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Abstract

The rapid growth of wireless networks has led to increasing interest in designing
new algorithms that can efficiently reduce the energy consumption of routers
and other devices. We present a new formulation of the Network Flow problem
that takes into account the energy consumption of the data flows, and reduces
the overall network energy expenditure.

We introduce an energy model for wireless connections and analyse its valid-
ity with real measurements. Then we propose a convex optimization problem
that establishes energy constraints on the links, and encourages energy savings
that induce sparsity (shut-off of links). We propose several algorithms that can
be computed in a distributed fashion for different types of capacity constraints.
Finally we justify the sparsity of the solution by using the theory of proximal
methods and present simulations for different scenarios. Our algorithms have
application both in wired networks as well as in TDMA and 802.11 wireless

networks.



Chapter 1

Introduction

Energy saving is currently a subject of much interest, with efforts to reduce
the energy consumption of Communication Technologies being targeted at both
infrastructure and user devices. New protocols are being devised to increase the
battery life of mobile terminals, and also algorithms that increase the efficiency
of wired and wireless networks by using only as much energy as is needed. With
this in mind, opportunities for saving energy are particularly great during idle
periods of communication, or when traffic is low. These periods can be used to
place the network elements to a lower energy consumption state, or sleep, and
reduce the energy expenditure from the case when the device is always on.

In this thesis we consider the problem of how to allocate the traffic from
users in networks with multiple routing paths. We analyse the potential energy
savings that can be achieved while maximising network utility for users. We
formulate this task as a convex optimization that allows a distributed imple-
mentation with network cooperation. The proposed distributed algorithm max-
imizes a utility function for every user [20], while respecting network capacity
constraints and minimising the energy costs associated with data transmission.

Capacity constraints are studied for different network technologies, specific-
ally we focus on constraints for wired networks, wireless TDMA (Time Division

Multiple Access), and 802.11 networks. The first type of constraints are linear in



form, with traffic rates bounded by a capacity threshold. The 802.11 constraints
use a Markovian model of successful packet transmissions, collisions, and idle
periods that allow for a log-convex representation of the requirements [21, 22].
Both cases are analysed and solved in a distributed fashion.

We analyse energy constraints for different networks, producing a linear
model that can faithfully represent the energy use of wireless networks such as
802.11 routers, UMTS or LTE basestations, and femtocell routers. We analyse
real measurements of these technologies to validate the model, and explore the
literature [31, 16, 14, 18]. This model is then included as a loss function in the
network flow problem.

These energy constraints are specified as the norm of flows that run through
links, which are added as penalties. The kind of norm chosen for the links
influences the flows that are penalized in favour of others. We explore the
effects that the [1-norm encourages as well as the l; /lo-norm exploiting group
graph structure [4]. Our interest here is in solutions that encourage sparsity,
meaning a complete shut-off of links, as well as to limit user rates so as to allow
energy saving on underused links. Finally we present simulations to evaluate
the algorithms convergence and performance.

Other works that study energy savings specifically for wireless networks are
[10, 25, 29, 30], who consider cell zooming and size scaling of the cell size to adapt
dynamically to traffic demands and save energy by shutting down redundant
base stations. In [12] they consider the problem of sleep and wake-up transients
of basestations, to dynamically react to user demands.

Regarding the problem of a whole network, [2]| studied the routing problem
of provisioning guaranteed flow rates for a given demand matrix while minimiz-
ing energy consumption. They analyse different models of energy consumption,
linear and polynomial, and show that for most other functions it is a NP-hard
problem. In a different work [1], the same authors present a routing and peri-
odic scheduling algorithm, that given a network and traffic matrix, minimizes

switching among routers and delays among packets.



In [15] the authors present a minimum edges routing problem of a network.
Given a set of demands and capacity constraints on the links they show this is
an NP-hard problem and it is impossible to find a polynomial-time constant-
factor approximation algorithm to solve it. After this statement they present
heuristics to find energy-efficient routing, consisting of balancing load from the
links.

In [28], the authors present two forms of power management that reduce en-
ergy consumption over networks, either adapting the rate of network operation,
or putting network elements to sleep during idle times with small and controlled
increase in latency. With a similar idea but applied to LTE cells, the authors in
[14] propose discontinuous transmission (DTX) on the base station side. This
methodology would allow significant energy reductions in a lightly used LTE
network without damaging service availability.

Our contribution in this area is to present fair solutions to the multipath
problem considering power consumption of links and routers. Our algorithms
optimize a whole network in a distributed fashion, choosing the traffic routes
that minimize energy, while providing some traffic utility to every user, e.g.

proportional fairness, rather than simply meeting a specified traffic demand.



Chapter 2

Energy Usage by Wireless

Routers

2.1 Introduction

We present in this chapter an overview of energy measurements of wireless
networks and analyse the validity of a linear model for these cases. More spe-
cifically, we use results from [31, 16] corresponding to the analysis of a femtocell
transmitting router and a 802.11 Access Point, respectively.

There are not many other studies available in the literature that offer meas-
urements for wireless networks. Apart from the ones already mentioned and
their included references, [14] considers power consumption in 3G and LTE
Networks and presents a linear model similar to the one in Figure 2.1. It dis-
cusses the possibility of DTX (Discontinuous Transmission) for existing HSPA
and LTE networks and the corresponding energy savings, and analysed the po-
tential savings in data acquired from 300 cells in a large European city.

Regarding 802.11n wireless networks, in [18] they analyse the energy con-
sumption of MIMO routers controlling different aspects for transmission such

as channel width, transmit power, rates, antenna selection, etc. In their results



they show that adding antennas to achieve higher rates changes the total power
consumption to a high degree, but this is not so significant with a fixed selection
of antennas. In addition, they analyse the heuristic of transmitting at highest
speed and then racing to sleep, concluding that due to the increased power when
using extra antennas, it might not be the optimal strategy.

More studies consider the energy savings from disconnecting router elements
in idle states, or reducing transmission rates to save energy. For instance, [28]
proposes an algorithm that buffers arriving data, and uses the long gaps from
these acquisitions to set network interfaces in sleep mode while establishing a
controlled delay for packets, an approach they call “buffer-and-burst”. The art-
icle also proposes another alternative based on reducing traffic rate transmissions
which can also deliver substantial savings. One reason they mention is the lower
consumption of electronic components when operating more slowly, but also the
possibility of using Dynamic Voltage Scaling (DVS) in lower operating frequen-
cies, which also reduces power consumption. They measure energy saving gains
in percentage of disconnected elements in time, and in rate reductions from the

average for each method respectively.

2.2 Energy Model

We consider the following simple model of wireless device energy consumption,
P =w(d)sat(xz,d) + v(d)H(z) + ¢ (2.1)

where P is the device power consumption in Watts, = is the offered load in

Mbps, d is the datagram size in bytes and



T 0 <z < Tyaa(d)

sat(z,d) =< 0 <0 (2.2)
Tmaz(d) T > Timag(d)

1 >0

H(z) = (2.3)
0 otherwise

In this model, w(d) captures the dependence of power consumption on offered
load, v(d) the dependence on datagram length when the offered load is held
fixed and ¢ captures the baseline power consumption when the device is idle
(powered on but no data transmitted or received). This is illustrated in Figure
2.1, where the “fixed-term” refers to ¢+ v(d)H (z) and the “variable term” refers

to w(d)sat(x,d).

Power [W] A

Pmaa:

Variable Term

Fixed Term

Rate [B/s]

Figure 2.1: Energy Model

2.3 Femtocells

We report detailed measurements of the electrical energy consumption of a com-
mercial 3G femtocell base station. The work in this section is based on data

from [31].
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Figure 2.2: Network topology

2.3.1 Experimental Setup
2.3.1.1 Network setup

The test environment is composed of a single femto—cell and up to four end—user
devices, see Figure 2.2.

