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Abstract 

 

The central tree metaphor has been challenged over the last couple of decades 

with the observation of incongruent trees derived largely from protein-coding genes in 

prokaryotic genomes. There are an increasing number of evolutionary processes and 

entities that confuse and confound the traditional understanding of evolution. As a 

result, these processes and entities are very often omitted from phylogenetic studies 

altogether. 

In this thesis I attempt to uncover the importance of non-tree like evolution. I 

discuss the types of genes that do not adhere to vertical patterns of inheritance such as 

fusion genes and mobile genetic elements. Furthermore I explore the alternative of 

using network structures in describing the evolutionary history of bacteria.  

This thesis recounts two key uses of networks for revealing the less commonly 

noted aspects of bacterial evolution. Firstly I present each stage in the development of 

a new method for identifying fusions of unrelated genes from conception of the idea, 

through the implementation to its application to data. Secondly I use networks of gene 

sharing to elucidate patterns of divergence among a group of closely related bacteria 

that would have once formed a single species cloud. 

These studies reveal an abundance of the types of genes that contradict 

traditional tree-thinking and support the notion that a strictly vertical view of 

evolution is inadequate when describing bacterial relationships.  
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Chapter 1 – Introduction 

 

1.1: Studying Bacteria 

 

“Any good biologist finds it intellectually distressing to devote his life to the 

study of a group that cannot be readily and satisfactorily defined in biological terms; 

and the abiding intellectual scandal of bacteriology has been the absence of a clear 

concept of a bacterium.” - Stanier and van Niel (1962) 

 

1.1.1: Discovery 

 

Antonie van Leeuwenhoek first observed bacteria under a microscope in 1676. 

In his letters to the Royal Society van Leeuwenhoek wrote of “animalcules”: 

microorganisms that he had observed in water and in scrapings from teeth (Gest 2004). 

It was not until 1828, however, that Christian Gottfried Ehrenberg coined the name 

bacterium (Ehrenberg 1828). Ehrenberg defined bacteria as the non-spore-forming, 

rod-shaped microorganisms, and later named the spore-forming kind bacillus. A 

drawn out debate on the definition of bacteria followed. 

Until 1859 it was not known that bacteria caused disease. Louis Pasteur and 

Robert Koch were early advocates of the germ theory of disease, otherwise known as 

the pathogenic theory of medicine (Worboys 2000). In his experiments with 

Tuberculosis, Koch proved that bacteria caused disease through infection and 
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reproduction. The bacterium was suddenly a topic for research. Following this 

discovery, in 1910 Paul Ehrlich invented the first antibiotic. By combining arsenic 

with other chemicals he found a compound that would kill bacteria without harming 

the animal or human. Ehrlich named the drug Salvarsan and it was used to cure 

syphilis.       

The discovery of bacteria and, as a result, antibiotics, has revolutionized 

medicine. However the bacterial species concept and defining the genera within this 

kingdom is ongoing. 

 

1.1.2: Classification 

 

Since very early studies bacteriologists have struggled to define the 

relationships among bacteria. Linnaeus placed all microbes in one species called the 

“Chaos Infusoria”, and the chaos has persisted (Linnaeus 1774). Many have claimed 

that a phylogenetic classification is “impossible to apply to bacteria” (Winogradsky 

1952). A universally accepted concept remains unstated to this day. Even at the 

highest levels of organization there has been much debate surrounding the 

nomenclature. 

Early classification relied on phenotypic traits; bacteria were grouped based on 

a whole repertoire of physical characteristics and their usefulness in industry or 

medicine. Characteristics included cell shape, plane of cell division, possession of 

flagella, ability to form spores or colonies, staining reactions, pathogenicity and many 

more (Sapp 2009).  

Carl Nageli thought of microbes as fission fungi or Schizomycetes (Mazumdar 

2002) and using morphological traits, Ferdinand Cohn classified 6 genera of bacteria 
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as members of the Plantae (Smith and Gordon 1957). Bergey’s manual even classified 

the genera of bacteria as “typically unicellular plants” (Bergey et al. 1923) and later 

“primitive plants” (Smith and Gordon 1957).  

Ernst Haeckel did not agree that bacteria belonged within the Plantae and in 

1866 he designated a third living kingdom within which the bacteria could fall. He 

named this kingdom Protista: the first living creatures. It included the Protozoa; 

unicellular organisms with animal-like behaviour, the Protophyta; those with plant-

like behaviour and the Protista Neutralia; those ancestral to neither plant nor animal. 

Haekel named the lowest level of the protest kingdom the Moneres (later the Monera), 

he assigned bacteria to this level, claiming they were unique because they possessed 

no nucleus.  

Herbert Faulkner Copeland adopted Haeckel’s way of thinking and argued that 

the Monera should be a kingdom of its own due to the sharp distinction from protists 

by the absence of nuclei.  

Edouard Chatton is famed for his prescient generalization of taxa at the 

highest level. By recognizing two general patterns of organization in the cell he 

coined the prokaryote-eukaryote distinction, it appears that he first used the terms in 

1925 (Sapp, 2005). Although Chatton is credited for inventing the names it was his 

student Andre Lwoff that recommended the use of these names to Roger Stanier 

(Sapp 2005).  Stanier and van Niel went on to distinguish prokaryotes (Greek for 

before karyon or nucleus) in negative terms in relation to eukaryotes (Greek for true 

nucleus) (Stanier and Niel 1962).  The definition of prokaryotes relied on three 

common features: absence of true nuclei, absence of sexual reproduction and absence 

of plastids. In 1963, Stanier, Douderoff and Adelberg stated that “this basic 

divergence in cellular structure, which separates the bacteria and blue-green algae 
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from all other cellular organisms, probably represents the greatest single evolutionary 

discontinuity to be found in the present-day world”. 

Finally in 1974 Bergey’s manual described bacteria as a Prokaryote, their 

relationships still defined by such phenotypic traits as morphology, gram staining and 

oxygen requirements. 

 

1.1.3: SSU rRNA Phylogeny 

 

  In 1965 Zuckerkandl and Pauling suggested that molecular data might be used 

to understand evolutionary processes. They showed that the relative recentness of 

common ancestry of a group of animals (as judged against the fossil record) was in 

good agreement with the relative similarities of some proteins found in those animals 

(Zuckerkandl and Pauling 1965). When molecular evolutionary studies took off, it 

meant that the comparison of conserved sequences might give us an insight into 

bacterial phylogeny (Stackebrandt and Goebel 1994). In particular, the small subunit 

of rRNA (SSU rRNA) made it possible to infer evolutionary relationships between 

different bacteria. The SSU rRNA was ideal because it is universally distributed 

across microbial organisms and the highly conserved nature of these sequences makes 

it easy to obtain (Bruijn 2011). Almost the full length of an SSU rRNA sequence can 

be obtained using “universal” primers and without having to culture the organism. 

This 1.5kb sequence has often been used exclusively to classify microbes. Although 

for a long time it was considered the “Gold Standard” in bacterial phylogeny 

construction, the SSU rRNA has its drawbacks as a molecular marker. There is very 

little support for phylogeny using only one gene. Often SSU rRNA genes from 

evolutionarily distant organisms are similar in nucleotide composition and have very 
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often, though incorrectly, been placed together on trees (Doolittle 1999). In some 

cases other phylogenetic markers have been used such as the protein-coding genes, 

recA (Thompson et al. 2004), HSP70 and others but there have problems with cloning 

protein-encoding genes from diverse organisms. 

 

1.1.4: Early Genome Sequencing 

 

The very first methods of DNA sequencing were developed in the 1970s and 

were somewhat laborious. Sanger and Coulson’s procedure, published in 1975, 

involved generating short oligonucleotides. These were then fractioned by 

electrophoresis on a polyacrylamide gel and visualized using autoradiography (Sanger 

and Coulson 1975).This technology provided the first fully sequenced DNA-based 

genome, belonging to the single-stranded bacteriophage !X174 (Sanger et al. 1977). 

At the time it would take a year to sequence a thousand base pairs (bp), the 

Escherichia coli K-12 genome would have taken more than a thousand years to 

sequence (Binnewies et al. 2006). The chain-termination method, which essentially 

mimics DNA replication in-vivo, has always proven to be more efficient (Sanger et al. 

1977).  

Large-scale sequencing was made possible with the invention of polymerase 

chain reaction (PCR) and the shotgun cloning procedure. On July 28, 1995 the first 

complete sequence for a cellular life form was published. The sequence belonged to 

the 1.8 Megabase (Mb) genome of Haemophilus influenza (Fleischmann et al. 1995). 

Only 3 months later the 0.58 Mb sequence of Mycoplasma genitalium was released 

(Fraser et al. 1995) and suddenly there was excitement surrounding the future for 

genome sequencing. Scientists predicted that in the two years following these 
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breakthrough there would be at least another eight fully sequenced bacterial genomes 

available (Koonin et al. 1996). A division of the GenBank database was opened, 

dedicated solely to storing the many genome sequences to come.  

 

1.1.5: Second generation sequencing and its impact 

 

The trajectory of a new technology can be summarized as a race to a 

commoditization phase, in which competitive forces drive the price down while 

performance and reliability approach the ideal (web link 1). 

Between 2005 and 2007, the demand for fast, accurate and, most of all low-

cost sequencing drove the development of high-throughput or second-generation 

sequencing. Three new methods were commercialized that were based on 

amplification strategies as alternatives to the standard cloning system: 454 (Margulies 

et al. 2005), Illumina (Bentley 2006) and SOLiD.  

In October 2006 the Archon X prize was announced. $10 million would be 

awarded to the team that could build a device to sequence 100 human genomes within 

30 days or less. There must be no more than one error per 1,000,000 bases, an 

accuracy rate of 98% of the genome and a cost of, at most, $1,000 per genome (Kedes 

2011). The competition starts 3rd January 2013 and already a number of companies 

putting in massive effort including Complete Genomics, Illumina, ION Torrent 

Systems, GE Global and many more (Mukhopadhyay 2009). The technology that has 

emerged as a result of this competition includes the conversion of chemical 

information to digital, human-readable, information (Glenn 2011). Novel nanopore 

strand sequencing techniques are achievable on a device as small as a USB memory 

stick that achieves power and computer analysis from a normal laptop computer (web 
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link 2). It was even announced early this year that an entire human genome sequence 

could be obtained in one day for just $1,000 (web link 3).   

According to the most up to date report from the Genomes Online Database or 

GOLD (web link 4), there are 18,306 genome projects completed or currently in 

progress. Of 3,705 completed genome projects, 3,363 are of bacterial species and of 

the 14,601 still in progress, 11,831 represent bacterial genome projects.  From the 

time the first genome was sequenced in 1995 until 2008, almost 1,000 genomes were 

added to the GenBank database, according to GOLD statistics. Between 2008 and 

2011 this number almost doubled. In 2011, of the 8,448 bacterial genome projects, 

either completed or in progress, 46% were focused on strains from the Proteobacteria. 

Many disease-causing bacteria belong to this group. The nature of many human 

pathogens is to evolve continually by mutation and by exchanging sequences with one 

another, so sequencing clinical isolates is of interest, especially if rapid data about 

antibiotic susceptibility and/or resistance and other virulence markers can be obtained 

(Mardis 2008). The benefit of next-generation sequencing platforms in strain-to-

reference sequencing is that each DNA sequence in a library is obtained from a single 

genomic fragment, such that if there are rare variants in the clinical population, these 

can be detected by virtue of the depth of sampling obtained. 

For bacteria, improvements in sequencing technology, has lead to greater 

insight into gene content and diversity between strains. Obtaining the pan genome of a 

species and as a result the core genome has revealed some interesting results. E. coli 

is a widely used model organism. Databases have been created with the purpose of 

tracking genomes that are available (web link 5) or characterizing the gene pool of 

horizontally transferred genes and virulence determinants (web link 6). In a study of 

61 publically available E. coli and Shigella spp. sequenced genomes, Lukjancenko et 
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al found that of the predicted pan genome only 6% represented the core genome of E. 

coli. 

  

1.2: A subset of Bacteria 

 

1.2.1: The Proteobacteria 

 

One of the largest and most diverse divisions of the prokaryotes was 

previously known as the “Purple and Photosynthetic bacteria and their relatives 

(Woese 1987). This was not appropriate as most of the organisms comprising this 

group are neither purple nor photosynthetic. In 1988 a new name was proposed after 

the Greek God Proteus, who can assume many forms, the “Proteobacteria” were born 

(Stackebrandt et al. 1988). The name gives credit to the vast assemblage of 

phenotypic and physiological traits represented within this group. Though they share 

the characteristic of being gram-negative the common trend does not extend much 

further. The Proteobacteria include many human, animal and plant pathogens as well 

as free-living bacteria, they can move via flagella or bacterial gliding and some even 

aggregate to form fruiting bodies. Most members are facultatively or obligately 

anaerobic, chemoautotrophs, and heterotrophic, but exceptions include the 

photosynthetic organisms. They come in a vast range of shapes and sizes and have a 

wide variety of metabolic systems (Madigan and Brock 2011).  

 Different species have been placed in this extensive group based on a number 

of analyses including 16S oligonucleotide catalogs, phylogenetic analysis based on 

full and partial sequences, rRNA cistron similarities and the results of DNA-RNA 
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hybridization. The main basis of classifying the proteobacterial group, however, has 

been their placement in a distinct clade on phylogenetic trees. Woese et al first 

circumscribed the group using 16S rRNA/rDNA analyses. As no overall 16S rRNA 

signature can be assigned to the group, it has been divided into 5 subclasses 

designated ", #, $, % and &.  

 

1.2.2: The Gammaproteobacteria 

 

The Gammaproteobacteria as a subclass is richer in genera than any bacterial 

phyla bar the Firmicutes (Williams et al. 2010). Although its members exhibit a broad 

range of aerobicity, tropisms, morphologies and phenotypes the Gammaproteobacteria 

are defined solely by their 16S sequence relationships (Williams et al. 2010).  

Phylogenetic studies of this group show that the deep branching makes it 

difficult to construct a well-resolved phylogeny. A single gene is insufficient for 

recovering deep relationships and even multigene studies have revealed instabilities in 

areas of the tree (Williams et al. 2010).   

 

 

1.2.3: The YESS Group 

 

The closely related enteric bacterial genera Yersinia, Escherichia, Shigella and 

Salmonella are known collectively as the YESS group. This group is medically and 

scientifically important as many of its members are human pathogens. For instance, Y. 

pestis is the causative agent of plague, a bacterial infection that is spread from rodents 
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to humans via fleas and can become airborne in a human population. In the 1300s 

plague killed almost one third of the population of Europe (~20 million people) (Scott 

and Duncan 2001). In 2011 it was shown that, due to horizontal acquisition of genes, 

Y. pestis has evolved rapidly resulting in cases of multi-antibiotic resistant strains 

(Bland et al. 2011). The pathogenic strains of E. coli can cause pneumonia, 

bacteremia, neonatal meningitis and gastroenteritis. Uropathogenic E. coli causes 

more than 90% of uncomplicated urinary tract infections (UTIs) and chance of 

recurrence after the first infection is 44% over 12 months (Rosen et al. 2007). 

Enteroinvasive E. coli (EIEC) and Shigella cause bacillary dysentery or shigellosis. 

There are an estimated 160 million cases worldwide each year, approximately 1.1 

million result in deaths and of these, most involve children under the age of five 

(Kotloff et al. 1999). Samonella is responsible for as many as 1.3 billion cases of 

disease each year (Coburn et al. 2006) including enteric fever, enterocolitis and 

bacteremia.  

 As well as its medical significance, this group proves interesting in its 

complicated evolutionary history. The phylogenetic relationships of different Shigella 

strains have been the subject of intense debate. Joshua Lederberg famously said that 

Enterohaemorrhagic E. coli were ‘Shigella in a little cloak of E. coli antigens’ 

(Lederberg 1998). Shigella are essentially E. coli that have acquired a virulence 

plasmid (VP) (Sansonetti et al. 1981). There are two conflicting theories on the origin 

of Shigella. The multiple independent origin theory (Pupo et al. 2000) suggested that 

Shigella strains formed through multiple acquisitions of the VP. The analysis of Pupo 

et al. found three clusters of Shigella strains occurring within E. coli and concluded 

that Shigella strains, much like EIEC, do not have a single evolutionary origin. Later 

it was argued that there was a single origin of Shigella (Escobar-Paramo et al. 2003). 
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The argument was based upon similarities between the phylogenies of genes on the 

VP with phylogenies for chromosomal genes. Because the phylogenies did not 

conflict significantly, Escobar-Paramo et al. (2003) suggested that there was a single 

ancestral VP that accounted for the emergence of Shigella and that the VP has not 

been horizontally transferred (as the multiple origins theory would imply). It was said 

that any conflicts in the trees were accounted for by transfer of fragments of the VP as 

opposed to the transfer of an entire VP. More recently, the two hypotheses were 

revisited using more robust data and support for the multiple origin hypothesis was 

found (Yang et al. 2007). Like Pupo et al., they found three major clusters of Shigella. 

They concluded that ancestral VPs entered various strains of E. coli and that 

convergent evolution explains why we see diverse Shigella genomes with similar 

phenotypic properties. 

 It has been previously argued that the deeper branches in prokaryote phylogeny 

are the source of conflict and a tree-like phylogeny may exist only at the tips (Creevey 

et al. 2004). From a study on YESS group phylogeny in 2009 (Haggerty et al. 2009), 

we concluded that “Assessing deep-level phylogenetic relationships is fraught with 

difficulties related to HGT and erosion of phylogenetic signal; however, assessing 

shallow relationships is no less difficult.” Three groups were consistently recovered: 

the Yersinia group, the Salmonella group and the Escherichia/Shigella group. Beyond 

that there was very little agreement between trees built from different methods 

(Figures A4-A7, Appendix).   
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1.3: A Species Concept for Bacteria 

 

1.3.1: Tree-thinking 

 

Until the mid-eighteenth century the order of nature had been depicted as a 

chain of being. It was Bonnet (1764) and Pallas (1766) that first asked if invoking 

branches might better describe life on earth. The idea that the relationships among 

organisms resemble a tree-like structure was beginning to take hold. It was not until 

1809, however when the first evolutionary tree was conceptualized by Jean-Baptiste 

Lamark (Lamarck 1809). Lamark’s Figures were the first to depict the origins of 

various animals as a branching structure allowing for the theory of ongoing 

spontaneous creation of primitive forms (Figure 1.1 and 1.2). The tree metaphor was 

made famous in 1859 when Darwin suggested that the natural system is necessarily 

genealogical and represented this on an abstract tree diagram (Darwin 1859). Ernst 

Haeckel was responsible for promoting Darwin’s ideas; he agreed that all organisms 

branched from one or a few original ancestors (Haeckel 1866). He used morphology 

to reconstruct the evolutionary history of life, and in doing so invented the terms 

phylogeny and phylogenetics. Haeckel’s work sparked a determination to reconstruct 

a “universal tree of life” and the search for this unique tree continues to this day. 

Carl Woese and colleagues (Woese et al. 1990) revolutionized the tree 

metaphor by using a universally distributed marker. They used indirect methods of 

oligonucleotide cataloguing from small-subunit rRNA (ssrRNA) to build a “Tree of 

Life” (Figure 1.3) and chose the root according to Gogarten (1989). The tree was 

extremely well received as they found a split within the prokaryotes separating 
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Archaebacteria from Eubacteria. Studies of prokaryotic evolution really took off 

following this news. 

 Although it has been prevalent in evolutionary studies for quite some time, the 

monistic Tree of Life depends on evolution following a tree-like structure across all 

forms of life. In reality genes are inherited vertically but can also be acquired through 

horizontal transfer (HGT), which does not adhere to the conventional understanding 

of speciation events and so is problematic when building phylogenies.    
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Figure 1.1: Lamarck’s Tree depicting the origin of animals, from the Philosophie 

zoologique (Lamarck 1809). 
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Figure 1.2: Lamarck’s tree depicting two branching series of animal origins, from the 

Histoire naturelle des animaux sans vertèbre (Lamarck 1815-1822). 
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Figure 1.3: Phylogenetic tree based on small-subunit ribosomal RNA sequences 

showing three domains of life. Figure from Wikimedia Commons after Carl Woese 

and colleagues (1990). 
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1.3.2: Horizontal Gene Transfer 

 

For a long time it was widely accepted that bacterial serological types were 

fixed und unchangeable within a generation. In 1928, however a physician named 

Frederick Griffith made a revolutionary discovery (Griffith 1928). Griffith found that 

when he injected mice with a mixture of non-virulent live bacteria and virulent dead 

bacteria, it was in fact fatal. He used two strains of pneumococcus bacteria, the type 

III-S strain evades the immune system with a protective polysaccharide capsule 

whereas the type II-R strain has no capsule and is defeated by the immune system. 

When Griffith infected mice with heat killed III-S they survived, but when he added 

II-R the dose was deadly. Griffith concluded that there was a “transforming principle” 

whereby II-R was “transformed” to III-S, rendering it virulent. 

 It was not until 1944 that this “transforming principle” was discovered to be 

DNA (Avery et al. 1944). Avery, MacLeod and McCarty lysed the heat killed S-cells 

and used the lysate for transformation assays. The components of the lysate were the 

capsule coating, protein, RNA and DNA. Each was removed sequentially from the 

lysate and the resulting solution was tested for transformation capabilities. Finally 

they discovered that, in the absence of DNA, transformation was not possible. 

 This discovery gave scientists a new understanding of inheritance at the 

molecular level. But, more surprisingly, it provided the first suggestion that DNA is 

exchangeable and can alter bacterial cells, even at maturity. 

 Horizontal or lateral gene transfer (HGT) is any process by which an organism 

transfers genetic material to another cell that is not its offspring. This can occur 

through a number of mechanisms: 
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• Conjugation: is the transfer of genetic material by direct cell-to-cell contact or 

by a bridge-like connection. The donor cell extends a tubular structure, called 

a pilus, which attaches to the recipient cell. A conjugative or mobolizable 

genetic element allows the transfer of a single strand of DNA to the recipient 

cell. Finally, both cells synthesize a complementary strand to produce double 

stranded DNA. 

• Transduction: is achieved via bacteriophages (viruses that infect bacteria). A 

bacteriophage infects a bacterial cell in order to use its replicational, 

transcriptional and translation machinery to produce virions and viral particles. 

Often while the bacteriophage is using the cell’s machinery bacterial DNA can 

be inserted into the viral capsid and when the bacteriophage removes itself 

from the chromosome it can bring bacterial DNA along with it. The next 

bacterium to be infected by the bacteriophage will often receive the non-viral 

DNA. 

• Transformation: is the stable uptake, integration and functional expression of 

extracellular DNA. This is the only mechanism of HGT that is independent of 

mobile genetic elements and bacteriophages. A cell that has acquired time-

limited competence in response to environmental conditions can receive intact 

DNA that has been released from decomposing cells, disrupted cells or 

through excretion by living cells. The extracellular DNA binds, non-

covalently, to the cell surface and is translocated across the membrane.  

We have known about conjugation, transduction and transformation for decades now 

but there other methods of gene transfer continually being discovered. Genes can be 

transferred by temporary fusion followed by chromosomal recombination and plasmid 

exchange. It was shown by Dubey et al. (Dubey and Ben-Yehuda 2011) that bacterial 
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communication could be mediated by nanotubes that bridge neighbouring cells. These 

nanotubes were found between Bacillus subtilis and Staphlococcus aureus as well as 

between B. subtilis and the evolutionary distant E. coli. The release of membrane 

vesicles containing DNA from phages, plasmids or chromosomes can merge with 

nearby cells, thus allowing integration of the DNA into the new host. A Gene Transfer 

Agent (GTA) is a phage-like element that contains random pieces of the host genome 

from which it came. Genes encoding the phage-like structure are contained in the cell 

that produces the GTA. DNA that is successfully transferred by one of the gene 

transfer mechanisms is integrated into a recipient genome by recombination, the 

mechanism whereby segments of DNA are exchanged between two sequences 

(Lawrence and Retchless 2009). 

 

1.3.3: Recombination 

 

 Recombination is the exchange of genetic material between multiple 

chromosomes or different regions of the same chromosome. In diploid eukaryotes, 

recombination between newly duplicated chromosomes during meiosis is essential for 

maximizing genetic diversity. It is also important in DNA repair and in DNA 

replication where it assists in filling gaps and preventing stalling of the replication 

fork.  

Recombination in prokaryotes is essential in the incorporation of acquired 

DNA into a recipient genome and in DNA repair and replication. After DNA has been 

injected into the cytoplasm of the recipient cell it is subjected to processes that either 

allow the DNA to be integrated into the cell or remove it from the cell altogether. 
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 Firstly restriction endonucleases cleave and exonucleases degrade the double 

stranded DNA (dsDNA) to reduce its size. Following this, if the donor DNA has 

sequence similarity with the recipient then homologous recombination can occur and 

the DNA is integrated into the chromosome, replacing the resident allele at its cognate 

position. However, if there is no sequence similarity, illegitimate recombination 

occurs and the DNA is placed anywhere in the chromosome or site-specific 

recombinases catalyse recombination into specific locations.     

 Homologous recombination occurs where the donor DNA is highly similar to 

the recipient DNA. In prokaryotes homologous recombination has been best studied 

in E. coli and shown that it can occur by two different pathways: one for the repair of 

double stranded DNA (dsDNA) and another for single stranded DNA (ssDNA). 

dsDNA breaks are repaired by he RecBCD pathway (Michel et al. 2007). RecBCD is 

a three-subunit enzyme complex, it initiates recombination by binding to the broken 

dsDNA. It then begins to unzip the DNA duplex through helicase activity until it 

reaches a complex called the Chi site ('-site). The '-site is a short stretch of DNA 

found in the genome of a bacterium and is unique to each group of closely related 

organisms, e.g. enteric bacteria share the sequence 5'-GCTGGTGG-3' (Dillingham 

and Kowalczykowski 2008). At the '-site the unzipping is halted and restarted at a 

slower rate. RecA is then loaded onto ssDNA cut from the duplex. The RecA coated 

nucleoprotein filament searches for an area of homology elsewhere in the genome and 

moves into the recipient duplex by strand invasion. During strand invasion the 

recipient DNA is cut and the invading strand inserted to create a Holliday junction. 

The RuvAB complex arranges itself around the junction. Strands from both duplexes 

are unwound on the surface of the RuvAB complex as they are guided from one 
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duplex to the other. The Holliday junction is resolved to form two recombinant DNA 

molecules with reciprocal genetic types (Kowalczykowski et al. 1994). 

 For the repair of ssDNA the RecF pathway is utilized. RecQ unwinds the 

DNA and RecJ nucleases degrade the 5’ strand. RecA binds to the 3’ strand and the 

nucleoprotein filament searches for a homologous sequence. The Holliday junction is 

formed as in the RecBCD pathway and a new duplex is formed where the donor DNA 

has replaced the broken strand (Morimatsu and Kowalczykowski 2003).   

