w2+sj

j

where sj is defined in (4.41). Let σ(P ) be the cylinder defined by this system.

For convenience label

θ0 = max
1≤j≤n

w2 − sj
j

.

Expand P into its Taylor series and estimate each term at w ∈ σ(P ). This

gives

P ′(w) = P ′(γ1) +
n∑
j=2

((j − 1)!)−1P (j)(γ1)(w − γ1)j−1.

But

|P (j)(γ1)(w − γ1)j−1|p � H−sj+(n−j)εH−θ0(j−1)

≤ H−sj+(n−j)ε+ j−1
j

(−w2+sj)

≤ H−w2/2+(n−2)ε

(4.48)
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for 2 ≤ j ≤ n. Thus,

|P ′(γ1)|p ≤ max
2≤j≤n

{|P ′(w)|p, |P (j)(γ1)(w − γ1)j−1|p} � H−w2/2+(n−2)ε

for H > H0(n).

From this, and the facts that |αj| � 1 and |γj|p � 1, it follows that

1 ≤ |D(P )||D(P )|p � |an|2n−4|an|2n−4
p |P ′(α1)|2|P ′(γ1)|2p � H2n−4|P ′(α1)|2|P ′(γ1)|2p.

This further implies that

|P ′(α1)| � H−n+2+w2/2−(n−2)ε (4.49)

using the previous bounds on |P ′(γ1)|p. Therefore, since

P ′(α1) = an(α1 − α2) . . . (α1 − αn),

and |αi| � 1, we have

|α1 − α2| � H−n+1+w2/2−(n−2)ε. (4.50)

By (4.44), (4.49) and Lemma 4.2,

|x− α1| � |P (x)|/|P ′(α1)| � H−w1−w2/2+n−2+(n−2)ε. (4.51)

Now, if α1 is a complex root of P , then its conjugate is also a root of P . For

simplicity, let α2 = ᾱ1. Hence,

|α1 − α2| ≤ |x− α1|+ |x− α2| � H−w1−w2/2+n−2+(n−2)ε. (4.52)

For w1 + w2 > 2n − 3 + 2(n − 2)ε and sufficiently large H > H0(n) this

contradicts (4.50). Hence, α1 is a real root of P satisfying (4.51). 2

63



Chapter 5

On regular systems of real

algebraic numbers in small

intervals

5.1 Introduction

Regular systems as defined by Baker and Schmidt [3] are defined in definition

(1.10). In the results of Baker and Schmidt [3], Bernik [20] and Beresnevich

[6] which were described in chapter 2, it was shown that the set of real

algebraic numbers α of degree at most n together with the function N(α) =

H(α)n+1 log−vH(α), forms a regular system when v = 3n(n + 1), 2 and 0

respectively. Here H(α) is the height of the algebraic number α, defined

as the maximum of the absolute values of the coefficients of the minimal

polynomial of α.

In [6] the constant c1 is calculated, but T0 is not (both of these are in

the definition of a regular system). In [35] it is shown that for a given finite



interval I in [−1/2, 1/2] the value of T0(Γ, N(α), I) is equal to

T0(Q, N(α), I) = 104|I|−2 log2 100|I|−1

for n = 1, and in [6] that

T0(A2, N(α), I) = 723|I|−3 log3 72|I|−1

for n = 2, where A2 is the set of real algebraic numbers of degree two. In

[35] (Section 6.1) Bugeaud notes that for n ≥ 3 the relationship between |I|

and T0 is not presently known.

In this chapter for n = 3 the relationship between |I| and T0 is examined,

and it is shown that T0 = c2|I|−4 for a constant c2. Let An be the set of real

algebraic numbers of degree n, and c2, c3 are positive constants.

For a positive integer Q define the set of polynomials

P ′3(Q) = {P ∈ Z[x] : degP = 3, H(P ) ≤ Q}. (5.1)

5.2 Statement of results

Theorem 5.1. Let I be a finite interval contained in [−1/2, 1/2]. Then there

exist positive constants c1, c2 and a positive number T0 = c2|I|−4 such that

for any T ≥ T0 there exist numbers α1, . . . , αt ∈ A3 ∩ I such that

H(αi) ≤ T 1/4 (1 ≤ i ≤ t),

|αi − αj| ≥ T−1 (1 ≤ i < j ≤ t),

t ≥ c1T |I|.

(5.2)

Note that from Theorem 5.1 it follows that the set of real algebraic num-

bers α of degree 3, together with the function N(α) = H4(α) form a regular

system on [−1/2, 1/2].
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Let δ0 ∈ R+. Denote by L̄3 = L̄3(Q, δ0, I) the set of x ∈ I, for which the

system of inequalities

|P (x)| < Q−3, |P ′(x)| < δ0Q (5.3)

are satisfied for some P ∈ P ′3(Q). The proof of Theorem 5.1 is based on the

following metric result.

Theorem 5.2. For any real number s, where 0 < s < 1, there exists a

constant δ0, which satisfies the following property. For any interval I ⊂

[−1/2, 1/2] there exists a sufficiently large number Q0 = Q0(I) and a constant

c5 independent of Q0 such that

|I| > c5Q
−1
0 ,

and for all Q > Q0

|L̄3(Q, δ0, I)| < s|I|. (5.4)

5.3 Proof of Theorem 5.1

Let c5 be a constant such that c5 ≥ 2.35

(1−s)δ0 and for which Theorem (5.2) is

valid. Denote by L0(Q, I) the set of x ∈ I, for which |P (x)| < Q−3 is satisfied

for some P ∈ P ′3(Q). It can be readily verified using Dirichlet’s Box Principle

that L0(Q, I) = I.

