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Abstract 

Entomopathogenic nematodes (EPN) and entomopathogenic fungi (EPF) are pathogens 

which require an insect host to fulfil their life cycle and are commonly used as 

biocontrol agents. Studies have shown that a combination of EPN and EPF can result in 

greater insect mortality when compared to the agents applied alone. This interaction 

could possibly reduce the cost and quantities of single dose applications, inferring a 

synergistic effect. However, combinations of these pathogens may also result in additive 

or antagonistic interactions which would be of no benefit to growers. 

Hylobius abietis (large pine weevil) and Otiorhynchus sulcatus (black vine weevil) 

cause economic damage to forestry and horticultural crops, respectively. Large pine 

weevil larvae develop in the tree stumps, emerge as adults and feed on the bark of 

newly planted saplings, causing extensive mortality. Black vine weevil larvae kill plants 

by feeding on the roots and adults cause cosmetic damage.  

In this investigation, laboratory and field trials were conducted against large pine weevil 

larvae to determine whether interactions occur if EPN and EPF were applied 

simultaneously. EPN and EPF have already been shown to interact synergistically 

against the vine weevil in laboratory conditions. These experiments were repeated to 

investigate if synergistic interactions could be reproduced. 

Synergistic interactions were found with EPN and EPF against the large pine weevil in 

some laboratory experiments. However, antagonism and additivity were also recorded 

and synergism could not be predictably achieved. The field trial against the large pine 

weevil resulted in additivity. This indicates that the combined application of EPN and 

EPF would not be a better option than single applications.  

Initial interaction experiments against the black vine weevil did not show similar results 

to previous publications. However, larvae used in previous publications were younger 

than in this investigation which may indicate that interactions are dependent on larval 

age. 
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Chapter 1 – Introduction 

1.1 Biological Pest Control 

Biological control (biocontrol) involves introducing living organisms (or a product from 

living organisms) into an area where a pest is present and reducing it to a tolerable level 

(DeBach & Rosen 1991). Currently synthetic pesticides (manufactured chemical 

pesticides) are used in vastly greater quantities than biocontrol agents. In 2000 only 

0.2% of the global market consisted of biopesticides, however by 2009 this figure had 

dramatically increased to 3.8 % indicating that biopesticides are becoming more 

competitive in the market (Thakore 2006). Some synthetic pesticides have been shown 

to be very toxic and can pose a major threat to human health and the environment 

(Fantke et al. 2012; Lacey et al. 2001; Sifakis et al. 2011; World Health 2006). In 2009 

the European Union brought in a new framework directive requiring that all member 

states should achieve a level of sustainable use of pesticides by December 2012 

(European Directive 2009/128/EC). This new legislation will enable biocontrol agents 

to become more competitive in the market place and hence increase the demand for 

them. Biocontrol agents in many cases are an attractive alternative to synthetic 

pesticides as they can be more selective in targeting the pest, cause limited pollution to 

the environment, and pest resistance to most biocontrol agents is unlikely (Van Emden 

& Service 2004). However, there are reasons for biocontrol agents being underused in 

the global market: they can limit the effectiveness of other pesticides in later use, they 

usually take longer to act against the pest, they rarely exterminate the pest, they can be 

species specific (meaning that several may be needed for a complex of pests), they can 

have unpredictable results and mass rearing and transportation can be expensive (Van 

Emden & Service 2004). In order to solve some of these obstacles more research needs 

to be conducted into better understanding the interactions biocontrol agents have with 

the environments they are introduced into and investigating if they can be implemented 

into integrated pest management (IPM) systems (Ansari et al. 2008; Lacey et al. 2001; 

Shapiro-Ilan et al. 2004). Biological control agents include the biopesticides 

entomopathogenic nematodes (EPN) and entomopathogenic fungi (EPF). EPN and EPF 

have been shown to be effective agents against a wide range of insect pests including 

species in the order Coleoptera (Ansari et al. 2006; Dillon et al. 2006; Ennis et al. 2010; 

Ormond et al. 2010; Reay et al. 2008; Shah et al. 2008; Shapiro-Ilan et al. 2004; Wang 

et al. 1995).  
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1.2 Entomopathogenic Nematodes (EPN) 

Entomopathogenic nematodes typically dwell in soil and are found thoughout the world. 

The two families which are studied for biocontrol are Steinernematidae and 

Heterorhabditidae (Grewal et al. 2006).  They have a symbiotic association with a 

bacterium which they carry in their gut; this bacterium enables them to target a wide 

range of insect hosts. Steinernematidae carry the bacterium Xenorhabdus spp. and 

Heterorhabditidae carry the bacterium Photorhabdus spp. (Gaugler 2002; Grewal et al. 

2006). The benefits of using nematodes include: the ability to produce them in large 

numbers, lower impact on non-target species, a wide range of species makes it easy to 

select for specific environments, application is safe and they can be implemented in an 

IPM system (Gaugler 2002; Georgis et al. 2006; Shapiro-Ilan et al. 2006). 

 

1.2.1 Life cycle 

The life cycle for both families is similar (Fig 1.1), the only difference is that 

heterorhabditids are hermaphrodites in the first generation (Dix et al. 1992) and 

steinernematids are mainly amphimictic, only Steinernema hermaphroditum from 

Indonesia has been found to be self fertilising (Griffin et al. 2001). Infective juveniles 

(IJ) are specialised third stage juveniles which seek out and infect an insect host 

(entering though mouth, anus, spiracles and cuticle). Once inside the insect 

haemolymph the IJ releases its symbiotic bacteria, which then break down the insect’s 

defence system and begin to multiply, killing the insect usually within 48 hr. The IJ then 

feed on the bacteria and grow into adults. The adults reproduce and lay eggs in the host 

medium. This cycle is repeated until food source is fully consumed (several generations 

occur in a large host). The IJ then emerge from the host cadaver and seek a new host to 

repeat the life cycle. The whole cycle takes ca. 8-10 days for Steinernematids and 14-15 

days for Heterorhabditids (Grewal et al. 2006; Kaya & Stock 1997; Lewis et al. 2006a). 
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Fig 1.1 Generalised life cycle of EPN (Lewis et al. 2006b) 

 

 

1.2.2 Symbiotic bacteria 

Photorhabdus and Xenorhabdus are usually only associated with nematodes or infected 

insects but they can be grown on artificial media under laboratory conditions (Forst & 

Dowds 1997). However, when they were introduced to sterile soil a reduction in their 

survival was seen after seven days, indicating that the bacteria require nematodes in 

order to survive in soil environments (Morgan et al. 1997). Both Photorhabdus spp. and 

Xenorhabdus spp. are motile, Gram-negative and belong to the family 

Enterobacteriaceae (Burnell & Stock 2000). They multiply in the haemolymph where 

their enzymes break down and suppress the insects’ immune system (Forst & Dowds 

1997). Both bacteria can produce antibiotics that suppress competition from other 

organisms, reducing competition and enabling the nematodes to feed without 

contamination (Akhurst et al. 1993). The insect dies due to septicaemia or toxaemia 

from the bacteria (Forst & Dowds 1997). The main difference between the two bacteria 

is that some species of Photorhabdus emit luminescence from the cadaver of the insect 

(the reason for this is still unknown). In Steinernema spp. Xenorhabdus bacteria are kept 

in a special vesicle of the nematode’s intestine while in Heterorhabditis spp. 

Photorhabdus is found in the anterior part of the intestine (Boemare et al. 1996). Both 

the nematode and bacteria benefit from the symbiotic association; the nematode enables 

the bacteria to survive outside the insect and find new hosts, while the bacteria suppress 

the immune system of the insect, eliminate competition from other organisms and 

degrade the insect enabling the nematodes to feed on the bacteria and the degraded 

insect (Grewal et al. 2006). 
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1.2.3 Steinernematidae 

Steinernematidae consists of two genera, Steinernema and Neosteinernema (Kaya & 

Stock 1997; Lacey 1997). Neosteinernema contains only one species N. 

longicurvicauda, which was isolated in 1992 from a termite in Florida, U.S.A. (Burnell 

& Stock 2000; Nguyen & Smart Jr 1994). It differs from the Steinernema spp. in both 

biology and morphology (Nguyen & Smart Jr 1994), but it is currently not used as a 

biological control agent. 

By the year 2002 the Steinernema genus contained 25 validated species and has global 

distribution (Gaugler 2002). To date only two of these species have been isolated in 

Ireland Steinernema affine and Steinernema feltiae (Blackshaw 1988; Griffin et al. 

1991). Some species which are currently available commercially include S. 

carpocapsae, S. feltiae, S. glaseri, S. kraussei and S. riobrave (Grewal et al. 2006; 

Haukeland & Lola-Luz 2010; Weeden 2003). S. carpocapsae and S. feltiae have shown 

huge potential as biopesticides and they also infect a wide range of insect pests 

including the large pine weevil, black vine weevil, corn root worms, sweet potato 

weevil, codling moth etc. (Ansari et al. 2008; Dillon et al. 2006; Mannion & Jansson 

1992; Unruh & Lacey 2001; Wright et al. 1993). 

 

1.2.4 Heterorhabditidae 

Heterorhabditidae consists of just one genus Heterorhabditis with nine validated species 

in 2002 (Gaugler 2002). They have a global distribution but Heterorhabditis downesi is 

the only species currently found in Ireland (Stock et al. 2002). Species of 

Heterorhabditis which are available commercially include H. bacteriophora and H. 

megidis (Long et al. 2000; Shapiro-Ilan et al. 2002; Sulistyanto & Ehlers 1996). H. 

bacteriophora is the most commonly studied Heterorhabditis spp. and has been shown 

to be an effective control agent against the vine weevil, white grubs, long-horned beetle 

and red palm weevil (Ansari et al. 2008; Atakan et al. 2009; Koppenhofer & Fuzy 2008; 

Susurluk et al. 2011). Heterorhabditis downesi is not commercially produced but it 

reduced the large pine weevil (Hylobius abietis) to reasonable levels in conifer 

plantations in Ireland (Dillon et al. 2006). 

 

 

 



5 

 

1.3 Entomopathogenic fungi 

Entomopathogenic fungi (EPF) are usually found in the upper layer of the soil (Meyling 

& Eilenberg 2007). There are at least 700 known species of EPF, many with a global 

distribution (Lacey et al. 2001; Wraight et al. 2007). For the purposes of this study the 

focus was on the species Metarhizium anisopliae and Beauveria bassiana which belong 

to the artificial family Moniliaceae (Barnett & Hunter 1972). Both species can utilize a 

wide range of insects as hosts and cause death via toxicosis (Samson et al. 1988). 

Metarhizium anisopliae produces the toxins destruxins (>27 types), swainsinone and 

cytochalasin C (Kershaw et al. 1999; Vey et al. 2001) and B. bassiana produce 

bassianin, beauvericin, bassianolide, beauverolides and tenellin (Gillespie & Claydon 

1989; Vey et al. 2001). These EPF are more appealing to use than synthetic pesticides 

as they are safer for sprayers to use, pest resistance to EPF is unlikely and  they can be 

self-propagating (Van Emden & Service 2004). Both species have proven to be 

successful biological control agents and are commercially produced (Feng et al. 1994; 

Lacey et al. 2001; Shah & Pell 2003; Zimmermann 1993).  

 

1.3.1 Life Cycle 

The life cycle begins with conidial spores (asexual spores) landing on the surface of the 

insect (Fig 1.2). The spore germinates and penetrates through the cuticle of the insect 

via hyphal growth. Once inside the body the fungus produces toxins that suppress the 

insect’s immune system and hyphae infiltrate the haemocoel. The insect then dies from 

toxicosis or obstruction of organs and the hyphae spread throughout the host consuming 

the nutrients. Once all nutrients have been used the hyphae penetrate out through the 

insect’s cuticle, sporulate and produce conidia which are dispersed though various 

means (Inglis et al. 2001; Kaya & Stock 1997; Samson et al. 1988). 
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Fig 1.2 Generalised life cycle of EPF (Vega et al. 2008). 

 

1.3.2 Ecology 

Metarhizium spp. and Beauveria spp. have a global distribution and both have been 

recorded in Irish soil (Glare et al. 2008; Chandler et al. 1997). Their optimum growth 

temperature is between 20˚C and 25˚C and they can grow in temperatures as low as 

10˚C (Fargues et al. 1997; Hallsworth & Magan 1999; Ouedraogo et al. 1997). Both 

EPF operate best in moderate – high humidity levels and low exposure to sunlight 

(ultraviolet light can kill spores) (Daoust & Roberts 1983; Doberski 1981; James et al. 

1998; Morley-Davies et al. 1996; Wraight et al. 2000). In order for these EPFs to 

become established in an environment they rely on a healthy arthropod population to be 

present so they can infect a new host (Butt et al. 2001; Shah & Pell 2003). However, if 

conditions are unsuitable for regeneration they can form overwintering structures which 

can consist of compressed hyphae (sclerotia) or thick-walled resting spores 

(chlamydospores) which can remain dormant in the soil (Shah & Pell 2003). When 

conidial spores are produced they spread passively via wind, rain and host movement 

(Hajek 1997; Inglis et al. 2001; Shah & Pell 2003). Metarhizium anisopliae is more 

commonly found in arable soils while B. bassiana grows better in damp forest 

ecosystems, but both can be found in cultivated and uncultivated soils (Meyling & 

Eilenberg 2007; Ormond et al. 2010; Samson et al. 1988).  
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1.3.3 Metarhizium anisopliae and Beauveria bassiana as biopesticides 

A lot of research has gone into using M. anisopliae and B. bassiana as biopesicide 

agents because of their ability to infect a wide range of hosts. Metarhizium anisopliae 

has effectively controlled insects such as the black vine weevil, the deer tick, locusts, 

mosquitoes and many more (Kaaya & Hassan 2000; Lezama-Gutierrez et al. 2000; 

Milner et al. 1998; Peng et al. 2008; Scholte et al. 2003; Shah et al. 2008; Wright et al. 

2005; Zimmermann 1993).  In 2011 a commercial strain of M. anisopliae F52 (sold 

commercially as Met52 and produced by Novozyme) became available for use in the 

Irish market and is mainly used for the control of the black vine weevil, Otiorhynchus 

sulcatus. Beauveria bassiana has been used as a biopesicide against insects such as the 

banana weevil, silverleaf whitefly, false-eye leafhoppers and the European cherry fruit 

fly, to name a few {Wraight, 2000; Feng, 1994 ; Godonou, 2000; Feng, 2004; Daniel, 

2010}. Many products of B. bassiana are currently available on the market and they are 

produced in Europe and the U.S.A. The main pests these are used to control are the 

Colorado beetle, whiteflies and thrips (Whipps et al. 2001). 

 

1.4 Integrating EPNs and EPFs 

Biopesticides share a minimal amount of the global pesticide market. This is mainly due 

to their inconsistent results, lack of efficiency and the costs need to develop the products 

(Glare et al 2012.). More research is required in order to make it economical for 

growers to use them and one method that has been researched is to use a combination of 

EPN and EPF (Lacey et al. 2001). If a combination of EPN and EPF resulted in a 

synergistic interaction then the potential cost of using these biopesticides may be 

reduced. However, the combination of two or more agents can also give additive or 

antagonistic results (Berenbaum 1978) which would be of no benefit to growers. 

 

1.4.1 Previous studies 

A number of previous laboratory and field studies have used combinations of EPN and 

EPF against insect pests, but it is not always clear how the combination compares to the 

individual use of each agent. Steinernema carpocapsae was combined with B. 

brongniartii against Exomala orientalis (the oriental beetle) on golf courses in Korea. 