Non-homologous recombination occurs by ligation of break ends without the 

need for a template. Short sequence repeats (SSRs) act as a guide for repair of 

damaged DNA. SSRs are often present as single-stranded overhangs on the end of the 

double-strand breaks (Weller et al. 2002). Bacteria often lack the proteins required for 

non-homologous recombination but they have been discovered in B. subtilis and 

Mycobacteria (Moeller et al. 2007). Bacterial non-homologous recombination is 

mostly utilized by bacteria that spend a significant portion of their life cycle in 

stationary haploid phase, where no there is no template available.   

 

1.3.4: HGT and Bacterial Phylogeny  

 

Although it has been seen among Protists, most eukaryotes, particularly 

animals and fungi, are largely unaffected by HGT (Andersson 2005). In 2001 the 

scientific world was stirred by reports of an unusual number of genes in the human 

genome that appeared to have been acquired through horizontal transfer (Lander et al. 

2001; Salzberg et al. 2001). These studies were quickly proved to be flawed and so 

the focus centered on HGT in prokaryotes (Stanhope et al. 2001). 
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In bacteria barriers to HGT are very low (McInerney et al. 2008), and so genes 

are exchanged frequently (Gogarten et al. 2002; McDaniel et al. 2010; Popa et al. 

2011). The process does not require the donor and recipient to be of the same species, 

and since it can be achieved via an intermediate such as a bacteriophage, it allows the 

exchange of genes between strains far outside closed gene pools (Ereshefsky 2010). It 

has been estimated that 81 ± 15% of all genes in prokaryotic genomes have undergone 

HGT at some point in their evolutionary history (Dagan et al. 2008). Other estimates 

for the proportion of protein families affected by HGT range between 60 (Kunin et al. 

2005; Dagan and Martin 2007) and 90% (Mirkin et al. 2003). There are also studies 

which find these frequencies to be much lower (Ge et al. 2005). It was shown 

however, that of 246,045 genes that were transferred into E. coli via a plasmid, 99.4% 

were successfully integrated into the recipient cell (Sorek et al. 2007). 

HGT confuses and confounds prokaryotic relationships by implying different, 

incongruent relationships within a set of taxa. Some authors question the meaning of 

trees as a representation of the evolutionary history of species affected by HGT 

(Gogarten et al. 2002; Doolittle and Bapteste 2007). Many have accepted that HGT 

was a ‘‘rampant’’ phenomenon concluding that ‘‘the history of life cannot properly be 

represented as a tree’’ (Doolittle 1999).  
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1.4: Alternatives to the Tree Of Life Hypothesis 
 

There is much need for a theory or system that recognizes more than one 

ultimate principle when describing prokaryotic evolution. By employing the attitude 

that conflict between two different models does not necessarily invalidate one we can 

describe every aspect of organization within the prokaryotes. 

 

1.4.1: The “Forest Of Life” 

 

Puigbo et al. (2009) constructed 6,901 maximum likelihood trees from 

prokaryotic genes in an attempt to find a central trend that could be considered an 

approximation of the tree of life (Figure 1.4). An inconsistency score, measuring how 

representative a given tree is of the whole forest, allowed them to see a trend without 

a given species tree. They named the universal or close to universal trees NUTs 

(nearly universal trees). The 102 NUTs agreed quite well; at a 50% similarity cutoff, 

they found that almost all trees agreed with almost all others. They also found that, in 

many cases, the topology of the NUTs was similar to others in the forest. Within the 

forest however, there seemed to be a lot of inconsistency, where the shallow 

relationships appeared to remain constant, at a deeper level they were no more similar 

than a random dataset. They conclude a weak vertical trend displayed by the NUTs. It 

has been shown before that a vertical trend may only exist at the tips of prokaryotic 

trees and that there is very little confidence in deeper relationships (Creevey et al. 

2004). The fact that many of the gene trees display different topologies has made it 

clear that independent processes have impacted the evolutionary history of genes and 

genomes.  
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Figure 1.4: Network representation of the 6,901 trees of the forest of life. Each node 

represents one gene tree and the edges connect trees with at least 50% similarity 

between their topologies. The 102 NUTs are shown as red nodes located towards the 

centre of the network, these are quite densely connected; there is a high level of 

similarity between the NUTs. Purple nodes are non-NUTs that are connected to at 

least one NUT, i.e. have at least 50% similarity to one or more of the NUTs, the 

connections to these are somewhat sparser. The rest of the trees are shown as green 

nodes and are less than 50% similar to the NUTs in topology, there has been sufficient 

HGT to cause a large amount of inconsistency between gene tree topologies. Taken 

from Puigbo et al. (Puigbo and Koonin 2009). 
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1.4.2: The “Net Of Life” 

 

Hilario and Gogarten (1993) were the first to propose a “net of life”. They 

used three types of the ATPases to root the “universal tree of life”: vacuolar, 

archaebacterial and eubacterial. An archeabacterial type ATPase was found in the 

eubacteria, and vice versa, suggesting that both types of ATPase may have already 

been present in the last common ancestor. They suggest that horizontal gene transfer 

can explain the data.     

 The rooted net of life genome phylogeny (Williams et al. 2011) 

accommodates for numerous examples of reticulated histories. An initial scaffold of 

predominately vertical descent is inferred from a supermatrix of combined ribosomal 

genes. Unrooted phylogenies of gene families are then superimposed over the scaffold.  

 

1.4.3: The “Rhizome Of Life” 

 

 Merhej at al. (2011) propose a new representation for the evolutionary history 

of Rickettsia felis in the form of a rhizome. In a comparison to ten other Rickettsia 

genomes they found R. felis to be a collection of genes potentially having different 

evolutionary histories. Although the majority of genes agreed with the phylogeny 

based on Rickettsia core gene concatenation, the data showed that 12% of the R. felis 

genome comes from non-vertical inheritance. Multiple origins of the R. felis gene 

repertoire make it impossible to represent the evolutionary history of this genome as a 

tree. Merhej and colleagues use a rhizome of life to show multiple roots and 

intertwining origins of currently living species.  
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  Many now agree that HGT is such a powerful force that the evolutionary 

history of the prokaryotes would be better represented using a network in which edges 

represent HGTs. 
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Figure 1.5: The different origins of R. felis genes. The genome of R. felis is 

represented at the bottom of the Figure, the genes classified into functional categories 

of COGs. Arrows link R. felis genes to its closest related species on the organismal 

phylogeny (top of the Figure) based on the corresponding gene phylogeny. Taken 

from Merhej et al. (2011). 
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1.5: Networks 

 

In this thesis I refer to the structure and analysis of a number of networks. 

Therefore it is important to establish the definition and mathematics of networks. In 

theory any economic agent has the potential to interact with any other, directly or 

indirectly (Newman 2010). In reality these agents will have preferences and biases 

depending on need and social position. The patterns of interactions between agents 

form a network. A network is a set of vertices or nodes connected via edges. It can be 

directed or undirected, weighted or non-weighted, cyclic or acyclic etc. (Newman 

2010).  

An empirical study is required to reveal the relationships between agents and 

from this, the network structure is created. A network has properties: size, overall 

connectivity, mean distance from any agent to any other agent, etc. The agents also 

have properties pertaining to the number of relationships they have with other agents. 

These properties reveal how important an agent is in the network and which 

communities it belongs to. With the structure in place, mathematical analyses will 

answer questions about the agents and their relationships.  

 

1.5.1: Network Centralities 

 

 Hereafter I will refer to agents as nodes and the relationships between them as 

edges on the network. Measures of centrality of a node indicate its importance in the 

network, in other words, who in the network is most central and therefore important? 

(Newman 2004) (Figure 1.6). Each node in a network has a number of interactions, 

known in total as the degree of the node. The degree of a node, therefore, is the 
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number of edges directly connected (Borgatti 2005). This centrality measure is 

representative of a node’s direct relationships, i.e. its neighbours that are no more than 

one edge away. The location of a node within the network is also important. In a 

network a path is a sequence of nodes bridged by edges. Therefore even though a 

node may not have a direct connection with another node it may be reached “through 

the grapevine”. A geodesic path then, is the shortest path between two nodes in terms 

of the number of intervening nodes traversed (Borgatti 2005). A measure called 

“closeness centrality”, like degree centrality, helps to reveal the most central nodes in 

the network but unlike the degree it includes information from all relationships to a 

node, direct and indirect. The closeness centrality is the mean geodesic distance from 

one node to all other reachable nodes. Also reliant on paths in networks is the measure 

of “betweenness centrality”. Betweenness is a kind of measure of flow in the network, 

it reveals how often a node lies on the shortest path between two random nodes in the 

network (Borgatti 2005). To discover how “between” a node is on a network, one 

must find all geodesic paths in the network and calculate the number on which the 

falls.  

The nature of geodesic paths gave rise to the small-world network concept (Boccaletti 

et al. 2006). In general the mean geodesic path is small compared to the size of the 

network, if you think of network size in terms of the number of nodes. Stanley 

Milgram famously discovered that if he asked a random person to get a message to a 

specified target, the message would pass through an average of 6 people (Milgram 

1967). Thus coining the phrase “six degrees of separation”. Evidence suggests that in 

most real-world networks nodes tend to create tightly knit groups characterized by a 

relatively high density of connections, this likelihood tends to be greater than the 
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average probability of a connection randomly established between two nodes (Jin et al. 

2001). 
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Figure 1.6: Network centrality measures: The red node has a high degree- it has 4 

direct neighbours compared to the green node that only has 2 direct neighbours. The 

red node also has a higher closeness than the green. The red node can reach all other 

nodes bar one by passing through just one edge. The green node however has the 

highest betweenness centrality as nodes must pass through it to reach the purple node 

on the far right. 
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1.5.2: Communities in Networks 

 

Communities, clusters or modules are found where there are more dense 

connections or a higher concentration of edges within groups than between groups 

(Porter et al. 2009). Nodes within a community will share some kind of common trait. 

 The clustering coefficient of a node characterizes the density of connections 

surrounding the node (Soffer and Vazquez 2005). The clustering coefficient is 

calculated as the ratio between the total number of edges connecting a node’s nearest 

neighbours and the total number of all possible edges between those neighbours. This 

is a measure of the mutual acquaintance of a node’s “friends”, in other words it asks: 

of a node’s “friends” how many are also “friends” with one another? The clustering 

coefficient can also be thought as the cliqueishness of a node. A clique is a maximally 

connected subgraph, i.e. all nodes are connected to all other nodes. If a node has a 

high clustering coefficient it is likely to be contained in a clique.     

 A network may consist of many disjoint parts, these are known as connected 

components (Hopcroft and Tarjan 1973). On a connected component all nodes are 

mutually reachable one way or another and the size of the component is simply the 

number of nodes it contains. The giant connected component is the one with the most 

nodes. 
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1.5.3: Networks in Biology 

 

The use of networks in biology is more prevalent than is commonly thought 

and dates back to the 18th century. Comte de Buffon made use of networks to describe 

animal breeding and the diversity of forms it could produce (Loveland 2004). His 

network of genealogical relationships among dog breeds is his most well known 

(Figure 1.7). Later in the 18th and early in the 19th century networks were used to 

describe the detail of affinities among organisms. They included affinities among 

plants (Ruling 1774) (Figure 1.8), animals (Hermann 1783) (Figure 1.9) and 

vegetables (Batsch 1791) (Figure 1.10). In an attempt to resolve the problems in 

bringing algae to a phylogenetic system, Georg Klebs (Klebs 1892) made the network 

of relationships among groups of algae and protozoa (Figure 1.11).  

There are a number of areas in biology that rely on networks to answer 

questions. In order to understand cells and diseases at a system-wide level many are 

turning to the study of protein interactions (Pellegrini et al. 2004). The full view of 

interacting proteins is best displayed on a network (Zhang 2009). On a protein 

interaction network nodes are proteins and the edges indicate a physical interaction 

between the two it connects (Figure 1.12).   

The metabolism of an organism encompasses the basic chemical system that 

generates essential components such as amino acids, sugars and lipids, and the energy 

required to synthesize them and to use them in creating proteins and cellular 

structures (Reddy 2007). A metabolic network represents all chemical reactions and 

physical process performed by a cell (Figure 1.13). Nodes on a metabolic network are 

the enzymes and metabolites involved in various processes; the edges indicate the 
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relationship between them. Sub-networks are used to describe subsystems of 

metabolism and pathways of enzymatic activity (Jeong et al. 2000). 
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Figure 1.7: Network of genealogical relationships among breeds of dogs, from 

Histoire Naturelle of Georges-Louis Leclerc, (Loveland 2004) 
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Figure 1.8: Network of affinities among the natural orders of plants, from the 

Ordines naturales plantarum commentatio botanica (Ruling 1774). 
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Figure 1.9: Network of affinities among animals, from the Tabula affinitatum 

animalium (Hermann 1783). 



+(!

 

 

 

 

 

 

 

Figure 1.10: Network of affinities within the vegetable kingdom, from the Tabula 

affinitatum regni vegetabilis (Batsch 1791). 
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Figure 1.11: Network of lines of relationships among groups of algae and protozoa, 

by Georg Klebs (1892). 
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Figure 1.12: Yeast protein-protein interaction network. The nodes represent 1,870 

proteins and the edges indicate the 2,240 direct physical interactions between the they 

connects. The colours signify the phenotypic effect of removing the corresponding 

protein (red, lethal; green, non-lethal; orange, slow growth; yellow, unknown) 

(Jeong et al. 2001). 
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Figure 1.13: A community-level metabolic network of the gut microbiome. Nodes 

represent enzymes and edges connect enzymes that catalyze successive metabolic 

steps. Enzymes associated with obesity appear as larger colored nodes (red=enriched, 

green=depleted). Taken from (Greenblum et al. 2012). 
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1.5.4: Phylogenetic Networks 

 

 A phylogenetic network is any graph used to visualize evolutionary 

relationships between nucleotide sequences, genes, chromosomes, genomes or species 

(Huson and Bryant 2006; Huson and Scornavacca 2011). The advantage of using 

phylogenetic networks over phylogenetic trees is the ability to include hybrid nodes 

i.e. nodes with two parents. Phylogenetic networks are currently used when describing 

the outcome evolutionary processes that are non-tree like in nature e.g. recombination, 

genome fusion and HGT (Huson and Bryant 2006; Huson and Scornavacca 2011). 

These networks can also be used for tree-like analyses where the vertical signals from 

the data are conflicting with one another (Huson and Bryant 2006).   

Splits networks are reconstructed from bipartitions in of taxa implied by the 

given data (Bryant and Moulton 2004; Huson and Scornavacca 2011). Incompatible 

splits are those splits that do not agree with the phylogenetic tree of the data and the 

compatible splits are those that do agree with the tree. All splits are represented on the 

network, rendering it more informative than a tree of strictly vertical signal (Bryant 

and Moulton 2004; Huson and Scornavacca 2011). 

A splits network was used in a study of Euglena gracilis (Ahmadinejad et al. 

2007) (Figure 1.14). This unicellular flagellate protist has a chimeric genome with 

some genes inherited from its heterotrophic host and some from a photoautotrophic 

endosymbiont during secondary endosymbiosis. Ahmadinejad et al. sequenced 2,770 

ESTs from the E. gracilis genome and found 841 to have eukaryotic homologs, 117 of 

which are specific to the photoautotrophic eukaryotes. A tree was inadequate to 

describe their findings so Ahmadinejad and colleagues used a network to show the 

common origin of E. gracilis from kinetoplastid and photoautotrophic ancestors. 
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The use of networks is becoming more popular in phylogenomics- the study of 

phylogenetic relationships at the whole genome level (Kunin et al. 2005; Dagan and 

Martin 2007; Lima-Mendez et al. 2008; Kloesges et al. 2011). Phylogenomic 

networks are reconstructed from presence or absence patterns of genes. On these 

phylogenomic or gene-sharing networks the nodes represent genomes. An edge is 

represents the presence of at least one gene found in common between the two 

genomes it connects. The edges are weighted based on the number of shared genes or 

the number of orthologous gene families that are present in both genomes. A 

phylogenomic network can be reconstructed from complete genomes (Kunin et al. 

2005; Dagan and Martin 2007; Kloesges et al. 2011), plasmids (Fondi et al. 2010; 

Halary et al. 2010), phages (Lima-Mendez et al. 2008; Halary et al. 2010) or even 

metagenomes (Halary et al. 2010). 

Halary et al. (2010) reconstructed a phylogenomic network from 111 

eukaryotic and prokaryotic genomes along with thousands of phage and plasmid 

sequences (Figure 1.15). They found that different protein families have their 

distribution limited to certain vehicles i.e. chromosome, phage or plasmid. 

HGT networks are used to study the horizontal component of microbial 

evolution (Beiko et al. 2005; Dagan and Martin 2007; Dagan et al. 2008; Kloesges et 

al. 2011; Popa et al. 2011). These networks are reconstructed from HGT events 

inferred from genomic data. On HGT networks the nodes are external and internal 

nodes of a reference species tree and edges are HGT events between the nodes they 

connect. Dagan et al. (2008) reconstructed a HGT network from 181 fully sequenced 

microbial genomes (Figure 1.16) and discovered that, on average, 81±15% of the 

proteins in each genome are affected by HGT at some point in their evolutionary 

history. 
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Beiko at al. (2005) summarised all HGT events inferred from 22,432 

phylogenies of orthologous protein families in 144 prokayotic genomes. On their 

network the nodes represented 21 higher taxonomic groups of microbes and the edges 

were HGT events. They described 1,398 HGT events on their network and found that 

56% of the transfer events were between the Alpha-, Beta- and Gamma-

Proteobacteria. 

 As can be seen, networks are versatile frameworks that can be used for a wide 

variety of evolutionary questions.  They provide perspectives that are often different 

to those perspectives provided by phylogenetic trees and can often account for 

additional evolutionary events that are unseen by phylogenetic trees.  As a 

consequence, it was decided to explore networks more thoroughly in an effort to 

expand their usefulness in evolutionary biology. 
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Figure 1.14: A phylogenetic network reconstructed for the concatenated alignments 

of 259 globally distributed genes. Splits represent disagreement between gene tree 

topologies. An accumulation of splits indicates that the tips were derived from 

multiple ancestors. Taken from (Ahmadinejad et al. 2007). 
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Figure 1.15: Network of shared DNA families among cellular, plasmid, and phage 

genomes. (A) Global network in which each node represents a genome. Two nodes 

are connected by an edge if they share homologous DNA. Genomes sharing larger 

proportions of their DNA are closer together and the density of the giant connected 

component indicates a high level of sharing between most a large number of the 

genomes in the datset. (B) Global network displaying connections between genomes 

for a minimum of 95% sequence identity. Using only genes at this level of sequence 

identity roughly filters for recent sharing events. Clusters of nodes of the same colour 

are indicative of certain protein families having preference for a particular DNA 

vehicle. 
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Figure 1.16: A three-dimensional projection of a HGT network. The grey tree 

represents the vertical component of evolution. The nodes on the network are the 

external and internal nodes of the tree. A blue, green or pink edge on the network 

indicates a HGT event between the two nodes it connects. Taken from Dagan et al. 

(2008). 
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1.6: Aims of this Thesis 

 

In this thesis I wish to discuss the evolutionary processes and entities that are 

often overlooked in studies of bacterial evolution.   

In chapter 2 I discuss the evolutionary phenomenon of gene fusion and present 

a new method for the detection of fusions of unrelated genes using network structure 

analysis. I report the capabilities of this method based on tests using simulated and 

biological data. 

Chapter 3 sees the utilization of this method on a number of datasets. The 

functionality and limitations of the method are put to the test. The success of the 

method in finding fusions of unrelated genes allows us to quantify fusions in a given 

genome and discuss the functional categories to which the fusion genes belong. 

In chapter 4 I attempt to gain an understanding of the evolutionary history of a 

group of closely related bacteria while incorporating all aspects of this history. There 

is particular emphasis in this chapter on the use of networks in creating an all-

encompassing view of evolution. I discuss the phylogenetic and non-phylogentic 

signal elucidated by network visualization of homologous relationships between 

whole genomes and between individual genes. I also discuss the impact of genetic 

entities that are acquired through horizontal gene transfer on bacterial evolution as 

seen in the networks of homologous relationships. 
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Chapter2 - FUSION: A Network-based Approach to Finding 

Fusion Genes 

 

2.1: Introduction 

 

The central tree metaphor has been challenged over the last couple of decades 

with the observation of incongruent trees derived largely from protein-coding genes in 

prokaryotic genomes (Brochier et al. 2002; Zhaxybayeva et al. 2006; Galtier and 

Daubin 2008; Retchless and Lawrence 2010) . In addition to gene tree disagreement, 

many genes have been found to have sparse and inconsistent patterns of being in 

different genomes (Nakamura et al. 2004; Beiko et al. 2005; Dagan and Martin 2007). 

The Tree of Life model has generally been supported by methods that carry out an a 

priori selection for treelike data. This has involved selecting genes that seem 

recalcitrant to horizontal transfer as well as restricting the analysis to the comparison 

of genes that appear to be homologous along the vast majority of their length 

(Brochier et al. 2002; Daubin et al. 2003).  What this has effectively meant is that 

novel genetic entities, such as gene fusions are omitted from the analysis. 

When making alignments with a view to building trees, the tendency has been 

to focus on full genes.  Consequently, relationships are inferred when the majority of 

one sequence is homologous to the majority of another. In order to explain gene 

relationships, often a sequence identity percentage cutoff is applied to the data or 

anything that is not optimally aligned is “trimmed” from the alignment (DeSantis Jr et 
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al. 2006; Dunn et al. 2008). Ultimately, when constructing phylogenetic trees we tend 

to lose a whole wealth of information.   

A fusion gene is the result of an event whereby two previously separate genes 

are joined, to encode a single, usually multifunctional, protein (Enright et al. 1999; 

Suhre and Claverie 2004; Pasek et al. 2006). Natural fusion proteins are a result of 

complex mutations such as tandem duplications (Jones et al. 2008), 

retrotranspositions (Ruan et al. 2007) and chromosomal translocation (Rowley and 

Beck 1973). The fusion of genes or intra-gene recombination is in fact having a major 

impact on prokaryotic evolution and it has been seen not only in metabolic enzymes 

(Tsoka and Ouzounis 2000), but also in housekeeping genes (Suhre and Claverie 

2004) and genes that were thought to be resistant to recombination such as rRNA 

genes (Wang and Zhang 2000; Inagaki et al. 2006; Chan et al. 2009). 

In terms of phylogeny, the presence or absence of fusion genes can provide a 

distinction between organisms. In animals and fungi, the two genes for dihydrofolate 

reductase and thymidylate synthase are translated separately, they are also translated 

separately in eubacteria, although often they are found in one operon (Philippe 2000; 

Stechmann and Cavalier-Smith 2002). In plants, aveolates and euglenozoa, however, 

the genes have fused together, resulting in a bi-functional gene with both enzyme 

activities manifesting in one protein. This multifunctional hybrid is found exclusively 

in the bikonts and as a result, has been used in studies attempting to root the eukaryote 

tree of life (Stechmann and Cavalier-Smith 2002; Stechmann and Cavalier-Smith 

2003).  Therefore, gene fusions are informative and useful markers and their 

identification provides interesting insights into evolutionary biology. 

 Gene fusion is an important event in cancer cell biology and detection of these 

events is important for diagnosis and treatment (Maher et al. 2009). Discovered by 
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Janet Rowley in 1972 (Rowley and Beck 1973) the Philadelphia chromosome is a 

shortened chromosome 22 as a result of reciprocal exchange of DNA between the 

long arms of chromosomes 9 and 22. The exchange results in the 3’ end of the Abl 

gene being moved from chromosome 9 to 22 where it is juxtaposed to a segment of 

the disrupted Bcr gene. The result is a chimeric Bcr-Abl gene, a tyrosine kinase, 

which, due to loss of the N-terminal is stuck in the “on” position causing unregulated 

cell growth.  In their review of the literature Kurzrock et al. found that more than 90% 

of patients with chronic myelogenous leukemia tested positive for the chimeric Bcr-

Abl gene making it an important diagnostic tool (Kurzrock et al. 2003).  

Multifunctional genes with novel properties are being continuously discovered 

in all kinds of areas of biology.  For instance, it has also been shown that 1,680 fusion 

and fission events can be seen across a dataset of 12 fungal genomes, with fusions 

mostly involving genes of similar function (Durrens et al. 2008). Novel gene fusions 

involving aminoglycoside resistance genes have been discovered, including the 

bifunctional aminoglycoside 3" adenyltransferase aminoglycoside 6'-N-

acetyltransferase on a plasmid in a multiresistant Serratia marcesens strain (Centron 

and Roy 2002) and the bifunctional 6’- aminoglycoside acetyltransferase 2” 

aminoglycoside phosphotransferase on the Streptococcus faecalis plasmid (Ferretti et 

al. 1986). In metagenomic studies, bifunctional multidrug resistance genes have been 

identified in soil from an orchard (Donato et al. 2010). In a review of bifunctional 

antibiotic resistance genes and mechanisms of generating bifunctional genes, Zhang 

and co-workers called bifunctional antibiotic resistance elements “harbingers of 

clinically significant resistance mechanisms of the future” (Zhang et al. 2009). 

 The news is not all bad, however.  In some instances, artificial 

generation of multifunctional proteins through the expression of recombinant DNA 
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has had beneficial therapeutic effects.  For instance, a preclinical study of a fusion of 

a cancer cell homing protein and a PKCepsilon inhibitory peptide has shown promise 

in a mouse model for the treatment of head and neck squamous cell carcinoma (Bao et 

al. 2009). Etanercept is a chimeric protein drug for the treatment of autoimmune 

diseases including rheumatoid and psoriatic arthritis. A TNF! blocker, it is created 

though combining tumor necrosis factor receptor (TNFR) with Immunoglobulin G1 

Fc segment (Rapaka et al. 2007). The study of gene sharing is now at the forefront of 

our understanding of biology and can make a significant impact on the theoretical 

underpinning in the emerging field of synthetic biology – the engineering of genetic 

components by designing elements with novel combinations of genes (Khalil and 

Collins 2010). 

In a practical sense, knowledge of gene fusions can be particularly interesting 

for understanding genome evolution and organismal adaptation.  Proteins can form 

functional connections in metabolic pathways, complexes and regulatory networks 

(Szklarczyk et al. 2011). For a long time, these interactions were only detected 

experimentally (Phizicky and Fields 1995) but the explosion of genome sequence 

availability has increased the amount of information for function prediction (Bork et 

al. 1998). Sequence comparison software programs including BLAST (Altschul et al. 