By Theorem 5.2 there exists a set L3(Q, δ0, I) = I \ L̄3(Q, δ0, I) ⊂ I such

that |L3(Q, δ0, I)| ≥ (1 − s)|I| for all Q > Q0, where Q0 > c5|I|−1. Denote

by L≤2(Q, δ0, I) the union of the intervals

σ(α) = {x ∈ I : |x− α| < 3δ−1
0 Q−4}
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over all real algebraic numbers of degree at most 2 and height at most Q.

The number of different intervals in this union is at most (2Q+1)3 and every

interval has a length at most 6δ−1
0 q−4, therefore it follows that

|L≤2(Q, δ0, I)| ≤ (1− s)|I|
2

for c5 ≥ 2.35

(1−s)δ0 . Define

L′3(Q, δ0, I) = L3(Q, δ0, I) \ L≤2(Q, δ0, I).

Let x ∈ L′3(Q, δ0, I). Then there exists a non-zero polynomial P ∈ P ′3(Q),

satisfying

|P (x)| < Q−3, |P ′(x)| ≥ δ0Q. (5.5)

It will be shown that there exists a root α of P close to x. Let y ∈ R, be

such that |y − x| = 3δ−1
0 Q−4. By Taylor’s formula

P (y) =
3∑
i=0

1

i!
P (i)(x)(y − x)i.

As x ∈ [−1
2
, 1

2
], |P (i)(x)| � Q for i = 1, 2, 3. It is readily verified that∣∣∣P (i)(x)(y − x)i

∣∣∣� Q−7 for i ≥ 2 .

Also, by (5.5), |P (x)| < Q−3. Thus,

∑
i=0,2,3

∣∣∣ 1
i!
P (i)(x)(y − x)i

∣∣∣ < Q−3 +
3∑
i=2

32(7δ−2
0 Q−7) < 2Q−3. (5.6)

On the other hand, by (5.5)

|P ′(x)(y − x)| ≥ 3Q−3. (5.7)

By (5.6) and (5.7) the behaviour of P (y) is dominated by the behaviour of

P ′(x)(y−x). It also follows from (5.6) and (5.7) that P (y) has different signs
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at the endpoints of the interval (x − 3δ−1
0 Q−4, x + 3δ−1

0 Q−4). Thus, by the

continuity of P , there exists a root α of P in this interval, and

|x− α| < 3δ−1
0 Q−4 . (5.8)

Since x /∈ L≤2(Q, δ0, I), it follows that the degree of α is exactly 3. Choose

a maximal collection of real algebraic numbers {α1, . . . , αt} ⊂ I, with degree

degαi = 3 satisfying

H(αi) ≤ Q, |αi − αj| ≥ 3δ−1
0 Q−4, 1 ≤ i < j ≤ t.

As has been shown, for any x ∈ L′3(Q, δ0, I) there exists α, satisfying (5.8)

with H(α) ≤ Q. Since the collection {α1, . . . , αt} is maximal, there exists αi

in this collection such that |α− αi| ≤ 3δ−1
0 Q−4. From this and (5.8), by the

triangle inequality it follows that |x− αi| < 6δ−1
0 Q−4. Then

L′3(Q, δ0, I) ⊂
t⋃
i=1

{x ∈ I : |x− αi| < 6δ−1
0 Q−4}.

Using |L′3(Q, δ0, I)| ≥ (1−s)|I|
2

, this gives

t ≥ 2−33−1δ0(1− s)Q4|I|.

Let T0 = Q4
0, then for any T ≥ T0, where

T0 = (c5 + 1)4|I|−4,

there exists a collection α1, . . . , αt ∈ I ∩ A3 satisfying (5.2) which completes

the proof of the Theorem. 2

5.4 Proof of Theorem 5.2

The proof uses the concept of essential and inessential domains extensively.

This concept was first introduced by Sprindžuk in [85] and is described here.
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Definition 5.1. Let P be a set of polynomials satisfying certain conditions

and σ(P ) be a set of points (defined for each P ∈ P) which meet certain

conditions. A domain σ(P ) is called essential if

∣∣σ(P )
⋂ ⋃

Q∈P

σ(Q)
∣∣ < 1

2
|σ(P )|

and is called inessential otherwise.

The proof of the Theorem is in two parts: the first when |P ′(x)| � Q

and the second when |P ′(x)| � Q. The first case has five sub-cases.

Case 1: Define L̃3 as the subset of L̄3 containing the set of points x ∈ I,

for which there exists a polynomial P ∈ P ′3(Q) such that the system

|P (x)| < Q−3, 26Q−1 < |P ′(x)| < δ0Q (5.9)

holds.