This combination of these two agents gave increased mortality when compared to the 

fungus alone, however the interactions could not be properly interpreted as there was no 

single application of S. carpocapsae (Choo et al. 2002). Ideally the concentration of the 
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agents when used alone should give < 50 % mortality for synergy to be detected. In a 

study conducted by Shapiro-Ilan et al. (2004) B. bassiana or M. anisopliae were 

combined with H. indica or S. carpocapsae against the pest Curculio caryae (the pecan 

weevil). The results recorded were mainly antagonistic with a few exceptions of 

additivity. It was suggested that the negative interactions occurred as a results of the 

interactions of the pathogens before or during infections, or that antagonistic toxins after 

the initial infection and hence there the bacteria from the nematodes was suppressing 

the growth of the fungus or vice versa (Shapiro-Ilan et al. 2004).  

 

Ansari et al. (2008) conducted laboratory and field trials against Otiorhynchus sulcatus 

(the black vine weevil) using a combination of M. anisopliae and EPN. In laboratory 

conditions synergy occurred with either H. bacteriophora or S. kraussei and mortality 

with S. feltiae was recorded as additive. Ansari et al. (2008) also performed greenhouse 

trials with the combination of these agents applied at various concentrations. The 

combination of M. anisopliae and H. bacteriophora resulted in synergistic interactions 

in all treatments. The combinations of M. anisopliae and S. feltiae only resulted in 

synergy when a high concentration of fungus was used with a low concentration of 

nematodes; all other interactions were additive (Ansari et al. 2008). Both the field and 

laboratory results coincided in this study indicating that laboratory assays will give a 

good indication of what interactions may be found in field conditions. This was also the 

case for laboratory and field trials against Hoplia philanthus (the Welsh chafer) larvae, 

which were exposed to combinations of M. anisopliae and H. bacteriophora. All the 

interactions recorded with these two agents in both laboratory and field trials were 

synergistic (Ansari et al. 2006; Ansari et al. 2004). 

 

Other factors that may influence the outcome of a trial (the assessment of whether a 

combination gives additive, synergistic or antagonistic effect) include time of 

assessment and the time between applications of the agents. Coptognathus curtipennis 

(the barley chafer) was exposed to M. anisopliae and H. bacteriophora in laboratory 

experiments. Initially the results were additive but when the larvae were assessed after 

five weeks the interaction became synergistic (Anbesse et al. 2008). Similar results in 

laboratory trials using M. anisopliae and nematodes against Hoplia philanthus. Larvae 

were exposed to M. anisopliae for 0, 1, 2, 3 or 4 weeks before the nematodes (H. 

megidis or S. glaseri) were added. Synergy was found in all combinations by the end of 
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each experiment, although weeks 1 – 3 after application of nematodes showed additive 

results (Ansari et al. 2004). However in field trials against the same pest, H. 

bacteriophora was applied four weeks after M. anisopliae and when the trial was 

assessed on week seven synergism was detected. When the trials were assessed a year 

after application the results showed additivity (Ansari et al. 2006). The reason for the 

lack of synergism after year one may have been that the individual treatments had 

already caused high mortality and there was not enough scope for synergy to occur 

(Ansari et al. 2006). 

 

Metarhizium anisopliae and H. bacteriophora when applied simultaneously give a high 

level of control and consistent results when used against the black vine weevil and 

Welsh chafer in the above studies. However, this is not the case in all studies e.g. when 

Shapiro-Ilan et al. (2004) used the pecan weevil as host. In order to attain synergism 

pest resistance may need to be reduced by stress (Kaya & Gaugler 1993). If insects are 

exposed to EPF for a time period before adding nematodes it may stress the insects and 

enable the nematode to invade the insect easily and hence causes higher mortality 

(Ansari et al. 2008). 

 

In several studies EPN are applied after application of EPF. Spodoptera exigua (the beet 

army worm) larvae were exposed to B. bassiana for 48 hr before being exposed to EPN 

in laboratory conditions. Beauveria bassiana and H. bacteriophora gave a higher 

mortality than when they were applied on their own but with S. carpocapsae there was 

no increase. However, much cannot be concluded about the time interval as there was 

no simultaneous application and it cannot be concluded if time delay had an effect on 

the interaction (Barbercheck & Kaya 1991). In laboratory experiments H. philanthus 

(the Welsh chafer) were exposed to M. anisopliae for 0, 1, 2, 3 or 4 weeks before the 

nematodes (H. megidis or S. glaseri) were added. A synergistic interaction was recorded 

in all experiments (Ansari et al. 2004). Otiorhynchus sulcatus was exposed to M. 

anisopliae on day zero and nematodes were added either 0, 1 or 2 weeks after the 

fungus. Synergism was recorded with H. bacteriophora for all time delays and for S. 

feltiae only when added after week 1 or 2; when S. kraussei was added on week 1 and 2 

the mortality was additive, but it was synergistic when added on week zero (Ansari et 

al. 2008). These results show that the chances of attaining synergy may be increased in 

some cases when larvae are exposed to fungus for a time period before the nematodes, 
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but not in all e.g. S. kraussei. However, these synergistic interactions seem to be species 

specific and different interactions occur with different agents used (Ansari et al. 2008). 

Coptognathus curtipennis (the barley chafer) was exposed to M. anisopliae and H. 

bacteriophora either simultaneously or 2 or 3 weeks after the fungus was added. To 

achieve synergism nematodes had to be added 2 or 3 weeks after the fungus (Anbesse et 

al. 2008). These experiments reinforce the view that synergistic interactions can be 

increased if larvae are exposed to fungus before the nematodes, in some cases.  

 

All of the aforementioned studies indicate that M. anisopliae can achieve synergy when 

applied with different nematode species against various insect species. Beauveria 

bassiana has yet to show any synergy with a nematode species. However, limited 

research has gone into the interactions of B. bassiana with nematodes against different 

hosts. 

 

The virulence of the agents used in treatments can affect the outcome of the interaction. 

In a study conducted on Diatraea saccharalis (the sugarcane borer), larvae were 

exposed to two strains of M. anisopliae for 48 hr and before adding H. bacteriophora. It 

was found that the time of death was reduced when the larvae were exposed to a 

moderately virulent strain of M. anisopliae with H. bacteriophora but not when a more 

virulent strain of fungus was used (Acevedo et al. 2007). 

 

When overwintering black vine weevils in greenhouses were exposed to M. anisopliae 

and S. kraussei the interaction recorded was synergistic in the first trial, but when the 

trial was repeated results were additive (Ansari et al. 2009). This shows that the 

combination of these pathogens may not be consistent. It was hypothesised that the 

inconsistent results may be due to the sensitivity of the fungus to temperature (Ansari et 

al. 2009). 

 

Nematodes and fungi may infect their host in different areas of the insect’s body during 

a dual infection (Tarasco et al. 2011). The efficiency of infection and development by 

both entomopathogens is influenced by the media, temperature, moisture, virulence of 

the agents and concentrations (Acevedo et al. 2007; Ansari et al. 2004; Barberchek & 

Kaya 1990; Jabbour et al. 2011; Tarasco et al. 2011). Barbercheck and Kaya (1990) 

found evidence of antagonism when G. mellonella larvae were dually infected with B. 
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bassiana and either H. bacteriophora or S. feltiae. Only ca. 1 % of cadavers produced 

progeny in dual infected insects. They found that B. bassiana  development was better 

than that of the nematodes at lower temperatures (< 20˚) when combined together 

(Barberchek & Kaya 1990). Tarasco et al. (2011) also observed strong competition 

between EPF and EPN in dually infected G. mellonella larvae. This antagonistic 

interaction is probably due to the inhibitory effect that the bacteria contained in the 

nematodes has on the fungus, and direct competition between them (Tarasco et al. 

2011), as symbiotic bacteria carried by both Steinernema spp. and Heterorhabditis spp. 

can inhibit EPF growth (Ansari et al. 2005; Tarasco et al. 2011). When nematodes were 

added simultaneously with the fungus or before the fungus, conidia production was 

significantly reduced and IJ were produced from the cadaver (Acevedo et al. 2007; 

Ansari et al. 2005). The production of IJ was significantly reduced in combined 

infections with a highly virulent fungus or when the fungus was added before the 

nematodes (Acevedo et al. 2007; Ansari et al. 2005; Barberchek & Kaya 1990).  

 

When conditions are optimised, combinations of entomopathogens can be as effective 

in controlling pests as synthetic pesticides. Choo et al. (2002) showed that a 

combination of S. carpocapsae and B. bassiana gave significantly better control of the 

oriental beetle than the chemical pesticide, fenitrothion. Ansari et al. (2006) also 

showed that M. anisopliae with H. bacteriophora controlled the Welsh chafer better 

than the commercial product Dursban 5G (active ingredient: chlorpyrifos),  

 

1.5 The Large Pine Weevil – a forest pest 

The large pine weevil, Hylobius abietis (Coleoptera; Curculionidae), is a major pest of 

re-forested plantations across Europe. In reforestation mature trees are felled and after 

about two years saplings are planted close to the old stumps. Weevils oviposit in the soil 

around the roots of the stumps from felled trees (Nordlander et al. 1997). When the 

larvae hatch out they make their way to the stumps and feed under the bark; after 1 – 3 

years they pupate and emerge as adults (Moore et al. 2004). When the adults emerge 

they feed on the saplings and can kill the sapling by removing the bark in a ring around 

the stem. If saplings are left untreated weevil populations can destroy 50 % of the crop 

(Heritage & Moore 2001). Larvae usually take between 18 and 36 months to develop 

before emerging as adults from stumps, hence timing of felling and planting of trees can 

reduce the amount of damage (Leather et al. 1994; Orlander & Nilsson 1999). In Ireland 



12 

 

the state-owned forestry company, Coillte, harvested 1.5 x 10
6
 m

2
 in 2009 (Coillte 

2012). Clear felling provides an ideal habitat for the large pine weevil to inhabit and 

reproduce to high levels. 

 

1.5.1 Hylobius abietis life cycle 

Female weevils lay their eggs during May to August in the soil around roots of stumps 

or occasionally in the bark of the stumps if conditions are dry (Nordlander et al. 1997). 

A female can lay up to 70 eggs in the first season (Bylund et al. 2004). Temperature and 

moisture affect where the eggs are laid in the soil, if conditions are dry eggs will be laid 

lower down in the soil (Nordlander et al. 1997). Eggs usually hatch after about a month 

in field conditions and larvae will make their way to the bark of the stump to begin 

feeding  (Nordlander et al. 1997). Larvae feed on the base and inside the bark and go 

through 4 – 5 instars before pupation occurs. Larvae usually enter a diapause during 

their last larval stage (during the winter) (Christiansen 1971). In Spring when 

temperatures get above 10˚C the larvae exit the diapause stage and begin their pupal 

stage, which last 1 – 4 weeks and they then emerge as adults. The life cycle of a pine 

weevil can take 1 – 4 years depending on temperature and host plant species 

(Christiansen 1971; Leather et al. 1999; Moore et al. 2004; Salisbury & Leather 1998). 

Once the adults emerge they begin feeding before they are sexually mature; the quantity 

they eat depends on the quality of the bark (Wainhouse et al. 2004). Once sexually 

mature after about 2 weeks the females lay their eggs during the Spring and Summer 

months. When the temperatures become cool in late autumn the adults can go into 

hibernation (Nordenhem 1989). Adult weevils can live for up to four years (Leather et 

al. 1999). 

 

1.5.2 Synthetic control of Hylobius abietis 

Initially to prevent damage, conifer seedlings were treated with DDT 

(dichlorodiphenyltrichloroethane) from the 1950s until its ban in the 1970s (Beard 

2006; Langstrom et al. 2004). Lindane replaced DDT but again it proved to be 

hazardous to the environment and was withdrawn in 2000 from the Irish market 

(Department of Agriculture 2012). Pyrethroids such as alpha-cypermethrin are currently 

used for pine weevil control. The treatment involves dipping the seedling before 

planting and one spray post planting (Dillon et al. 2007; Leather et al. 1999; Thacker et 

al. 2003). Although it has a low acute toxicity it has been shown to have a chronic 
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toxicity towards some soil dwelling organisms and can affect reproduction (Yilmaz et 

al. 2004). Despite its highly hazardous qualities of this chemical permission for use has 

been granted against H. abietis in the U.K. and Ireland until June 2014 by the Forestry 

Stewardship Council (2008). 

 

1.5.3 Biological control of the Hylobius abietis  

Both EPN and EPF have been applied in the field to try to control weevil populations. 

The EPN families Steinernematidae and Heterorhabditidae have both been effective in 

parasitizing the large pine weevil. A preliminary field study in the UK in 1994 showed 

that S. carpocapsae reduced weevil populations by 70 %. But when the nematodes were 

applied to late larvae instar control was recorded at 50 %, when larvae had pupated 

control reach 96 % (Brixey 1997). Steinernema carpocapsae, S. feltiae and H. megidis 

were tested in field trials in 2000. The Steinernema spp. gave a control of only 53 – 56 

% and H. megidis was significantly lower (Torr et al. 2006). A range of nematodes were 

tested against pine weevil larvae over a two year period. Heterorhabditis downesi was 

found to control numbers of pine weevils to an economically viable level (Dillon et al. 

2006). Further research showed that the application of H. downesi on tree stumps does 

not affect the main parasitoid of the pine weevil, Bracon hylobii, and found that the 

interaction between the nematodes and the parasitoid were additive (Dillon et al. 2007; 

Dillon et al. 2008). A study investigating the potential of B. hylobii as a potential 

biocontrol agent determined it could have a significant contribution in helping suppress 

weevil populations (Henry & Day 2001). The use of M. anisopliae and B. bassiana has 

been recorded to give successful mortality of the pine weevil and their associated 

metabolites did not pose a threat to animal or human health nor cause environmental 

problems (Malinowski 2009). Metarhizium anisopliae and B. bassiana have been 

shown to be pathogenic to all life stages of H. abietis and could potentially be used as a 

biopesticide for this insect (Ansari & Butt 2012). Field trials using EPN and EPF 

separately and in combination are currently being conducted at NUI Maynooth, Ireland 

(Williams et al. unpublished). 

 

1.6 The Black Vine Weevil – a horticultural pest 

 The black vine weevil, Otiorhynchus sulcatus (Coleoptera; Curculionidae), is a major 

horticultural pest and infests more than 70 plant species across Europe (Smith 1932). 

The eggs are laid in the soil and when larvae emerge they migrate towards the root 
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system, feed on the roots and can kill the plant (Cross & Burgess 1997). The adults also 

cause damage but not to the same extent as larvae; they emerge from the soil and begin 

to feed on the leaves and flowers causing cosmetic damage (Moorhouse et al. 1992). 

Adults are all parthenogenetic females and each can lay up to 600 eggs which can lead 

to huge economic loss of crops (Cross & Burgess 1997; Moorhouse et al. 1992). It has 

been suggested that the adult males died during the last ice age in Europe (Moorhouse et 

al. 1992). 

 

1.6.1 Otiorhynchus sulcatus life cycle 

Otiorhynchus sulcatus go through one generation a year (Moorhouse et al. 1992). A 

new generation of adults emerge from overwintering sites in summer. Once adults 

emerge they begin feeding on vegetation and feeding occurs at night (Moorhouse et al. 

1992). When temperatures increase egg laying begins in July and can last until October, 

but it usually ends in September (Smith 1930). Hatching is dependent on temperature 

and humidity, eggs can take between 8 days and 56 days to hatch (Lola-Luz et al. 2005; 

Shanks & Finnigan 1973). Larvae initially feed on finer roots. As larvae grow bigger 

they feed on the larger roots systems and go through 6 or 7 instars (Smith 1930). 

Otiorhynchus sulcatus takes abound 3 or 7 months to grow from egg to late instar stage 

when reared indoors or outdoors, respectively (La Lone & Clarke 1981). Larvae pupate 

in the soil close to the roots if temperatures are suitable (Stenseth 1979). Otiorhynchus 

sulcatus overwinter either as pupae or larvae; survival is dependent on temperature and 

the stage to which they have developed before hibernating (Moorhouse et al. 1992). 

They emerge as adults in early summer and begin to feed on the new leaves and 

flowers. 