1990) and methods that detect subtle sequence conservation like HMMer (Durbin et 

al. 1998) were used to define proteins. From these analyses, 70-90% of functions for 

encoded proteins could be predicted via annotation transfer from well-characterised 

homologs (Galperin and Koonin 2000).  Bioinformatics and comparative genomics 

also allowed the proposal of various methods to predict functional interactions based 

on the genomic context of their genes. This meant finding a protein’s interacting 

partners based on the position homologs in one or more genomes (Huynen et al. 
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2000). There are 12 recognized computational methods for predicting a protein’s 

interaction partners (Shoemaker and Panchenko 2007). While some predict a physical 

interaction, others, including the Rosetta Stone method (Marcotte et al. 1999), 

predicts a functional association. 

A Rosetta Stone protein is one that can provide us with information about 

other proteins (Veitia 2002). The Rosetta Stone method is based on the knowledge 

that often two interacting proteins in one genome will have homology with a single 

fused protein chain elsewhere in the genome, or in another genome. In other words, in 

those instances where two separate genes A and B match one fused gene in a single 

open reading frame (ORF). In order for a fused gene to become fixed in the genome 

the two component genes need to be able to function in the same compartment of the 

cell, at the same developmental stage and in response to the same stimuli (Patthy 

2008). It has been shown that more often than not, the two component genes show 

functional similarity (Sali 1999; Yanai et al. 2001; Yanai et al. 2002) and are likely to 

be linked in an attempt to reduce the regulational load in the cell for a particular 

process (Enright and Ouzounis 2001). Thus, knowing the function of the fused gene 

provides information about the function of the two component genes. Rosetta Stone 

proteins or fusion genes have proved to be key in finding potential protein-protein 

interactions and metabolic or regulatory networks (Sali 1999; Galperin and Koonin 

2000). 

Marcotte et al (1999) and Enright et al (1999) were among the first to 

determine a functional relationship between two proteins in one genome by finding 

their fused homolog in another genome, thus introducing the “Rosetta Stone” or 

“fusion” method. 
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Marcotte et al (1999) set out with the goal of determining whether protein 

function and protein-protein interactions could be indentified computationally from a 

genome sequence. They asked whether you could predict an physical interaction 

between two separate proteins in one genome that have sequence similarity to 

different segments of the same protein in another genome. They searched for this 

pattern in 4,290 protein sequences from the E. coli K-12 genome. Initially they found 

6,809 pairs (some genes appeared in more than one pair) of non-homologous 

sequences, both members of the pair having significant similarity to a single protein in 

another genome. It was predicted that there must be some fusions that went 

undetected. They defined false negatives as those results that were missing due to a 

lack of homology with a fusion gene and this failure to identify homologs was either 

because of divergence or loss of the fusion gene during the course of evolution. They 

also found that they could not detect fusions of homologous proteins (homologous 

recombination), therefore could not predict an interaction between proteins that were 

paralogous. Other false positives included pairs of genes that were homologous to 

same fusion gene but did not in fact interact. For E. coli they predicted that 82% of 

their results would be false positive. 

In order to substantiate their results Marcotte and colleagues implemented 

three tests of confirmation. The first was to compare the separate component proteins 

in SWISS-PROT (Bairoch et al. 2004) for similar functions. Secondly they compared 

their findings to the literature and databases. Finally they used phylogenetic profiles 

to detect functional interactions by analyzing correlated evolution of proteins.  At this 

point they had a robust predictor of functionally linked proteins, but only a subset of 

the results were physically linked. Following the tests of confirmation, they were left 

with 749 of the original 6,809 links. Detection and removal of promiscuous domains 
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i.e. domains that pair with large numbers of other domain types (Basu et al. 2008), via 

the ProDom database (Corpet et al. 2000) meant that the rate of false positives in their 

results dropped to 65%. 

Enright et al (Enright et al. 1999) also looked for functional and physical 

interactions between proteins that show homology to the same fused protein. They 

used a similar computational, sequence comparison method to Marcotte and his 

colleagues. From 7,768 protein sequences they found 215 proteins in E. coli, 

Haemophilus influenzae and Methanococcus jannaschii that were involved in 85 

suspected fusion events of which 64 were confirmed to be unique fusions while 21 

were false positives. Both Marcotte and Enright’s groups concluded that with more 

computational power they could use the method described to predict interacting 

partners in all complete genomes.  

Though not on a particularly large scale, the fusion method has been used 

since as a predictor of functional linkages. Prolinks (Bowers et al. 2004) is a database 

of protein functional linkages. The creators use four algorithms including the fusion 

method used by Marcotte and Enright to infer protein function and linkages. 

 The fusion method has also been applied to quantifying fusions. FusionDB 

(Suhre and Claverie 2004) provides a strict definition of a fusion protein in an attempt 

to provide a database for in-depth analysis of prokaryotic gene fusion events. A fusion 

event is accepted and placed in the database if it meets the criteria of the fusion 

method.  Suhre and Claverie (2004) use the same computational methods as Marcotte 

and Enright as well as introducing the use of COG annotated genomes to find fusion 

events. These “COG fusions” provide information about the types of genes that are 

likely to fuse. 
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When used to quantify fusions, the fusion method is cumbersome, difficult to 

implement on a large-scale and rife with false positive results (Enright et al. 1999; 

Marcotte et al. 1999; Snel et al. 2000). However, the data pertaining to gene 

relationships can be efficiently represented and explored using network-based models 

of homology. Network structures (Newman 2004) provide a way of examining a gene 

in terms of its relationship to all other genes. In particular networks can elucidate the 

hybrid evolutionary signals in genomes that are often overlooked by tree methods. 

 In this chapter I present a new method of finding fusions using a network-

based algorithm. The algorithm consists of three parts: 

• Reconstruction of a homology network from input data 

• A search through the network to find nodes with a defined set of 

characteristics and 

• A user-friendly report of all fusion nodes detected on the network 

For the first part an all-vs-all similarity search is translated into a network 

structure. The nodes on this network represent the genes of interest and each edge 

indicates a homology relationship between the two nodes or genes it connects. By 

searching for specific structures in the network, we can identify which nodes 

represent fusion genes.   

A fusion gene, by definition, is made up of two individual component genes. 

Each of these component genes may have a set of homologs. By default, any 

homologs of the two component genes should also be homologs of the fusion gene. A 

group of homologs on a graph will be connected to one another and so will form a 

maximal clique; a subgraph on which all nodes are connected to all other nodes and 

which cannot be contained in another clique. The fusion gene node therefore should 

be connected to all cliques formed by the component genes and their homologs 
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(Figure 2.1). By this logic a potential fusion gene will always be found in all maximal 

cliques that contain its components. We refer to the cliques as “component cliques” 

and a node found in more than one component clique is a potential “fusion node”.  

It is important to note however, that our method enriches a dataset in fusions 

of non-homologous genes. In other words we search for nodes that potentially 

represent fusions in which the component genes are not homologs of one another.  

The reason our search terms are so specific is that fusions of related genes are 

extremely difficult to identify on a network. This means that there are examples of 

natural fusion events that will go undetected by this method. False negatives will 

include fusions as a result of tandem duplications or fusions of homologs of any kind. 

On a network, component genes that are homologous to one another will be connected 

to one another. So the nodes representing the fusion and both sets of component genes 

will all be connected to form one maximally connected clique (Figure 2.2). The 

component genes will be indistinguishable as different gene families and therefore as 

separate cliques. 

Nodes on networks that seem to satisfy the condition of being in two cliques 

can be in this position on the network for two reasons: (i) they are fusions, (ii) they 

represent divergence/loss of different parts of an ancestral gene.  We have a lot of 

difficulty in distinguishing these two kinds of gene.  However, when we see nodes of 

this kind, we can be alerted to the fact that they are interesting.  
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Figure 2.1: Network representation of a fusion event: the fusion gene (in red) is part 

of two different cliques, the blue clique is one gene family and the green is another. 

Below the network is a crude representation of how these proteins would align. 

 

 

 

Figure 2.2: Network representation of the fusion of homologous component genes. 

On this network the green nodes represent genes that arose by tandem duplication of 

the blue node genes. The red node is a fusion gene made up of a blue node fused to its 

duplicate green node. Because the duplicate gene is homologous to the original gene 

they are connected on the network and so form one maximally connected subgraph. In 

this case, although the red node is a true fusion, it is not identified as a fusion gene by 

our method. 
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In some cases we will find that, even though the component genes do not 

appear to be related, their entire length may overlap substantially while only small 

regions align with the potential fusion gene. An explanation for this may be that the 

component genes may have once shown homology along their entire length. They 

have now diverged beyond the point where they are similar enough to one another to 

be recognized as homologs in a similarity search, but remain linked by the common 

gene that has retained the ancestral information. These genes, although false positives 

in terms of being fusion genes, can provide us with information about the two 

component genes and should not be ignored.  

In order to understand the conditions under which the algorithm will work 

well and when it is likely to fail we set up a rigorous testing regime. The regime was 

threefold; firstly testing the effectiveness of the algorithm in building a network from 

text input and subsequently finding potential fusion nodes on that network. This was 

achieved using simulated network structures that are representative of how we would 

expect a fusion event to look. The second test involved using simulated sequence data 

to test how well the algorithm deals with a BLAST output and whether it can produce 

a diagrammatic representation of the alignment between fusions and their component 

genes. To demonstrate the utility of the algorithm, we tested it on all genes from the 

genome of E. coli K-12 MG1655.  
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2.2: Method 

 

The following algorithm was implemented in the Python programming 

language to allow the use of Python modules for network manipulation and analysis.  

 

2.2.1: The Algorithm 

 

2.2.1.1: Building the Network Structure 

 

 To construct a network we perform an all-versus-all similarity search of a 

collection of genes using the BLAST algorithm (Altschul et al. 1997) with “–m 8” 

flag. The M8 output consists of 13 tab-delimited columns of information pertaining to 

the relationship between the query and subject genes. This information includes 

Query id, Subject id, percentage identity, alignment length, mismatches, gap openings, 

query start and end, subject start and end, e-value and bit score. 

To build the network we require the information from the first two columns of 

the BLAST output: the query and subject ids. These two columns are used to create a 

graph structure where each gene in our sample is represented as a node and each edge 

on the graph is a statement of homology between the two nodes that it connects. The 

network is constructed from the similarity search output using the python package 

NetworkX (Hagberg et al. 2008). Edges are added sequentially from the similarity 

search results using the “add_edge” command from the NetworkX package. The 

query gene becomes one node, the homologous gene is another node and an edge is 
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drawn between the two, reflecting their homology. “Self hits” i.e. where the same 

gene is both the query and hit in the BLAST are excluded from the network to reduce 

its size in memory and also to reduce the time it takes to search through the network.  

 

2.2.1.2: Finding Cliques on the Network 

 

The completed network is traversed to find all possible cliques. In other words 

the network is searched from one node to next to find any set of nodes that is 

maximally connected. We use algorithm 457 (Bron and Kerbosch 1973) otherwise 

known as the Bron-Kerbosch algorithm after its creators, as adapted by Tomita et al. 

(Tomita et al. 2006) with worst-case time complexity of O(3n/3). An alternative 

strategy can be used, based on matrix multiplication, to list all cliques in polynomial 

time per generated clique (Tsukiyama et al. 1977). In other words an output sensitive 

algorithm which runs in O(mn) time, where m is the number of edges on the network 

and n is the number of nodes. This algorithm can list all cliques in polynomial time 

for graphs in which the number of cliques is polynomially bound. Algorithm 457 

guarantees worst-case time complexity of O(3n/3) and has been shown to be faster than 

its competitors (Cazals and Karande 2008; Eppstein and Strash 2011). 

Algorithm 457 is implemented in the NetworkX python package (Hagberg et 

al. 2008) and is implemented using “find_cliques(G)”, where G is the network you 

wish to search. At its most basic, the Bron-Kerbosch algorithm is a recursive 

backtracking algorithm whereby, given three sets compsub, candidates and not, it 

finds the maximal cliques that include all of the vertices from compsub, some from 

candidates and none from not. By assessing one node at a time the node can either be 
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added to the clique or to the set of nodes that are excluded from the clique. Those 

excluded from the clique must have at least one non-neighbour in the final clique.  

The clique-finding algorithm returns a list of all possible cliques in the 

network. For every possible pair of cliques the nodes are divided into three subsets: 

those only found in clique 1, those only found in clique 2 and those common to both 

cliques. Any node that is common to two or more cliques is considered a potential 

fusion gene.  

 

2.2.1.3: Testing for Overlap 

 

I have implemented a test for overlap of non-homologous genes on putative 

fusion genes. The aim is to see whether the putative fusion gene is a fusion of 

unrelated genes or a gene that, on the network has the same properties as a fusion 

gene but may be the result of a number of evolutionary processes.  

To reiterate, the putative fusion is found in more than one clique and each 

different clique represents a different component gene family. If the putative fusion 

gene is a result of an event whereby two unrelated genes were fused then the different 

component genes should align to different regions of the fusion gene. 

When testing for overlap the putative fusion gene acts as the query and any 

gene suspected to be a component of this fusion is treated a subject in the BLAST 

output. For each component gene the query start and end positions are parsed from the 

BLAST output. In other words we find the start and end positions of the area of 

homology between the fusion and component.   

Figure 2.3 summarizes the alternative alignments that can result from an event 

that is or resembles fusion event on a network. The red line represents the fusion gene, 
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the blue and green lines are the areas of overlap between component genes and the 

fusion: blue is one gene family and green is a different gene family. The black dashed 

lines represent the area of a component gene that is not homologous to the fusion gene. 

Figure 2.3A shows a fusion of unrelated genes. There is no overlap between 

the blue and green areas nor is there overlap between black dashed lines and any of 

the component genes. The simplest explanation of this pattern is that the gene 

represented by the red line is simply a fusion of the blue and the green genes.  

Therefore, we refer to this as a “true fusion”.  

Two different situations are observed where the component genes might 

overlap.  The first is outlined in Figure 2.3B.  In this case, a small section of a fusion 

gene shows homology with two component genes that do not seem homologous to 

one another.  The region of overlap is small.  In this situation, it is not possible to 

explain the result without further analysis.  We identify these kinds of situation and 

put the genes aside for further analysis.  The second situation is outlined in Figure 

2.3C.  In this situation there is quite a substantial overlap between the blue and green 

areas and the full length of the blue genes overlaps with the green genes. This final 

example could be indicative of homology between the component genes, lost through 

divergence. For the following study we disregard these results.    

Our algorithm for finding fusion genes is a highly conservative method and 

has been designed to find fusions of unrelated genes only.  We have not made any 

attempt to find other kinds of fusion genes and such an analysis was outside the scope  
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Figure 2.3: Examples of how a fusion event might look as an alignment. The red 

lines represent fusion genes and the blue and green lines represent the areas of 

alignment from the component gene families to the fusion gene. The black dashed line 

then shows the full length of the component genes, in some cases the area of 

alignment does not span the entire component gene.  
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of this study.  In our study a fusion gene is one in which there is no sign of 

homology between the component genes. 

 

2.2.2: Output 

 

 From here on we deal only with results that revealed fusions of unrelated 

genes or “true fusions”. For each of the results, the algorithm produces a postscript 

file containing a crude drawing of the alignment between the fusion gene and its 

component genes. Again, using the information from the BLAST output we provide 

coordinates for each of the genes involved in the fusion event. The fusion gene is 

represented in red and the length of the line is proportional to the length of the gene. 

Each component gene is added to the diagram.  The part that it homologous to the 

putative fusion gene is coloured either in solid red or solid greed.  Parts of any 

component gene that does not appear to be homologous to the fusion gene are 

represented as a dashed line.  Therefore, many component genes are found in the 

diagram with part of the gene represented as a solid colour and part as a dashed line. 

 The algorithm produces a corresponding information file for each postscript 

diagram. The information file contains the names, functions (if available) and gene 

lengths of the fusion gene and its homologs, i.e. more fusions of the same kind. It also 

contains information pertaining to the genes in each clique – the component genes. 

For each component gene the start and end positions of the area of alignment are 

provided as well as the start and end positions of the full length of the gene. These 

numbers are relative to the fusion gene.  
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Figure 2.4: An example of an alignment diagram and its corresponding information 

file. The “Articulation point” in the information file refers to the fusion gene chosen 

to create the diagram. The red line in the diagram represents this fusion gene. Clique 1 

from the information file is drawn in blue on the diagram and Clique 2 in green. 
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2.2.3: Producing Test Data 

 

 Testing the constituent parts of the algorithm separately allows us to find out 

where potential pitfalls lie and how much time and computational power are required 

to execute each part.  

 

2.2.3.1. Simulated Network Data 

 

 The first simulated dataset was created to test the accuracy of our algorithm in 

(i) constructing a network from a text file, (ii) searching the network and finding all 

maximal cliques and (iii) reporting instances of overlapping cliques. For this test we 

did not use biological data, but simulated data that has properties found in the real 

data. 

 The first step was to simulate a network with structures that represented how 

we would expect a fusion event to look. The input data used to create the simulated 

network consisted of a text file that resembled a simplified BLAST output. In other 

words each line of the text file denotes a homologous relationship between two genes. 

In this case the file contains only the query and subject IDs, given that this is the 

minimum information needed to construct the network.    

 The next step was to execute the part of the algorithm that deals in 

constructing and searching the network. To keep it simple we did not include the test 

for overlap or production of the output diagrams. The output of this test is simply a 

list of nodes that are found to exist in more than one clique, i.e. potential fusion nodes. 
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2.2.3.1. Simulated Biological Data 

 

The second test dataset was created to test the successfulness of our algorithm 

in producing output diagrams that are a true representation of the fusion events. Again 

we used simulated data so that we were aware of how many and what types of fusion 

events had occurred. 

Firstly, we simulated component gene data. In other words we simulated 

multiple sequence alignments for eight different gene families (named gene family 1 

to 8) were generated using Seq-Gen (Rambaut and Grass 1997), a program that 

simulates the evolution of nucleotide or amino acid sequences along a phylogeny, 

using common models of the substitution process.  

The user must provide Seq-Gen with an input tree topology and a number of 

parameters. We used a simple bifurcating tree topology for nine taxa (named taxa 1 to 

9) (Figure A1, Appendix), so each gene family contained nine homologous genes. 

The component genes were simulated using the HKY model with TS/TV rate of 2.5 

and base frequencies set to equal. 

The user may also specify a shape for the gamma rate heterogeneity called 

alpha (-a). The default is no site-specific rate heterogeneity. A low value for this 

parameter (<0.1) simulates a large degree of site-specific rate heterogeneity and as 

this value increases the simulated data becomes more rate-homogenous. Consistent 

with results from a previous study on rate heterogeneity in bacteria (Worobey 2001) 

we alpha set to <1.0.   

The user may also specify a random seed number (-z). Using the same seed 

number with the same input topology will result in identical datasets. If unspecified, 

Seq-Gen generates a seed number based on the number of milliseconds passed since 
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January 1st 1970 (UNIX time). To create eight different gene families it was necessary 

to ensure a different seed for each iteration through random number generation.  

Seq-Gen also requires that the user input the desired length of the alignment (-

l) and the output type (-o) e.g. nexus file format. The sequences in this dataset are 

1,000 base pairs (bp) long and the output type is nexus. The final command line input 

is:  

 

./seq-gen –mHKY –t2 –fe –a0.09 –l1000 –z(random) –on <(tree) >(ouput) 

 

In order to simulate a number of fusion events, seven genes from seven 

different gene families were randomly concatenated. This provided us with three 

simulated fusion genes. Two fusion genes consisted of two component genes from 

two different simulated gene families while a third fusion gene consisted of three 

component genes from three different families. To provide a comparison, we did not 

include genes from the eighth gene family in any of the simulated fusion events.  

We then used Seq-Gen to simulate divergence after a fusion event. The user 

can specify a sequence as the ancestral sequence at the root (otherwise a random 

sequence is used) (-k). We simulated fusion gene families in the same way we 

simulated the eight component gene families, but this time the ancestral sequence was 

specified as one of the three concatenated genes that represent fusion genes and the 

tree contained just 6 taxa (Figure A2, Appendix): 

 

./seq-gen –mHKY –t2 –fe –a0.09 –k1 –l1000 –z(random) –on <(tree) >(ouput) 
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2.2.3.1. Real Biological Data 

 

 After the chief elements had been scrutinized, the final test was to understand 

the functionality of our algorithm. In other words we wanted to see how the algorithm 

would fair when real genes that had been involved in real evolutionary were provided 

as input. Using real data would also allow us to test the effectiveness of the test for 

overlap. We expect to see the effects of different evolutionary processes and so we 

may find putative fusions with overlapping component genes. 

We chose to quantify fusions within the genome for E. coli K-12 MG1655. 

The input for this analysis was 4,145 full genes from the E. coli genome. The network 

would be created from the output of an all-vs-all similarity search of the set of genes 

from within the E. coli genome. From this test we would find out whether the 

algorithm was successful in reporting fusions of unrelated genes within a single 

genome. 
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2.3: Results 
 

2.3.1: Simulated Network Data 

 

Our first analysis of the accuracy of our algorithm focused on constructing a 

network from a text file. From the input text file the algorithm was able to construct 

the network shown in Figure 2.5. The network consists of 41 nodes and 94 edges and 

is divided into five connected components. Each of the connected components is 

representative of fusion event. 

The algorithm was also successful in searching the network and finding all 

maximal cliques. It was reported that there were thirteen cliques in total (Figure 2.5). 

Finally, all instances of overlapping cliques were reported in the form of a list. The 

list contained all nodes found in more than one clique, i.e. all potential fusions. The 

clique-finding algorithm works as expected, at least on small, simple datasets and the 

logic behind detecting fusion node is reliable.  

 

2.3.2: Simulated Biological Data 

 

 To see how well the algorithm can obtain the information needed to produce 

postscript diagrams of the alignment area between fusions and their component genes, 

we used simulated data pertaining to fusion events. The simulated data consists of 72 

gene sequences, from eight different gene families and each sequence is 1,000bps in 

length. In addition to this there are 18 fusion gene sequences relating to three different  
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Figure 2.5: Simulated network. Each of the five components represents a different 

fusion event. Nodes in red represent putative fusion genes and nodes in black 

represent component genes or non-fusion genes. One of the components does not 

contain a red node. This component represents a fusion event whereby the two 

component genes are homologous to one another, e.g. a fusion as a result of 

duplication. Using network structure analyses there is no way to detect which node is 

the fusion in this case. The grey circles each encompass one maximal clique. The 

nodes that fall into the overlapping area of two or more circles are fusion nodes 
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fusion events. Two of the fusion genes are 2,000bps in length while the third is 

3,000bps long. That is a total 90 genes.  

The all-vs-all BLAST search returned 1,512 homologous relationships. The 

network produced (Figure 2.6) from this BLAST output consists of 90 nodes and 

1,512 edges. This network has four components, three of which are representative of a 

fusion event. The fourth component represents the eighth gene family, of which no 

members are involved in any of the simulated fusion events.  

We know from the simulated network data that the algorithm successfully 

detects fusion nodes. Our second analysis of the accuracy of our algorithm is focused 

on the ability of the algorithm to use information from the BLAST output to produce 

a diagrammatic representation of the alignment between the fusion genes and its 

components. Figures 2.7-2.9 shows the three diagrams produced by the algorithm. 

Each diagram has a corresponding information file containing the names, functions (if 

available) and lengths of the fusion and component genes. It also contains the start 

and end positions of the alignment areas. It can be seen from the information files that 

each diagram represents a different simulated fusion event. Figure 2.7 shows the 

diagram and information file for the fusion gene called F3_Taxon5,  Figure 2.8 is of 

fusion F1_Taxon5 and 2.9 is of fusion F2_Taxon5. Thus, for every fusion event that 

we simulated, the algorithm was successful in extracting the necessary alignment 

information from the BLAST output and subsequently producing a diagram of the 

alignment. 
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Figure 2.6: Network constructed from simulated sequences data. The red nodes 

represent the fusion genes. Each of the other colours corresponds to a different gene 

family. The fusions in A and B are comprised of two component genes while in C the 

fusion is comprised of three component genes. In D there is no fusion to report. 
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Figure 2.7: Diagram and information file for fusion F3_Taxon5.  
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Figure 2.8: Diagram and information file for fusion F1_Taxon5. 
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Figure 2.9: Diagram and information file for fusion F2_Taxon5 
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2.3.3: Real Biological Data 

 

Our final analysis of the accuracy of our algorithm includes testing the 

execution of the overlap test as well understanding the functionality of our algorithm. 

For this we use all 4,145 genes from the genome for E. coli K-12 MG1655.  

The 17,181,025 (4,145 X 4,145) BLAST searches returned 11,152 

homologous pairs. Removal of “self hits” reduced this number of homologous pairs to 

6,805. The reduced BLAST output produced a network of 1,565 nodes and 6,805 

edges (Figure 2.10). This network consists of 458 connected components, the largest 

of which contains 76 nodes and 2,485 edges. It took only seconds for the algorithm to 

search the network, report all cliques and perform pairwise comparisons of said 

cliques. 

For this dataset the algorithm returned 10 potential fusion genes. Of the 10 

potential fusions, two were “true fusions”, i.e. there was no overlap between the 

different component genes (Figure 2.11). For the other eight results we cannot be sure 

of their evolutionary history. We can however, be sure that our algorithm is successful 

in detecting overlap between the component genes (Figure 2.12). 
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Figure 2.10: Network representation of the all-vs-all BLAST of all 4,145 genes from 

the genome of E. coli K-12 MG1655. 
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Figure 2.11: Diagram and information file for a fusion of non-overlapping genes 

from E. coli.  
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Figure 2.12: Diagram and information file for a result with overlapping genes from E. 

coli.  
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2.4: Discussion 

 

 In this chapter, I report the development of an algorithm to detect fusions of 

unrelated genes using network structure analysis. The attributes of fusion genes render 

them inappropriate for constructing branching structures of evolution. By their very 

nature, fusion genes originate from multiple sources, trying to represent their 

evolution in a strictly vertical way would result in ambiguities. By constructing 

networks of evolutionary patterns we create an all-encompassing view of the 

relationships between genes from which we can detect fusion events. We expect that 

there will be instances of fusion genes that are undetectable through network structure 

analysis. Fusions of homologous genes evade our method of detection.  

 Notwithstanding these elusive fusion genes, we have observed some desirable 

properties of this approach that make it a useful in quantifying fusions within a 

specified dataset. Previous fusion detection algorithms rely on non-overlapping, side-

by-side BLAST matches of two genes from a reference genome to a single open 

reading frame (ORF) in a target genome. As with our method, fusions of homologous 

genes go undetected. However, perhaps the most striking shortcoming of fusion 

detection algorithms is that the results are highly limited by the input data. A 

reference genome is always chosen and compared to a target genome. This means that 

component genes are strictly limited to the reference genome in question and fusion 

genes to the target genome. Fusions of genes in the target genome that are composed 

of genes from outside the source genome are entirely overlooked. By representing all 

gene relationships on a network we remove the restriction of component genes 

originating in one specified genome. The all-versus-all BLAST from which the 

network is formulated ensures that all genes are described by their relationships to all 
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other genes. In theory our method has no limitations in the detection of fusions of 

unrelated genes, given any number of input genomes we should be able to describe all 

gene relationships and thus find all potential fusion genes. Unfortunately, 

computational power is highly limited. The clique-finding element of the algorithm 

alone has worst-case time complexity of O(3n/3), as the network size increases it 

becomes impossible to traverse its entirety. In this chapter we did not reach the limits 

of computational power, this is discussed further in chapter 3.  