The femtocell basestation is an Alcatel-Lucent device (model 9361 Home
Cell V2-V). The femtocell acts as a standard 3G basestation and uses a SIM
card which is active on the cellular network and that has been registered for
use with the femtocell. The femtocell basestation is equipped with an Ethernet
port that must be connected to a suitable broadband connection to provide
backhaul access to the network operator. In the experiments the femtocell is
connected to the campus network. During bootstrap the femtocell establishes
an encrypted VPN connection to the network operator which is used to carry
all the traffic to/from end-user devices in the cell. This traffic may include
voice/video calls and data transfer sessions. The femtocell supports up to four
simultaneous end—user devices.

End-user devices studied included one mobile broadband modem and three
mobile phones. The mobile broadband modem used during the measurements
is a Huawei K3770. This device supports HSUPA /HSDPA /UMTS standards on
the 2100 MHz/900 MHz bands and the GSM/GPRS/EDGE standards on the
850,/900/1800/1900 MHz bands. The device is rated for 2 Mbps HSUPA and

7.2 Mbps HSDPA date service. Mobile phones were Samsung model Galaxy S2.



2.3.1.2 Maeasuring electrical energy consumption

A custom Energino instrument was used to measure the electrical energy con-
sumption of the femtocell basestation. Energino is a plugload meter designed to
monitor the energy consumption of DC devices. It consists of a hardware and
a software components both based on the Arduino platform. A management
backend written in Python is used to configure Energinos operating paramet-
ers, e.g. sampling rate and resolution, to turn the monitored device on/off, and
to gather the energy consumption statistics. Energino supports sampling rates
up to 10 KHz and measures electrical power with an accuracy of approxim-
ately 1 mW. See [16, 17| for further details. In the experiments the Energino
instrument was located between the electrical power plug of the basestation
and the wall socket, and so measures the power consumption of the complete

basestation.

2.3.1.3 Traffic generation

Several types of traffic were generated on the end-user devices, including 3G
voice calls, SMS, MMS, 3G data (youtube, browsing) and CBR and VBR UDP
data traffic. UDP data traffic was generated using iperf, with traffic transmitted

from the end-user device to a public machine.

2.3.2 Measurements

In the following sections we present representative measurements of energy con-
sumption when the basestation is idle (powered on but with no end-user devices
associated to the cell), as the offered load is varied and as the datagram size

used is varied.

2.3.2.1 Basestation idle

Figure 2.3 shows measured electrical power consumption vs time when the bas-

estation is idle. It can be seen that the power consumption consists of a baseline
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Figure 2.3: Measured power consumption of the femtocell basestation when idle
(no end-user devices associated).

value of around 7.77 W (with some variability around this mean value), periodic
spikes (with period 10s) and a number of less regular spikes. From inspection
of tcpdump traces on the wired backhaul link, we find that the spikes in power
are correlated with communication on this link and so appear to be related to

network management functions.

2.3.2.2 Energy consumption vs offered load

Figure 2.4 presents measurements of the mean power consumption of the femto-
cell basestation when a single end-user device is associated and is transmitting
UDP data traffic. Results are shown of power consumption as the offered load
is varied. Figure 2.4 (a) shows measurements when the UDP datagram size is
1536 B, while Figure 2.4 (b) shows measurements when the UDP datagram size

is 128 B. Also indicated are the 20 confidence intervals.
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Figure 2.4: Average power consumption at the Femtocall as a function of the
bitrate size for a constant datagram length. Packet loss was lower than 5% for
bitrates equal to or lower than 1 Mbps. The femtocell is acting as receiver.

It can be seen that the power consumption increases with offered load before
reaching a plateau. For a given offered load, the power consumption is uniformly
higher for the small datagrams than for the large datagrams, e.g. at 0.5 Mbps
the mean power consumption is 8.07 W with 1536 B datagrams and 8.12 W
with 128 B datagrams. The rate of increase with offered load is also somewhat
higher with smaller datagrams.

The plateau in power consumption correlated with the offered load reaching

the network capacity. With 1536 B datagrams the maximum network through-
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Figure 2.5: Measured maximum network throughput vs datagram size.

put is observed to be 1.09 Mbps — at offered loads above this level, significant
packet loss is observed and the net goodput remains constant at 1.09 Mbps.
With 128B datagrams, the maximum network throughput is observed to be
1.05 Mbps. Measured values for other datagram sizes are shown in Figure 2.5.
It can be seen that the maximum throughput increases monotonically with da-
tagram size, and is significantly reduced at the smallest datagram size of 64 B.
This is as expected, since fixed network overheads (framing, ARQ and con-
trol overheads etc) are amortised across more data bits as the datagram size is

increased.

2.3.2.3 Energy consumption vs datagram size

Figure 2.6 plots measurements of power usage vs UDP datagram size. Figure
2.6(a) shows data when the offered load is 0.2Mbps and Figure 2.6(b) shows
the corresponding data when the offered load is 1Mbps. Also indicated are the
20 confidence intervals. It can be seen that the power consumption tends to
decrease as the datagram size is increased. As the datagram size is increased,
the number of datagrams sent per second decreases when the offered load in
Mbps is held fixed. Per datagram overheads (framing, ARQ, etc.) are therefore
reduced and presumably this is the source of the reduction in power consump-

tion. Observe that the power consumption appears to rise again for datagrams

11



above about 1470 B. We believe that this is due to fragmentation of these larger
datagrams — from separate downlink tcpdump measurements, we estimate the

wireless link MTU to be 1368 B.

2.3.2.4 Energy Model

From Figure 2.3 parameter c is approximately 7.77 W. Figure 2.5 gives the
measured values for ,,q,. When the dependence of w(d) on datagram size is
primarily due to the contribution of fixed overheads per datagram (framing etc,

as already noted), we can select

w(d) =we(l+ =) (2.4)

where wy, wy are parameters. w; can be thought of as the per datagram over-
head, specified in bytes, while wy is a factor converting between units of bytes
and energy.

Using this choice of structure for w(d), we find that with the parameter
values given in Table 2.1 and the v(d) values shown in Figure 2.7 this simple
model provides a good fit to the measurements across the full range of operating
conditions considered. For example, the model energy consumption predictions
are indicated by the red lines in Figures 2.4 and 2.6. Similar predictive accuracy
is obtained for other datagram sizes and offered loads.

Observe that structure of the proposed model is simple yet intuitively reas-
onable. ¢ and Z;,q, can be directly measured. The function w(d) varies in
accordance with fixed overheads. From Figure 2.7 it can be seen that v(d) de-
creases with increasing datagram size until a datagram size of around 1300B is
reached and then increases again. This increase is consistent with the onset of

fragmentation commented upon previously.

12
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Figure 2.6: Average power consumption at the Femtocall as a function of the
datagram size for a constant traffic generation rate of 1Mb/s. Packet loss is
lower that 2% for all measurements, except for the one with datagram length
set to 64 bytes where packet loss is 26%. The femtocell is acting as receiver.

Parameter Value
Wo 0.06 W/Mbps
w1 70 B
c 777 W

Table 2.1: Energy model parameter values for femtocell basestation
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Figure 2.7: Energy model v(d) values for femtocell basestation.

2.4 802.11

We present here an analysis of energy consumption in 802.11g networks, and
how this data fits in the model from the previous section. The data for this
analysis has been taken from [16], where we tried to motivate our energy model

from the measurements in their figures.

2.4.1 Experimental Setup

The authors from [16] used a setup consisting of one computer transmitting to
an Access Point (AP) connected to a plug load meter and to the power grid.
Figure 2.8 shows their setup. They performed tests both when the AP was in
receiver mode and in transmitter mode, but we will only refer to results from

the later.
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Figure 2.8: 802.11 Measurement Topology

The measurement testbed consisted of an Access Point built around a PCEn-
gines ALIX 2C2, two processor board 802.11a/b/g wireless interfaces (Atheros
ARS5123A chipset), operating system OpenWRT 10.3.01-rcl and Mad Wifi Wire-
less NIC driver. The computer was a DELL D630 notebook equipped with a
wireless adapter Atheros AR5212 chipset. Measurements were taken on fre-
quency of operation 2.412 GHz (channel 1), rate control was set on auto and
transmission power to 18dBm (763.1mW).