 

1.6.2 Synthetic control of Otiorhynchus sulcatus 

DDT was the insecticide used in the early 1950s to control O. sulcatus until it was taken 

off the market in the 1970s. Controlled released chlorpyrifos was found to give 

promising control when incorporated into module compost but results were poor when 

incorporated directly into soil (Cross & Burgess 1997). Carbosulfan was found to be an 

effective control for the 3
rd

 instar larvae (Masaki et al. 1999). Other pesticides which are 

commonly used to control O. sulcatus include imidacloprid, chlorpyrifos and bifenthrin 

(Shah et al. 2007). However, these pesticides are not ideal as they pose a threat to 
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human health and the environment and pests can become tolerant of them (Van Emden 

& Service 2004). 

 

1.6.3 Biological control of Otiorhynchus sulcatus 

As described above O. sulcatus overwinter as larvae, and sometimes pupae. Pesticides 

are usually applied when soil temperatures are low hence the pesticide being applied 

needs to work efficiently at low temperatures (Shanks et al. 1990). The EPNs S. 

kraussei and S. feltiae can give effective control of O. sulcatus in experiments with low 

temperatures, which suggests they could be potentially used when weevils are 

overwintering (Long et al. 2000; Willmott et al. 2002). S. carpocapsae is not as 

effective in controlling O. sulcatus as H. megidis, H. downesi or H, bacteriophora 

(Willmott et al. 2002). Heterorhabditis megidis caused 93 % mortality of larvae in 

strawberry grow bags, while H. downesi only caused 51 % mortality (Lola-Luz & 

Downes 2007). Heterorhabditis bacteriophora showed a reduction of populations by 90 

– 100 % when applied to weevils in pots (Gill et al. 2001).  Both of the EPFs B. 

bassiana and M. anisopliae are pathogenic to O. sulcatus (Bruck 2004; Bruck & 

Donahue 2007; Bruck et al. 2005) and M. anisopliae is now commercially available to 

control the weevil. A combination of EPF and EPN has also been shown to be effective 

at controlling these weevils. Ansari et al. (2008, 2009) showed a combination of M. 

anisopliae with either H. bacteriophora, S. feltiae or S. kraussei gave a higher control 

rate then when the agents were applied individually. 

 

1.7 Project Objectives 

The potential interactions between EPN and EPF against H. abietis have not been 

previously studied, Ansari et al. (2004, 2008, 2009) have studied the interactions 

against O. sulcatus in both laboratory and greenhouse experiments. In this current study, 

this work was repeated to establish if the results could be replicated in laboratory 

experiments at NUI Maynooth, Ireland, and also to investigate potential novel 

interactions using H. abetis as host. The specific aims of the project are as follows: 

- Investigate what interactions occur when either S. feltiae or H. bacteriophora are 

combined with M. anisopliae using the black vine weevil as host in laboratory 

conditions, revisiting previous work conducted by Ansari et al. (2008).  
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- Investigate what interactions occur when either S. carpocapsae, H. 

bacteriophora or H. downesi are combined with either M. anisopliae or B. 

bassiana using the large pine weevil as host in laboratory conditions. 

- Investigate a proposed mechanism for synergy (Ansari et al. 2008) that EPN are 

more attracted to EPF infected insects. 

- Determine which combination of EPN and EPF would give best synergistic 

results. 

- Evaluate which pathogen causes the death of the insect during dual infections. 

- Investigate the interactions and control of selected agents (based on laboratory 

experiments) against the large pine weevil in field conditions. 
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Chapter 2 – Methods and Materials 

2.1 Source and culturing nematodes and fungi 

2.1.1 Source of nematodes 

Steinernema carpocapsae (Weiser) (Millenium), Heterorhabditis bacteriophora 

(Poinar) (Nemasys G) and Steinernema feltiae (Stanuszek) (Nemasys) were sourced 

from Becker-Underwood, Littlehampton, U.K. The Heterorhabditis downesi (Stock, 

Griffin and Burnell) strain used was K122, obtained from a stock culture at NUI 

Maynooth, originally isolated by Dr Christine Griffin from a sandy costal site in Co. 

Wexford, Ireland. 

2.1.2 Culturing of nematodes 

All nematode strains were cultured through Galleria mellonella L. (Lepidoptera: 

Pyralidae) larvae (section 2.2.1). The lid and base of a 9 cm diameter Petri dish (Greiner 

Bio-one) was lined with 9 cm filter paper (Fisherbrand). One thousand infective 

juveniles (IJ) were applied to both filter papers in 1 ml tap water and ten G. mellonella 

were added to the dish and incubated at 20˚C.  Steinernema spp. were left for 7-9 days 

and Heterorhabditis spp. were left for 10-13 days before being put onto a White trap 

(Kaya & Stock 1997). A White trap consisted of a 15 cm diameter Petri dish with a lid 

of a 5 cm diameter Petri dish placed in the centre, this was covered by a 9 cm filter 

paper and tap water was added. When IJs emerged they were harvested every two days 

and washed three times in 500 ml of tap water. Suspensions were stored in 25 - 30 ml of 

tap water at a concentration of 1000 IJ/ml and stored at 9˚C.  Nematodes were re-

cultured every 8-12 weeks. 

2.1.3 Source of fungi 

Beauveria bassiana (Bals.) Vuill. (strains: BUEXP 1504, BUEXP 1694) and 

Metarhizium anisopliae (Metsch.) Sorokin. (stains BUEXP 1501, BUEXP 1502, 

BUEXP 1503) were sourced from Becker-Underwood, Littlehampton, U.K. A 

commercial product of Metarhizium anisopliae (F52), Met52, was obtained from 

National Agrochemical Distributors, Lusk, Dublin. Met52 is produced by Novozyme 

and spores are grown on rice grains, when Met52 was used in experiments the spores 

were sieved off the rice grains. Germination of fungus was tested by plating spores on 
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Sabouraud Dextrose agar (SDA) or Potato Dextrose agar (PDA). A low concentration of 

spores (about 1x10
1
–1x10

2
 spores/ml) was made up in 0.03 % (v/v) Tween 80 (Sigma-

Aldrich). The plates were then sealed with parafilm and left to germinate at 20˚C for 12-

16 hr. Germination was determined by counting 200 spores on the plate and the 

percentage of spores with hyphal growth was calculated (Shah et al. 2009). If 

sporulation was below 85 % a new batch of fungus was obtained from the producer. 

Fungal spores were stored at 4˚C. 

 

2.2 Source and culturing of insect larvae 

2.2.1 Galleria mellonella (The greater wax moth) 

Galleria mellonella larvae were obtained from Livefoods Direct Ltd., Sheffield, U.K. 

They were stored at 15˚C in a box of wood shavings (supplied by the producer) for a 

maximum of 4 weeks. 

2.2.2 Hylobius abietis (Large pine weevil) L. (Coleoptera: Curculionidae) 

Hylobius abietis larvae were collected from Scots pine (Pinus sylvestris) and Sitka 

spruce (Picea sitchensis) stumps in plantations which had been felled 12-18 months 

previously. The locations of the plantations were: Kilduff, Co. Westmeath; Hortland, 

Co. Kildare; Kildalkey Co. Meath; Rossnagad, Co. Laoise. The soil was removed from 

around the stump and the bark was removed using a chisel. The larvae were collected 

and put into 24-well cell culture plates (24-well plates) (Costar). The collected larvae 

were kept out of direct sun light. Lightly moistened paper towel was placed in the lid of 

the 24-well plate and the larvae were stored at 4˚C for a maximum of 4 weeks. 

2.2.3 Otiorhynchus sulcatus (Black vine weevil) F. (Coleoptera: Curculionidae) 

Otiorhynchus sulcatus larvae were reared in a greenhouse at Teagasc Research Centre, 

Kinsealy, Dublin. Adult O. sulcatus were kept in a box (25 cm x 17 cm x 8 cm) at room 

temperature. The lid contained air holes (5 cm diameter) for ventilation and the box was 

kept out of direct sunlight. A food source consisting of some small branches of yew 

(Taxus baccata) was replaced weekly and eggs were collected weekly. The eggs (90 

eggs/plant) were added to a strawberry plant (bare rooted runners, flower pot size: 16 
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cm x 15 cm) and covered with a thin layer of compost. The plants were kept in a 

greenhouse for 12 weeks (August 2011- November 2011) and watered weekly until the 

larvae reached 6
th

/7
th

 instar. 

 

2.3 Galleria mellonella experiments 

2.3.1 The effect of moisture content on nematode movement though compost to 

invade Galleria mellonella 

A single G. mellonella larva was added to a 30 ml medicine cup (Sarstedt) and 15 ml 

Westland Garden Health multi-purpose compost was added on top. Fifty IJ of S. 

carpocapsae or H. bacteriophora were added to the compost in three different volumes: 

0.5 ml, 1 ml and 2 ml. The moisture content of the compost was 63 %, 66 % and 73 % 

respectively. Control cups received 2 ml of tap water and its moisture content was 73 %. 

The cups were covered with a lid with two 6 mm diameter holes. They were then stored 

at 20˚C for four days. The G. mellonella were removed from the soil, washed with tap 

water and stored at 20˚C for two days in a 5 cm diameter Petri dish lined with filter 

paper. The larvae were dissected to count the number of nematodes that had invaded. 

There was a total of ten cups per treatment. The moisture content for each treatment was 

determined by adding 1 ml, 2 ml or 4 ml of tap water to 30 ml of compost and leaving it 

to dry in an oven at 100˚C until all the moisture had evaporated (24 hr). The compost 

was weighed before putting it into the oven (wet weight) and weighed at 8hr intervals 

until the compost had lost all its moisture (i.e. stopped losing weight). Moisture content 

was calculated using the formula:  

Moisture content % = Wet weight of compost – Dry weight of compost  X 100   

                                Wet weight of compost 

 

2.3.2 Effect of Metarhizium anisopliae infection on invasion of Galleria mellonella 

by nematodes 1-5 days after exposure to fungus 

Galleria mellonella larvae were dipped in a spore suspension of Metarhizium anisopliae 

F52 (2.6 – 4.7 x 10
6 

spores) (Table 2.1) made up in 0.03 % (v/v) Tween 80; control 

larvae were dipped in 0.03 % (v/v) Tween 80 only. Five larvae were dipped together in 
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10 ml solution for 10 s, and then transferred to a Buchner funnel lined with filter paper 

to remove excess liquid by suction. Ten insects per dish were put into a 9 cm Petri dish 

lined with 9 cm filter paper and stored at 20˚C for 24 hr, 48 hr, 72 hr, 96 hr or 120 hr, to 

allow fungal infection and growth. After each fungal growth period ten larvae from the 

fungus and ten from the control treatment were removed and each larva was placed 

individually in a plastic mesh cage (1.5 cm x 1.5 cm). The cage was then inserted into 

the bottom of a 30 ml cup (diameter of base: 2.5 cm, diameter of top: 3.5 cm, length: 4 

cm) and 15 ml of Westland Garden Health multi-purpose compost was added on top. 

Steinernema carpocapsae or Heterorhabditis bacteriophora were pipetted on top of the 

compost in 1 ml tap water at a concentration of 150 IJ/ml or 200 IJ/ml respectively. Lids 

were placed on top with one pinhole for air. The cups were placed in random order on a 

tray and incubated at 20˚C. After 22 hr the larvae were removed from the containers and 

washed with tap water. They were then individually put in a 5 cm Petri dish lined with a 

moistened 5 cm filter paper and incubated for 3 or 4 days at 20˚C. The larvae were 

dissected and the number of nematodes in each cadaver was counted. Ten larvae from 

the fungus treatment and ten from the control treatment were kept in individual 5 cm 

Petri dishes lined with moistened filter paper at 20˚C without exposure to nematodes 

and the day they died was recorded. There were four experiments; two were conducted 

using H. bacteriophora and S. carpocapsae and two were conducted with S. 

carpocapsae. In the first experiment (Experiment 1) IJ were added 72 hr and 120 hr 

after the larvae were dipped in M. anisopliae F52 or Tween 80. In the other three 

experiments (Experiment 2, Experiment 3, Experiment 4) IJ were added 24 hr, 48 hr or 

72 hr after  exposure to M. anisopliae or Tween 80 and Experiment 4 included a fourth 

day (Table 2.1).  The moisture content of the compost was determined before the 

experiment as described in section 2.3.1. 
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Table 2.1 Details of four experiments conducted to investigate if Galleria mellonella 

are more attractive to nematode invasion after different time periods of Metarhizium 

anisopliae infection. 

  Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Date 10.6.2011 4.7.2011 29.8.2011 17.10.2011 

Spores/ml 4.7 x 10
6 

4.2x10
6 

4.5x10
6 

2.6x10
6 

Nematode 

species 

Steinernema 

carpocapsae 

Steinernema 

carpocapsae 

Steinernema 

carpocapsae 

Steinernema 

carpocapsae 

  Heterorhabditis 

bacteriophora 

Heterorhabditis 

bacteriophora 

  Day IJ 

added 3, 5 1,2,3 1,2,3 1,2,3,4 

Fungus 

sporulation 89 % 89 % 89 % 89 % 

Moisture 

content 70 % 68 % 69 % 66 % 

Fungal spores were suspended in 0.03 % (v/v) of Tween 80. Infective juveniles (IJ) 

were suspended in tap water and added to the assay 1, 2, 3, 4 or 5 days after exposure to 

fungus. The larvae were exposed to IJ for 22 hr. 

 

2.4 Hylobius abietis experiments 

Assay design for Hylobius abietis was based on an assay designed by Ansari et al. 

(2008), for Otiorhynchus sulcatus larvae experiments. 

2.4.1a Effect of sterile and non-sterile bark (Scots pine), a food source for Hylobius 

abietis, on larval mortality 

One H. abietis larva was added to a 30 ml cup and exposed to six treatments (N = 40 

larvae). Compost was added in a volume of 15 ml (Shamrock Irish moss peat) and a 

chunk of Scots pine bark (1 cm x 1 cm x 0.25 cm) weighed 0.5 g. The treatments were 

as follows: 

- Six sheets of filter paper (diameter 2.5 cm) 

- Compost  only 

- Fed with bark for one day before the trial and compost added on day of trail 

- Bark and compost  

- Pasteurised bark (70˚C for 30 min) and compost 

- Autoclaved bark and compost 
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The pasteurised bark and autoclaved bark were left to cool before adding to the cups 

and lids of all cups had one pinhole for ventilation. The cups were placed in random 

order on a tray and incubated at 20˚C for 15 days. All larvae were collected from 

Kilduff, Co. Meath and stored for four days at 4˚C before use. Moisture content (71 %) 

was determined as described in section 2.3.1. The experiment was conducted for 15 

days. 

2.4.1b Effect of bark (Scots pine) structure and ventilation type on mortality of 

Hylobius abietis larvae 

Assays were as described in Section 2.4.1a except for the changes described for each 

treatment (N = 20 larvae): 

- Bark, compost and pinhole in the lid. 

- Ground up bark, compost and pinhole in the lid 

- Compost only and a pinhole in the lid 

- Compost only and two 6 mm holes in the lid 

The cups were placed in random order on a tray and incubated at 20˚C for 28 days. All 

larvae were collected from Hortland, Co Kildare and stored 7 days at 4˚C before use. 

Moisture content (72 %) was determined as described in section 2.3.1. 

2.4.2 Dose response and interaction of nematodes and fungus using Hylobius abietis 

larvae as a host. 