Denote by σ0(P ) the set of solutions x of (5.9) for a fixed polynomial

P ∈ P ′3(Q). Then can be written as L̃3 = ∪P∈P ′3(Q)σ0(P ). Let α1, α2 and

α3 be the roots of P ∈ P ′3(Q) in C. For simplicity only SP (α1) ∩ I, is

considered as the arguments are the same for the other two SP (αi) ∩ I. Let

x ∈ σ0(P ) ∩ SP (α1). By the Mean Value Theorem

P ′(x) = P ′(α1) + P ′′(θ1)(x− α1), θ1 ∈ (α1, x). (5.10)

Estimating the second term by using Lemma 1.2 gives:

|P ′′(θ1)(x− α1)| ≤ 6Q3Q−3|P ′(x)|−1 < 1/2Q−1. (5.11)

Since |P ′(x)| > 26Q−1, it follows from (5.10) and (5.11) that

1/2|P ′(x)| < |P ′(α1)| < 2|P ′(x)|. (5.12)
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Now from (5.12), (5.3) and (5.9) it follows that

25Q−1 < 1/2|P ′(x)| < |P ′(α1)| < 2|P ′(x)| < 2δ0Q.

Therefore the interval σ0(P )∩SP (α1) is contained in σ(P )∩SP (α1), which

is the set of all points in SP (α1) satisfying

|x− α1| < 6Q−3|P ′(α1)|−1. (5.13)

To obtain the measure of L̃3 it is necessary to consider five different sub-

cases depending on the value of |P ′(α1)| lying in the interval (25Q−1, 2δ0Q).

Throughout the proof let v = 5
8
.

Subcase A: Define the subset L31 of the set L̃3, as the set of points

x ∈ I, for which there exists at least one polynomial P ∈ P ′3(Q), satisfying

(5.9) and the inequality

Qv < |P ′(α1)| < 2δ0Q (5.14)

where x ∈ SP (α1).

Proposition 5.1. For sufficiently small δ0 and sufficiently large Q,

|L31| < 2−4s|I|.

Proof. For a polynomial P ∈ P ′3(Q) define the interval

σ1(P ) := {x ∈ SP (α1) ∩ I : |x− α1| < c6Q
−1|P ′(α1)|−1, c6 > 1} (5.15)

for a constant c6 to be chosen later.

Using (5.13) and (5.15), it follows that

|σ(P )| < 6c−1
6 Q−2|σ1(P )|. (5.16)
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Note that from (5.14) it follows that |σ1(P )| < 2c6Q
−1−v, and for Q > Q0

the interval σ1(P ) is contained in |I|.

Now, write P as a Taylor series on the interval σ1(P ) so that:

P (x) = P ′(α1)(x− α1) + 1/2P ′′(α1)(x− α1)2 + 1/6P ′′′(α1)(x− α1)3.

Using (5.14) and (5.15) each term is estimated to obtain

|P (x)| < 2c6Q
−1, (5.17)

for x ∈ σ1(P ), and Q > Q0.

The polynomials in P ′3(Q) are now partitioned into sets which have the

same coefficients of x2 and x3. For integers ai, i = 2, 3 let b1 be the pairs

(a3, a2) and let P3(Q, b1) be the set of polynomials in P ′3(Q) for which the

coefficient of xi is ai for i = 2, 3. The intervals σ1(P ) with P ∈ P3(Q, b1)

are now divided into two classes using Sprindžuk’s method of essential and

inessential domains. [85]. First the essential intervals σ1(P ) are investigated.

By definition ∑
P∈P3(Q,b1)

σ1(P ) essential

|σ1(P )| ≤ 2|I|.

Using this, (5.16) and the fact that the number of different vectors b1 does

not exceed (2Q+ 1)2, it follows that∑
b1

∑
P∈P3(Q,b1)

σ1(P ) essential

|σ(P )| < 27c−1
6 Q2Q−2|I| = 27c−1

6 |I|. (5.18)

Next, consider the inessential intervals σ1(P ). For polynomials P and P̄

such that P 6= P̄ , and P, P̄ ∈ P3(Q, b1), the measure of the intersection

σ1(P ) ∩ σ1(P̄ ) = σ1(P, P̄ ), exceeds |σ1(P )|
2

. Hence, the inequalities (5.17)

hold. As the coefficients a3 and a2 of the polynomials P and P̄ are the same,
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R(x) = P (x)− P̄ (x) is linear and satisfies

|R(x)| = |ax− b| < 4c6Q
−1, max(|a|, |b|) < 2Q, x ∈ σ1(P, P̄ ). (5.19)

Assume that a > 0. The values of a and |b| are now estimated more precisely

than in (5.19). From the Mean Value Theorem

P ′(x) = P ′(α1) + P ′′(θ2)(x− α1), θ2 ∈ (α1, x),

and using (5.14) and |P ′′(θ2)(x−α1)| < 5c6Q
−v, it follows that |P ′(x)| < 4δ0Q

for Q > Q0. Therefore |a| = |P ′(x) − P̄ ′(x)| < 8δ0Q, and using (5.19) it

follows that |b| < 16δ0Q. Thus, (5.19) can be rewritten as

|R(x)| = |ax− b| < 4c6Q
−1, max(a, |b|) < 24δ0Q, x ∈ σ1(P, P̄ ). (5.20)

Now the measure of x ∈ I, for which (5.20) holds is estimated. For fixed a

and b the first inequality in (5.20) holds for points x ∈ I satisfying

|x− b/a| < 24c6a
−1Q−1. (5.21)