Traffic generation was performed at the AP using the freely available traffic
generator Multi-Generator MGEN, that can inject both TCP and UDP traffic.
Finally, power consumption was measured using a plug load Watts up? and

connected through a USB port to acquire the measurements.

2.4.2 Model validation

Authors from [16] carry out a number of experiments to analyse the average
power consumption behaviour of the AP in different scenarios. Namely, chan-
ging packet size while keeping the bitrate constant, and changing rates with
fixed packet length.

The first observation is that the power consumption level in an idle state is
a constant 5.3 W. This corresponds in our model to the defined constant ¢, and
can be checked in all of their figures.

Furthermore, considering the test that analyses traffic load vs consumed

15



power for fixed packet size of 1280 bytes, a linear relation can be obtained from
their data. More specifically, we present our fitted curve with the estimated

data from their graphs, and show our model in Figure 2.9.

; ; ; ; ; ;
0.1 14 21 31 41 51 61 74 81 91 104
Traffic generation rate [Mb/s]

Figure 2.9: Average power consumption at the AP as a function of traffic rates,
and constant message size of 1280 bytes.

The model parameters we found to fit this data are presented in Table 2.2.
Additionally, we used values from Figure 2.10 for parameter v(d), and X0, =

6.7 W was extracted from their figure (valid when transmitting 1280 B packets).

’ Parameter \ Value ‘
wo 0.15 W/Mbps
w1 70 B
c 53 W

Table 2.2: Energy Model parameter values for 802.11 AP.

16



0.7

v(d) W]

0 500 1000 1500 2000 2500 3000
packet size d (Bytes

Figure 2.10: Energy model v(d) values for 802.11 AP.

Another test analysed power consumption vs message size for a fixed trans-
mission rate. They considered two transmission rates, 100 KB/s and 1 Mb/s.
We exported their data to Figure 2.11, and fitted our model to their curves.

Our curves reasonably represents this data.
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Figure 2.11: Average power consumption for different message sizes, and con-
stant transmission rates.

Finally, in another experiment [16] considered two different transmission

power levels, i.e. 10 and 18dBm for fixed packet size and transmission rate.

17



In this case they did not observe relevant power consumption variations for the
constant message size (1280 bytes). This fact also confirms that our linear model

does not need to take this aspect into account.
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Chapter 3

Fair Energy-Optimal

Scheduling

In this chapter we address the problem of fair rate control and routing in com-
munication networks while taking into account the energy consumption of links
and routers. We formulate this task as a utility-fair optimization problem that
includes an energy cost component associated with the router’s consumption

(or link interfaces).

3.1 Problem Setup

3.1.1 Network Model

We consider a network with a set of stations N connected by a set of links
L. We model this by a graph G : (N,L). We let F denote the set of flows
carried by the network, where each flow f € F has a source, a destination, a
route ry consisting of a set of links in L connecting the source and destination,
and a transmission rate xy. We can summarise this routing information using
a binary matrix A, with rows indexed by flow identifiers and columns indexed

by link identifiers. That is, the (f,1)"" element ay = 1 if link [ € 7¢, and zero

19



otherwise. We also define for each link [ € L the set F; := {f: fe F,lers}
consisting of the flows that use the link.

We model the network link capacity constraints using inequalities of the form
g1 (x) <0, lel (3.1)

where x denotes the vector of network flow rates. The precise form of function
91(+) depends on the characteristics of the link considered. We will analyse the

following options.

Wired Networks
In wired networks, the router interfaces have a limit on the total rate they
can transmit, where all flow rates in the link add towards that limit. We can

express such restrictions as the linear constraints,

dwr<a, jer (3.2)
feF

That is, g; (x) :==>_ fer T — ¢ Equivalently, in matrix form we have
ATx <C (3.3)

where C' is the vector with elements consisting of the link capacities ¢;, [ € L

and A is the routing matrix defined earlier.

TDMA Wireless Networks

In wireless networks that use Time Division Multiple Access (TDMA) the
routers communicate on assigned slots which are decided by a scheduler, each
flow getting an allocated slice of time to forward the information. Suppose the
network consists of a set of cells L, with a single scheduler controlling each cell,
and consider a scheduler that assigns a time slice Ty ; in a round robin fashion for

each flow f and wireless cell [, satisfying the constraint » fer Tri <1 where T;
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is the period of schedule. Let the rate of transmission of flow f in cell [ be given
by wy¢,; in symbols/second, which is determined by the modulation, spectral
bandwidth and coding used for the transmitting signal in the specified cell.
Therefore, given the rate of transmission, xy = wy Ty, encoded symbols are
sent through the link corresponding to flow f on every slot time. Considering
the TDMA scheduling for all flows, we arrive at the following constraint per

wireless cell

Y Mocm, lel (3.4)
wfﬁl
fer

That is, g1 (x) == > e ;—ffl — T;. Observe that this is similar in form to equa-

tion 3.2

802.11 Wireless Mesh Networks

Consider a wireless network composed of a set of 802.11 e/n WLANs. Within
each WLAN we divide time in MAC slots, where each slot can be a physical idle
period, a successful transmission, or a colliding transmission. Following [21, 22],

we define the following:

N; Set of stations in a WLAN [

L Set of WLAN cells

7; Probability that the station ¢ is attempting transmission

Poucei = 7i - [ [ (1 —75) i€N

Pigie = [Tjen (1 —75)

Peow=1=3ienTi 1j0 A —75) = [Lijen 1 —75)

E,=Pigie -0+ Poont - Teon + ZieNC Psuce,i - Tsuce,i Average time slot duration
T.ou the duration of a collision

Tsuce,i the duration of a successful transmission by station 4
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F; is the set of flows going through station ¢, F; :={f: f e F,i €rs}

d; is the number of bits sent in a successful transmission by station ¢ (datagram
size)

The mean throughput of station 4 in cell [ is given by

P .
3y = Paenity,
feEF; s

Ti [l (1 —75) ds
[ljen, A=) 0+ (1 = 2ien, Tilljz A= 75) = Tljen, 1 - "’j)) Teott + 2 ien, Tsuce,i (Tz‘ T A= "’j))
B %%Hjezv(lf‘fj)di
N [ien, @ =7m) 0+ (1 = Yien 725 [jen, A= 7)) —[jen, (- Tj)) Teott + 2ien, (11711 [jen, 0= Tj)) Tsuce,i
&id;

Mo o) v 1 T"'" i i Tsucc i
O'+<HjeNl(1—7'J) 3 ) LL+Zl€Nl (&) )

d;

gli d; 1
- Teoll — = 7 —& i€ N (3.5)
a _ . succ,t _ . 11l Xl
Teoll 1+Hi€Nz (1+§J)+Zi€1\’l ( Teoll 1) & <
where &; = —— is a normalized transmission probability, and y; = =2 — 1 +
1—7; ' Teolt

[ien, A +&)+25en, (T%““;'j - 1) &; is independent of the particular station.

The network capacity constraints can therefore be written as

d; 1 .
Y ap< — &, ieN (3.6)
fer Teott X1

These constraints are non-convex, but taking logs of both sides and changing

variables yields

i d: 3
lo e’ <lo ' —lo + & 3.7
g g; g7~ —logxi+¢ (3.7)

where Ty = logxy, & =log&;. That is,

N d; ;
gi(X) :=log Z e’ — log +logx; —& <0 (3.8)
fEF, Tcoll

Since log x; is convex in & [21, 22] and the log of a sum of exponentials is convex
[9], this constraint is convex.

For a WLAN with two stations, Figure 3.1 plots the set of achievable rates
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when Tsyee = Tror = 100.

log(x,)

Figure 3.1: Non-convex rate, and log-convex transformation

3.1.2 Utility-Fairness

We consider the family of utility fair objective functions introduced by Kelly
[20],

271 050,820, 1
U)y={ 7 7 p=0.07 (3.9)

log(z) z>0,8=1
These functions are strictly concave and continuously differentiable over x.

