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Abstract

This thesis examines the possibilities for real-time transformations of musical au-

dio signals using sinusoidal models. Four open-source software libraries were de-

veloped with the goal of providing real-time spectral synthesis by analysis tools

for composers, musicians, researchers and audio signal processing developers. The

first of these, called Simpl, provides a consistent API for interacting with established

sinusoidal modelling systems from the literature, and integrates seamlessly with a

powerful suite of libraries for scientific computing.

Sinusoidal models have been used to transform slowly-varying quasi-harmonic

signals with much success, but they have well-documented weaknesses in dealing

with transient signal regions. This problem is significant, as in monophonic musical

sounds, transient locations often correspond with the attack section of notes and

this region plays a large part in our perception of timbre. However in order to

improve the synthesis of note attack transients, these regions must first be accurately

identified. The first step in this attack transient identification process is generally

musical note onset detection. Novel approaches to real-time note onset detection

were developed as part of this research and are included in the Modal open-source

software library. Modal also includes a set of reference samples that were used to

evaluate the performance of the onset detection systems, with the novel methods

xviii



being shown to perform better than leading solutions from the literature.

The onset detection process was then combined with cues taken from the ampli-

tude envelope and the spectral centroid to produce a novel method for segmenting

musical tones into attack, sustain and release regions in real-time. The real-time seg-

mentation method was shown to compare favourably with a leading non-real-time

technique from the literature, and implementations of both methods are provided in

the open-source Note Segmentation library.

The Simpl sinusoidal modelling library, Modal onset detection library and Note

Segmentation library were then combined to produce a real-time sound manipu-

lation tool called Metamorph. Metamorph is an open source software library for

performing high-level sound transformations based on a sinusoids plus noise plus

transients model. An overview of the design and implementation of the system is

provided, in addition to a collection of examples that demonstrate the functionality

of the library and show how it can be extended by creating new sound transforma-

tions.
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Chapter 1

Introduction

The personal computer has had an undeniably profound impact on the processes

of musical composition and performance. Although initially computers were only

capable of non-real-time rendering of sound files to fixed storage, recent advances

in both hardware and software have made the computer a powerful tool for real-

time sound manipulation. For many musicians and composers the computer has

become a musical instrument, and is an essential component in live performances of

electronic music. The abundance, quality, and general reduction in cost of software

instruments has played a key role in the computer’s rise to prevalence in the musical

performance space.

There are many different ways that software instruments can generate sound,

although they can generally be broken down into four main categories: processed

recordings, abstract algorithms, physical models and spectral models [111, 116].

These categories contain powerful sound synthesis techniques, some of which are

theoretically capable of producing any possible sound. However, one of the biggest

problems that still remains in sound synthesis is how to maintain the flexibility
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to create a wide variety of sound timbres and yet provide an intuitive means of

controlling the synthesis process. In addition, if the resulting software instrument

is to be used in live performances, then ideally the sound synthesis parameters need

to be controllable in real-time and be reactive with little noticeable latency.

The main goal of this research is to provide new software synthesis tools for

composers, musicians and researchers, enabling them to perform flexible and intu-

itive transformations on live audio streams. A brief survey of some of the current

sound synthesis techniques is given in Section 1.1, followed by a description of the

approach to sound synthesis that is taken in this thesis in Section 1.2. The structure

of the remainder of the thesis is described in Section 1.3.

1.1 Overview of sound synthesis techniques

Sampling, which can be grouped under the category of processed recordings, has

become increasingly popular in recent years. The falling cost of computer mem-

ory has meant that it is quite feasible to have sample-based instruments containing

several high quality recordings of each note that is playable by an acoustic instru-

ment, with each recording representing notes played at different volumes and with

different articulation. This can produce very accurate imitations of the original

instrument. However, other than basic filters and amplitude envelope control, sam-

plers rarely offer any means of manipulating the instrument timbres. Also in this

category is the powerful technique of granular synthesis [99, 118]. It is a lot more

flexible, but can require specifying hundreds of parameters even for short segments

of sound, making simple yet precise real-time control difficult.

The abstract algorithms category consists of synthesis techniques that are not
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based on any of the other three main sound synthesis paradigms. This includes

popular sound generation methods such as Frequency Modulation (FM) synthesis

[23, 70], Amplitude Modulation (AM), analog emulation and waveshaping syn-

thesis. Although the relative importance of this synthesis category has been pre-

dicted to decline [111], many of the techniques have enjoyed a resurgence in recent

years. In particular, the emulation of “classic” analog circuits has become popular.

However as many of the synthesis techniques in this category are not based on any

underlying analysis of existing sound sources, they are generally not best suited to

producing accurate imitations of acoustic instruments.

Physical models are based on trying to represent the mechanical aspects of a

sound generation process instead of the sound itself. Some physical models will

be able to offer an intuitive set of control parameters, as they will be based on the

physical properties of the mechanical system. For example, a physically modelled

guitar may offer timbre controls such as string material (steel or nylon) and string

thickness. However, as physical models are by their nature closely coupled with

the underlying sound generation process, creating an arbitrary sound may require

constructing a completely new physical model. This is not a trivial task, and may be

time-consuming and unintuitive if it is not based on an existing physical instrument.

Spectral models on the other hand are based on modelling the frequency domain

characteristics of the audio signal that arrives at the microphone, and so are not in-

herently tied to a specific sound creation process. This includes techniques such

as subtractive synthesis, formant synthesis and additive synthesis. Additive mod-

els represent audio signals as a sum of sine waves with different frequencies and

amplitudes. As research has shown that the perception of timbre is largely depen-

dent on the temporal evolution of the sound spectrum [45], it seems natural to use a

3



sound model that is based on the frequency spectrum as a tool to manipulate timbre.

Additive spectral models provide a means to process musical audio signals that can

be perceptually and musically intuitive, but they do also have problems. Spectral

processing tools such as the Phase Vocoder [29] for example are a well established

means of time-stretching and pitch-shifting harmonic musical notes, but they have

well-documented weaknesses in dealing with noisy or transient signal regions [30].

This has lead to the development of models that are based on a combination of si-

nusoids and noise [110, 34] and models that consist of a combination of sinusoids,

noise and transients [77, 121]. Correctly identifying these noise and transient signal

components in real-time is still a difficult problem however.

1.2 Our approach to sound synthesis

The existence of such a large variety of techniques for sound synthesis suggests that

there is no single approach that is ideal for all musical situations.

However, the appeal of additive synthesis and the promise of a general-purpose

sound model that can provide flexible and intuitive control of transformations has

proven hard to resist for many researchers, as illustrated by the numerous recent

developments in the field [78, 109, 121, 34, 94, 59]. These ideals also resonated

with the authors and so this is the approach that is taken in this work.

Similarly to granular synthesis and some physical models, additive spectral

models1 can potentially suffer from the problem of having too many control pa-

rameters to allow the synthesised sounds to be manipulated in a meaningful manner.

This problem is further exacerbated when operating under the additional constraints
1Additive spectral models will simply be referred to as spectral models for the remainder of this
thesis.
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that are imposed by real-time musical performance. One solution to this problem is

to identify perceptually salient features from the spectral representation (which are

also called “high-level features”), and then perform transformations on these fea-

tures before synthesis. By manipulating one high-level feature many of the spectral

model parameters can be changed at once while still enabling intuitive transfor-

mation of the synthesised sound. This process can also be aided by segmenting

the sound into regions with homogeneous characteristics, allowing features to be

selected based on the attributes of the regions [109].

This thesis presents a body of research that follows this approach. We present

novel solutions to the problem of identifying the boundaries of note onset, attack,

sustain and release regions during real-time analysis and synthesis. We also de-

scribe the creation of new open source software tools for composers, musicians and

researchers that enable live audio streams to be manipulated using these techniques.

The work culminates in the development of our software for the high-level manip-

ulation of sound called Metamorph.

1.3 Thesis overview

Chapter 2 surveys the current state of the art in spectral modelling of musical instru-

ment sounds, and provides context for the remainder of the thesis. It examines the

short-time Fourier transform, then describes models of musical sounds composed

purely of sinusoids, a combination of sinusoids and noise and then finally a combi-

nation of sinusoids, noise and transient signal components. It also provides a brief

overview of some of the leading software tools for sound transformations based on

spectral models.
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Chapter 3 introduces the main software framework for sinusoidal synthesis by

analysis that is used in this work, which is called Simpl. It starts with a high-level

overview of the design of the system, then proceeds to look in detail at the inner

workings of the different software modules that are contained in Simpl. The chapter

concludes with some examples that explore the functionality of the software.

In Chapter 4 Modal is introduced, which is an open source software library for

real-time musical note onset detection. Modal also comes with a free database of

musical samples, each of which has accompanying metadata that includes hand-

annotated locations for each note onset in the sample. The chapter concludes with

an explanation of how this sample database was used to evaluate the performance

of the software library.

Chapter 5 examines the problems that occur when trying to model transient sig-

nal components using sinusoidal and sinusoids plus noise models. It then presents

our solution to these problems: an open source software library for real-time mu-

sical note segmentation, that separates audio streams into attack (transient), sustain

and release regions. The software library is examined in detail, followed by an

evaluation of its performance.

Metamorph, an open source software library for the high-level transformation

of musical audio, is introduced in Chapter 6. It makes use of the software libraries

that are described in Chapters 3, 4 and 5, resulting in a flexible and powerful tool for

real-time sound manipulation. The chapter begins by exploring the software library.

It then shows how Metamorph can be used as a standalone sound manipulation tool

using the C++ or Python programming languages, and how it can be integrated with

the Csound system for composition, sound design and synthesis [119].
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Finally, Chapter 7 provides a summary of the contributions made by this thesis

and some closing remarks. We also suggest some potential ideas for future work.
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Chapter 2

Spectral models and transformations

of musical sounds

Spectral models are flexible, general-purpose sound models that have been an im-

portant research topic in the field of computer music for decades. This chapter pro-

vides an overview of some of the major developments in the field, and also serves

to introduce important terminology and background knowledge that is assumed in

the remainder of the thesis. It begins by describing the Fourier transform and the

short-time Fourier transform in Sections 2.1 and 2.2 respectively. An overview of

the Phase Vocoder is given in Section 2.3, followed by an examination of some

leading approaches to sinusoidal modelling in Sections 2.4, 2.5 and 2.6. Section 2.7

provides an exploration of software packages for sinusoidal modelling and manip-

ulation of musical audio. Finally a summary of the chapter and an assessment of

areas that can be improved are given in Section 2.8.
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2.1 The Fourier transform

In the 19th century, Jean Baptiste Joseph Fourier showed that any periodic wave-

form can be represented by a sum of harmonically related sinusoids, each with a

particular amplitude and phase. The Fourier transform is a function that computes

the set of coefficients (amplitude and phase values) from the time domain wave-

form. It can be calculated according to Equation 2.1, where t is the continuous time

index in seconds and ω is the continuous frequency index in radians per second.

X(ω) =
1

2π

∫ +∞

−∞
x(t)e−jωtdt (2.1)

The Fourier transform returns a set of coefficients X(ω) that are known as the spec-

trum of the waveform. These coefficients are are complex numbers of the form

a + jb. The amplitude |X(ω)| and phase θ(X(ω)) value of each sinusoidal com-

ponent ω can therefore be calculated by rectangular-to-polar conversion, given by

Equations 2.2 and 2.3 respectively.

amp(X(ω)) = |X(ω)| =
√
<{X(ω)}2 + ={X(ω)}2 (2.2)

θ(X(ω)) = tan−1
(={X(ω)}
<{X(ω)}

)
(2.3)

No information is lost during a Fourier transform, the original waveform can be

unambiguously reconstructed from the Fourier coefficients by a process known as

the inverse Fourier transform, given by Equation 2.4.

x(t) =

∫ +∞

−∞
X(ω)ejωtdω (2.4)
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2.1.1 Discrete time signals

In computer music it is less common to work with continuous-time signals, as com-

puters operate on digital audio signals that are sampled at discrete time points.

Therefore instead of the signal being represented as a function of continuous-time

in x(t), the digital signal is given as a set of discrete values x(n). These samples are

taken at a constant rate of one sample every T seconds and so the sampling rate is

1/T samples per second (Hertz). The sampling theorem (or Nyquist theorem) states

that in order to digitally represent a signal that contains frequency components up

to F Hz, the signal must be sampled at with a sampling rate of at least 2F samples

per second. This is stated formerly by Equation 2.5, where fs is the sampling rate,

F is the highest frequency component in the signal and 2F is the Nyquist rate.

fs > 2F (2.5)

If the sampling rate is lower than 2F then a problem called aliasing will occur,

in which signal components that have a frequency that is greater than half of the

sampling rate are represented as components with a frequency that is between 0 Hz

and half the sampling rate. The reason for this is illustrated in Figure 2.1; the

samples taken from the higher frequency component are indistinguishable from that

of the lower frequency component.

To avoid aliasing, the input signal is usually low-pass filtered before sampling

to ensure that all the highest frequency component in the signal is less than fs/2

Hz. This process is depicted in Figure 2.2. The sampled version of the signal is

not identical to the original signal, but if aliasing has been avoided then the original

signal can be recovered to within the quantisation error of the samples.
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Figure 2.1: A correctly sampled signal (solid line) and a signal that produces an alias (dashed line).
The samples from the second signal are indistinguishable to those from the first signal.

Figure 2.2: Converting a continuous-time signal to a discrete signal.
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2.1.2 The discrete Fourier transform

In order to be used with sampled digital audio signals, the continuous-time versions

of the Fourier transform and inverse Fourier transform must therefore be replaced

with corresponding discrete-time implementations. The discrete Fourier transform

(DFT) is calculated according to Equation 2.6, where n is the discrete time index

in samples, x(n) is a sampled waveform that is N samples in duration, and k is the

discrete frequency index [114, 53, 54, 92, 16].

X(k) =
1

N

N−1∑

n=0

x(n)e−j2πkn/N (2.6)

As with the continuous-time Fourier transform, no information is lost by performing

a DFT, and the original sampled waveform can be recovered by Equation 2.7.

x(n) =
N−1∑

k=0

X(k)ej2πkn/N (2.7)

The sampled signal x(n) is bandlimited in frequency as the DFT represents x(n)

as the summation of a finite number of sinusoids that are evenly spaced between 0

Hz and the Nyquist frequency. The DFT can be computed efficiently using a fast

Fourier transform (FFT) algorithm. The popular Cooley-Tukey algorithm [24] for

example reduces the computational complexity of the DFT from being proportional

to N2 to being proportional to N log N , but requires that N is a power of two.
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2.2 The short-time Fourier transform

The frequency and magnitude values that are returned by the DFT are easy to inter-

pret, but the information describing the temporal evolution of the spectral content is

entangled in the phase spectrum in a way that is difficult to understand. In order to

analyse spectral changes over time, we can sequentially isolate blocks of samples

from the time-domain signal (a process called windowing) and process them using

the DFT. This is known as the short-time Fourier transform (STFT) [3, 17], and

is the basis for sinusoidal analysis of time-varying signals in many areas of signal

processing.

2.2.1 Windowing

When computing the STFT, the extracted blocks of samples (also known as frames)

are usually multiplied by another time-domain signal called a window. The window

is generally a smooth, non-zero function over a finite number of samples and zero

everywhere else. The choice of window function is important as it determines the

trade-off in time resolution versus frequency resolution in the resulting spectrum.

To understand the reason for this, consider what happens when no window is applied

to the audio frame. This is equivalent to applying a rectangular window which has

a value of 1 throughout the duration of the frame and 0 everywhere else, as defined

in Equation 2.8.

w(n) =





1 n = 0, . . . , N − 1

0 otherwise
(2.8)

As multiplication in the time domain is equivalent to convolution in the frequency

domain, the waveform that is passed to the DFT function will be the convolution
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of the frame spectrum with the spectrum of the rectangular window. As shown in

Figure 2.3, the magnitudes of the side-lobes are quite high starting at only -13dB

below the peak of the main lobe. Unless the signal that is being analysed is harmonic

Figure 2.3: Magnitude spectrum of a rectangular window.

with period N (or an integer multiple of N that is less than the Nyquist frequency),

these high-side lobes will cause energy from each sinusoidal component to leak into

additional DFT channels (or bins). As perfectly harmonic signals are relatively rare

in a musical context, this interference must be minimised by choosing a window

with smaller side-lobes. However, the rectangular window has the narrowest main

lobe, so using any other window will reduce (to varying degrees) the ability to

resolve sinusoidal components in the resulting spectrum.

A number of different window functions have been proposed such as the Hamming,
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Hanning, Blackman and Kaiser, the latter of which allows control of the trade-off

between the main lobe width and the highest side-lobe level. A good overview of

these windows (and others) can be found in [46]. Examples of two common win-

dows, the Hamming window and the Hanning window, are shown in Figure 2.4, and

their corresponding spectra are shown in Figure 2.5. It can be seen that although

the main lobes are slightly wider than that of the rectangular window, the side lobes

are largely reduced in magnitude. In this research we generally use the Hanning

window as it provides a reasonable balance between main lobe and side-lobe inter-

ference. However some of the sinusoidal modelling algorithms that we have imple-

mented require other windows, which we describe in more detail in Chapter 3.

2.2.2 Performing the STFT

The STFT of an arbitrary-length signal x(n) at time t is described by Equation 2.9,

where w(n) is a window function that is only non-zero between 0 and N − 1. The

process is summarised in Figure 2.6.

X(k, t) =
1

N

∞∑

n=−∞
w(n− t)x(n)e−j2πkn/N , k = 1, 2, . . . , N − 1 (2.9)

For each time point, the STFT results in a full spectral frame of N values, so

the amount of data that are produced and the computational cost of the STFT are

potentially very large. Therefore, instead of performing a STFT at each sample

location, it is common to move forward (or hop) by a number of samples called the

hop size.

As the STFT spectra are sampled in both time and frequency it is necessary
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Figure 2.4: 128 point Hamming (solid line) and Hanning (dashed line) windows.

Figure 2.5: Magnitude spectrum of the Hamming (solid line) and Hanning (dashed line) windows.
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Figure 2.6: The short-time Fourier transform.

to consider the sampling rates in both domains in order create a robust spectral

representation. The window function w(n) has two important “lengths”. The first

length is in the time domain and can be defined as the time period T over which

w(n) is significant (non-zero). As the window is generally defined to be zero outside

of the range 0 toN−1, T is equal toN samples. The second length is the frequency

range F over which the Fourier transform of the window is significant. This value

will change depending on the window type, but for the Hamming window it can

be shown that F = 4
N

samples [84, 2]. These lengths can then be used to define

sampling rates for the time and frequency domains. Due to the Nyquist theorem, the

density of the samples in the frequency domain must be greater than T , and so they
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may be sampled with a spacing of 1
T

. Similarly, the time domain samples must have

a density higher than F and so can be sampled at 1
F

[2]. For a Hamming window

this results in a hop size of N
4

.

Another important STFT parameter is the size of the DFT frame, as it deter-

mines the frequency resolution of the analysis process. As the DFT is usually com-

puted using an FFT algorithm, the frame size is often expected to be a power of

two. While this may seem like a limitation, in practise the frame size can be chosen

to meet analysis time/frequency resolution requirements, with the FFT size then set

to be the next power of two that is greater than the frame size. The difference is

filled in with zeros, a process that is known as zero-padding. Zero-padding does

not add any frequency additional resolution or temporal smearing, but has the ef-

fect of interpolating the frequency samples, making the resulting spectrum easier to

interpret.

The magnitude of the STFT of a note played on a clarinet is shown in Figure 2.71.

Darker colours indicate larger spectral component magnitudes, so relatively stable

sinusoidal components are shown as horizontal lines. Lighter colours represent

spectral components with lower magnitudes, noise and/or analysis artifacts.

To reconstruct the original signal, the inverse DFT is first performed on each

spectral frame to produce a windowed output frame xl(n), defined in Equation 2.10.

xl(n) =
N−1∑

k=0

Xl(k)ej2πkn/N (2.10)

The waveform is then recreated by overlapping the windowed segments and sum-

ming them (this process is called overlap-add [25]). This is defined by

1The STFT magnitude is also known as the spectrogram.
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Figure 2.7: Spectrogram of a clarinet note.

Equation 2.11, where l is the frame number and H is the hop size. The original

signal can be reconstructed exactly if the sum of the overlapped and added analysis

windows is equal to 1 [112].

s(n) =
∞∑

l=−∞
xl(n− lH) (2.11)

As it is common to perform transformations on STFT data, a window is usually

applied to each synthesised frame before summation in order to remove any poten-

tial discontinuities. This introduces additional constraints which are described in

[96, 25].
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2.3 The phase vocoder

Although it is possible to perfectly reconstruct the original sampled waveform from

the STFT data, this research focuses on providing ways to transform spectral anal-

ysis information in order to create new sounds. The phase vocoder [36, 29], which

is based on the channel vocoder, is a tool that is frequently used for both analysing

and modifying musical sounds. Fundamentally it can be seen as an extension of the

STFT, consisting of a sequence of overlapping Fourier transforms of audio frames2.

However, the STFT does not in itself present an easy way to manipulate the fre-

quencies of the sinusoidal components that are present in the analysed signal as it

does not have enough resolution to calculate their exact values.

The phase vocoder uses the Fourier transform phase data to form a more ac-

curate estimate of the frequency values. It assumes that the input signal can be

modelled as a sum of sinusoidal components with relatively slowly changing am-

plitudes and frequencies. The components should be spaced far enough apart in the

spectrum that only one component contributes significantly to each Fourier trans-

form channel. For each component, it is therefore possible to estimate the frequency

by measuring the rate of change of the phase in each channel. The phase deviation

for frequency bin k in frame l can be defined by Equation 2.12 where φ(k, l) is the

phase of bin k in frame l, H is the hop size, ∆f is the STFT bin spacing (in hertz)

and fs is the sampling rate.

∆φ(k, l) = φ(k, l)−
[
φ(k, l − 1) +

2πHk∆f

fs

]
(2.12)

2Like the STFT, the phase vocoder can also be described in the time domain using a bank of bandpass
filters with centre frequencies that are evenly spaced between 0 Hz and the Nyquist frequency. For
brevity we will only discuss the interpretation that is based on the Fourier transform here.

20



These phase deviations must then be re-wrapped to the half-open interval [−π, π),

locating the estimated frequency around the centre frequency of the analysis bin.

The frequency estimate (in hertz) for bin k in frame l is given by f(k, l) in Equation 2.13,

where Θ(k, l) is the re-wrapped phase deviation.

f(k, l) =

[
Θ(k, l)

2π

] [
fs
H

]
+ k∆f (2.13)

This calculation makes it possible to perform independent time and frequency mod-

ifications on the spectral data [85, 29, 65]. For example, a sound can be time-

stretched by repeating frames during STFT synthesis, but the frequency values can

be kept unchanged by altering the synthesis phase values to ensure that the rate of

change of phase matches the corresponding analysis phase change rate in each bin

[64].

Although the phase vocoder performs well and is now widely used, it does have

problems. As the DFT size is usually constant, the channel frequencies are fixed

and so the frequency of each sinusoid cannot normally vary outside of the band-

width of its channel. The phase vocoder channel bandwidth is constant throughout

the analysis process, which means that there will inevitably be a trade-off between

the accuracy of the estimates of low frequency components and the analysis time

resolution.

The phase vocoder also represents the entire audio signal using sinusoids, even

if it includes noise-like elements, such as the key noise in a piano note for example

or the breath noise in a flute note. This is not a problem when synthesising unmod-

ified Fourier transform frames, but if any transformation is performed, these noisy

components are modified along with the harmonic content which often produces
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audible artifacts. Modelling noisy components with sinusoids is computationally

expensive as theoretically recreating noise requires sinusoids at every frequency

within the band limits. Sinusoidal representations of noise are also unintuitive and

do not provide a way to manipulate the sound in a musically meaningful way.

To overcome these issues more powerful spectral models were created, which

are based on identifying the prominent harmonic components in a signal, then sepa-

rating the harmonic and noise-like components. These developments are discussed

in detail in Sections 2.4, 2.5 and 2.6.

2.4 A sinusoidal model

Two STFT-based systems were developed independently during the 1980’s in order

to address some of the shortcomings in the phase vocoder. The first was a system

designed for speech analysis and synthesis by McAulay and Quatieri3 [80], with

the second being a system created by Smith and Serra called PARSHL [112]. This

section provides an overview of the MQ model, PARSHL is not discussed here as

it is very similar to MQ. A significant difference in PARSHL however is that the

estimates of the sinusoidal peak frequencies are improved by using parabolic inter-

polation. This process is discussed in the context of Spectral Modelling Synthesis

in Section 2.5.1.

The MQ method models audio signals as the sum of sinusoidal components with

slowly-varying amplitudes, frequencies and phases (referred to here as partials).

The audio signal s can be created from a sum of partials according to Equations 2.14

and 2.15, where Np is the number of partials and Ap, fp and θp are the amplitude,

3This is referred to as the MQ method for the remainder of the document.
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frequency and phase of the p-th partial respectively.

s(t) =

Np∑

p=1

Ap(t)cos(θp(t)) (2.14)

θp(t) = θp(0) + 2π

∫ t

0

fp(u)du (2.15)

In contrast to the phase vocoder approach, these sinusoidal components do not have

to be quasi-harmonic and their frequency can change by more than the bandwidth of

one analysis bin between consecutive frames. In addition, the number of sinusoidal

components does not have to be constant as partials can start and stop at any time

during analysis.

The sinusoidal parameters are estimated from the spectra returned by the STFT.

For every frame, the amplitudes, frequencies and phases of the most prominent

(in terms of magnitude) spectral peaks are selected, through a process that we re-

fer to as peak detection. Corresponding spectral peaks in consecutive frames are

then matched together during a process called partial tracking, and their values are

smoothly interpolated between frames to form the sinusoidal partials. The peak

detection and partial tracking processes are summarised in Figure 2.8. Finally, the

output signal can be created by additive synthesis.

2.4.1 Peak detection

MQ analysis begins by performing a STFT on contiguous frames of audio from

the input waveform. It is assumed that the sinusoidal parameters are approximately

constant over the duration of each analysis frame. The waveform of a particular

frame s is then modelled by Equation 2.16, where Ap, ωp and θp are the amplitude,
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Figure 2.8: MQ peak detection and partial tracking.
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frequency and phase of the p-th sinusoidal component respectively, and Np is the

number of sinusoidal components in the frame.

s(n) =

Np∑

p=1

Ap(n)ej(nωp+θp) (2.16)

The problem is now to find a set of sinusoidal parameters that minimises the mean

squared error between Equation 2.16 and the actual waveform. In order to simplify

this problem slightly, assume that the waveform is perfectly harmonic, the pitch

period is known and that the size of the analysis frame is a multiple of that pitch

period. The sinusoidal parameters that will minimise this error can then be found at

magnitude peaks in the Fourier spectrum of the frame, which are defined as spectral

bins that have a magnitude value greater than or equal to that of both neighbouring

bins. This is given by Equation 2.17 where k is a bin number of a spectral peak and

|X(k)| is the magnitude of the k-th bin.

|X(k − 1)| ≤ |X(k) ≥ |X(k + 1)| (2.17)

This simplified solution can be extended so that it can be applied to other types

of signals. For waveforms that are not strictly harmonic, if most of the energy is

still concentrated near strong magnitude peaks, then as long as the analysis win-

dow is large enough the sinusoidal parameter estimates can still be obtained from

the Fourier spectrum. McAulay and Quatieri show that in practise this means that

the window size must be at least 21
2

pitch periods in order make sure that the main

lobe of the DFT window (a Hamming window) is narrower than the frequency sep-

aration between spectral peaks [80]. To ensure that this criteria is met, the size of
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the analysis window during voiced speech regions is tuned using an pitch detector.

Average pitch is used instead of instantaneous, so that the analysis process is less

sensitive to the performance of the pitch estimator. During unvoiced speech, the

analysis window is kept constant. The model can also be applied to more noise-

like signals, providing that the frequencies of the spectral peaks are close enough

together that the power spectral density changes slowly over consecutive frames,

and thus meet the requirements imposed by Karhunen-Loève expansion [117]. This

should be achievable as long as the analysis window is at least 20 ms in duration,

so that the peaks are no more than about 100 Hz apart.

2.4.2 Partial tracking

The number of spectral peaks will generally vary from frame to frame for a number

of reasons: some peaks will be the result of side-lobe interference, the number and

location of peaks will change as the pitch of a sound changes, and different spectral

characteristics will be evident in signal frames that have mostly harmonic content

versus frames that are more inharmonic or noise-like. Therefore, some system is

needed to “match” peaks that are considered to be part of the same slowly-varying

sinusoidal component across consecutive frames, while making sure that the partial

is not “corrupted” by spurious peaks.

The MQ system manages this by allowing partials to start and stop at any frame

boundary through a process that they call the “birth” and “death” of sinusoidal com-

ponents. To understand how this works, suppose that all of the peaks up to frame

l have been matched. The peaks in frame l + 1 are now being considered and ωlk

refers to a peak with frequency k in frame l. First, find the peak ωl+1
x in l + 1 that
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is closest in frequency to ωlk and is within a specified matching interval ∆ of ωlk, as

described in Equation 2.18.

|ωlk − ωl+1
x | ≥ ∆ (2.18)

If no such peak exists, then ωlk is declared “dead” in frame l + 1 and is matched to

itself with 0 amplitude. If ωl+1
x exists and ωlk is the peak that is closest in frequency

to ωl+1
x in frame l, then the two peaks are matched and cannot be considered when

matching the remaining peaks in l + 1. If ωl+1
x exists but has a closer match in l

than ωlk, then an attempt is made to match ωlk to a peak that is lower in frequency

than ωl+1
x but still within the matching interval ∆. If this is not possible, then ωlk is

“killed”. Finally after all of the peaks in l have either been matched or killed, there

may still be unmatched peaks in l + 1. These are “born” in l + 1 and matched to a

new peak in l with the same frequency and 0 amplitude.

2.4.3 Synthesis

In order to avoid discontinuities at frame boundaries during synthesis it is necessary

to smoothly interpolate the amplitudes, frequencies and phases that are estimated

during MQ analysis between adjacent frames. One way to achieve this is to use

the overlap-add process that was described in relation to the STFT in Section 2.2.2.