Denote this interval by J(R), so that

|J(R)| = 25c6a
−1Q−1. (5.22)

We now wish to estimate
∑
|J(R)| where the sum is over a and b, such that

b
a
∈ I and a, |b| < 24δ0Q. For fixed a denote by MI(a) the number of points

b such that these conditions hold. Then,

MI(a) ≤

 a|I|+ 1 ≤ 2a|I|, if a ≥ |I|−1,

γ, if a < |I|−1,
(5.23)

where γ equals 1 or 0. First, let a ≥ |I|−1, then from (5.22), (5.23) it follows

that ∑
a

∑
b:b/a∈I

|J(R)| <
∑
a

25c6a
−1Q−12|I|a ≤ 210c6δ0|I|. (5.24)
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Next, consider a < |I|−1 and use the second bound in (5.23) to find a constant

2−sδ0 > c7 ≥ 24c6, for which the intervals

J1(R1) := {x ∈ I : |x− b1/a1| < c7a
−1
1 Q−1},

J1(R2) := {x ∈ I : |x− b2/a2| < c7a
−1
2 Q−1},

where J(Ri) ⊆ J1(Ri), i = 1, 2 do not intersect for b1/a1 6= b2/a2. To see this

is possible, suppose J1(R1) and J1(R2) intersect at x, then,

1

a1a2

≤ |b1a2 − b2a1|
a1a2

= |b1/a1−b2/a2| ≤ |x−b1/a1|+|x−b2/a2| ≤ c7Q
−1(1/a1+1/a2).

Assuming WLOG that a2 > a1, this gives

1 ≤ c7Q
−1(a1 + a2) < 2c7a2Q

−1 < 25c7δ0 (5.25)

which is a contradiction. Thus,∑
R

|J1(R)| =
∑

a≤4δ0Q

2c−1
7 a−1Q−1γ ≤ |I|.

From this it follows that ∑
a≤4δ0Q

γa−1 ≤ 2−1c−1
7 Q|I|. (5.26)

For fixed a and b the measure of the set x ∈ I, satisfying (5.21), does not

exceed 25c6a
−1Q−1. Hence, summing over b, from the second inequality in

(5.23) it follows that
∑

b:b/a∈I 25c + 6a−1Q−1 ≤ 25c6a
−1Q−1γ. Using (5.26),

it follows that∑
1≤a≤4δ0Q

∑
b:b/a∈I

25c6a
−1Q−1 ≤ 25c6Q

−1
∑

1≤a≤4δ0Q

γa−1 ≤ 24c6c
−1
7 |I| ≤ 2−6s|I|

(5.27)

if c7 ≥ 210c6s
−1. Therefore

|L31| < (27c−1
6 + 210c6δ0 + 2−6s)|I|. (5.28)
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Choosing c6 = 212s−1, δ0 = 2−28s2 and c7 = 222s−2 completes the proof. 2

Subcase B: Define the subset L32 of the set L̃3, as the set of points

x ∈ I, for which there exists at least one polynomial P ∈ P ′3(Q), satisfying

(5.9) and the inequality

28s−1/2 < |P ′(α1)| ≤ Q5/8

with x ∈ SP (α1).

Proposition 5.2. For sufficiently large Q

|L32| < 2−4s|I|.

Proof. The proof of proposition 5.2 closely follows that of proposition 5.1,

so some details will be omitted. As before, for P ∈ P ′3(Q) and some positive

constant c9 > 1 (which will be specified later) consider the interval σ(P ) and

define the interval

σ2(P ) := {x ∈ SP (α1) ∩ I : |x− α1| < c9Q
−1|P ′(α1)|−1}.

It is clear that

|σ(P )| < 6c−1
9 Q−2|σ2(P )|. (5.29)

The definition of |L32| implies that |σ2(P )| < |I|. Expand P and P ′ as Taylor

series on σ2(P ), to obtain

|P (x)| < 2c9Q
−1, (5.30)

and

|P ′(x)| < 2|P ′(α1)|. (5.31)

Now consider the essential and inessential domains σ2(P ), with P ∈ P3(Q, b1)

where b1 is as in proposition 5.1.
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Following the proof of proposition 5.1 we obtain∑
b1

∑
P∈P3(Q,b1)

σ2(P ) essential

|σ(P )| < 27c−1
9 |I|. (5.32)

Now the inessential domains are considered. Assume σ2(P ), P ∈ P3(Q, b1)

is inessential. Thus there exists P̄ ∈ P3(Q, b1) with P 6= P̄ such that

|σ2(P, P̄ )| = |σ2(P ) ∩ σ2(P̄ )| ≥ 1

2
|σ2(P )|.

Let T (x) = P (x)− P̄ (x) = gx− d, then from (5.30) and (5.31)

|gx− d| < 4c9Q
−1. (5.33)

The inequality (5.33) holds on an interval J2(T ) with centre d/g and

length 8c9g
−1Q−1. Fix g and denote by M ′

I(g) the number of points d/g,

belonging to I. As in (5.23),

M ′
I(g) ≤

 2g|I|, if g ≥ |I|−1,

γ, if g < |I|−1,

where γ equals 1 or 0.