 Ultimately we have presented a method with the potential, if there were 

enough computational power, to report all instances of fusions of unrelated genes. We 

have proven the accuracy of our method through a number of tests. We are confident 

that we can take input data, create a true representation of that data on a network and 

as a matter of course, find structures pertaining to fusion events within the network. 

This confidence persists from using simulated data invented from our understanding 

of fusion events all the way to using real biological data that has undergone real 

evolutionary events. We have formulated a way to represent the data in a user-friendly 

format in the hope that this algorithm can be developed into a practical software 

program. 

 There is much room for improvement on our method. In light of the problems 

in searching very large networks we began to evaluate ways of reducing the size of 

the network in memory. By splitting the network into smaller parts the algorithm 

could be executed in parallel on all parts. However, in preliminary tests of this we 

found that the giant connected component of the network grows exceedingly large as 

more data is added. Splitting a connected component into smaller parts runs the risk 

of loosing information concerned with important relationships. Nevertheless, we are 
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contemplating alternative ways of searching for fusion genes on a network structure, 

which I shall discuss in more detain in Chapter 5. 

  To conclude, in this chapter I present a method of detecting fusions of 

unrelated genes using the network structure analysis. So far I have proven that this 

method is accurate in reporting fusion from simulated data and biological data. The 

functionality and limitations of this method are discussed further in the following 

chapter.   
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Chapter 3 - Using FUSION: Homology Network Properties 

Reveal Fusions in S. enterica 

 

In chapter two, I presented the algorithmic basis for a new means of 

discovering fusions of unrelated genes. It was shown that this produced favourable 

results when used with simulated data. In this chapter I will present results obtained 

from using the network based approach to find fusion genes in bacterial genomes.  

 

3.1: Introduction 

 

Fusion studies have often recognised and described individual cases of fusion 

genes (Ferretti et al. 1986; Zakharova et al. 1999; Tenorio et al. 2001). These studies 

provide little information in terms of how often this phenomenon is occurring. With 

the accumulation of completely sequenced genomes it has become possible to study 

evolution on a genome-wide scale. However, while many have moved on to 

quantifying fusions in completely sequenced genomes (Snel et al. 2000; Kummerfeld 

and Teichmann 2005) a clear and detailed picture of gene fusion in genomes is still 

lacking. Although gene fusion estimates have been made across a limited number of 

genomes, problems such as false positive results (Enright et al. 1999; Marcotte et al. 

1999; Snel et al. 2000) and sampling bias  (Enright et al. 1999; Marcotte et al. 1999; 

Suhre and Claverie 2004).  
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Snel and colleagues (Snel et al. 2000) obtained estimates of gene fusion and 

gene fission of orthologous genes. They found that, in general, there were more 

fusions than fissions per genome. They predicted that for an E. coli strain containing 

4,290 genes, there were 33 fusion genes, which is less than 0.8% of the genome. 

Somewhat in agreement with Snel et al., was a study by Kummerfeld and colleagues 

(Kummerfeld and Teichmann 2005). In 131 genomes from all three domains of life, 

they identified 2,869 multi-domain proteins as a single protein in certain organisms 

and as two or more smaller proteins in other organisms. This suggests an average of 

21.9 fusions per genome. They also concluded that the dominant process for evolution 

of composite proteins and their components is fusion, occurring four times more often 

than fission.  

Pasek et al. (2006) used ‘DomainTeam’, dedicated to the search for 

microsyntenies of domains to find ‘reshaped proteins’ – proteins encoded by genes 

derived from a common ancestor that have evolved by modular assembly of domains. 

From 28 bacterial genomes they found 141 sets of homologous proteins that contained 

at least one ‘reshaped protein’. They quantified the relative contribution to these 

events and found that, in 38 cases, gene fusion was the driver of evolution of the 

multi-domain protein. In conclusion they estimated that the contribution of fusion 

events to the evolution of multi-domain proteins is at least 27%. 

 It is evident that fusion events are occurring in bacterial genomes, and in many 

cases it is frequent (Enright, Iliopoulos et al. 1999; Suhre and Claverie 2004; Pasek, 

Risler et al. 2006; Fani, Brilli et al. 2007). The bigger question concerning fusion 

events is related to the types of gene that can or cannot, or are more or less inclined to 

fuse.  
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 Tsoka and Ouzounis (Tsoka and Ouzounis 2000) had noted that most pairs of 

fusion component proteins of known function were involved in metabolic pathways 

(Enright et al. 1999). They retrieved 636 protein monomers or protein subunits from 

multimeric enzymes involved in small-molecule metabolism from the EcoCyte 

database (Karp et al. 1999). When they compared these proteins to 22 genomes they 

found 106 components that were involved in 96 fusion events. It would appear that 1 

in 6 metabolic enzymes in E. coli are involved in a fusion event. Finally, when 

compared to control sets, they showed that metabolic enzymes from E. coli exhibit a 

threefold preference in fusion events. 

 Yanai et al. (2001) looked for fusion links, i.e. pairs of genes that have an 

alignment of at least 80 residues with the same protein but have a max overlap of 20 

residues with one another. They found in the parasitic bacterium Mycoplasma 

genitalium, a genome of only 468 genes that there was 20 fusion links. From the 

genes involved in the 20 links they found 5 performed adjacent steps in metabolic 

pathways and 3 genes encoded sequential steps in glycolysis. Another 3 genes 

encoded RNA helicases.  

 The FusionDB (Suhre and Claverie 2004) website provides a matrix that 

displays the number of functional COG pairs that are found to have fused in a given 

set of genomes (web link 7). To create the matrix, Suhre and Claverie checked all 

annotated genes from 51 bacterial and archaean genomes against 89 fully sequenced 

bacterial and archaeal genomes. Two genes from a given reference genome were 

considered to be involved in a putative fusion event if they both matched the same 

open reading frame (ORF) in the target genome as their highest scoring BLAST hit. 

Any putative fusion events for which there was COG category information available 
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were added to the matrix. The matrix represents 12,724 distinct pairs of Clusters of 

Orthologous Groups of proteins (COGs). 

Although there are fusions from all 20 categories in the matrix, those involved 

in metabolism appear to be overrepresented in comparison. It can also be seen that 

certain types of genes seem less likely to fuse together. For instance, from their results, 

Suhre and Claverie find that no instances where genes involved in energy production 

and conversion have fused with genes involved in cell motility. In fact there are very 

low numbers for fusions of genes involved in cell motility with any other type of gene, 

while genes involved in energy production and conversion appear to fuse much more 

readily. 

 The impact of known gene fusions has been particularly dominant in the 

emergence of novel antibiotic resistance genes. Since their discovery in 1910, the 

medical significance of antibiotics has been marred by the emergence of resistant 

microbes (Donadio et al. 2010). Antibiotic-resistance is a natural and ancient 

phenomenon. Genes for resistance to beta-lactam, tetracycline and glycopeptides were 

discovered in DNA from 30,000 year-old permafrost sediments (D'Costa et al. 2011). 

However, the evidence is overwhelming that evolutionary pressure from overuse of 

antibiotics has played a major role in the development of multidrug resistance 

(Livermore 2005). By the 1990s reports were issued warning people against overuse, 

misuse and use in animal feeds as growth promoters (Soulsby 2005). Despite knowing 

how it was caused, reducing the use of antibiotics did not reduce the resistance 

potential of bacteria (Wise 2004). 

Bacteria outnumber humans by a factor of 1022 and they can go through as 

many as 500,000 generations to every 1 of ours (Schaechter et al. 2004). Today we 

find ourselves in the mist of multi-drug resistant “superbugs” that show no sign of an 
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evolutionary plateau (Spellberg et al. 2008). One strain in particular has epitomized 

the struggle against antibiotic resistance and found itself very much in the public eye. 

Staphylococcus aureus occurs as commensal on humans under ordinary conditions, 

however it does have the ability to cause infection and acquisition of resistance genes 

has rendered this organism a lethal pathogen (Foster 2004). The introduction of 

Penicillin in 1940 drastically reduced the number of S. aureus infections but only two 

years later resistant strains were discovered (Rammelkamp and Maxon 1942). 

Methicillin was introduced to treat S. aureus in 1959 and by the 1960s several isolates 

had acquired resistance (Barber 1961; Rolinson 1961). The mecA gene responsible 

for methicillin resistance, is part of a mobile genetic element found in all methicillin 

resistant S. aureus (MRSA) strains (Lowy 2003). This gene is not native to S. aureus 

but was acquired from an extraspecies source (Beck et al. 1986).  

The human gut is a reservoir for antibiotic resistance genes (Cheng et al. 

2012). Many of the bacteria living within the human microbiome were once 

considered commensal and relatively harmless but have now have emerged as 

multidrug resistant, disease-causing organisms (Sommer et al. 2009). Bacteria living 

the same environment can share genes easily and it has been shown that the intestinal 

microbiota plays a role in the development and transmission of antibiotic resistance 

via HGT (Donskey 2004). Despite their low inherent pathogenicity, the gram-negative 

opportunist strains are problematic in intensive care (Livermore 2009).  

Bacteria are more commonly making use of bi-functional enzymes: single 

polypeptides with multiple catalytic activities by separate active sites (Ferretti et al. 

1986; Deka et al. 2002; Allen et al. 2008; Zhang et al. 2009) Beta-Lactamases 

catalyze the hydrolysis of beta-lactam antibiotics rendering the antibiotics deactivated. 

More recently, as a result of evolution in response to antibiotic chemotherapy, beta-
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lacatamases have been found to be constituents of fusion proteins with multiple types 

of resistance. The first bi-functional beta-lactamase was discovered in 2002 (Deka et 

al. 2002). Tp47, an enzyme possessing two active sites, came from T. palladium, the 

causative bacterium of syphilis. One of the enzymes active sites is a beta-lactamase 

while the other binds to penicillin. Despite being the most abundant membrane 

protein in Treponema palladium, its precise function is unknown; its activity may be 

insufficient in antibiotic resistance. However, there is no doubt surrounding the 

resistance potential of the bi-functional beta-lacatmase blaLRA-13 (Allen et al. 2008). 

This enzyme was derived from E. coli in soil and confers significant levels of beta-

lactam resistance. The N and C terminus of the gene encoding this enzyme both show 

homology to different classes of beta-lactamase. While the N-terminus domain is 

involved in amoxicillin, ampicillin and carbenicillin resistance, the C-terminus 

domain encodes resistance to cephalexin. Together the domains confer a resistance to 

piperacillin.      

Aminoglycosides are a useful antibiotic. They bind to the 30S ribosomal 

subunit and disrupt bacterial translation (Mingeot-Leclercq et al. 1999).  

Aminoglycoside modifying enzymes are usually monofunctional but a number of bi-

functional ones have arisen through fusion events (Donato, 2010, Dubois, 2002, 

Ferretti, 1986, Kim, 2006, Mendes, 2004). They often have two different 

aminoglycoside-modifying activities as separate domains of the same gene (Zhang et 

al. 2009). The first to be discovered was the aacA-aphD gene that encodes the bi-

functional enzyme 6’-aminoglycoside acetyltransferase (AAC-6’) -2” -

aminoglycoside phosphotranferase (APH-2”) (Ferretti et al. 1986).  This gene, being 

the resistance determinant of the S. aureus transposon Tn4001, which specifies 

resistance to gentamicin, tobramycin and kanamycin has been cloned and shown to 
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express these resistances in E. coli. It has also been found to mediate gentamicin 

resistance in Enterococcus faecalis. When the AAC(6’)-APH(2”) enzyme from 

Streptococcus plasmid was cloned in E. coli it was found that the N-terminal was 

homologous to chloramphenicol acetyltransferase of B. plumilus. The C-termial was 

homologous to aminoglycoside phosphotransferase of Streptomyces fradiae.  

From 2002 to 2010 four more bi-functional proteins were found to be involved 

in aminoglycoside resistance (Donato, 2010, Dubois, 2002, Kim, 2006, Mendes, 

2004).  The novel proteins resulted from the fusion of a highly specified domain to a 

domain with a much broader substrate acceptance. The fused protein shows a broader 

aminoglycoside-modifying enzyme activity compared with either protein alone. One 

of these fusion proteins was found in the soil of an apple orchard (Donato et al. 2010). 

Of 13 antibiotic resistance genes that were found, 2 encoded bi-functional proteins. 

While one was involved in aminoglycoside resistance the other conferred resistance to 

ceftazidine. The ceftadizine resistant bi-functional protein contains a natural fusion 

between a predicted transcriptional regulator and a beta-lacatmase, the first 

discovered of its kind.   

The overall aim of this chapter is to discover how many and what kinds of 

fusions can be found in bacterial genomes. First of all, we wished to understand the 

extent to which gene fusion is a feature of one particular bacterial genome – that of S. 

enterica subsp. enterica serovar Paratyphi A. This particular strain of Salmonella is 

the second most prevalent cause of typhoid, responsible for one third of cases or more 

in southern and eastern Asia (McClelland et al. 2004). Salmonella belong to the 

YESS group, a group of medically and scientifically important bacteria including the 

genera Yersinia, Escherichia, Shigella and Salmonella. This group contains many 

pathogens and has had an interesting evolutionary history. It has been difficult to 
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describe the evolutionary relationships between these species.  Depending on the 

method of analysis and the depth of the evolutionary history under consideration, 

several different kinds of conflicting results can be recovered for this group (Haggerty 

et al. 2009).   

As discussed in chapter 2, we make use of algorithm 457 (Bron and Kerbosch 

1973) otherwise known as the Bron-Kerbosch algorithm in order to find fusion genes. 

The worst-case time complexity of the algorithm is O(3n/3), which means that the 

larger the dataset, the larger the network will be and it will take longer to search the 

network for cliques. To overcome the methodological hurdle of how to do this 

analysis we restrict the size of the dataset. The optimal sized dataset consists of 

approximately 20,000 genes, the equivalent of four average sized bacterial genomes. 

Our initial dataset was sampled from the YESS group and contained the genomes for 

E. coli str. K-12 substr. MG1655, Shigella sonnei Ss046, Yersinia enterocolitica 

subsp. enterocolitica 8081 and Salmonella enterica subsp. enterica serovar Paratyphi 

A.  

In addition to the initial dataset, sampled from the YESS group, we 

constructed a further four datasets consisting of quartets of different genomes. The 

genomes were selected from the major divisions of bacteria as described by Ciccarelli 

et al (2006) (Figure A3, Appendix). They ranged from shallow relationships between 

four different gamma-proteobacteria, to much deeper relationships between species 

from four different major divisions (Table 3.1). The genome for Salmonella enterica 

subsp. enterica serovar Paratyphi A was included in all five datasets so that later we 

could predict the total number of fusions in a genome. 

 We also aim to discover whether there is a bias in the kinds of gene fusions we 

detect. To date there have been many studies to estimate the frequency of gene fusion 
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events and to find out what types of genes are likely to fuse. However, a clear picture 

of gene fusion in bacterial genomes is still lacking, despite the availability of 

enormous numbers of genome sequences. In this chapter I attempt to gain further 

understanding of gene fusion in bacteria using an approach that, has not been used 

before.  

 The objective of this chapter was to focus on one genome – a strain of 

Salmonella – and using a variety of triplets of additional genomes, estimate how many 

true fusion genes are present in this target genome.  Given the computational 

limitation of approximately four prokaryotic genomes, or 20,000 genes, it was not 

possible to perform an analysis with, say, several hundred genomes.  Therefore, by 

using an approach that analysed the Salmonella genome from the perspective of a 

variety of other genomes, we were able to monitor the rate at which we discovered 

new gene fusions and we could quantify the overlap in fusion discovery in the 

Salmonella genome when we used different combinations of other genomes. 
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Table 3.1: List of genomes, their accession number in GenBank and the dataset they 

were used in. 

 
 
 

Species 

Accession 

Number 

Used in 

datasets… 

Salmonella enterica subsp. enterica serovar Paratyphi  NC_000913 1, 2, 3, 4, 5 

Escherichia coli str. K-12 substr. MG1655 NC_011147 1 

Shigella sonnei Ss046   NC_008800 1 

Yersinia enterocolitica subsp. enterocolitica 8081 NC_007384 1 

Petrotoga_mobilis_SJ95 NC_010003 2 

Streptomyces_coelicolor_A3(2) NC_003888 2 

Leptospira_borgpetersenii serovar Hardjo-bovis L550 NC_008508 2 

Pseudomonas_aeruginosa_PAO1_chromosome NC_002516 3 

Shewanella_oneidensis_MR-1 NC_004347 3 

Actinobacillus_pleuropneumoniae_L20 NC_009053 3 

Streptobacillus moniliformis NC_013515 4 

Meiothermus ruber NC_013946 4 

Pirellula staleyi NC_013720 4 

Synechocystis sp. PCC 6803 NC_000911 5 

Alkaliphilus oremlandii NC_009922 5 

Prosthecochloris vibrioformis NC_009337 5 
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3.2: Materials and Methods 

 

3.2.1: Runtime analysis 

 

In chapter 2 I described our analyses of the accuracy of our algorithm. These 

analyses focused on the ability of the algorithm in constructing a network from a text 

file, in obtaining the information needed to produce postscript diagrams of the 

alignment area between fusions and their component genes and finally in the 

execution of the overlap test. In this chapter we have the opportunity to further our 

understanding of the functionality of our algorithm and its ability to accurately find 

fusions in much larger dataset than those presented in chapter 2. In addition we obtain 

data insights relating to the effect of input data size and complexity and the time it 

takes to execute all parts of the algorithm on the datasets.  

 

 

3.2.2: Quantifying fusions in a dataset 

 

Five datasets, each containing all annotated genes from the genome for S. enterica 

subsp. enterica serovar Paratyphi A and three additional bacterial genomes were 

constructed for this study. For our initial analysis we simply execute the algorithm 

described in chapter 2 on each of the five datasets in order to obtain an estimate of the 

frequency of fusion events within a subset of bacteria. By using datasets with different 

degrees of relatedness we hope to see whether fusion events occur more readily 
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within a group of genomes that are more closely related than within a group that is 

quite divergent. 

 

3.2.3: Overlap between datasets 

 

When we obtain a list of fusions found in each of the dataset we expect that there will 

be a certain amount of overlap. The same fusion genes could be found in more than 

one analysis for a number of reasons. Firstly we used the same Salmonella genome in 

all five of our datasets. We may find that there is a fusion gene that is found in the 

Salmonella genome and both of its component genes are also found in the Salmonella 

genome. No matter what additional genomes we include in our analysis this particular 

fusion will be present and therefore detectable. Similarly if a fusion gene in the 

Salmonella genome is made up of component genes that are universally distributed 

throughout the bacteria, then the fusion and its components will always be contained 

in the data. There is also the possibility of finding orthologous fusion genes. A fusion 

gene found in a genome in dataset 1 could be homologous to a fusion gene found in a 

different genome in dataset 2. This may be the result of a HGT event or the fusion 

gene may have arisen from multiple independent origins.   

Within each dataset we are also likely to find paralogous fusion genes (in-paralogs), 

e.g. as a result of a duplication event within a genome. It is also very likely that a 

fusion gene in one genome in a dataset will have homologous fusion genes in other 

genomes in the same dataset. In order to quantify the number of unique fusion genes 

in a given dataset we count each unique fusion. In other words, within each dataset 

just one fusion gene will account for itself and all its fusion gene homologs. Finally, 

to quantify the number of unique fusions across all five datasets we compare all of the 
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unique fusion genes from each dataset in an all-vs-all similarity search. When two 

genes from different datasets are hit in the BLAST search we consider them the same 

fusion, and therefore contained in the overlap of the two datasets. 

 

3.2.4: Estimating the number of fusions in S. enterica subsp. enterica serovar 

Paratyphi A 

 

We want to use four different analyses of Salmonella gene fusions.  Each 

analysis should provide a particular perspective on what genes have been involved in 

a fusion event.  Detecting these fusions will naturally require that the two donor genes 

are present in the dataset as well as at least one instance of the fusion gene.  We 

wanted to compare the different analyses in terms of the overlap in identified fusion 

genes.  If each analysis found completely different fusion genes, then this would tell 

us one thing and if each analysis found the exact same fusion genes, it would tell us 

something different.  Our goal was to find and record gene fusions, the rate at which 

we find them and the biochemical and physiological functions of their protein 

products. 

The numbers of Salmonella fusions found in all datasets are then used to make 

a prediction of the overall number of fusion gene in the Salmonella genome. We use a 

“mark and recapture” population size estimation method called the Schnabel estimator 

to predict the number of fusions overall in the Salmonella genome. The Schnabel 

estimator is defined as: 
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      1. 

 

 

Where Ct is the total number of individuals caught in sample t or in our case the total 

number of Salmonella fusions found in the current dataset. Rt is the number of 

individuals already marked when caught in sample t or for our purposes, the number 

of Salmonella fusions found in the current dataset that were already found in the 

previous datasets. Mt is the number marked individuals in the population just before 

the current sample was taken or the number of Salmonella fusions found in all 

datasets so far. S is the number of the sample in the series, i.e. the number of the 

dataset.  

 Finally we established an estimate of the number of unique fusions that could 

be discovered as more datasets are analysed. We begin with the results from dataset 1 

and as we include the results from further datasets we count the number of fusions 

that we had not already see in previous datasets. We fit the increasing numbers of new 

fusions found as each dataset was added to a logarithmic curve. At the plateau of the 

curve we find an estimate of the number of unique fusions within the Salmonella 

genome.  
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3.2.5: COG category enrichment of fusion genes 

 

As well as estimating the frequency of fusion genes in a genome, we hoped to 

discover which kinds of genes come about as a result of fusion events. In other words 

for the fusion genes that we found in our five datasets we want to find out which 

functional categories they are involved in. 

In order to find the functional category to which each fusion gene belongs, we 

performed a similarity search of fusion genes against a database of COG-categorised 

genes. For each fusion gene we found the functional category to which it was most 

likely to belong. Our final analysis involved discovering whether there are specific 

functional categories to which most fusions belong. In other words of the 22 COG 

categories, we want find out which contain more fusions than expected and which 

contain fewer than we would expect. 

In order to evaluate whether some categories of genes are over represented or 

underrepresented in the collection of fusion genes, we carried out a chi-squared test.  

The “expect” value for this test was obtained by first of all categorizing all genes in 

all datasets according to their function.  We calculated the percentage of genes from 

each dataset that falls into each category.  We also obtained the functions of the fusion 

genes and expressed these as a percentage of overall functions.  We could then 

compare these values using a chi-squared test to see if there was a significant 

difference between the two values. 
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3.3: Results 

 

3.3.1: Network of genes in each dataset 

 

 As discussed in chapter 2, the first step of the FUSION algorithm is the 

construction of a network from an all-versus-all BLAST search of all annotated genes 

from the specified genomes of the dataset. Different datasets yield networks of 

different size and shape. In dataset 1, for instance there are 16,415 genes, which 

means there are 16,415 nodes on the network. The network constructed from gene 

relationships in dataset 2 has 16,443 nodes, 28 more than dataset 1. However, the 

number of edges on the network of dataset 1 exceeds the number of edges on the 

network of dataset 2 by 93,050. Despite there being fewer genes in dataset 1, the 

network is far more highly connected than that of dataset 2. This is explained by the 

fact that genomes used in dataset 1 are more closely related than the genomes used in 

dataset 2. All of the genomes in dataset 1 come from the YESS group, which contains 

4 enteric Gamma-proteobacterial species. Whereas the genomes in dataset 2 have 

been sampled from 4 different phyla of bacteria- one from the Thermatoga, one from 

the Actinobacteria, one from the Spirochaetes and the Salmonella genome from the 

Proteobacteria. The sizes of each network in terms of nodes and edges are displayed 

in table 3.2. 
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Table 3.2: Sizes of each network, constructed from an all-versus-all BLAST search of 

all annotated genes in each dataset. The size of each network is reported as number of 

nodes and as number of edges. 

  

Dataset Taxonomy No. Nodes No. Edges 

1 Yersinia,!Shigella, Escherichia 
coli, Salmonella !

16,415 171,315 

2 Leptospira>!Streptomyces>!
Petrotoga>!Salmonella!

16,443 78,263 

3 Salmonella>!Pseudomona>!
Shewanella>!Actinobacillus!

15,975 89,567 

4 Salmonella>!Streptobacillus>!
Meiothermus>!Pirellula!

13,239 54,383 

5 Salmonella>!Synechocystis>!
Alkaliphilus>!Prosthecochloris!

11,842 47,459 
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3.3.2: Runtime Analysis 

 

In chapter 2 we used relatively small datasets, the largest yielded a network of 

4,145 nodes and 11,152 edges. When we executed the algorithm on such a small 

dataset it completed in just seconds. Our intention for the analyses in this chapter was 

to use as many genomes as possible. Unfortunately we found that when we attempted 

to execute the algorithm on a preliminary dataset containing large numbers of 

genomes it was unable to find results in real time. This is most a likely a result of the 

clique-finding step of the algorithm that has a worst-case time complexity of O(3n/3). 

This means that the larger the dataset, the larger the network will be and it will take 

longer to search the network for cliques. Through trial and error we found that the 

algorithm will complete in real time on a dataset of four genomes or approximately 

20,000 genes. The size of each dataset in memory and the runtime for the algorithm 

on each dataset are displayed in table 3.3. 

 

3.3.3: Fusion Genes 

 

Overall the analyses of 16 different genomes yielded 157 fusion genes that 

were unique within their dataset. In other words each fusion event is only counted 

once, even if there are multiple instances of the fusion gene in the dataset. The 

number of unique fusions per dataset is displayed in table 3.4.  
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Table 3.3: Size in memory and runtime for each of the five datasets. 

 

 

 

 

Table 3.4: Number of fusion genes found in each of the five datasets. Fusion genes 

reported here are fusions of unrelated genes and unique within their dataset. 