We collect all flows sharing the same source and destination into a bundle,
and let B denote the set of such bundles. We associate each bundle with a user,
and seek to achieve appropriate fairness between the aggregate rates allocated
amongst bundles. That is, we seek to maximise the sum-utility » . U (Z Feb® f) .
See Figure 3.2 for an example, where the flow throughputs x; and zs belong to

the same bundle (user), and z3 belongs to a different one.
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Figure 3.2: Example of Network with multipath flows

We will generally focus on the special case of proportional fairness, corres-

ponding to a choice of 3 = 1 and sum-utility ), _;log (Efeb acf).

3.1.3 Energy Model

We let P;(x) denote the energy usage of link [ € L, which depends on the flow
rates x. We have seen in Chapter 2 that a linear model can be used to represent
the energy consumption of links and routers when used for transmission, con-
sisting in a fixed cost plus a term proportional to the rate when the link is on.
The model captures the behaviour of a range of different technologies.

When Pj(-) is non-convex, the utility fair optimisation problem typically
becomes difficult. For this reason, we will restrict our analysis to the case where
P,() is convex. For example, in equation 2.1 we neglect the “fixed term” c+v(d)d

and use

Py = S = wilxnl, (3.10)
fer

where xp, denotes the vector with elements xy, f € Fj, and parameter w,
corresponds to the energy variation proportional to traffic flow. The saturation
term of equation 2.1 can still be included as a separate inequality constraint in
the problem formulation, as it is convex.

In addition to using the Iy — norm as an energy cost, we will also consider

a number of different norms. For this reason, we introduced parameter p in
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equation (3.10) to have a general representation. Specifically, the I, — norm
defined as ||x||,, = max; |2;| adds a cost equal for all flows in the link equal to
the maximum flow. Applying this norm to every link has the effect of generating
sparsity among groups, while encouraging equality among the flows in the same
group (they pay the same price). More generally, these norms are referred as
l1/loc — norm in the literature [5], for the linear cost among the groups, and
maximum cost among flows within the group. In the following chapters, we will
use the notation {4 /l; — norm for the general analysis, and particularize for the
Iy — norm and Iy /lo, — norm when necessary. Equation 3.10 is the penalty we

will use in Chapter 4, which is convex.

3.2 Utility-fair Optimization

We are now in a position to formulate the following utility-fair energy optimiz-

ation problem

P1: maXZU chf ffyZPl(xFl) (3.11)
beB feb leL

st. gi(x)<0 leL (3.12)

x>0 (3.13)

where ~ is a price per energy unit, equation 3.12 are the network capacity
constraints and equation 3.13 constrains all flow rates to be non-negative.

Observe that in equation 3.11 the energy cost P;(xp,) is treated as a penalty.
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An alternative formulation is P2,

P2: maXZU fo (3.14)

beB feb
st. P(xp) <s lel (3.15)
g (x)<0 lelL (3.16)
x>0 (3.17)

where the energy requirements are now introduced as constraints.
Under mild assumptions and convexity, both problems have the same solu-

tions when parameters v and s; are selected appropriately.

Proof. Assuming convexity for P1 and P2, consider the (reduced) formulation

of P1 as

H;E}XZU (Za%) ffyZPl(xFl)
b

i€b leL

where xp, = {[ml oz iy k€ Fl} is the vector whose components are the
rates going through link I.

Differentiating the unconstrained problem from above, we get

U’ (Zf“)FYZaasz(XFZ)O 1€ N (318)

i€b ler;

and solving the system of equations we get the optimal solution, which we call

*1
Z; .

The (reduced) formulation of P2 is

max zb: U (Z x)

i€b

st.P(xp)<s l€L

and we choose s; = PI(X}}), whose components are the optimal solution of P1.
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The Lagrangian and KKT conditions are

L= fZU <sz> - ZM (Pi(xr) — Pi(x}))
b l

icb
oL , 9
— = ; —P = e N
s U (% CL’Z> + ZEZT Al oz, l(XFL) 0 1€
N (Pi(xp) — P(x})) =0 leL

*2 __

(3.19)

(3.20)

We can see that the values xJ; = x}} and Aj = for all [, satisfy equations

3.19 and 3.20 by comparison with 3.18, and therefore it is an optimal solution.
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Chapter 4

Distributed Algorithms for

Energy-Optimal Scheduling

4.1 Convex Optimisation

When the utility function U(-) is concave and the network constraints g;(-) are
convex, P1 is a convex optimisation problem. When the interior of the network
rate region is non-empty, Slater’s condition is satisfied and strong duality holds
[9]. In this chapter we focus on wired and TDMA wireless networks where the
network capacity constraints are of the form in equation 3.3. The Lagrangian

is then

beB feb lel

Lx,\)=>_ U (Z xf) — Y wi|xgll, - AT (ATx —c) (4.1)

where A is the vector of multipliers, and the KKT conditions for optimality are

oL
87.%‘]0 =U’ (Z x}) - Z (’Yaszl HX}ZHP + )\l*> =0 feF (4.2)

feb lery
oL
—— =)\ g = lelL 4.
o N (fezF T cl) 0 € (4.3)
1
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Note that the optimal solution may not be unique due to the multipath nature
of the optimization problem.
In the remainder of this chapter we present several distributed algorithms

for solving problem P1, and analyse the induced sparsity among the flows.

4.2 Lagrangian Algorithms

4.2.1 Alternating Direction Method of Multipliers

A standard method to solve convex optimisation problems is via the Altern-
ating Direction Method of Multipliers using subgradients, and Proximal Point
Methods (PPMs) |8, 7]. Algorithm 4.1 summarise the solution proposed in [23]

for multi-path network flow problems.

Algorithm 4.1 Alternating Direction Method of Multipliers
1. Initialize k = 0, y;(0) andX (0).

2. Solve the Augmented Lagrangian problem for fixed A (k)

x(k 1) = argmax L(x(k), A(K) — 5 3 (r — i (8))?

beB feb

3. Update the variables introduced to the augmented Lagrangian

yE+1) =y k) +axk+1) -y (k)

N

. Update the Lagrangian variables
Ak+1)=Xk)+a(ATx—c)

5. Update k <+ k+ 1.

[=)]

. Repeat steps 2 to 4 until convergence.

However, Algorithm 4.1 requires the solution of a convex optimisation (to
find x(k + 1)) at every iteration, which is not necessarily distributed. In the

next subsections, we propose a distributed algorithm that avoids this problem.
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4.2.2 Lagrangian formulation with linear constraints

It was Kelly in [20] who first proposed a distributed algorithm for solving net-
work flow problems based on an iterative update of flow rates, while updating
the prices of the network links with a strictly concave function. His proof of
convergence to an optimum consisted of finding a Lyapunov function for the
dynamical system he proposed, and then showing asymptotic stability for the
strictly concave problem. However, his proof was only valid for a relaxed version
of the optimization problem, as the pricing coefficients he proposed depended
on a parameter € > 0 which approximated the exact problem only as e — 0. In
addition, the generalization of his formulation to the multipath problem did not
fulfil all the conditions necessary to prove asymptotic stability in the Lyapunov
sense.

Due to the instability in the multipath version, Wang et. al. [33] presented
a modified version of the distributed algorithm using Proximal Point Methods
(PPMs), and referred for convergence proof to [3]. It was Feijer and Paganini in
[13] who extended the proof of convergence of this algorithm to the multipath
case, by adding a penalty that made the problem strictly concave. However,
this proof only analysed the continuous case in the dynamical system, and had
the limitation of not considering subgradient methods.