In [80] McAulay and Quatieri describe two overlap-add synthesis implementations,

both using triangular windows that are twice the size of the synthesis frame (and so

have an overlap factor of 2). The first one had a window size of 11.5 ms and the sec-

ond had a window size of 23 ms. They note that the first one produced high-quality

synthesis that was practically indistinguishable from the original, however the sec-

ond sounded “rough” and was of poor-quality. Additive synthesis with overlap-add
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can therefore be used if higher frame rates are acceptable. However, as the MQ

system was originally developed for the domain of speech coding, McAulay and

Quatieri also devised a synthesis algorithm that could produce high-quality results

at lower frame rates.

After partial tracking, sinusoidal parameters for a frame l are matched with a

corresponding set of parameters for frame l + 1. The amplitude, frequency and

phase of the p-th partial can be denoted by Alp, ω
l
p and θlp. The amplitude val-

ues for each component can be linearly interpolated across frames, as described in

Equation 2.19, where n = 0, 1, . . . , N − 1 is the time index into the l-th frame.

Ap(n) = Alp +
Al+1
p − Alp
N

n (2.19)

The phase and frequency components cannot be linearly interpolated however, as

an extra constraint is imposed by the fact that instantaneous frequency is the deriva-

tive of phase. The phase measurements are modulo 2π, and as the phase differences

between consecutive frames can easily exceed 2π (particularly for higher frequen-

cies), the phase must first be unwrapped. To solve this problem suppose that the

phase interpolation function is a cubic polynomial as given in Equation 2.20, where

t is the continuous time variable, α and β are coefficients that satisfy the matrix

equation defined in Equation 2.21, M is an integer and N is the length of the frame.

θ̂lp(t) = θlp + ωlpt+ αt2 + βt3 (2.20)



α(M)

β(M)


 =




3
T 2

−1
T

−2
T 3

1
T 2






θl+1
p − θlp − ωlpN + 2πM

ωl+1
p − ωlp


 (2.21)
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An additional constraint is imposed in that it is desirable that the interpolated si-

nusoidal components are “maximally smooth”, or have the least possible amount

of variation. It can be shown that in order to achieve this, M should be set to the

closest integer to x∗ in Equation 2.22 [80].

x∗ =
1

2π

[
(θlp + ωlpN − θl+1

p ) + (ωl+1
p − ωlp)N2

]
(2.22)

The final waveform s of frame l can then be constructed by additive synthesis using

Equation 2.23.

sl(n) =

Np∑

p=1

Alp(n)cos(θ̂lp(n)) (2.23)

2.5 Sinusoids plus noise

The sinusoidal model presented in Section 2.4 overcame one of the problems with

the phase vocoder; the frequencies of the sinusoidal components could vary out-

side of the DFT channel bandwidth. It can also produce high-quality analysis and

synthesis of a wide variety of musical sounds. However, as it models all sounds as

combinations of sinusoids, it does not provide an intuitive or flexible way to ma-

nipulate sounds that contain noise components. For example, when performing a

pitch modification on a piano note it is not usually desirable to also alter the key

and hammer noise, but this is unavoidable in a purely sinusoidal representation of

sound. This section examines two systems that were developed in order to address

this issue, spectral modelling synthesis and bandwidth-enhanced sinusoidal mod-

elling, which are described in Sections 2.5.1 and 2.5.2 respectively.
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2.5.1 Spectral Modelling Synthesis

Serra and Smith [108] created a hybrid sinusoids plus noise model of musical sound

called Spectral Modelling Synthesis (SMS). SMS assumes that a sound is composed

of a combination of a deterministic component and a residual or stochastic compo-

nent, as defined by Equation 2.24 where s is the synthesised waveform, e is the

residual signal, A is the instantaneous amplitude and θ is the instantaneous phase.

s(n) =

Np∑

p=1

Ap(n)cos(θp(n)) + e(n) (2.24)

Deterministic in this context means that it can be accurately modelled as a sum of

slowly varying quasi-sinusoidal components. The residual component is then de-

fined as being the difference between the deterministic component and the original

sound. In order to allow for more flexible sound transformations the residual can

be modelled separately and treated as a stochastic component, where the signal is

assumed to be approximately noise-like and so can be represented by just the gen-

eral shape (or envelope) of its spectrum and then synthesised as filtered noise. An

overview of the SMS system is given in Figure 2.9.

Peak detection

The peak detection process in SMS in quite similar to the MQ method. The input

signal is first analysed using the STFT, yielding a sequence of frames of magnitude

and phase data. The magnitude spectrum is then searched for spectral peaks. An

important addition in SMS however is the use of parabolic interpolation to form

more accurate estimates of spectral peak frequency values, a technique that was
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Figure 2.9: The SMS analysis/synthesis method.

first introduced by Smith and Serra in PARSHL [112]. As the STFT returns sam-

pled spectra, each peak is only accurate to within half a sample. Zero-padding in

the time domain increases the number of DFT bins (spectral samples) per frame,

which in turn increases the accuracy of the peak frequency estimates, but it is com-

putationally expensive as very large frame sizes can be required in order to achieve

high accuracy in frequency estimation. A more efficient technique for obtaining ac-

curate frequency estimates is to use a small zero-padding factor, then fit a parabola

between the detected spectral peak and the two adjacent bins. The peak frequency

can then be taken to be the frequency of the fractional sample location at the vertex

of the parabola.
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The parabolic interpolation process begins by first defining a coordinate system

centred at (kβ, 0), where kβ is the bin number of a spectral peak. The goal is to find

a general parabola of the form given in Equation 2.25, where c is the centre of the

parabola, a is a measure of the concavity and b is the offset.

y(x) = a(x− c)2 + b (2.25)

This can be rewritten to give the peak location (Equation 2.26). The estimated

true peak location is described by Equation 2.27 and the true magnitude value then

estimated according to Equation 2.28, where α, β and γ are the magnitudes (in

decibels) of the bins with x coordinates at −1, 0 and 1 respectively.

c =
1

2

α− γ
α− 2β + γ

(2.26)

k∗ = kβ + c (2.27)

y(c) = β − 1

4
(α− γ)c (2.28)

As the accuracy of this parabolic interpolation technique depends on how closely

the parabola corresponds with the shape of the magnitude spectrum at the peak, it

is therefore influenced by the spectral shape of the analysis window [108].

Partial tracking

The partial tracking algorithm in SMS differs from its counterpoint in the MQ

method in that SMS only attempts to match spectral peaks that are part of stable

underlying sinusoidal components. MQ analysis by comparison will create partials
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any time time point if necessary in order to incorporate new peaks, as the goal is to

build a sinusoidal representation of the entire sound. During SMS partial tracking,

a set of frequency guides advance through time, trying to select appropriate spec-

tral peaks in each frame and matching them to form partials (called trajectories in

SMS).

In each frame, guides are advanced by finding the spectral peak that is closest in

frequency to each guide, as long as the frequency difference is less than a specified

maximum-peak-deviation parameter. If a match is found and no other guide also

wants to select that particular peak, the guide continues and the peak is added to

the corresponding trajectory. If more than one guide wants to match with the same

peak, the guide that is closest in frequency is declared the “winner” and the other

guide must look for a different peak. If no match is found, the trajectory is “turned

off” in frame l by being matched to itself with 0 amplitude. If the trajectory has

been turned off for more than the value of the maximum-sleeping-time parameter, it

will be “killed”.

The next step is to update the guide frequency for each guide that successfully

found a matching peak. The frequency is updated according to Equation 2.29. fg

is the new frequency of guide g, f̃g is the current frequency of guide g, ω is the

frequency of the peak that the guide was matched to and α is the peak-contribution-

to-guide parameter.

fg = α(ω − f̃g) + f̃g, α ∈ [0, 1] (2.29)

If there are unmatched peaks in a frame, new guides and corresponding trajecto-

ries will be created for each one as long as the current number of guides is less than
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a specified maximum. Guides are created for the largest magnitude peaks first, and

must be separated from all existing guides by a minimum frequency value, speci-

fied by the minimum-starting-guide-separation parameter. The guide frequency is

the frequency of the spectral peak. Guides are initially buffered and only marked as

“normal guides” when they have existed for a given number of frames in order to

ensure that short-lived guides and trajectories are avoided.

An additional partial tracking parameter exists in SMS that allows the input

sound to be labelled as being harmonic. In this case a number of changes are made

to the partial tracking algorithm: there is a specific fundamental frequency for each

frame, the number of guides remains constant throughout the sound and each guide

tracks a specific harmonic. To estimate the fundamental frequency in each frame,

the three peaks with the largest magnitudes are selected and then a search is per-

formed for a peak which would be a suitable fundamental for all three.

SMS synthesis

The deterministic component is synthesised using the same process as MQ synthe-

sis, described in Section 2.4.3. The sinusoidal parameters are obtained from the

spectral peaks that are matched to form the SMS trajectories.

Residual component

As the analysis phase information is preserved during deterministic synthesis, it

is possible to compute the residual signal by simply subtracting the deterministic

component from the original waveform in the time-domain. If a different synthesis

method is used and the phase information is lost, it is still possible to obtain the

residual component by performing the subtraction in the frequency domain. This is
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described in Equation 2.30, where l is the frame number, |Xl(k)| is the magnitude

spectrum of the original waveform, |Dl(k)| is the magnitude of the deterministic

component and |El(k)| is the magnitude of the residual. The resulting residual

waveform can then be synthesised using the inverse STFT.

|El(k)| = |Xl(k)| − |Dl(k)| (2.30)

Ignoring phase

The objective of SMS is to create a flexible model for sound manipulation. As this

only requires that synthesised sounds be perceptually similar to the original sounds,

and not mathematically identical, there is strictly no need to preserve the analysis

phases during deterministic synthesis. The residual component can still be calcu-

lated using frequency domain subtraction as discussed in Section 2.5.1. In this case,

the synthesised waveform can still be created by Equation 2.24, but each sinusoidal

component can now be described by only its amplitude and frequency parameters.

The instantaneous phase is then taken to be the integral of the instantaneous fre-

quency. SMS peak detection and partial tracking can proceed as before, but each

spectral peak only needs to retain amplitude and frequency values from the STFT

spectrum.

Stochastic component

The residual signal should consist mainly of inharmonic signal components. In

order to recreate sounds that are perceptually similar to the original waveform, the

residual can simply be stored as raw samples and added to the synthesised determin-

istic component. However, as it is desirable to be able to perform transformations
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on the analysed sound, a more flexible sound model can be created if it is assumed

that the residual signal is largely noise-like or stochastic. The magnitude spectrum

of each residual frame can then be approximated by its spectral envelope, enabling

the component to be modelled as filtered white noise according to Equation 2.31.

u(t) is white noise and h(t, σ) is the impulse response of a slowly time-varying

filter.

ê(n) =

∫ n

0

h(t, t− τ)u(τ)dτ (2.31)

The residual spectral envelope is computed by line-segment approximation.

Contiguous windows of size M are extracted from the magnitude spectrum and

the largest magnitude value in each window is selected, resulting in Q = N/M

equally spaced points, where N is the frame size. The envelope is formed by con-

necting straight lines between these points. The accuracy of the envelope is dictated

by the number of points Q, which can be adjusted depending on the complexity

of the sound. An example of a residual spectrum and the resulting SMS spectral

envelope is given in Figure 2.10.

Stochastic synthesis can be interpreted as applying a time varying filter to a

white noise signal. However, in SMS each stochastic frame is created using the

inverse STFT overlap-add synthesis technique (as described in Section 2.2.2), with

the spectra obtained from the spectral envelopes. The spectral magnitude values

are generated by linear interpolation of the Q envelopes samples to make a curve

of length N/2, where N is the FFT size. There is no phase information in the

stochastic envelope, but as the synthesised signal is intended to be noise-like then

the phases for each frame can be created by mapping the output of a random number

generator to numbers in the range [0, 2π].
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Figure 2.10: The spectrum of the residual component from a piano tone and the SMS spectral
envelope.

2.5.2 Bandwidth-enhanced sinusoidal modelling

An alternative solution to the problem of adding a representation for noisy signals

to the sinusoidal model was proposed by Fitz [34]. Instead of the SMS approach of

having independent deterministic and stochastic components, the Fitz system uses a

single type of component with a new oscillator called a bandwidth-enhanced oscil-

lator. This is basically a sinusoidal oscillator that is ring-modulated by noise, which

results in the noise band being centred around the oscillator frequency. The overall

noise levels in different parts of the spectrum can therefore be adjusted by varying

the noisiness of each bandwidth-enhanced oscillator. This approach retains the ho-

mogeneity of the purely sinusoidal model, allowing components to be edited and
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transformed uniformly. Fitz notes that this is of particular interest when perform-

ing timbre morphing in [34], where he presented a synthesis by analysis system

that uses these noise-modulated oscillators that is known as bandwidth-enhanced

sinusoidal modelling.

Bandwidth-enhanced oscillators

A spectrum consisting of a combination of quasi-harmonic components and other

noise-like components can be synthesised using narrow-band noise generators with

variable amplitudes, centre frequencies and bandwidths. These generators can be

defined by Equation 2.32, where ςn is a white (or wideband) noise sequence that

excites the filter hn and ∆w is the desired bandwidth of the resulting noise compo-

nent. ωc is the centre frequency of the sinusoid and β controls the amplitude of the

noise.

y(n) = β[ςn ∗ hn(∆w)] · ejωcn (2.32)

If many of these generators are used and their centre frequencies are close together

(relative to their bandwidths), then the generators can be simplified by having fixed

bandwidths and letting β control the amount of noise energy in a given spectral

region. This simplified oscillator is given by Equation 2.33.

y(n) = β[ςn ∗ hn] · ejωcn (2.33)

If the bandlimited noise is thought of as being the modulating signal then this can

be written according to Equation 2.34, where A is the sinusoidal amplitude. This

is known as a bandwidth-enhanced oscillator. A block diagram for the bandwidth-
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enhanced oscillator is given in Figure 2.11.

y(n) = (A+ β[ςn ∗ hn]) · ejωcn (2.34)

Figure 2.11: The bandwidth-enhanced oscillator.

Peak detection

The peak detection process for the bandwidth-enhanced sinusoidal model is similar

to the SMS peak detection system as described in Section 2.5.1. However, instead

of using parabolic interpolation to improve the accuracy of the sinusoidal compo-

nent frequency parameters, the accuracy of the peak detection in the bandwidth-

enhanced model is improved by a process called reassignment. Reassignment was

initially introduced as the modified moving window method [60]. It works by local-

ising spectral components to the centre of gravity of their spectral energy distribu-

tion, which is computed from partial derivatives of the short-time phase spectrum in

STFT analysis frames. This produces more accurate time and frequency estimates

than the STFT, as components in the latter are localised at the geometrical centre

of the analysis window. However, it can be shown that the reassignment frequency
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estimates are equivalent to performing phase vocoder frequency analysis with a hop

size of 1 sample [43, 76].

Reassignment is based on the principle that for periodic signals, the variation

in the Fourier phase spectrum that is not attributable to periodic oscillation is slow

with respect to frequency near the frequency of oscillation and rapid in other ar-

eas. Similarly for impulsive signals, the variation in the phase spectrum is slow

with respect to frequency near the time of the impulse and rapid elsewhere. During

synthesis these slowly changing regions make the most significant contribution to

the signal energy, as the areas with rapidly varying phase tend to destructively in-

terfere. The time and frequency coefficients should therefore satisfy Equations 2.35

and 2.36, where φ(τ, ω) is the continuous phase spectrum and ω · (t − τ) is the

phase travel due to periodic oscillation for an analysis frame centred at time t = τ

[60, 34].
∂

∂ω
[φ(τ, ω) + ω · (t− τ)] = 0 (2.35)

∂

∂τ
[φ(τ, ω) + ω · (t− τ)] = 0 (2.36)

These conditions can be satisfied using the instantaneous frequency (Equation 2.37)

and the group delay (Equation 2.38).

t̂ = τ − ∂φ(τ, ω)

∂ω
(2.37)

ω̂ =
∂φ(τ, ω)

∂τ
(2.38)

The reassigned frequency ω̂ and time t̂ coordinates can be expressed in terms of

STFTs with different window functions [6] according to Equations 2.39 and 2.40,
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where Xh is the STFT of the input signal calculated using the window function h,

Xth is the STFT windowed using a time ramped version of h and Xdh is the STFT

windowed using the first derivative of h.

ω̂(ω, t) = ω + =
{
Xdh(ω, t)X

∗
h(ω, t)

|Xh(ω, t)|2
}

(2.39)

t̂(ω, t) = t−<
{
Xth(ω, t)X

∗
h(ω, t)

|Xh(ω, t)|2
}

(2.40)

The magnitude spectrum can now be searched for peaks using a similar process

to the MQ method, with the peak frequency parameter taken to be the reassigned

frequency value.

Partial tracking

Partial tracking in the bandwidth-enhanced sinusoidal model is based on the MQ

partial tracking method but includes some important alterations. Peaks with large

time reassignments in a given frame represent events that are far from the centre of

the analysis window. They are therefore not considered for matching in that frame

as they are deemed to be unreliable. This does not exclude these peaks from the

final sinusoidal representation however, as the analysis windows are overlapping

and therefore these components will usually be closer to the centre of either an

earlier or later window.

The cubic phase interpolation introduced in the MQ system works well when

performing exact reconstruction of the original signal. However when applying

transformations to the sinusoidal representation it becomes mathematically com-

plex to try to preserve the original phases at all times. Therefore, the bandwidth-
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enhanced model only preserves the phase at the start of a partial and after that phase

is taken to be the frequency integral.

There is also an important change relating to the concept of the “birth” and

“death” of partials. In general, when a partial tracking algorithm considers only a

subset of the peaks in a frame for inclusion in the spectral representation, a mag-

nitude threshold is often applied in order to exclude insignificant peaks. When the

amplitude of a partial is close to this threshold, it can vary from being just above

it to just below it (and vice-versa) in consecutive frames, resulting in the partial

being “killed” and “born” repeatedly. As partials that are killed are faded out over

the duration of one frame, this repeated ramping of the partial amplitude can pro-

duce audible artifacts. SMS allows guides to “sleep” for a number of frames but the

amplitude of the partial is still reduced to zero while the guide is inactive.

The bandwidth-enhanced model uses hysteresis in the thresholding algorithm

to try to alleviate this problem. This technique that was first introduced in Lemur

[35]. Effectively two separate thresholds are created: one for partial birth and an-

other (lower) threshold for death. Partials can therefore drop below the initial birth

threshold by a given amount and continue to be synthesised with the measured

STFT magnitude instead of being faded out.

Bandwidth association

After the prominent spectral components have been identified and linked to form

sinusoidal partials, the procedure of determining how much noise energy should

be added to each bandwidth-enhanced partial can begin. This process is called

bandwidth association.

A simple approach is to try to ensure that the spectral energy distribution in
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the bandwidth-enhanced model matches that of the STFT frames. However, Fitz

reported that attempts to assign bandwidth to partials based on matching energy

values in different spectral regions were generally unsuccessful [34]. This method

proved too sensitive to slight changes in the spectrum of the input signal over time,

producing bandwidth envelopes that resulted in audible artifacts. The failure of this

approach was attributed to the fact that signal energy is a physical measurement, but

as the intention is to create a perceptually accurate model then ideally the bandwidth

association process should take the human perception of spectral noise into account.

The solution to the bandwidth association problem was to assign noise energy

to partials based on loudness matching. Loudness is a measure of the perceived in-

tensity of a sound, where the intensity for a sinusoid is its root-mean-square (RMS)

amplitude multiplied by the constant 1√
2
. The relationship between signal intensity

and loudness is generally complex but several key insights have been established

through psychoacoustic experiments. If a group of N narrowband tones have centre

frequencies that are are within a bandwidth known as the critical bandwidth, the

loudness L can be estimated according to Equation 2.41. In is the intensity of the

n-th tone and C is a function of the centre frequency of the aggregate of the tones

ωc [103].

L = C(ωc)
3
√
I1 + I2 + · · ·+ IN (2.41)

If the frequencies of tones are separated by more than the critical bandwidth, the

loudness of their combination is approximately the sum of their individual loudness

levels. The bark frequency scale is often used in conjunction with perceptual fre-

quency measurements as it is constructed so that critical bands all have a width of

one bark. If f is frequency in hertz, then the bark frequency b is approximated by

43



Equation 2.42.

b = 13 tan−1
(

0.76f

1000

)
+ 3.5 tan−1

(
f

7500

)2

(2.42)

The bandwidth-enhanced model assigns noise energy to partials according to the

measured loudness level in overlapping regions that are distributed evenly in bark

frequency. Regions are weighted so that sinusoidal components that occupy more

than one region make weighted contributions to the loudness measurement in all

regions, with the largest contribution made in the region with the centre frequency

closest to that of the partial. The regions are defined to be narrower in frequency

than the critical bandwidth, and so loudness for each region can be calculated by

Equation 2.41. To simplify the calculations it is assumed that loudness does not

vary with frequency within a region.

The difference between total partial energy and measured STFT energy in a

region is the cube of the difference of the loudness measurements between the two,

as loudness is calculated from the cube root of energy. This can be written according

to Equation 2.43 where ∆Er is the energy difference for region r, Lr(X) is the

loudness computed from the STFT magnitude X in r and Lr(A) is the loudness of

the sinusoidal partials in r.

∆Er = (Lr(X)− Lr(A))3 (2.43)

This energy difference is distributed as noise bandwidth among the partials in the

region according to their relative contribution to the loudness level. The energy

assigned to a partial p in r is given by Dr(p) is given by Equation 2.44, where αr(p)
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is the relative energy contribution of p to region r (and is therefore dependent on

the region weightings) and Np is the number of partials in the region.

Dr(p) =
αr(p)∑Np
j=0 αr(j)

∆Er (2.44)

The total bandwidth assigned to a partial p is the sum of the energy assigned to it in

all regions.

Synthesis

Intuitively, analysis data from the bandwidth-enhanced sinusoidal model can be

synthesised via additive synthesis of each bandwidth-enhanced oscillator as de-

scribed in Equation 2.45, where s is the synthesised waveform, Np is the number of

oscillators, and yp is the output of the p-th oscillator as specified in Equation 2.34.

Fitz notes in [34] that the model may also be used in conjunction with inverse STFT

synthesisers, or indeed any synthesis engine that is able to generate both noise and

sinusoids.

s(n) =

Np∑

p=0

yp(n) (2.45)

2.6 Sinusoids plus noise plus transients

The additions to the basic sinusoidal model that were introduced in Section 2.5

address the problems that can result from trying to model noise-like signal compo-

nents using sums of sinusoids. These models assume that these noise components

are part of a series of slowly evolving spectra. There is another class of signal

components however that present problems to sinusoidal representations, namely
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transients. While it is possible to model transient signals using sinusoids it does not

lead to meaningful transformation possibilities as transients signals are by definition

very concentrated in time.

As transient signals approach being purely impulsive, they produce spectra that

have energy distributed across a greater number of analysis frequency bins. This

creates a similar set of problems for sinusoidal models to the difficulties that result

from working with more slowly-varying noise-like components. However, they are

not ideally handled by the noise models in SMS or the bandwidth-enhanced model

as analysis data is interpolated on a frame-by-frame basis, which can have the effect

of “smearing” transients over longer durations.

This section looks at two systems that have tried to address this problem by

adding an explicit model for transients to a sinusoids plus noise representation. The

first was introduced by Masri and is discussed in Section 2.6.1 while the second

system, developed by Verma and Meng, is described in Section 2.6.2.

2.6.1 Improving the synthesis of attack transients

Masri introduced a model of musical sounds consisting of a combination of sinu-

soidal, noise and transient signal components4 [77]. The addition of a transient

model required several important changes to the analysis process. Firstly, transient

events in the input signal must be identified and their duration must be estimated.

Adjustments then had to be made to the sinusoidal and noise analysis processes in

order to accommodate the new transient components.

4Here we will only examine Masri’s treatment of transient components as the basic characteristics
of sinusoids plus noise models are well described in Section 2.5.
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Transient detection

As this system specifically aims to improve the synthesis of the attack segment of

a musical note, transients are assumed to occur immediately following note onsets.

The process of identifying the start of transients is therefore the process of finding

note onset locations. To do this, Masri uses a technique called the attack envelope

method, in which a separate analysis step is performed prior to sinusoidal analysis

that identifies note onsets using an amplitude peak following algorithm.

The input waveform is partitioned into consecutive non-overlapping frames that

are 50 samples in duration. The maximum sample value of each block is then

defined to be the onset detection function (ODF) value for that frame5. The peak

following algorithm is passed the ODF value for each analysis frame in sequence.

It either retains the ODF value or is updated to the previous ODF value multiplied

by a constant value, simulating an exponential decay. This enveloping function is

defined by Equation 2.46, where P (l) is the peak follower output for frame l, d is

the decay factor and ODF (l) is the value of the ODF at frame l.

P (l) = MAX{ODF (l), P (l − 1)× k} (2.46)

An onset is then detected when Equation 2.47 is satisfied, where T is a static onset

detection threshold.
P (l)

P (l − 1)
> T (2.47)

The end of a transient region is defined to be the point at which the peak follower

envelope drops below a given fraction of its peak value, or else when a predefined

5ODFs are usually sub-sampled versions of the original signal that vary depending on the likelihood
of a given input frame containing a note onset. They are described in detail in Chapter 4.
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maximum duration time has been reached, whichever happens first.

Combining transients with sinusoidal and noise components

Sinusoidal and noise analysis is performed during a second analysis pass. To ensure

that the relatively unpredictable evolution of spectral components that can occur

during transient regions does not effect the sinusoidal and stochastic analysis pro-

cesses, the list of transient regions that is compiled during the initial analysis pass

is used to “snap” the positions of the analysis windows in the second pass to the

region boundaries. For each transient region, the trailing edge of the analysis win-

dow is positioned at the first sample index. Analysis for the region then proceeds

as normal. When the analysis window reaches the end of the region it is adjusted

so that the leading edge is positioned at the last sample index. This usually results

in a reduced hop size. In order to account for the loss of the data that would or-

dinarily have been produced from analysis frames that crossed region boundaries,

spectral data from either side of the region boundary is extrapolated (keeping the

values fixed) up to the boundary index.

During synthesis, parameters are not interpolated between transient frames and

non-transient frames. The frames at either side of region boundaries are extrapo-

lated by a further 256 samples and the two areas are simply cross-faded together.

This cross-fade length was chosen as it is deemed short enough to reproduce the

“suddenness” of the transient region without introducing audible artifacts.
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2.6.2 Transient Modelling Synthesis

Verma and Meng devised a system called Transient Modelling Synthesis (TMS)

that extends SMS with a model for transients [121]. It aims to provide an explicit

parametric transient representation that is flexible enough to allow for a wide range

of modifications and that fits well into the existing SMS framework.

Transient detection

Sinusoidal modelling is based on the fact that a slowly varying signal which is

periodic in the time domain is impulsive in the frequency domain. As transient

signals are impulsive in the time domain, they must be periodic in the frequency

domain, and it should therefore be possible to model them using techniques that are

similar to sinusoidal modelling. However, the transient signals must first be mapped

to an appropriate frequency domain. TMS uses the discrete cosine transform (DCT)

[1] to provide this mapping, which can be defined by Equation 2.48. n is the sample

index ranging from 0 to N − 1 and β(k) is defined by Equation 2.49.

C(k) = β(k)
N−1∑

n=0

s(n)cos

[
(2n+ 1)kπ

2N

]
(2.48)

β(k) =





√
1
N

k = 1
√

2
N

otherwise
(2.49)

In general DCT frequencies can be mapped to the locations of time-domain im-

pulses in the original frame; impulsive signals at the beginning of frames pro-

duce low-frequency cosines and impulses towards the end of frames produce high-

frequency components.
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The DCT is applied to contiguous input frames, where the frame length is cho-

sen to ensure that a transient appears to be short in duration with a given frame. A

frame size corresponding to about 1 second of audio is deemed to be sufficient in

this regard. The SMS sinusoidal modelling algorithm is then applied to each DCT

frame, with 30-60 SMS frames being required for each DCT frame to produce well-

modelled transients. Analysis results in amplitude, frequency and phase parameters

for each transient, with the frequency corresponding to the transient location within

a given DCT frame.

Combining transients with sinusoidal and noise components

TMS analysis begins by using the SMS algorithm to create a model of the sinusoidal

components in the input waveform, which is subtracted from the original signal

resulting in a first residual signal. This residual is then processed by the transient

model. The analysis parameters are used to synthesise transient signals which are

subtracted from the first residual to leave a second residual component, which is

subjected to SMS stochastic analysis (as described in Section 2.5.1). This process

is summarised in Figure 2.12

To create the output sound, the three components are synthesised individu-

ally using the (potentially modified) analysis parameters and the results are then

summed. Synthesis of the deterministic and stochastic components is performed

according to the SMS algorithm. Transients can be synthesised by inverting the

transient analysis process, with sinusoidal synthesis of transient parameters produc-

ing DCT frames which can be transformed back into the time domain via the inverse

DCT.
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Figure 2.12: The TMS analysis process.

2.7 Software tools for spectral modelling and

manipulation

Sections 2.1 - 2.6 described some of the significant developments that have in-

fluenced the current state-of-the-art in spectral modelling of musical instrument

sounds. To examine the ways in which these techniques can be used by musi-

cians, sound designers and composers, this section provides a brief overview of

some of the currently available spectral modelling software packages, from spe-

cialised spectral processing tools to powerful general purpose systems for sound

analysis/synthesis and composition.
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2.7.1 Specialised systems

A wide variety of specialised tools for spectral processing of musical sounds can

be found in the literature, generally focusing on analysis, transformation and syn-

thesis using a particular sinusoidal modelling algorithm. Here we survey of some

currently available software packages, their implementation details and the sound

transformations that they provide.

SNDAN

SNDAN [8] is a free suite of C programs distributed as source code6, allowing for

the analysis, modification and synthesis of (primarily monophonic) musical sounds.

Tones can be analysed using either phase vocoder analysis or by using an implemen-

tation of MQ sinusoidal modelling. Analysis data is then synthesised using additive

synthesis. Programs for viewing plots of analysis data are also included in SNDAN.