 

 

Dataset Taxonomy Size in memory 

(megabytes) 

Runtime (hours) 

1 Yersinia,!Shigella, Escherichia coli, 
Salmonella !

11.2 13.5 

2 Leptospira>!Streptomyces>!Petrotoga>!
Salmonella!

7.2 13 

3 Salmonella>!Pseudomona>!Shewanella>!
Actinobacillus!

9.1 19 

4 Salmonella>!Streptobacillus>!Meiothermus>!
Pirellula!

3.7 19 

5 Salmonella>!Synechocystis>!Alkaliphilus>!
Prosthecochloris!

3.4 10 

Dataset 1 2 3 4 5 

No. Fusions 33 29 20 41 34 
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3.3.4: Overlap Between Datasets 

 

 When the datasets were tested for overlapping fusions it was shown that only 

two were common to every dataset. Just nine of the 157 fusions were found in more 

than one dataset. The overlap between all five datasets is represented in the five-way 

Venn diagram (Figure 3.1).  
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Figure 3.1: Five-way Venn diagram representing the overlap of fusion genes between 

the five datasets.  
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3.3.5: Quantifying Fusions in a Genome 

 

 Overall, we found 186 fusion genes in the Salmonella genome, distributed 

among the five datasets as shown in table 3.4. However, there is a substantial amount 

of overlap between the datasets (Figure 3.2), in other words the same Salmonella 

fusion gene is often detected in more than one dataset. In fact 16 of the Salmonella 

fusions are found in all five datasets and only 24 Salmonella fusions are unique to one 

dataset. 

In order to gain an estimate of the number of fusion genes in the Salmonella 

genome we used the numbers of fusions found in each of the five datasets (Table 3.6) 

in a mark and recapture population size estimation method called the Schnabel 

estimator: 

 

 

  

From the Schnabel estimator we predict that the Salmonella genome contains 112.7 

fusion genes. There are 4074 genes in this particular strain so this equates to 2.8% of 

the genome. 

 To add support to our estimation of the number of fusions in Salmonella, we 

quantified the number of new unique fusions found after each dataset is analysed. The 

best-fitting curve for the data has the equation y = 13.733ln(x) + 45.05 (Figure 3.3). 

The data plateaus at approximately 118 fusion genes, in close agreement with our 

estimation from the capture-recapture method. 
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Table 3.5: Number of Salmonella fusion genes found in each of the five datasets. 

Fusion genes reported here are fusions of unrelated genes found specifically in the 

Salmonella genome. 

Dataset 1 2 3 4 5 

No. Fusions 46 30 35 39 36 

 

 

 

 

 

 

Figure 3.2: Five-way Venn diagram representing the overlap of Salmonella fusion 

genes between the five datasets.  
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Table 3.6: Numbers used in the Schnabel estimator to predict the number of fusion in 

the Salmonella genome. Where t is the dataset number, Ct is the total number of 

individuals caught in sample t or in our case the total number of Salmonella fusions 

found in the current dataset. Rt is the number of individuals already marked when 

caught in sample t or for our purposes, the number of Salmonella fusions found in the 

current dataset that were already found in the previous datasets. Mt is the number 

marked individuals in the population just before the current sample was taken or the 

number of Salmonella fusions found in all datasets so far. 

 

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 

Ct 46 30 35 39 36 

Rt 0 23 28 35 32 

Mt 0 46 76 111 140 
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Figure 3.3: Increasing numbers of new fusions as more datasets are analysed. 
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3.3.6: COG function enrichment 

 

 The results of the COG enrichment analysis are displayed in table 3.7 and 3.8 

on Figure 3.4. We found that for all 5 datasets there were significantly more than 

expected fusions (highlighted in black in tables 3.7 and 3.8 and marked with stars on 

Figure 3.4) involved in defense mechanisms, this would include mechanisms of 

antibiotic resistance. For 3 of the 5 datasets, Carbohydrate transport and metabolism 

was significantly enriched.  

There are a few categories for which there are very few or no fusions, these 

include RNA processing and modification (significantly less than expected results are 

highlighted in orange in tables 3.7 and 3.8). 
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Table 3.7: Number of fusions in each COG category for datasets 1 to 3. The expected 

value is calculated as the expected number of fusions in a given category based on the 

percentage of the all the genes in the dataset that fall into that category. Black boxes 

indicate that there are more fusions than expected for that category and orange boxes 

indicate that there are less than expected fusions in that category. 
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Table 3.8: Number of fusions in each COG category for datasets 4 and 5. The 

expected value is calculated as the expected number of fusions in a given category 

based on the percentage of the all the genes in the dataset that fall into that category. 

Black boxes indicate that there are more fusions than expected for that category and 

orange boxes indicate that there are less than expected fusions in that category. 
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Figure 3.4: COG categories for all fusion genes. Stars denote categories where we 

observe significantly more fusions than expected.  
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3.4: Discussion 

 

 In this chapter I explore the use of a new method of detecting fusions using 

similarity searches and network mathematics. In chapter 2 I raised the subject of 

limitations in the method in terms of computational power. The worst time 

complexity of the clique-finding algorithm is O(3n/3), where n is the number of nodes. 

As the amount of input data increases so does the size of the network increases and in 

turn the time it takes to search the network for all cliques. Through trial and error we 

found that the optimal dataset size on which the algorithm will run is approximately 

20,000 genes or the equivalent of four average-sized bacterial genomes. 

 Using manageable sized datasets meant that our results would be limited by 

the input data. For four genomes any fusions that were detected would be exclusively 

found in those four genomes as would their component genes. In an attempt to 

overcome this we created an overlap of one genome in every dataset. The hope was 

that as we assessed more data, the picture of fusion events in this one genome would 

become clearer. In the future the hope is that we can describe all genomes in terms of 

all over genomes by means of overlapping datasets or otherwise. 

 In terms of quantifying fusions we found that there are between 20 and 41 

fusions per 4 genomes. This averages at 7.85 fusion genes per genome, which at face 

value seems to be fewer fusions than were found in previous studies but with the 

potential to increase with the addition of more data. However, the use of the 

overlapping Salmonella genome analyses provided us with a means of assessing the 

extent of fusion within a genome in relation to 5 triplets of different genomes. This 

approach, while not being an exhaustive analysis of all genomes simultaneously 



##&!

increased the scope of our analysis and provided us with excellent insight into the 

amount of fusion occurring in S. enterica subsp. enterica serovar Paratyphi A. 

 Despite the knowledge that we were only gaining an estimate of fusion 

occurrence based on a small portion of the data, we still report a considerable result. 

Use of the Schnabel population estimator provides us with the prediction that this 

Salmonella genome contains around 113 fusions of unrelated genes. This implies that 

approximately 2.8% of the Salmonella genome is made up of fusions of specifically 

unrelated genes. This last point is quite important – we are only analyzing the fusion 

of non-homologous genes and it is almost a certainty that this genome is replete with 

other fusions of homologous genes.  Our estimate of 2.8% is supported by the best-fit 

curve to the data. We can conclude with confidence that fusion events are contributing 

a notable amount to bacterial genome evolution. 

 On the question of what types of genes appear as fusions in bacteria: we can 

somewhat agree with previous studies in saying that fusions are involved in metabolic 

functions. It is also undeniable that fusion genes are very often involved in defense. 

We consistently find that fusions of unrelated genes fall into the COG category of 

defense mechanisms. 
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Chapter 4 - Phylogenetic and Non-phylogenetic Signals 

During the Separation of the Enteric Bacterial Species 

Clouds 

 

4.1: Introduction 

 

 It has become increasingly clear that the Tree of Life (ToL) hypothesis has 

limitations in its ability to describe the evolution of all evolving entities on the planet. 

The discoveries of conjugation (Lederberg and Tatum 1946), transduction (Zinder and 

Lederberg 1952), transformation (Griffith 1928), plasmids (Hayes 1953), 

bacteriophage (Duckworth 1976), Gene-Transfer Agents (GTAs) (Lang and Beatty 

2000) and nanotubes (Dubey and Ben-Yehuda 2011) have caused great problems 

when constructing branching diagrams of life. These processes and associated mobile 

genetic elements (MGEs), that facilitate horizontal gene transfer (HGT), have the 

potential to disrupt the vertical inheritance pattern that is expected from the ToL 

hypothesis.  

 The most notable shortcoming of using tree structures to describe life is that it 

does not deal with all the evolving entities on the planet. MGEs have normally been 

excluded from discussions of the grand schemes of evolution of life. This might be 

permissible if MGEs played a very small role in the evolutionary history of life on the 

planet, but the data suggests otherwise. 

 The success of a gene can be measured by its ability to persist in nature and to 

be spread throughout genomes or biomes (Orgel and Crick 1980). Genes need to be 
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flexible enough to adapt to new environments while still maintaining enough 

sequence conservation to keep their protein structure (Drummond and Wilke 2008; 

Koonin 2009).  Recently a study was conducted whereby the prevalence of all 

biological functions was estimated (Aziz et al. 2010). Aziz et al calculated the 

abundance and ubiquity of all functions encoded in genomes and ecosystems with the 

assumption that these values are correlated with gene fitness. Alone, abundance of a 

gene is simply an indicator of the genes ability to express adaptive, organism-specific 

functionality. Ubiquity is an indicator of essentiality; usually genes with essential 

functions are carried in every genome. Abundance and ubiquity together provide a 

measurement of gene success.  

 What Aziz et al found was somewhat surprising. They did not find that highly 

expressed ribosomal proteins were most pervasive, despite the fact that these genes 

are universally distributed throughout cellular life forms. Even though the enzyme 

Ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCo), critical in fixation of 

carbon dioxide via the Calvin cycle, has been found to be the most successful, most 

abundant enzyme on the planet (Dhingra et al. 2004), they did not find that it came 

top of their calculations. Nor did they find that DNA polymerase genes, essential for 

DNA-based life, were the most prevalent. Instead Aziz and colleagues demonstrated 

that transposases are the most abundant genes in both completely sequenced genomes 

and environmental metagenomes, and are also the most ubiquitous in metagenomes.  

A transposable element or a transposon is a defined segment of DNA that has 

the ability to move, or copy itself, into a second location without a requirement for 

DNA homology (Curcio and Derbyshire 2003). A transposase then, is the enzyme that 

is responsible for the catalysis of transposition. This is but one example of the MGEs 

that are deliberately omitted from many phylogenetic studies. 
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Figure 4.1: Word cloud representing the 100 most abundant functional roles taken 

from Aziz et al. 2010. 

Figure 3. Word clouds (created on http://www.wordle.net) representing (A) the 100 most abundant functional roles (Supplementary Table S3) and
(B) the 100 most ubiquitous functional roles (Supplementary Table S4) in metagenomes. The font size of each functional role is proportional to its
(A) abundance index or (B) number of metagenomes in which it is present.

Nucleic Acids Research, 2010 7
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Phages are the most abundant life form on the planet, it is estimated that there 

are 1030 tailed phage particles (Frost et al. 2005). Their genetic diversity is enormous 

(Canchaya et al. 2004; Nelson 2004) and at 1025 infections per second, they are the 

most rapidly replicating entity on earth (Frost et al. 2005). Their mosaic structure 

results from their ability to recombine with other prophages and MGEs that reside in 

the same bacterial host (Hendrix 2003).  

There is recognition now that, when the goal is to describe life in its most 

fundamental way, all evolving entities should be included (McInerney et al. 2011; 

McInerney et al. 2011). Also, since it has been observed that genes can be acquired by 

both vertical and horizontal transmission, a description of life should encompass both 

the vertical and horizontal components of evolution (Boto, 2010, Dagan, 2009, 

McInerney, 2011). The public goods hypothesis, proposed by McInerney et al. (2011) 

describes entities such as nucleotides, genes, operons or even genomes as genetic 

goods in the same sense as goods are viewed in the discipline of economics 

(Samuelson 1954). In economics goods can be shared, exchanged modified, etc. A 

good can also be excludable or rivalrous. One can limit the use of an excludable good 

by others and the use of a rivalrous good prevents its use by others altogether.  

If we apply the “public goods” way of thinking to DNA we can say, for the 

most part, that DNA is not excludable- the same nucleotides are used by all entities, 

recombination is global and the machinery of DNA replication and translation is 

pretty universal. So if DNA is a “good”, it can be shared or exchanged between 

different genetic entities, for example genes or genomes. The public goods hypothesis 

does not require ad hoc amendment or qualifications and so incorporates all of the 

data (McInerney et al. 2011). 
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Networks are capable of displaying both the vertical and horizontal 

components of evolutionary histories (Ragan 2009). On these DNA-sharing networks 

nodes represent the various kinds of evolving entities and edges represent identifiably 

homologous regions that are shared. The structural properties of these DNA-sharing 

networks open up new insights into genome evolution (Dagan 2011). Halary at al. 

(2010) constructed a gene-sharing network on which nodes represented genomes 

sampled from 111 prokaryotes and Eukaryotes along with thousands of phage and 

plasmid protein sequences. These genomes and protein sequences are joined by an 

edge on the network if they share at least one homologous DNA fragment. On one 

hand they found small genetic worlds. Most protein families preferred a specific type 

of DNA carrier and thus a boundary was created between the different types. On the 

other hand, their network contained a large highly interconnected component 

containing genes from chromosomes, phages and plasmids. The high frequency of 

links between chromosomes and plasmids in the large connected component suggests 

a prevalence of conjugal HGT in nature. 

Node connectivity quantifies how many direct neighbours a node on a network 

has and node centrality quantifies how often a node falls on a shortest path between 

two nodes (Newman 2010). These measures in a gene-sharing network show how 

preferential attachment between nodes can result from the evolutionary history of the 

network. As expected, a large genome will be more highly connected than a smaller 

genome because it has more genes to share (Dagan and Martin 2007). Plasmids tend 

to have higher centrality than phages (Halary et al. 2010), indicating that HGT is 

more frequently mediated by conjugation than transduction. Lack of connections 

between phages and plasmids, suggested that the two vehicles rarely carry the same 

genes (Halary et al. 2010). 
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Community structures on gene-sharing networks correspond to taxonomic 

classification of the connected species (Dagan 2011). Genes tend to be shared more 

within species than between (Popa et al. 2011). So communities on a network will 

often correspond to clades on a tree. However, communities of distant relatives 

indicate high frequency of HGT between species living in the same environment or 

affected by the same phage. Gene-sharing networks then, can reveal relationships that 

remain unreported by branching structures. In a study of gene-sharing networks, 

Kloseges at al. (2011) found a split between the Alpha-, Delta- and Epsilon-

Proteobacteria and the Beta- and Gamma- Proteobacteria, that is yet undetected by 

phylogenetic methods.   

The goal of this analysis is solely to look at the way in which a group of 

organisms that would once have been in a single species cloud have diverged from 

one another. We wished to explore how smoothly this process occurs and the kinds of 

genes that are last to diverge. By using gene-sharing networks we can gain an 

understanding of the evolutionary history of a group of bacterial species at a level that 

includes all aspects of this history.  

We start with a gene-sharing network on which each node is representative of 

a genome and the edges are a statement of homology between any pair of genomes 

that are connected. If two genomes have at least one homologous gene in common 

then they will be connected by an edge. In this case we think of the genomes as 

genetic entities and the goods they are sharing are genes. The genomes in this analysis 

are sampled from the YESS group, a group of medically and scientifically important 

bacteria including Yersinia, Escherichia, Shigella and Salmonella. Also included in 

the dataset are genomes from the Pectobacteria, primarily a plant pathogen and 

opportunistic human pathogen. However, it has been shown that plant-associated 
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enterobacteria share a high proportion of their genome with human pathogenic strains 

and have even been know to jump across kingdoms (Holden et al. 2009). This group 

of closely related genomes often shares the same environment of the lower intestinal 

tract of mammals. It has been shown that there is a high rate horizontal transfer of 

genes between them.  

 Homologous recombination in bacteria is analogous to sex in eukaryotes. It 

generates genetic diversity and improves the response of bacterial populations to 

natural selection (Vos 2009). As a prerequisite to homologous recombination the 

donor DNA must have regions of high similarity to the recipient genome. 

Calculations show that genomes will share adequate regions of high similarity for up 

to 30% divergence (Townsend et al. 2003). It is accepted that when DNA similarity 

levels between two strains are greater than 70% they can be assigned to the same 

species (Achtman, 2008, Cho, 2001, Konstantinidis, 2006, Stackebrandt, 1994, Staley, 

2006). It has also been shown that there is a sharp decline in recombination 

frequencies as sequence divergence increases (Majewski and Cohan 1999; Majewski 

et al. 2000). As a consequence genes can speciate at different times, some early 

whereas others, that are still recombining, diverge much later. By assessing levels of 

sequence similarity we can show which genes have the least divergence i.e. those that 

are still recombining. High levels of sequence similarity between two genomes that 

might otherwise show moderate levels of divergence might be explained by HGT 

(Kloesges et al. 2011). Another explanation is strong conservation of ancestral 

sequences. However, given what we know about inter-species gene transfer, plasmids 

(Hayes 1953), phages (Duckworth 1976), Gene Transfer Agents (GTAs) (Lang and 

Beatty 2000), etc., HGT is a strong candidate for these regions.   
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 To discover which genomes are still capable of recombination with one another 

we remove relationships between genes that have less than 70% sequence similarity 

from our initial gene-sharing network. At the point where only very similar sequences 

are included in the network, is there an uneven distribution of edges? In other words 

are some genomes sharing genes up to a much higher similarity threshold than others? 

We further raise the threshold in order to understand at what level of similarity the 

genomes in this group stop sharing genes. At different levels of similarity we would 

expect to see different pairs genomes loosing the edge between them. Therefore 

highly similar genomes will remain highly connected. We find highly connected 

modules on our networks and determine whether these correspond to species 

classification. 

 As a genome looses more connections its centrality in the network will be 

reduced. We can therefore use measures of centrality to reveal how divergent these 

species are. In this analysis we rely on measures of degree centrality, defined as the 

fraction of nodes in the network that are incident upon a node, closeness, calculated as 

1 over the sum of its distances to all other nodes and betweenness, equal to the 

number of shortest paths from all vertices to all others that pass through that node. 

When the network is maximally connected, i.e. when all genomes are sharing at least 

one gene with all other genomes, all nodes have equal centrality. As the number of 

edges on a network decreases some nodes become less connected and the measure of 

their degree centrality and closeness centralities will be smaller. In some cases as the 

number of connections to a node drop off, the measure of betweenness will also 

decrease. However there are instances where a node of low degree centrality and 

closeness can be found on a path that connects two disjoint parts of the network and 

therefore have a higher betweenness than perhaps expected. A genome that has low 
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degree centrality and closeness centralities by comparison to the rest of the network 

has lost more edges than other genomes in the network. We can assume that this 

genome has diverged more than the others.  

 Finally we assess the kinds of genes that are last to diverge by creating a 

network of homologous gene relationships. This time the nodes or genetic entities are 

genes and the good they share is a segment of DNA, if two genes are sharing they are 

connected by an edge. By determining which genes remain at each level of similarity 

we can discover what is last to diverge in our dataset.  



#$&!

4.2: Materials and Methods 

 

4.2.1: Data 

 

A dataset of 66 completed "-proteobacteria genomes was retrieved from NCBI 

(web link 8).  This included 29 Escherichia, 16 Salmonella, 7 Shigella, 2 

Pectobacterium and 12 Yersinia (Table A2, Appendix). A database containing all 

320,395 DNA gene sequences from this dataset was created.  

The database was split into 100 input files each containing roughly the same 

number of sequences using fastaspltn (web link 9).  Homologs were identified using 

an all vs. all BLASTN of the 320,395 nucleotide sequences with an e-value threshold 

of e-6. 

For this study we examined the relationships between whole genes. The 

BLAST output was split into two; the genes that have similarity across at least 80% of 

the query sequence and those that had similarity across less than 80% of the query 

sequence, i.e. genes with partial sequence homology. Of the 16,468,419 pairs of 

homologs, ~40% represented partial homology. 

The percentage similarity for each pair of homologs was found using the 

Smith-Waterman algorithm implemented in SSEARCH (part of the FASTA package, 

web link 10). Smith-Waterman is a dynamic programming algorithm; it is guaranteed 

to find the optimal local alignment with respect to the scoring system provided. 

Although slower than BLAST; it takes O(mn) time to align two sequences, m and n, it 

is more rigorous. BLAST reduces the time required by identifying conserved regions 

using rapid lookup strategies, at the cost of exactness. 
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4.2.2: Network of Genomes 

 

Cytoscape (Shannon et al. 2003) was used to visualize the data, producing a 

network representation of the 66 genomes (nodes) and their homology relationships 

with one another (edges). Each pair of homologs was scored based on their similarity, 

so the strength of a connection between two genomes is the sum of the similarity 

scores for all the genes they have in common. The strength score was normalized 

across the data by dividing by all strength scores by the highest strength score. Every 

pair of genomes now has a score between 0 and 1 (0 implies no genes in common 

between the two genomes: these will not be connected by an edge on the network, 1 is 

the score between the two genomes with the most genes in common). On the network 

the edges are coloured according to the strength of connection. Genomes sharing the 

most genes i.e. with a score of 1, will be connected by a blue edge, the edges will 

progressively get darker as the strength of connection decreases. Genomes connected 

by darker edges have weaker connections.   

 

4.2.3: Filtered Networks 

 

In order to examine the genes still capable of recombination a similarity 

threshold was set.  In other words only pairs of genes with 70% or more sequence 

similarity were included in the data and visualized as a network. To elucidate which 

genes were diverging at slower rates the threshold was raised and the network was 

analysed at various levels of sequence identity. Networks were visualised for genes 

with 90% or more similarity, 95% or more and finally for genes that are 100% 
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identical across at least 80% of the query gene (from the “removing partial homologs” 

step). 

At each level of similarity we quantify the number of edges lost in removing 

gene relationships below the given threshold. On the initial, maximally connected 

network the number of edges projecting from each genome (herein referred to as 

‘outgoing edges’) is 66. Therefore for a given genus, the maximum number of 

outgoing edges is the number of genomes in that genus multiplied by 66. We find the 

percentage of the maximum overall number of outgoing edges that can be accounted 

for by each genus. In other words, for 66 genomes there can be a maximum possible 

4,356 outgoing edges (66 x 66). Of these 4,356 edges what percentage are accounted 

for by Escherichia genomes, what percentage are accounted for by Pectobacteria 

genomes, etc. As we increase the percentage sequence similarity we re-examine the 

percentage of outgoing edges from each genus. At each level of similarity we find the 

total number of outgoing edges remaining. The expected number of outgoing edges 

for a given genus at a given threshold should make up the same percentage of the 

overall number of outward edges as it did for the initial network. If a particular genus 

of genomes has fewer outgoing edges in the network then it has lost more 

relationships than other genomes in the network, i.e. it is more divergent than others 

in the network or it has lost more genes than expected.   

 

 

4.2.4: Network Community Detection 

 

 To find communities or clusters in the networks of genomes we use NeMo 

(Rivera et al. 2010), a cytoscape plugin for unweighted network clustering (available 
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for download at web link 11). The method is based on a score that estimates the 

likelihood that a pair of nodes has more common neighbours than expected by chance 

(Rivera et al. 2010).  

 

4.2.5: Measures of Centrality 

 

 Measures of centrality were computed using the NetworkX python package 

(Hagberg et al. 2008). The degree centrality of a node v is calculated as the fraction of 

nodes to which it is connected. Degree centrality values are normalized by dividing 

the number nodes to which a given node is connected by the maximum possible 

degree for that network (n-1 where n is the number of nodes in the network G). For 

graphs with self-loops, like our network of genomes, the maximum degree might be 

higher than n-1 and values of degree centrality greater than 1 are possible. 

 The closeness centrality of a node is calculated as 1 divided by the average 

distance to all other nodes. Closeness centrality is normalized to the maximum 

possible degree divided by the size of the network (n-1 /s-1 where n is the number of 

nodes in the connected part of graph containing the node and s is the size of the graph 

in number of nodes). If the graph is not completely connected, i.e. there are disjoint 

parts of the network, this algorithm computes the closeness centrality for each 

connected part separately. 

 Betweenness centrality of a node is calculated as the sum of the fraction of all-

pairs shortest paths that pass through said node. The NetworkX package makes use of 

the algorithm by Ulrik Brandes, to compute the betweenness values of nodes on a 
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graph (Brandes 2001). If we wish to pass through the network from one given node to 

another we are likely to pass through a node of high betweenness. The node with high 

betweenness may have many or few connections and is likely to lie between two parts 

of the network. These two parts may be highly connected within but they have few 

edges between them so the node with high betweenness acts as a bridge between the 

parts.  

 

4.2.6: Network of Genes 

 

The network of genes was constructed from the same data as the original 

network of genomes. Instead of summing the pairs of homologs between each pair of 

genomes, this time we treated every pair of homologs as a separate relationship. The 

network of genes, therefore, consists of 320,395 nodes, each representing a gene and 

edges that indicate a homologous relationship between to two genes it connects. 

A network of 320,395 genes is too large to visualize in Cytoscape. The 

network of genes was analysed through stats and parts of the network containing 

unexpected information were visualized in Cytoscape. 

 

 

4.2.7: Kinds of Genes that are Last to Diverge 

 

 To assess the kinds of genes that are still homologous at each level of 

divergence we first considered the COG categories of all genes remaining at each 

similarity threshold previously specified for the genome networks. A database of 

COG categorized genes was obtained from ftp://ftp.ncbi.nih.gov/pub/COG/COG/. 
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Every gene in the dataset was searched using BLAST against the COG database in 

order to obtain the gene’s best suited COG category. There were 22 categories overall 

and a 23rd to account for any genes that did not have a homolog in the COG database. 

 Initially we determined the number of genes found in each COG category for 

the entire database and reported this number as a percentage of the overall number of 

genes in the dataset. For each similarity threshold we established how many genes 

from each COG category remained, this is our observed number of genes. The 

expected number genes in each COG category, at each level of similarity, was the 

number of genes remaining at that level that would be expected to fall into this 

category based on the percentage of genes in this category for the overall dataset. We 

test for significantly higher or lower numbers of genes than expected, using the Chi-

squared test.  

 We also assessed the GenBank functions at each level of similarity. For each 

gene in the dataset its function was parsed from the full GenBank file. There are a 

vast variety of functional annotations in GenBank, in this analysis we focus on those 

that are dominant, i.e. functions that appear more than any other. We assess the top 25 

occurring GenBank functions at each similarity threshold.  

 

4.2.8: Percentage Similarity of Homologous Genes 

   

It is convenient to group pairs of homologous genes with similar percentage 

sequence similarity together. In this study we divide all pairs of homologous genes 

into a specified number of partitions, or bins. Pairs are placed into bins depending on 

their percentage sequence similarity. The lowest sequence similarity is 55% and the 
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highest is 100%, bins are constructed by splitting the pairs into equal partitions. We 

use 20 bins, each with a range of 2.25% sequence similarity. 

When the homologous pairs are divided into bins we can we can determine the 

average rate of divergence between homologs in this dataset. Over time we would 

expect to see homologs diverge to an extent that distinguishes them as belonging to 

different species. If we see a swell in the number of homologs at a given bin or range 

of bins we can assume that this is the expected amount of sequence similarity for 

homologs in this dataset. Homologs that are less similar than this have diverged 

rapidly and homologs that are more similar are strongly conserved or recently 

obtained through HGT. A gene obtained recently through HGT has not had sufficient 

time to diverge from its homolog. 