Late instar Hylobius abietis larvae were placed individually into a 30 ml cup. For 

fungus only and interaction assays the fungal spores were made up in a suspension 

using 0.03 % (v/v) Tween 80 solution. Fungal suspension (1 ml for fungus only and 0.5 

ml for interaction) was added to 15 ml Shamrock Irish moss peat compost and mixed 8 

times in a 30 ml cup before adding on top of the larvae. All fungal concentrations were 

made up using a series of tenfold dilution (Table 2.2, 2.4). Nematode concentrations for 

nematode only and interaction assays were made up in 1 ml (nematode only) or 0.5 ml 

(interaction study) of tap water and added on top of the compost (Table 2.3, 2.4). Cups 

with nematode only treatments contained compost with no spores. In interaction assays 

nematodes were added on days 0, 7 and 14 and if nematodes were not being added to a 

cup, water was added to maintain moisture conditions. Bark (0.5 g) from Scots pine 
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trees was used in some experiments (Table 2.2, 2.3, 2.4). Controls received tap water 

(nematode), 0.03 % (v/v) Tween 80 (fungus) or both (interaction) only. In interaction 

experiments compost in nematode only treatments received 0.5 ml of 0.03 % (v/v) 

Tween 80 and fungus only treatments received 0.5 ml tap water. Mortality was either 

checked every second day/ third day or weekly. 

Assays were also conducted in a similar manner but using 24-well plates. Fungal 

treatments were added as dry spores into the compost. This was done by adding the dry 

spores to bulk compost and mixing it by moving the compost from one pile to another 

ensuring to take the compost from the bottom of the pile. This mixing was repeated ten 

times to give a fungal concentration per ml of compost (2.5 ml/well). Nematode 

concentrations were added in 100 µl of tap water; controls and fungus only treatments 

received 100 µl of tap water. In interaction assays nematodes were added on days 0, 7 

and 14. If nematodes were not being added to a well 100 µl of tap water was added to 

maintain moisture conditions. Mortality was checked weekly. 

In both assay types when a larva was found dead it was removed from the compost and 

put into a 5 cm Petri dish lined with moistened filter paper and incubated at 20˚C. 

Larvae from nematode only assays were dissected after 4-7 days to confirm the 

presence of nematodes. Larvae from control, fungus and interaction assays were left at 

20˚C for 10-14 days to allow for any entomopathogenic fungus to sporulate. If fungal 

growth was not evident after 14 days the larvae were dissected to determine if they were 

killed by nematodes. If insects were not killed by entomopathogenic nematodes or fungi 

they were classified as being killed by other causes. 

In the tables displayed below (Tables 2.2-2.4) the layout of experiments is indicated. 

Experiments with the same number indicate the dose response assay conducted for the 

interaction assay with the same number. The different letter indicates separate 

experiments. 
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Table 2.2 Details of three fungus dose response experiments against H. abietis. 

  Experiment 1a Experiment 2a Experiment 5a 

Date 1.12.2010 17.1.2011 17.5.2012 

Weevil source
a 

Kilduff Killduff Kildalkey 

Tree species
b 

Scots pine Scots pine Scots pine/Spruce 

Head capsule size N/A N/A 3.10 mm 

Container 30 ml cup 30 ml cup 24 well-plate 

Fungus strain and concentration
c 

M.a 1501 (4.7x10
3
 – 10

6
) M.a 1503 (1.4x10

3
 – 10

8
) Met52  (1.4x10

1
- 10

6
) 

M.a 1502 (2.7x10
3
 – 10

6
) M.a 1504 (1.7x10

3
 – 10

8
) 

 M.a 1503 (4.7x10
3
- 10

6
) 

    B.b 1504 (2.7x10
3
 – 10

6
) 

  Bark  Yes Yes No 

N 7 9 20 

Mortality checked
d 

2
nd

/3
rd

 day 2
nd

/3
rd

 day Weekly 

Moisture content 74 % 71 % 69 % 

Exposure time
e 

20 days 21 days 21 days 
a
Location where the larvae were collected from. 

b
The tree species the larvae were collected from. 

c
M.a, Metarhizium anisopliae; B.b, Beauveria 

bassiana. 1501 etc. indicate the BUEXP strain used. Concentration in spores/ ml compost. Fungus was added in tenfold serial dilution i.e. 10
3
, 10

4
, 

10
5
,10

6.
 
d
Interval at which mortality of larvae was checked. 

e
Length of the experiment. 
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Table 2.3 Details of five nematode dose response experiments against H. abietis. 

  Experiment 1b Experiment 2a Experiment 3 Experiment 4a Experiment 5b 

Date 14.12.2010 17.1.2011 10.3.2012 27.3.2012 18.5.2012 

Weevil source
a 

Kilduff Kilduff Kildalkey Kildalkey Rossnagad 

Tree species
b 

Scots pine Scots pine Scots pine/Spruce Scots pine/Spruce Scots pine 

Head capsule size  N/A N/A 2.90 mm 3.05 mm 2.99 mm 

Container 30ml cup 30ml cup 30ml cup 24 well-plate 24 well-plate 

Nematode species
c 

S.c S.c S.c S.c H.d 

H.b H.b H.b H.b  

IJ
d 

100, 500, 1000, 5000 50, 100, 250, 500, 1000 1000, 2500, 5000, 7500 5, 10, 25, 50, 100, 200 25, 50, 100, 250, 500, 1000 

Bark Yes Yes No No No 

N 5 9 20 20 20 

Mortality checked
e
 2

nd
/3

rd
 day 2

nd
/3

rd
 day Weekly Weekly Weekly 

Moisture content 75 % 71 % 68 % 66 % 69 % 

Exposure time
f 

7 6 7 7 7 
a
Location where the larvae were collected from. 

b
The tree species the larvae were collected from. 

c
S.c, Steinernema carpocapsae; H.b, Heterorhabditis 

bacteriophora; H.d Heterorhabditis downesi. 
d
Number of infective juveniles (IJ) added in tap water. 

e
Interval at which mortality of larvae was 

checked. 
f
Length of the experiment. 

 

 

 

 

 

 

 

 

 

 

 

 



26 

 

Table 2.4 Details of five nematode and fungus interaction experiments against H. abietis 

  Experiment 1c Experiment 2c Experiment 4b Experiment 4c Experiment 5c 

Date 17.1.2011 26.5.2011 17.4.2012 8.5.2012 8.6.2012 

Weevil source
a 

Kilduff Hortland Kildalkey Kildalkey Rossnagad 

Tree species
b 

Scots pine Scots pine Scots pine/spruce Scots pine/spruce Scots pine 

Head capsule size N/A N/A 3.00 mm 3.02 mm 2.98 mm 

Container 30ml cup 30ml cup 24 well-plate 24 well-plate 24 well-plate 

Fungus strain and 

concentration
c 

M.a 1503 (1.4x10
5
) B.b 1504 (1.3x10

5
) B.b 1694 (1.7x10

5
, 10

6
) B.b 1694  (1.7x10

4
, 6.3x10

3
) Met52 (1.3x10

4
) 

B.b 1504 (1.7x10
5
)    BUEXP 1694 (6.3x10

3
) 

Nematode
d 

S.c  H.b H.b S.c H.d 

H.b     

IJ
e 

100 70 70, 200 50, 300 25, 100 

Bark Yes No No No No 

N 9 30 20 20 20 

Day ij added
f
 0 0,7,14 0,7 0,7,14 0,7 

Mortality checked
g 

2
nd

/3
rd

 day Weekly Weekly Weekly Weekly 

Moisture content
h 

71 % 67 % 67 % 73 % 74 % 

Exposure time
i 

21 21 14 21 14 
a
Location where the larvae were collected from. 

b
The tree species the larvae were collected from. 

c
M.a, Metarhizium anisopliae; B.b, Beauveria 

bassiana. 1503 and 1504 indicate the BUEXP strain used. Concentration in spores/ ml compost. 
d
S.c, Steinernema carpocapsae; H.b, Heterorhabditis 

bacteriophora. 
e
Number of infective juveniles (IJ) added in tap water. 

f
Day after exposure to fungus IJ were added. 

g
Interval at which mortality of 

larvae was checked. 
h
Length of the experiment. 
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2.4.3 Nematode and fungus single and combined application against Hylobius 

abietis at a field site, Rossnagad, Co. Laois. 

Nematode and fungal treatments were applied to Scots pine stumps which had been 

felled 18 months previously. The field site was divided into 20 blocks with six 

treatments each applied to one stump in each block. The treatments were as follows: H. 

downesi 3.5x10
6
 IJ/stump (full dose), H. downesi 1.75x10

6
 IJ/stump (half dose), B. 

bassiana (BUEXP 1694) 1x10
9
 spores/stump (full dose), B. bassiana (BUEXP 1694) 

5x10
8
 spores/stump (half dose), a combination of half dose of both H. downesi with B. 

bassiana, and a control with tap water. Stumps for each treatment were colour coded 

before application of treatments. Treatments were applied on 6.06.2012. Nematodes 

were applied in tap water and the fungus was applied in 0.03 % (v/v) Tween 80 

suspension. Treatments were made up in 5 L volumes in the laboratory and transferred 

to the site ensuring the nematode suspensions were regularly mixed. A 500 ml aliquot 

was applied around the perimeter of the stump. Ten blocks were destructively assessed 

four weeks after application. This involved removing the bark off one quarter of the 

stumps diameter (including at least one root) and as deep as the last larva was found 

(max depth 20-25 cm). All weevils (dead or alive) were collected in 24 well-plates. The 

lid of a plate was lined with moistened tissue paper and plates were stored at 20˚C for 

two weeks. After two weeks any fungal growth or nematode infection was recorded.  

The fifth week after the application of treatments emergence traps (Moore 2001) were 

erected around the other ten blocks to collect adults emerging from the stumps. Briefly, 

the traps consisted of four steel rods for support which were inserted into a plastic cap 

and positioned over the tree stump. A white plastic 1000 ml bottle with a funnel in the 

lid was placed underneath the plastic cap. This was then covered with a plastic mesh 

around the entire stump. The mesh was securely fastened to the plastic lid using a cable 

tie and soil was dug up and placed around the end of the mesh on the ground (Fig 2.1). 

Traps were emptied every three weeks. 
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Fig 2.1 Emergence traps used to collect emerging Hylobius abietis adults. 

 

2.4.4 Identification of Beauveria spp. cultured from Hylobius abietis, collected at 

the Rossnagad field experiment 

Fungus from any H. abietis larvae which had abundant fungal growth two weeks after 

recovering from stumps in the field trial were identified by extraction digest of the 

internal transcribed spacer (ITS) region of ribosomal DNA (rDNA) 

Culturing fungi 

All procedures were carried out using aseptic techniques. Fungi were cultured on 9 cm 

Potato Dextrose Agar (PDA) plates (Oxoid Ltd, England, U.K.). Cellophane discs 

(Caroline Packaging Ltd., England, U.K.) (cut to 9 cm diameter) were covered with a 

thin layer of distilled water and autoclaved. The cellophane discs were allowed to cool 

before being placed onto the PDA plates, so that they stuck to the agar (Reay et al. 

2008). An insect with fungal growth was then placed in the centre of each cellophane 

disc. There were eleven samples in total taken from different stumps and one known B. 

bassiana sample as a control. The plates were sealed with parafilm and incubated at 

20˚C for five days to allow hyphal growth. 

PCR protocol 

After sufficient hyphal growth had occurred (3 cm diameter around insect cadaver) it 

was peeled off the cellophane disc (avoiding any contaminated areas) and placed in a 

1.5 ml eppendorf tube. To break up the fungal cell walls the samples were exposed to 

freeze and thaw action. The cells of the hyphae were broken down further using a 

plastic pestle (Sigma-Aldrich Co. LLC) (separate pestles were used for each sample). 

Qiagen DNEasy Mini Plant Kit and protocol was used to extract the DNA. The lysate of 
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the sample was collected in a 1.5 ml eppendorf and the amount of DNA collected was 

measured using The Nanodrop 1000 (Mason, Dublin, Ireland). The ITS region of the 

rDNA repeat unit was used for PCR reactions, as protocols and primers have been 

published for Beauveria bassiana (Glare et al. 2008) and Beauveria bassiana were 

determined at NUI Maynooth (C. Harvey, personal communication). A Promega GoTaq 

Polymerase DNA kit was used to amplify the ITS region in the fungal DNA. HinfI was 

used to detect a three base pair deletion in B. caledonica and compared it to B. bassiana. 

The restriction enzyme BanII was used to detect an eight base pair insertion in B. 

caledonica and this was compared with B. bassiana (Glare et al. 2008; C. Harvey, 

personal communication). The final volume for each reaction was 25 µl; each reaction 

received 22.5 µl of the master mix plus 2.5 µl of the DNA lysate (Table 2.7). The 

samples were then put through a PCR rotation cycle. The samples were exposed to a 

range of temperatures and cycles which are listed in Table 2.8. The lid was set to 105˚C. 

Table 2.7 List of ingredients and quantities in DNA polymerisation. 

Ingredients µl/ sample concentration/sample
e 

 

ddH2O
a 

10.875 -  

Buffer
b 

5 -  

MgCl2 2.5 3 mM  

dNTP
c 

2 0.2 mM in each dNTP  

ITS Primer F
d 

1 2 µM  

ITS Primer R
d 

1 2 µM  

Taq Polymerase 0.125 U/µl  

Total 22.5   
a
Double distilled water. 

b
GoTaq reaction buffer. 

c
Deoxyribonucleotide triphosphate – 

mix of 0.5 µl of each dATP, dCTP, dGTP, dTTP. 
d
Internal Transcribed Spacer, F- 

forward primer, R – reverse primer. 
e
 mM – millimolar, µM – micromolar, U/µl – Unit/ 

microliter. 
 

Table 2.8 PCR rotation cycle using Mastercycle Gardient 

Step Action Cycles Temperature (˚C) Duration (min) 

1 Denaturing 1 94 5 

2
a 

Denaturing 

40 

94 0.5 

3 Primer annealing 55 0.5 

4 Elongation 72 1 

5 Elongation 1 72 5 

6 Cooling 1 4 Held until needed 
a
Steps 2 – 4 were repeated 40 times. 
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Gel electrophoresis of PCR samples 

A 1 % (w/v) agarose gel was prepared by adding 1 g of agarose to 100 ml Tris-Acetate-

EDTA (TAE) buffer in a 250 ml Duran bottle. The lid was screwed on loosely and the 

bottle was put into a microwave at a low power for seven minutes to melt the agarose, 

swirling occasionally. It was then allowed to cool on the bench for 5 – 10 min and 10 µl 

of SYBRsafe dye was added. The gel was poured onto the casting tray and allowed to 

cool for 20 min. The gel was covered with 1 x TAE buffer and 5 µl of DNA ladder (mi-

100 bp + DNA Marker Go provided by Metabion, Martinsried, Germany) was loaded 

into the first and last well. The PCR samples, 5 µl, were mixed with 1 µl of 5x DNA 

loading buffer (Bioline; London, UK) and the samples were loaded in the wells between 

the ladders. The electrophoresis chamber was run at 100 volts for 30 min. Gels were 

illuminated and photographed using a Syngene G:Box (Mason).  

Restriction Digest 

Two restriction enzymes were used; Ban II and Hinf I. The ingredients for the 

restriction digest were as follows: 5 µl of PCR product, 2 µl buffer 4, 1 µl enzyme and 

12 µl double distilled water (ddH2O). Samples were vortexed and put through a PCR 

rotation cycle; 2 cycles at 37˚C for 8 hr to activate the enzyme and 1 cycle at 80 ˚C to 

deactivate the enzyme; the lid was set to 37˚C. The gel electrophoresis was conducted 

as described above, except a 4 % agarose gel was used and the electrophoresis chamber 

was run at 70 volts for 1.75 hr. The gel was viewed as described above. 

 

2.5 Otiorhynchus sulcatus experiments 

2.5.1 Dose response and interaction of nematodes and fungus using Otiorhynchus 

sulcatus as a host. 

The assay design was based on experiments conducted by Ansari et al. (2008). Late 

instar Otiorhynchus sulcatus larvae were added to 30 ml cups with an organic carrot 

disk 1 cm x 1cm (replaced weekly) and 15 ml of compost (Westland garden health 

multi-purpose). Fungal spores were added to the compost in 0.5 ml 0.03 % (v/v) Tween 

80 and mixed (Table 2.9, 2.10). Fungus only treatments and control treatments also 

received 0.5 ml of tap water. Control and nematode only treatments received 0.5 ml 
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0.03 % (v/v) Tween mixed into the compost (before nematodes were added). 