A number of transformations can be applied to the analysis data, including sev-

eral different sinusoidal amplitude and frequency modifications, smoothing sinu-

soidal amplitudes and frequencies over time, smoothing sinusoidal amplitudes ver-

sus frequency and time stretching the input waveform. Analysis data can also be

saved to a SNDAN file format and then reloaded for synthesis, so it is possible for

other applications to apply modifications.

ATS

ATS [94] is an open source library for spectral analysis, transformation and synthe-

sis of sound. It is written in Common Lisp and is designed to work in conjunction

6Registration via email is required.
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with Common Lisp Music [106]. The ATS analysis process is similar to the SMS

algorithm. Spectral components are identified by peak detection and partial track-

ing algorithms and then used to synthesise a deterministic signal. This harmonic

component then subtracted from the original sound and the residual signal is used

to create a stochastic component. However, the ATS partial tracking process also

allows peaks to be ignored if they are considered to be inaudible due to psychoa-

coustic masking effects within critical bands. Analysis data is stored in lisp abstrac-

tions called sounds, and can be synthesised using a variety of techniques including

additive synthesis, subtractive synthesis and granular synthesis. Available transfor-

mations include scaling partial amplitudes and frequencies by constant values or

dynamic envelopes, transposition (with or without maintaining formant shapes) and

time stretching. A graphical user interface (GUI) is also provided that enables the

real-time control of synthesis parameters.

SPEAR

SPEAR [59] is a cross-platform graphical spectral analysis, editing and synthesis

tool. Sinusoidal analysis is based on an extension of the MQ method. Like SMS,

peak frequency estimates are improved by using parabolic interpolation. The partial

tracking algorithm selects peaks by using linear prediction to estimate the future

trajectory of the partial, and peaks are then selected based on how closely their

parameters match the estimates [62]. Synthesis of analysis data is performed using

either the inverse FFT method or by using additive synthesis of banks of sinusoidal

oscillators. As one of the design goals of SPEAR was to enable integration with

other sinusoidal modelling implementations, a wide variety of analysis data file

types can be imported and exported. SDIF [125] and plain text files can be both
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imported and exported, and SPEAR can additionally import both SNDAN and ATS

analysis files. Using the graphical editor, sinusoidal components can be cut, copied

and pasted, as well as being shifted in frequency and stretched or compressed in

time.

Libsms

Libsms is an open source library that provides an implementation of SMS, derived

from Serra’s original SMS code [32]. It is written in C, uses SWIG [9] to provide

bindings for Python, and is also available as a set of external objects for Pure Data.

Available SMS transformations include pitch-shifting (with and without the preser-

vation of the original spectral envelope), time-stretching and independent control of

the volumes of deterministic and stochastic components. Analysis data can also be

imported from and exported to custom SMS analysis files.

Loris

Loris is an open source C++ implementation of the bandwidth-enhanced sinusoidal

modelling system. Python bindings are provided using SWIG, and Loris can also

be built as a Csound opcode (plugin). Time-scaling and pitch-shifting modifications

can be performed on the analysis data, but sound morphing is of particular interest to

the developers so a range of functions are provided for performing morphs between

two sound sources. Loris also supports both importing and exporting analysis data

via SDIF files.
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AudioSculpt

AudioSculpt [14] is a commercial software package for spectral analysis and pro-

cessing of sound files that is developed by IRCAM. It has a GUI that displays

multiple representations of a source sound (a waveform view, a spectrum view and

a sonagram), which are used to apply audio transformations to specific time or fre-

quency regions. AudioSculpt relies on two different signal processing kernels in

order to manipulate sounds. The first is an extended version of the phase vocoder

called SuperVP [27]. It can be used to perform several different analyses includ-

ing the computation of the standard and reassigned spectrograms, estimation of the

spectral envelope by linear predictive coding and the true envelope, transient detec-

tion and fundamental frequency estimation. The second sound processing kernel,

called Pm2, uses a proprietary sinusoidal modelling implementation. The sinusoidal

partials that are estimated by the model can be exported to SDIF files.

AudioSculpt allows multiple transformations to be performed on sound files,

including manipulating the gain of certain frequency regions that are selected using

the GUI, transposing sounds (with or without time-correction), time-stretching, a

spectral “freeze” effect, and a non-linear dynamic range stretching effect that is

known as “clipping”. A sequencer is also provided so that transformations can be

applied at specific time points in a sound file. Sound files can be processed and

played back in real-time, allowing the results to be heard before saving them to a

new sound file. However, AudioSculpt does not support the real-time processing of

live audio streams.

It is possible to use the SuperVP sound processing kernel to manipulate audio

streams in real-time by using the set of SuperVP external objects for Max/MSP
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[52]. The supervp.trans~ object can be used to perform transposition, spectral

envelope manipulation and decomposition of a signal into a combination of sinu-

soids, noise and transient components. Spectral envelopes and transients can also

be preserved after modification. The supervp.sourcefilter~ object enables the

spectral envelope of one signal to be “imprinted” onto another signal. An alternative

cross-synthesis object called supervp.cross~ can be used to mix the amplitudes

and phases of two signals in the frequency domain.

2.7.2 General purpose systems

Spectral processing tools can also be found in some general purpose languages and

frameworks for sound design and composition. Describing the full feature sets of

these systems is beyond the scope of this research, but this section provides a brief

description of four important general purpose tools and their respective spectral

processing implementations.

The SndObj Library

The SndObj (Sound Object) Library [66] is an open source object-orientated li-

brary for audio signal processing. It is written in C++, with SWIG used to create

Python bindings, and runs on Linux, Mac OS X and Windows platforms. The

SndObj library consists of a set of classes for signal processing and control, fea-

turing modules for sound input and output, MIDI input and output, delays, filters,

envelopes and several different oscillators. It also includes spectral analysis and

synthesis modules, with implementations of phase vocoder analysis/synthesis and a

custom sinusoidal modelling system. Peak detection works in a similar way to the
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bandwidth-enhanced model, using reassignment to improve peak frequency esti-

mates. Partial tracking follows a similar approach to the MQ method, and an output

waveform can then be created using additive synthesis of sinusoidal oscillators.

Csound

Csound [119] is a comprehensive system and programming language for audio sig-

nal processing and sound design based on the MUSIC-N model. It is open source

software and written primarily in C, but due to a flexible API it can be used from

many different programming languages and environments. Csound provides ex-

tensive support for a number of different spectral processing methods. The fsig

framework7 [67, 69] allows users to work with a special type of streaming signal

that consists of spectral data. Spectral signals can be created by reading data files

or by analysing audio streams using either phase vocoder analysis or by using a

custom sinusoidal modelling implementation. Opcodes exist enabling a wide vari-

ety of transformations to be applied to the spectral signals such as amplitude-based

transformations, frequency-based transformations, cross-synthesis effects and spec-

tral blurring [124]. Audio signals can then be generated from the spectral data using

either an inverse DFT overlap-add technique or additive synthesis. Csound can also

read, manipulate, and synthesise analysis data created by both ATS and Loris.

SuperCollider

SuperCollider [81] is an open source software environment and programming lan-

guage for sound design and algorithmic composition. The current version (SuperCollider

7The fsig type was introduced by Richard Dobson in Csound 4.13 and was further extended by
Victor Lazzarini in Csound 5.
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3) consists of two components: the server which is responsible for sound genera-

tion, and the language component which communicates with the server using open

sound control (OSC). Similarly to Csound, SuperCollider includes a number of dif-

ferent modules for sound analysis and transformation based on the phase vocoder,

as well as modules for importing and synthesising ATS analysis data.

Pure Data

Pure Data [97] is an open source visual programming environment for audio and

video processing. It is similar in many ways to the commercial program Max/MSP,

allowing users to manipulate audio, video and control information by “patching”

different graphical objects together. The system can be extended by creating new

objects or “externals” in C or C++, enabling spectral processing systems to be used

in a Pure Data “patch”. One example of this is the SMS Pure Data external, created

using Libsms. However, as Pure Data includes objects for performing forward and

inverse Fourier transforms, spectral processing tools such as the phase vocoder can

also be created directly in Pure Data patches.

2.8 Conclusions

This chapter introduced Fourier analysis and provided an overview of the state-of-

the-art in spectral modelling of musical instrument sounds. The STFT and phase

vocoder analysis were described, followed by the development of the sinusoidal

model and then extensions to this basic sinusoidal model to include explicit repre-

sentations of noise and transient components. The chapter concluded with a survey

of existing software tools for spectral modelling and sound manipulation.
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The sinusoidal models and software implementations that were discussed in this

chapter are generally successful, but there are a few areas that can be improved

upon. In order for researchers to be able to easily compare the analysis and syn-

thesis algorithms, it would be advantageous to have a consistent interface for in-

teracting with the systems. Ideally, this sinusoidal modelling system could also be

used in conjunction with a suite of tools for performing standard signal processing

techniques and data visualisation.

An important goal of this research is to enable composers, musicians and re-

searchers to perform flexible and intuitive transformations on live audio streams.

We therefore require that the spectral models can analyse and transform audio in

real-time and with low latency. The sinusoids plus noise plus transients models

that are described in Section 2.6 succeed in reducing the audible synthesis artifacts

that can occur as a result of the relatively poor treatment of transient signal compo-

nents in earlier spectral models. However, neither system can operate in a real-time

(streaming) mode. Masri’s method requires an initial analysis scan of the full au-

dio signal, while the method proposed by Verma and Meng uses DCT frames with

a recommended duration of 1 second, which we consider to be too high a latency

value to be useful in a live musical performance context.

Finally, we would also like to provide a tool for performing real-time sound ma-

nipulation based on the sinusoids plus noise plus transients model. Ideally this tool

could be used as both a standalone application and as part of existing environments

for sound design. These issues are discussed in detail in Chapters 3, 4, 5 and 6.
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Chapter 3

Simpl: A software library for

sinusoidal modelling and

manipulation of musical sounds

A number of different approaches to creating sinusoidal models of musical sounds

were introduced in Chapter 2, along with a survey of existing software tools that im-

plement these techniques. Each different spectral representation offers composers a

unique set of possibilities for sound design. For example, the MQ method creates

a purely sinusoidal representation of a sound, so any manipulation of analysis data

will also change any non-harmonic components in the signal. Although this is often

undesirable when attempting to mimic existing acoustic instruments, this property

of the model can also be used in a creative way to intentionally make waveforms

that sound synthetic. It is also possible to creatively use the models without a prior

analysis step, synthetically generating all of the appropriate parameters.

In order to work with sinusoidal models in a flexible way, it is desirable to
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have an expressive, interactive system that facilitates rapid-prototyping of ideas,

combined with a set of tools for performing standard signal processing techniques

and data visualisation. Being able to interact with analysis data and parameters in

a consistent manner can also significantly speed up the exploratory process. Each

model shares common ideas and abstractions (such as the concepts of spectral peak

detection and partial tracking), but due to their differing implementations, it can

be difficult to exchange, compare and contrast analysis data. Some of the software

tools support importing and exporting SDIF files which does make data exchange

easier in those cases. However even these tools do not generally allow the peak

detection and partial tracking analysis stages to be separated, as they only save the

final partials to SDIF files.

We developed the Sinusoidal Modelling Python Library (or Simpl) to address

these issues. It allows sinusoidal modelling implementations to be used in conjunc-

tion with a powerful general purpose programming language, which has a compre-

hensive set of libraries for audio signal processing. Simpl also facilitates the ex-

change of spectral analysis data between different underlying implementations, and

can analyse and synthesise audio in either non-real-time or in a real-time streaming

mode (depending on the capabilities of the model). The choice of Python as a tool

for prototyping and rapid development of audio applications for composers and re-

searchers is discussed in Section 3.1. This is followed by an overview of Simpl in

Section 3.2, a discussion of Simpl’s implementation in Section 3.3 and finally some

examples in Section 3.4.
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3.1 Python for audio signal processing

There are many problems that are common to a wide variety of applications in

the field of audio signal processing, and so it often makes sense to rely on existing

code libraries and frameworks to perform these tasks. Examples include procedures

such as loading sound files or communicating between audio processes and sound

cards, as well as digital signal processing (DSP) tasks such as filtering and Fourier

analysis.

Due to their ubiquity, fast execution speeds and the ability to completely control

memory usage, C and C++ are popular general purpose programming languages

for audio signal processing. However, it can often take a lot more time to develop

applications or prototypes in C/C++ than in a more lightweight scripting language.

This is one of the reasons for the popularity of tools such as MATLAB [79], which

allows the developer to easily manipulate matrices of numerical data, and includes

implementations of many standard signal processing techniques. A major down-

side to MATLAB is that it is not free and not open source, which is a considerable

problem for people who want to share code and collaborate. GNU Octave [33] is

an open source alternative to MATLAB. It is an interpreted language with a syntax

that is very similar to MATLAB and so it is possible to write scripts that will run on

both systems. However, with both MATLAB and Octave this increase in short-term

productivity comes at a cost. For anything other than very basic tasks, tools such as

integrated development environments (IDEs), debuggers and profilers are certainly

a useful resource if not a requirement. All of these tools exist in some form for

MATLAB/Octave, but users must invest a considerable amount of time in learning

to use a programming language and a set of development tools that have a relatively
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limited application domain when compared with general purpose programming lan-

guages. It is also generally more difficult to integrate MATLAB/Octave programs

with compositional tools such as Csound or Pure Data, or with other technologies

such as web frameworks, cloud computing platforms and mobile applications, all

of which are becoming increasingly important in the music industry.

For developing and prototyping audio signal processing applications, it would

therefore be advantageous to combine the power and flexibility of a widely adopted,

open source, general purpose programming language with the quick development

process that is possible when using interpreted languages that include comprehen-

sive signal processing toolkits. All of these characteristics can be found in the com-

bination of the Python programming language [104] with the NumPy [88], SciPy

[56, 89] and Matplotlib [49] libraries for scientific computing and data visualisation.

Some notable features of the Python language include:

• It is a mature language and allows for programming in several different paradigms

including imperative, object-oriented and functional styles.

• The clean syntax puts an emphasis on producing well structured and readable

code. Python source code has often been compared to executable pseudocode.

• Python provides an interactive interpreter which allows for rapid code devel-

opment, prototyping and live experimentation.

• The ability to extend Python with modules written in C/C++ means that func-

tionality can be quickly prototyped and then optimised later.

• Python can be embedded into existing applications.

• Python bindings exist for cross-platform GUI toolkits such as Qt [86].
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• Python has a large number of high-quality libraries, allowing sophisticated

programs to be constructed quickly.

Numpy and SciPy extend Python by adding a comprehensive set of functions

and modules for scientific computing and signal processing. NumPy [88] adds a

multidimensional array object to Python, along with functions that perform effi-

cient calculations based on this array data. SciPy builds on top of NumPy and

provides modules that are dedicated to common issues in scientific computing. It

can therefore be compared to MATLAB toolboxes. The SciPy modules are written

in a mixture of pure Python, C and Fortran, and are designed to operate efficiently

on NumPy arrays. Notable SciPy modules include:

File input/output (scipy.io): Provides functions for reading and writing files in

many different data formats, including .wav, .csv and matlab data files (.mat).

Fourier transforms (scipy.fftpack): Contains implementations of 1-D and 2-D fast

Fourier transforms, as well as Hilbert and inverse Hilbert transforms.

Signal processing (scipy.signal): Provides implementations of many useful signal

processing techniques, such as waveform generation, FIR and IIR filtering

and multi-dimensional convolution.

Optimisation (scipy.optimize): Contains a collection of optimisation algorithms

and system solvers.

Interpolation (scipy.interpolate): Consists of linear interpolation functions and

cubic splines in several dimensions.

Linear algebra (scipy.linalg): Contains functions for solving a system of linear
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equations and other matrix operations such as matrix exponential and matrix

square root.

Matplotlib is a library of plotting functions that enables data contained in NumPy

arrays to be visualised quickly and used to produce publication-ready figures in a

variety of formats. It can be used interactively from the Python command prompt,

thus providing similar functionality to MATLAB or GNU Plot [123], or in conjunc-

tion with GUI toolkits (Qt for example).

3.1.1 A SciPy example

Listing 3.1 shows how SciPy can be used to perform a FFT on a windowed frame

of audio samples and plot the resulting magnitude spectrum. The sample is loaded

using the wav.read function on line 8. This function returns a tuple containing the

sampling rate of the audio file as the first value and the audio samples (in a NumPy

array) as the second value. The samples are stored in a variable called audio. In line

13, a 256 sample frame is selected from the centre of the audio signal and is then

windowed using a Hanning window (created using the SciPy sp.signal.hann func-

tion). The FFT is computed on line 16, with the complex coefficients converted into

polar form and the magnitude values stored in the variable mags. The magnitude

values are converted from a linear to a decibel scale in line 19, then normalised to

have a maximum value of 0 dB in line 22. In lines 25-33 the magnitude values are

plotted and displayed. The resulting image is shown in Figure 3.1.

1 import scipy
2 import scipy.signal
3 import scipy.io.wavfile as wav
4 import numpy
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5 import matplotlib.pyplot as plt
6
7 # read audio samples
8 audio = wav.read(’clarinet.wav’)[1]
9

10 # select a frame and apply a Hanning window
11 N = 256
12 sample_centre = len(audio) / 2
13 audio = audio[sample_centre:sample_centre + N] * scipy.signal.hann(N)
14
15 # fft
16 mags = numpy.abs(scipy.fftpack.rfft(audio))
17
18 # convert to dB
19 mags = 20 * scipy.log10(mags)
20
21 # normalise to 0 dB max
22 mags -= max(mags)
23
24 # plot
25 plt.plot(mags)
26
27 # label the axes
28 plt.ylabel(’Magnitude (dB)’)
29 plt.xlabel(’Frequency Bin’)
30
31 # set the title
32 plt.title(’Magnitude spectrum of a clarinet tone’)
33 plt.show()

Listing 3.1: Using SciPy to calculate and plot a magnitude spectrum.

3.2 An overview of Simpl

Simpl is an object-oriented library for sinusoidal modelling, that aims to tie together

many of the existing sinusoidal modelling implementations into a single unified sys-

tem with a consistent API. It is primarily intended as a tool for composers and other

researchers, allowing them to easily combine, compare and contrast many of the

published analysis/synthesis algorithms. The currently supported sinusoidal mod-

elling implementations are the MQ method, SMS (using libsms), the bandwidth-

enhanced sinusoidal model (using Loris) and The SndObj Library. Simpl is free

software, released under the terms of the GNU General Public License (GPL).

The core audio analysis and synthesis algorithms are written in C++, enabling

66



Figure 3.1: Magnitude spectrum of a 256 sample frame from a clarinet recording, produced by the
code in Listing 3.1.

Simpl to be used in conjunction with other C/C++ audio software packages such

as Csound. Simpl also comes with a set of Cython [10] wrapper classes which can

be used in order to build it as a Python extension module. Users can therefore take

advantage of the wide range of signal processing functionality that is provided by

NumPy, SciPy and Matplotlib.

The sinusoidal modelling process in Simpl is broken down into three distinct

steps: peak detection, partial tracking and sound synthesis. C++ classes and corre-

sponding Python classes exist for each step, which all of the analysis and synthesis

implementations derive from. For any given step, every analysis/synthesis object

returns data in the same format, irrespective of its underlying implementation. This
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allows analysis/synthesis networks to be created in which the algorithm that is used

for a particular step can be changed without effecting the rest of the network. This

process is summarised in Figure 3.2. Sections 3.2.1 - 3.2.7 provide an overview of

Figure 3.2: The simpl analysis and synthesis process.

the modules and classes that are available in Simpl.

3.2.1 Peaks and frames

Two classes that are used extensively in Simpl are Peak and Frame. Peak classes

represent spectral peaks. It is a small class that primarily exists to store 4 floating-

point values: the amplitude (or magnitude), frequency, phase and bandwidth of

each peak. Frame objects contain all of the information that relates to a given frame
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of audio. This includes the size of a frame (in samples), the input audio samples,

any synthesised audio samples, detected spectral peaks and detected partials. For

convenience, an alias for a vector of pointers to Peak objects called Peaks is defined,

as is an alias for a vector of pointers to Frame objects called Frames. The key

components of these objects are summarised in Tables 3.1 and 3.21.

Peak

Parameter Description

amplitude: float The amplitude of the peak.

frequency: float The frequency of the peak.

phase: float The phase of the peak.

bandwidth: float The bandwidth assigned to the peak.

Table 3.1: The Simpl Peak class.

All of the audio samples in Simpl are stored in C++ double arrays. However

when used from Python, the audio samples are accessed using NumPy arrays. This

means that SciPy functions can be used for basic tasks such as reading and writ-

ing audio files, as well as more complex procedures such as performing additional

processing, analysis or visualisation of the data.

3.2.2 Peak detection

PeakDetection objects consist of methods that take audio samples as input and

return one or more Frame objects2. These audio samples can either be contained

in a single Frame object or be pointers to arrays of samples. In the latter case, the
1For simplicity the classes and parameters that are described in this section will refer to the Python
implementations, the corresponding C++ classes are very similar however.

2When used with C++ a std::vector of Frame objects is returned. With Python a list of Frame
objects is returned.
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Frame

Parameter Description

size: int The input frame size (in samples).

synth_size: int The output frame size (in samples).

max_peaks: int The max. no. peaks to detect per frame.

num_peaks: int The no. peaks detected this frame.

max_partials: int The max. no. partials to produce per
frame.

num_partials: int The no. partials in this frame.

peaks: list of Peaks The detected spectral peaks.

partials: list of Peaks The computed sinusoidal partials.

audio: NumPy array The input audio waveform.

synth: NumPy array The synthesised harmonic component.

residual: NumPy array The residual component.

synth_residual: NumPy array The synthesised residual component.

Table 3.2: The Simpl Frame class.

audio will be divided into multiple frames, where the exact number of frames and

their sizes will depend on the peak detection hop size and frame size parameters.

The frame size may change during analysis however, as some sinusoidal modelling

algorithms (such as SMS for example) will vary the analysis frame size depending

on the estimated fundamental frequency of the input waveform. The Frame.peaks

variable contains a list of all spectral peaks detected in that frame by the chosen

sinusoidal modelling implementation. Peaks may also be added to Frames pro-

grammatically without analysing an audio signal. PeakDetection classes are sum-

marised in Table 3.3.
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PeakDetection

Parameter Description

sampling_rate: int The sampling rate of the input wave-
form.

frame_size: int The analysis frame size.

hop_size: int The analysis hop size.

static_frame_size: bool Keep analysis frame size fixed during
analysis.

max_peaks: int The max. no. peaks to detect per frame.

min_peak_separation: int The min. distance to allow between
peaks (in Hz).

frames: list of Frames The resulting analysis frames.

Method Description

find_peaks_in_frame(frame:
Frame*)

Find spectral peaks in a given frame.

find_peaks(audio: NumPy array) Find spectral peaks in an audio signal.
The signal will be broken up into multi-
ple frames if necessary.

Table 3.3: The Simpl PeakDetection class.

3.2.3 Partial tracking

PartialTracking classes have methods that take either a single Frame or a list

of Frame objects as input, as described by Table 3.4. Each Frame is expected to

contain a list of peaks, calculated either during peak detection or programmatically.

The spectral peaks in each frame are then used by the sinusoidal modelling imple-

mentation to form sinusoidal partials. This results in selected Peak values being

saved to the Frame.partials list for each analysis frame. The order of Peak ob-

jects in the Frame.partials list is therefore of significance (unlike the list of peaks
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PartialTracking

Parameter Description

sampling_rate: int The sampling rate of the input wave-
form.

max_partials: int The max. no. partials to detect per
frame.

min_partial_length: int The min. length of a partial (in frames).
Shorter partials will be removed at the
end of analysis. This parameter is ig-
nored when operating in real time.

frames: Frames The resulting analysis frames.

Method Description

update_partials(frame: Frame) Perform partial tracking for a given
frame.

find_partials(frames: list of
Frames)

Perform partial tracking on a sequence
of frames.

Table 3.4: Simpl PartialTracking class.

in Frame.peaks). Spectral peaks at the same position in the Frame.partials lists

in consecutive Simpl Frame objects are assumed to belong to the same underlying

sinusoidal partial, and so their parameters will be interpolated across output frames

during synthesis. Inactive partials should therefore always contain spectral peaks

with an amplitude of 0.

3.2.4 Synthesis

Simpl Synthesis classes are described by Table 3.5. The main methods take either

a single Frame or a list of Frame objects as input and use the given partial data to

synthesise a frame of audio samples. Synthesis objects generally only calculate
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Synthesis

Parameter Description

sampling_rate: int The sampling rate of the output wave-
form.

frame_size: int The synthesis frame size.

hop_size: int The synthesis hop size.

max_partials: int The max. no. partials to synthesise per
frame.

synth_frame(frame: Frames*) Synthesise one frame of audio from the
harmonic partial data.

synth(frames: Frames) Synthesise several frames of audio from
the harmonic partial data.

Table 3.5: Simpl Synthesis class.

sinusoidal or harmonic signal components3, calculating noise or residual compo-

nents requires the use of Simpl Residual objects. For each frame, the synthesised

signal is stored in the Frame.synth variable. Reconstructing an entire audio signal

therefore requires concatenating these output arrays. When called from Python the

concatenation is performed automatically by the Cython wrapper module, and so a

NumPy array of audio samples is returned.

3.2.5 Residual

Residual classes are used to compute residual components or synthesise stochastic

signal components. They take either an audio signal or a sequence of Simpl Frame

objects as input. In the case of SMS, a deterministic component is then synthesised

and subtracted from the original signal to obtain the residual signal, which is saved
3The one current exception to this is the Simpl implementation of the bandwidth-enhanced sinusoidal
model, for which the Synthesis class can currently create both sinusoidal and noise components.
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in the Frame.residual variable. If a synthesised stochastic component is to be

created, this will be created and then saved in the Frame.synth_residual variable.

The Residual class is summarised by Table 3.6.

Residual

Parameter Description

sampling_rate: int The sampling rate of the output wave-
form.

frame_size: int The synthesis frame size.

hop_size: int The synthesis hop size.

residual_frame(frame: Frame) Compute the residual signal for a given
frame.

find_residual(frames: list of
Frames)

Compute the residual signal given an
original input waveform and a synthe-
sised deterministic component.

synth_frame(frame: Frame) Synthesise a stochastic component for a
given frame.

synth(frames: list of Frames) Synthesise a stochastic component for a
sequence of frames.

synth(original: NumPy array) Analyse a given waveform, compute the
residual signal and synthesise a stochas-
tic component.

Table 3.6: Simpl Residual class.

3.2.6 Visualisation

When used from Python, Simpl includes a module with two functions that use

Matplotlib to plot analysis data. These functions, simpl.plot_peaks and

simpl.plot_partials, plot data from the peak detection and partial tracking anal-

ysis stages respectively. Generating additional plots is trivial using Matplotlib’s
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MATLAB-like interface however. The plots of peak and partial data in Section 3.4

are both generated using the simpl.plot module.
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3.2.7 Complete list of Simpl modules, classes and functions

Tables 3.7 and 3.8 list the modules, classes and functions that are currently avail-

able in Simpl. Functions that are marked with an asterisk (*) depend on SciPy

and/or Matplotlib functionality and so have no corresponding C++ implementa-

tions. Classes begin with capital letters while functions start with lowercase letters.

The full source code to Simpl can be found on the accompanying CD.

Python Module Classes and Functions in Module

simpl.base Peak

Frame

simpl.peak_detection PeakDetection

SMSPeakDetection

LorisPeakDetection

SndObjPeakDetection

simpl.partial_tracking PartialTracking

SMSPartialTracking

LorisPartialTracking

SndObjPartialTracking

simpl.synthesis Synthesis

SMSSynthesis

LorisSynthesis

SndObjSynthesis

simpl.residual Synthesis

SMSSynthesis
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simpl.mq MQPeakDetection*

MQPartialTracking*

MQSynthesis*

twm*

simpl.audio read_wav*

simpl.plot plot_peaks*

plot_partials*

Table 3.7: Simpl Python modules.
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Class or Function Description

Peak Contains spectral peak data.

Frame Contains all analysis data for a frame of
audio.

PeakDetection Base peak detection class, primarily
containing general data types and acces-
sor methods.

MQPeakDetection Performs peak detection using the MQ
method.

SMSPeakDetection Performs peak detection using the SMS
algorithm.

LorisPeakDetection Performs peak detection using the algo-
rithm from the bandwidth-enhanced si-
nusoidal model.

SndObjPeakDetection Performs peak detection using the
SndObj library.

PartialTracking Base partial tracking class, primarily
containing general data types and acces-
sor methods.

MQPartialTracking Performs partial tracking using the MQ
method.

SMSPartialTracking Performs partial tracking using SMS
(libsms).

LorisPartialTracking Performs partial tracking according to
the method described in the bandwidth-
enhanced sinusoidal model (loris).

SndObjPartialTracking Performs partial tracking using the
SndObj library.

Synthesis Base synthesis class, primarily consists
of general data types and accessor meth-
ods.
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MQSynthesis Performs synthesis using the MQ
method.

SMSSynthesis Performs synthesis using SMS (libsms),
using either the inverse FFT overlap-add
technique or additive synthesis.

LorisSynthesis Performs additive synthesis using loris.

SndObjSynthesis Performs additive synthesis using the
SndObj library.

Residual Base residual component class, primar-
ily consists of general data types and ac-
cessor methods.

SMSResidual Creates a residual signal or synthesised
stochastic component using SMS (lib-
sms).

twm An implementation of the two-way mis-
match algorithm [74] for detecting the
fundamental frequency of a collection
of spectral peaks.

read_wav* Reads an audio file (in the wav format),
and stores it in a NumPy array, making
sure that the type of the array (float or
double) matches the array type that is
used by the Simpl C++ code. Sample
values are also converted to the range
[−1, 1].

plot_peaks* Plots spectral peaks from a sequence of
Frame objects (using Matplotlib).

plot_partials* Plots sinusoidal partials from a se-
quence of Frame objects (using
Matplotlib).

Table 3.8: Simpl classes and functions (available from both C++ and Python).
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3.3 Implementation

The creation of open source software tools is an important component in this thesis.

In providing these tools, we allow musicians and composers to freely experiment

with the concepts that are described here, but also enable other researchers to re-

produce, critique and potentially improve on the results of this work. Open source

software can also serve as valuable teaching material, bridging the gap between

abstract ideas and concrete implementations.