Our contribution here is to present a modified version of the original dynam-
ical system which addresses the energy consumption problem, while providing
asymptotic convergence to a ball around the optimum even without using PPMs
(Proximal Point Methods) in discrete time. We propose Algorithm 4.2 with a
system of difference equations and prove convergence for the general case. We
include a positive projection on the variables to guarantee positivity, namely

+

[w]" == wif w >0, and [w]" := 0 otherwise.
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Algorithm 4.2 Lagrangian Method with linear constraints
1. Initialize all vectors x (0) and A (0), and k£ =0

2. Update all variables

x(k+1) = [x(k)+ ad.L(x (k) A (k)"
ME+1) = [Ak)+ adrL(x (k)X (k)"

where

Oe, L, N) = U | S 2y —Z(yaszluxﬂupul) feF

feb lery

AL(x,\) = [ATx — ]|

3. Update k + k + 1.

4. Repeat step 2 and 3 until convergence.

Note that we do not add the slack variables y present in Algorithm 4.1, but
we will still have asymptotic convergence. The proof of convergence of Algorithm
4.2 is presented in the Appendix. Algorithm 4.2 makes use of subgradients in
every optimization step, so we can only guarantee convergence to a ball around
the optimum.

We present here the subgradients for the I; — norm and the I, — norm. In
the case of the I; — norm, the subgradients for a vector x € R¥' where we have

F flows are given by

T
9 1%, = ( Oy 1| ... Oyl )
where the individual components f =1, ..., F have the form
1 ifxy >0
O |lzgl =9 =1 ifxy <0
[-1,1] ifzr=0

This is illustrated schematically for the scalar case in Figure 4.1, where we have
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drawn supporting planes to the epigraph of the function on the origin with

normal vectors of the form (0 [|x]|; , -’

] A

m=—1 m=1

>
X

Syt |Gy

Figure 4.1: Subgradients of absolute value function

For the [, — norm of vector x the subgradient is

T
0, x|, = ( 55K )

where K = {i|i = argmaxy {x}} is the set of positions of the maximum com-
ponents, and (5;? =1if f € K, and 6f’C := 0 otherwise. The normalized level

curves of the norms can be seen in Figure 4.2 for vector x € R2.

x A X2 A
(0,1)
(1,1) \
(_111) T -
|, (1,0)
Xlr ;1

Figure 4.2: Level sets of [; and [, norms
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4.2.3 Lagrangian formulation with 802.11 constraints

The algorithm for 802.11 constraints presents some particular conditions that
requires Algorithm 4.2 to be adapted to the new variables. Specifically, the
range of variables Ty = log zy and ff =log &y is [—00, 00), taking the —oo value
when the flow is shut off. This condition is unsuitable for iterative algorithms,
so computation on the original variables is preferred.

We can convert updates of the form
Fr (k+1) = &7 (k) — ads, L(Z (K) , A (K))

into

Z‘f(k + 1) =xf (k;) . e_aa’ifL(x(k)vA(k))

by taking exponential form from the first equation. This can be done for both
variables Z; and é f, allowing to work in the range [0, c0). Algorithm 4.3 shows
these steps. We note, that problem P1 with utility function as defined in

equation 3.9 is no longer convex for the choice of 5 = 1.
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Algorithm 4.3 Lagrangian Method with 802.11 constraints
1. Initialize all vectors x (0) and A (0), and k£ =0

2. Update all variables

x(k+1) = {X(k) .e—aaiux(k),s(k),xk))r
Ek+1) = [5(14;).e—oﬁgL(X(k')75(16)7A(k))]+
Ak+1) = [Mk) +adrL(x (k)& (k) , A (k)]
where
L(x,&,\) = —a5-U’ fo +ay- Z( ) VfeF
feb €Ty ZfEF rf
L(x,6,0) = Z/\k H1+g-)g-+ TS"C“'—l &Sl -\ VieN,lel
I Tcoll ’ ’ ’
keEN; Ve
O\L(x,¢&, )\) =[ATx - C}I
Xl(f): 71+H 1+€2+Z<succl>& lel
coll iEN, iEN, coll

3. Update k <+ k+ 1.

4. Repeat step 2 and 3 until convergence.

4.3 Proximal Gradient Methods

Given the structure of our optimization problem, we can also make use of prox-
imal gradient methods, which include tools normally used to solve sparse prob-
lems. In this section, we will introduce these methods, and analyse the induced

sparsity via the proximity operators for the norms of interest.

4.3.1 Framework formulation

We define the proximity operator as

. 1
& = proxy, (u) 1= arg min o |lw — x||§ + fao (o) (4.4)
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where f> (x) represents the norm constraint in the network flow problem. The
proximity operator was first introduced by Moreau in the 1960s [27], and prox-
imal gradient methods were derived by Combettes and Wajs in [11]. For an
introduction we also recommend [5, 6].

The proximal gradient method solves a general kind of problems formulated

as

}?el]ilgl fi(x) + fa(z) (4.5)

where fi () is a continuously differentiable function in a finite Euclidean space
R™ (we will also require convexity), and where f5 (z) is a proper closed and
convex function which is assumed subdifferentiable over its domain.

The well known gradient algorithm does not solve problem 4.5, where we
require new techniques to analyse it if we do not want to use subgradient meth-
ods as explained in Section 4.2. The gradient algorithm is based on an iterative
procedure where the points are produced by taking a small step along a steepest
descent direction, namely z1(k + 1) = x1(k) — aV, f1(z) with a suitable step
size a. For problem 4.5, we can formulate an approximate objective function
that reasonably approaches the overall function around a point, and move along
a gradient direction that minimizes the differentiable objective. Thinking of a
quadratic model we can expand f1(x) with a Taylor expression around point y

and get

Qe y) = Hily) + (x =3 Val () + 5o Ix— I+ o(x)

which can be equivalently formulated as

QoY) = 5 Ix— (v = aV A = 5 IVAWI + A1) + ()

Minimizing the previous expression for x and disregarding constant terms,
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we get

min i [x = (y = VA + fo(x) = prozas, (y = aVfi(y)) (4.6)

making use of the proximity operator as defined in equation 4.4. Relating this
formulation with the popular technique known as Majorization-Minimization
(MM) will allow us to enunciate the proximal gradient method. MM algorithm

constructs an approximate model to the objective function that satisfies

Q (x,x) = F(x) Vo

Qx,y) > F(x) Va,y

Geometrically, this means that Q(x,y) lies above F(x) and is tangent to it in

x. This scheme implies that if

x(k+1)= argirelkr}l Q (x,x(k))

Qx(k+1),x(k) <Q(x,x(k)) Vx

and it follows

Fx(k+1) < Qx(k+1),x(k) < Qx (k). x (k) = F(x(k) fork>1
(4.7)

for some objective function F' (x). See Figure 4.3.
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>

x(k) x(k+1) a*

Figure 4.3: MM-method

Finally, we can introduce the prox-grad map from equation 4.6 as the update
X (k+1) = prozas, (x (k) — arV 1 (x(k))) (4.8)

which is a majorizer of 4.5 if o < %, where L is a Lipschitz constant of f;. We
can see the non-expansive property of 4.8 because of equation 4.7. Note, that

the local Lipschitz constant implies

FEO<SF)+x—y) Vi) + g Ix =y

which guarantees the property.
Convergence to the optimal point of 4.5 is guaranteed if the problem is
strongly convex. See [6] for a derivation of the proof. Otherwise it may only

converge to a fixed-point.

4.3.2 Network Flow Problem

We can apply the previous algorithm of proximal gradient methods to solve
problem P1. We propose Algorithm 4.4 that uses proximal operators to find
the optimal value. Note that due to the feasible region, a projection would be
required after computing the proximal operator. To avoid this approach, we

solve the Lagrangian problem, that simplifies the exposition.
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Algorithm 4.4 Proximal Gradient Method in the Network Flow Problem with
energy constraints

1. Initialize vectors x (0), A (0), and k =0

2. Compute
x(k+1) = prozay, (x (k) + aVfi (x (k)))

where V f1 (x) = U’ (Zfeb xf> —Zle” Arand fa (x) =) wil[XE ||p.

3. Calculate
Ak +1) = [A(k) + adrL(x (k) , A (k)] T

where d\L(x,\) = [ATx — c];\r
4. Update k + k + 1.