Nematodes were added on top of the compost in 0.5 ml of tap water on days 0, 7 and 

14; tap water was added to the cups which did not receive nematode (Table 2.5.1.1 – 

2.5.1.2). A lid with two 6 mm diameter holes was placed on top and the holes were 

cover with a plastic mesh (2 cm x 1 cm). Mortality was checked weekly, dead larvae 

were removed from the assay and cause of death was determined as described in section 

2.4.2. 

In the tables below (Tables 2.0 – 2.10) the layout of experiments is indicated. 

Experiments with the same number indicate the dose response assay conducted from the 

interaction assay with the same number. The different letter indicates separate 

experiments. 

Table 2.9 Details of one fungus and two nematode dose response experiments using O. 

sulcatus as host. 

  Experiment 1a Experiment 2a Experiment 2b 

Date 26.11.2011 26.11.2011 11.1.2012 

Instar 5
th

 5
th

  6
th

 

Fungus strain (spores/ml)
a 

 M.a (1x10
4
 - 10

8
) 

 Nematode (IJ)
b
 S.f (30,60,120) 

 

S.f (30,100) 

   

 

H.b (30,100,250) 

N 20 20 10 

Exposure time
c 

7 21 7 
a
M.a, Metarhizium anisopliae F52. Fungus was made up in tenfold serial dilutions i.e. 

10
4
, 10

5
, 10

6
,10

7
, 10

8
. 

b
S.f, Steinernema feltiae, H.b, Heterorhabditis bacteriophora;

 
IJ 

Number of infective juveniles added in tap water. 
d
Length of the experiment. 

 
 

Table 2.10 Details of three nematode dose response experiments using Otiorhynchus 

sulcatus as a host 

  Experiment 1a Experiment 2c Experiment 2d 

Date 26.11.2011 20.1.2012 8.3.2012 

Instar 6
th

  6
th

  6
th

/7
th

  

Fungus strain (spores/ml)
a 

M.a (1x10
6
) M.a (1.7x10

5
) M.a (1.7 x 10

5
) 

Nematode (IJ)
b 

S.f (10) S.f (100) S.f (100) 

  

 

H.b (10) H.b (10) 

Day IJ added
c
 0,7,14 0,7,14 0,7,14 

N 20 20 20 

Exposure time
d
 21 21 21 

a
M.a, Metarhizium anisopliae F52. 

b
S.f, Steinernema feltiae, H.b, Heterorhabditis 

bacteriophora;
 
IJ Number of infective juveniles added in tap water. 

c
Number of days 

after exposure to fungus nematodes were added. 
d
Length of the experiment. 
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2.6 Statistics  

All statistics were carried out on the statistical software package Minitab 16
®
. Binomial 

data were analysed using the chi-squared test. Continuous measure data sets were tested 

for normality using Kolmogorov – Smirnov. If data were not normal by distribution 

they were transformed by the square root. Data were tested for equal variance using 

Levene’s test. Data with more than two test groups were tested using a One-way 

ANOVA or Two-way ANOVA; where P < 0.05. Tukeys test was performed to find 

where the significant differences occurred. When data were not normal treatment 

medians were compared with a Kruskal-Wallis test, followed by multiple pairwise 

comparisons using a Mann-Whitney test using Bonferroni 95 % confidence intervals, 

obtained by calculating (1 – α / g)  where α is the level of significance (i.e. P = 0.05) 

and g is the number of pairwise comparisons. Lethal concentrations were calculated 

using Probit analysis. Tests were significant when P < 0.05. 

In the interaction experiments when mortality of insects in the untreated controls was 20 

% or less, mortality was corrected using Abbot’s formula (Abbott 1925) and 

interactions between agents were calculated using the formula: ME = MNem + MFun(1 – 

MNem), where ME is the expected mortality of the combined agents, MNem is the mortality 

of the nematode only application and MFun is the mortality of the fungus only 

application. A chi-squared test was applied to the expected and the observed with one 

degree of freedom: 
2
 = (MObs – ME)

2
/ ME, where MObs is the mortality of the nematode 

and fungus combined treatment. If 
2
 < 3.84 the mortality was additive but if 

2
 > 3.84 

there was a significant interaction, either antagonistic or synergistic (Ansari et al. 2008). 

If the observed mortality (MObs) was less than the expected mortality (ME) the 

interaction was antagonistic, but if the observed mortality was greater the interaction 

was synergistic.  

If the control mortality for interaction assays was above 20% the following formula was 

used: PE = P0 + (1 – P0)(PNem) + (1 – P0)(1 – PNem)(PFun), where PE is the expected 

combined mortality of the agents, P0 is the control mortality, PNem is the mortality of the 

nematode only application and PFun is the mortality of the fungus only application. A 

chi-squared test was applied to the expected and the observed: 
2
 = (LObs – LE)

2
 + (DObs – 

DE)
2
, where LObs is the number of living larvae observed, LE is the number of living 
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larvae expected, DObs is number of dead larvae observed and DE is the number of dead 

larvae expected (Shapiro-Ilan et al. 2004).  
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Chapter 3 - Results 

3.1 The effect of moisture content on nematode movement though compost to 

invade Galleria mellonella larvae 

The number of Steinernema carpocapsae IJ invading Galleria mellonella larvae in 

compost with 63 % moisture content was significantly lower than the numbers invading 

larvae in compost with moisture contents of 66 % and 73 % (One-way ANOVA: F = 

7.41, DF = 2, P = 0.003. Tukeys test α = 0.05) (Fig 3.1A). There was no significant 

difference between the numbers of Heterorhabditis bacteriophora IJ invading the G. 

mellonella larvae after moving through compost with moisture contents of 63%, 66% 

and 73% (One-way ANOVA: F = 2.70, DF = 2, P = 0.085) (Fig 3.1B). However, the 

trend shown by H. bacteriophora is similar to the trend shown by S. carpocapsae. There 

was only one control (with no nematodes) for this experiment and moisture content was 

73 %, the mortality in the control was 10 % by the end of the experiment. 

Fig 3.1 Average number of nematodes (50 IJ applied for both species) invading 

Galleria mellonella (N =10) larvae after 4 days in peat moss compost with different soil 

moisture contents. Error bar represent standard error. Bars with the same letter or no 

letters are not significantly different from each other (Tukeys test:  = 0.05). 

 

3.2 Effects of Metarhizium anisopliae infection on invasion of Galleria mellonella by 

nematodes 1-5 days after exposure to fungus 

Galleria mellonella larvae were exposed to Metarhizium anisopliae or 0.03 % (v/v) 

Tween 80 for 72 hr and 120 hr in Experiment 1 and for 24 hr, 48 hr and 72 hr in 
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Experiment 2. They were then exposed to Heterorhabditis bacteriophora for 22 hr. In 

Experiment 1 there was a significant difference between the numbers of IJs infecting 

larvae exposed to Tween control or fungus after 72 hr (One-way ANOVA: F = 6.61, DF 

= 1, P = 0.019) and 120 hr (Mann-Whitney test: W = 151, P = 0.0006). More IJs were 

found to invade the Tween 80 dipped larvae than the M. anisopliae dipped larvae (Fig. 

3.2 A). All the control (no nematodes added) M. anisopliae dipped larvae died by this 

fungus after twelve days. One of the 0.03 % (v/v) Tween 80 controls (no nematodes 

added) died during the experiment. In Experiment 2 no significant difference was found 

in the number of H. bacteriophora infecting the larvae between treatment or exposure 

time (Two-way ANOVA: Exposure time: DF = 2, F = 2.82, P = 0.063; Treatment: DF = 

1, F = 3.44, P = 0.069; Interaction: DF = 2, F = 0.963, P = 0.963) (Fig. 3.2b). The trend 

in Experiment 2 does not follow that in Experiment 1; more IJs invaded the M. 

anisopliae exposed larvae in Experiment 2. All dipped M. anisopliae control (no 

nematodes added) larvae died by this fungus after ten days and all 0.03 % (v/v) Tween 

80 control (no nematodes added) larvae survived the duration of the experiment.  

Fig. 3.2 Average number of Heterorhabditis bacteriophora (out of 200 IJ applied) 

invading Galleria mellonella (N = 10) after exposure to either 0.03 % (v/v) Tween 80 or 

Metarhizium anisopliae. A: Experiment 1: 4.7x10
6
 spores/ml 0.03 % (v/v) Tween 80, 

B: Experiment 2: 4.2 x10
6 

spores/ml 0.03 % (v/v) Tween 80. Error bar represent 

standard error. Bars with the same letter or no letter are not significantly different from 

each other. 

Larvae were also exposed to S. carpocapsae for 22 hr in Experiments 1 and 2 and two 

additional experiments were also conducted (Experiment 3 was a repeat of Experiment 

2; Experiment 4 larvae were exposed to an additional exposure time 96 hr) (Fig 3.3, 

3.4).  Exposure time was significant in all experiments (Table 3.1). Although the time 
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which nematodes were applied is significant there is not a consistent trend across 

treatments. Only one experiment showed a significant difference between treatments 

(Experiment 2), and there was also a significant interaction between time and treatment 

(Table 3.1). More nematodes invaded the M. anisopliae dipped larvae than the Tween 

dipped ones after 48 hr but not after 24 hr or 72 hr (Fig 3.3 B). Control mortality for 

experiments 1 and 2 are as described in the previous paragraph. In experiments 3 and 4 

all control (no nematodes added) M. anisopliae larvae died at 9 or 12 days, respectively, 

after being dipped and all the 0.03 % (v/v) Tween 80 control (no nematodes added) 

survived the duration of the experiment. 

Table 3.1 Two-way ANOVA results for the number of S. carpocapsae invading G. 

mellonella exposed to M. anisopliae or Tween 80 after different time periods. 

  

DF F P 

S.c Exp 1 Exposure time 1 6.58 0.015 

 

Treatment 1 2.28 0.140 

 

Interaction 1 0.00 0.962 

S.c Exp 2 Exposure time 2 20.75 0.000 

 

Treatment 1 6.75 0.017 

 

Interaction 2 5.25 0.009 

S.c Exp 3 Exposure time 2 13.94 0.000 

 

Treatment 1 0.66 0.419 

 

Interaction 2 0.77 0.469 

S.c Exp 4 Exposure time 3 18.85 0.000 

 

Treatment 1 1.98 0.163 

 

Interaction 3 1.94 0.131 

S.c = Steinernema carpocapsae. Exp = Experiment.  

 

 

 
Fig 3.3 Average number of Steinernema carpocapsae (out of 150 IJ applied) invading 

Galleria mellonella (N = 10) after exposure to either 0.03 % (v/v) Tween or 

Metarhizium anisopliae. A: Experiment 1: 4.7x10
6
 spores/ml 0.03 % (v/v) Tween 80, 

B: Experiment 2: 4.2 x10
6
 spores/ml 0.03 % (v/v) Tween 80. Error bar represent 



37 

 

standard error. Bars and groups with the same letter are not significantly different from 

each other. 

Fig 3.4 Average number of Steinernema carpocapsae (out of 150 IJ applied) invading 

Galleria mellonella (N = 10) after exposure to either 0.03 % (v/v) Tween or 

Metarhizium anisopliae. A: Experiment 3: 4.5x10
6
 spores/ml 0.03 % (v/v) Tween 80, 

B: Experiment 4: 2.6x10
6 

spores/ml 0.03 % (v/v) Tween 80. Error bar represent 

standard error. Bars and groups with the same letter are not significantly different from 

each other. 

3.3a Effect of sterile and of non-sterile bark (Scots pine), a food source for 

Hylobius abietis, on mortality (larvae from Kilduff, Co. Offaly) 

Hylobius abietis larvae were exposed to different treatments in order to determine if 

food source was affecting natural mortality. The larvae were exposed to six different 

treatments in 30 ml cups for 15 days and percentage mortality was recorded (Table 3.2). 

A chi-squared test showed no significant difference between treatments (Chi-sq = 5.059, 

DF = 5, P = 0.409). When larvae were exposed to filter paper only the lowest mortality, 

25 %, was recorded. The highest mortality, 42.5 %, was recorded when larvae were fed 

24 hr before the trial and exposed to compost during the trial. Larvae exposed to 

compost with pasteurised or autoclaved bark both resulted in 27.5 % mortality. The 

compost only treatment had a mortality of 30 % and the treatment with compost and 

bark recorded a mortality of 35 %. 
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Table 3.2 Hylobius abietis larvae exposed to different treatments and mortality 

recorded after 15 days. 

Treatment Filter paper
a 

Fed before trial
b 

Compost
c 

Bark
d 

No. dead Mortality % 

1  - - - 10 25 

2 -   - 17 42.5 

3 - -  - 12 30 

4 - -   14 35 

5 - -  Pasteurised 11 27.5 

6 - -  Autoclaved 11 27.5 
a
Six 2.5 cm filter paper were added to a 30 ml cup. 

b
Larvae were fed for 24 hr before the 

trial. 
c
Compost was added to a 30 ml cup. 

d
0.5 g of bark (ca. 1 cm x 1 cm) was added to 

a 30 ml cup; in treatment 5 the bark was pasteurised and in treatment 6 it was 

autoclaved. The tick marks indicate it was added to the cup. N = 40. 

 

3.3b Effect of bark (Scots pine) presence and structure and of ventilation type on 

mortality of Hylobius abietis larvae from Hortland, Co. Kildare 

Larvae were exposed to four different treatments in 30 ml cups for 22 days to determine 

if bark or moisture content had an effect on mortality (Table 3.3). A chi-squared test 

showed the difference between treatments was close to significant (Chi-squared test: 

Chi-sq = 7.386, DF = 3, P = 0.061). When the lowest mortality (treatment three), 10 %, 

was compared to the highest mortality (treatment four), 45 %, a significant difference 

was found (Chi-squared test: Chi-sq = 6.144, DF = 1, P = 0.013). The number of larvae 

dead in treatments one and two resulted in the same mortality of 20 %. 

Table 3.3 Hylobius abietis larvae exposed to different treatment and mortality recorded 

after 22 days 

Treatment Compost
a 

Bark
b 

Ventilation
c No. dead % Mortality 

1  Ground Pin hole 4 20 

2  Chunk Pin hole 4 20 

3  - 2x6mm holes 2 10 

4  - Pin hole 9 45 
a
Tick indicate compost was added to the cups. 

b
Ground indicates 0.5 g of bark was 

ground up in a coffee grinder and added to the cups, Chunk indicates 0.5g of a 1 cm x 1 

cm chunk of bark was added. 
c
The type of hole that was added to the lid for ventilation.  

3.4.1 Dose response and interaction of nematodes and fungus using Hylobius abietis 

larvae as a host 

The concentrations of entomopathogens to use in interaction experiments were 

determined from dose response experiments. In the first fungus dose response 

experiment, Experiment 1a, larvae were exposed to three strains of M. anisopliae and 
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one strain of B. bassiana for 20 days. M. anisopliae 1503 gave a clear dose response 

allowing a LC50 to be calculated, 2.6x10
6
 spores/ml compost. The other strains of M. 

anisopliae did not follow an expected dose response pattern and an LC50 could not be 

calculated (Fig 3.5 A). The three highest concentrations for M. anisopliae 1501 killed 

fewer larvae than the lowest concentration. The lowest concentration of M. anisopliae 

1502 killed more larvae than the second lowest concentration. Therefore M. anisopliae 

1503 was used in the interaction experiments. B. bassiana also did not show a definite 

dose response; three of the concentrations killed 29 % and the second highest 

concentration had the lowest mortality. However as it was the only B. bassiana strain it 

was used in the interaction experiment; the highest concentration which had a mortality 

of less than 50 %, 2.7x10
6 

spores/ml compost, was used for the interaction assay (Fig 

3.5 A). In all the M. anisopliae treatments a number of the larvae were killed by a 

Beauveria sp.; 1/7 larvae in each of six treatments and 2/7 larvae in each of three 

treatments. In the four B. bassiana treatments all four had 1/7 larvae killed by a 

Beauveria sp. and three had an additional 1/7 killed by other causes. The untreated 

control had 1/7 larvae killed by a Metarhizium sp. (Fig 3.5 A). 