To provide an insight into the implementation of Simpl and to illustrate how

new sinusoidal modelling implementations may be added to the library in future,

this section examines the Simpl SMS peak detection module in detail. The C++

code will be described first, followed by an explanation of the Cython wrapper code

that is used to generate the corresponding Python modules. We will only show the

code that is necessary in order to understand the implementation of the Simpl SMS

module here.

3.3.1 Simpl SMS peak detection C++ module

The C++ declaration of the Simpl PeakDetection class is shown in Listing 3.2.

39 class PeakDetection {
40 protected:
41 int _sampling_rate;
42 int _frame_size;
43 bool _static_frame_size;
44 int _hop_size;
45 int _max_peaks;
46 std:: string _window_type;
47 int _window_size;
48 sample _min_peak_separation;
49 Frames _frames;
50
51 public:
52 PeakDetection ();
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53 virtual ~PeakDetection ();
54 void clear ();
55
56 virtual int sampling_rate ();
57 virtual void sampling_rate(int new_sampling_rate );
58 virtual int frame_size ();
59 virtual void frame_size(int new_frame_size );
60 virtual bool static_frame_size ();
61 virtual void static_frame_size(bool new_static_frame_size );
62 virtual int next_frame_size ();
63 virtual int hop_size ();
64 virtual void hop_size(int new_hop_size );
65 virtual int max_peaks ();
66 virtual void max_peaks(int new_max_peaks );
67 virtual std:: string window_type ();
68 virtual void window_type(std:: string new_window_type );
69 virtual int window_size ();
70 virtual void window_size(int new_window_size );
71 virtual sample min_peak_separation ();
72 virtual void min_peak_separation(sample new_min_peak_separation );
73 int num_frames ();
74 Frame* frame(int frame_number );
75 Frames frames ();
76 void frames(Frames new_frames );
77
78 // Find and return all spectral peaks in a given frame of audio
79 virtual void find_peaks_in_frame(Frame* frame );
80
81 // Find and return all spectral peaks in a given audio signal.
82 // If the signal contains more than 1 frame worth of audio , it will be
83 // broken up into separate frames , with an array of peaks returned for
84 // each frame
85 virtual Frames find_peaks(int audio_size , sample* audio);
86 };

Listing 3.2: PeakDetection declaration in peak_detection.h.

The Peak and Frame classes are defined in the file base.h, as well as the following

three typedef definitions that are used throughout the C++ code:

1 typedef double sample;
2 typedef std::vector <Peak*> Peaks;
3 typedef std::vector <Frame*> Frames;

Listing 3.3: typedef statements in Base.h.

The PeakDetection class declaration begins with a set of member variables and

methods (described in Table 3.3). The majority of these methods are basic getters

and setters that are used to encapsulate the member variables, and so they will not
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be discussed in detail. It is important to note however that most of them are declared

with the virtual keyword so that they can be overridden in derived classes. Two

important methods are declared on lines 79 and 85, find_peaks_in_frame and

find_peaks. These are the main methods that classes that inherit from PeakDetection

should override in order to provide an alternate peak detection algorithm.

The implementation of the PeakDetection class can be found in the file

peak_detection.cpp (Listing 3.4). The constructor (line 5) sets default values for

the member variables, with the destructor (line 16) deleting any frames that were

created during analysis.

1 #include "peak_detection.h"
2
3 using namespace simpl;
4
5 PeakDetection :: PeakDetection () {
6 _sampling_rate = 44100;
7 _frame_size = 2048;
8 _static_frame_size = true;
9 _hop_size = 512;

10 _max_peaks = 100;
11 _window_type = "hanning";
12 _window_size = 2048;
13 _min_peak_separation = 1.0; // in Hz
14 }
15
16 PeakDetection ::~ PeakDetection () {
17 clear ();
18 }
19
20 void PeakDetection ::clear() {
21 for(int i = 0; i < _frames.size (); i++) {
22 if(_frames[i]) {
23 delete _frames[i];
24 _frames[i] = NULL;
25 }
26 }
27
28 _frames.clear ();
29 }
30
31 // Getter and setter definitions omitted
32
33 void PeakDetection :: find_peaks_in_frame(Frame* frame) {
34 }
35
36 Frames PeakDetection :: find_peaks(int audio_size , sample* audio) {
37 clear ();
38 unsigned int pos = 0;
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39 bool alloc_memory_in_frame = true;
40
41 while(pos <= audio_size - _hop_size) {
42 if(! _static_frame_size) {
43 _frame_size = next_frame_size ();
44 }
45
46 Frame* f = new Frame(_frame_size , alloc_memory_in_frame );
47 f->max_peaks(_max_peaks );
48
49 if((int)pos <= (audio_size - _frame_size )) {
50 f->audio (&( audio[pos]), _frame_size );
51 }
52 else {
53 f->audio (&( audio[pos]), audio_size - pos);
54 }
55
56 find_peaks_in_frame(f);
57 _frames.push_back(f);
58 pos += _hop_size;
59 }
60
61 return _frames;
62 }

Listing 3.4: PeakDetection implementation in peak_detection.cpp.

The find_peaks method (line 36) steps through the input audio file in _hop_size

increments. At each time index, the next frame size is calculated if the variable

_static_frame_size is set to false, then a new Simpl Frame object is created

(line 46). The Frame audio variable is set to point to the input array at the current

time index, and the value of the _max_peaks variable is passed to the Frame. The

find_peaks_in_frame method is then called, before the Frame is appended to the

current list of frames and the current time index is advanced.

SMSPeakDetection inherits from PeakDetection, as shown in Listing 3.5. It

includes two additional member variables called _analysis_params and _peaks,

that are of types SMSAnalysisParams and SMSSpectralPeaks respectively. These

are two C structs that are defined in sms.h. It overrides the next_frame_size,

hop_size, find_peaks_in_frame and find_peaks methods, while providing an

additional method called realtime. The latter is required in order to set an addi-

tional libsms parameter that is needed when performing analysis in real-time.
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110 // ---------------------------------------------------------------------------
111 // SMSPeakDetection
112 // ---------------------------------------------------------------------------
113 class SMSPeakDetection : public PeakDetection {
114 private:
115 SMSAnalysisParams _analysis_params;
116 SMSSpectralPeaks _peaks;
117
118 public:
119 SMSPeakDetection ();
120 ~SMSPeakDetection ();
121 int next_frame_size ();
122 using PeakDetection :: frame_size;
123 void frame_size(int new_frame_size );
124 using PeakDetection :: hop_size;
125 void hop_size(int new_hop_size );
126 using PeakDetection :: max_peaks;
127 void max_peaks(int new_max_peaks );
128 int realtime ();
129 void realtime(int new_realtime );
130 void find_peaks_in_frame(Frame* frame);
131 Frames find_peaks(int audio_size , sample* audio);
132 };

Listing 3.5: SMSPeakDetection declaration in peak_detection.h.

The SMSPeakDetection methods are defined in peak_detection.cpp. The con-

structor (shown in Listing 3.6) sets default parameters in the SMSAnalysisParams

structure that is used by libsms, and then calls sms_initAnalysis on line 237,

which allocates memory that is used in the structure. It also allocates memory for

the SMS spectral peak arrays by calling sms_initSpectralPeaks on line 240. The

destructor deallocates all of this memory.

219 SMSPeakDetection :: SMSPeakDetection () {
220 sms_init ();
221
222 sms_initAnalParams (& _analysis_params );
223 _analysis_params.iSamplingRate = _sampling_rate;
224 _analysis_params.iFrameRate = _sampling_rate / _hop_size;
225 _analysis_params.iWindowType = SMS_WIN_HAMMING;
226 _analysis_params.fHighestFreq = 20000;
227 _analysis_params.iMaxDelayFrames = 4;
228 _analysis_params.analDelay = 0;
229 _analysis_params.minGoodFrames = 1;
230 _analysis_params.iCleanTracks = 0;
231 _analysis_params.iFormat = SMS_FORMAT_HP;
232 _analysis_params.nTracks = _max_peaks;
233 _analysis_params.maxPeaks = _max_peaks;
234 _analysis_params.nGuides = _max_peaks;
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235 _analysis_params.preEmphasis = 0;
236 _analysis_params.realtime = 0;
237 sms_initAnalysis (& _analysis_params );
238 _analysis_params.iSizeSound = _frame_size;
239
240 sms_initSpectralPeaks (&_peaks , _max_peaks );
241
242 // By default , SMS will change the size of the frames being read
243 // depending on the detected fundamental frequency (if any) of the
244 // input sound. To prevent this behaviour (useful when comparing
245 // different analysis algorithms), set the
246 // _static_frame_size variable to True
247 _static_frame_size = false;
248 }
249
250 SMSPeakDetection ::~ SMSPeakDetection () {
251 sms_freeAnalysis (& _analysis_params );
252 sms_freeSpectralPeaks (& _peaks );
253 sms_free ();
254 }

Listing 3.6: SMSPeakDetection constructor and destructor from peak_detection.cpp.

The overridden PeakDetection methods (Listing 3.7) make sure that peak de-

tection parameter changes are also copied to the SMSAnalysisParams structure, and

that if the max_peaks method is called then the SMS spectral peaks structure is re-

sized accordingly. The new realtime method simply sets a variable in the analysis

parameter structure.

256 int SMSPeakDetection :: next_frame_size () {
257 return _analysis_params.sizeNextRead;
258 }
259
260 void SMSPeakDetection :: frame_size(int new_frame_size) {
261 _frame_size = new_frame_size;
262 _analysis_params.iSizeSound = _hop_size;
263 }
264
265 void SMSPeakDetection :: hop_size(int new_hop_size) {
266 _hop_size = new_hop_size;
267 sms_freeAnalysis (& _analysis_params );
268 _analysis_params.iFrameRate = _sampling_rate / _hop_size;
269 sms_initAnalysis (& _analysis_params );
270 }
271
272 void SMSPeakDetection :: max_peaks(int new_max_peaks) {
273 _max_peaks = new_max_peaks;
274 if(_max_peaks > SMS_MAX_NPEAKS) {
275 _max_peaks = SMS_MAX_NPEAKS;
276 }
277
278 sms_freeAnalysis (& _analysis_params );
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279 sms_freeSpectralPeaks (& _peaks );
280
281 _analysis_params.nTracks = _max_peaks;
282 _analysis_params.maxPeaks = _max_peaks;
283 _analysis_params.nGuides = _max_peaks;
284
285 sms_initAnalysis (& _analysis_params );
286 sms_initSpectralPeaks (&_peaks , _max_peaks );
287 }
288
289 int SMSPeakDetection :: realtime () {
290 return _analysis_params.realtime;
291 }
292
293 void SMSPeakDetection :: realtime(int new_realtime) {
294 _analysis_params.realtime = new_realtime;
295 }

Listing 3.7: Methods overridden by SMSPeakDetection and realtime method from
peak_detection.cpp.

The most important methods in the SMSPeakDetection class are

find_peaks_in_frame and find_peaks, shown in Listing 3.8. As in the parent

class, the find_peaks_in_frame method begins by creating a variable of type

Peaks. A call is then made to the sms_findPeaks function in libsms, which takes

the audio samples from the Simpl Frame object and locates spectral peaks using the

SMS algorithm. Libsms saves the peak amplitudes, frequencies and phases into ar-

rays in the SMSSpectralPeaks member variable _peaks. For each peak detected by

libsms, a new Simpl Peak object is added to the current Frame (line 303), with am-

plitude, frequency and phase values taken from the SMSSpectralPeaks structure.

The find_peaks function in SMSPeakDetection is very similar to the method that

it overrides. The differences are that the _analysis_params.iSizeSound variable

is set to the length of the input file (which libsms uses during non-real-time analy-

sis), and that the frame size may vary.
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297 // Find and return all spectral peaks in a given frame of audio
298 void SMSPeakDetection :: find_peaks_in_frame(Frame* frame) {
299 int num_peaks = sms_findPeaks(frame ->size(), frame ->audio(),
300 &_analysis_params , &_peaks );
301
302 for(int i = 0; i < num_peaks; i++) {
303 frame ->add_peak(_peaks.pSpectralPeaks[i].fMag ,
304 _peaks.pSpectralPeaks[i].fFreq ,
305 _peaks.pSpectralPeaks[i].fPhase ,
306 0.0);
307 }
308 }
309
310 // Find and return all spectral peaks in a given audio signal.
311 // If the signal contains more than 1 frame worth of audio ,
312 // it will be broken up into separate frames , with a list of
313 // peaks returned for each frame.
314 Frames SMSPeakDetection :: find_peaks(int audio_size , sample* audio) {
315 clear ();
316 unsigned int pos = 0;
317 bool alloc_memory_in_frame = true;
318
319 _analysis_params.iSizeSound = audio_size;
320
321 while(pos <= audio_size - _hop_size) {
322 if(! _static_frame_size) {
323 _frame_size = next_frame_size ();
324 }
325
326 Frame* f = new Frame(_frame_size , alloc_memory_in_frame );
327 f->max_peaks(_max_peaks );
328
329 if((int)pos <= (audio_size - _frame_size )) {
330 f->audio (&( audio[pos]), _frame_size );
331 }
332 else {
333 f->audio (&( audio[pos]), audio_size - pos);
334 }
335
336 find_peaks_in_frame(f);
337 _frames.push_back(f);
338
339 if(! _static_frame_size) {
340 pos += _frame_size;
341 }
342 else {
343 pos += _hop_size;
344 }
345 }
346
347 return _frames;
348 }

Listing 3.8: SMSPeakDetection find_peaks_in_frame and find_peaks methods from
peak_detection.cpp.
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3.3.2 Simpl SMS peak detection Python module

Simpl uses Cython [10] to create Python extension modules from the C++ code.

Cython is a superset of the Python language that adds the ability to call C functions

and declare C types on variables and class attributes. Unlike Python, Cython code

must therefore be compiled. Simpl uses the standard Python distutils module

to compile the Cython code, so when Simpl is installed the Cython modules are

automatically compiled and installed together with the pure Python code. Cython

is used instead of SWIG [9] as it allows for more control over the resulting Python

objects and so Python modules can be created that follow standard Python coding

style guides. SWIG modules often produce an API that more closely resembles

C/C++ and so an additional Python wrapper would be required around the SWIG

module in order to produce the same Python API. It is also generally faster to write

Python extension modules in Cython than to write the wrapper by hand using the

Python C API.

The Cython code that declares the C++ class interface for the Simpl

PeakDetection and SMSPeakDetection classes is given in Listing 3.9. The Cython

interfaces to the Simpl Peak and Frame objects (given in base.pxd) are c_Peak

and c_Frame, which are imported on lines 7 and 8 respectively. A block that

will contain code from the file peak_detection.h in the simpl namespace is started

on line 14. The Cython interface to the PeakDetection class then begins on

line 17, which is called c_PeakDetection in order to avoid confusion with the

Python PeakDetection class (see Listing 3.10). The PeakDetection methods are

added to the interface on lines 18-40. Similarly, the Cython interface to the C++

SMSPeakDetection class and its methods is given on lines 42 to 48.
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c_SMSPeakDetection is declared as a base class of c_PeakDetection.

1 import numpy as np
2 cimport numpy as np
3 np.import_array ()
4 from libcpp.vector cimport vector
5 from libcpp cimport bool
6
7 from base cimport c_Peak
8 from base cimport c_Frame
9 from base cimport string

10 from base cimport dtype_t
11 from base import dtype
12
13
14 cdef extern from "../src/simpl/peak_detection.h" \
15 namespace "simpl":
16
17 cdef cppclass c_PeakDetection "simpl:: PeakDetection":
18 c_PeakDetection ()
19 int sampling_rate ()
20 void sampling_rate(int new_sampling_rate)
21 int frame_size ()
22 void frame_size(int new_frame_size)
23 int static_frame_size ()
24 void static_frame_size(bool new_static_frame_size)
25 int next_frame_size ()
26 int hop_size ()
27 void hop_size(int new_hop_size)
28 int max_peaks ()
29 void max_peaks(int new_max_peaks)
30 string window_type ()
31 void window_type(string new_window_type)
32 int window_size ()
33 void window_size(int new_window_size)
34 double min_peak_separation ()
35 void min_peak_separation(double new_min_peak_separation)
36 int num_frames ()
37 c_Frame* frame(int frame_number)
38 void frames(vector[c_Frame *] new_frames)
39 void find_peaks_in_frame(c_Frame* frame)
40 vector[c_Frame *] find_peaks(int audio_size , double* audio)
41
42 cdef cppclass c_SMSPeakDetection \
43 "simpl:: SMSPeakDetection"(c_PeakDetection ):
44 c_SMSPeakDetection ()
45 void hop_size(int new_hop_size)
46 void max_peaks(int new_max_peaks)
47 void find_peaks_in_frame(c_Frame* frame)
48 vector[c_Frame *] find_peaks(int audio_size , double* audio)

Listing 3.9: Cython C++ class interface for PeakDetection and SMSPeakDetection from
peak_detection.pxd.

The PeakDetection and SMSPeakDetection Cython wrapper classes are de-

fined in peak_detection.pyx, with the start of the PeakDetection definition given
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in Listing 3.10.

13 cdef class PeakDetection:
14 cdef c_PeakDetection* thisptr
15 cdef public list frames
16
17 def __cinit__(self):
18 self.thisptr = new c_PeakDetection ()
19
20 def __dealloc__(self):
21 if self.thisptr:
22 del self.thisptr
23
24 def __init__(self):
25 self.frames = []

Listing 3.10: Cython PeakDetection wrapper class from peak_detection.pyx.

The class has a pointer to c_PeakDetection called thisptr which is defined on

line 14. It also has a member variable called frames, which is a publicly accessible

Python list. The class constructor creates a new c_PeakDetection instance on line

18 which is deleted in the destructor on line 22. The frames list is then initialised to

an empty Python list on line 15.

Next, Python properties are created from the C++ getter and setter methods, as

shown in Listing 3.11. The frame method creates a new Python Frame object from

the existing C++ c_Frame instance.

27 property sampling_rate:
28 def __get__(self): return self.thisptr.sampling_rate ()
29 def __set__(self , int i): self.thisptr.sampling_rate(i)
30
31 property frame_size:
32 def __get__(self): return self.thisptr.frame_size ()
33 def __set__(self , int i): self.thisptr.frame_size(i)
34
35 property static_frame_size:
36 def __get__(self): return self.thisptr.static_frame_size ()
37 def __set__(self , bool b): self.thisptr.static_frame_size(b)
38
39 def next_frame_size(self):
40 return self.thisptr.next_frame_size ()
41
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42 property hop_size:
43 def __get__(self): return self.thisptr.hop_size ()
44 def __set__(self , int i): self.thisptr.hop_size(i)
45
46 property max_peaks:
47 def __get__(self): return self.thisptr.max_peaks ()
48 def __set__(self , int i): self.thisptr.max_peaks(i)
49
50 property window_type:
51 def __get__(self): return self.thisptr.window_type (). c_str()
52 def __set__(self , char* s): self.thisptr.window_type(string(s))
53
54 property window_size:
55 def __get__(self): return self.thisptr.window_size ()
56 def __set__(self , int i): self.thisptr.window_size(i)
57
58 property min_peak_separation:
59 def __get__(self): return self.thisptr.min_peak_separation ()
60 def __set__(self , double d): self.thisptr.min_peak_separation(d)
61
62 def frame(self , int i):
63 cdef c_Frame* c_f = self.thisptr.frame(i)
64 f = Frame(None , False)
65 f.set_frame(c_f)
66 return f

Listing 3.11: Getters and setters from the Cython PeakDetection wrapper class in
peak_detection.pyx.

The Python wrappers for the find_peaks_in_frame and the find_peaks meth-

ods are given in Listing 3.12. The former simply calls the C++

find_peaks_in_frame method on line 69 and returns the peaks in the resulting

Frame object. The Python find_peaks method the same as the corresponding C++

method. It steps through the input audio array in hop_size steps, updating the

frame size at each step if necessary and then creating a new Frame object. The

find_peaks_in_frame method is then called with this Frame as an input parame-

ter.

68 def find_peaks_in_frame(self , Frame frame not None):
69 self.thisptr.find_peaks_in_frame(frame.thisptr)
70 return frame.peaks
71
72 def find_peaks(self , np.ndarray[dtype_t , ndim =1] audio):
73 self.frames = []
74
75 cdef int pos = 0
76 while pos <= len(audio) - self.hop_size:

91



77 if not self.static_frame_size:
78 self.frame_size = self.next_frame_size ()
79
80 frame = Frame(self.frame_size)
81
82 if pos < len(audio) - self.frame_size:
83 frame.audio = audio[pos:pos + self.frame_size]
84 else:
85 frame.audio = np.hstack ((
86 audio[pos:len(audio)],
87 np.zeros(self.frame_size - (len(audio) - pos))
88 ))
89
90 frame.max_peaks = self.max_peaks
91 self.find_peaks_in_frame(frame)
92 self.frames.append(frame)
93 pos += self.hop_size
94
95 return self.frames

Listing 3.12: find_peaks_in_frame and find_peaks methods from the Cython
PeakDetection wrapper class in peak_detection.pyx.

The Python wrapper for SMSPeakDetection (Listing 3.13) inherits almost ev-

erything from the Python PeakDetection class. As the underlying C++ methods

are called in each member function, a derived Python class will generally only have

to override the constructor and destructor to set the thisptr variable to an instance

of the desired C++ class. Here the find_peaks method is also overridden in order

to call the corresponding C++ SMSPeakDetection method. This is necessary as

the SMSPeakDetection implementation of find_peaks is slightly different to the

PeakDetection version (this difference is discussed in Section 3.3.1).

110 cdef class SMSPeakDetection(PeakDetection ):
111 def __cinit__(self):
112 if self.thisptr:
113 del self.thisptr
114 self.thisptr = new c_SMSPeakDetection ()
115
116 def __dealloc__(self):
117 if self.thisptr:
118 del self.thisptr
119 self.thisptr = <c_PeakDetection *>0
120
121 def find_peaks(self , np.ndarray[dtype_t , ndim =1] audio):
122 self.frames = []
123 cdef vector[c_Frame *] output_frames = \
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124 self.thisptr.find_peaks(len(audio), <double*> audio.data)
125 for i in range(output_frames.size ()):
126 f = Frame(output_frames[i].size(), False)
127 f.set_frame(output_frames[i])
128 self.frames.append(f)
129 return self.frames

Listing 3.13: Cython SMSPeakDetection wrapper class from peak_detection.pyx.

3.4 Examples

This section presents five examples that demonstrate some of the functionality of

Simpl. Sections 3.4.1 and 3.4.2 show how to detect and plot spectral peaks and

sinusoidal partials respectively. The remaining examples all produce synthesised

audio files. Section 3.4.3 shows how to analyse an audio sample and synthesise the

detected harmonic and noise components. The examples in Sections 3.4.4 and 3.4.5

illustrate how Simpl can be used to transform existing audio files, performing pitch-

shifting and time-scaling respectively.

3.4.1 Plotting spectral peaks

The first example (Listing 3.14) shows how Simpl and Matplotlib can be used to

plot the spectral peaks that are found in 4096 samples of a clarinet tone using SMS.

The samples are extracted starting at the centre of the waveform on line 6. An

SMSPeakDetection object is created on line 9, with the max_peaks parameter set to

20 on line 10. The remaining parameters keep their default values. The default hop

size is 512, which should therefore produce 8 frames of audio for the 4096 samples.

The find_peaks method is then called on line 11, with the resulting list of Frame

objects saved to a variable called frames. The Simpl plot_peaks function is then
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called with this list of frames as a parameter on line 14. The plot axes are labelled

on lines 15 and 16 and finally the figure is displayed on line 17. The resulting plot

is shown in Figure 3.3.

1 import simpl
2 import matplotlib.pyplot as plt
3
4 # take 4096 samples frames starting at the waveform centre
5 audio = simpl.read_wav(’clarinet.wav’)[0]
6 audio = audio[len(audio) / 2:(len(audio) / 2) + 4096]
7
8 # peak detection using SMS
9 pd = simpl.SMSPeakDetection ()

10 pd.max_peaks = 20
11 frames = pd.find_peaks(audio)
12
13 # plot peaks using matplotlib
14 simpl.plot_peaks(frames)
15 plt.xlabel(’Frame Number ’)
16 plt.ylabel(’Frequency (Hz)’)
17 plt.show()

Listing 3.14: Using a Simpl SMSPeakDetection object to plot spectral peaks.

3.4.2 Plotting sinusoidal partials

The second example demonstrates the way that Simpl can be used to detect and plot

sinusoidal partials. It also shows the ease with which different sinusoidal modelling

algorithms can be combined to perform peak detection and partial tracking. The

code is given in Listing 3.15.

This time the full audio sample is used. A list of frames containing spectral

peaks detected by the SMS algorithm is saved to the frames variable on line 9.

The maximum number of peaks is not changed this time and so has the default

value of 100. The list of frames is then passed to the find_partials method

of a MQPartialTracking object on line 13, which performs partial tracking us-

ing the MQ method. The partials are plotted on line 15 by calling the Simpl
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Figure 3.3: Spectral peaks identified from 8 frames of a clarinet sample using the
SMSPeakDetection class.

Figure 3.4: Detecting and plotting all sinusoidal partials in a clarinet sample.
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plot_partials function, and finally the figure is displayed by calling plt.show on

line 18. The plot of the sinusoidal partials that is produced is shown in Figure 3.4.

1 import simpl
2 import matplotlib.pyplot as plt
3
4 # read an audio sample
5 audio = simpl.read_wav(’clarinet.wav’)[0]
6
7 # peak detection using SMS
8 pd = simpl.SMSPeakDetection ()
9 frames = pd.find_peaks(audio)

10
11 # partial tracking using the bandwidth -enhanced model
12 pt = simpl.LorisPartialTracking ()
13 frames = pt.find_partials(frames)
14
15 simpl.plot_partials(frames)
16 plt.xlabel(’Frame Number ’)
17 plt.ylabel(’Frequency (Hz)’)
18 plt.show()

Listing 3.15: Detecting and plotting sinusoidal partials.

3.4.3 Synthesis

The synthesis example (Listing 3.16) demonstrates the synthesis of deterministic

(harmonic) and stochastic signal components using Simpl. This time spectral peaks

are detected using the bandwidth-enhanced model (lines 7 and 8), and partial track-

ing using SMS (lines 11 and 12). A SndObj Library harmonic synthesis object is

created on line 15, and then used to synthesise the deterministic component from

the frames of sinusoidal partials on line 16. An SMS stochastic synthesis object is

created on line 19, which performs SMS analysis on the original audio waveform

and creates a stochastic component (line 20). On lines 23-46 Matplotlib is used

to create a plot with 3 subplots, displaying the original waveform, synthesised har-

monic component and the synthesised stochastic component respectively. This plot
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is shown in Figure 3.5.

1 import simpl
2 import matplotlib.pyplot as plt
3
4 audio = simpl.read_wav(’clarinet.wav’)[0]
5
6 # peak detection using the bandwidth -enhanced model
7 pd = simpl.LorisPeakDetection ()
8 frames = pd.find_peaks(audio)
9

10 # partial tracking using SMS
11 pt = simpl.SMSPartialTracking ()
12 frames = pt.find_partials(frames)
13
14 # synthesis of harmonic component using The SndObj Library
15 harm_synth = simpl.SndObjSynthesis ()
16 harmonic_component = harm_synth.synth(frames)
17
18 # synthesis of stochastic component using SMS
19 stocastic_synth = simpl.SMSResidual ()
20 stochastic_component = stocastic_synth.synth(audio)
21
22 # plot the 3 waveforms
23 fig = plt.figure ()
24
25 plt.subplot(3, 1, 1)
26 plt.ylim([-1, 1])
27 plt.xlabel(’Sample Number ’)
28 plt.ylabel(’Sample Value’)
29 plt.title(’Original Waveform ’)
30 plt.plot(audio)
31
32 plt.subplot(3, 1, 2)
33 plt.ylim([-1, 1])
34 plt.xlabel(’Sample Number ’)
35 plt.ylabel(’Sample Value’)
36 plt.title(’Synthesised Harmonic Component ’)
37 plt.plot(harmonic_component)
38
39 plt.subplot(3, 1, 3)
40 plt.ylim([-1, 1])
41 plt.xlabel(’Sample Number ’)
42 plt.ylabel(’Sample Value’)
43 plt.title(’Synthesised Stochastic Component ’)
44 plt.plot(stochastic_component)
45
46 plt.show()

Listing 3.16: Synthesising deterministic and stochastic signal components.
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Figure 3.5: A clarinet sample (top), the synthesised deterministic component (middle) and the syn-
thesised stochastic component (bottom) produced by the code in Listing 3.16.
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3.4.4 Pitch-shifting

Listing 3.17 shows how Simpl can be used to analyse an audio sample, change

the pitch of the harmonic component and then synthesise harmonic and noise com-

ponents. The input audio sample and its sampling rate are read on line 6. Two

more variables are then created on lines 7 and 8, defining the pitch shift amount (in

semitones) and the name of the output file respectively. A pitch shift amount of 4

is specified, so the synthesised harmonic component will be 4 semitones (a major

third) higher. A negative pitch_shift_amount can be specified in order to lower

the resulting pitch.

Sinusoidal peaks are identified using the bandwidth-enhanced model on line 11,

followed by SMS partial tracking on line 13. Lines 15 and 16 calculate the scal-

ing factor that must be applied to the frequency of each sinusoidal partial in order to

achieve the desired pitch shift amount, with the result saved to the freq_scale vari-

able on line 16. The pitch shift is performed on lines 18-22 by looping through each

sinusoidal partial in each frame and multiplying its frequency by the freq_scale

value.

The deterministic and stochastic components are then synthesised on lines 25

and 27 respectively. The SndObj library is used to synthesise the deterministic

component (using additive synthesis) and SMS is used to create the stochastic sig-

nal. The two synthesised components are then combined on line 29 and saved to a

new file called clarinet_pitch_shifted.wav on line 31.