5. Repeat step 2, 3 and 4 until convergence.

We note that the proximity operator is applied to a group-norm of the form
l, /11 —norm, which does not have a closed form for every p. In the next section
we present an analysis of the p = 1 and p = oo cases, which can be solved

efficiently.

4.4 Sparsity

In this section we study problem P1 and analyse the induced sparsity by means

of the proximal operator.

4.4.1 Proximity operator of the [, — norm

We analyse the case p = 1 where we use the l1 —norm as ||x|[; == >_;cp |7y

for every link [. Then, the proximity operator for each component of x becomes

Proza, s, (xf (k) + aaiffl (a7 <k>>) vfex

where fy = Zlerf A, and zy represents the corresponding flow rate, and ry is
the set of links (the route) of flow f.

The solution to the previous operator is the well known soft-thresholding
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operator, defined as

u—p tfu>0andu > p
prow (u) = soft (w) =40 if lul<p
u+p ifu<0andu < p

Note, that since every flow rate is positive, the third case does not apply to our

problem.

Proof. We solve the operator for one variable when we have x (k + 1) = prox,,|, (u) =
arg mingep 3 flu — ng — pv|z|. Taking subderivatives in = and making it equal

to zero we get— (u — ) — ud; |x| = 0. Therefore,

ife>0=>z=u—u
ifr<O0=>z=u—p

ifr=0=u+pudylz|=0

and the solution follows. O

soft(u, p)

Figure 4.4: Soft-thresholding operator

The induced sparsity comes from the fact that for the range of values |u| <

w1 the proximity operator yields = 0. In our Network Flow problem, the
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proximity operator for flow f is calculated over y = Zlerf 7, SO we can guarantee
that flows where 2 < p will imply z3} = 0. Therefore, in our proposal of P1
with multipath flows per user we search for solutions that minimize the energy
consumption among the network exploiting sparsity.

We note also, that the soft-thresholding solution presents a shrinkage over
the variables when z; # 0, due to the induced linear cost on the objective

function. We will explain this effect in our simulations on Chapter 5.

4.4.2 Proximity operator of the [, /I, — norm

The motivation for using the group l;/lo, — norm is due to the properties it
presents when exploiting the graph structure of the network. We define the
norm for the network as » ., [[Xr ||, where L represents the set of links and
2, is the vector of flow rates going through link /. By applying a linear cost per
link we induce sparsity towards the links, but not towards the flows within the
link, as the I, —norm only induces equality among the components. Intuitively,
flows that go through one link are charged the same fee (cost proportional to the
maximum of the flows in the link) and pay a unique cost on the objective func-
tion, so every flow tends to share links and avoid using connections exclusively.

Simulations in Chapter 5 will show this behaviour, and also its limitations.

The Network Flow problem is presented as follows,

minZU fo +'wal IxF [ o (4.9)

beB feb leL

st.ATx—c<0

where, the added penalty induces a l; — norm regularization among groups,
and flows belonging to the same group are affected by the I, — norm. We
note that solving this problem with the Proximal Gradient method explained
in Section 4.3 requires the solution of a convex optimization on every iteration.

The solution to the proximity operator for group norms does not have an explicit
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formula, which makes the computation generally inefficient. However, this can
be different for the l; /I —norm, where a simpler problem can be solved. We will
first show the derivation on how to solve the problem, and then the algorithm
itself.

The Lagrangian formulation for problem 4.9 is

L= U(Y x| 7> wlxnl, - (ATx—c)

beB feb leL
where, assuming stability of the dynamical system, we can iterate over the

system 4.10 to solve the problem. Namely,

x(k+1) = prozays, (x(k) —aVgfi(x(k))) (4.10)

Ak+1) = Ak)+aVaL(x(k),A(k))

where we have substituted fi (x) = >, gU (Zfeb xf) - M (ATx —¢) and
fo(x) =), w |[xp ||, tosimplify the notation.

The proximity operator is defined as
N .1 2
X = prozy, (u) == arg min o lu—x||5 + f2 (x) (4.11)

but because the variables overlap among the groups, the solution of the proximal
problem is not immediate and does not have a direct form. However, we can

solve it via a dual formulation proposed in [24] and use their proposed lemma,

Lemma 1. Given u in RP, the problem

2

o1 !
iél]leiL 5 |u- ZGZLS 2 (4.12)
s.t. Hlel < ywy lel
& =0 ifj ¢l
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where £ = (gl)sz is in RP*L | gnd fé. denotes the j*" coordinate of the vector E.
Then, every solution £ = (f*l)leL satisfiesk =u—7Y, & where % is solution

of 4.11.

In our problem, p is the dimension of x and refers to the total number of
flows in the network, and ! € L the different links in the network. Using this

result in our problem, we can again apply Lagrange duality

2
+ 2 m (€]l = yw)

2 leL

u—Zél

leL

1
Ldual = 5

where v; are the Lagrangian variables, and get the following dynamical system

8Ld’;al =—|u; — ZE; + 1 Vi, g
85‘7 lEr;

oL ua
Ll _ e~y i

to solve the previous formulation.

The users compute only local variables 5;- and routers use only information
available on the links, so this algorithm could in principle be implemented in a
distributed fashion. However, the inner loop that solves the dual formulation
has to converge before updating the Lagrangian variables. Because of the in-
stability if we update both v and A simultaneously, the algorithm presents some
drawbacks that make it unsuitable for practical use. In that sense, it may be
easier to use the subgradient methods proposed in Section 4.2.

Finally, Algorithm 4.5 shows the required steps.
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Algorithm 4.5 Network Flow Problem with 1/l — norm

1.

2.

Initialize vectors x (0), A (0).

Calculate u = x* — V,fi (xk) where fi(x) = > ,cgU (Zfeb xf> -
AT (ATX — c).

Solve (in a distributed fashion) the Lagrangian Lgya =
2 . .
Flu=>r §l||2 + DL (Hlel —~yw;) using the difference equa-

oL (k
Sle+1) = &k as(l-)
J
oL
v(k+1) = Vl(k)"‘aaiyl
where
L
0 dilw,l _ Uj_zgé’ + Vi, j
afj ler;
aLdual l
Rl e
Update

Ak+1)=X(k)+a(ATx—c)
Update k + k+1

Repeat steps 2-5 until convergence
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Chapter 5

Simulation Results

In this chapter we present simulation results using the algorithms from the
previous chapter, and analyse their solutions. We will focus on simple examples

that highlight qualitative properties.

5.1 Multi-hop TDMA Wireless

In this section we show the behaviour of some simple examples and the effects
that penalties produce in the optimal solution. These examples are represent-
ative for applications that adapt their data rate depending on availability, such
as TCP, maximizing the transmission rates under channel capacity.

Note, that the optimal solutions in some of these examples might not be
unique, as balancing load among user flows can still produce the same value in
the objective function.

We will focus on the log utility function, corresponding to proportional fair-
ness, as this is widely considered in network flow problems. We will analyse
examples observing the effect of different penalties in the energy usage. To sim-
plify the examples, we will assume that all links consume the same energy, so

w; = 1, and capacity of links will also be equal ¢; =1 for alll € L .
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5.1.1 Multihop Scenario: 1 User, 2 Routes

Rl Xl R3

X2 X2

R.

Figure 5.1: 1 User, 3 nodes

We analyse the effects of adding energy constraints on network routes in the
simple case of only one user. This user has two routes, one that goes from
router R1 to R3 using one link, and a second one that uses two links and goes
through R2. We apply the l; —norm penalty to the original utility maximization

problem and get

min — log (w1 + x2) + 21 + 2722

st.ATx <1

Solving this problem for different values of A, we can observe that the energy
penalty introduced provides a solution that favours the shortest communication
paths. Additionally, the effect of the [y —norm on the flows produces a shrinkage
on the transmission rates, as expected from computing a soft-thresholding. This
is shown in Table 5.1 where the longest route is shut down and all traffic is
transmitted through the shortest. Namely, links L1 and L2 are shut off when
increasing the cost. On the third column we show how much capacity is saved
when applying the penalty, which would allow energy savings as explained in

Chapter 2.
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¥ \ Rate \ Links OFF \ Underused C ‘

vy=0 x:[l l]T None 0

y=05] a=[1 0]" | 1112 66%
y=1 ] a=[1 0] | LLL2 66%
y=10]z=Jo01 0]" | 1112 97%

Table 5.1: 1 User, 2 Routes

5.1.2 Multihop scenario: 2 Users, 5 links

Rs X3 Ry

Rs

Figure 5.2: 2 Users, 5 nodes

In this case we analyse the effect of using different norm penalties in the

network links. For instance, using the Iy — norm is intended when the network

is capable of saving energy from underused links, and we can observe that a

shortest path solution is optimal when constraints allow it. However, when the

network is not capable of switching off elements when underusing capacity, then

a l1 [l —norm puts together flows under the same links, allowing to completely

switch off other nodes.