The larvae in Experiment 1b were exposed to S. carpocapsae and H. bacteriophora for 

seven days. The nematode concentrations for both species were too high to estimate an 

LC50. Steinernema carpocapsae at a concentration of 1000 IJ/30 ml cup resulted in a 

mortality of 80 %, while 5000 and 500 resulted in 100 % mortality. All concentrations 

above 500 IJ/30 ml cup in the H. bacteriophora treatments resulted in 100 % mortality. 

Therefore the concentration which resulted in a mortality of less than 50 % was used: 

100 IJ/30 ml cup, for both S. carpocapsae and H. bacteriophora (Fig 3.5 B). The 

untreated control mortality was 0 %. Dead insects in all treatments were killed by the 

nematodes applied (Fig 3.5 B). 
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Fig 3.5 Cause of H. abietis larvae mortality. M.a, Metarhizium anisopliae; B.b, 

Beauveria bassiana. A: Cause of death after being exposed to three strains of M. 

anisopliae and one strain of B. bassiana for 20 days at different concentrations in a 30 

ml cup. The number 1501 etc. indicate the BUEXP strain of the fungus used. The 

figures on the x-axis indicate the power the dose is raised to i.e. 4.7x10
6
etc. N = 7. B: 

Cause of death after being exposed to S. carpocapsae and H. bacteriophora for 7 days 

at different concentrations in a 30 ml cup. N = 7. 

In the interaction experiment, Experiment 1c, larvae were exposed to single and 

combined treatments of EPF and EPN for 17 days. Synergy was recorded between M. 

anisopliae and H. bacteriophora (Table 3.4). The combination of B. bassiana with S. 

carpocapsae and M. anisopliae with S. carpocapsae gave no interaction while a 

combination of B. bassiana and H. bacteriophora gave antagonistic results (Table 3.4, 

Fig 3.6). In the nematode only treatments all larvae were killed by the applied 

nematodes. Death in the fungus only treatments was mainly caused by the applied EPF: 

B. bassiana 3/9 insects, M. anisopliae 1/9 insects. In the combined treatments the 

majority of kill was caused by the applied nematodes. Only 1/9 insects were killed by a  
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Table 3.2 Interactions observed when combining EPN with EPF using Hylobius abietis as host. 

Expa 

Fungus 

Speciesb 

spores/ml 

compost 

Nem 

Speciesc IJ/insect 

Interval 

(day) O Md E Me 2 Interactionf 

Duration 

(day) 

1c B.b 1.7x10^5 S.c 100 0 67 79 31.89 Antagonistic 17 

1c B.b 1.7x10^5 H.b 100 0 78 84 2.68 Additive 17 

1c M.a 1.4x10^5 S.c 100 0 67 67 0 Additive 17 

1c M.a 1.4x10^5 H.b 100 0 100 74 35.14 Synergistic 17 

2c B.b 1.3x10^5 H.b 70 0 70 79 4.88 Antagonistic 9 

2c B.b 1.3x10^5 H.b 70 7 40 54 7.89 Antagonistic 9 

4b B.b 1.7x10^5 H.b 70 0 35 5 20 Synergistic 7 

4b B.b 1.7x10^5 H.b 200 0 15 25 4 Synergistic 7 

4b B.b 1.7x10^6 H.b 70 0 0 15 14.5 Antagonistic 7 

4b B.b 1.7x10^6 H.b 200 0 20 32 32.5 Antagonistic 7 

4c B.b 5.2x10^3 S.c 300 0 75 54 8.64 Synergistic 14 

4c B.b 5.2x10^3 S.c 300 7 44 54 1.69 Additive 14 

4c B.b 5.2x10^3 S.c 50 0 44 50 0.67 Additive 14 

4c B.b 5.2x10^3 S.c 50 7 31 42 2.75 Additive 14 

4c B.b 2.5x10^3 S.c 300 0 44 44 0 Additive 14 

4c B.b 2.5x10^3 S.c 300 7 69 44 14.57 Synergistic 14 

4c B.b 2.5x10^3 S.c 50 0 13 39 17.56 Antagonistic 14 

4c B.b 2.5x10^3 S.c 50 7 25 30 0.69 Additive 14 

5c B.b 2.3x10^3 Hd 100 0 61 32 25.45 Synergistic 7 

5c B.b 2.3x10^3 Hd 25 0 28 22 1.65 Additive 7 

5c M.a 1.8x10^3 Hd 100 0 17 36 9.97 Antagonistic 7 

5c M.a  1.8x10^3 Hd 25 0 22 26 0.65 Additive 7 
a
Exp, Experiment. 

 b
B.b, Beauveria bassiana; M.a, Metarhizium anisopliae. 

c
S.c, Steinernema carpocapsae; H.b, Heterorhabditis bacteriophora, H.d, 

Heterorhabditisdownesi. 
d
O.M, Observed Mortality (%) of twenty replicates in one trial. 

e
E.M, Expected Mortality (%) = P0 + (1 – P0)(P1) + (1 – P0)(1 

– P1)(P2) where P1 is the mortality of the EPF applied alone, P2 is the mortality of the EPN applied alone and P0 is control mortality (Shapiro-Ilan et al. 

2004) (Experiments 1c and 2c). Experiments 4b-5c were calculated using: Expected Mortality (%) =Mn + Mf(1-Mn) where Mn is the mortality of the 

nematodes and Mf is the mortality of the fungus. All values were corrected using Abbots formula (Ansari et al. 2008). 
f
Interactions are based on the 

2
 

ratio between the expected and observed mortality.  
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Beauveria spp. in the combined treatment of H. bacteriophora and B. bassiana. The 

mortality recorded in the untreated control was due to other causes (Fig 3.6). 

Fig 3.6 Experiment 1c cause of H. abietis larvae mortality after 17 days exposure to 

single and combined concentrations of EPF and EPN in a 30 ml cup. M.a, Metarhizium 

anisopliae; B.b, Beauveria bassiana; S.c, Steinernema carpocapsae; H.b, 

Heterorhabditis bacteriophora. N = 9. 

Experiment 2 consisted of dose response assays with M. anisopliae BUEXP 1503 and 

B. bassiana BUEXP 1504 (Experiment 2a) and S. carpocapsae and H. bacteriophora 

(Experiment 2b) and an interaction assay with B. bassiana and H. bacteriophora 

(Experiment 2c). The LC50 for M. anisopliae and B. bassiana were 8.2x10
5
 and 1.9x10

5
 

spores/ml compost respectively (Fig 3.7 A). The mortality of the nematodes did not 

follow a clear dose response and a dose which gave less than 50 % was chosen based on 

the results in Fig 3.7 B; H. bacteriophora 70 IJ/30 ml cup. The cause of death in the M. 

anisopliae treatments was mainly caused by this applied EPF, expect one insect killed 

by a Beauveria sp. and one killed from other causes. The B. bassiana treated larvae 

were mainly killed by a Beauveria sp. except 1/9 larvae were killed by other causes in 

each of five treatments. The mortality recorded in the untreated control for Experiment 

2a was a result of other causes, 4/9 insects (Fig 3.7 A). The larvae which were exposed 

to S. carpocapsae were all killed by this EPN. Most of the larvae exposed to H. 

bacteriophora were killed by this EPN except in two treatments (500 IJ and 50 IJ) 

where 1/9 larvae in each treatment was killed by other causes. The untreated control 

mortality in Experiment 2b was a result of other causes, 1/9 insects (Fig 3.7 B). 



43 

 

Fig 3.7 Cause of H. abietis larvae mortality. A: Experiment 2a the cause of death after 

being exposed to M. anisopliae and B. bassiana for 21 days at different concentrations 

in a 30 ml cup. The figures on the x-axis indicate the power the dose is raised to i.e. 

4.7x10
6
etc. N = 9. B: Experiment 2b the cause of death after being exposed to S. 

carpocapsae and H. bacteriophora for 7 days at different concentrations in a 30 ml cup. 

N = 9. 

In the interaction experiment (Experiment 2c) B. bassiana and H. bacteriophora were 

used for the interaction. These two entomopathogens were chosen as Beauveria 

caledonica has been found to be a native pathogen of H. abietis in Ireland (Glare et al. 

2008), the EPF possess a similar life cycle to B. bassiana and H. bacteriophora 

combined with EPN has already been shown to give synergistic interactions against the 

vine weevil (Ansari et al. 2008). Beauveria bassiana was added to the assays on day 0 

and H. bacteriophora was added on day 0 and day 7. The interaction which was 

recorded was antagonistic after nine days exposure for both time points when the 

nematodes were added (Table 3.2, Fig 3.8). In the nematode only treatments and the day 

zero combination treatment mortality was caused mainly by the applied nematode. In 

the day zero nematode only treatment one insect was killed by a Metarhizium sp. and in 

the day zero combination treatment 5/30 insects were killed by a Beauveria spp. In the 

fungus only treatment and the day seven combination treatment larval mortality was 

mainly caused by a Beauveria spp. Control mortality was due to other causes (Fig 3.8). 

Experiment 3 was an EPN dose response assay exposing larvae to S. carpocapsae and 

H. bacteriophora for 7 days. In this assay the larvae were exceptionally resilient to 

nematode infection even when exposed to high concentrations of nematodes (Fig 3.9). 

Larvae exposed to 7500 IJ of S. carpocapsae and H. bacteriophora reached 50 % and 

55 % mortality respectively. All larval mortality in the treatments was caused by the 
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applied EPN. The mortality in the control treatment was a result of other causes. As the 

larval mortality only reached 50 % when exposed to extremely high doses of IJ the 

assay style was changed from 30 ml cups to a close contact assay in 24-well plates. 

Fig 3.8 Cause of H. abietis larvae mortality after 9 days exposure to single and 

combined concentrations of Beauveria bassiana and Heterorhabditis bacteriophora in a 

30 ml cup. B.b, Beauveria bassiana; H.b, Heterorhabditis bacteriophora. The day in 

the brackets indicate the day the IJ were added. N = 30. 

Fig 3.9 Experiment 3 the cause of H. abietis larvae mortality after being exposed to S. 

carpocapsae and H. bacteriophora for 7 days at different concentrations in a 30 ml cup. 

N = 20. 

 

Experiment 4a was a dose response assay using a 24-well plate exposing larvae to S. 

carpocapsae and H. bacteriophora. There was no clear dose response for either 

nematode species, although mortality did increase slightly with an increase in IJ 

concentration (Fig 3.10). The highest concentration for both species resulted in less than 
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50 % mortality; 200 S. carpocapsae IJ killed 20 % and 200 H. bacteriophora IJ killed 

30 % of insect larvae. The nematode concentrations for the interaction assays 

(Experiment 4b and 4c) were based on these values; Experiment 4b: H. bacteriophora 

70 IJ/well and 200 IJ/well, Experiment 4c: S. carpocapsae 50 IJ/well and 300 IJ/well. 

The cause of death in the S. carpocapsae treatments was mainly due to the applied EPN 

except in the 50 IJ treatment where 2/20 insects were killed by a Beauveria sp. and 1/20 

insects were killed by other causes. In the H. bacteriophora treatments most of the 

mortality was caused by the applied EPN. There was no mortality recorded in the 

untreated control (Fig 3.10). 

The fungus which was used in the interaction experiments was B. bassiana BUEXP 

1694 and the concentration was determined from previous experiments; Experiment 4b: 

1.7x10
5
 and 1.7x10

6
 spores/ml compost, Experiment 4c: 1.3x10

4
 and 6.5x10

3
 spores/ml 

compost.  

Fig 3.10 Experiment 4a the cause of H. abietis larvae mortality. Cause of death after 

being exposed to S. carpocapsae or H. bacteriophora for 7 days at different 

concentrations in a 24-well plate. N = 20. 

 

Experiment 4b was an interaction experiment using two concentrations of B. bassiana 

with two concentrations of H. bacteriophora; both pathogens were added on the same 

day, day 0. The application of B. bassiana at the low dose and H. bacteriophora gave 

synergistic results at both concentrations (Table 3.2). However, when the higher 

concentration of B. bassiana was combined with both concentrations of H. 

bacteriophora antagonism was found (Table 3.2). The mortality in the three treatments 

with a high concentration of nematodes was mainly caused by the applied nematode. A 

Beauveria sp. caused the mortality in the high fungal treatment, 1/20 insects, the low 
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fungus treatment, 2/20 insects, and the combined treatment with low concentrations of 

fungus and nematodes, 1/20 insects. There was no larval death in the following 

treatments: Low fungus concentration, the combination of low nematode and high 

fungus concentration and the untreated control (Fig 3.11). 

 

Experiment 4c was an interaction experiment using a combination of two concentrations 

of B. bassiana and two concentrations of S. carpocapsae; the fungus was added on day 

0 and the nematodes were added on days 0 and 7. The high concentrations of both B. 

bassiana and S. carpocapsae gave synergistic results when added together on day zero 

(Table 3.2). When larvae were exposed to the low dose of B. bassiana for seven days 

before adding the high dose of S. carpocapsae, synergism was found (Table 3.2). The 

low dose of both B. bassiana and S. carpocapsae added on day zero gave antagonistic 

results (Table 3.2). All other combinations gave additive effects (Table 3.2). In nine out 

of twelve of the treatments where S. carpocapsae was applied the majority of the 

mortality was caused by this EPN. There was mortality caused by a Beauveria sp. in all 

treatments except the low concentration of S. carpocapsae added on day zero. Mortality 

as a result of other causes was recorded in all treatments except three S. carpocapsae 

single applications (Fig 3.12). 

 

 
Fig 3.11 Experiment 4b the cause of death of Hylobius abietis larvae exposed to single 

and combined doses of Heterorhabditis bacteriophora (H.b) and Beauveria bassiana 

(B.b) for 7 days in a 24-well plate. Nematodes were added to the assay on day 0 along 

with the fungus. N= 20. 
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Fig 3.12 Experiment 4c the cause of death of Hylobius abietis larvae exposed to single 

and combined doses of Steinernema carpocapsae (S.c) and Beauveria bassiana (B.b) 

for 14 days in a 24-well plate. The figure in brackets indicates the day that the 

nematodes were added to the assay. All fungus was added on day 0. N= 20. 

 

Experiment 5a was a dose response assay using a commercial strain of M. anisopliae, 

Met52, in 24-well plates. The LC50 for M. anisopliae was 2.3x10
3
 spores/ml compost 

(Fig 3.13 A). Larval mortality was mainly due to M. anisopliae except for the three 

lower concentrations where 3/20 insects were killed by a Beauveria sp. and in the 

second highest value it killed 1/20 insects. A Beauveria sp. also killed 2/20 insects in 

the control treatment. Other causes resulted in death of 1/20 insects in five of the 

treatments. In Experiment 5b a dose response for H. downesi was conducted in 24 well-

plates. The LC50 calculated for H. downesi was 251 IJ/well (Fig 3.13 B). All mortality 

was caused by the applied EPN and there was no control mortality. The concentration 

for B. bassiana used in the interaction experiment (Experiment 5c) was determined 

from previous experiments. 
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Fig 3.13 Cause of Hylobius abietis larvae mortality. A: Experiment 5a the mortality of 

larvae after exposed to different concentrations of Metarhizium anisopliae (Met52) for 

14 days in 24-well plates. The figures on the x-axis indicate the power the dose is raised 

to i.e. 1.4x10
6
etc. spores/ml compost. N = 20. B: Experiment 5b the mortality of larvae 

after exposure to Heterorhabditis downesi for 7 days in 24-well plates. N = 20. 