 To further gain insight into gene sharing, we examine the rate of divergence 

within each genus and between each pair of genera. A large number of homologous 

pairs at the higher levels of percentage similarity, i.e. close to 100%, for a two 

different genera should indicate a substantial amount of recent gene sharing. 
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4.3 Results 

 

4.3.1 Network of Genomes 

 

The network of 66 genomes, connected by genes with 70% similarity or more 

has 4,356 edges, is maximally connected (66 x 66). In other words every genome in 

the network has at least one gene that is at least 70% similar to at least one 

homologous gene in every other genome. At the 70% similarity threshold, all 

genomes have the maximum number of outgoing edges. 

The strongest edges (darkest edges on Figure 4.2) are found between genomes 

from the same genus. In particular Shigella and Yersinia appear to have strong within-

genus connections. Modules detected by NEMO on the 70% similarity network are 

indeterminate in terms of taxonomic classification. Each module contains genomes 

from all genera; there is no phylogenetic distinction between modules at this level. 

At this level of similarity, the measures of centrality are non-informative. If a 

network is maximally connected then all nodes are connected to all other nodes, 

therefore they all have the same measure of degree centrality. Similarly, the measures 

for closeness and betweenness will be the same for every node. 

When there are no genes being shared between two genomes above the given 

threshold an edge does not exist between the two. We find that up to 90% sequence 

identity the network is maximally connected. This means that every genome has at 

least one homologous gene in every other genome that is at least 90% similar.  

Between 90 and 95%, however the number of edges starts to decrease. We 

find that, to an extent, the edges are being lost in correlation with the relationships 
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found in phylogenetic studies. According to ribosomal RNA gene tree phylogenetics, 

the Pectobacteria is the most distant from the group followed by the Yersinia. We see 

the edges connecting the Pectobacteria and Yersinia to the rest of the group disappear 

first as the similarity threshold is raised (Figures 4.4, 4.9, 4.14 and 4.19). 

At higher percentages of sequence similarity we begin to see a correlation 

between modules found by the NeMo software and the classification of species 

through phylogenetic studies. The Pectobacteria, being the most dissimilar to the 

group can quickly be seen to from a separate community from the rest of the network. 

Following this begin to see that there is a clear boundary between the Yersinia and the 

rest of the network. However, all the way to the 100% similarity threshold, the 

software cannot distinguish between the three genera Escherichia, Salmonella and 

Shigella. 

 As we increase the similarity threshold to 95% and beyond we see patterns in 

the centrality values for genomes on the network. The Escherichia, Salmonella and 

Shigella remain highly connected to one another, displaying high values of degree 

centrality and closeness. The Yersinia, being more divergent, and thus having fewer 

outgoing edges, has much lower values for degree centrality and closeness. The 

Pectobacteria genomes, surprisingly, begin at opposite ends of the degree centrality 

and closeness value distribution. They do however become more consistent with one 

another as the threshold is raised. The betweenness values are the most interesting as 

they reveal the nodes at each level of similarity that are still connected to parts of the 

network that are otherwise separating from one another. The genomes with highest 

betweenness values vary as the similarity threshold increases. 
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Figure 4.2: Networks of genomes at 90% similarity threshold. Lighter edges are 

weaker by comparison (very close to 0 on the scale bar). The darker edges are the 

strongest in the network (closer to 1 on the scale bar).   
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Figure 4.3: Pie chart of the percentages of overall outgoing edges represented by each 

genus for the network built from genes that have at least 90% sequence similarity. 

 

 

Table 4.1: The number of outgoing edges and corresponding percentages for each 

genus in the network built from genes that have at least 90% sequence similarity.  

 

Genus No. Outgoing Connections Percentage of All Connections 

Yersinia 792 18.18% 

Escherichia 1914 43.93% 

Shigella 462 10.60% 

Salmonella 1056 24.24% 

Pectobacteria 132 3.0% 

 4356 100 
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4.3.1.1: Network of genomes with 95% Similarity Threshold 

 

At the 95% similarity threshold the network begins to disconnect (Figure 4.2). 

The network is no longer maximally connected, for 66 nodes there are now 3,681 

edges (Table 4.2). Different genera begin to form distinct groups as the between-

genus connections begin to disappear. The Pectobacteria have suffered a noteworthy 

loss of between-genus edges, i.e. there is a drop in the number of edges between the 

Pectobacteria genomes and the rest of the network. The Pectobacteria genomes are 

no longer sharing genes with many of the Escherichia, Shigella and Salmonella 

genomes. However, there has been no loss of edges within the Pectobacteria, nor has 

there been a loss of edges between the Pectobacteria and the Yersinia. 

The Yersinia genus is starting to separate from the rest of the network, there 

are far fewer edges between Yersinia and the rest of the genomes and those remaining 

edges have low weights. The edges within the Yersinia module, however, have much 

higher weights by comparison, i.e. there are far more genes being shared within the 

Yersinia than between Yersinia and other genera. 

The Escherichia, Shigella and Salmonella have remained maximally 

connected up to this level of similarity. Every Escherichia, Shigella and Salmonella 

genome has at least one gene with 90% sequence similarity to at least one gene in 

every other Escherichia, Shigella and Salmonella genome. These results are in line 

with phylogenetic studies in that the Pectobacteria and the Yersinia are separating 

from the group first, suggesting that they are the most divergent. However it is 

important to note the massive amount of sharing that is still occurring at this high 

level of similarity. It took raising the threshold to 95% for us to begin to see this 

phylogenetic signal.   
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Figure 4.4: Network of genomes with 95% similarity threshold. Lighter edges are 

weaker by comparison (very close to 0 on the scale bar). The darker edges are the 

strongest in the network (closer to 1 on the scale bar).   
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Figure 4.5: Pie chart of the percentages of overall outgoing edges represented by each 

genus for the network built from genes that have at least 95% sequence similarity. 

 

Table 4.2: The number of outgoing edges and corresponding percentages for each 

genus in the network built from genes that have at least 95% sequence similarity. The 

number of outgoing connections is calculated from the initial percentages indicated by 

the maximally connected network. The Chi-squared test provides significance scores. 

For genera that have less outgoing edges than expected the P value is highlighted in 

orange for those with more than expected outgoing edges the P value is highlighted in 

black. 

 

Genus 

No. Outgoing 

Connections 

Percentage of All 

Connections 

Expected No. 

Outgoing 

Connections P value 

Yersinia 494 13.42026623 669.2727273 1.2436E-11 

Escherichia 1671 45.39527302 1617.409091 0.182681937 

Shigella 393 10.67644662 390.4090909 0.895674822 

Salmonella 1042 28.30752513 892.3636364 5.46638E-07 

Pectobacteria 81 2.200488998 111.5454545 0.003826165 

 3681 100 3681  

14% 

45% 11% 

28% 

2% 

Yersinia 

Escherichia 

Shigella 

Salmonella 

Pectobacteria 
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Table 4.3: Number of outgoing edges from the source genera labeled on the left to the 

target genera labeled on top for the network built from genes that have at least 95% 

sequence similarity. Cells highlighted in yellow represent the maximum number of 

outgoing edges a given genus can have to towards the target genus, i.e. the genomes 

in this genera are maximally connected. 

 

 Yersinia Escherichia Shigella Salmonella Pectobacteria Total 

Yersinia 144 132 2 192 24 494 

Escherichia 130 841 203 464 33 1671 

Shigella 22 203 49 112 7 393 

Salmonella 192 464 112 256 18 1042 

Pectobacteria 24 29 7 17 4 81 

      3681 
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4.3.1.2: Modules on the Network of genomes with 95% Similarity Threshold 

 

The modules found by NeMo at 95% similarity reveal some phylogenetic 

signal. There is a hint of genomes from the same species grouping together. Module 1, 

the highest scoring module (from Table 4.4), contains all but one of the Yersinia 

genomes and one of the Pectobacteria. This module is almost representative of the 

Yersinia genus. Every other module contains all 12 of the Yersinia genomes; clearly 

these genomes form a very tight-knit community on the network.  

When including only pairs of genes with 95% or more similarity it could be 

assumed that the highly connected modules would contain highly similar genomes 

and thus be indicative of a species-level set of relationships. An interesting result from 

the NeMo analysis is that Pectobacterium carotovorum subsp. Carotovorum appears 

in none of the modules, yet Pectobacterium carotovorum subsp. Atroseptica appears 

in every module.  This is because at the 95% similarity threshold, Pectobacterium 

carotovorum subsp. Atroseptica is still sharing genes with all Yersinia genomes on the 

network and so is part of the highly connected subgroup containing all the Yersinia. 

This is the kind of signal that could lead to the assumption that certain strains of 

bacteria could have been misclassified. Had we not known its previous classification, 

from the network it might be reasonable to assume that Pectobacterium carotovorum 

subsp. Atroseptica is a Yersinia genome.   

Modules 2-8 contain at least one genome from all genera. It is hard to 

distinguish one species from another when so much gene sharing is occurring and at 

such high levels of sequence similarity. 
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Table 4.4: Modules according to NeMo for the network of genomes at 95% similarity 

threshold. 

 

Cluster Score (Density*#Nodes) Nodes Edges Node IDs 

1 -111.938 12 144 

YERSPBM, YERSPPF, YERSPCO92, YERSPANT, 

YERSTBPB1, YERSEN8081, YERSPNEPAL, 

YERSTBIP31, YERSTBYP3, PECTCARATR, YERSPKIM, 

YERSPANG 

2 -169.805 23 269 

ECOREL606, SHIGDYS, ECOTW4359, YERSTB32, 

YERSPBM, YERSPPF, YERSPCO92, YERSPANT, 

YERSTBPB1, YERSEN8081, YERSPNEPAL, 

YERSTBIP31, YERSTBYP3, PECTCARATR, YERSPKIM, 

YERSPANG, ECOCATCC, ECONEW, ECOKMG1655, 

SHIGBOYDCDC, ECOEDL933, ECOSAKAI, ECOEC4115 

3 -169.805 18 194 

SHIGDYS, ECOTW4359, YERSTB32, YERSPBM, 

YERSPPF, YERSPCO92, YERSPANT, YERSTBPB1, 

YERSEN8081, YERSPNEPAL, YERSTBIP31, 

YERSTBYP3, PECTCARATR, YERSPKIM, YERSPANG, 

ECOCATCC, ECONEW, ECOKMG1655 

4 -169.805 26 338 

ECOREL606, SHIGDYS, ECOTW4359, YERSTB32, 

YERSPBM, YERSPPF, YERSPCO92, YERSPANT, 

YERSTBPB1, YERSEN8081, YERSPNEPAL, 

YERSTBIP31, YERSTBYP3, PECTCARATR, YERSPKIM, 

YERSPANG, ECOCATCC, ECONEW, ECOKMG1655, 

SHIGBOYDCDC, ECOEDL933, ECOSAKAI, ECOEC4115, 

ECOSE11, ECOKDH10B, ECOHS 

5 -169.805 20 218 

SHIGDYS, ECOTW4359, YERSTB32, YERSPBM, 

YERSPPF, YERSPCO92, YERSPANT, YERSTBPB1, 

YERSEN8081, YERSPNEPAL, YERSTBIP31, 

YERSTBYP3, PECTCARATR, YERSPKIM, YERSPANG, 

ECOCATCC, ECONEW, ECOKMG1655, 

SHIGBOYDCDC, ECOEDL933 

6 -243.101 42 1153 

ECOUMN026, ECOS88, ECOE24377A, ECOH6E2348, 

ECOLF82, ECOAPEC01, SHIGF301, SHIGFLEX5, 
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SHIGF245, ECOSMS35, ECOBL21DE3, SHIGSON, 

ECOIAI1, ECOBW2952, ECOKW3110, SHIGBOY227, 

ECOREL606, SHIGDYS, ECOTW4359, YERSTB32, 

YERSPBM, YERSPPF, YERSPCO92, YERSPANT, 

YERSTBPB1, YERSEN8081, YERSPNEPAL, 

YERSTBIP31, YERSTBYP3, PECTCARATR, YERSPKIM, 

YERSPANG, ECOCATCC, ECONEW, ECOKMG1655, 

SHIGBOYDCDC, ECOEDL933, ECOSAKAI, ECOEC4115, 

ECOSE11, ECOKDH10B, ECOHS 

7 -263.58 56 2476 

SALENSCHW, SALTYPHI, SALENSTY, ECO55989, 

ECOED1A, ECOIAI39, ECO536, ECOUTI89, ECOCFT073, 

ECOUMN026, ECOS88, ECOE24377A, ECOH6E2348, 

ECOLF82, ECOAPEC01, SHIGF301, SHIGFLEX5, 

SHIGF245, ECOSMS35, ECOBL21DE3, SHIGSON, 

ECOIAI1, ECOBW2952, ECOKW3110, SHIGBOY227, 

ECOREL606, SHIGDYS, ECOTW4359, YERSTB32, 

YERSPBM, YERSPPF, YERSPCO92, YERSPANT, 

YERSTBPB1, YERSEN8081, YERSPNEPAL, 

YERSTBIP31, YERSTBYP3, PECTCARATR, YERSPKIM, 

YERSPANG, ECOCATCC, ECONEW, ECOKMG1655, 

SHIGBOYDCDC, ECOEDL933, ECOSAKAI, ECOEC4115, 

ECOSE11, ECOKDH10B, ECOHS, SALENCHOL, 

SALTYLT2, SALENGAL, SALENPARAA, SALENENTER 

8 -263.58 54 2260 

SALENSCHW, SALTYPHI, SALENSTY, ECO55989, 

ECOED1A, ECOIAI39, ECO536, ECOUTI89, ECOCFT073, 

ECOUMN026, ECOS88, ECOE24377A, ECOH6E2348, 

ECOLF82, ECOAPEC01, SHIGF301, SHIGFLEX5, 

SHIGF245, ECOSMS35, ECOBL21DE3, SHIGSON, 

ECOIAI1, ECOBW2952, ECOKW3110, SHIGBOY227, 

ECOREL606, SHIGDYS, ECOTW4359, YERSTB32, 

YERSPBM, YERSPPF, YERSPCO92, YERSPANT, 

YERSTBPB1, YERSEN8081, YERSPNEPAL, 

YERSTBIP31, YERSTBYP3, PECTCARATR, YERSPKIM, 

YERSPANG, ECOCATCC, ECONEW, ECOKMG1655, 

SHIGBOYDCDC, ECOEDL933, ECOSAKAI, ECOEC4115, 

ECOSE11, ECOKDH10B, ECOHS, SALENCHOL, 

SALTYLT2, SALENGAL 
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4.3.1.3: Centrality Measures of Nodes on the Network of genomes with 95% 

Similarity Threshold  

 

 At the 95% similarity threshold the highest degree centrality value is 1.03 for 

the genome of S. enterica subsp. Arizonae. This genome has more outgoing edges 

than any other on this network but the largest genome is S. enterica subsp. enterica 

serovar Paratyphi B. With 5,592 genes, this genome is surprisingly not sharing genes 

with as many different genomes as some others are at this level of similarity.  

The values for all Escherichia, Salmonella and Shigella range down to the 

lowest value of 0.83. The Escherichia, Salmonella and Shigella remain completely 

connected to one another. For these three genera there is little if any relationship 

between the length of the genome and its measure of degree centrality (Figure 4.6).   

It can be seen in the distribution of degree centrality values for the Yersinia genomes, 

have comparably lower values. All values for the Yersinia genomes fall beneath the 

lowest value for the Escherichia, Salmonella and Shigella. This means that the 

Yersinia genomes are far less connected in the network and thus sharing with far 

fewer genomes than any of the Escherichia, Salmonella or Shigella. Interesting to 

note is the fact that all the Yersinia genomes fall to the lower end of the scale in terms 

of genome size ranging from 3,832 genes to 4,192 genes. It is possible to interpret this 

result in one of two ways.  Either the genes in Yersinia are more rapidly evolving on 

average, the Yersinia have been losing genes and therefore, by chance, they have 

fewer genes that might help in keeping the cluster together or Yersinia might be an 

older group and consequently. 
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Figure 4.6: Degree centrality against genome length for the network of genomes with 

95% similarity threshold. 
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The two Pectobacteria genomes tell two very different stories. While the 

degree centrality value for the genome for Pectobacterium carotovorum subsp. 

carotovorum falls amongst the highest, the value for Pectobacterium carotovorum 

subsp. atroseptica is by far the lowest at 0.34. Perhaps most surprising is that 

Pectobacterium carotovorum subsp. atroseptica, is in fact the larger of the two 

genomes, with close to 200 more genes than P. carotovorum subsp. carotovorum. 

The values for closeness centrality at the 95% similarity threshold tell a very 

similar story to that told by the degree centrality values. Closeness values for this 

network range between 0.59 and 1. Again, the genome with the highest closeness 

value is S. enterica subsp. Arizonae, despite not being the largest genome.  The 

closeness values for the Escherichia, Salmonella and Shigella fall not far below the 

maximum and there is little correlation between these values and the size of the 

genomes.  

 The Yersinia closeness values range between 0.65 and 0.76, placing them 

below the rest of the group, perhaps accounted for by their smaller genome sizes. 

 Finally, as before, the genome for Pectobacteria carotovorum subsp. 

carotovorum has a high closeness value while the other Pectobacteria genome, P. 

carotovorum subsp. atroseptica has the lowest closeness value for this network. 

 The distribution of values for betweenness centrality for genomes on this 

network has similarities and differences to the distribution of values for degree 

centrality and closeness. For the third time, the genome with the highest betweenness 

value (a value of 0.006) is S. enterica subsp. Arizonae. Not only is this genome highly 

connected in the network but it also falls on most paths between two  
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Figure 4.7: Closeness centrality against genome length for the network of genomes 

with 95% similarity threshold. 
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given nodes. At this point the network is beginning to separate, there is less gene 

sharing between certain genomes. Genomes with high betweenness are still sharing 

genes with genomes from all parts of the network, so S. enterica subsp. Arizonae is 

still sharing with the Yersinia genomes even as they loose connections with the rest of 

the network. In other words a path between a Yersinia genome and a genome from the 

Escherichia, Salmonella or Shigella is likely to contain the node for S. enterica subsp. 

Arizonae. Many of the Escherichia, Salmonella and Shigella have betweenness values 

not far below the highest value. However, in contrast to the results for degree 

centrality and closeness we also find a number of Escherichia and Shigella genomes 

have very low betweenness values compared to the rest of the genomes in the network. 

The genomes with low betweenness are likely to have lost connections with the 

Yersinia that are moving away from the rest of the network. 

 As was seen for degree centrality and closeness, the Yersinia genomes all have 

relatively low values for betweenness centrality. 
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Figure 4.8: Betweenness centrality against genome length for the network of 

genomes with 95% similarity threshold. 
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4.3.1.4: Network of genomes with 98% Similarity Threshold  

 

At the 98% similarity threshold the number of outgoing edges has fallen by 

another 529. Again the Yersinia and Pectobacteria appear to be underrepresented, an 

indicator of their divergence from the rest of the group. Between 95 and 98% 

similarity the number of outgoing edges for these two genera have fallen substantially 

compared with the numbers for Escherichia, Shigella and Salmonella. At this point all 

of the latter three genera have significantly more outgoing edges than expected. At 

98% similarity the Pectobacteria no longer have any outgoing edges to genomes from 

other species. However there is a connection from the Escherichia genome E. coli 

E24377 to the Pectobacteria genome P. carotovorum subsp. atroseptica . This is 

indicative of a gene (or genes) in the Escherichia genome that has an area covering 

80% of its length that is homologous with at least 98% sequence identity to at least 

one gene in the Pectobacteria genome. 

 The Yersinia genomes have very few edges left that connect them to 

Salmonella or Shigella genomes. They remain connected to the rest of the network 

mostly through relationships with Escherichia genomes. We expect the Yersinia to be 

most divergent in the YESS group and so least connected to the rest of the group on 

the network. However, given the results from phylogenetic studies (Haggerty et al. 

2009) we would also expect the Yersinia to be sharing equally with the Escherichia, 

Salmonella and Shigella, given that on a tree structure Yersinia is equidistant from all 

three genera. This result could be explained by the disparate taxon sampling; there are 

more Escherichia genomes than either Salmonella or Shigella genomes. On the other 

hand this could indicate a bias in gene sharing between Yersinia and Escherichia. 
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Figure 4.9: Networks of genomes at 98% similarity threshold. Lighter edges are 

weaker by comparison (very close to 0 on the scale bar). The darker edges are the 

strongest in the network (closer to 1 on the scale bar).   
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Figure 4.10: Pie chart of the percentages of overall outgoing edges represented by 

each genus for the network built from genes that have at least 98% sequence 

similarity. 

 

Table 4.5: The number of outgoing edges and corresponding percentages for each 

genus in the network built from genes that have at least 98% sequence similarity. The 

number of outgoing connections is calculated from the initial percentages indicated by 

the maximally connected network. The Chi-squared test provides significance scores. 

For genera that have fewer outgoing edges than expected the P value is highlighted in 

orange for those with more than expected outgoing edges the P value is highlighted in 

black. 

Genus 

No. Outgoing 

Connections 

Percentage of All 

Connections 

Expected No. 

Outgoing 

Connections P value 

Yersinia 288 9.13705584 573.0909091 1.06373E-32 

Escherichia 1638 51.96700508 1384.969697 1.05264E-11 

Shigella 384 12.18274112 334.3030303 0.006566505 

Salmonella 838 26.58629442 764.1212121 0.007525949 

Pectobacteria 4 0.12690355 95.51515152 7.6845E-21 

 3152 100 3152  
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Table 4.6: Number of outgoing edges from the source genera labeled on the left to 

the target genera labeled on top for the network built from genes that have at least 

98% sequence similarity. Cells highlighted in yellow represent the maximum number 

of outgoing edges a given genus can have to towards the target genus, i.e. the 

genomes in this genera are maximally connected. 

 

 Yersinia Escherichia Shigella Salmonella Pectobacteria Total 

Yersinia 144 131 2 11 0 288 

Escherichia 129 841 203 464 1 1638 

Shigella 20 203 49 112 0 384 

Salmonella 6 464 112 256 0 854 

Pectobacteria 0 0 0 0 4 4 

      3152 
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4.3.1.5: Modules on the Network of genomes with 98% Similarity Threshold  

 

 Modules 1 and 2, found by NeMo, at the 98% similarity threshold are made up 

exclusively of Yersinia genomes. The number of persisting relationships within the 

Yersiniae at this level of similarity is far more than the number of relationships 

between the Yersinia and others in the network. There is a clear correspondence, in 

this case, between taxonomic classification and community structure. 

 Subsequent modules are less conclusive. Modules 3 and 5 contain a small 

sample of genomes from Escherichia, Salmonella and Shigella. It is not surprising 

that these three genera would form modules, as at the 98% similarity threshold, there 

is still maximal connectivity within the group. There has been much debate in the past 

about the distinction between Escherichia and Shigella species (Escobar-Paramo, 

2003, Pupo, 2000, Yang, 2007) but far less concern for the Escherichia-Salmonella 

divide. At such a high level of similarity there is still a substantial amount of sharing 

going on between all three of these species, casting doubt on the boundaries that have 

been previously established between them (Haggerty et al. 2009). 

   Finally modules 4 and 6 contain genomes from all but the Pectobacteria. 

This is indicative of the massive amount of sharing that is still occurring across the 

entire network, exclusive of the Pectobacteria, which is expected to be the most 

divergent genera of the group. 



#&%!

 

Table 4.7: Modules according to NeMo for the network of genomes at 98% similarity 

threshold. 

 

Cluster Score (Density*#Nodes) Nodes Edges Node IDs 

1 -27.998 9 81 

YERSTBPB1, YERSEN8081, YERSTBYP3, 

YERSPNEPAL, YERSPANG, YERSPBM, YERSPPF, 

YERSPCO92, YERSPANT 

2 -39.639 12 144 

YERSTBIP31, YERSTB32, YERSPKIM, YERSTBPB1, 

YERSEN8081, YERSTBYP3, YERSPNEPAL, YERSPANG, 

YERSPBM, YERSPPF, YERSPCO92, YERSPANT 

3 -173.68 10 100 

ECOREL606, SHIGDYS, SALENGAL, ECOKMG1655, 

ECOEDL933, SALENENTER, ECONEW, ECOCATCC, 

ECOSAKAI, ECOEC4115 

4 -173.68 39 873 

ECOBW2952, ECOKW3110, SALENATCC, ECOSE11, 

ECOKDH10B, ECOHS, SHIGBOYDCDC, SHIGSON, 

SALENSTY, SALENARIZ, YERSTBIP31, YERSTB32, 

YERSPKIM, YERSTBPB1, YERSEN8081, YERSTBYP3, 

YERSPNEPAL, YERSPANG, YERSPBM, YERSPPF, 

YERSPCO92, YERSPANT, ECOIAI1, SALENSCHW, 

ECOTW4359, SALENPARAC, SHIGBOY227, 

SALENNEW, SALENDUB, ECOREL606, SHIGDYS, 

SALENGAL, ECOKMG1655, ECOEDL933, 

SALENENTER, ECONEW, ECOCATCC, ECOSAKAI, 

ECOEC4115 

5 -173.68 7 49 

SHIGDYS, SALENGAL, ECOKMG1655, ECOEDL933, 

SALENENTER, ECONEW, ECOCATCC 

6 -173.68 18 180 

SHIGSON, SALENSTY, SALENARIZ, YERSTBIP31, 

YERSTB32, YERSPKIM, YERSTBPB1, YERSEN8081, 

YERSTBYP3, YERSPNEPAL, YERSPANG, YERSPBM, 

YERSPPF, YERSPCO92, YERSPANT, ECOIAI1, 

SALENSCHW, ECOTW4359 
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4.3.1.6: Centrality Measures of Nodes on the Network of genomes with 98% 

Similarity Threshold  

 

 At the 98% similarity threshold the highest degree centrality value is 1, the 

genome with this score, and therefore the most central in the network is E. fergusonii 

ATCC. Despite not having the largest genome, with 4,266 genes, the E. fergusonii 

genome is still sharing with all but the Pectobacteria. There are 28 E. coli strains in 

the dataset and only one E. fergusonii strain, yet this one strain has more connections 

in the network than any of the E. coli strains. This result is discussed further when we 

evaluate the relationships between genes remaining at this similarity threshold 

(Section 4.3.2.3). 