In this example we have two users, one transmitting from R1 to R5, and

another transmitting from R3 to R5. The first user has two possible routes x;

and x5 belonging to the same bundle, while the second user only has flow 3.
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When using the I; — norm penalty, the problem to optimize is

min — log (x1 + x2) — log (x3) + 2vx1 + 3ywe + 2723

st.ATx <1
and when using the Iy /o, — norm penalty is

m}in —log (1 + x2) — log (x3) + 2yx1 + Y2 + 27 H(xg,xg)TH

o0

st.ATx <1

Solutions to these problems are shown in Table 5.2. In the problem with the
first penalty, we observe flow x; is preferred over o for the first user as it has
a shorter path, and only one link can be completely shut off. However, when
using the [y /loc — norm penalty for sufficiently large ~y, the flows group under
the same links, allowing to completely switch off the route of z1. Specifically,
links L1 and L2 can completely be shut off, versus only L3 in the first case.

We can still observe shrinkage in the rates due to the linear cost of the

penalties.

| L] Rate | Links OFF | Underused C |
y=0 ] z2=[1 0 1]7 None 20%
y=05| z=[1 0 1]T None 20%

y=1 | =L 0 L] L3 60%
y=10 |a=[L 0o L7 L3 96%

| L/l ] Rate | Links OFF | Underused C |
v=0 x:[l 0 1]T None 20%
vy=05| z=[2 % %]T None 26%
y=1]az=[0 L 117 | 112 60%
y=10z=[0 2 2717| 112 95%

Table 5.2: 2 Users, 5 links
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5.2 Femtocell Networks

5.2.1 Femtocell scenario: 3 Users, 2 Femtocells, 1 Macro-

cell

®
OFl OF2 Macro
4 . é
X5
X1 X3
X2 X4 X7

(itgy) (ttfy) (tfy)
g ’E:'TE.
‘ U, U, J Us

Figure 5.3: 3 Users, 2 Femtos, 1 Macro

In this example we consider a scenario where users can connect to several
femtocell routers and /or the macrocell, and we analyse how traffic is distributed
to minimise energy for different traffic demands. Note, that in this scenario
every route consists of only one hop, so the [y — norm penalty that encourages
a shortest path route does not group traffic to unique femtocells, and it would
present multiple optimal solutions. For this reason, we will only analyse results
when using the l; /o, — norm. Nonetheless, using the [; — norm penalty would
still have a shrinkage effect on the flow magnitudes, which can still be exploited
to use some energy scheme proposed in Chapter 2. The optimization problem

is then

m)in —log (z1 + x2) — log (x5 + x4) — log (x5 + x6 + x7)

+7H(x17x37$5)TH +7x6+)\wmacro (x23x47x7)TH
o0

o0

st Ax <1
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where we have included a parameter wy,qcro to represent a different cost when
using this link. This cost can be bigger than one, when we would like to encour-
age user terminals to connect to femtocells to increase the device’s autonomy,
or smaller than one when in low traffic hours we would like to switch off the
femtocell routers and save more energy. Both considerations can be taken into
account depending on the purpose of the network provider.

In Table 5.3 we analyse the flow behaviour under different ~y, specifically
for the case wyqcro = 5. We observe that without adding further constraints
all link capacity is used and proportional fairness allocates every user the same
rate.

When the penalty is increased to v = 1 terminals only connect to the femto-
cells, and the macrocell does not serve traffic from these users. Note in this case
rates are no longer equal, as user U3 receives more traffic than Ul and U2. This
happens because U3 does not have to share the connection with other users, as
its connection has less demand. Finally, when v = 10, all traffic is served by
femtocell F1, and F2 can be switched off.

This example shows some versatility when controlling parameter -y, allowing

automatic control of femtocell availability.

’ vy \ Rate \ Cell OFF \ Underused C ‘
y=0] 2=[1 L 1 1 01 0] None 0%
v = r=[1 0% 00 0 ]T Macro 33%
y=10|z=[3 0 & 0 & 0 O]T Macro & F2 66%

Table 5.3: 3 Users, 2 Femtocells, 1 Macrocell
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5.2.2 Femtocell scenario: 3 Users, 4 Femtocells

X1 X,

@ (tfy)
= U 1 < U 3

Figure 5.4: 3 Users, 4 Femtos

Here we consider an example where we analyse how the sets of users spread
among femtocells under different constraints, without considering a macrocell.

The optimisation problem is:

3 5 7
m;in — log <Z a:l> — log (Z xl> — log (Z xl>
i=1 i=4 i=6

+7$1+7H($27934)TH +7H(JJ3,$575€6)TH +yx7
o o

st.ATx <1

Table 5.4 presents solutions to this problem for various parameter values
from which we can see again the effects of shrinkage when increasing v and also
how flows group together for higher values. However, note that the distribution
of user flow rates is not unique, and vectors in which users transmit to differ-
ent femtocells simultaneously but that preserve their sum rate, would also be

optimal.
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2
=
©
ot
@

\ Cell OFF \ Underused C ‘

7=0 —[1 L0 2 21 177 | None 0%
T

=1 [ w=1% 2 3 4L LI | N | ow

y=10]z=[0 0 & 0 & & o] |FLF2F3 7%

Table 5.4: 3 Users, 4 Femtocells

5.3 802.11 Wireless Mesh Networks
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Figure 5.5: WLAN Network, 2 Users, 3 flows

In this section, we consider the example shown in Figure 5.5 with 802.11 network

constraints from Subsection 3.1.1 and the following utility function:

217P 1
— r>0,8>1
U(z):= =p

log(z) z>0,5=1

The network constraints from this problem are log-convex and so we require

a change of variables to obtain the solution. The formulation of the optimization

o1



problem is

min — U (e™* + ™) — U (™) + 2vF1 + 3vZ2 + 773

N . ~ d
s.t.log (e’“ +ex2) — & + log x2 —logT <0

coll

" . ~ d
log (e"”l + e‘”) — &4 + log x2 — log T <0

coll

L=G=cce=rn=m=1

where we have made the change of variables Z; = log x; is the logarithm of the

flow rate, & = log&; is the logarithm of the normalized probability of trans-

mission 7;, and x = 77— — 1+ [[;en (1+&) + Xjen (T;Z:;J - 1) & is an

2

expression dependent of all stations in the cell. For the specific example in Fig-
ure 5.5, stations s; and s3 cannot transmit packets that may collide, as they are

alone in their cells, and therefore, their probability of transmission is maximal.

B=11
7] Rates \ Probabilities | User rates ([ 21+ 2, 23 |)
y=0 |e=[251 236 511" [¢=[1 043 1 041]" zo=[ 487 511"
y=01] 2=[295 06 643] [¢=[1 043 1 031] | o,—[35524 643 ]
y=1 |2=[038 019 1.03]" [¢=[1 035 1 034]" z,=[057 1.03]"
v=10 |2=[006 003 015] [¢=[1 034 1 034 ] zs=[09 015]"
B=2
~ \ Rates \ Probabilities \ User rates ([ T1+ To, T3 ])
y=0 |z=[244 232 5241  |¢=[1 039 1 038]" wo=[ 476 524"
y=01] z=[14 07 31]" [e=[1 03 1 035]" zo=[21 311
y=1| z=[046 024 1]" |¢=[1 035 1 034]" zo=[07 1]
y=10 [x=[014 007 032] [e=[1 034 1 034]" z,=[021 032]"
Table 5.5: WLAN, 2 Users, 5 nodes
We select parameters Tgyce = Teony = 0 = 1ms, d = 1000 bits and rates are

measured in Mbits/s. In addition, we use utility with parameter 5 # 1, which is

convex, and note that by making 3 close to 1 we can expect to obtain a similar
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solution to the proportional fair allocation.