 

In Experiment 5c larvae were exposed to single or combined (EPN with EPF) 

applications of two concentrations of H. downesi and single concentrations of M. 

anisopliae and B. bassiana (Fig 3.14). The combination of B. bassiana (2.3x10
3
 

spores/ml compost) and a high dose of H. downesi (100 IJ/well) gave a synergistic 

interaction (Table 3.2). M. anisopliae (1.8x10
3
 spores/ml compost) combined with the 

high dose of H. downesi (100 IJ/well) showed an antagonistic interaction (Table 3.2). 

When a low dose of H. downesi (25 IJ/well) was combined with either B. bassiana or 

M. anisopliae additive results were recorded (Table 3.2). In all treatments where H. 

downesi was applied the majority of the mortality was caused by this EPN. Some 

mortality in the H. downesi mortality was a result of other causes; 1/20 insects in both 

the H. downesi single applications, 2/20 insects in the B. bassiana and low concentration 

of H. downesi and 1/20 insects in the combination of M. anisopliae with the low 

concentration of H. downesi.  All mortalities that occurred in the fungal only 

applications were not a result of the experimentally applied pathogen; 3/20 for B. 

bassiana and 4/20 for M. anisopliae (Fig 3.14). The untreated control had 2/20 insects 

killed by other causes (Fig 3.14). 
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Fig 3.12 Experiment 5a the cause of death of Hylobius abietis larvae exposed to single 

and combined doses of Steinernema carpocapsae (S.c), Beauveria bassiana (B.b) and 

Metarhizium anisopliae (M.a) for 7 days in a 24-well plate. Nematodes were added to 

the assay on day 0 along with the fungus. N= 20. 
 

3.4.2 Nematode and fungus single and combined application against Hylobius 

abietis at a field site, Rossnagad, Co. Laois 

Mortality of developing weevils in stumps 

Pine stumps were treated with single and combined applications of B. bassiana BUEXP 

1694 and H. downesi. All larvae found were collected and it was recorded if they were 

alive, killed by an entomopathogen or killed by other causes (Table 3.3). There was a 

significant difference of the number of alive insects amongst the different treatments 

(Chi-squared test: 
2
 = 228.478, DF = 5, P = 0.000) but no significant difference was 

found among the total number of insects found dead between blocks (Kruskal-Wallis 

test: P = 0.658) however there was a significant difference in the numbers dead between 

treatments (Kruskal-Wallis test: P = 0.000). The average number of dead weevils in the 

treatments which contained H. downesi was significantly different from the fungus only 

treatments and the untreated control. More dead weevils were recovered from the H. 

downesi treated stumps. The fungus only treatments were also significantly different 

from the untreated control; the fungus only treatments recorded more dead insects. The 

average number of dead weevils in the H. downesi only treatments (full dose and half 

dose) and the combination of H. downesi with B. bassiana were significantly different 

to the mortality in control (Fig 3.13). There was a significant difference in the number 

of dead larvae found in the half H. downesi concentration compared to the full B. 
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bassiana concentration (Fig. 3.13). The mortality recorded in the combined half 

concentrations of H. downesi and B. bassiana (BUEXP 1964) was found to be additive 

(Observed Mortality: 58 %, Expected Mortality: 60%, 
2
 = 0.07). 

Table 3.3 Total numbers of Hylobius abietis larvae alive and cause of death, collected 

from ten pine stumps treated with H.d, Heterorhabditis downesi, B.b Beauveria 

bassiana or untreated control. Full and half concentrations see Fig 3.13 for explanation. 

Cause of death Control 1/2 H.d Full H.d 1/2 B.b Full B.b 1/2 H.d+1/2 B.b 

H. downesi 0 65 67 0 0 54 

Beauveria sp. 4 8 5 21 16 2 

Hd+Beauveria sp. 0 0 0 0 0 2 

Other cause 2 17 5 10 10 9 

Total dead 6 90 77 31 26 67 

Total alive 143 71 48 164 151 49 

Total collected 149 161 125 195 177 116 

% Dead 4 56 62 16 15 58 

 

 

 

Table 3.4 Treatments which are significantly different from each other using a Mann-

Whitney test with Bonferroni 95% confidence intervals (1 – α / g) . 

  Half Hd Full Hd Half Bb Full Bb 1/2 Hd + 1/2 Bb 

Control 
W = 58 W = 63 W = 65  W = 83 W = 66  

P = 0.0004 P = 0.0017 P = 0.0028 P = 0.1041 P = 0.0036 

Half Hd - 
W = 111.5  W = 138.5  W = 139  W = 115  

P = 0.6501 P = 0.0126 P = 0.0113 P = 0.4727 

Full Hd - - 
W = 129.5 W = 132.5  W = 109  

P = 0.696 P = 0.413 P = 0.7913 

Half Bb - - - 
W = 116.5  W = 84  

P = 0.4057 P = 0.1212 

Full Bb - - - - 
W = 80.5  

P = 0.0696 
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Fig 3.13 Hylobius abietis mean numbers dead per stump after 28 days exposure to 

Heterorhabditis downesi (H.d) and/or Beauveria bassiana (B.b), in pine stumps (N = 

10) in randomised blocks. Half H.d = 1.7 x10
6
 IJ/stump, Full H.d = 3.5x10

6
 IJ/stump, 

Half B.b = 5x10
8
, Full B.b = 1x10

9
. Error bars indicate the standard error. Bars with 

different letters are significantly different. Mann-Whitney test with Bonferroni 95% 

confidence intervals (1 – α / g). 

Emergence trap 

Emergence traps were erected around Scots pine stumps in ten blocks treated with 

single and combined applications of B. bassiana BUEXP 1694 and H. downesi. Adults 

were collected every two weeks for eight weeks after putting up the emergence tents. 

The number of adults emerging from the different treatments were not normally 

distributed, therefore the data were transformed by the square root. The numbers of 

adult H. abeitis emerging from stumps were not significantly different amongst blocks 

(Two-way ANOVA: DF = 9, F = 1.69, P = 0.120). There was a significant difference 

found in the number of adults emerging from the different treatments (Two-way 

ANOVA: DF = 5, F = 7.96, P = 0.001). There were significantly fewer adult weevils 

emerging from the stumps treated with the full concentration of H. downesi (mean: 3 

weevils/stump) (Fig 3.14) when compared to the control (mean: 31 weevils/stump) and 

single applications of B. bassiana (mean full B. bassiana: 48 weevils/stump, mean half 

B. bassiana: 29 weevils/stump). The numbers emerging from the half dose H. downesi 

and the combined dose of H. downesi and B. bassiana were similar, 10 weevils/stump 

and 12 weevils/stump respectively. The full treatment of H. downesi was significantly 

different from both of the single treatments of B. bassiana. The half treatment of H. 
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downesi and he combination treatment were significantly different from the full B. 

bassiana treatment. There was no significant difference between the control treatment 

and either of the single B. bassiana treatments (Fig. 3.14).  

Fig 3.14 Average of the square root of the number of Hylobius abietis adults emerging 

from Scots pine tree stumps eight weeks after application. Error bars indicate standard 

error. Bars with different letters indicate a significant difference (Tukeys test:  = 5). 

 

3.4.3 Identification of Beauveria sp. cultured from Hylobius abietis larvae, collected 

at Rossnagad, Co. Laois 

The DNA of eleven fungal samples from stumps in the field trial were extracted and 

compared with the applied B. bassiana BUEXP 1694 strain (sample 12). DNA from the 

ITS region was digested using Ban II and Hinf I restriction enzymes (Fig 3.15 and Fig 

3.16). Only sample 1 had a similar band pattern to B. bassiana BUEXP 1694. Samples 

3, 6 and 8 were identified as B. caledonica (Harvey et al. unpublished) which is a native 

fungus to Ireland (Glare et al. 2008).  Samples 5, 10 and 11 were not Beauveria sp. 

Samples 2, 4, 7 and 9 had an unusual DNA banding result. This was interpreted as 

having a combination of both B. bassiana and B. caledonica banding patterns. 
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Fig 3.15 BanII restriction digest of unknown fungus samples 1 – 11 (see Table 3.6) and 

known sample 12, Beauveria bassiana BUEXP 1694. L indicates the ladder. 

Fig 3.16 HinfI restriction digest of unknown fungus samples 1 – 11 (see Table 3.6) and 

known sample 12, Beauveria bassiana (BUEXP 1694). L indicates the ladder. 

Table 3.6 Blocks and treatments from which fungal samples were taken with identity 

based on Fig’s. 3.15 and 3.16. 

Sample Number Block number Treatment 

Identity 

B.b B.c Other 

1 13 Control    

2 17 ½ B. bassiana + ½ S. carpocapsae    

3 13 ½ B. bassiana    

4 13 ½ B. bassiana    

5 12 Full B. bassiana    

6 17 ½ B. bassiana    

7 13 ½ B. bassiana    

8 17 Full B. bassiana    

9 13 ½ B. bassiana    

10 18 ½ B. bassiana    

11 18 ½ B. bassiana    

12
a 

- -    

a
Sample 12 is the known B. bassiana species that was applied in the field 
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3.5 Dose response and interaction of nematodes and fungus using Otiorhynchus 

sulcatus as a host 

Otiorhynchus sulcatus larvae were exposed to S. feltiae and M. anisopliae (Met52) in an 

interaction assay using 30 ml cups. Concentrations which were used in the first 

interaction assay (Experiment 1) were based on results in Ansari et al. (2008). Fungus 

was added to the assay on day zero and the nematodes were added on days zero, seven 

or fourteen. The combined application of S. feltiae (10 IJ) and M. anisopliae (1x10^6 

spores) was found to be synergistic when both entomopathogens were added together 

on day zero (Table 3.4). Antagonism was recorded when the IJ were added seven days 

after the larvae had being exposed to the fungus and the interaction was additive when 

the nematodes were applied 14 days after exposure to the fungal (Table 3.4). The cause 

of death by M. anisopliae ranged from 35 % - 50 % in all treatments it was applied (Fig. 

3.17). In the combined application when the nematodes were added 14 days after the 

fungus 15 % mortality was caused by S. feltiae. When S. feltiae was applied on its own 

to assays the nematode killed 5 % (1/20) when added on day seven and 35 % when 

added on day 14. The kill recorded when the nematode was applied alone on day zero 

was due to other causes, 5 %. Nematodes only caused kill, 15 %, when applied 14 days 

after the fungus. The larval mortality in the untreated control was by other causes (Fig 

3.17). 

 

Fig 3.17 Experiment 1 Otiorhynchus sulcatus larvae mortality after 21 days exposure to 

single and combined doses of Steinernema feltiae (S.f) and Metarhizium anisopliae 

(M.a). The figure in brackets indicates the day that the nematodes were added to the 

assay. All fungus was added on day zero. N = 20. 
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A dose response assay (Experiment 2a) was prepared with M. anisopliae and S. feltiae. 

The calculated LC50 for M. anisopliae was 2.3x10
5 

spores/ml compost after 21 days and 

the calculated LC50 for S. feltiae was 132 IJ/cup after 7 days (Fig 3.18 A-B). Death was 

caused by the entomopathogen applied. In the M. anisopliae assays larvae were killed 

by other causes in all treatments, ranging from 5 % - 20 % (Fig 3.18 A). In the S. feltiae 

assays only one S. feltiae treatment had mortality by other causes which was 5 %. The 

untreated control treatment had 20 % mortality by other causes (Fig 3.18 B). A separate 

dose response assay was conducted with H. bacteriophora (Experiment 2b). The value 

for an LC50 could not be calculated as the lowest concentration (30 IJ/30 ml cup) 

resulted in a mortality of 80 %. The concentration to use was estimated from the results: 

10 IJ/30 ml cup. All mortality in this experiment was caused by H. bacteriophora and 

there was no control mortality (Fig 3.19). 

 

Fig 3.18 Cause of death of Otiorhynchus sulcatus larvae. A: Experiment 2a the cause of 

death after being exposed to Metarhizium anisopliae (M.a) for 21 days at different 

concentrations in a 30 ml cup. The figures on the x-axis indicate the power the fungal 

dose is raised to i.e. 1x10
6
etc. N = 20. B: Experiment 2a the cause of death after being 

exposed to S. feltiae (S.f) for 7 days at different concentrations in a 30 ml cup. N = 20. 
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Table 3.4 Interactions observed when combining EPN with EPF using Otiorhynchus sulcatus as host. 

Exp
a
 Fungus Species

b
 spores/ml compost Nem Species

c
 IJ/cup Interval (day) O M

d
 E M

e
 

2
 Interaction

f
 Duration (day) 

1 M.a 1x10^6 S.f 10 0 44 26 12.06 Synergistic 21 

1 M.a 1x10^6 S.f 10 7 25 65 24.85 Antagonistic 21 

1 M.a 1x10^6 S.f 10 14 50 46 0.34 Additive 21 

2c M.a 1.7x10^5 S.f 100 0 20 51 19.05 Antagonistic 21 

2c M.a 1.7x10^5 S.f 100 7 50 36 5.22 Synergistic 21 

2c M.a 1.7x10^5 S.f 100 14 35 44 1.75 Additive 21 

2c M.a 1.7x10^5 H.b 10 0 20 85 49.71 Antagonistic 21 

2c M.a 1.7x10^5 H.b 10 7 80 85 0.29 Additive 21 

2c M.a 1.7x10^5 H.b 10 14 65 74 1.04 Additive 21 

2d M.a 1.7x10^5 S.f 100 0 26 44 7.06 Antagonistic 21 

2d M.a 1.7x10^5 S.f 100 7 58 30 26.79 Synergistic 21 

2d M.a 1.7x10^5 S.f 100 14 42 16 46 Synergistic 21 

2d M.a 1.7x10^5 H.b 10 0 100 96 0.21 Additive 21 

2d M.a 1.7x10^5 H.b 10 7 89 62 11.51 Synergistic 21 

2d M.a 1.7x10^5 H.b 10 14 47 44 0.27 Additive 21 
a
Exp, Experiment. 

 b
M.a, Metarhizium anisopliae. 

c
S.f, Steinernema feltiae; H.b, Heterorhabditis bacteriophora. 

d
O.M, Observed Mortality (%) of 

twenty insects per treatment. 
e
E.M, Expected Mortality (%) =Mn + Mf(1-Mn) where Mn is the mortality of the nematodes and Mf is the mortality of 

the fungus. All values were corrected using Abbots formula ((Ansari et al. 2008). 
f
Interactions are based on the 

2
 ratio between the expected and 

observed mortality.
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Fig 3.19 Experiment 2b the cause of death of Otiorhynchus sulcatus larvae after 7 days 

exposure to Heterorhabditis bacteriophora (H.b) at different concentrations. N =10. 

Experiment 2c (designed to investigate the potential interaction between pathogens) consisted 

of single and combined concentrations of M. anisopliae, S. feltiae and H. bacteriophora; 

fungus was added on day zero and the nematodes were added on days zero, seven or fourteen 

(Fig 3.20). Synergism was found when S. feltiae (100 IJ/cup) was added to the assay seven 

days after exposure to M. anisopliae (1.7x10
5
 spores/ml compost). Antagonism was found 

when S. feltiae and H. bacteriophora were added on the same day as the fungus. All other 

combinations resulted in additive interactions (Table 3.4). Mortality was mainly caused by the 

entomopathogens applied. In the combined application both M. anisopliae and S. feltiae 

caused mortality. Mortality which was caused by other causes was recorded in all treatments 

except for three and ranged from 5 % to 15 %. There was no control mortality (Fig. 3.20).  

In Experiment 2d synergism was found when S. feltiae (100 IJ/cup) was added seven and 14 

days after the larvae were exposed to M. anisopliae (1.7x10
5
 spores/ml compost). Synergism 

was also found when H. bacteriophora (10 IJ/cup) was added seven days after the fungus. 