 For the rest of the Escherichia genomes, along with Salmonella and Shigella, 

the distribution of degree centrality values is similar to the distribution at the 95% 

similarity threshold. They range from slightly below the highest value down to 0.82 

and there is no pattern associated between the length of the genomes and their degree 

centrality value. The degree centrality values for Yersinia, again, are much smaller 

than those for the Escherichia, Salmonella and Shigella, ranging between 0.22 and 

0.52. At 98% similarity, the two Pectobacteria genomes have the two lowest values 

for degree centrality. This is obvious when looking at the network (Figure 4.9), P. 

carotovorum subsp. carotovorum has just one outgoing edge connected to the other 

Pectobacteria genome, P. carotovorum subsp. atroseptica and there is only one 

connection from P. carotovorum subsp. atroseptica to the rest of the network, via E. 

coli E24377. It is however surprising that the genome of P. carotovorum subsp. 

carotovorum which previously had one of the highest degree centrality values, and 

thus was connected to a high proportion of the  
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Figure 4.11: Degree centrality against genome length for the network of genomes 

with 98% similarity threshold. 
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genomes in the network, now has the lowest degree centrality value of 0.05. When we 

include only pairs of homologs with 98% similarity or more we find that P. 

carotovorum subsp. carotovorum is exclusively sharing with the other Pectobacteria 

genome, P. carotovorum subsp. atroseptica .   

As was the case for the network of genomes at the 95% similarity threshold, 

the values for closeness centrality at 98% similarity are very similar to the values for 

degree centrality at 98% similarity.  

The genome with the highest closeness value is E. fergusonii ATCC. The 

values for the rest of the Escherichia, Salmonella and Shigella genomes fall just 

below the highest value. Below these come the values for Yersinia genome and finally 

the two Pectobacteria have the lowest values for closeness centrality. 

 The betweenness centrality values do not correspond to the degree centrality 

and closeness values. The highest betweenness value, at 0.07, belongs to the genome 

for E. coli E24377.  This genome is the only bridge between the bulk of the network, 

containing all the genomes from the YESS group, and the part of the network formed 

by the Pectobacteria. If we wish to trace a path from any genome from Escherichia, 

Salmonella, Shigella or Yersinia to either of the genomes from Pectobacteria then we 

must pass through the node for E. coli E24377.  Following this, Pectobacterium 

carotovorum subsp. atroseptica has the second highest value for betweenness 

centrality, at 0.03. The node for this genome creates a bridge between E. coli E24377 

and the almost disconnected Pectobacterium carotovorum subsp. carotovorum. All 

paths from the bulk of the network to Pectobacterium carotovorum subsp. 

carotovorum pass through Pectobacterium carotovorum subsp. atroseptica . 

 Betweenness values for some of the Escherichia genomes are close to that of 

Pectobacterium carotovorum subsp. atroseptica but most genomes in the network 
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have a very low value for betweenness centrality on the network of genomes at the 

98% similarity threshold. 
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Figure 4.12: Closeness centrality against genome length for the network of genomes 

with 98% similarity threshold. 
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Figure 4.13: Betweenness centrality against genome length for the network of 

genomes with 98% similarity threshold. 
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4.3.1.7: Network of genomes with 99% Similarity Threshold  

 

From 98 to 99% similarity there is a loss of a further 41 outgoing edges. The 

story stays much the same in that the Yersinia and Pectobacteria have fewer outgoing 

edges than expected while Escherichia, Shigella and Salmonella show the opposite 

trend. The genomes within each genus remain maximally connected to one another. 

The Escherichia, Shigella and Salmonella also remain maximally connected to one 

another. 

 The strongest edges (Figure 4.4) appear within the Yersinia demonstrating 

strong within-genus relationships. However, the lack of connections between the 

Yersinia and the rest of the network suggest that this genera has diverged further from 

the rest if the group. 

 The Pectobacteria has completely diverged from the rest of the group at this 

level of similarity. Neither of these two genomes have any genes in common with any 

genomes from the Escherichia, Salmonella, Shigella or Salmonella, that are 99% or 

more similar.  

   It is important to note at this stage the fact that even if we only include pairs 

that are almost identical across the extent of their sequences we still retain a highly 

connected network. There is no way, from just looking at the network, that we can 

distinguish species barriers between the Escherichia, Salmonella and Shigella. Every 

genome in these three genera has at least one gene with at least one homolog in every 

other genome within the three genera, that is 99% identical. 
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Figure 4.14: Networks of genomes at 99% similarity threshold. Lighter edges are 

weaker by comparison (very close to 0 on the scale bar). The darker edges are the 

strongest in the network (closer to 1 on the scale bar).   
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Figure 4.15: Pie chart of the percentages of overall outgoing edges represented by 

each genus for the network built from genes that have at least 99% sequence 

similarity. 

 

Table 4.8: The number of outgoing edges and corresponding percentages for each 

genus in the network built from genes that have at least 99% sequence similarity. The 

number of outgoing connections is calculated from the initial percentages indicated by 

the maximally connected network. The Chi-squared test provides significance scores. 

For genera that have less outgoing edges than expected the P value is highlighted in 

orange for those with more than expected outgoing edges the P value is highlighted in 

black. 

Genus 

No. Outgoing 

Connections 

Percentage of All 

Connections 

Expected No. 

Outgoing 

Connections P value 

Yersinia 267 8.582449373 565.6363636 3.6545E-36 

Escherichia 1618 52.00900032 1366.954545 1.12066E-11 

Shigella 384 12.34329797 329.9545455 0.002926933 

Salmonella 838 26.93667631 754.1818182 0.002272387 

Pectobacteria 4 0.128576021 94.27272727 1.43864E-20 

 3111 100 3111  

 

9% 

52% 
12% 

27% 

0% 

Yersinia 

Escherichia 

Shigella 

Salmonella 

Pectobacteria 



#'%!

 

 

 

 

 

 

 

Table 4.9: Number of outgoing edges from the source genera labeled on the left to 

the target genera labeled on top for the network built from genes that have at least 

99% sequence similarity. Cells highlighted in yellow represent the maximum number 

of outgoing edges a given genus can have to towards the target genus, i.e. the 

genomes in this genera are maximally connected. 

 

 Yersinia Escherichia Shigella Salmonella Pectobacteria Total 

Yersinia 144 111 2 10 0 267 

Escherichia 110 841 203 464 0 1618 

Shigella 20 203 49 112 0 384 

Salmonella 6 464 112 256 0 838 

Pectobacteria 0 0 0 0 4 4 

      3111 
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4.3.1.8: Modules on the Network of genomes with 98% Similarity Threshold  

 

At this almost extreme similarity threshold we would expect that communities 

of tightly connected nodes would be synonymous with species boundaries. It is 

obvious at this stage that the Pectobacteria have formed a species module, this much 

is evident from looking that network. NeMo does not detect the Pectobacteria module 

because two genomes connected exclusively to one another are not considered to be 

“densely connected”. 

The modules that are found by NeMo include three that correspond to the 

Yersinia species grouping (modules 1-3 on table 4.9) and three that advocate the 

grouping of Escherichia, Salmonella and Shigella. 
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Table 4.10: Modules according to NeMo for the network of genomes at 99% 

similarity threshold. 

 

Cluster Score (Density*#Nodes) Nodes Edges Node IDs 

1 -23.997 6 36 

YERSPBM, YERSPPF, YERSPCO92, YERSPANT, 

YERSPKIM, YERSPANG 

2 -24.757 10 100 

YERSTBPB1, YERSPNEPAL, YERSTBYP3, 

YERSEN8081, YERSPBM, YERSPPF, YERSPCO92, 

YERSPANT, YERSPKIM, YERSPANG 

3 -34.713 12 144 

YERSTBIP31, YERSTB32, YERSTBPB1, YERSPNEPAL, 

YERSTBYP3, YERSEN8081, YERSPBM, YERSPPF, 

YERSPCO92, YERSPANT, YERSPKIM, YERSPANG 

4 -174.757 12 144 

SHIGSON, SALENSTY, SALENARIZ, ECOIAI1, 

SALENSCHW, ECOTW4359, ECOEDL933, SALTYLT2, 

SALENGAL, ECOKMG1655, ECONEW, ECOCATCC 

5 -174.757 5 25 

SALTYLT2, SALENGAL, ECOKMG1655, ECONEW, 

ECOCATCC 

6 -174.757 6 36 

EFERATCC, ECOREL606, SHIGDYS, SALENENTER, 

ECOSAKAI, ECOEC4115 

7 -174.757 29 841 

ECOBW2952, ECOKW3110, SALENATCC, ECOSE11, 

ECOKDH10B, ECOHS, SHIGBOYDCDC, SHIGSON, 

SALENSTY, SALENARIZ, ECOIAI1, SALENSCHW, 

ECOTW4359, ECOEDL933, SALTYLT2, SALENGAL, 

ECOKMG1655, ECONEW, ECOCATCC, SALENPARAC, 

SHIGBOY227, SALENNEW, SALENDUB, EFERATCC, 

ECOREL606, SHIGDYS, SALENENTER, ECOSAKAI, 

ECOEC4115 

8 -174.757 6 36 

SHIGSON, SALENSTY, SALENARIZ, ECOIAI1, 

SALENSCHW, ECOTW4359 

9 -246.168 25 463 

ECOLF82, ECOS88, SHIGF301, SHIGFLEX5, ECOSMS35, 

SALTYPHI, SALENCHOL, SALENPARAB, YERSTBIP31, 

YERSTB32, YERSTBPB1, YERSPNEPAL, YERSTBYP3, 

YERSEN8081, YERSPBM, YERSPPF, YERSPCO92, 

YERSPANT, YERSPKIM, YERSPANG, ECOIAI39, 

ECOH6E2348, ECOUTI89, ECOE24377A, ECO536 
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4.3.1.9: Centrality Measures of Nodes on the Network of genomes with 99% 

Similarity Threshold!

 

At the 99% similarity threshold the genome with the highest degree centrality 

and closeness values is E. coli 55989. This genome is one of the larger, with 4,763 

genes. The values just below the highest belong to the genomes from Escherichia, 

Salmonella and Shigella. The Yersinia genomes have values that are lower still and 

the Pectobacteria again, have the lowest values for degree centrality and closeness 

centrality. 

In terms of betweenness, E. coli CFT073 is the most central at the 99% 

similarity threshold. This is closely followed by many of the other genomes. At this 

high level of similarity the Escherichia nodes act as bridges between many of the 

genomes that are no longer sharing genes with one another. As can be seen in table 

4.9, Yersinia no longer has a large number of connections with either the Shigella or 

Salmonella genomes. The Escherichia, however, remain relatively well connected to 

the Yersinia, so that many paths from a Salmonella or Shigella genome to a Yersinia 

genome will pass through an Escherichia genome. 

 The genome for S. flexneri 2a str. 301 also has a comparatively high 

betweenness value. This Shigella genome is still sharing with 8 of the 12 Yersinia 

genomes and so appears on many of the paths between Yersinia and genomes from 

the Escherichia, Salmonella and Shigella. There are two more Yersinia and two more 

Shigella genomes that show a mid-range value for betweenness that are also 

positioned on the network at a bridging point between the two distinct parts. All other 

genomes remain at low values for betweenness centrality. 
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Figure 4.16: Degree centrality against genome length for the network of genomes 

with 99% similarity threshold. 
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Figure 4.17: Closeness centrality against genome length for the network of genomes 

with 99% similarity threshold. 
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Figure 4.18: Betweenness centrality against genome length for the network of 

genomes with 99% similarity threshold. 
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4.3.1.10: Network of genomes with 100% Similarity Threshold 

 

At the extreme threshold of 100% sequence identity, although many 

connections are lost, there is still a significant number of edges. In other words, there 

are many genomes, within and between-genus, with homologs that are identical 

across at least 80% of the gene. On this network there looks to be some clear species 

boundaries. Escherichia, Salmonella and Shigella, form a distinctive “ball” on the 

network. The Pectobacteria, of course, remain completely separated from the rest of 

the group and are only sharing genes with one another. The Yersinia have separated 

further from the group i.e. they have even weaker links with the genomes outside of 

the Yersinia genus. Even within the Yersinia community it appears as though many of 

the connections are not so strong any more (indicated by light coloured edges on 

Figure 4.19).  

 Interesting to note at 100% is the absence of an edge between any of the 

Salmonella and any of the Yersinia. There are no genes between Yersinia and 

Salmonella that are 100% similar. In fact Yersinia is sharing exclusively with 

Escherichia at this threshold. This would suggest that Yersinia is more closely related 

to Escherichia than to Shigella and to Salmonella. On the contrary, previous 

phylogenetic studies have suggested that Yersinia is equally closely related to both 

genera (Haggerty et al. 2009).     

Finally, at the 100% similarity threshold, where all genes still included in the 

network are identical across 80% of their length there are still 2,366 outgoing edges. 

By comparison with the original percentages, Yersinia and Pectobacteria are less 

connected than expected and Escherichia, Shigella and Salmonella are more 

connected than expected. Yet at the threshold where only identical pairs of genes are 
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holding the network together we still find that Escherichia and Shigella are 

maximally connected to one another. Salmonella still has a large number of 

connections with the Escherichia and Salmonella but it has lost all edges to Yersinia. 

In fact Yersinia is now exclusively sharing genes within genus or with Escherichia 

genomes.  
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Figure 4.19: Networks of genomes at 100% similarity threshold. Lighter edges are 

weaker by comparison (very close to 0). The darker edges are the strongest in the 

network (closer to 1).   
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Figure 4.20: Pie chart of the percentages of overall outgoing edges represented by 

each genus for the network built from genes that have at least 100% sequence 

similarity. 

 

Table 4.11: The number of outgoing edges and corresponding percentages for each 

genus in the network built from genes that have 100% sequence similarity. The 

number of outgoing connections is calculated from the initial percentages indicated by 

the maximally connected network. The Chi-squared test provides significance scores. 

For genera that have less outgoing edges than expected the P value is highlighted in 

orange for those with more than expected outgoing edges the P value is highlighted in 

black. 

Genus 

No. Outgoing 

Connections 

Percentage of All 

Connections 

Expected No. 

Outgoing 

Connections P value 

Yersinia 169 7.142857143 430.1818182 2.31778E-36 

Escherichia 1317 55.6635672 1039.606061 7.74896E-18 

Shigella 309 13.06001691 250.9393939 0.00024715 

Salmonella 567 23.96449704 573.5757576 0.783647921 

Pectobacteria 4 0.169061708 71.6969697 1.29567E-15 

 2366 100 2366  

7% 

56% 
13% 

24% 

0% 

Yersinia 

Escherichia 

Shigella 

Salmonella 

Pectobacteria 



#*&!

 

 

 

 

 

 

 

Table 4.12: Number of outgoing edges from the source genera labeled on the left to 

the target genera labeled on top for the network built from genes that have 100% 

sequence similarity. Cells highlighted in yellow represent the maximum number of 

outgoing edges a given genus can have to towards the target genus, i.e. the genomes 

in this genera are maximally connected. 

 

 Yersinia Escherichia Shigella Salmonella Pectobacteria Total 

Yersinia 137 32 0 0 0 169 

Escherichia 40 841 203 233 0 1317 

Shigella 0 203 49 57 0 309 

Salmonella 0 251 60 256 0 567 

Pectobacteria 0 0 0 0 4 4 

      2366 
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4.3.1.11: Modules on the Network of genomes with 100% Similarity Threshold  

 

Detection of modules at the 100% similarity threshold reveals two distinct 

groupings of genomes. The first is the Yersinia group, corresponding to the Yersinia 

clade on phylogenetic trees (Haggerty et al., 2009). The second is the Escherichia, 

Salmonella and Shigella group. On a phylogenetic tree this group is represented as 

two or three separate clades depending on the separation of the Escherichia and 

Shigella. 
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Table 4.13: Modules according to NeMo for the network of genomes at 99% 

similarity threshold. 

 

Cluster Score (Density*#Nodes) Nodes Edges Node IDs 

1 -1.464 7 46 

YERSPNEPAL, YERSTBIP31, YERSTBYP3, 

YERSEN8081, YERSPANT, YERSPKIM, YERSPCO92 

2 -2.744 5 25 

YERSPANG, YERSTBPB1, YERSTB32, YERSPPF, 

YERSPBM 

3 -3.438 12 137 

YERSPNEPAL, YERSTBIP31, YERSTBYP3, 

YERSEN8081, YERSPANT, YERSPKIM, YERSPCO92, 

YERSPANG, YERSTBPB1, YERSTB32, YERSPPF, 

YERSPBM 

4 -126.859 15 123 

ECOSMS35, ECOEC4115, ECOS88, EFERATCC, 

ECOIAI1, ECO55989, SHIGBOYDCDC, ECOAPEC01, 

SALENHEID, SALENPARAB, SALENDUB, 

SALENSCHW, SALENAGONA, SALENNEW, 

SALENARIZ 

5 -132.419 20 229 

SHIGSON, SHIGF245, ECOTW4359, ECOSAKAI, 

ECOEDL933, ECOSMS35, ECOEC4115, ECOS88, 

EFERATCC, ECOIAI1, ECO55989, SHIGBOYDCDC, 

ECOAPEC01, SALENHEID, SALENPARAB, SALENDUB, 

SALENSCHW, SALENAGONA, SALENNEW, 

SALENARIZ 

6 -137.624 31 659 

SALENPARAC, SALENCHOL, SALENENTER, 

SALENPARAA, SALENGAL, SHIGBOY227, SHIGDYS, 

ECOUTI89, ECOHS, ECOE24377A, SHIGFLEX5, 

SHIGSON, SHIGF245, ECOTW4359, ECOSAKAI, 

ECOEDL933, ECOSMS35, ECOEC4115, ECOS88, 

EFERATCC, ECOIAI1, ECO55989, SHIGBOYDCDC, 

ECOAPEC01, SALENHEID, SALENPARAB, SALENDUB, 

SALENSCHW, SALENAGONA, SALENNEW, 

SALENARIZ 

7 -139.413 33 763 

SALENPARAC, SALENCHOL, SALENENTER, 

SALENPARAA, SALENGAL, SHIGBOY227, SHIGDYS, 

ECOUTI89, ECOHS, ECOE24377A, SHIGFLEX5, 

SHIGSON, SHIGF245, ECOTW4359, ECOSAKAI, 
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ECOEDL933, ECOSMS35, ECOEC4115, ECOS88, 

EFERATCC, ECOIAI1, ECO55989, SHIGBOYDCDC, 

ECOAPEC01, SALENHEID, SALENPARAB, SALENDUB, 

SALENSCHW, SALENAGONA, SALENNEW, 

SALENARIZ, SHIGF301, ECOSE11 
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4.3.1.12: Centrality Measures of Nodes on the Network of genomes with 100% 

Similarity Threshold  

 

   On the network of genomes made from pairs of identical genes only, the 

genome for E. coli 536 has the highest degree centrality at 0.83. This genome, all of 

the other Escherichia and Shigella and many of the Salmonella genomes have 

remained highly connected in the network. These genomes also have a corresponding 

high closeness centrality. However, 5 of the 16 Salmonella genomes have now lost 

contact with so much of the network that their degree centrality and closeness values 

have fallen quite drastically. At this level of similarity these five Salmonella genomes 

have similar degree centrality and closeness values to the Yersinia.   

 For the first time with our data, the genome with the highest degree centrality 

and closeness values is also the most central in terms of betweenness. E. coli 536 has 

retained many of its outgoing edges to genomes within the Escherichia as well as 

those in other genera. At the same time many of the between genus edges have been 

lost at this level of similarity. Since E. coli 536 is connected to parts of the network 

that have lost connections with one another, i.e. many of the between-genera 

connections are no longer present, it acts as the best bridging node at this point in the 

analysis. Six other Escherichia genomes have a similar role in the network. By 

retaining relationships with genomes from all genera they connect otherwise separate 

components.  
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Figure 4.21: Degree centrality against genome length for the network of genomes 

with 100% similarity threshold. 
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Figure 4.22: Closeness centrality against genome length for the network of genomes 

with 100% similarity threshold. 
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Figure 4.23: Betweenness centrality against genome length for the network of 

genomes with 100% similarity threshold. 
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4.3.2: Network of Genes 

 

4.3.2.1: COG Category Analysis 

 

 When we refer to the results from the COG category analysis we find that a 

considerable portion of the genes have no hit in the COG database. In other words 

many of the genes from our dataset are not similar enough to any the genes in the 

COG-categorised database to merit a reliable prediction of their COG category. Of the 

291,172 genes in our dataset, 54,840 have no homolog in the COG database. A 

further 22,520 are predicted to have an unknown function and 32,225 have a general 

function prediction only. The equivalent of one third of the genes in our database 

could not be assigned a COG category. 

 There are 22 COG categories in total including unknown function and general 

function prediction. We find higher numbers of genes in categories associated with 

metabolism, transcription and replication, recombination and repair (Figure 4.24). As 

we increase the similarity threshold to 95%, i.e. the point at which the network of 

genomes is no longer maximally connected, we find very little change. There is a loss 

of 2,195 genes, but the losses are distributed fairly evenly across the categories, no 

category has lost significantly more or less genes than we would have expected. This 

trend follows on as we raise the threshold further. Between the 99 and 100% 

thresholds we see a slightly significant loss in the number of genes involved in 

extracellular structures (P-value = 0.05), in cell cycle control (P-value = 0.003) and in 

intracellular trafficking (P-value = 0.007). 
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Figure 4.24: Distribution of COG functions for genes at each level of sequence 

similarity. 
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4.3.2.2: GenBank Functions 

 

 For all 291,172 genes in our dataset there are 20,196 different GenBank 

functional annotations. The genes are given quite specific functions rather than broad 

categories. This means that there is redundancy across many of the annotations, often 

the same or very similar functions can be named several different ways. One example 

is for proteins involved in transportation, these can be named ‘transport protein’, 

‘transporter protein’, ‘putative transporter’, ‘predicted transporter’, etc. or even 

something more specific such as ‘ABC transporter ATP-binding protein’. We have to 

bear this in mind when quantifying the different gene functions. However, when we 

look to the top 25 occurring GenBank functional annotations we see a bias towards 

certain types of functions.  

 From the list of GenBank functions for all genes in our dataset we find that the 

most abundant is the ‘hypothetical protein’. There are 163,448 of these non-

informative, hypothetical proteins accounting for more than half of the data. For the 

genes that have a more informative functional annotation we find that the most 

abundant are the ‘putative inner membrane proteins’. An inner membrane is found in 

all gram-negative bacteria. Interesting to note is the fact that all known conjugative 

systems make use of an inner membrane protein known as a coupling protein. The 

coupling protein has a cytoplasmic domain that links secretion systems to 

relaxosome-bound DNA during transfer (Frost, 2005). In other words this type of 

protein is essential in conjugative HGT. 

 The second most abundant functional annotation is ‘putative lipoprotein’. 

Lipoproteins emulsify lipids allowing them to move through the water inside and 
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outside of the cell. Bacterial lipoproteins are membrane-anchored and typically 

account for approximately 2% of the bacterial proteome. They have a range of 

functions including promoting antibiotic resistance, cell signaling and substrate 

binding in ABC transport systems, and bacterial conjugation. 

 Within the top 25 occurring functional annotations for all genes in our dataset 

we find a number of instances of transporter proteins namely ‘putative transport’ 

proteins, ‘putative transporters’, ‘predicted transporters’, and ‘ABC transporter related’ 

proteins. Transporter proteins are involved in moving substances within an organism. 

In particular the ABC transporter proteins are often involved in iron uptake systems 

that are important in virulence and often transferred horizontally between enteric 

bacteria, I discuss this further in the following section (4.3.2.3). 

 Also within the top 25 occurring functional annotations are transposases and 

insertion sequences (IS). An IS is a short DNA sequence that acts as a transposable 

element, unlike most transposable elements they do not carry accessory genes. Instead 

an IS will only code for a transposase and a regulatory protein which either stimulates 

or inhibits the transposition activity. Transposases and insertions sequences make up 

3,938 or 14.78% of the 26,652 genes in the list of the top 25 occurring GenBank 

functions. 

 There are large numbers of genes involved in mechanisms of HGT in the 

highest occurring functional annotations, but we also see a substantial number of 

genes involved transcriptional regulation. These informational genes make up a total 

5,556 of all the genes in the dataset. 

 As we raise the similarity threshold and only include pairs of genes with 90% 

similarity across 80% of their length, we are left with 289,418 genes to assess. Still 

we find the same categories of functions at the top of the list of GenBank functions. 
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Further more, when we raise the similarity threshold to 95, 98, 99 and 100% we see 

no change in the functional annotations that occur most. 

At every level of similarity, the genes in our dataset that are most dominant in 

terms of quantity are mobile genes, those involved in the mobilization of other genes 

and informational genes. The fact that these types of genes have remained abundant to 

the highest level of similarity, suggests that they are highly similar and among the last 

to diverge.  

 

4.3.2.3: Levels of Similarity between Homologs 

 

When we evaluate the number of genes that fall into each of the bins we find a 

pattern in the distribution that corresponds to the pattern of divergence between two 

homologous genes. In Figure 4.25 we see a hump in the data that corresponds to an 

area of increased quantity of homologous pairs. This hump falls between 75.25% and 

88.75% sequence similarity and accounts for approximately 25% of the homologous 

relationships in the dataset. In other words a 25% of homologs have diverged 11.2 to 

24.75%.  We expect that the minimum level of divergence between two genes from 

different genomes in our dataset would fall within the range of 11.2 to 24.75%. 

However, on Figure 4.25 we also see a reversal of the trend in decreasing numbers of 

genes connecting a pair of genomes resulting in a kick up at the end that corresponds 

to a large number of homologous genes that have between 93.25 and 100% sequence 

similarity. This kick up accounts for 72% of the homologous relationships in the 

dataset, in fact 56% of all the homologous relationships have more than 97.75% 

sequence similarity.  
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The extremely high percentage similarity for such a large number of 

homologous pairs cannot be explained by self-hits, i.e. every gene has 100% sequence 

similarity with itself. These relationships were removed before the data was assessed. 

However, the kick up could possibly be an artifact of within-genus relationships. In 

other words we would expect two genes from genomes in the same genus to be highly 

similar. To test for this explanation we quantify the number of homologous pairs that 

fall into each bin for within- and between-genus relationships.  

For the within-genus relationships (Figure 4.26) we find that, for the most part, 

there is small a hump within the area of 10% divergence. Within the Yersinia there 

are very few relationships that have diverged by more than 5%. Approximately 41% 

of the within-Pectobacteria relationships fall within the range of 84.25 – 95.5% 

sequence similarity. Finally, as expected, for every within-genus relationship there is 

a substantial increase in the number of homologous relationships at and beyond 

95.5% sequence similarity. The percentage of relationships that fall into the top bin, 

i.e. have sequence similarity of 97.75% or more, ranges from approximately 56% for 

the Pectobacteria to just below 93% for the within-Yersinia relationships. It is 

obvious from these results that, within each genus, the genomes are very closely 

related.  

We find for the between-genus relationships (Figure 4.27), that for every pair of 

genera bar Escherichia and Shigella, there is an increase in the number homologous 

pairs in the range of 73 to 88.75%. From the homologous pairs between Escherichia 

and Shigella, only 2.7% fall into this range. On the contrary, pairs of homologs within 

this range make up between 87 and 95% of the overall number of homologous pairs 

between any other given pair of genera. The majority of homologous pairs between 

Escherichia and Shigella have more than 95.5% sequence similarity. Overall, the 
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Escherichia-Shigella relationship mimics the within-genus relationships. In fact, with 

approximately 67% of their homologs falling into the uppermost bin, Escherichia and 

Shigella appear to be more similar than the Pectobacteria are within-genus.     