1 import math
2 import numpy as np
3 import scipy.io.wavfile as wav
4 import simpl
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5
6 audio , sampling_rate = simpl.read_wav(’clarinet.wav’)
7 pitch_shift_amount = 4
8 output_file = ’clarinet_pitch_shifted.wav’
9

10 pd = simpl.LorisPeakDetection ()
11 frames = pd.find_peaks(audio)
12 pt = simpl.SMSPartialTracking ()
13 frames = pt.find_partials(frames)
14
15 twelfth_root_2 = math.pow(2.0, 1.0 / 12)
16 freq_scale = math.pow(twelfth_root_2 , pitch_shift_amount)
17
18 for frame in frames:
19 partials = frame.partials
20 for p in partials:
21 p.frequency *= freq_scale
22 frame.partials = partials
23
24 synth = simpl.SndObjSynthesis ()
25 harm_synth = synth.synth(frames)
26 r = simpl.SMSResidual ()
27 res_synth = r.synth(audio)
28
29 audio_out = harm_synth + res_synth
30 audio_out = np.asarray(audio_out * 32768, np.int16)
31 wav.write(output_file , sampling_rate , audio_out)

Listing 3.17: Pitch-shifting the deterministic component.

3.4.5 Time-scaling

An example that uses Simpl to time-scale the harmonic component from a piano

sample is given in Listing 3.18. The sample is read on line 5, with the desired

time-scale factor and output file name specified on lines 6 and 7 respectively. A

time-scale factor of 3 is chosen here, which will produce a synthesised signal that

is 3 times the duration of the original. Spectral peaks are identified on line 10 and

used to form sinusoidal partials on line 12, followed by the creation of the audio

output array (initially empty) on line 15.

On line 16 a variable called step_size is defined with a value equal to the

inverse of the time-scale factor. This will be used to advance the value of the current

frame number, which is initialised to 0 on line 17. The time-scaling procedure
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works by passing frames to the synthesis object at a different rate. To achieve a

time-scale factor of 2, each frame would be passed to the synthesis object twice.

If the time-scale factor was 0.5 then every second frame would be skipped, and

so on. The synthesis procedure interpolates smoothly between input frames so no

discontinuities occur in the output signal.

This time-scaling procedure is performed on lines 19-23. The synthesis frame

index is taken to be the closest integer that is less than the value of current_frame.

The frame at this index position is passed to the synth_frame method, producing

one output frame which is appended to the rest of the output audio signal on line

22. This process continues as long as the current_frame variable is less than the

number of frames in the original signal. The final output array is then saved to a

new file called piano_time_scaled.wav on line 26.

1 import numpy as np
2 import scipy.io.wavfile as wav
3 import simpl
4
5 audio , sampling_rate = simpl.read_wav(’piano.wav’)
6 time_scale_factor = 3
7 output_file = ’piano_time_scaled.wav’
8
9 pd = simpl.LorisPeakDetection ()

10 peaks = pd.find_peaks(audio)
11 pt = simpl.SMSPartialTracking ()
12 partials = pt.find_partials(peaks)
13
14 synth = simpl.SndObjSynthesis ()
15 audio_out = np.array ([])
16 step_size = 1.0 / time_scale_factor
17 current_frame = 0
18
19 while current_frame < len(partials ):
20 i = int(current_frame)
21 frame = synth.synth_frame(partials[i])
22 audio_out = np.hstack ((audio_out , frame))
23 current_frame += step_size
24
25 audio_out = np.asarray(audio_out * 32768, np.int16)
26 wav.write(output_file , sampling_rate , audio_out)

Listing 3.18: Time-scaling the deterministic component.
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3.5 Conclusions

This chapter introduced Simpl, a library for sinusoidal modelling that is written in

C++ and Python. Simpl aims to tie together many of the existing sinusoidal mod-

elling implementations into a single unified system with a consistent API. It is

primarily intended as a tool for composers and other researchers, allowing them to

easily combine, compare and contrast many of the published analysis/synthesis al-

gorithms. The chapter began with an overview of the motivation for creating Simpl

and then explained the choice of Python as an interactive environment for musical

experimentation and rapid-prototyping. An overview of the Simpl library was then

provided, followed by an in-depth look at the implementation of the SMS peak de-

tection module. The chapter concluded with some examples that demonstrated the

functionality of the library.
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Chapter 4

Real-time onset detection

The Simpl sinusoidal modelling library that was introduced in Chapter 3 is a com-

prehensive framework for the analysis and synthesis of deterministic and stochas-

tic sound components. However, the underlying sinusoidal models assume that

both components vary slowly with time. During synthesis, analysis parameters are

smoothly interpolated between frames. This process results in high-quality synthe-

sis of the main sustained portion of a note1 but can result in transient components

being diffused or “smeared” between frames. Some of these transient components

will correspond to note attack sections, which have been shown to be very impor-

tant to the perception of musical timbre2. It is therefore desirable to firstly be able

to accurately identify these regions, and secondly to ensure that the model is able to

reproduce them with a high degree of fidelity.

This deficiency in the synthesis of attack transients by sinusoidal models was

noted by Serra in [108], where he also suggested a solution: store the original sam-

1Also referred to as the steady-state.
2A good overview of some of the research into the perceptual importance of the temporal evolution
of musical tones is given in [45]
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ples for the note attack region and then splice them together with the remainder of

the synthesised sound. Serra notes that even if the phases are not maintained during

sinusoidal synthesis, the splice can still be performed successfully by using a small

cross-fade between the two sections. No method was proposed for automatically

identifying these attack regions however.

As neither Simpl nor any of its underlying sinusoidal modelling implementa-

tions provide a means to automatically identify transient signal components, this

functionality must be added to our real-time sinusoidal modelling framework in or-

der to improve the quality of the synthesis of transient regions. The attack portion

of a musical note is usually taken to be a region (possibly of varying duration) that

immediately follows a note onset [11, 44, 77, 73]. The automatic identification of

note attack regions can therefore be broken up into two distinct steps:

1. Find note onset locations.

2. Calculate the duration of the transient region following a given note onset.

This chapter deals with step 1, detailing the creation of a new algorithm and

software framework for real-time automatic note onset detection. Section 4.1 de-

fines some terms that are used in the remainder of the Chapter. This is followed

by an overview of onset detection techniques in general in Section 4.2, and then a

description of several onset detection techniques from the literature in Section 4.3.

Section 4.4 introduces Modal, our new open source library for musical onset detec-

tion. In Section 4.6, we suggest a way to improve on these techniques by incorpo-

rating linear prediction [75]. A novel onset-detection method that uses sinusoidal

modelling is presented in Section 4.8. Modal is used to evaluate all of the previously

described algorithms, with the results being given in Sections 4.5, 4.7 and 4.9. This
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evaluation includes details of the performance of all of the algorithms in terms of

both accuracy and computational requirements.

4.1 Definitions

The terms audio buffer and audio frame are distinguished here as follows:

Audio buffer: A group of consecutive audio samples taken from the input signal.

The algorithms in this chapter all use a fixed buffer size of 512 samples.

Audio frame: A group of consecutive audio buffers. All the algorithms described

here operate on overlapping, fixed-sized frames of audio. These frames are

four audio buffers (2,048 samples) in duration, consisting of the most recent

audio buffer which is passed directly to the algorithm, combined with the

previous three buffers which are saved in memory. The start of each frame is

separated by a fixed number of samples, which is equal to the buffer size.

As one of the research goals is to create software that can be used in a live musi-

cal performance context, our definition of real-time software has a slightly different

meaning to its use in some other areas of Computer Science and Digital Signal

Processing. To say that a system runs in real-time, we require two characteristics:

1. Low latency: The latency experienced by the performer should be low enough

that the system is still useful in a live context. While there is no absolute

rule that specifies how much latency is acceptable in this situation, the default

latency of the sound transformation systems that are described in this thesis

is 512 samples (or about 11.6 ms when sampled at 44.1 kHz), which should

meet these requirements in many cases.
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For the evaluation of the real-time onset detection process however, the time

between an onset occurring in the input audio stream and the system correctly

registering an onset occurrence must be no more than 50 ms. This value was

chosen to allow for the difficulty in specifying reference onsets, which is de-

scribed in more detail in Section 4.4. All of the onset-detection schemes that

are described in this chapter have latency of 1,024 samples (the size of two au-

dio buffers), except for the peak amplitude difference method (Section 4.8.2)

which has an additional latency of 512 samples, or 1,536 samples of latency

in total. This corresponds to latency times of 23.2 and 34.8 ms respectively,

at a sampling rate of 44.1 kHz. The reason for the 1,024 sample delay on all

the onset-detection systems is explained in Section 4.2.2, while the cause of

the additional latency for the peak amplitude difference method is given in

Section 4.8.2.

2. Low processing time: The time taken by the algorithm to process one frame of

audio must be less than the duration of audio that is held in each buffer. As

the buffer size is generally fixed at 512 samples, the algorithm must be able

to process a frame in 11.6 ms or less when operating at a sampling rate of

44.1 kHz.

4.2 The general form of onset detection systems

As onset locations are typically defined as being the start of a transient, the problem

of finding their position is linked to the problem of detecting transient intervals in

the signal. Another way to phrase this is to say that onset detection is the process

of identifying which parts of a signal are relatively unpredictable. The majority of
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the onset detection techniques that are described in the literature3 involve an initial

data reduction step, transforming the audio signal into an onset detection function.

Onsets are then found by looking for local maxima in the onset detection function.

4.2.1 Onset detection functions

An onset detection function (ODF) is a representation of the audio signal at a much

lower sampling rate. The ODF usually consists of one value for every frame of

audio and should give a good indication as to the measure of the unpredictability of

that frame. Higher values correspond to greater unpredictability. An example of a

sampled drum phrase and the resulting ODF, which in this case is calculated using

the spectral difference method4, is provided in Figure 4.1.

4.2.2 Peak detection

The next stage in the onset-detection process is to identify local maxima, also called

peaks, in the ODF. The location of each peak is recorded as an onset location if the

peak value is above a certain threshold. While peak picking and thresholding are

described elsewhere in the literature [57], both require special treatment to operate

within the constraints imposed by real-time musical signal processing applications.

Our real-time peak detection process is described by Figure 4.25.

When processing a real-time stream of ODF values, the first stage in the peak-

detection algorithm is to see if the current values are local maxima. In order to make

3A good overview of onset detection systems can be found in [11].
4The spectral difference method for creating ODFs is described in Section 4.3.2
5As our comparison of onset detection systems focuses on evaluating the performance of different
real-time ODFs, the same peak detection and thresholding algorithms are applied to each ODF in
our final evaluation (Section 4.9).
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Figure 4.1: Sample of a drum phrase and the ODF generated from the sample using the spectral
difference method.
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this assessment the current ODF value must be compared to the two neighbouring

values. As we cannot look ahead to get the next ODF value, it is necessary to save

both the previous and the current ODF values and wait until the next value has been

computed to make the comparison. This means that there must always be some

additional latency in the peak-picking process, in this case equal to the buffer size

which is fixed at 512 samples. When working with a sampling rate of 44.1 kHz, this

results in a total system latency of two buffer sizes or approximately 23.2 ms.

Input: ODF value
Output: Whether or not previous ODF value represents a peak (Boolean)

IsOnset←− False;

if PreviousValue > CurrentValue and PreviousValue > TwoValuesAgo then
if PreviousValue > CalculateThreshold() then

IsOnset←− True;

UpdatePreviousV alues();
return IsOnset

Figure 4.2: Real-time ODF peak detection (one buffer delay).

4.2.3 Dynamic threshold calculation

Dynamic thresholds are calculated according to Equation 4.1, where σn is the thresh-

old value at frame n, O[nm] is the previous m values of the ODF at frame n, λ is a

positive median weighting value, and α is a positive mean weighting value.

σn = λ×median(O[nm]) + α×mean(O[nm]) +N. (4.1)

This process is similar to the median/mean function that is described in [18]. The

only difference is the addition of the term N , which is defined in Equation 4.2,
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where v is the value of the largest peak detected so far and w is a weighting value.

For indefinite real-time use it is advisable to either set w = 0 or to update w at

regular intervals to account for changes in dynamic level.

N = w × v, (4.2)

An example of the dynamic threshold (dashed line) generated from the ODF of

a clarinet sample is shown in Figure 4.3. The threshold was computed according

to Equations 4.1 and 4.2 with m = 7, λ = 1.0, α = 2.0 and w = 0.05. Red

circles indicate ODF peaks that are above the threshold and are therefore assumed

to indicate note onset locations.

Figure 4.3: A clarinet sample, an ODF calculated using the complex domain method and the result-
ing dynamic threshold values (dashed line). Circles indicate ODF peaks that are above the threshold
and are therefore assumed to indicate note onset locations.
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4.3 Onset detection functions

This section reviews several existing approaches to creating ODFs that can be used

in a real-time situation. Each technique operates on frames of N samples, with the

start of each frame being separated by a fixed buffer size of h samples. The ODFs

return one value for every frame, corresponding to the likelihood of that frame con-

taining a note onset. A full analysis of the detection accuracy and computational

efficiency of each algorithm is given in Section 4.9.

4.3.1 Energy ODF

The energy ODF [30] is the most conceptually simple of the surveyed ODF meth-

ods, and is also the most computationally efficient. It is based on the premise that

musical note onsets often have more energy than the steady-state component of the

note. This is because for many acoustic instruments, this corresponds to the time

at which the excitation is applied. Larger changes in the amplitude envelope of the

signal should therefore coincide with onset locations. For each frame, the energy is

given by Equation 4.3 where E(l) is the energy of frame l, and x(n) is the value of

the n-th sample in the frame.

E(l) =
N∑

n=0

x(n)2 (4.3)

The value of the energy ODF (ODFE) for a frame l is the absolute value of the

difference in energy values between consecutive frames l − 1 and l, as defined by

Equation 4.4.

ODFE(l) = |E(l)− E(l − 1)| (4.4)
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4.3.2 Spectral difference ODF

Many recent techniques for creating ODFs have tended towards identifying time-

varying changes in a frequency domain representation of an audio signal. These

approaches have proven to be successful in a number of areas, such as in detect-

ing onsets in polyphonic signals [82] and in detecting “soft” onsets created by in-

struments such as the bowed violin which do not have a percussive attack [31].

The spectral difference ODF (ODFSD) is calculated by examining frame-to-frame

changes in the STFT spectra of an audio signal and so falls into this category.

The spectral difference [31] is the absolute value of the change in magnitude

between corresponding bins in consecutive frames. As a new musical onset will

often result in a sudden change in the frequency content in an audio signal, large

changes in the average spectral difference of a frame will often correspond with

note onsets. The spectral difference ODF is thus created by summing the spectral

difference across all bins in a frame. This is defined by Equation 4.5 where |Xl(k)|

is the magnitude of the k-th frequency bin in the l-th frame.

ODFSD(l) =

N/2∑

k=0

||Xl(k)| − |Xl−1(k)|| (4.5)

4.3.3 Complex domain ODF

Another way to view the construction of an ODF is in terms of predictions and

deviations from predicted values. For every spectral bin in the Fourier transform

of a frame of audio samples, the spectral difference ODF predicts that the next

magnitude value will be the same as the current one. In the steady state of a musical

note, changes in the magnitude of a given bin between consecutive frames should
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be relatively low, and so this prediction should be accurate. In transient regions,

these variations should be more pronounced and so the average deviation from the

predicted value should be higher, resulting in peaks in the ODF.

Instead of making predictions using only the bin magnitudes, the complex do-

main ODF [12] attempts to improve the prediction for the next value of a given bin

using combined magnitude and phase information. The magnitude prediction is the

magnitude value from the corresponding bin in the previous frame. In polar form,

we can write this predicted value as

R̂l(k) = |Xl−1(k)| (4.6)

The phase prediction is formed by assuming a constant rate of phase change be-

tween frames. This is given by Equation 4.7, where princarg maps the phase to the

range [−π, π] and ϕl(k) is the phase of the k-th bin in the l-th frame.

φ̂l(k) = princarg[2ϕl−1(k)− ϕl−2(k)] (4.7)

If Rl(k) and φl(k) are the actual values of the magnitude and phase of bin k

in frame l respectively, then the deviation between the prediction and the actual

measurement is the Euclidean distance between the two complex phasors, defined

in Equation 4.8.

Γl(k) =

√
Rl(k)2 + R̂l(k)2 − 2Rl(k)R̂l(k) cos(φl(k)− φ̂l(k)) (4.8)

The complex domain ODF (ODFCD) is the sum of these deviations across all the
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bins in a frame, as given in Equation 4.9.

ODFCD(n) =

N/2∑

k=0

Γl(k) (4.9)

4.4 Modal

A common way to evaluate the accuracy of an onset detection system is to use it to

analyse a set of audio samples and compare the computed note onset locations with

the “true” onset locations (also referred to as reference onsets) for each sample [83].

An onset could then be said to be correctly detected if it lies within a chosen time

interval around the reference onset. This time interval is referred to as the detection

window.

Obtaining the reference onset locations is not a straight-forward process how-

ever. In reality it is difficult to give exact values for reference onsets from natural

sounds, particularly in the case of instruments with a soft attack such as the flute

or bowed violin. Finding these reference onsets generally involves human anno-

tation of audio samples, a process which inevitably leads to inconsistencies and

inaccuracies. Leveau et al. found that the annotation process is dependent on the

listener, the software used to label the onsets and the type of music being labelled

[72]. Vos and Rasch [122] make a distinction between the Physical Onset Time and

the Perceptual Onset Time of a musical note, which again can lead to differences

between the values selected as reference onsets, particularly if there is a mixture of

natural and synthetic sounds. To compensate for these limitations of the annotation

process, we follow the decision made in a number of recent studies [11, 115, 28] to

use a detection window that is 50 ms in duration when evaluating the performance
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of onset detection algorithms.

The evaluation process requires two components:

1. A set of audio samples with accurate reference onset values. Preferably these

samples will have a license that allows them to be freely distributed so that

other researchers can both verify the results of our evaluation and also the

samples in their own work.

2. Software implementations of the general onset detection system, implementa-

tions of each ODF, and a program that compares the computed onset locations

with the reference onset values.

These components are discussed in Sections 4.4.1, and 4.4.2. The results of the

evaluation are given in Section 4.5.

4.4.1 Reference samples

When seeking to evaluate the ODFs that are described in Section 4.3, to the best of

our knowledge the Sound Onset Labellizer (SOL) [72] was the only collection of

reference samples that had been freely released to the public. Unfortunately it was

not available at the time of evaluation. The SOL reference set also makes use of

files from the RWC database [41], which although publicly available is not free and

does not allow free redistribution. This lead us to create our own set of reference

samples, which together with our onset detection software constitutes the Musical

Onset Database And Library (Modal).

The Modal reference set is a collection of samples which all have creative com-

mons licensing allowing for free reuse and redistribution. It currently consists of 71
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samples which are quite diverse in nature, covering percussive and non-percussive

sounds from a mixture of western orchestral instruments, contemporary western in-

struments and vocal samples. This sample set was selected to ensure that a wide

variety of sound sources with different onset types (both “soft” and “hard” onsets)

were considered in the evaluation process. Table 4.1 provides a list of the samples

in the modal database together with a description of the sound sources that comprise

each sample6.

The modal reference set includes hand-annotated onset locations for each audio

sample. There are 501 reference onset locations in total, with all onset locations

annotated by a single listener. The samples and all associated metadata are stored

and transmitted as a HDF5 database [47]. Python scripts are provided for adding

samples (in wav format) and metadata to the database and for extracting samples

and metadata.

Reference onset locations can be found using any audio playback software7 and

then added to the database. However to simplify this process a small GUI applica-

tion is included with Modal that can playback audio files and mark specific sample

values as being onset locations. This application is written in Python using the Qt

framework [86]. A screenshot of the application is given in Figure 4.4.

6The majority of the sounds are taken from the OLPC free sample library [90]. The filenames have
not been changed.

7Software that provides visualisations of the waveform and that allows for sample accurate adjust-
ment of the playback position is desirable however.
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Figure 4.4: Modal’s Onset Editor.
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Sample Name Description

bass-elec-C-lo.wav A single note played on an electric bass
guitar.

bass-elec2-E-lick.wav A sequence of 16 notes played on an
electric bass guitar.

bell-octave0.wav A single note played on a bell.

bell-octave1.wav A single note played on a bell.

bell-octave2.wav A single note played on a bell.

child-imitate-owl.wav A vocal sample consisting of a child im-
itating an owl call (2 sound events).

child-imitate-shaker-hi-up.wav A vocal sample consisting of a child im-
itating a shaker (1 sound event).

clarinet-C-octave0.wav A single note played on a clarinet.

clarinet-C-octave0-vib.wav A single note (with vibrato) played on a
clarinet.

conga-muffled-1.wav A single hit on a conga drum (muted).

conga-open-1.wav A single hit on a conga drum.

cymbal-hihat-foot-open.wav A single hit on a hi-hat cymbal.

cymbal-hihat-lick.wav A sequence of 8 hits on a hi-hat cymbal.

cymbal-hihat-openclose-stick.wav Two hits on a hi-hat cymbal (1 open and
1 closed).

cymbal-splash-stick.wav A single hit on a cymbal.

drum-bass-hi-1.wav A single hit on a bass drum.

drum-snare-drag.wav A sequence of 3 hits on a snare drum.

drum-snare-roll-short.wav A roll on a snare drum (9 hits).

drum-surdo-large-lick.wav A sequence of 9 hits on a surdo drum.

female-glissdown.wav A female vocal glissando.

femalevoices_aa2_A3.wav Female voices singing a single note.
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femalevoices_oo2_C#4.wav Female voices singing a single note.

flugel-C.wav A single note played on a flugelhorn.

flugel-lick.wav A sequence of 8 notes played on a
flugelhorn.

flute-alto-C.wav A single note played on a flute.

flute-alto-lick.wav A sequence of 15 notes played on a
flute.

glitch_groove_7.wav A sequence of 30 percussive sounds that
are electronically generated and/or ma-
nipulated.

guitar-ac-E-octave1.wav A single note played on an acoustic gui-
tar.

guitar_chord1.wav A single chord played on an acoustic
guitar.

guitar_chord2.wav A single chord played on an acoustic
guitar.

guitar_chord3.wav A single chord played on an acoustic
guitar.

guitar-classical-E-octave1-
vib.wav

A single note (with vibrato) played on a
classical guitar.

guitar-classical-lick.wav A sequence of 2 notes and 3 chords
played on a classical guitar.

guitar-elec-hollow-lick.wav A sequence of 15 notes played on an
electric guitar.

guitar-elec-solid-dist-E-
octave1-long.wav

A single note played on an electric gui-
tar (with distortion).

guitar-elec-solid-dist-EBfifths-
octave1-long.wav

A double stop played on an electric gui-
tar (with distortion).

guitar-elec-solid-dist-lick.wav A sequence of 8 notes played on an elec-
tric guitar (with distortion).
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guitar-elec-solid-lick.wav A sequence of 9 overlapping notes and
chords played on an electric guitar.

guitar_riff_cutup1.wav A sequence of 17 chords played on an
acoustic guitar.

guitar_riff_cutup3.wav A sequence of 12 chords played on an
acoustic guitar.

malevoice_aa_A2.wav A male voice singing a single note.

malevoices_oo2_C#4.wav Male voices singing a single note.

metal_beat_1.wav A sequence of 11 percussive hits on a
metallic surface.

metal_beat_2.wav A sequence of 12 percussive hits on a
metallic surface.

mix1.wav A sequence of 9 notes played on a com-
bination of string and percussive instru-
ments.

mix2.wav A sequence of 7 notes played on a
combination of woodwind, string and
pitched percussive instruments.

mix3.wav A sequence of 4 notes played using a
combination of string instruments and
voices.

mix4.wav A sequence of 26 notes played using
a combination of string instruments,
woodwind instruments, percussive in-
struments and voices.

piano_B4.wav A single note played on a piano.

piano_chord.wav A broken chord (4 notes) played on a
piano.

piano_G2.wav A single note played on a piano.

piano-studio-octave1.wav A single note played on a piano.
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prep_piano_C0_2.wav A single note played on a prepared pi-
ano.

prep_pianoE0_2.wav A single note played on a prepared pi-
ano.

prep_piano_hit1.wav A single chord played on a prepared pi-
ano.

sax-bari-C-lo.wav A single note played on a baritone sax-
ophone.

sax-bari-lick.wav A sequence of 9 notes played on a bari-
tone saxophone.

sax-tenor-lick.wav A sequence of 9 notes played on a tenor
saxophone.

shaker.wav A recording of a shaker (2 sound
events).

shenai-C.wav A sequence of 2 notes played on a
shehnai.

singing-female1-C-hi.wav A single note sung by a female voice.

singing-womanMA-C-oo.wav A single note sung by a female voice.

tabla-lick.wav A sequence of 6 notes played on a tabla.

tabla-lick-voiceanddrums.wav A sequence of 6 notes played using a
combination of tabla and voice.

techno_sequence3.wav A sequence of 109 electronic sounds.

thisIsTheSoundOfAVocoder
_edited.wav

A sequence of 14 notes created by
processing a speech sample using a
vocoder.

timbale-lick.wav A sequence of 13 notes played on tim-
bales.

trpt-C-lo.wav A single note played on a trumpet.

trpt-lick.wav A sequence of 13 notes played on a
trumpet.
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twangs_1.wav A sequence of 10 electronic notes.

vocoder1.wav A sequence of 31 notes created by
processing a speech sample using a
vocoder.

Table 4.1: Modal database samples.

4.4.2 Modal software

As well as containing a database of samples and reference onset locations, Modal

includes software implementations of all of the ODFs that are discussed in this

chapter as well an implementation of the real-time onset detection system that is

presented in Section 4.2. ODFs can be computed in a real-time (streaming) mode

or in non-real-time. The software is written in C++ and Python and can be used

as a library in C++ applications or loaded as a Python module. Python code for

plotting onset data is also provided. The Modal software library is free software

and is available under the terms of the GNU General Public License (GPL).

Modal onset detection example

Listing 4.1 consists of a Python program that uses Modal to detect onsets in a short

audio sample. A piano sample is read on line 7. An instance of the Modal spectral

difference ODF class is created on line 12, and configured on lines 13-15 to use a

hop size of 512 samples, an analysis frame size of 2048 samples and to use the same

sampling rate as the input file. A NumPy array that will hold the computed ODF

values is then allocated on line 16, and passed to the ODF object’s process method

along with the input audio file on line 17. Onset locations are then calculated us-
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ing a Modal OnsetDetection object. The returned onset locations are relative to

the ODF which consists of 1 value for every hop_size samples. To get the onset

location in samples, these values are therefore multiplied by the hop size.

The results of the onset detection process are plotted on lines 24-51, with the

image that is produced shown in Figure 4.5. Three subplots are shown: the first

(top) is the original waveform. The second (middle) plot shows the normalised

ODF (solid line), the dynamic threshold (horizontal dashed line) and the detected

onsets (vertical dashed lines). The final plot (bottom) shows the onset locations

plotted against the original waveform.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import simpl
4 import modal
5
6
7 audio , sampling_rate = simpl.read_wav(’piano.wav’)
8
9 frame_size = 2048

10 hop_size = 512
11
12 odf = modal.SpectralDifferenceODF ()
13 odf.set_hop_size(hop_size)
14 odf.set_frame_size(frame_size)
15 odf.set_sampling_rate(sampling_rate)
16 odf_values = np.zeros(len(audio) / hop_size , dtype=np.double)
17 odf.process(audio , odf_values)
18
19 onset_det = modal.OnsetDetection ()
20 onsets = onset_det.find_onsets(odf_values) * hop_size
21
22 # plot the original sample , the ODF and the threshold and onset location(s),
23 # and the original file with the detected onset location(s)
24 fig = plt.figure (1)
25
26 plt.subplot(3, 1, 1)
27 plt.ylim([-1.1, 1.1])
28 plt.title(’Original waveform ’)
29 plt.xlabel(’Sample Number ’)
30 plt.ylabel(’Sample Value’)
31 plt.tick_params(labelsize =14)
32 plt.plot(audio)
33
34 plt.subplot(3, 1, 2)
35 plt.title(’ODF , threshold and detected onset location(s)’)
36 plt.xlabel(’Sample Number ’)
37 plt.ylabel(’ODF Value’)
38 modal.plot_detection_function(odf_values , hop_size=hop_size)
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39 modal.plot_detection_function(onset_det.threshold , hop_size=hop_size ,
40 colour=’green’, linestyle=’--’)
41 modal.plot_onsets(onsets , min_height =0)
42
43 plt.subplot(3, 1, 3)
44 plt.title(’Original waveform and detection onset location(s)’)
45 plt.xlabel(’Sample Number ’)
46 plt.ylabel(’Sample Value’)
47 plt.ylim([-1.1, 1.1])
48 modal.plot_onsets(onsets)
49 plt.plot(audio)
50
51 plt.show()

Listing 4.1: Detecting onsets in an audio file using Modal.

Modal software overview

Lists of the modules, classes and functions that are provided in Modal are given in

Tables 4.2 and 4.3. Functions that are marked with an asterisk (*) currently have

no C++ implementation and so are only available from Python8. Classes begin with

capital letters while functions start with lowercase letters. The full source code to

Modal can be found on the accompanying CD.

8In the case of the num_onsets and samples functions this is because they depend on the third-
party h5py Python library. The functions plot_onsets and plot_detection_function depend
on the Python Matplotlib library. The autocorrelation and covariance functions were not
implemented in C++ as it was found that obtaining linear prediction coefficients using the Burg
method resulted in improved detection accuracy (linear prediction is discussed in more detail in
Section 4.6).
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Figure 4.5: Figure produced by the onset detection example that is given in Listing 4.1. The first plot
(top) is the original waveform (a piano sample). The second (middle) plot shows the normalised ODF
(solid line), the dynamic threshold (horizontal dashed line) and the detected onsets (vertical dashed
lines). The final plot (bottom) shows the onset locations plotted against the original waveform.
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Python Module Classes and Functions in Module

modal.db num_onsets

samples

modal.detectionfunctions OnsetDetectionFunction

EnergyODF

SpectralDifferenceODF

ComplexODF

LinearPredictionODF

LPEnergyODF

LPSpectralDifferenceODF

LPComplexODF

PeakAmpDifferenceODF

lpf

moving_average

savitzky_golay

normalise

modal.detectionfunctions.lp autocorrelation

covariance

burg

predict

modal.detectionfunctions.mq MQPeakDetection

MQPartialTracking

Peak

modal.onsetdetection OnsetDetection

RTOnsetDetection
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modal.ui plot_onsets

plot_detection_function

Table 4.2: Modal Python modules.