Again, first consider g ≥ |I|−1. Then, for Q > Q0,∑
1≤g≤2Q5/8

∑
d:d/g∈I

|J2(T )| ≤ 25c9Q
−3/8|I| ≤ 2−6s|I|. (5.34)

Now consider g < |I|−1. To show the sets J2(T ) do not intersect, larger

super-sets J3(T ) defined below are shown not to intersect. Assume that for

c10 > 4c9 the intervals

J3(T1) := {x ∈ I : |x− d1/g1| < c10g
−1
1 Q−1},

J3(T2) := {x ∈ I : |x− d2/g2| < c10g
−1
2 Q−1},
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intersect for d1/g1 6= d2/g2. Then, as in (5.25):

1 ≤ 2c10(g1 + g2)Q−1 ≤ 8c10Q
−3/8, (5.35)

which is a contradiction for Q > Q0(c10). As in (5.26), it therefore follows

that ∑
1≤g≤2Q5/8

γg−1 ≤ 2−1c−1
10 Q|I|. (5.36)

For fixed g the measure of the set x ∈ I, satisfying (5.33), does not exceed

8c9g
−1Q−1. From (5.36), it follows that∑

1≤g≤2Q5/8

∑
d,d/g∈I

8c9g
−1Q−1 ≤ 8c9Q

−1
∑

1≤g≤2Q5/8

γg−1 ≤ 4c9c
−1
10 |I| ≤ 2−6s|I|

for c10 ≥ 28c9s
−1. From this, (5.32), and (5.34) it follows that

|L32| ≤ (27c−1
9 + 2−6s+ 2−6s)|I|.

Hence, choosing c9 = 212s−1 and c10 = 220s−2, this completes the proof of

proposition 5.2. 2

Subcase C. Denote by L33 ⊂ L̃3 the set of x ∈ I, for which there exists

a polynomial P ∈ P ′3(Q), satisfying (5.9) and

2−3 < |P ′(α1)| ≤ 28s−1/2

with x ∈ SP (α1).

Proposition 5.3. For sufficiently large Q,

|L33| < 2−4s|I|.

Proof. For P ∈ P ′3(Q) and some c11 > 1 chosen later, define the interval

σ3(P ) := {x ∈ SP (α1) ∩ I : |x− α1| < c11Q
−1|P ′(α1)|−1}.
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Develop P and P ′ as a Taylor series on σ3(P ), to obtain

|P (x)| < 29c2
11Q

−1, |P ′(x)| < max(29s−1/2, 26c11)

for Q > Q0. Consider again the essential and inessential domains σ3(P ),

P ∈ P3(Q, b1) defined as in proposition 5.1. As the approach is similar

to previous propositions, the calculations are omitted. In the case of the

essential domains the measure is at most 27c−1
11 |I|, and choosing c11 > 212s−1

gives the measure of the points lying in essential domains as 2−5s|I|.

For the inessential domains, it is necessary to estimate the measure of x ∈ I,

satisfying

|ax− b| < 210c2
11Q

−1, max(a, |b|) < 2 max(29s−1/2, 26c11). (5.37)

Direct calculations show that (5.37) holds on a set of x ∈ I, with measure at

most c13Q
−1 for some constant c13 > 0. Choosing c5 ≥ 25c13s

−1 in Theorem

5.2, the measure of the inessential domains is at most 2−5s|I|. So |L34| ≤

2−4s|I| as required. 2

Subcase D: For some constant c14 > 0 chosen later, denote by L34 ⊂ L̃3

the set of x ∈ I, for which there exists a polynomial P ∈ P ′3(Q), satisfying

(5.9) and

c14Q
−1/2 < |P ′(α1)| ≤ 2−3

where x ∈ SP (α1).

Proposition 5.4. For sufficiently large Q

|L34| < 2−4s|I|.

Proof. For P ∈ P ′3(Q) and some c15 > 1 define the interval

σ4(P ) := {x ∈ SP (α1) ∩ I : |x− α1| < c15Q
−2|P ′(α1)|−1}.
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Clearly

|σ(P )| < 6c−1
15 Q

−1|σ4(P )|. (5.38)

Fix a3. Let the subclass of polynomials P ∈ P ′3(Q) with the same lead-

ing coefficients be denoted by P3(Q, a3). Consider again the essential and

inessential domains σ4(P ), P ∈ P3(Q, a3).

From the definition of essential domains, it follows that∑
P∈P3(Q,a3)

σ4(P ) essential

|σ4(P )| ≤ 2|I|.

Since the number of a3 does not exceed (2Q + 1), summing over all a3 and

using (5.38), gives∑
−Q≤a3≤Q

∑
P∈P3(Q,a3)

σ4(P ) essential

|σ(P )| < 27c−1
15 |I| = 2−5s|I| (5.39)

for c15 = 212s−1.