Antagonism was found when S. feltiae was added on the same day as the fungus and additive 

results were found when H. bacteriophora was added zero and 14 days after the fungus 

(Table 3.4). The majority of the mortality was caused by the entomopathogen applied to the 

assay and there was mortality caused by both the nematodes and fungus in the combined 

treatments (Fig 3.21). Mortality was induced by other causes in all treatments except two S. 

feltiae treatments, ranging from 5 % - 20 %. Control mortality was 5 %, as a result of other 

causes. 
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Fig 3.20 Experiment 2c the cause of Otiorhynchus sulcatus larvae mortality after 21 days 

exposure to single and combined doses of Steinernema feltiae (S.f), H. bacteriophora (H.b) 

and Metarhizium anisopliae (M.a). The figure in brackets indicates the day that the nematodes 

were added to the assay. All fungus was added on day zero. N = 20. 

 

 
Fig 3.21 Experiment 2d the cause of Otiorhynchus sulcatus larvae mortality after 21 days 

exposure to single and combined doses of Steinernema feltiae (S.f), H. bacteriophora (H.b) 

and Metarhizium anisopliae (M.a). The figure in brackets indicates the day that the nematodes 

were added to the assay. All fungus was added on day zero. N = 20. 
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Chapter 4 – Discussion 

Nematode movement through soil is affected by moisture content (Gustin & Schumacher 

1989; Kung et al. 1991). In this study the number of S. carpocapsae IJ invading G. mellonella 

larvae was reduced when moisture content was at 63 % when compared to 66 % and 73 %. 

With H. bacteriophora the number invading did not differ significantly between the different 

moisture contents of the compost, although it did follow a similar pattern to S. carpocapsae 

i.e. fewer IJ invaded larvae in the bioassay where moisture content was 63 %. These results 

indicate that moisture content should not be less than 66 % in order to maintain optimum 

mobility for both of these nematode species in compost; the lowest moisture content which 

was used in this study was 66 %. More S. carpocapsae IJ invaded the G. mellonella hosts then 

H. bacteriophora indicating that S. carpocapsae performs better in compost than H. 

bacteriophora. This was also found in the experiments conducted in section 3.2 where more 

S. carpocapsae were recorded in G. mellonella infected with EPF or a Tween control when 

compare to H. bacteriophora. Steinernema carpocapsae is classified as an ambusher, which 

means that it tends to remain at the surface, detects its host by volatiles at short range and is 

generally associated with pests that are active at the soil surface (Kruitbos et al. 2010). 

However it has been shown to move efficiently in organic soils (Kruitbos et al. 2010) and 

indicates it may have cruise forager (associated with deep soil dwelling insects) qualities 

(Wilson et al. 2012). However, there was no difference between these species in the number 

of insects (pine weevil larvae) killed in the other experiments, both species killing similar 

numbers, suggesting the relative success of the two nematode species may be dependent on 

the host. 

 

Bioassays for H. abietis and O. sulcatus include interaction experiments based on bioassays 

designed by Ansari et al. (2008). In initial experiments using H. abietis as host the mortality 

of insects with no entomopathogen applied was very high, making interpretation of results 

difficult. It is important when doing laboratory bioassay that they are correctly designed for 

identifying the parameters of the agent being tested (Butti & Goettelz 2000). In the initial 

experiments Scots pine bark was added as a food source and a pin hole in the lid of the assay 

was used for ventilation. In an attempt to reduce control mortality it was investigated if the 

addition of a food source or if the method of ventilation was affecting mortality. The addition 

of sterile, non-sterile or no bark to bioassays did not affect mortality levels. In a separate 

experiment the bioassay which had two 6 mm diameter holes for ventilation had lower 
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mortality than the bioassay which had only a pin hole, indicating that the degree of ventilation 

may affect mortality in the bioassay. In the bioassay with a pin hole for ventilation 

condensation was found to build up on the inside of the cup. The build up of humidity in an 

assay can lead to an increase of fungal growth (Doberski 1981). Insects require sufficient 

clean air through all of their morphological stages to remain healthy (Chown et al. 2006). 

Based on the results of the two aforementioned experiments it was decided that no bark would 

be added to the bioassays, as this was the simpler procedure, and two ventilation holes 6 mm 

in diameter would be used in the rest of the experiments.  

 

In this study there were 22 interaction experiments carried out against H. abietis larvae; six of 

these were recorded as synergistic. Only one of the six interaction experiment carried out in a 

30 ml cup (with M. anisopliae and H. bacteriophora) was synergistic. The other five 

synergisms were recorded in close contact assays in 24 well-plates with the combinations of 

B. bassiana with H. bacteriophora, S. carpocapsae or H. downesi. When the experiments 

were repeated the results were not consistent, synergy was not repeatable for any experiment 

under the same conditions. In only one of five experiments with simultaneous and delayed 

application of nematodes where H. abietis larvae were exposed to B. bassiana before H. 

bacteriophora was synergy recorded. This doesn’t support the hypothesis that if H. abietis 

larvae are exposed to fungus first synergism is more likely to occur. Ansari et al. (2008) 

found that the probability of synergy increased when black vine weevil larvae were exposed 

to fungus for one or two weeks before adding S. feltiae, but results with H. bacteriophora 

were always synergistic whether the agents were applied together or with a delay. A study 

against the Welsh chafer also showed synergy when EPN and EPF were applied 

simultaneously or when the EPF was added first (Ansari et al. 2004). Shapiro-Ilan et al. 

(2003) found no synergistic interaction with any combination of EPN and EPF that was tested 

against the pecan weevil. In order to obtain synergy various environmental conditions must be 

taken into account e.g. temperature, medium, virulence of entomopathogen, assay type etc. In 

this study mortality of pine weevil using a combination of EPN and EPF was not consistently 

better when based on application of agents alone. EPN in all experiments gave higher 

mortality than the EPF at the range of concentrations tested. In a study by Dillon et al. (2006) 

H. downesi in field trials resulted in significant mortality of H. abietis larvae.  

 

There was high mortality of H. abietis larvae by a Beauveria spp. recorded in the untreated 

controls by days 14 and 21. A native fungus B. caledonica was isolated from insects in one of 
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the field sites the larvae were collected from and it is postulated that the larvae in the 

untreated controls were killed by this EPF. When larvae were collected and brought back to 

the lab they were stored at 4˚C until needed for experiments. When insects are stressed they 

can become more susceptible to infections (Kaya & Gaugler 1993; Thurston et al. 1993). The 

change of environment, from a chamber underneath bark to a 24 well-plate with no food, 

would have left the larvae less able to fight infection. If larvae were already infected with an 

EPF the change in temperature from 4˚C to 20˚C (temperature at which experiments were 

conducted) would have accelerated the EPF activity on the larvae. Recommendations for 

avoiding this would be to establish a laboratory culture of H. abietis and rear larvae from 

eggs, however this would be very labour intensive. 

 

In the second year of this investigation H. abietis larvae were less susceptible to S. 

carpocapsae and H. bacteriophora when compared to year one. In experiment 4a (year 2) 

when larvae were exposed to 7500 IJ/30 ml cup, S. carpocapsae killed 50 % and H. 

bacteriophora killed 55 %, while in experiment 1b (year 1) 500 IJ/30 ml cup killed 100% for 

both species. This decrease in susceptibility may be because the larvae were collected from 

different sites. However, this is unlikely as in the first year larvae were collected from two 

different sites and larvae collected in year two were also collected from two different sites. 

Another reason could be the loss of virulence of the nematodes used over time (attenuation). 

Re-culturing of nematodes through insects can change the biological attributes of nematodes 

(Stuart & Gaugler 1996). The S. carpocapsae used were re-cultured through G. mellonella 

only twice before the experiments and H. bacteriophora were re-cultured four times. 

Attenuation does not seem to be the likely cause as the nematodes used were only re-cultured 

once or twice in the laboratory before use in experiments.  At the beginning of experiments in 

year two there was a problem with the H. bacteriophora as they did not produce any 

luminescence when the larvae were killed, which were used for LC50 experiments but results 

are not shown. A new batch of H. bacteriophora was obtained for the close contact assays but 

larvae were still less susceptible to the nematodes. However, the batch of nematodes used in 

each year may not have been the best quality, with reduced virulence. Larval age can also 

affect susceptibility to entomopathogens, older insect larvae can develop resistance to 

nematode infection (Shapiro et al. 1999). The larval head capsule size was not measured in 

year one so the exact instar of the larvae was not determined. These larvae were collected 

from December until May and the larvae in year two were collected from March until May. 
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The larvae in year two may have been a little older and more resistant to nematodes, head 

capsule size was measured in year two. 

 

In year two field trials were conducted against H. abietis using B. bassiana and H. downesi. 

The results from the destructive sampling of tree stumps showed that the mortality due to the 

combination of B. bassiana and H. downesi was additive and H. downesi only applications 

gave the best control. The results from the emergence traps also showed that H. downesi only 

applications reduced the numbers of weevils emerging better than the combined treatment and 

the fungus only treatments. There was no significant difference between the half dose of 

nematodes and full dose of nematodes indicating that a low dose of H. downesi would be the 

best option from these results to use as a biopesticide against H. abietis in field conditions. 

Similarly Dillon et al. (2007) found that a half dose of H. downesi was almost as good as a 

full dose in reducing the numbers of adult H. abietis emerging from stumps. Any white fluffy 

fungus which was found on larvae collected from the field (during destructive sampling) was 

identified in the laboratory. Only one B. bassiana sample was found and it was collected from 

an untreated control stump. This may have occurred by the dispersal of spores by animals, 

human trampling or wind or perhaps is a native strain. Three samples were recorded as B. 

caledonica and four samples were recorded as having a combination of both B. bassiana and 

B. caledonica. The high occurrence of B. caledonica found on weevils (compared to the 

applied B. bassiana) suggests it may have potential as a biopesicide. The dual infection 

recorded may indicate that both of these EPF can both occupy an insect simultaneously or a 

hybrid of the two species may have occurred. The latter is unlikely as the time scale was not 

long enough for this to happen (Holliday, 1968).  

 

No consistent synergistic interaction was recorded against H. abietis larvae. It was then 

investigated if the methodology being used was suitable for detecting synergy. Ansari et al. 

(2008) found synergistic interactions using M. anisopliae and EPN against O. sulcatus using a 

similar protocol. These experiments were repeated with O. sulcatus in order to compare 

results. They found M. anisopliae combined with H. bacteriophora recorded synergy in 

simultaneous and time delayed treatments, while in this investigation synergy with this 

combination only gave synergy in the second experiment when the EPN was added seven 

days after the EPF (Table 4.1). This may have been due to a batch of H. bacteriophora which 

did not kill larvae as efficiently as was expected. Ansari et al. (2008) recorded no interaction 

when M. anisopliae and S. feltiae were applied together and synergism when the nematodes 
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were added after the fungus. Only the third experiment conducted in this study showed 

similar results with this combination (Table 4.1). The difference in results in this study may 

be due to the age of the larvae. In experiment larvae were 6
th

 and 7
th

 instar while the larvae 

used in Ansari et al. (2008) were 3
rd

 instar. From these results it can be seen that synergy can 

be achieved using this protocol to control O. sulcatus larvae, but my experiments did not give 

the same results as Ansari et al. (2008). This may be due to the aforementioned reasons but it 

does show that in order to attain synergy conditions must be correct; application time and 

larval stage may be key criteria. 

 

Table 4.1 Comparison of results with previous study, Ansari et al. (2008) using a 

combination M. anisopliae with EPN. 

    

Ansari et 

al. 2008 Exp 1 Exp 2c Exp 2d 

 

Week IJ 

added Interaction Interaction Interaction Interaction 

S. feltiae 0 Additive Synergy Antagonism Antagonism 

 

7 Synergy Antagonism Synergy Synergy 

 

14 Synergy Additive Additive Synergy 

H. bacteriophora 0 Synergy - Antagonism Additive 

 

7 Synergy - Additive Synergy 

  14 Synergy - Additive Additive 

 

It has been suggested that (Kaya & Gaugler 1993) one of the mechanisms responsible for 

synergy is that infection of insects with sub lethal doses of EPF makes them more susceptible 

to EPN. In this study G. mellonella larvae were exposed to M. anisopliae or no fungus and 

then exposed to H. bacteriophora or S. carpocapsae. Two experiments were conducted with 

H. bacteriophora. In the first experiment more nematodes were found to invade the 

uninfected cadavers, while in the second experiment there was no significant difference in the 

number of IJ invading infected and uninfected cadavers. These results were inconclusive and 

do not support the hypothesis that more H. bacteriophora IJ will invade an already fungus 

infected host. Four experiments were conducted with S. carpocapsae and M. anisopliae. Only 

one experiment showed more IJ invading an infected cadaver after 48 hr. However, when this 

time interaction was repeated twice, the number of IJ invading an infected and uninfected 

cadaver was not significantly different, though slightly more were found in fungus infected 

cadavers. This suggests that S. carpocapsae infection also is not strongly affected by fungal 

infection. The variable results here again show that interactions between EPN and EPF are 

complex and difficult to predict.  
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The inconsistent results in this study may be attributed to a number of factors including 

insects collected from different sites, age of insects, handling and storage of the insects, 

reliance of the insect on the complex ecosystem they inhabit and/or the response of their 

immune system to stresses (Schmid-Hempel 2005; Swanson et al. 1994). These stresses can 

cause a reduction in the defences of the insect immune system making them more susceptible 

to infection (DeBlock & Stoks 2008). The complex relationships that the insects in this study 

have with their natural microenvironment are relatively understudied (Leather et al 1999; 

Moorhouse et al. 2008). The quality of the EPN and EPF applied may have been inconsistent 

throughout the investigation. EPN and EPF applied were not stored for the same period before 

application in assays and their efficiency may have been reduced over time (Gaugler & Kaya 

1993). In the experiments conducted on H. abietis the exact conditions were rarely repeated as 

the control mortality was quite high before the completion of the experiment and this resulted 

in modification of the assay. The repeated experiments conducted on O. sulcatus consisted of 

the same bioassay but the age of the insect differed among the three assays which may 

account for the difference in the results.  

 

Due to new legislation chemical pesticides are often discontinued and as a result the need for 

safe biological control agents increases. EPN and EPF have shown to target insects effectively 

and are promising agents to use as biological control agents. However, a lot more research is 

needed to investigate how these agents interact with the environment in which they are 

applied. This study has investigated the possibility of combining EPN and EPF against H. 

abietis and O. sulcatus. The results were not encouraging as significant control was not 

achieved. The mechanisms which occur within the insect immune system against EPN and 

EPF could be investigated against these target pests in order to get a better understanding of 

how they cause the death of the host. In this study the results did not show a clear synergistic 

effect however it did occur in some cases. It has been shown that a combination of EPN and 

EPF can achieve synergy against other insects (Ansari et al. 2008; Ansari et al. 2004). A 

different combination of EPNs and EPFs may produce a clearer synergistic result. The results 

from the field trials showed the H. downesi only application reduced the numbers of H. 

abietis emerging from the stumps when compared to B. bassiana. The ability of the applied 

EPF to reach the target host needs to be investigated as not many insects from the hacked 

stumps from field trials were found to have infection from the applied B. bassiana. This may 

due to the fact that the spores are not reaching the larvae which live deep down in the bark of 
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the tree. More field trials should be conducted in order to determine which agents work best in 

field conditions. Other species of EPN and EPF also need to be investigated as a number of 

insects from field trials were found to have been killed by the native EPF B. caledonica; 

perhaps native entomopathogens would be more effective against these pests (Williams et al. 

unpublished). However, a range of interactions of the applied biocontrol agent and the 

environment it is applied to need to be further researched e.g. responses to vibrations and 

volatiles, hunting strategies of nematodes, ability to infect the host, competition (Barbercheck 

et al. 1991; Cambell & Gaugler 1993; Gotwald & Tedders 1982; Koppenhofer et al. 1995; 

Lewis et al. 1993). 
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