Class or Function Description

num_onsets* Get the total number of reference onsets
that are currently in the Modal database.

samples* Get samples from the Modal database.

OnsetDetectionFunction Base class for all onset detection func-
tions, containing common variables and
accessor methods.

EnergyODF The energy ODF (Section 4.3.1).

SpectralDifferenceODF The spectral difference ODF
(Section 4.3.2).

ComplexODF The complex ODF (Section 4.3.3)

LinearPredictionODF Base class for all onset detection func-
tions that use linear prediction.

LPEnergyODF The energy LP ODF (Section 4.6.2).

LPSpectralDifferenceODF The spectral difference LP ODF
(Section 4.6.3).

LPComplexODF The complex LP ODF (Section 4.6.4).

PeakAmpDifferenceODF The peak amplitude difference ODF
(Section 4.8.2).

autocorrelation* Compute linear prediction coefficients
using the autocorrelation method [58].

covariance* Compute linear prediction coefficients
using the covariance method [75].

burg Compute linear prediction coefficients
using the Burg method [62].
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predict Predict the next value of a signal us-
ing the supplied linear prediction coef-
ficients.

MQPeakDetection Peak detection using the MQ method.

MQPartialTracking Partial tracking using the MQ method.

Peak Class representing a spectral peak.

OnsetDetection Detect onsets using a supplied ODF
(non-real-time).

RTOnsetDetection Detect onsets from a stream of ODF val-
ues (real-time).

plot_onsets* Plot onset locations using Matplotlib.

plot_detection_function* Plot ODFs using Matplotlib.

Table 4.3: Modal classes and functions (available from both C++ and Python).

4.5 Initial evaluation results

This section presents the detection accuracy and performance benchmarks for the

energy ODF, spectral difference ODF and complex ODF.

4.5.1 Onset detection accuracy

The detection accuracy of the ODFs was measured by comparing the onsets de-

tected using each method with the reference samples in the Modal database. To be

marked as ‘correctly detected’, the onset must be located within 50 ms of a refer-

ence onset. Merged or double onsets were not penalised. The database currently

contains 501 onsets from annotated sounds that are mainly monophonic and so this

must be taken into consideration when viewing the results. The annotations were
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also all made by one person, and while it has been shown in [72] that this is not

ideal, the chosen detection window of 50 ms should compensate for some of the

inevitable inconsistencies.

The results are summarised by three measurements that are common in the field

of Information Retrieval [82]: the precision (P ), the recall (R), and the F-measure

(F ) defined here as follows:

P =
C

C + fp
(4.10)

R =
C

C + fn
(4.11)

F =
2PR

P +R
(4.12)

where C is the number of correctly detected onsets, fp is the number of false pos-

itives (detected onsets with no matching reference onset), and fn is the number of

false negatives (reference onsets with no matching detected onset).

Every reference sample in the database was streamed one frame at a time to

each ODF, with ODF values for each frame being passed immediately to a real-time

peak-picking system (Algorithm 4.2). Dynamic thresholding was applied according

to Equation 4.1, with λ = 1.0, α = 2.0, and w in Equation 4.2 set to 0.05. A median

window of seven previous values was used. These parameters were kept constant

for each ODF.

The precision, recall and F-measure results for each ODF are given in Figures

4.6, 4.7 and 4.8, respectively. The precision value for the energy ODF is signif-

icantly lower than the values for the spectral difference and complex ODFs. The

energy and spectral difference ODFs have similar recall values while the complex

ODF fares slightly worse in this metric. For the overall F-measure however, the
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spectral difference ODF is marginally ahead of the complex ODF, with the energy

ODF having the lowest F-measure in our evaluation.

Accuracy results by sound type

It is useful to consider how the detection accuracy of each ODF changes with re-

gards to changes in the characteristics of the input sound, as it may be possible

to improve performance in domains where the class of input sound is restricted.

The metadata for the reference samples in the Modal database includes a “type”

classification. Each sample is assigned to one of four type categories: non-pitched

percussive (NPP), pitched percussive (PP), pitched non-percussive (PNP) or mixed

(M) (consisting of multiple sound sources that belong to different type categories).

Table 4.4 shows the F-measure results for each ODF, categorised according to

sound type. The methods perform quite similarly when dealing with non-pitched

percussive sound and mixed sound types. However, the spectral difference ODF and

complex ODF show a noticeable improvement when analysing pitched percussive

and pitched non-percussive sound types. In particular, there is a noticeable decrease

in accuracy for the energy ODF when working with pitched non-percussive sounds

(this category contains the majority of the “soft” onsets in the Modal reference set).

NPP PP PNP M
ODFE 0.61 0.67 0.49 0.66
ODFSD 0.62 0.72 0.62 0.64
ODFCD 0.60 0.70 0.60 0.65

Table 4.4: F-measure results for each ODF, categorised according to sound “type”. The sound types
are non-pitched percussive (NPP), pitched percussive (PP), pitched non-percussive (PNP) and mixed
(M).
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Figure 4.6: Precision results for the energy ODF, spectral difference ODF and the complex ODF.

Figure 4.7: Recall results for the energy ODF, spectral difference ODF and the complex ODF.
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Figure 4.8: F-Measure results for the energy ODF, spectral difference ODF and the complex ODF.

4.5.2 Onset detection performance

In Table 4.5, we give the worst-case number of floating-point operations per second

(FLOPS) required by each ODF to process real-time audio streams, based on our

implementations in the Modal library. This analysis does not include data from the

setup/initialisation periods of any of the algorithms, or data from the peak detection

stage of the onset-detection system. As specified in Section 4.1, the audio frame size

is 2,048 samples, the buffer size is 512 samples, and the sampling rate is 44.1 kHz.

These totals were calculated by counting the number of floating-point operations

required by each ODF to process 1 frame of audio, where we define a floating-point

operation to be an addition, subtraction, multiplication, division or assignment in-

volving a floating-point number. As we have a buffer size of 512 samples measured
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at 44.1 kHz, we have 86.133 frames of audio per second, and so the number of op-

erations required by each ODF per frame of audio was multiplied by 86.133 to get

the FLOPS total for the corresponding ODF.

To simplify the calculations, the following assumptions were made when calcu-

lating the totals:

• As we are using the real fast Fourier transform (FFT) computed using the

FFTW3 library [38], the processing time required for a FFT is 2.5N log2(N)

where N is the FFT size, as given in [37].

• The complexity of basic arithmetic functions in the C++ standard library such

as√, cos, sin, and log isO(M), whereM is the number of digits of precision

at which the function is to be evaluated.

• All integer operations can be ignored.

• All function call overheads can be ignored.

As Table 4.5 shows, the energy ODF (ODFE) requires far less computation than

any of the others. The spectral difference ODF is the second fastest, needing about

half the number of operations that are required by the complex domain method.

FLOPS
ODFE 529,718
ODFSD 7,587,542
ODFCD 14,473,789

Table 4.5: Number of floating-point operations per second (FLOPS) required by the energy, spectral
difference and complex ODFs to process real-time audio streams.

To give a more intuitive view of the algorithmic complexity, in Table 4.6, we also

give the estimated real-time CPU usage for each ODF given as a percentage of the
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maximum number of FLOPS that can be achieved by two different processors: an

Intel Core 2 Duo and an Analog Devices ADSP-TS201S (TigerSHARC). The Core

2 Duo was chosen as it is a relatively common PC processor and will be a good

indicator of the performance of the algorithms using current standard consumer

hardware. The ADSP-TS201S was selected as it scores relatively well on the BDTI

DSP Kernel Benchmarks [13] and so provides an indication of how the algorithms

would perform on current embedded processors. The Core 2 Duo has a clock speed

of 2.8 GHz, a 6 MB L2 cache and a bus speed of 1.07 GHz, providing a theoretical

best-case performance of 22.4 GFLOPS [51]. The ADSP-TS201S has a clock speed

of 600 MHz and a best-case performance of 3.6 GFLOPS [5]. Any value that is less

than 100% in Table 4.6 shows that the ODF can be calculated in real-time on this

processor.

Core 2 Duo (%) ADSP-TS201S (%)
ODFE 0.002 0.015
ODFSD 0.034 0.211
ODFCD 0.065 0.402

Table 4.6: Estimated real-time CPU usage for the energy, spectral difference and complex ODFs,
shown as a percentage of the maximum number of FLOPS that can be achieved on two processors:
an Intel Core 2 Duo and an Analog Devices ADSP-TS201S (TigerSHARC).

4.5.3 Initial evaluation conclusions

The F-measure results (Figure 4.8) for the three ODFs that are described in this sec-

tion are lower than those given elsewhere in the literature, but this was expected as

the peak-picking and thresholding stages are significantly more challenging when

forced to meet our real-time constraints. The various parameter settings can have

a large impact on overall performance [28]. We tried to select a parameter set that
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gave a fair reflection on each algorithm, but it must be noted that every method can

probably be improved by some parameter adjustments, especially if prior knowl-

edge of the sound source is available.

The spectral difference method generally performs the best on our sample set,

with an average F-measure of 0.66. It is considerably more computationally ex-

pensive than the energy ODF but is still well within the real-time limits of modern

hardware. The next section describes our first attempt to improve upon these accu-

racy measurements.

4.6 Improving onset detection function estimations us-

ing linear prediction

The ODFs that are described in Section 4.3, and many of those found elsewhere in

the literature [11], are trying to distinguish between the steady-state and transient re-

gions of an audio signal by making predictions based on information about the most

recent frame of audio and one or two preceding frames. In this section, we present

methods that use the same basic signal information to the approaches described in

Section 4.3. Instead of making predictions based on just one or two frames of these

data however, an arbitrary number of previous values are combined with linear pre-

diction (LP) to improve the accuracy of the estimates. The ODF is then calculated

as the absolute value of the differences between the actual frame measurements and

the new predictions. The ODF values are low when the prediction is accurate, but

larger in regions of the signal that are more unpredictable, which should correspond

with note onset locations.
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This is not the first time that LP errors have been used to create an ODF. The

authors in [71] describe a somewhat similar system in which an audio signal is first

filtered into six non-overlapping sub-bands. The first five bands are then decimated

by a factor of 20:1 before being passed to a LP error filter, while just the ampli-

tude envelope is taken from the sixth band (everything above the note B7 which is

3,951 kHz). Their ODF is the sum of the five LP error signals and the amplitude

envelope from the sixth band.

Our approach differs in a number of ways. Here we show that LP can be used to

improve the detection accuracy of the three ODFs that are described in Section 4.39.

As this approach involves making predictions about the time-varying changes in

signal features (energy, spectral difference and complex phasor positions) rather

than in the signal itself, the same technique could be applied to many existing ODFs

from the literature. It can therefore be viewed as an additional post-processing step

that can potentially improve the detection accuracy of many existing ODFs. Our

algorithms are suitable for real-time use, and the results were compiled from real-

time data. In contrast, the results given in [71] are based on off-line processing, and

include an initial pre-processing step to normalise the input audio files, and so it is

not clear how well this method performs in a real-time situation.

The LP process that is used in this chapter is described in Section 4.6.1. In

Sections 4.6.2, 4.6.3 and 4.6.4, we show that this can be used to create new ODFs

based on the energy, spectral difference and complex domain ODFs respectively.

9Onset detection results are provided in at the end of this section
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4.6.1 Linear prediction

In the LP model, also known as the autoregressive model, the current input sample

x(n) is estimated by a weighted combination of the past values of the signal. The

predicted value x̂(n) is computed by FIR filtering according to Equation 4.13, where

O is the order of the LP model and ak are the prediction coefficients.

x̂(n) =
O∑

k=1

akx(n− k) (4.13)

The challenge is then to calculate the LP coefficients. There are a number of

methods given in the literature, the most widespread among which are the autocor-

relation method [58], covariance method [75] and the Burg method [62]. Each of

the three methods was evaluated, but the Burg method was selected as it produced

the most accurate and consistent results. Like the autocorrelation method, it has a

minimum phase, and like the covariance method it estimates the coefficients on a

finite support [62]. It can also be efficiently implemented in real time [58].

The Burg algorithm

The LP error is the difference between the predicted and the actual values.

e(n) = x(n)− x̂(n) (4.14)

The Burg algorithm minimises the average of the forward prediction error fm(n)

and the backward prediction error bm(n). The initial (order 0) forward and back-

ward errors are given by

f0(n) = x(n) (4.15)
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b0(n) = x(n) (4.16)

over the interval n = 0, . . . , N − 1, where N is the block length. For the remaining

m = 1, . . . , p, the m-th coefficient is calculated from

km =
−2
∑N−1

n=m[fm−1(n)bm−1(n− 1)]∑N−1
n=m[f 2

m−1(n) + b2m−1(n− 1)]
(4.17)

and then the forward and backward prediction errors are recursively calculated from

fm(n) = fm−1(n)− kmbm−1(n− 1) (4.18)

for n = m+ 1, . . . , N − 1, and

bm(n) = bm−1(n− 1)− kmfm−1(n) (4.19)

for n = m, . . . , N − 1, respectively. Pseudocode for this process is given in

Figure 4.9, taken from [62].

f ←− x ;
b←− x ;
a←− x ;

for m← 0 to p− 1 do
fp←− f without its first element ;
bp←− b without its last element ;
k ←− −2bp · fp/(fp · fp+ fp · fp) ;
f ←− fp+ k · bp ;
b←− bp+ k · fp ;
a←− (a[0], a[1], . . . , a[m], 0) + k(0, a[m], a[m− 1], . . . , a[0]);

Figure 4.9: The Burg method.
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4.6.2 Energy LP ODF

The energy ODF is derived from the absolute value of the energy difference between

two frames. This can be viewed as using the energy value of the first frame as an

estimate of the energy of the second, with the difference being the prediction error.

We can therefore try and improve this estimate by taking the energy values from

the previous O frames, using them to create a set of LP coefficients, and then using

these coefficients to compute an estimate of the signal energy for the current frame.

The O previous frame energy values can be represented using the sequence

E(l − 1), E(l − 2), . . . , E(l −O).

Using (4.15) – (4.19),O coefficients are calculated based on this sequence, and then

a one-sample prediction is made using (4.13). Hence, for each frame, the energy

LP ODF (ODFELP) is given by

ODFELP(l) = |E(l)− PE(l)| (4.20)

where PE(n) is the predicted energy value for frame l.

4.6.3 Spectral difference LP ODF

A similar methodology can be applied to the spectral difference and complex do-

main ODFs. The spectral difference ODF is formed from the absolute value of the

magnitude differences between corresponding bins in adjacent frames. This can

therefore be viewed as a prediction that the magnitude in a given bin will remain

constant between adjacent frames, with the magnitude difference being the predic-

139



tion error. In the spectral difference LP ODF (ODFSDLP), the predicted magnitude

value for each of the k bins in frame l is calculated by taking the magnitude values

from the corresponding bins in the previous O frames, using them to find O LP co-

efficients then filtering the result with (4.13). Hence, for each k in l the magnitude

prediction coefficients are formed using (4.15) – (4.19) on the sequence

|Xl−1(k)|, |Xl−2(k)|, . . . , |Xl−O(k)|.

If PSD(k, l) is the predicted spectral difference for bin k in l then

ODFSDLP(l) =

N/2∑

k=0

||Xl(k)| − PSD(k, l)|. (4.21)

As is shown in Section 4.7, this is a significant amount of extra computation

per frame compared with the ODFSD given by (4.5). However if the chosen LP

model order O is low enough then the algorithm can still be run in a real-time

context using commodity hardware. We found that an order of 5 was enough to

significantly improve the detection accuracy while still comfortably meeting the

real-time processing requirements.

4.6.4 Complex domain LP ODF

The complex domain ODF works by measuring the Euclidean distance between the

predicted and the actual complex phasors for a given bin. There are a number of

different ways by which LP could be applied in an attempt to improve this estimate.

The bin magnitudes and phases could be predicted separately, based on their values

over the previous O frames, and then combined to form an estimated phasor value
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for the current frame. Another possibility would be to only use LP to estimate either

the magnitude or the phase parameters, but not both.

However we found that the biggest improvement came from using LP to esti-

mate the value of the Euclidean distance that separates the complex phasors for a

given bin between consecutive frames. Hence, for each bin k in frame l, the com-

plex distances between the k-th bin in each of the lastO frames are used to calculate

the LP coefficients. If Rl(k) is the magnitude of the k-th bin in frame l, and φl(k)

is the phase of the bin, then the distance between the k-th bins in frames l and l− 1

is give by Equation 4.22.

Γl(k) =
√
Rl(k)2 +Rl−1(k)2 − 2Rl(k)Rl−1(k) cos(φl(k)− φl−1(k)) (4.22)

LP coefficients are formed from the values

Γl−1(k),Γl−2(k), . . . ,Γl−O(k)

using (4.15) – (4.19), and predictions PCD(k, l) are calculated using (4.13). The

complex domain LP ODF (ODFCDLP) is then given by Equation 4.23.

ODFCDLP(l) =

N/2∑

k=0

|Γl(k)− PCD(k, l)| (4.23)

4.7 Evaluation of linear prediction ODFs

This section presents the detection accuracy and performance benchmarks for the

energy LP ODF, spectral difference LP ODF and complex LP ODF, and compares

them with the results for the ODFs from the literature. The results were obtained
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using the same process that was described in Section 4.5. The only change is the

addition of a LP model order parameter for the energy LP, spectral difference LP

and complex LP ODFs, which was set to 5.

4.7.1 Onset detection accuracy

The precision, recall and F-measure results for each ODF are given in Figures 4.10,

4.11 and 4.12, respectively. The blue bars give the results for the methods from the

literature, while the results for our new LP methods are given by the brown bars.

The addition of LP noticeably improves the precision value for each ODF to which

it is applied. LP has improved the recall value for the energy ODF but has made the

recall result of the spectral difference and complex domain ODFs slightly worse.

However for the general F-measure result, all ODFs are improved by the addition

of LP, with the spectral difference LP ODF performing best of all.

Accuracy results by sound type

Table 4.7 shows the F-measure results for each ODF, categorised according to sound

type. The addition of linear prediction has generally improved the detection accu-

racy on all sound types for all ODFs, with the only notable exception being the

degradation in the F-measure result for the complex ODF when analysing non-

pitched percussive sounds. The most significant accuracy gains are in the detection

of onsets in pitched percussive sounds, where the new linear prediction methods all

perform well. There are also significant improvements in the accuracy of onset de-

tection in signals containing mixed sound types for the spectral difference LP ODF

and complex domain LP ODF.
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Figure 4.10: Precision results for the energy ODF, spectral difference ODF, complex ODF and their
corresponding LP-based methods.

Figure 4.11: Recall results for the energy ODF, spectral difference ODF, complex ODF and their
corresponding LP-based methods.
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Figure 4.12: F-Measure results for the energy ODF, spectral difference ODF, complex ODF and
their corresponding LP-based methods.

NPP PP PNP M
ODFE 0.61 0.67 0.49 0.66
ODFSD 0.62 0.72 0.62 0.64
ODFCD 0.60 0.70 0.60 0.65
ODFELP 0.69 0.90 0.59 0.65
ODFSDLP 0.63 0.91 0.62 0.79
ODFCDLP 0.55 0.89 0.59 0.76

Table 4.7: F-measure results for each ODF, categorised according to sound “type”. The sound types
are non-pitched percussive (NPP), pitched percussive (PP), pitched non-percussive (PNP) and mixed
(M).

4.7.2 Onset detection performance

The worst-case number of FLOPS that are required by our new LP-based ODFs

to process audio streams are given in Table 4.8 and the estimated CPU usage is

given in Table 4.9. The LP-based ODFs are all significantly slower than their coun-
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terparts. In particular, the addition of LP to the spectral difference and complex

domain ODFs makes them significantly more expensive computationally than any

other technique. However, even the most computationally expensive algorithm can

run with an estimated real-time CPU usage of just over 6% on the ADSP-TS201S

(TigerSHARC) processor, and so they are still more than capable in respect of real-

time performance. The energy LP ODF in particular is extremely cheap compu-

tationally, and yet has relatively good detection accuracy for this sample set. The

nature of the sample set must also be taken into account however, as evidently the

heavy bias towards monophonic sounds is reflected by the surprisingly strong per-

formance of the energy-based methods.

Whether the improvement in onset detection accuracy is worth the increased

computational complexity that the LP-based techniques introduce will largely de-

pend on the musical context. If the computation that must be performed in addition

to the onset detection system is not significant, or the perceived cost of onset de-

tection errors is suitably high, then the LP-based methods can be extremely useful.

However, as our real-time sinusoidal synthesis by analysis system will already be

computationally expensive, the cost of the spectral difference LP ODF and complex

domain LP ODF was deemed to be too great. Section 4.8 describes a way to im-

prove upon the accuracy of the literature methods without significantly increasing

the computational complexity.
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FLOPS
ODFE 529,718
ODFSD 7,587,542
ODFCD 14,473,789
ODFELP 734,370
ODFSDLP 217,179,364
ODFCDLP 217,709,168

Table 4.8: Number of floating-point operations per second (FLOPS) required by the energy ODF,
spectral difference ODF, complex ODF and their corresponding LP-based ODFs in order to process
real-time audio streams.

Core 2 Duo (%) ADSP-TS201S (%)
ODFE 0.002 0.015
ODFSD 0.034 0.211
ODFCD 0.065 0.402
ODFELP 0.003 0.020
ODFSDLP 0.970 6.033
ODFCDLP 0.972 6.047

Table 4.9: Estimated real-time CPU usage for the energy ODF, spectral difference ODF, complex
ODF and their corresponding LP-based ODFs, shown as a percentage of the maximum number of
FLOPS that can be achieved on two processors: an Intel Core 2 Duo and an Analog Devices ADSP-
TS201S (TigerSHARC).
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4.8 Combining onset detection with real-time

sinusoidal modelling

Section 4.6 described a method than can improve the detection accuracy of three

common ODFs from the literature by using linear prediction to enhance estimates

of the frame-by-frame evolution of audio signal properties. This improvement in

detection accuracy comes at the expense of much greater computational cost. In

some contexts this accuracy improvement would justify the additional processing

requirements. However, as this onset detection system is part of a larger real-time

sinusoidal synthesis by analysis framework, we investigated to see if we could im-

prove upon the performance of the ODFs from the literature without significantly

increasing the computational complexity.

In this section, a novel ODF is presented that has significantly better real-time

performance than the LP-based spectral methods. It works by analysing the partials

formed during the sinusoidal modelling process and measuring the amplitude dif-

ferences between peaks in consecutive frames. This makes it particularly easy to

integrate with our real-time sinusoidal modelling system, and incurs a relatively low

additional computational cost as the sinusoidal analysis stage must be performed

anyway. Some existing approaches to onset detection that use sinusoidal modelling

are described in Section 4.8.1, followed by an in depth explanation of our new ODF

in Section 4.8.2.
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4.8.1 Existing approaches to onset detection using sinusoidal mod-

elling

Although it was originally designed to model transient components from musical

signals, the system described in [121] (discussed in Section 2.6.2) could also be

adopted to detect note onsets. The authors show that transient signals in the time

domain can be mapped onto sinusoidal signals in a frequency domain, in this case

by using the DCT. Roughly speaking, the DCT of a transient time-domain signal

produces a signal with a frequency that depends only on the time shift of the tran-

sient. This information could then be used to identify when the onset occurred.

However, it is not suitable for real-time applications as it requires a DCT frame size

that makes the transients appear as a small entity, with a frame duration of about

1 second recommended. As the onset detection system is intended to be used in a

real-time musical performance context this latency value is unacceptably high.

Another system that combines sinusoidal modelling and onset detection was in-

troduced by Levine [73]. It creates an ODF that is a combination of two energy

measurements. The first is the energy in the audio signal over a 512 sample frame.

If the energy of the current frame is larger than that of a given number of previ-

ous frames, then the current frame is a candidate for being an onset location. A

multi-resolution sinusoidal model is then applied to the signal in order to isolate

the harmonic component of the sound. This differs from the sinusoidal modelling

implementation described above in that the audio signal is first split into five octave

spaced frequency bands. Currently, only the lower three are used, while the upper

two (frequencies above about 5 kHz) are discarded. Each band is then analysed us-

ing different window lengths, allowing for more frequency resolution in the lower
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band at the expense of worse time resolution. Sinusoidal amplitude, frequency and

phase parameters are estimated separately for each band, and linked together to

form partials. An additional post-processing step is then applied, removing any

partials that have an average amplitude that is less than an adaptive psychoacoustic

masking threshold, and removing any partials that are less than 46 ms in duration.

As it stands, it is unclear whether or not the system described in [73] is suitable

for use as a real-time onset detector. The stipulation that all sinusoidal partials must

be at least 46 ms in duration implies that there must be a minimum latency of 46 ms

in the sinusoidal modelling process, putting it very close to our 50 ms limit. If this

ODF is used in the onset-detection system that is described in Section 4.2, the ad-

ditional 11.6 ms of latency incurred by the peak-detection stage would put the total

latency outside this 50-ms window. However, their method uses a rising edge detec-

tor instead of looking for peaks, and so it may still meet our real-time requirements.

Although as it was designed as part of a larger system that was primarily intended to

encode audio for compression, no onset-detection accuracy or performance results

are given by the authors.

In contrast, the ODF that is presented in Section 4.8.2 was designed specifically

as a real-time onset detector, and so has a latency of just two buffer sizes (23.2 ms in

our implementation). As we show in Section 4.9, it compares favourably to leading

approaches from the literature in terms of computational efficiency, and it is also

more accurate than the reviewed methods.

149



4.8.2 The peak amplitude difference ODF

Implicit in the sinusoidal model is the assumption that a quasi-harmonic musical

signal can be well represented as a sum of sinusoids. These sinusoids should evolve

slowly in time, and should therefore be accurately characterised by the partials de-

tected by the sinusoidal modelling process. It follows then that during the steady

state region of a note, the absolute values of the frame-to-frame differences in the

sinusoidal peak amplitudes and frequencies should be quite low. In comparison,

transient regions at note onset locations should show considerably more frame-by-

frame variation in both peak frequency and amplitude values. This is due to two

main factors:

1. Many musical notes have an increase in signal energy during their attack re-

gions, corresponding to a physical excitation being applied, which increases

the amplitude of the detected sinusoidal components.

2. As transients are by definition less predictable and less harmonic, the basic

premise of the sinusoidal model breaks down in these regions. This can result

in spurious spectral peaks being detected in these regions that are not part of

any underlying harmonic component. Often they will remain “unmatched” in

the sinusoidal modelling process, and so do not form long-duration partials.

Alternatively, if they are (incorrectly) matched, then it can result in relatively

large amplitude and/or frequency deviations in the resulting partial. In either

case, the difference between the parameters of the noisy peak and the param-

eters of any peaks before and after it in a partial will often differ significantly.

Both these factors should lead to larger frame-to-frame sinusoidal peak amplitude

differences in transient regions than in steady-state regions. This can therefore be
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used to create an ODF by measuring the differences in peak amplitude values be-

tween consecutive frames, as illustrated by Figure 4.13.

The sinusoidal modelling algorithm that we used to create the peak amplitude

difference ODF is very close to the MQ method [80], but has a number of additions

to the peak-detection process. Firstly, the number of peaks per frame can be limited

to Mp, reducing the computation required for the partial-tracking stage [67, 68]. If

the number of detected peaksNp > Mp, then theMp largest amplitude peaks will be

selected. In order to allow for consistent evaluation with the other frequency domain

ODFs that are described in this Chapter, the input frame size is kept constant during

the analysis process (2,048 samples). The partial-tracking process is identical to

the one given in [80]. As this partial-tracking algorithm has a delay of one buffer

size, this ODF has an additional latency of 512 samples, bringing the total detection

latency to 1,536 samples or 34.8 ms when sampled at 44.1 kHz10.

For a given frame l, let Pl(k) be the peak amplitude of the k-th partial. The peak

amplitude difference ODF (ODFPAD) is given by Equation 4.24.

ODFPAD(l) =

Mp∑

k=0

|Pl(k)− Pl−1(k)| (4.24)

In the steady-state, frame-to-frame peak amplitude differences for matched peaks

should be relatively low. A lower number of peak matching errors is expected in this

region as the partial tracking process is significantly easier during the steady-state

section of a note than in transient regions. At note onsets, matched peaks should

have larger amplitude deviations due to more energy in the signal, and there should

also be more unmatched or incorrectly matched noisy peaks, increasing the ODF
10This includes the one frame delay that is introduced from the ODF peak detection process that is

described in Section 4.2.
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Figure 4.13: The peak amplitude difference ODF. It is based on the premise that the differences
between the amplitude values of matched spectral peaks in consecutive frames will be larger at note
onset locations.
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value. Similarly to the process that is described in [80], unmatched peaks for a

frame are taken to be the start of a partial and so the amplitude difference is equal

to the amplitude of the peak Pl(k).

4.9 Final onset detection results

This section presents the detection accuracy and performance benchmarks for all of

the ODFs that are discussed in this chapter. The process for compiling the results is

described in Section 4.5. A model order of 5 was used for the energy LP, spectral

difference LP and complex LP ODFs. The number of peaks in the ODFPAD was

limited to 20.

4.9.1 Onset detection accuracy

Figure 4.14 shows that the precision values for all our methods are higher than the

methods from the literature. The addition of LP noticeably improves each ODF to

which it is applied. The precision values for the peak amplitude difference method

is better than the literature methods and the energy with LP method, but worse than

the two spectral-based LP methods. The recall results for each ODF are given in

Figure 4.15. The peak amplitude difference method has a greater recall than all of

the literature methods and is only second to the energy with LP ODF. Figure 4.16

gives the F-measure for each ODF. All of our proposed methods are shown to

perform better than the methods from the literature. The spectral difference with

LP ODF has the best detection accuracy, while the energy with LP, complex domain

with LP and peak amplitude difference methods are all closely matched.
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Figure 4.14: Precision results for all ODFs that are described in this chapter.

Figure 4.15: Recall results for all ODFs that are described in this chapter.
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Figure 4.16: F-measure results for all ODFs that are described in this chapter.

155



Accuracy results by sound type

Table 4.10 shows the F-measure results for all of the ODFs, categorised according

to sound type. The peak amplitude difference method performs better than the

literature methods for all sound types. It is also marginally more accurate than the

linear prediction methods for detecting onsets in pitched non-percussive sounds, but

the linear prediction methods are notably stronger for pitched percussive and mixed

sound types.