From Table 5.5, we observe first that the effects of proportional fairness are
less present as # grows, moving towards max-min fairness as explained in [26].
Second, we observe that for v = 0 flows z; and z9 are similar, but as v grows,
flow x5 is reduced to about half of x1. This is due to the effects on the energy

constraints, as the route from x5 is longer.
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Chapter 6

Conclusions

Wireless networks are expected to grow and develop increasingly rapidly in the
near future due to increasing data traffic demands. Consequently, the impact
of wireless network energy consumption is also expected to come to the fore,
with efficient management of energy resources becoming more necessary both
for environmental and economical reasons. At present times, wireless networks
are deployed to give full service for the whole day even if resources are underused
at certain hours, but more energy efficient solutions are possible.

In this context, the algorithms proposed here select traffic routes that can
reduce energy consumption in the whole network in a fair manner while max-
imising network utility for users. The energy savings come from grouping data
flows together and liberating resources, so that the network can switch off in-
terfaces and power amplifiers, send basestations to sleep, or simply reduce the
speed of links. This measures have the potential to greatly reduce energy con-
sumption.

We formulate an optimization problem that maximizes user utilities while
taking into account the energy costs of the transmission. We analyse an energy
model for several types of wireless networks, as well as capacity constraints
for different technologies. Dropping the constant term of the energy model in

the optimization objective allows for a convex formulation and a distributed
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solution, for which we prove convergence.

Future work includes dealing with non-convex formulations of the problem
which include the constant term from the energy model, although this can be
expected to significantly increase the problem difficulty. Additionally, dealing
with real time variations, and delays between deciding to switch off devices and

actually doing it, can become a matter of future study.
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Appendix A

Convergence of Lagrangian

Method

We give here a proof of convergence for the alternating variable update proposed
in Chapter 3.
Problem

Given a problem of the form

min f (z) (A1)

st.gi(z)y<0 l=1,...,m

where f(z) and g; () are convex in a compact set X, we assume it has a
finite optimum and Slater’s condition is satisfied (there is a vector x® so that
constraints are strictly feasible g; (z°) < 0, VI ). Then, under these conditions
the problem can be studied through the Lagrangian dual problem and strong

duality holds. The Lagrangian has the form
L(z,7) = f(2) +)_ i (@) (A.2)
=1
where we do not assume differentiability for functions f (z) and g; (z), but
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we require existence of subgradients (indicated with 0, and Jy) and uniform

boundedness for every x € X, and A > 0 (A € A) where,

C = sup{[|0:L|[ 0. L € 0:.f ()},

D > sup {[|[OzL[[ |OxL € UiZ, 0291 (x) }

To solve the Lagrangian dual problem we propose a discrete system of dif-

ference equations (A.3)-(A.4)

zi(k+1) = zi(k) — a0y, L(z(k), A(F)) (A.3)

Ak +1) = M\ (k) + ady, L(z(k), A(K)) (A.4)

and will analyse uniform and asymptotic stability in the Lyapunov sense [19, 32].
We will establish that a sufficient condition for the system to be asymptotically
stable is that functions f (z) and g¢; () from (A.2) are radially unbounded,
meaning |z|]| - oo = |f (x)] — oo. Note, we do not require problem (A.1)
to be strictly convex, as in previous works of Arrow et al. [3], or Feijer and
Paganini [13].

We propose function V (k) as a Lyapunov candidate for the previous system

V(R = o (k) = )7 (@B) — %)+ 5= (AK) ~2) T (AR )

where (Z, ) is a saddle point of the Lagrangian from equation (A.2).

Theorem 2. Under the previous formulation, the function V (k) is a strict gen-
eralized Lyapunov function for the discrete dynamical system formed by equa-
tions (A.3)-(A.4), and the variables (x (k) , A (k)) converge asymptotically in the

Lyapunov sense to a ball around the saddle point of the Lagrangian given by

Q={@AL@ N <L@N) +5(C?+D?), ze X, 220}

57



Proof. We have

V(k+1)= i (z(k) = T — a8, L(z(k), A\(k)T (2(k) — T — ady L(z(k), A(k)))
+ i (M) = X+ adyL(z(k), A(K))) " (A(k) — X + adr L(z(k), A(K)))
=V (k) + A(k)

where

€ = 02 L(x(k), A(k)|* + 1OsL((k), A(k))|*

We need to show that A(k) < 0 for (z(k) — ), (A(k) — ) sufficiently large
(alternatively, « sufficiently small). From the definition of subgradients, we

know L(Z, \) is convex for fixed A, and L(z, \) is concave for fixed . Therefore,

L(z,\) — L(z,)) > (T — 2) 8, L (z,\)

L(z,\) — L(z,A) < (A= X) 0L (z,A)
Changing the sign and summing we get the relation
L3, ) — Lz, N) > — (@ =) T 0:L (2, \) + (A= 1) 0zL (2, 1)
and particularizing for z (k) and A (k),
A(k) < L(@, A (k) — L(x (k) , ) + %e (A.5)

We need to prove that L(Z,A(k)) — L(z (k),\) <0 for all = (k) and X (k),
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but we know

L(z,\) = f(T) + Mg(T) < f(T)

L(x,\) = f(2) + Ag(x) > [(2)
so it follows.
With relation (A.5) we can now establish the following statements

1. Function V (k) is decreasing along the trajectories of local flow F =
(K, X,A, @), where k € K, v € X, A € A, and ¢ is a state transition

function given by the dynamics of equations (A.3)-(A.4), so that

(,0(]430,.1?0,)\0) - X7A =V (k,(p(k,i‘,)\)) S V(k0a$07)\0)

2. Additionally, the local flow F = (K, X, A, ¢) is strictly F-decreasing away

from Q, if it satisfies for every € > 0

Lp(k07.’130,)\0) C (XV7 A) \B (Q,G) = V(k,(p(ki,ﬂ?,/\)) S V (]C07.’L‘0, Ao)—’y (k‘ — ko)

for some function v (-) = v (;€) : Ry — Ry, satisfying lim, , y(7) = 0.

A sufficient condition for the Lagrangian to satisfy the second statement, is that
functions f (x) and g; (x) from (A.2) are radially unbounded. Specifically, given
a ball Be = {z,Ad(z,\;Q) <€}, L(Z,A (k) — L(z (k) ,\) < —%e+ v (k,e),
where v (k,€) > 0 due to radially unbounded functions (closed sublevel sets).

This implies that

Vk+1) < V() +(e

Vk+n) < V(k)+ nYmin (€)

where ymin (€) = mingek x4n) 7 (k,€). Because V satisfies the previous two

statements for every k € K, it is then a strict generalized Lyapunov function
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for F at Q on (K, X, A).
Finally, we invoke the Stability Theorem from [19], page 223, and because

V is a generalized Lyapunov function, we can establish the following results
1. Qis F —invariant and stable at any time kg € K.
2. V is upper bounded by V (zg, Ag), and therefore € is uniformly stable.

3. V is a strict generalized Lyapunov which is upper bounded, and therefore

Q is uniformly asymptotically stable.

4. Under condition 3, there are lower and upper bound by Wi (z,\) =
Wo (z,A) = V(x(k),\(k)) that fulfil Wi (z,\) < V (k,z(k),A(k)) <
Wy (z,A) for all k € K, 2 € X, A\ € A and Wy, W, satisfy statements

(1)-(2). Therefore, x € X, A € A form the basin of attraction of €.
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