Now consider the inessential domains. From the Taylor series expansions

of Pi(x) and P ′i (x) on σ4(Pi1 , Pi2) = σ4(Pi1) ∩ σ4(Pi2), Pi1 , Pi2 ∈ P3(Q, a3),

Pi1 6= Pi2 , the upper bounds of |Pi(x)| and |P ′i (x)|, are

|Pi(x)| < 2c15Q
−2, (5.40)

and

|P ′i (x)| < 2|P ′(α1)| (5.41)

for c14 ≥ 22c
1/2
15 . Since the leading coefficients of Pi1 and Pi2 are equal, then

the polynomial

S(x) = Pi1(x)− Pi2(x) = f2x
2 + f1x+ f0

and by (5.40),

|S(x)| < 4c15Q
−2, |S ′(x)| < 4|P ′(α1)|, |fi| ≤ 2Q, 0 ≤ i ≤ 2.
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Let β1, β2 ∈ C be the roots of S. Since the discrimimant D(S) of S satisfies

|D(S)| = |S ′(β1)|2 < 16|P ′(α1)|2 ≤ 2−2,

this implies that D(S) = 0 and that S has a repeated root. Hence S has the

form

S(x) = S2
0(x) = (s1x− s0)2, |s1| < 2Q1/2.

Thus, we need to find the measure of x ∈ I, satisfying

|s1x− s0| < 2c
1/2
15 Q

−1, |s1| < 2Q1/2. (5.42)

Hence, |x − s0/s1| < 2c
1/2
15 |s1|−1Q−1, which defines an interval J4(S0) with

centre at s0/s1 and length 4c
1/2
15 |s1|−1Q−1. Fix s1 and denote by M ′′

I (s1) the

number of points s0/s1, belonging to I. As in (5.23), the following bounds

M ′′
I (s1) ≤

 2s1|I|, if s1 ≥ |I|−1,

γ, if s1 < |I|−1,

are obtained, where γ equals 1 or 0.

Consider s1 ≥ |I|−1. For Q > Q0,∑
1≤s1≤2Q1/2

∑
s0:s0/s1∈I

|J4(S0)| < 23c
1/2
15 Q

−1/2|I| ≤ 2−6s|I|. (5.43)

Next let s1 < |I|−1. If for c16 > 2c
1/2
15 the intervals

J5(S1) := {x ∈ I : |x− s0,1/s1,1| < c16s
−1
1,1Q

−1},

J5(S2) := {x ∈ I : |x− s0,2/s1,2| < c16s
−1
1,2Q

−1},

intersect for s0,1/s1,1 6= s0,2/s1,2, then as in (5.25):

1 ≤ 2c16(s1,1 + s1,2)Q−1 < 23c16Q
−1/2, (5.44)
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which is a contradiction for Q > Q0(c16). Thus, using the same arguments

as in proposition 5.1, as in (5.26)∑
1≤s1<2Q1/2

γs−1
1 ≤ 2−1c−1

16 Q|I|. (5.45)

Since for fixed s1 and s0 the measure of the set x ∈ I, satisfying (5.42),

is at most 2c
1/2
15 |s1|−1Q−1, using (5.45), we get∑

i=1,2

|J5(si)| =
∑

1≤s1<2Q1/2

S1⊂|I|−1

∑
s0:s0/s1∈I

4c
1/2
15 |s1|−1Q−1 ≤ 4c

1/2
15 Q

−1 (5.46)

and ∑
1≤s1<2Q1/2

γ|s1|−1 ≤ 2c
1/2
15 c

−1
16 |I| ≤ 2−6s|I| (5.47)

for c16 ≥ 27c
1/2
15 s

−1. Choose c14 = 28s−1/2. Summing the estimates (5.39),

(5.43), (5.46) and (5.47), for the measures in the essential and inessential

cases, it follows that |L34| < 2−4s|I|. This concludes the proof of proposition

5.4. 2

Subcase E: Denote by L35 ⊂ L̃3 the set of x ∈ I, for which there exists

P ∈ P ′3(Q), satisfying (5.9) and the following condition

25Q−1 < |P ′(α1)| ≤ 28s−1/2Q−1/2 (5.48)

with x ∈ SP (α1).

Proposition 5.5. For sufficiently large Q,

|L35| < 2−2s|I|.

Proof. Divide the interval I into smaller intervals Ji, where |Ji| = Q−u and

u > 1. We say the polynomial P belongs to the interval Ji if there exists

x ∈ Ji such that (5.3) and (5.48) hold.
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There is at most one irreducible polynomial belonging to an interval Ji.

To see this, suppose the opposite. Assume there exists a point x ∈ Ji, for

which (5.3) and (5.48) hold for two polynomials P1 and P2 from P ′3(Q). By

the Mean Value Theorem, it follows that

P1(x) = P ′1(α1)(x− α1) + P ′′1 (θ3)(x− α1)2, θ3 ∈ (α1, x), x ∈ Ji.

Using the estimate for |P ′(α)| from (5.48), and the trivial bound |P ′′(θ3)| �

Q, for x ∈ Ji
|P1(x)| < 29s−1/2Q−1/2−u, x ∈ Ji,

for u > 3/2. Obviously the same estimate holds for P2 in Ji.

We use the following Lemmas proved in [20].

Lemma 5.1. Let δ > 0 and Q > Q0(δ). Further, let P1 and P2 be two integer

polynomials of degree at most n with no common roots, and max(H(P1), H(P2)) ≤

Q. Let J ⊂ R be an interval of length |J | = Q−η, η > 0. If there exists τ > 0,

such that for all x ∈ J

|Pj(x)| < Q−τ ,

for j = 1, 2, then

τ + 1 + 2 max(τ + 1− η, 0) < 2n+ δ. (5.49)

Applying Lemma 5.1 with τ = 1/2 + u− ε, ε > 0, and η = u, leads to a

contradiction in (5.49) if u > 3/2+δ+3ε. Choose u satisfying 3/2+δ+3ε <

u < 2 and it follows that there is at most one irreducible polynomial on any

Ji. As there is at most one polynomial P ∈ P ′3(Q) that belongs to any Ji

then by Lemma 1.2, the measure of those x, satisfying (5.3) and (5.48), does

not exceed

2−3Q−2+u|I| < 2−4s|I|
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for u < 2 and Q > Q0.