NPP PP PNP M
ODFE 0.61 0.67 0.49 0.66
ODFSD 0.62 0.72 0.62 0.64
ODFCD 0.60 0.70 0.60 0.65
ODFELP 0.69 0.90 0.59 0.65
ODFSDLP 0.63 0.91 0.62 0.79
ODFCDLP 0.55 0.89 0.59 0.76
ODFPAD 0.65 0.83 0.63 0.70

Table 4.10: F-measure results for each ODF, categorised according to sound “type”. The sound
types are non-pitched percussive (NPP), pitched percussive (PP), pitched non-percussive (PNP) and
mixed (M).
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4.9.2 Onset detection performance

The worst-case number of FLOPS that each ODF requires to process audio streams

are given in Table 4.11 and the estimated CPU usage is given in Table 4.12. The

worst-case requirements for the peak amplitude difference method are still rela-

tively close to the spectral difference ODF and noticeably quicker than the complex

domain ODF.

FLOPS
ODFE 529,718
ODFSD 7,587,542
ODFCD 14,473,789
ODFELP 734,370
ODFSDLP 217,179,364
ODFCDLP 217,709,168
ODFPAD 9,555,940

Table 4.11: Number of floating-point operations per second (FLOPS) required by each ODF in order
to process real-time audio streams.

Core 2 Duo (%) ADSP-TS201S (%)
ODFE 0.002 0.015
ODFSD 0.034 0.211
ODFCD 0.065 0.402
ODFELP 0.003 0.020
ODFSDLP 0.970 6.033
ODFCDLP 0.972 6.047
ODFPAD 0.043 0.265

Table 4.12: Estimated real-time CPU usage for each ODF, shown as a percentage of the maximum
number of FLOPS that can be achieved on two processors: an Intel Core 2 Duo and an Analog
Devices ADSP-TS201S (TigerSHARC).
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4.10 Conclusions

Sinusoidal models are not well suited to synthesising transient signal components.

The transients at note onsets in particular are very important to the perception of

timbre, and so it is therefore desirable to be able to accurately identify these regions

and to adapt the model in order to be able to reproduce them with a high degree of fi-

delity. An important first step in transient location is note onset detection. However,

accurate onset detection is also of great benefit in other areas of real-time sound

analysis and synthesis such as score followers [93] and beat-synchronous analysis

systems [113, 105].

This chapter introduced a general approach to onset detection. The first stage in

the process is a data reduction step, which transforms the audio signal into an onset

detection function (ODF). Onsets are then located by searching for local maxima

in this ODF. Two new approaches to real-time musical onset detection were intro-

duced, the first using linear prediction and the second using sinusoidal modelling.

A new open source software library and sample database called Modal was created

in order to evaluate these techniques. We compared these approaches to some of the

leading real-time musical onset-detection algorithms from the literature, and found

that they can offer either improved accuracy, computational efficiency, or both. It

is recognised that onset-detection results are very context sensitive, and so without

a more extensive sample set it is hard to make completely conclusive comparisons

to other methods. However, our software and our sample database are both re-

leased under open source licences and are freely redistributable, so hopefully other

researchers in the field will contribute.

Choosing a real-time ODF remains a complex issue and depends on the nature
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of the input sound, the available processing power and the penalties that will be

experienced for producing false negatives and false positives. However, some rec-

ommendations can be made based on the results in this chapter. For our sample set

the spectral difference with LP method produced the most accurate results, and so if

computational complexity is not an issue then this would be a good choice. On the

other hand, if low complexity is an important requirement then the energy LP ODF

is an attractive option. It produced accurate results at a fraction of the computational

cost of some of the established methods.

The peak amplitude difference ODF is also noteworthy and should prove to

be useful in areas such as real-time sound synthesis by analysis. It was shown to

provide more accurate results than the well-established complex domain method

with noticeably lower computation requirements, and as it integrates seamlessly

with the sinusoidal modelling process, it can be added to the existing sinusoidal

modelling systems at very little cost.
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Chapter 5

Note segmentation

Sinusoidal models are based on the underlying premise that a musical sound con-

sists of components that vary slowly in time. It was noted in Chapter 4 that this

assumption can lead to synthesis artifacts being produced when short-lived or tran-

sient components are present in the input signal. During synthesis, analysis pa-

rameters are smoothly interpolated between consecutive frames which can cause

transient components to become diffused. This problem is significant as in mono-

phonic musical sounds, transient locations often correspond with the attack section

of notes1, and it has been shown that this region is important to our perception of

timbre [42, 45].

To improve the quality of the synthesis of attack transients it is first necessary

to be able to accurately identify them. The automatic identification of note attack

regions can be broken up into two distinct steps:

1The word “note” is used in the widest sense in this thesis, referring to any single coherent musical
sound or sonic object.
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1. Find note onset locations.

2. Calculate the duration of the transient region following a given note onset.

Chapter 4 examined the first step in detail, culminating in the evaluation of seven

different real-time onset detection systems. This chapter discusses the second step,

describing a method for locating attack transients in real-time.

However, the attack section of a note is not the only temporal region that must be

considered when designing sound transformation tools. It may be desirable to only

apply transformations such as time-scaling to the steady state of notes for example,

leaving the attack and decay regions unmodified. Sound morphing can be described

as a technique which aims to produce a sound timbre which lies somewhere percep-

tually between two (or more) existing sounds. Caetano and Rodet have shown that

considering the temporal evolution of the sound sources can lead to sound morphing

approaches that are more “perceptually meaningful” than methods that simply in-

terpolate spectral parameters [20]. Therefore in addition to locating attack regions,

it is desirable to be able to accurately identify other temporal sections in a musical

note that have distinct characteristics.

In this chapter, we present a new technique for the real-time automatic temporal

segmentation of musical sounds. Attack, sustain and release segments are defined

using cues from a combination of the amplitude envelope, the spectral centroid, and

a measurement of the stability of the sound that is derived from an onset detection

function. In Section 5.1 we describe some existing approaches to automatic seg-

mentation. Our new method is given in Section 5.2. An evaluation of our method is

then provided in Section 5.3, followed by conclusions in Section 5.4.
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5.1 Automatic note segmentation

The segmentation of musical instrument sounds into contiguous regions with dis-

tinct characteristics has become an important process in studies of timbre perception

[45] and sound modelling and manipulation [20]. Since the time of Helmholtz, it

has been known that the temporal evolution of musical sounds plays an important

role in our perception of timbre. Helmholtz described musical sounds as being a

waveform shaped by an amplitude envelope consisting of attack, steady state and

decay segments [48]. Here the attack is the time from the onset until the amplitude

reaches its peak value, the steady state is the segment during which the amplitude is

approximately constant, and the decay is the region where the amplitude decreases

again.

A number of automatic segmentation techniques have been developed based on

this model, creating temporal region boundaries based solely on the evolution of

the amplitude envelope [95, 55]. Automatic segmentation consists of the identifi-

cation of boundaries between contiguous regions in a musical note. Typically the

boundaries are one or more of the following:

Onset: a single instant marking the beginning of a note.

End of attack / start of sustain: end of the initial transient.

End of sustain / start of release: end of the steady state region.

Offset: end of the note.

The regions and boundaries can vary however, firstly depending on the model used

by the segmentation technique, and secondly based on the nature of the sound being

analysed as not all instrumental sounds are composed of the same temporal events.
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This section begins by examining note segmentation based on the evolution of

the amplitude envelope in Section 5.1.1. This is followed in Section 5.1.2 by an

overview of an approach to automatic note segmentation that also considers the

changes in short-time spectra when defining region boundaries.

5.1.1 Amplitude-based note segmentation

Jensen proposed an automatic segmentation technique that analyses the temporal

evolution of the derivative of the amplitude envelope [55]. Onset, attack, sustain,

release and offset locations are defined for the amplitude envelope of each sinu-

soidal partial that is detected in a note, however the process could also be used

to detect these breakpoints in the overall amplitude envelope. Partial onset and

offset times are located as part of the sinusoidal modelling process. To find the re-

maining boundaries, the amplitude envelope is first smoothed by convolution with a

Gaussian according to Equation 5.1 where Ap(t) is the amplitude of the p-th partial

at time t and σ is the standard deviation.

envσ(t) = Ap(t) ∗ gσ(t), gσ(t) =
1

2πσ
e−

t2

2σ2 (5.1)

The attack and release regions are sections where the envelope slope is positive

and negative respectively. The middle of the attack atm is therefore defined as the

maximum of the derivative of the smoothed envelope (Equation 5.2).

atm = max
(
∂

∂t
envσ(t)

)
(5.2)
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The beginning and end of the attack is found by following the derivative from this

centre point backwards and forwards in time until it is less than a constant multiplied

by the maximum value of the amplitude. Similarly, the middle of the release rtm is

found at the minimum value of the envelope derivative (Equation 5.3). The begin-

ning and end of the release are identified by following the derivative backwards and

forwards in time until the value reaches a certain threshold.

rtm = min
(
∂

∂t
envσ(t)

)
(5.3)

This segmentation technique was examined by Caetano et al. [19]. They found that

derivative-based methods were not robust enough and too sensitive to ripples in the

amplitude curve and so this approach was not investigated further.

Another amplitude-based segmentation method was proposed by Peeters [95],

after noting that the well-known ADSR envelope does not apply to most natural

sounds as depending on the nature of the sound, one or more of the segments is

often missing. He therefore proposed segmenting musical sounds into two regions

named attack and rest. Only two region boundaries needs to be calculated in this

model: the start and end of the attack region (no automatic method is suggested

for detecting the note onsets or offsets). Two techniques are described for detecting

these boundaries:

Fixed Threshold: The peak value of the energy envelope is found. In order to

account for signal noise, the start of the attack is the time when the amplitude

envelope reaches 20% of the peak value, and the end of the attack is the time

when the envelope reaches 90% of the maximum2.

2It is noted that these values should be set empirically based on the type of sound.
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Adaptive Threshold (Weakest Effort Method): The range of values from 0 to the

peak value of the energy envelope is divided up into a number of equally

spaced regions called thresholds. An effort as defined as the time it takes the

signal to go from one threshold value to the next. The average effort value

w is calculated, then the start of the attack is taken to be the first threshold

at which the effort is below M × w. The end of the attack is calculated as

the first threshold at which the effort is above M × w. A value of M = 3 is

recommended. This process is depicted in Figure 5.1.

Figure 5.1: Weakest Effort Method. Figure taken from [95].

Although the amplitude envelope often provides a good approximation of the

temporal evolution of the internal structure of a musical sound, it simply does not
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provide enough information to allow for accurate, robust and meaningful temporal

segmentation of the musical audio signal. In particular the attack region, which has

often become synonymous with the amplitude rise time [11], is not well delineated

by the amplitude envelope. The attack is a transient part of the signal that lasts from

the onset until a relatively stable periodicity is established, and as a result the steady

state is generally achieved before the end of the initial amplitude rise time [45].

During the steady state the amplitude envelope can often show considerable varia-

tion, particularly in the presence of tremolo and/or vibrato. This makes it difficult

to detect the boundary between the steady state and the release using just the am-

plitude envelope, especially if operating under the constraints of a real-time system.

The Amplitude/Centroid Trajectory model, which is described in Section 5.1.2, has

addressed many of these issues.

5.1.2 Automatic segmentation using the Amplitude/Centroid

Trajectory model

It has been shown that in order to better understand the temporal evolution of

sounds, it is necessary to also consider the way in which the audio spectrum changes

over time [45]. Hajda proposed a new model for the partitioning of isolated non-

percussive musical sounds [44], based on observations by Beauchamp that for cer-

tain signals the root mean square (RMS) amplitude and spectral centroid have a

monotonic relationship during the steady state region [7]. An example of this rela-

tionship is shown for a clarinet sample in Figure 5.2. The spectral centroid is given

by Equation 5.4, where f is frequency (in Hz) and a is linear amplitude of frequency

band b (up tom bands) which are computed by Fast Fourier Transform. The Fourier
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Transform is performed on Bartlett windowed analysis frames that are 64 samples

in duration. This results in 32 evenly spaced frequency bands (up to 11025 Hz),

each with a bandwidth of about 345 Hz.

centroid(t) =

∑m
b=1 fb(t)× ab(t)∑m

b=1 ab(t)
(5.4)

Figure 5.2: The full-wave-rectified version of a clarinet sample, the RMS amplitude envelope
(dashed line) and the spectral centroid (dotted line). The RMS amplitude envelope and the spec-
tral centroid have both been normalised and scaled by the maximum signal value.

Hajda’s model, called the Amplitude/Centroid Trajectory (ACT), identifies the

boundaries for four contiguous regions in a musical tone:

Attack: the portion of the signal in which the RMS amplitude is rising and the

spectral centroid is falling after an initial maximum. The attack ends when

the centroid slope changes direction (centroid reaches a local minimum).
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Attack/steady state transition: the region from the end of the attack to the first

local maximum in the RMS amplitude envelope.

Steady state: the segment in which the amplitude and spectral centroid both vary

around mean values.

Decay: the section during which the amplitude and spectral centroid both rapidly

decrease. At the end of the decay (near the note offset), the centroid value can

rise again however as the signal amplitude can become so low that denomi-

nator in Equation 5.4 will approach 0. This can be seen in Figure 5.2 (starting

at approximately sample number 100200).

Hajda initially applied the ACT model only to non-percussive sounds. However,

Caetano et al. introduced an automatic segmentation technique based on the ACT

model [19] and proposed that it could be applied to a large variety of acoustic in-

strument tones. It uses cues taken from a combination of the amplitude envelope

and the spectral centroid. The amplitude envelope is calculated using a technique

called the true amplitude envelope, which is a time domain implementation of the

true envelope.

The True Envelope and the True Amplitude Envelope

The true envelope [50, 101, 21] is a method for estimating a spectral envelope by

iteratively calculating the filtered cepstrum, then modifying it so that the original

spectral peaks are maintained while the cepstral filter is used to fill the valleys be-

tween the peaks. The real cepstrum of a signal is the inverse Fourier transform of the

log magnitude spectrum and is defined by Equation 5.5, where X is the spectrum
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produced by a N -point DFT.

C(n) =
N−1∑

k=0

log(|X(k)|)ej2πkn/N (5.5)

The cepstrum can be low-pass filtered (also known as liftering) to produce a smoother

version of the log magnitude spectrum. This smoothed version of the spectrum can

be calculated according to Equation 5.6 where wn is a low-pass window in the cep-

stral domain (defined by Equation 5.7) with a cut-off frequency of nc.

X̂(n) =
N−1∑

k=0

wnC(k)e−j2πkn/N (5.6)

w(n) =





1 |n| < nc

0.5 |n| = nc

0 |n| > nc

(5.7)

If X̂i(n) is the smoothed version of the spectrum at iteration i, then the true envelope

is found by iteratively updating the current envelope Ai according to Equation 5.8.

Ai(n) = max(Ai−1(k), X̂i−1(k)) (5.8)

The algorithm is initialised by setting A0(n) = log(|X(k)|) and X̂0(n) = −∞.

This process results in the envelope gradually growing to cover the spectral peaks,

with the areas between spectral peaks being filled in by the cepstral filter. An addi-

tional parameter ∆ is specified in order to stop the algorithm, specifying the maxi-

mum value that a spectral peak can have above the envelope.

Caetano and Rodet used this enveloping technique in the time domain in order to
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create the true amplitude envelope (TAE) [21]. The first step in the TAE is to obtain

a rectified version of the audio waveform so that there are no negative amplitude

values. The signal is then zero-padded to the nearest power of two, a time-reversed

version of it is appended to the end of the signal and the amplitude values are ex-

ponentiated as the true envelope assumes that the envelope curve is being created

in the log spectrum. Finally, the true envelope algorithm is applied to the time do-

main signal instead of the Fourier spectrum so that the resulting envelope accurately

follows the time domain amplitude peaks.

Automatic segmentation using the ACT model

For each musical tone the method presented by Caetano et al. locates onset, end of

attack, start of sustain, start of release and offset boundaries as follows:

Onset: start of the note, found by using the automatic onset detection method de-

scribed in [100]3.

End of attack: position of the first local minima in the spectral centroid that is

between the onset and the start of sustain.

Start of sustain: boundary detected using a modified version of Peeters’ weakest

effort method.

Start of release: also detected using a version of the weakest effort method, but

starting at the offset and working backwards.

3This technique basically involves looking for signal regions in which the center of gravity of the
instantaneous energy of the windowed signal is above a given threshold. Or in other words, if most
of the energy in a spectral frame is located towards the leading edge of the analysis window, then
the frame is likely to contain a note onset.
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Offset: the last point that the TAE attains the same energy (amplitude squared) as

the onset.

Notably, they allow the same point to define the boundary of two distinct contigu-

ous regions. This signifies that the region is too short to be detected as a separate

segment and makes the model more robust in dealing with different types of sounds.

A plot of a clarinet sample and the boundaries detected by our implementation

of this segmentation method are shown in Figure 5.3. From just a visual inspection

of the waveform, the attack and sustain sections look to be well detected. There

are some changes between our implementation and the technique described here

(which are discussed in more detail in Section 5.3) which partly account for the

lack of precision in the identification of the onset and offset. The identification of

the release region for this sample does not seem accurate however.

Evaluation of the ACT model

Caetano et al. compare the performance of their automatic segmentation technique

to that of the one described by Peeters [95]. They do this by visual inspection

of plots of the waveform, spectrogram and detected boundaries produced by both

methods, showing 16 analysed samples consisting of isolated tones from western

orchestral instruments (plus the acoustic guitar). They found that their model out-

performed the Peeters method in all cases, although for one sample (a marimba

recording) the amplitude envelope and spectral centroid do not behave in the manner

that is assumed by the model and so neither method gives good results. However,

this provides strong evidence that the ACT model assumptions can be applied to a

wide variety of sounds, and shows that using a combination of the amplitude en-
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Figure 5.3: A clarinet sample and the boundaries (vertical dashed lines) detected by our implemen-
tation of the automatic segmentation technique proposed by Caetano et al. [19]. From left to right,
they are the onset, end of attack, start of sustain, start of release and offset.

velope and the spectral centroid can lead to more accurate note segmentation than

methods based on the amplitude envelope alone.

The automatic segmentation technique proposed by Caetano et al. cannot be

used to improve the performance of real-time synthesis by analysis systems how-

ever, as the method for detecting the start of sustain and start of release boundaries

requires knowledge of future signal values. The spectral centroid has been shown

to be a useful indirect indicator as to the extent of the attack region. However in or-

der to help reduce synthesis artifacts in real-time sinusoidal modelling systems, it is

desirable to have a more accurate and direct measure of the attack transient duration

by locating signal regions in which the spectral components are changing rapidly or
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unpredictably. Both of these issues are addressed by the new segmentation model

that is proposed in Section 5.2.

5.2 Real-time automatic note segmentation

The desire to be able to automatically segment notes in streaming audio signals lead

to the development of a new segmentation method. It uses cues from a combina-

tion of the RMS amplitude envelope, the spectral centroid and an onset detection

function. Here we refer to this as a real-time method, with the caveat that we are

using the same definitions and constraints that were defined in relation to real-time

onset detection systems in Section 4.1. The real-time segmentation model defines

boundaries for the onset, start of sustain, start of release and offset as follows:

Onset: start of the note, detected using the peak amplitude difference onset detec-

tion method (described in Section 4.8).

Start of sustain (end of attack): a region that begins as soon as the attack transient

has finished. This calculation is described in detail in Section 5.2.1.

Start of release (end of sustain): a region that begins when the following condi-

tions are met:

(1) The RMS amplitude envelope is less than 80% of the largest amplitude

value seen between the onset and the current frame.

(2) The RMS amplitude envelope is decreasing for 5 consecutive frames.

(3) The current value of the spectral centroid is below the cumulative moving

average of the values of the centroid from the onset to the current frame.
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This boundary also occurs if the RMS amplitude value drops to less than 33%

of the peak value. The RMS amplitude here is subject to a 3 point moving

average filter and the spectral centroid is given by Equation 5.4.

Offset: the point at which the RMS amplitude value drops to less than a value ∆

below the peak amplitude value. This value should be adapted depending on

the nature of the environment in which the sound is captured. In the context

of a studio with little background noise we set ∆ = 60 dB.

A frame size of 512 samples is used, resulting in a latency of 11.6 ms when operat-

ing at a sampling rate of 44.1 kHz. The maximum delay in detecting a boundary is

5 frames (or 58 ms).

To be robust, a real-time segmentation model must consider the fact that not

all musical musical sounds contain distinct attack, sustain and release segments.

One or more of these segments may not be present at all in the sound. Our model

manages this situation a similar manner to Caetano et al. method, allowing multiple

segment boundaries to occur at the same time index. Transients that occur at time

points other than at the start of a note or sound event will generally cause a new

onset to be recorded and the model will reset. Sound sources that contain transient

components outside of note attack locations will therefore not interfere with distinct

sound events that may follow. However, the exact consequences of a model reset on

the current sound will vary depending on whether transformations are being applied

to the audio signal or not, and if so, on the nature of these transformations.

An example of the boundaries detected by our method is given in Figure 5.4.

Detected region boundary positions are indicated by vertical dashed lines. From a
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visual inspection, the end of attack and offset boundaries look accurate. There is a

slight delay in detecting the onset. The location of the release boundary also looks

more accurate than the Caetano et al. method although it still could be improved

further. A full comparison between the two approaches is provided in Section 5.3.

Figure 5.4: A clarinet sample and region boundaries (dashed lines) detected by the proposed real-
time segmentation method. The boundaries (from left to right) are the onset, start of sustain (end of
attack), start of release and offset.

5.2.1 Calculating the duration of the attack region

Onset locations are typically defined as being the start of the attack transient. The

problem of finding their position is therefore linked to the problem of detecting

transient regions in the signal. Another way to phrase this is to say that onset detec-

tion is the process of identifying which parts of a signal are relatively unpredictable.
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The peak amplitude difference method for computing onset detection functions, in-

troduced in Section 4.8, was one of the techniques that performed the best in our

ODF evaluation. As it effectively measures errors in the partial tracking stage of

sinusoidal modelling, it can also be used to measure the stability of the detected

sinusoidal partials in the audio signal. Peaks in the ODF should occur at regions

where the spectral components in the signal are most unstable or are changing un-

predictably4.

The ODF can therefore be used to identify transient signal regions. In our real-

time note segmentation model the attack transient is defined as being the region

from the onset until the next local minima in the ODF. We also signal the end of

the attack segment if the RMS amplitude envelope reaches a local maxima. This

technique is similar to the transient detection method proposed in [30], where the

authors detect transient regions based on peaks in the energy of the noise signal

resulting from the identification and removal of the deterministic signal component.

However as we do not separate the deterministic and stochastic components, our

method should require considerably less computation. In addition, we do not low-

pass filter the resulting ODF as doing so widens the ODF peak (and in turn, the

detected transient region) without presenting an obvious way to compensate for this

deviation.

An example of the ODF and corresponding transient region can be seen in

Figure 5.5. The boundaries are detected one frame later than their “correct” position

in the ODF as the real-time peak picking algorithm has a latency of one frame. This

algorithm is identical to the one that is described in Section 4.2.

4This does not only apply to the peak amplitude difference ODF, but indeed to any ODF that mea-
sures the variability of spectral components in the audio signal.
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Figure 5.5: A clarinet sample, the onset detection function (solid line), computed using the peak
amplitude difference method and the detected transient region (between vertical dashed lines).

5.3 Note segmentation evaluation

The real-time segmentation model was evaluated by comparing the locations of the

detected region boundaries with the region boundaries that were calculated using

the Caetano et al. method [19]. The first step in this process was to create software

implementations of the two techniques. This is described in Section 5.3.1. The

second phase of the evaluation process was to compare the locations of the detected

region boundaries with a set of reference boundary locations. This procedure and

the outcome of the evaluation are discussed in Section 5.3.2.
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5.3.1 Real-time note segmentation software

A new Python software library (called notesegmentation) was created, consisting of

implementations of the Caetano et al. automatic segmentation method and our new

real-time method. The real-time method is also implemented in C++. It can be built

as a dynamic library or as a Python extension module (using the provided Cython

wrapper class). The code that is needed to reproduce our evaluation results is also

available. The notesegmentation library is free software released under the terms of

the GNU General Public License. It can be found on the accompanying CD.

Lists of the modules, classes and functions that are provided in the note seg-

mentation library are given in Tables 5.1 and 5.2. Functions that are marked with

an asterisk (*) currently have no C++ implementation and so are only available

in Python5. Classes begin with capital letters while functions start with lowercase

letters.

5The Caetano et al. method cannot be used in a real-time context, and as the Python implementation
was suitable for evaluating the accuracy of the segment boundaries, the method was not imple-
mented in C++. The other functions that are omitted from the C++ library are only required for the
evaluation process.
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Python Module Classes and Functions in Module

amplitude_envelopes rms

tae

partial_stability get_stability

get_transients

segmentation spectral_centroid

cbr

rt

util next_minima

next_minima_rt

next_maxima

next_maxima_rt

find_peaks

cumulative_moving_average

Table 5.1: Note segmentation Python modules.
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Class or Function Description

rms Calculate the RMS amplitude envelope
of a signal. Can return the RMS of the
current frame (when used in a real-time
context) or the RMS of each frame of
audio in a full sample.

tae* Calculate the true amplitude envelope of
a signal.

get_stability* Calculate a partial stability signal for a
given audio signal (this process is dis-
cussed in Section 5.3.2).

get_transients* Return the estimated location of attack
transients based on the partial stability
signal.

spectral_centroid Calculate the spectral centroid for either
a signal audio frame or for each frame
in a signal.

cbr* Calculate region boundaries using the
Caetano et al. method.

rtsegmentation* Calculate region boundaries using our
proposed real-time method.

RTSegmentation C++ class for calculating region bound-
aries using our proposed real-time
method.

next_minima* Calculate the next local minima in a sig-
nal (from a given time index).

next_minima_rt Calculate the next local minima in a sig-
nal (from a given time index) in real-
time, requiring a latency of 1 frame.

next_maxima* Calculate the next local maxima in a sig-
nal (from a given time index).
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next_maxima_rt Calculate the next local maxima in a sig-
nal (from a given time index) in real-
time, requiring a latency of 1 frame.

cumulative_moving_average Return the current value of the cumu-
lative moving average of a sequence of
values.

Table 5.2: Note segmentation classes and functions (available from both C++ and Python).

5.3.2 Evaluation of segmentation algorithms

To evaluate the performance of the note segmentation algorithms a set of samples

with “correct” region boundary locations was needed. No such reference set was

found in the literature so a new sample set was created. It consists of a selection of

36 samples of isolated musical sounds that are part of the Modal database and so

can be freely redistributed. These particular samples were selected to ensure that

sounds with differing types of temporal evolution were considered in the evalua-

tion process. The sample set contains sound sources ranging from short, percussive

sonic events to musical notes with longer, sustained excitations. A list of the sam-

ples that were used in the evaluation is given in Table 5.3. Descriptions of the sound

sources that make up each sample can be found in Table 4.16.

As they are from the Modal database each sample comes with hand-annotated

onset locations. Additional annotations were added for each sample to denote the

start of sustain, start of release and note offset locations. The annotations were

all made by one person, which will inevitably lead to some degree of inaccuracy

and inconsistency [72], however they should still give some indication as to the

6The samples that are marked with an asterisk (*) were not part of the original modal database
release. They all consist of single notes played on a cello.
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performance of the automatic segmentation methods.

In addition to the hand-annotated segment boundary locations, we also devel-

oped an automatic technique for identifying regions in the audio signal with the

highest level of sinusoidal partial instability. This was done by first performing

sinusoidal analysis on each sample using the SMS method, then calculating a de-

tection function from the sum of the frame by frame variations in log frequency

(scaled by log amplitude) for each partial. Areas with unstable partials were then

defined as the area around peaks in this detection function. An example of the par-

tial stability signal for a clarinet sample is given in Figure 5.6. The detected region

of partial instability is the area between the vertical dashed lines.

Figure 5.6: A clarinet sample, the partial stability signal (solid line) and the detected region of
partial instability around the note onset (between vertical dashed lines).
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bass-elec-C-lo.wav female-glissdown.wav

bell-octave0.wav femalevoices_aa2_A3.wav

bell-octave1.wav femalevoices_oo2_C#4.wav

bell-octave2.wav flugel-C.wav

cello-C-octave0.wav* flute-alto-C.wav

cello-C-octave1-plucked.wav* guitar-ac-E-octave1.wav

cello-C-octave1.wav* guitar-classical-E-octave1-
vib.wav

cello-C-octave2-plucked.wav* guitar-elec-solid-dist-E-
octave1-long.wav

cello-G-octave0.wav* malevoice_aa_A2.wav

cello-G-octave1.wav* piano-studio-octave1.wav

child-imitate-shaker-hi-up.wav piano_B4.wav

clarinet-C-octave0-vib.wav piano_G2.wav

clarinet-C-octave0.wav prep_pianoE0_2.wav

conga-muffled-1.wav prep_piano_C0_2.wav

conga-open-1.wav sax-bari-C-lo.wav

cymbal-hihat-foot-open.wav singing-female1-C-hi.wav

cymbal-splash-stick.wav singing-womanMA-C-oo.wav

drum-bass-hi-1.wav trpt-C-lo.wav

Table 5.3: Note segmentation evaluation samples. Descriptions of the sound sources that make up
each sample can be found in Table 4.1.

Evaluation results

The region boundaries that were found by analysing the full sample set with each

segmentation algorithm were compared to the hand-annotated reference boundaries
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plus the additional partial instability region measurement. However, there is a key

difference between our implementation of the Caetano et al. method and the de-

scription of the method in the literature: the same onset detection algorithm (the

peak amplitude difference method) was used for both segmentation models. As this

is a real-time method the detection accuracy will inevitably be worse than if a state-

of-the-art non-real-time method was used, so this must be taken into account when

interpreting the results.

Table 5.4 gives the average difference in milliseconds between the automatically

detected boundary and reference boundary for our method and the Caetano et al.

method. Each average value is followed immediately by the standard deviation

(σ) in brackets. The average difference between the automatically detected start

of sustain region and the value from the reference samples is almost identical for

the two methods, but the Caetano et al. method has a lower standard deviation.