For seven of the ten between-genus relationships the number of homologous pairs 

begins to drop at 93.25% sequence similarity. For the Escherichia-Salmonella and 

Escherichia-Yersinia relationships however, there is a slight kick up from 95.5 to 

100% sequence similarity. For the Escherichia and Salmonella, this kick up accounts 

for less than 5% of the homologous pairs, that means that 66,743 of Escherichia-

Shigella homologs are more than 95.5% similar. For the Escherichia and Yersinia 

approximately 10% or 22,296 of the homologous pairs share more than 95.5% 

sequence similarity. Despite the substantial amount of gene sharing at very high levels 

of similarity between Escherichia and Salmonella and between Escherichia and 

Yersinia, there is almost no sharing between Salmonella and Yersinia. Only 55 pairs 

of homologs fall into the top bin for the Salmonella-Yersinia relationship. That means 

that less than 0.05% of the homologous pairs between Salmonella and Yersinia have 

97.5% or more sequence similarity.  

 Previous phylogenetic studies have suggested that Yersinia is equally closely 

related to Escherichia and Salmonella (Haggerty et al. 2009). However, our work 

suggests that Yersinia genomes share many more highly similar homologs with 

genomes from the Escherichia than with those from the Salmonella. This suggests 

that Yersinia is in fact more closely related to Escherichia than to Salmonella. Also, 

because we see a notable amount of gene sharing between Escherichia and 

Salmonella and between Escherichia and Yersinia but not between Yersinia and 

Salmonella we can assume that each pair of genera are sharing different types of 

genes. If the Escherichia  
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Figure 4.25: Percentage of homologous relationships at each level of sequence 

similarity. 
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genomes were sharing the same genes with Salmonella and with Yersinia, then surely 

these genes would be homologs between Salmonella and Yersinia.  

 When we look to the homologous pairs between Escherichia and Salmonella 

that fall into the top bin we find two distinct types of genes; informational genes 

(those involved in transcription, translation, and related processes) and genes that are 

likely to have been acquired recently through horizontal transfer. 

 Figure 4.28 shows the network of homologous genes between Escherichia and 

Salmonella that have 97.5% or more sequences similarity. Each node is a gene; red 

nodes come from Escherichia genomes and purple nodes come from Salmonella. 

There is an edge between any pair of genes that share regions of homology for more 

than 97.5% of the residues over at least 80% of their length. Only relationships 

between the two different genera and not within are represented on this graph, in other 

words there are no edges between two genes from the Escherichia or between two 

genes from the Salmonella.  

Groups of homologs form clusters or connected components. On the network 

different clusters are enclosed in different coloured circles. These circles indicate 

different types of genes. Inside the pink circle are all the clusters containing 

informational genes. Informational genes are involved in important processes such as 

transcription and translation so they are needed in all genomes and are likely to be 

highly conserved. We can see that, on the network, the clusters in the pink circle, for 

the most part, contain lots of genes from both genera i.e. they are generally 

universally distributed. 
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Figure 4.26: Percentage of homologous relationships at each level of sequence 

similarity for all within-genus relationships. 
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Figure 4.27: Percentage of homologous relationships at each level of sequence 

similarity for all between-genus relationships. 

 



#)%!

The large blue circle contains all phage related genes. It can be see in Figure 

4.28 that these mobile genetic elements are far more sparsely distributed than the 

informational genes. Most of the clusters of phage related genes contain genes from 

only a few different genomes and have strange patterns of relationships, e.g. in some 

cases two genes from Salmonella are homologous to the same gene from Escherichia, 

but just one of the Salmonella genes is also homologous to a different Escherichia 

gene.   

The patterns of relationships between transposases (within the green circle) 

from the two genera are somewhere in between the patterns of relationships for the 

informational gene and for the phage related genes. There is no doubt that there is a 

large number of transposases and that the level of similarity between those from 

different genomes is very high, but some appear to be ubiquitous while others are 

more sparsely distributed. Some of the clusters of transposases contain representatives 

of many genomes from both genera whereas others contain many from one genus and 

just a few or one from the other genus.  This is indicative of a relationship in which 

the transposase arose in the genus for which there is many representatives and was 

horizontally transferred to a select few genomes from the other genus.  

The genes inside the small orange circle are acquired antibiotic resistance 

genes. Genes for Beta-lactamase and ethidium bromide resistance as well as the 

multidrug efflux are shared between the Escherichia and Salmonella. The yellow 

circle contains genes for which the high level of similarity is most likely explained by 

a recent transfer event. They include operon leader peptides, inner membrane proteins, 

transporter proteins and genes involved in the hok/sok system of a plasmid.  

Figure 4.29 shows the network of homologous genes between Escherichia and 

Yersinia that have 97.5% or more sequences similarity. Each node is a gene; red 
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nodes come from Escherichia genomes and blue nodes come from Yersinia. There is 

an edge between any pair of genes that share regions of homology for more than 

97.5% of the residues over at least 80% of their length and the network is only 

representative of between genus relationships.  

Again the informational genes are contained within the pink circle; this time 

there are far fewer informational genes to speak of. Just one type of small ribosomal 

subunit protein remains between the Escherichia and Yersinia. This gene in all 

Yersinia genomes has more than 97.5% similarity with the same gene in the genome 

for E. fergusonii ATCC. This may explain why, in the genome networks,  
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Figure 4.28: Network of homologous genes between Escherichia and Salmonella that 

have 97.5% or more sequences similarity. Red nodes are Escherichia genes and 

purple nodes are Salmonella genes. 
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E. fergusonii ATCC retains more connections than the other Escherichia genomes 

with the rest of the network (section 4.3.1.6). The E. fergusonii genome contains just 

one gene that is highly similar to a gene in all 12 Yersinia genomes. That means that 

the node representing E. fergusonii has 12 connections in the genome network as a 

result of just one gene. 

There are many transposases shared between the Escherichia and Yersinia at 

the highest levels of similarity (green circle). Their distribution is sometimes sparse 

and sometimes universal, depending on the transposase in question. The high level of 

similarity between transposases and between genes contained in the yellow circle is 

most likely explained by a recent transfer event.   

The purple circle on Figure 4.29 is contains only genes from the yersiniabactin 

biosynthetic gene cluster including siderophore and receptor proteins. These genes 

were not seen on the network of homologous genes between Escherichia and 

Salmonella that have 97.5% or more sequences similarity. The yersiniabactin genes, 

therefore, are uniquely shared between the Escherichia and Yersinia. Yersiniabactin 

siderophores are among the strongest iron-binding agents known. When bacteria and 

fungi are starved of iron they are known to secrete the yersiniabactin siderophore to 

scavenge for ferric ions. The siderophore and receptor genes that we find on the 

network of homologous genes between Escherichia and Yersinia that have 97.5% or 

more sequences similarity, have only been found in highly pathogenic Yersinia strains 

located on a high pathogenicity island (HPI). There have been two groups of HPI 

distinguished based on DNA comparison, the Y. pestis group and the Y. 

pseudotuberculosis group and it is thought that the Y. pestis group have been spread 

throughout the enterics. However we find that the yersiniabactin genes have the 
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highest level of similarity between genomes from the Escherichia and both Y. Pestis 

and Y. pseudotuberculosis genomes.  
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Figure 4.29: Network of homologous genes between Escherichia and Yersinia that 

have 97.5% or more sequences similarity. Red nodes are Escherichia genes and blue 

nodes are Yersinia genes. 
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4.4: Discussion 

 

What seems indisputable is that we can identify organisms that have 

synapomorphies, both genetic and phenotypic. However, even though we recognize 

groupings, we do not have a bacterial species concept and we do not understand how 

these groupings (species, subspecies, even genera) form. The kinds of analyses that 

have shown that there is some structure among currently defined species have the 

limitation of only examining the evolutionary history of a set of core genes. Not only 

does this limit the amount of information used in the analysis, core genes are not 

representative of the rest of the genes in a genome in terms of factors such as 

functional category and rate mutation. For a modern system of classification to work, 

it must use complete genomes and be able to accommodate HGT. Staley (2006) 

suggested that we might consider a species to be an ‘irreducible cluster’ of organisms. 

Assessing deep- and shallow-level phylogenetic relationships within the YESS 

group has been proven to be fraught with difficulties related to HGT and erosion of 

phylogenetic signal. The only consistent outcome from phylogenetic studies of the 

YESS group is the recovery of three groups: the Yersinia group, the Salmonella group 

and the Escherichia/Shigella group. 

In this chapter I report observations on the way in which a group of closely 

related bacterial genomes have diverged from one another using networks of gene 

sharing. These networks of gene sharing provide a way to describe a genome in 

relation to other genomes. Both the vertical and horizontal components of evolution 

are represented on the gene-sharing network and thus provide an all-encompassing 

view of evolution.  
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When we observe the network of all gene sharing for the YESS group of 

bacteria we find it somewhat uninformative. Every genome has a homologous 

relationship to every other genome and there is a lack of phylogenetic signal of any 

kind. As we raise the similarity threshold up to and above 95%, the network begins to 

elucidate evolutionary signals. In some cases results from network analyses of 

homologous relationships adhere to the traditional way of thinking, i.e. the ribosomal 

phylogeny of bacteria. In other cases we find that the networks reveal unexpected 

insights into the relationships within the group. 

More often than not we find that there is substantially more sharing within a 

genus than between genera. On the networks of genomes, at every level of similarity, 

the darkest edges, i.e. those between genomes with the most genes in common, are 

found between genomes from the same genus. When we look to the networks of 

genes, we find that, within genus, the majority of gene homology relationships fall 

into the highest bin for sequence similarity. We see that a number of the relationships 

between genes from different genera also have high similarity but the trend is much 

stronger within each genus.  

The ribosomal phylogeny indicates that the Yersinia is the deepest clade and is 

equidistant from the Salmonella and the Escherichia/Shigella clades. The 

Pectobacteria is placed outside of this. The networks of genomes, in some way 

adhere to this signal. The genomes of the Yersinia and Pectobacteria are the first to 

move away from the network, i.e. at higher levels of sequence similarity they have 

fewer genes in common with the rest of the genomes in the network. Also in 

concordance with the ribosomal phylogeny are some of the modules found in 

networks of higher similarity thresholds. The Yersinia consistently form a tight-knit 

cluster on the network and the Pectobacteria remain connected to one another even 
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when they have lost all connection with the rest of the network. Clearly there is some 

evidence of species modules forming.  

For the most part genomes from the Escherichia, Salmonella and Shigella are 

considered most central in the network, based on the three measures on centrality. The 

Yersinia and Pectobacteria, considered to have homology with the rest of the 

genomes, are found towards the peripheral of the network. A genomes position in the 

network, relates to its relatedness to the rest of the network.  Again, this is apparent of 

the vertical signal within the group. 

On the contrary, it is indisputable that forces other than the vertical inheritance 

of genes are influencing the evolution of this group. At every level of similarity there 

remains a huge number of connections between genomes. In fact up to the 90% 

similarity threshold the network is maximally connected. If it can be accepted that 

when DNA similarity levels between two strains are greater than 70% they can be 

assigned to the same species (Achtman, 2008, Cho, 2001, Konstantinidis, 2006, 

Stackebrandt, 1994, Staley, 2006) then there should be problems sub-categorizing the 

YESS group. Within the group of genomes from the Escherichia, Salmonella and 

Shigella in particular, there is an excessive amount of sharing. At the point where we 

consider only those pairs of homologs that are 100% identical across at least 80% of 

their length, i.e. the network of 100% similarity, the genomes from these three genera 

remain maximally connected. The 52 genomes from the Escherichia, Salmonella and 

Shigella comprise a group that, when judged by certain genes, will appear to be part 

of one species. 

We saw from the networks of genes that homologs from within a genus tend 

to display the highest levels of similarity, in concordance with the ribosomal 

phylogeny. The distribution of percentage similarity between homologs from different 
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genera however, opposes the vertical signal. For specific cases there are an 

uncommon number of homologs from different genera that are similar across the 

majority of their length. The unusually high numbers of genes with unusually high 

levels of similarity are found between Escherichia and Salmonella and between 

Escherichia and Yersinia but not between Salmonella and Yersinia. These results 

confound expectations that the Yersinia would share equally with the Escherichia and 

Salmonella.  

The genes that are found in the highest bins for between genera relationships 

are those that cause genomes to appear more closely related than previously reported 

by the ribosomal phylogeny. These genes are most likely to belong to functional 

categories involved in informational processes mechanisms of HGT. In fact 

throughout all of the analyses, at every level of similarity, the genes in our dataset that 

are most dominant in terms of quantity are mobile genes, those involved in the 

mobilization of other genes and informational genes. If the genes involved in the 

mobile portion of the genome are just as influential as the genes involved in the 

highly conserved proportion, then it would appear that we cannot justifiably describe 

the evolution of prokaryotes, exclusively, by a set of core informational genes. 
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Chapter 5: Concluding Remarks and Future Work  

 

Many agree that the Tree of Life (ToL) has become redundant in describing 

the evolutionary history of prokaryotes. Processes or entities that do not fit the strictly 

vertical inheritance pattern are often omitted from studies altogether. In fact 

incongruence between prokaryotic gene trees is so rampant that some believe it is not 

even possible to create a ‘tree of one percent’ of the data (Puigbo and Koonin 2009). 

In this thesis I attempted to gain further understanding of such processes and entities 

that appear to confuse and confound the ToL hypothesis. Furthermore I explored the 

alternative of networks to describe the relationships between bacterial genomes and 

genes. 

 Fusion genes and their components do not align with one another in the 

traditionally optimal way. Relationships between genes that are not homologous along 

their entire length are usually trimmed or removed from the data altogether in order to 

cater for the branching pattern of the ToL. In chapter 2 I presented the premise of a 

method for detecting fusions of unrelated genes using network structure analysis. 

Although a number of fusion detection algorithms precede this (Enright, 1999, 

Marcotte, 1999, Suhre, 2004), they tend to rely on non-overlapping side-by-side 

BLAST hits from a source genome to a target genome. Not only are these algorithms 

limited by the input data and tend to be difficult to replicate on a large scale but they 

also provide results rife with false positives (Snel et al., 2000). Our method employs 

an all-versus-all approach that can include all data from multiple sources. Use of 

networks allows us to describe the relationships between all genes in the entire dataset 
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of interest. The method is dependant on fusion events forming specific structures on 

the network and so we recognize false negatives, concordant with those of previous 

algorithms, in the form of fusions of related genes e.g. as a result of tandem 

duplication.    

 I reported successful tests of the accuracy of our method using simulated and 

small datasets. The test provided confidence in the method’s ability to accurately 

represent input data on a network structure and subsequently search this network and 

successfully retrieve and report potential fusion genes. Chapter 2 provides an account 

of further tests of the functionality and limits of this fusion detection method. 

 It was discovered that the limited availability of computational power would 

stunt the potential of a network-based algorithm. To overcome the methodological 

hurdles we restricted the size of our input datasets and presented a formula for 

predicting the gene fusion content of a particular genome. Despite the limited amount 

of input data and a strict definition of fusion genes that are reported, we estimated that 

almost 3% of the S. enterica subsp. enterica serovar Paratyphi A genome was made 

up of fusions of unrelated genes. It seems that the phenomenon of fusion has a more 

dominant role in bacterial evolution than was previously thought.  

 Bi-functional proteins have been a vital contributor to acquired antibiotic 

resistance in bacteria. This is endorsed by the results in chapter 3. We consistently 

find that fusions of unrelated gene tend to be involved in defense mechanisms. 

 Whole genome sequencing is a growing research area and produces huge 

amounts of data daily. Because of this, datasets are getting bigger, both in taxonomic 

sampling and the number of genes used. Therefore, in the current scientific 

environment, software implementations of methods are essential. This thesis follows 

the developmental process of a new method, from the conception of an idea, through 
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the implementation of that idea and its applications to both simulated and real world 

datasets. The algorithm described in chapter 2 has the potential to be presented as a 

user-friendly software program, albeit with some improvements. The most notable 

impediment of this algorithm is the current limitation on input dataset size. Splitting 

the network into smaller more easily traversable parts, is a precarious notion. The 

only way to reduce a network into smaller constituents without cutting away edges is 

to divide it into its connected components. Since connected components are disjoint 

from one another separating them does not run the risk of loosing valuable 

information pertaining to relationships between genes. However, the giant connected 

component on a network, i.e. the one with the most nodes, grows larger as more data 

is added. Networks of homology relationships between prokaryote genes have proven 

to be highly connected and so the giant connected component quickly becomes too 

large to search in real time. 

 Chapter 3 sees the parallelization of the algorithm on a number of datasets on 

a relatively small scale. Five datasets, with an overlap of one genome, were analysed 

side-by-side in order to obtain a broader view of fusion in bacteria. This has the 

potential to work on a much larger scale. In a preliminary study I have created a 

version of the algorithm whereby a genome of interest is specified and others are 

chosen at random to create a dataset of optimal size. The genome of interest is kept 

constant in order to obtain a picture of fusion for that genome, as was described for 

the Salmonella enterica subsp. enterica serovar Paratyphi A genome in chapter 3. So 

far this approach has been tested for the genome of Aspergillus fumigatus against 100 

other fungal genomes. This preliminary study yielded 238 fusions of unrelated genes 

in this one genome. These results are yet to be verified and checked for duplicates but 
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the initial number is surprisingly high and may lead to revelations in relation to fungal 

evolution.  

 From the results reported in this thesis I think it is fair to say that the 

knowledge pertaining fusion genes, their occurrence and their importance, is only the 

tip of the iceberg. I think that this is an area that is relatively understudied and yet 

appears to be playing a significant role in the evolution of, at least, bacteria. The final 

goal of the work described in chapters 2 and 3 is to create a web-based interface for 

the retrieval of fusion genes in a genome of interest. 

 Chapter 4 is, in essence, a report of the similarities and differences 

encountered when comparing tree and network structures in describing the 

evolutionary history of a group of closely related bacteria. In many ways the 

information gathered from networks illustrating gene and genome relationships 

displays a vertical trend. However, these gene and genome networks also support the 

fact that HGT plays an equally important role in the evolution of bacteria. It becomes 

more and more apparent as the chapter unfolds that the horizontal component if 

bacterial evolution cannot be ignored if we truly wish to understand the dynamics of 

groups of bacteria. The evidence in chapter 4 emphasises that there are phylogenetic 

and non-phylogenetic signals within the bacteria, and that networks are fully 

competent in illuminating both. 

 Furthermore in chapter 4 we reveal support for previous studies that suggest 

that core informational genes are not necessarily the most abundant (Aziz et al. 2010). 

Alongside the highly conserved, particularly abundant ribosomal proteins and other 

such informational genes are the equally abundant mobile genetic elements and 

entities involved in mechanisms of HGT. In the past it has been accepted that the 

ribosomal phylogeny is appropriate for describing life because the gene is so 
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successful. In truth many of the mobile genetic elements within a bacterial genome 

are just as successful as the ribosomal genes in terms of abundance and even ubiquity.  

 The shift from using tree-like branching structures to describe life, to a more 

encompassing edifice has well and truly taken hold. Scientists with two very opposing 

views exist. There are those that endeavor to preserve the ToL and its authority in 

assigning species and those that feel there is no longer a place in evolutionary biology 

for such monistic thinking. I think that, either way it is fair to say that the genetic 

entities and processes that have so often been ignored due to their “inconvenient” 

existence, are more important than we know. If we are ever to fully understand the 

evolutionary history of prokaryotes we must find a way to embrace all aspects of this 

history, no matter how they disagree with our previous assessments of the data.  
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Appendix 

 

Table A1: Genome and accession number in GenBank (Chapter 2). 

 

Species Accession Number 

Escherichia coli K-12 MG1655 NC_000913 

 

 

Table A2: List of genomes, their accession number in GenBank and their short names 

(Chapter 4).  

 
 

Species 

Accession 

Number Short Name 

  Escherichia coli 536 NC_008253 ECO536 

  Escherichia coli 55989 NC_011748 ECO55989 

  Escherichia coli APEC O1 NC_008563 ECOAPEC01 

  Escherichia coli BL21 NC_012892 ECONEW 

  Escherichia coli BL21(DE3) NC_012947 ECOBL21DE3 

  Escherichia coli BW2952 NC_012759 ECOBW2952 

  Escherichia coli ATCC 8739 NC_010468 ECOCATCC 

  Escherichia coli CFT073 NC_004431 ECOCFT073 

  Escherichia coli E24377A NC_009801 ECOE24377A 

  Escherichia coli O157:H7 str. EC4115 NC_011353 ECOEC4115 

  Escherichia coli ED1a NC_011745 ECOED1A 

  Escherichia coli O157:H7 EDL933 NC_002655 ECOEDL933 

  Escherichia coli O127:H6 str. E2348/69 NC_011601 ECOH6E2348 

  Escherichia coli HS NC_009800 ECOHS 

  Escherichia coli IAI1 NC_011741 ECOIAI1 
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  Escherichia coli IAI39 NC_011750 ECOIAI39 

  Escherichia coli str. K-12 substr. DH10B NC_010473 ECOKDH10B 

  Escherichia coli str. K-12 substr. MG1655 NC_000913 ECOKMG1655 

  Escherichia coli str. K-12 substr. W3110 AC_000091 ECOKW3110 

  Escherichia coli LF82 NC_011993 ECOLF82 

  Escherichia coli B str. REL606 NC_012967 ECOREL606 

  Escherichia coli S88 NC_011742 ECOS88 

  Escherichia coli O157:H7 str. Sakai NC_002695 ECOSAKAI 

  Escherichia coli SE11 NC_011415 ECOSE11 

  Escherichia coli SMS-3-5 NC_010498 ECOSMS35 

  Escherichia coli O157:H7 str. TW14359 NC_013008 ECOTW4359 

  Escherichia coli UMN026 NC_011751 ECOUMN026 

  Escherichia coli UTI89 NC_007946 ECOUTI89 

  Escherichia fergusonii ATCC 35469 NC_011740 EFERATCC 

  Salmonella enterica subsp. enterica serovar 

Agona str. SL483, NC_011149 SALENAGONA 

  Salmonella enterica subsp. arizonae serovar 

62:z4,z23:--, complete NC_010067 SALENARIZ 

  Salmonella enterica subsp. enterica serovar 

Paratyphi A str. ATCC NC_006511 SALENATCC 

  Salmonella enterica subsp. enterica serovar 

Choleraesuis str. NC_006905 SALENCHOL 

  Salmonella enterica subsp. enterica serovar 

Dublin str. NC_011205 SALENDUB 

  Salmonella enterica subsp. enterica serovar 

Enteritidis str. NC_011294 SALENENTER 

  Salmonella enterica subsp. enterica serovar 

Gallinarum str. 287/91, NC_011274 SALENGAL 

  Salmonella enterica subsp. enterica serovar 

Heidelberg str. SL476, NC_011083 SALENHEID 

  Salmonella enterica subsp. enterica serovar 

Newport str. SL254, NC_011080 SALENNEW 
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  Salmonella enterica subsp. enterica serovar 

Paratyphi A str. NC_011147 SALENPARAA 

  Salmonella enterica subsp. enterica serovar 

Paratyphi B str. SPB7, NC_010102 SALENPARAB 

  Salmonella enterica subsp. enterica serovar 

Paratyphi C strain NC_012125 SALENPARAC 

  Salmonella enterica subsp. enterica serovar 

Schwarzengrund str. NC_011094 SALENSCHW 

  Salmonella enterica subsp. enterica serovar 

Typhi Ty2, complete NC_004631 SALENSTY 

  Salmonella typhimurium LT2 NC_003197 SALTYLT2 

  Salmonella enterica subsp. enterica serovar 

Typhi str. CT18, NC_003198 SALTYPHI 

Shigella sonnei Ss046 NC_007384 SHIGSON 

Shigella flexneri 5 str. 8401 NC_008258 SHIGFLEX5 

Shigella flexneri 2a str. 301 NC_004337 SHIGF301 

Shigella flexneri 2a str. 2457T NC_004741 SHIGF245 

Shigella dysenteriae Sd197 NC_007606 SHIGDYS 

Shigella boydii CDC 3083-94 NC_010658 SHIGBOYDCDC 

Shigella boydii Sb227 NC_007613 SHIGBOY227 

  Erwinia carotovora subsp. atroseptica 

SCRI1043 NC_004547 PECTCARATR 

  Pectobacterium carotovorum subsp. 

carotovorum PC1 NC_012917 PECTCARPC1 

  Yersinia enterocolitica subsp. enterocolitica 

8081, complete NC_008800 YERSEN8081 

  Yersinia pestis Angola NC_010159 YERSPANG 

  Yersinia pestis Antiqua NC_008150 YERSPANT 

  Yersinia pestis biovar Microtus str. 91001 NC_005810 YERSPBM 

  Yersinia pestis CO92 NC_003143 YERSPCO92 

  Yersinia pestis KIM NC_004088 YERSPKIM 

  Yersinia pestis Nepal516 NC_008149 YERSPNEPAL 
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  Yersinia pestis Pestoides F NC_009381 YERSPPF 

  Yersinia pseudotuberculosis IP 32953 NC_006155 YERSTB32 

  Yersinia pseudotuberculosis IP 31758 NC_009708 YERSTBIP31 

  Yersinia pseudotuberculosis PB1/+ NC_010634 YERSTBPB1 

  Yersinia pseudotuberculosis YPIII NC_010465 YERSTBYP3 
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Figure A1: Tree used to simulate nine sequences for eight gene families using 

SeqGen (Section 2.2.3.1) 

 



$%&!

 

 

 

 

 

 

 

 

Figure A2: Tree used to simulate six sequences for three fusion genes (Section 

2.2.3.1) 
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Figure A3: Tree used to guide choice of species in datasets 2, 4 and 5 (see section 

3.1) adapted from Ciccarelli et al.  (2006). 
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Figure A4: Phylogenetic tree of the YESS group constructed from 187 16S rRNA 

sequences. Grey nodes denote more than 50 per cent bootstrap support, and black 

nodes denote more than 70 per cent bootstrap support. Taken from Haggerty et al. 

(2009). 
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Figure A5: Phylogenetic gene trees for the YESS group. Phylogenetic trees for (A) 

atpD (B) gyrB, (C) trpB. (D) Phylogenetic tree based on concatenated gene sequences 

for atpD, gyrB and trpB. Taken from Haggerty et al. (2009). 
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Figure A6: Supertree for the YESS group, constructed from 1408 single-gene 

families using nucleotide data. Taken from Haggerty et al. (2009). 
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Figure A7: Minimum-evolution tree for the YESS group built from an alignment of 

1408 single-gene families. Taken from Haggerty et al. (Haggerty et al. 2009) 

 

 