If P ∈ P ′3(Q) is a reducible polynomial belonging to Ji then P (x) =

t1(x)t2(x), where t1 is a first degree polynomial and t2 is either a second degree

polynomial or the product of two linear polynomials. Let t1(x) = ax+ b and

t2(x) = b2x
2 + b1x+ b0. Assume that a > 0. By Gelfond’s Lemma (1.1),

aH(t2) ≤ H(t1)H(t2) ≤ 23H(P ) ≤ 23Q. (5.50)

Denote by L351 the set of x ∈ I, for which the system

|t1(x)| < Q−1, a < δ0Q (5.51)

is satisfied by some polynomial t1. The system (5.51) is similar to (5.20).

Hence, using the same arguments, it can be shown that |L351| < 2−5s|I|. If

(5.51) does not hold, there are three possibilities:

|t1(x)| < Q−1, δ0Q ≤ a < 23Q, (5.52)

|t1(x)| ≥ Q−1, a < δ0Q, (5.53)

or

|t1(x)| ≥ Q−1, δ0Q ≤ a < 23Q. (5.54)

For (5.52) there are two further possibilities; namely,

δ0Q
−1 < |t1(x)| < Q−1, δ0Q ≤ a < 23Q, (5.55)

and

|t1(x)| ≤ δ0Q
−1, δ0Q ≤ a < 23Q. (5.56)

Each of these will be considered in turn. Denote by L352 and by L353 the

sets of x ∈ I, for which (5.55) and (5.56) are satisfied for polynomials t1

respectively. The system (5.56) is similar to (5.20), and it is not difficult to

show that |L353| < 2−5s|I|.
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Turning to L352 and using (5.50), (5.55) and |P (x)| < Q−3 it follows that

|t2(x)| ≤ δ−1
0 Q−2, H(t2) < 23δ−1

0 . (5.57)

The number of polynomials that satisfy the second inequality in (5.57) does

not exceed a constant depending on δ0, say c(δ0), therefore we conclude that

|L352| < 2−5s|I|.

Now we consider (5.53). Using (5.53) and (5.50)

|t2(x)| < Q−2, H(t2) < 23Q. (5.58)

First, t′2 is estimated from above on Ji. Using the equations

P ′(x) = t′1(x)t2(x) + t1(x)t′2(x), (5.59)

and

P ′(x) = P ′(α1) + P ′′(α1)(x− α1) + P ′′′(α1)(x− α1)2/2,

the estimates (5.53), (5.58) and

|P ′(x)| < 29s−1/2Q−1/2, Q−1 ≤ |t1(x)| � Q,

gives a contradiction for |t′2(x)| > Q5/8 and sufficiently large Q. Thus,

|t′2(x)| ≤ Q5/8, x ∈ Ji. Then from (5.58),

|t2(x)| < Q−2, |t′2(x)| ≤ Q5/8 (5.60)

hold. Denote by L354 the set of x ∈ I, for which (5.60) is satisfied for a

polynomial t2. The measure of L354 is estimated in a manner similar to

proposition 5.2, giving |L354| < 2−4s|I|.

Finally, we consider (5.54). Using (5.50), (5.54) and |P (x)| < Q−3, it

follows that

|t2(x)| < Q−2, H(t2) < 23δ−1
0 . (5.61)
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Denote by L355 the set of x ∈ I, for which (5.61) is satisfied for some t2.

The number of polynomials which satisfy the second inequality in (5.61) is

bounded by a constant c2(δ0), therefore we conclude that |L355| < 2−5s|I|.

Thus, |L35| < 2−4s|I|+
∑5

i=1 |L35i| < 2−2s|I|, which completes the proof

of the proposition. 2

Case 2: Define the subset Ľ3 of the set L̄3, as the set of points x ∈ I,

for which there exists at least one polynomial P ∈ P ′3(Q) such that

|P (x)| < Q−3, |P ′(x)| ≤ 26Q−1. (5.62)

Define by σ∗(P ) the set of solutions to (5.62) for a fixed polynomial P ∈

P ′3(Q). Let x ∈ σ∗(P ) ∩ SP (α1). First, it is shown that the value of the

derivative of P at α1, P (α1) = 0, satisfies

|P ′(α1)| ≤ 28Q−1. (5.63)

To show this, assume the opposite holds. Develop P ′ as a Taylor series in

the neighborhood of α1, to obtain

P ′(x) = P ′(α1) + P ′′(α1)(x− α1) + 1/2P ′′′(α1)(x− α1)2,

where |x − α1| < 2−6Q−2 by Lemma 1.2. Since |P k(α1)| � Q for x, α1 ∈

[−1
2
, 1

2
], it follows that

max(|P ′′(α1)(x− α1)|, |1/2P ′′′(α1)(x− α1)2|) < 2−3Q−1,

and hence |P ′(x)| > 27Q−1, which contradicts the condition that |P ′(x)| ≤

26Q−1.

To estimate the measure of Ľ3 two cases, depending on the value of

|P ′(α1)|, need to be considered. For some constant c17 > 0 denote by L36 ⊂
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Ľ3 the set of x ∈ I, for which there exists a polynomial P ∈ P ′3(Q), satisfying

(5.62) and

|P ′(α1)| < c17Q
−1

with x ∈ SP (α1).

Proposition 5.6. For sufficiently large Q

|L36| < 2−2s|I|.

Proof. First note that

1 ≤ |D(P )| = |a4
3(α1 − α2)2(α1 − α3)2(α2 − α3)2| = |P ′(α1)|2a2

3|α2 − α3|2.

Also, |α2−α3| < 1 is bounded as αi ∈ [−1
2
, 1

2
]. Finally, as |P ′(α1)| < c17Q

−1,

this gives

1 ≤ D(P ) ≤ c2
17Q

−2Q2 = c2
17.

which does not hold when c17 < 1 thus, the discriminant of P satisfiesD(P ) =

0, which implies that P has a repeated root. Following the same approach

as in proposition 5.4, it follows that |L36| < 2−2s|I|. 2

The second sub-case of case 2 is now considered. Denote by L37 ⊂ Ľ3 the

set of x ∈ I, for which there exists some polynomial P ∈ P ′3(Q), satisfying

(5.62) and

c17Q
−1 ≤ |P ′(α1)| ≤ 28Q−1 (5.64)

with x ∈ SP (α1).

Proposition 5.7. For Q sufficiently large,

|L37| < 2−2s|I|.

85



Proof. Divide the interval I into smaller intervals J ′i with |J ′i | = Q−u
′
, where

u′ > 3
2
. The assumption that at least two irreducible polynomials belong to

the interval J ′i will lead to a contradiction. To show this, suppose that P1

and P2 both belong to J ′i . By the Mean Value Theorem

P1(x) = P ′1(α1)(x− α1) + P ′′1 (θ4)(x− α1)2, θ4 ∈ (α1, x), x ∈ J ′i .

Estimating each term gives

|P1(x)| < 25Q1−2u′ , x ∈ J ′i ,

for u′ < 2. Obviously the same estimate holds for P2 on J ′i . Applying Lemma

5.1 with τ = −1+2u′−ε′, ε′ > 0, and η = u′, leads to a contradiction in (5.49)

for u′ > 3/2 + δ/4 + 3ε′/4. Thus, choose u′, satisfying 3/2 + δ/4 + 3ε′/4 <

u′ < 2.

Hence there is at most one polynomial P ∈ P ′3(Q) belonging to each

J ′i . Therefore, by Lemma 1.2 the measure of those x, satisfying the first

inequality of (5.3) and (5.64), is at most

4c−1
17 Q

−2+u′ |I| < 2−4s|I|

for u′ < 2 and Q > Q0.

When the polynomials are reducible, the proof exactly follows proposition

5.5. 2

Adding the measures calculated in propositions 5.1 to 5.7, it follows that

the measure of L̄3 satisfies (5.4).

86



Chapter 6

Conclusions and further

questions

In this document problems have been investigated that fall into two distinct

areas. First, in the p-adic norm, the Hausdorff dimension of the set of points

that are well approximable by integer polynomials was investigated. The

second area investigated is the nature of the roots of integer polynomials

under the Archimedian and p-adic norms.

However, there are still many important problems that are not solved,

which are interesting from the standpoint of both pure mathematics and

applications. It appears that the approaches used in this thesis could usefully

be used to investigate these problems. Some of the questions are listed below.

1. To study the distribution of algebraic numbers, metric Theorems on

approximation in small intervals are needed. Presently, there are results for

linear and quadratic polynomials. In this thesis third degree polynomials

are studied, and results that improve on those proved by Bugeaud [35] were

obtained. The obvious question is can the same be shown for polynomials of
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any degree greater than three.

2. Best possible, or close to best possible, results have been obtained in

Chapter 4 in the real case only for irreducible polynomials. The Theorem

in the case of reducible polynomials is much weaker. This could present an

opportunity to research methods suitable for use with reducible polynomials.

3. The problems investigated in chapter 4 were restricted to monotonic

error functions. Can a Khintchine type Theorem for simultaneous Diophan-

tine approximation in different metrics with non-monotonic error function

be proved.

4. The work has been entirely theoretical. There has been no compu-

tational or computer based investigation of the problems considered. Addi-

tional computational investigation, which together with the theoretical re-

sults could help provide ideas as to what the true situation is. For example,

Bugeaud, Mignotte and Schönhage, obtained results on the distribution of

algebraic numbers using computational algorithms. To find the distribution

of algebraic numbers with increasing height it is necessary to calculate nu-

merically not only polynomials but also their derivatives. This has not yet

taken place, and there is further opportunity here for further computational

investigations which could help in the development of the theory.
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[85] V. G. Sprindžuk, Mahler’s problem in metric number theory. Iz-

dat. “Nauka i Tehnika”, Minsk, 1967 (in Russian). English

translation by B. Volkmann, Translations of Mathemati-

cal Monographs, Vol. 25, American Mathematical Society,

Providence, R.I., 1969.
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