However, the sustain section of the real-time method is considerably closer to the

end of the region with the highest level of partial instability (and with lower standard

deviation).

The real-time method also fares better in detecting start of release and note offset

locations in comparison with the Caetano et al. method. However, a large part of

the error in the Caetano et al. offset detection can be attributed to the fact that they

define this boundary based on the energy the signal has at the onset location, and as

our onset detector is a real-time method there is a slight latency before it responds,

by which stage the signal energy has already started to increase.

When evaluating onset detection algorithms, an onset is commonly regarded as

being correctly detected if it falls within 50 ms of the reference onset location in

order to allow for human error when creating the set of reference values [11, 72].
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Boundary PM Avg. Dev. (ms) CBR Avg. Dev. (ms)
Onset 16.57 (σ = 21.64) 16.57 (σ = 21.64)
Start of sustain 64.87 (σ = 108.53) 64.86 (σ = 82.37)
End of unstable partials 46.50 (σ = 52.34) 83.47 (σ = 106.40)
Start of release 586.46 (σ = 831.81) 900.72 (σ = 1115.00)
Offset 331.32 (σ = 999.49) 1597.75 (σ = 2099.44)

Table 5.4: Average deviation from boundaries in reference samples for our proposed method (PM)
and for the Caetano et al. method (CBR).

Table 5.5 gives the percentage of automatically detected boundaries that fall within

50 ms of the reference values for both segmentation methods. Here, our proposed

method is more accurate in detecting the sustain boundary and is again closer to the

end of the unstable partial region. The Caetano et al. method is more accurate in

detecting the release, with our method performing better at note offset detection.

Boundary PM Accuracy (%) CBR Accuracy (%)
Onset 91.67 91.67
Start of sustain 77.78 63.89
End of unstable partials 69.44 58.33
Start of release 25.00 33.33
Offset 44.44 19.44

Table 5.5: The percentage of automatically detected boundaries that fall within 50 ms of the refer-
ence values for our proposed method (PM) and for the Caetano et al. method (CBR).

Table 5.6 gives the percentage of automatically detected boundaries that fall

within 50 ms of the reference values, categorised by sound type, for the two seg-

mentation methods. The sound types are non-pitched percussive (NPP), pitched

percussive (PP) and pitched non-percussive (PNP). The two methods have the same

performance for the non-pitched percussive sound category. For pitched percussive

sounds, the methods have the same results for the sustain boundary. The Caetano

et al. method has a higher percentage of correct detections of the end of unstable

partials and release boundaries, with our proposed method correctly locating more
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offset boundaries. In the pitched non-percussive sound category our method per-

forms better for all boundaries (except for the onset boundary, as the onset detection

algorithm is identical).

NPP PP PNP

PM

Onset 100.00 100.00 86.36
Start of sustain 80.00 88.89 72.73
End of unstable partials 80.00 77.78 63.64
Start of release 40.00 0.00 31.82
Offset 20.00 33.33 54.55

CBR

Onset 100.00 100.00 86.36
Start of sustain 80.00 88.89 50.00
End of unstable partials 80.00 66.67 50.00
Start of release 40.00 55.56 22.73
Offset 20.00 0.00 27.27

Table 5.6: The percentage of automatically detected boundaries that fall within 50 ms of the ref-
erence values, categorised by sound type, for our proposed method (PM) and for the Caetano et
al. method (CBR). The sound types are non-pitched percussive (NPP), pitched percussive (PP) and
pitched non-percussive (PNP).

Evaluation conclusions

The results show that both methods perform reasonably well at detecting the start

of the sustain region, although our start of the sustain region is significantly closer

to the end of the region with high partial instability. Neither method performs par-

ticularly well in detecting the release and offset with high accuracy, although on

average our proposed model behaves more robustly. However unlike the Caetano et

al. method, our model calculates region boundaries from streams of audio signals

and is suitable for use in a real-time musical performance context.

186



5.4 Conclusions

The sound transformation process can be improved by considering the temporal

characteristics of musical notes. In particular, to improve the quality of the syn-

thesis of attack transients in sinusoidal models, it is first necessary to be able to

accurately identify them. This chapter introduced a new model for the real-time

segmentation of the temporal evolution of musical sounds. Attack, sustain and re-

lease regions are identified by the model, using cues from the amplitude envelope,

spectral centroid and an onset detection function that is based on measuring errors

in sinusoidal partial tracking. We evaluated our method by comparing it with the

technique proposed by Caetano et al., and found that it generally performs better

and is more robust. Note onsets, attack and sustain boundaries are identified with

a relatively high degree of accuracy, but neither method was particularly accurate

in detecting the release and offset boundaries. Our method can run in real-time

and with considerably lower computation requirements as it does not calculate the

computationally costly true amplitude envelope.
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Chapter 6

Metamorph: Real-time high-level

sound transformations based on a

sinusoids plus noise plus transients

model

One of the goals of this research is to provide new software synthesis tools for

composers, musicians and researchers, enabling them to perform timbral transfor-

mations on live audio streams. As the temporal evolution of the sound spectrum has

a large influence on the perception of timbre, it seems natural to use a sound model

that is based on the frequency spectrum as a tool to manipulate timbre. The Simpl

software library for sinusoidal modelling was introduced in Chapter 3. To improve

the synthesis of attack transients, software libraries for performing real-time on-

set detection and note segmentation were created, discussed in Chapters 4 and 5

respectively. This chapter combines these three components, creating a real-time
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sound synthesis by analysis tool called Metamorph. Metamorph is an open source

software library (available under the terms of the GNU General Public License) for

performing high-level sound transformations based on a sinusoids plus noise plus

transients model. It is written in C++, can be built as both a Python extension mod-

ule and a Csound opcode, and currently runs on Mac OS X and Linux. It is designed

to work primarily on monophonic, quasi-harmonic sound sources and can be used

in a non-real-time context to process pre-recorded sound files or can operate in a

real-time (streaming) mode.

The sinusoids plus noise plus transients model that is used by Metamorph is

discussed in Section 6.1. This is followed by a description of the sound transfor-

mations that are currently available in Metamorph in Section 6.2. An overview of

the implementation of the software is provided in Section 6.3, followed by sound

transformation examples in Section 6.4. Conclusions are given in Section 6.5.

6.1 The Metamorph sinusoids plus noise plus

transients model

Several systems have been proposed that combine a representation of transient sig-

nal components and a sinusoids plus noise model. The method described by Masri

[77] aims to reproduce the sharpness of the original transient during synthesis. First

a pre-analysis scan of the audio signal is performed in order to detect transient

regions, which are defined as being the areas between a note onset and the point

at which the onset detection function (based on an amplitude envelope follower)

falls below a fixed threshold or reaches a maximum duration (whichever is shorter).
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This information is then used during sinusoidal analysis to make sure that the edges

of the analysis windows are snapped to the region boundaries. During synthesis,

the missing overlap at the region boundaries is reconstructed by extrapolating the

waveforms from the centres of both regions and then performing a short cross-fade.

However, this method can not run in real-time due to the need for a pre-analysis

scan of the audio signal.

Levine [73] introduced a sinusoids plus noise model that includes transform-

coded transients. Note onsets are located using a combination of an amplitude rising

edge detector and by analysing the energy in the stochastic component. Transient

regions are then taken to be fixed-duration (66 ms) sections immediately following

a note onset. The transients are translated in time during time-scaling and pitch

transposition, however as the primary application of this work was for use in data

compression there is no ability to musically manipulate the transients. In the general

case, it would also appear to be desirable to determine the duration of transient

regions based on measurable signal characteristics, as it does not seem obvious that

all transients will be of the same duration.

Verma and Meng proposed a system that extends SMS with a model for tran-

sients in [121]. They show that transient signals in the time domain can be mapped

onto sinusoidal signals in a frequency domain using the discrete cosine transform

(DCT). However, it is not suitable for real-time applications as it requires a DCT

frame size that makes the transients appear as a small entity, with a frame duration

of about 1 second recommended. This is far too much a latency to allow it to be

used in a performance context1.

1According to the real-time performance requirements that are described in Section 4.1
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6.1.1 The Metamorph model

Metamorph uses a flexible real-time sinusoids plus noise plus transients model

which is summarised in Figure 6.1. The input sound is first segmented using the

real-time note segmentation method, which locates attack, sustain and release tem-

poral regions. The sound is analysed using the chosen sinusoidal modelling im-

plementation from the Simpl library. Any of the available peak detection, partial

tracking, harmonic synthesis and noise synthesis algorithms can be selected, but

by default Metamorph currently uses the bandwidth-enhanced model for peak de-

tection and SMS for all other analysis and synthesis stages. If the current frame

is not in an attack region then the output frame will be computed by synthesis-

ing the identified deterministic and stochastic components and summing the result.

Transformations may optionally be applied to deterministic and stochastic parame-

ters before synthesis.

If the current frame is in an attack transient region then transient modifications

are applied (if any have been selected) and then the raw samples are copied into

the output frame. During synthesis the output of the transient region is extended

slightly (for a single hop size) in order to perform a short cross-fade between the

unmodified sample values in the transient region and the synthesised signal in the

note region that follows. If the hop size is small enough then this cross-fade will not

be noticeable [78]. Metamorph has a default hop size of 512 samples (a duration of

11.6 ms when sampled at the default rate of 44.1 kHz).
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Figure 6.1: The sinusoids plus noise plus transients model that is used in Metamorph.
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6.2 Metamorph sound transformations

This section describes the sound transformations that are currently available in

Metamorph, which can generally be defined as adaptive digital audio effects [120].

Examples that show how these transformations can be applied to streaming audio

signals are given in Section 6.4.

6.2.1 Harmonic distortion

The harmonic distortion of a sound [109] is a measure of the degree of the deviation

of the measured partials from ideal harmonic partials. The Metamorph harmonic

distortion transformation allows the user to alter the deviation of each synthesised

partial in a sound from the ideal harmonic spectrum according to Equation 6.1,

where i is the partial number, f is the analysed partial frequency, F0 is the estimated

fundamental frequency, α is the input parameter (between 0 and 1) and F is the

output frequency of the synthesised partial.

Fi = (α× fi) + ((1− α)× (F0 × i)) (6.1)

6.2.2 Noisiness and Transience

The noisiness [109] of a synthesised frame is calculated by taking the ratio of the

amplitude of the residual component to the total signal amplitude. This is given by

Equation 6.2, where s is the original signal and sR is the residual.

Noisiness =

∑M−1
n=0 |sR(n)|∑M−1
n=0 |s(n)|

(6.2)
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Metamorph allows the user to easily adjust this balance by altering the amplitudes

of the deterministic and stochastic components independently. It also enables the

independent manipulation of the amplitude of transient regions. This effect is called

changing the signal transience.

6.2.3 Spectral envelope manipulation

A spectral envelope is a curve in the spectrum of an audio signal that approximates

the distribution of the signal’s energy over frequency. Ideally this curve should pass

through all of the prominent spectral peaks in the frame and be relatively smooth,

preserving the basic formant structure of the frame without oscillating too much

or containing discontinuities. Many different techniques for estimating the spectral

envelope have been proposed, with most based on either linear prediction [75] or

on the real cepstrum [91]. Spectral envelopes in Metamorph are calculated using

the discrete cepstrum envelope method [39, 40, 22] which provides a smooth inter-

polation between the detected sinusoidal peaks. This method was found to produce

more accurate spectral envelopes to those produced by linear prediction or the real

cepstrum [107, 101].

Further comparison between the discrete cepstrum envelope and the true enve-

lope methods would be interesting as in [101, 102] it was shown to produce spectral

envelopes that are as good (if not better) than the discrete cepstrum envelope, and it

can also be computed efficiently. However, this study only compared the envelopes

in two example transformations. Samples of singing voice sounds were transposed

with spectra warped by each envelope. Envelope parameters were set so that the

output synthesised sound was subjectively judged to be of the highest quality. In
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the first, the difference between the two methods was described as being “small

and hardly perceptually relevant”. The discrete cepstrum envelope does perform

worse with the second example, creating an artificial boost in the magnitude of the

frequencies below the fundamental frequency.

Another one of the main problems that the authors in [101] had with the dis-

crete cepstrum envelope is that it requires a potentially computationally expensive

fundamental frequency analysis or other means of identifying spectral peaks. As

Metamorph manipulates audio using a sinusoidal model, spectral peaks have al-

ready been identified before the spectral envelope is calculated, and so there is no

additional computational cost associated with this process. This will have an in-

fluence on the relative performance costs for the two methods that are reported in

[101].

The discrete cepstrum envelope

The real cepstrum was defined in Equation 5.5. For reference this is repeated in

Equation 6.3.

C(n) =
N−1∑

k=0

log(|X(k)|)ej2πkn/N (6.3)

The log magnitude spectrum can be recovered from the cepstral coefficients by DFT

according to Equation 6.4.

log(|X(k)|) =
N−1∑

k=0

C(k)e−j2πkn/N (6.4)

log(|X(k)|) is even symmetric with log(|X(k)|) = log(|X(N − k)|) and so the

cepstral coefficients are also symmetric with C(k) = C(N − k). Equation 6.4 can
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therefore be rewritten as Equation 6.5.

log(|X(k)|) = C(0) + 2

N
2
−1∑

k=1

C(k) cos(2πkn/N) + C(N/2) cos(πk) (6.5)

A smoothed version of the original log magnitude spectrum can be created by

setting all but the leading P terms to 0, where P is called the order of the cep-

strum. This smoothed magnitude spectrum S can therefore be computed according

to Equation 6.6 where f is the normalised frequency.

log(S(f)) = C(0) + 2
P∑

p=0

C(p) cos(2πfp) (6.6)

Instead of computing the cepstrum directly from the spectrum in this manner, Galas

and Rodet proposed a way to calculate a cepstrum envelope from a set of discrete

points in the frequency/magnitude plane [39, 40]. Their method is called the dis-

crete cepstrum and the resulting spectral envelope is called the discrete cepstrum

envelope (DCE). Given a set of K spectral magnitude and normalised frequency

values denoted by ak and fk, the discrete cepstrum coefficients are found by min-

imising the error function ε given in Equation 6.7.

ε =
K∑

k=1

| log(ak)− log(S(fk)) |2 (6.7)

The least-square solution is given in Equation 6.8 where

A = [log(a1), log(a2), . . . , log(aK)]T are the magnitude values,

C = [C(0), C(1), . . . , C(P )]T are the computed cepstral coefficients and M is de-
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fined by Equation 6.9.

C = (MTM)−1MTA (6.8)

M =




1 2cos(2πf1) 2cos(2π2f1) . . . 2cos(2πPf1)

...
...

...
...

...

1 2cos(2πfK) 2cos(2π2fK) . . . 2cos(2πPfK)




(6.9)

To improve the smoothness of the spectral envelope a regularisation term can be

introduced to Equation 6.8 which effectively penalises rapid changes in the spectral

envelope [22]. The regularised envelope can therefore be calculated by Equation 6.10

where R is a diagonal matrix with diagonal elements

8π2[0, 12, 22, . . . , P 2] and λ is the regularisation parameter.

C = (MTM + λR)−1MTA (6.10)

An example of the DCE calculated from one frame of a saxophone sample is given

in Figure 6.2. The spectral peaks are denoted by circles, the magnitude spectrum is

shown by the dashed line and the DCE shown by the solid line.

Transformations using the spectral envelope

The spectral envelope transformation in Metamorph allows the amplitudes of the

synthesised sinusoidal partials to be altered to match the corresponding amplitude

values in a different spectral envelope. This can be a fixed envelope, or a different

sound source can be specified and its envelope is then extracted as the target enve-

lope. Synthesised partial amplitudes may also be linearly interpolated between the

original spectral envelope and the target envelope. The amplitude of each partial is

then given by Equation 6.11, where α is the input parameter (between 0 and 1), O
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Figure 6.2: Spectrum of one frame from a saxophone sample (dashed line), detected spectral peaks
(circles) and the discrete cepstrum envelope (solid line). The envelope order is 40 and regularisation
parameter λ is set to 0.0005.

is the original partial amplitude and T is the value of the target spectral envelope at

the frequency of the partial.

Amplitude = (α×O) + (|(α− 1)| × T ) (6.11)

Although similar techniques can be performed using tools such as the phase vocoder,

spectral envelope manipulation using sinusoidal models enables the preservation (or

independent manipulation) of the stochastic signal component, offering greater pos-

sibilities for sound transformation. In Metamorph this can be taken a step further,

altering the spectral envelope of a musical tone while preserving the initial note

attack.
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6.2.4 Transposition

Sounds can be transposed in Metamorph in two different ways. Both techniques

involve initially multiplying the frequency values of all synthesised partials by the

same constant factor. The second process additionally adjusts all of the partial am-

plitude values so that they match those of the original spectral envelope. The latter

approach preserves the original formant structure which results in a more natural

sounding transposition for certain types of sounds. The transient region can be ei-

ther modified or unmodified for both types of transposition.

6.2.5 Time-scaling

Time-scaling is the only Metamorph transformation that is not available in real-

time mode. The time-scaling algorithm works by keeping the analysis and synthe-

sis frame rates identical, but instead of passing each analysis frame directly to the

synthesis module, frames may be repeated (or skipped) depending on the required

time-scale factor. This approach does not result in any synthesis artifacts or discon-

tinuities as the synthesis module interpolates smoothly between input frames, and

has been shown to produce high-quality time-scaling [15]. Frames from transient

regions are treated differently by default however; they are always passed to the

synthesis module in the original order, with the sample values passed unmodified to

the output so that the transient is maintained. This means that the time-scale factor

has to be adjusted slightly during non-transient regions in order to make sure that

the final output signal is of the required length. It is also possible to time-scale the

transient regions if desired.
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6.2.6 Transient processing

Most transformations in Metamorph aim to preserve the original transient region by

default, but it is also possible to explicitly alter the output transient. The most basic

effect is to either filter the transient using either low- or high-pass filters, which

although relatively simple can have quite a large impact on the resulting sound.

The transient can also be removed altogether. Another interesting effect is transient

substitution, where the transient regions in the audio signal can be replaced by a

different set of audio samples (which may or may not themselves be transients).

This allows for the creation of various hybrid instruments, for example combining

the attack of a drum sound with a sustained woodwind instrument tone.

6.3 Implementation

This Section provides an overview of the design and implementation of Metamorph.

Similarly to the Simpl, Modal and the Note Segmentation libraries (described in

Chapters 3, 4 and 5 respectively), Metamorph is open source software, released

under the terms of the GNU General Public License. It is written in C++ and can

be built as a dynamic library or as a Python extension module using the included

Cython wrapper code. In addition, a Metamorph Csound opcode is also available,

making it easy to integrate the Metamorph real-time sound transformations with

the wide variety of sound design and signal processing tools that are included in

Csound or have been provided by the Csound community. The most important class

in Metamorph, called FX, is discussed in Section 6.3.1. Section 6.3.2 describes how

Metamorph can be extended by using Transformation classes, illustrated by an

outline of the Transposition class. A full list of the Metamorph modules, classes,
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functions and Csound opcodes is given in Section 6.3.3. The full source code can

be found on the accompanying CD.

6.3.1 The FX class

The FX class contains the core Metamorph processing functionality. It is the largest

class in the library, consisting of 39 public methods. The majority of these methods

are basic getter and setter methods for the analysis/synthesis model parameters.

The most important method in the class, process_frame, is examined in detail in

this section. This method performs the real-time analysis and synthesis, as well as

providing plugin points that enable arbitrary transformations to be applied to the

three signal components (sinusoids, noise and transients) independently.

The start of the process_frame method is shown in Listing 6.1. It is called

once for each hop_size block of samples and has 4 input parameters: the size of

the input frame, a pointer to an array of input samples, the size of the output array

and a pointer to an array that will contain the computed output samples. The input

size and output size should be equal to the signal hop (or buffer) size.

509 void FX:: process_frame(int input_size , sample* input ,
510 int output_size , sample* output) {
511 // setup for current frame
512 _input.assign(input , input + _hop_size );
513 setup_frame(input_size , output_size );
514
515 // calculate current temporal region
516 _previous_segment = _current_segment;
517 _current_segment = _ns.segment(input_size , input);
518
519 // if at onset , reset any processes that rely on the current note segment
520 if(_current_segment == notesegmentation ::ONSET) {
521 reset ();
522 }
523
524 // find sinusoidal peaks and partials
525 _pd ->find_peaks_in_frame(_frame );
526 _pt ->update_partials(_frame );
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Listing 6.1: The Metamorph FX class (lines 509-526).

A copy of the input samples is taken on line 512. The setup_frame method is then

called on line 513 which makes sure that the Simpl Frame objects are cleared of any

previous analysis data and they contain the appropriate audio for the current frame.

On line 517 the Note Segmentation library is used to calculate the current tem-

poral region. If the current frame is a note onset, the reset method is called (on line

521) to clear any data that should change on a note-by-note basis, such as sinusoidal

partial tracking data. Simpl PeakDetection and PartialTracking instances are

then used to find the spectral peaks and sinusoidal partials in the current frame re-

spectively on lines 525 and 526.

The transient preservation code is shown in Listing 6.2. First, any specified

transformations are applied to the raw transient samples by calling the process_frame

method of the TransientTransformation objects2 on lines 534-536, then per-

forming the transient substitution transformation (which is included in the FX class)

on lines 538-548. The transient samples are then copied directly to the output buffer,

scaled by the _transient_scale parameter on lines 550-552.

528 // don’t use synthesis output for transient region if
529 // _preserve_transients is set to true
530 if(_preserve_transients && (_transient_scale > 0) &&
531 (_current_segment == notesegmentation ::ONSET ||
532 _current_segment == notesegmentation :: ATTACK )) {
533 // perform all transient transformations
534 for(int i = 0; i < _transient_trans.size (); i++) {
535 _transient_trans[i]->process_frame(_input );
536 }
537
538 if(_transient_substitution) {
539 for(int i = 0; i < _hop_size; i++) {

2Metamorph Transformation classes are discussed in Section 6.3.2.
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540 if(_transient_sample < _new_transient_size) {
541 _input[i] = _new_transient[i];
542 _transient_sample ++;
543 }
544 else {
545 break;
546 }
547 }
548 }
549
550 for(int i = 0; i < _hop_size; i++) {
551 output[i] += _input[i] * _transient_scale;
552 }
553 }

Listing 6.2: The Metamorph FX class (lines 528-553).

If transient preservation is not enabled, or the current frame is not in a transient

note segment, the output buffer will be the sum of synthesised deterministic and

stochastic components (potentially after a short cross-fade if this current segment

follows a transient region). The synthesis of the harmonic and noise components

is shown in Listing 6.3. The former is computed first, beginning on line 556. The

create_envelope method is called on line 557, which computes the spectral en-

velope from the sinusoidal partials in the current frame using the discrete cepstrum

envelope technique.

554 else {
555 // perform all harmonic transformations
556 if(_harmonic_scale > 0) {
557 create_envelope(_frame );
558
559 for(int i = 0; i < _harm_trans.size (); i++) {
560 _harm_trans[i]->process_frame(_frame );
561 }
562
563 for(int i = 0; i < _specenv_trans.size (); i++) {
564 _specenv_trans[i]->process_frame(_frame , _new_env );
565 }
566
567 apply_envelope(_frame );
568 _synth ->synth_frame(_frame );
569 }
570
571 // perform all residual transformations
572 if(_residual_scale > 0) {
573 for(int i = 0; i < _residual_trans.size (); i++) {
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574 _residual_trans[i]->process_frame(_residual_frame );
575 }
576
577 _residual ->synth_frame(_residual_frame );
578 }

Listing 6.3: The Metamorph FX class (lines 554-578).

Following this, sinusoidal transformations are applied by calling the process_frame

method of all HarmonicTransformation and SpecEnvTransformation instances

(lines 559-565). If the spectral envelope has been modified, the partials magnitudes

are changed accordingly by calling the apply_envelope method on line 567. The

deterministic component is synthesised on line 568, with the stochastic component

then computed on lines 571-578. Residual transformations are applied by calling

the process_frame method of any ResidualTransformation instances that are

attached to the FX object on lines 573-575, followed by the synthesis of the final

residual signal on line 577.

580 if(_preserve_transients &&
581 _current_segment == notesegmentation :: SUSTAIN &&
582 (_previous_segment == notesegmentation ::ONSET ||
583 _previous_segment == notesegmentation :: ATTACK )) {
584
585 // perform all transient transformations
586 for(int i = 0; i < _transient_trans.size (); i++) {
587 _transient_trans[i]->process_frame(_input );
588 }
589
590 if(_transient_substitution) {
591 for(int i = 0; i < _hop_size; i++) {
592 if(_transient_sample < _new_transient_size) {
593 _input[i] = _new_transient[i];
594 _transient_sample ++;
595 }
596 else {
597 break;
598 }
599 }
600 }
601
602 // end of transient section , crossfade
603 for(int i = 0; i < _fade_duration; i++) {
604 output[i] += _input[i] * _fade_out[i] * _transient_scale;
605 output[i] += _frame ->synth ()[i] * _fade_in[i] *
606 _harmonic_scale;
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607 output[i] += _residual_frame ->synth_residual ()[i] *
608 _fade_in[i] * _residual_scale;
609 }
610
611 for(int i = _fade_duration; i < _hop_size; i++) {
612 output[i] += _frame ->synth ()[i] * _harmonic_scale;
613 output[i] += _residual_frame ->synth_residual ()[i] *
614 _residual_scale;
615 }
616 }
617 else {
618 for(int i = 0; i < output_size; i++) {
619 output[i] += _frame ->synth ()[i] * _harmonic_scale;
620 output[i] += _residual_frame ->synth_residual ()[i] *
621 _residual_scale;
622 }
623 }
624 }
625 }

Listing 6.4: The Metamorph FX class (lines 580-625).

The contents of the output buffer for the non-transient signal regions is computed

on lines 580-625 and shown in Listing 6.4. If the current frame is immediately fol-

lowing a transient section, transient transformations are applied to the input sample

block as before on lines 580-600. This is then cross-faded with the synthesised de-

terministic and stochastic components on lines 602-616. If the current frame does

not follow a transient frame, the output buffer is computed by summing the deter-

ministic and stochastic components on lines 617-623.

6.3.2 Extending Metamorph using Transformation classes

The FX.process_frame method has a number of points where transformations can

be applied to sinusoidal, noise or transient data before the output signal is synthe-

sised. It is therefore possible to extend Metamorph by creating new classes that are

derived from the abstract classes defined in transformations.h: HarmonicTransformation,

SpecEnvTransformation, ResidualTransformation and TransientTransformation.

Each class that is derived from Transformation must implement a process_frame
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method, taking a reference to a Simpl Frame object as input. The process_frame

method in classes derived from SpecEnvTransformation have an additional pa-

rameter: a reference to a std::vector of samples that contains the spectral en-

velope. A Transformation object can be added to an FX instance by calling the

FX.add_transformation method.

The use of Transformation classes is exemplified by the Metamorph

Transposition class, which is derived from the abstract class

HarmonicTransformation (shown in Listing 6.5). The definition of the

Transposition class is given in Listing 6.6. It consists of private variables to

hold the transposition amount, getter and setter methods to change this transposition

amount, and a process_frame method that will be called by the main FX object.

23 class Transformation {
24 public:
25 virtual void process_frame(simpl::Frame* frame) = 0;
26 };
27
28
29 class HarmonicTransformation : public Transformation {};

Listing 6.5: The class definitions for Transformation and HarmonicTransformation.

48 class Transposition : public HarmonicTransformation {
49 private:
50 sample _transposition;
51 sample semitones_to_freq(sample semitones );
52
53 public:
54 Transposition ();
55 Transposition(sample new_transposition );
56 sample transposition ();
57 void transposition(sample new_transposition );
58 void process_frame(simpl::Frame* frame);
59 };

Listing 6.6: The class definition for Transposition.
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The implementation of the Transposition class is shown in Listing 6.7. The

process_frame method loops over each sinusoidal partial in the supplied Simpl

Frame object, multiplying the frequency of the partial by the transposition amount

(in Hz). This method is called on line 544 in FX.cpp (Listing 6.3), before spectral

envelope transformations are applied.

9 Transposition :: Transposition () {
10 _transposition = 0;
11 }
12
13 Transposition :: Transposition(sample new_transposition) {
14 _transposition = new_transposition;
15 }
16
17 sample Transposition :: transposition () {
18 return _transposition;
19 }
20
21 void Transposition :: transposition(sample new_transposition) {
22 _transposition = new_transposition;
23 }
24
25 sample Transposition :: semitones_to_freq(sample semitones) {
26 return pow(TWELFTH_ROOT_2 , semitones );
27 }
28
29 void Transposition :: process_frame(simpl::Frame* frame) {
30 if(_transposition != 0) {
31 for(int i = 0; i < frame ->num_partials (); i++) {
32 frame ->partial(i)->frequency *= semitones_to_freq(_transposition );
33 }
34 }
35 }

Listing 6.7: The implementation of the Transposition class.

6.3.3 Metamorph modules, classes, functions and Csound op-

code

Lists of the modules, classes and functions that are available in Metamorph are

given in Tables 6.1 and 6.2. Classes begin with capital letters while functions start

with lowercase letters.
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Python Module Classes and Functions in Module

metamorph FX

SpectralEnvelope

Transformation

HarmonicTransformation

SpecEnvTransformation

ResidualTransformation

TransientTransformation

Transposition

HarmonicDistortion

TransientLPF

TransientHPF

TimeScale

Table 6.1: Metamorph Python module.
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Class or Function Description

FX Main Metamorph class. Implements
the main analysis and synthesis pro-
cess and provides plugin points so that
Transformation classes can modify
analysis data before synthesis.

SpectralEnvelope Code for computing spectral envelopes
using the discrete cepstrum envelope
method.

Transformation Abstract base class for Metamorph
transformations.

HarmonicTransformation Abstract base class for Metamorph har-
monic transformations.

SpecEnvTransformation Abstract base class for Metamorph
transformations that manipulate the
spectral envelope.

ResidualTransformation Abstract base class for Metamorph
residual component transformations.

TransientTransformation Abstract base class for Metamorph tran-
sient region transformations.

Transposition Class for performing transposition of
the sinusoidal component. Derived
from HarmonicTransformation.

HarmonicDistortion Class for performing har-
monic distortion of the sinu-
soidal component. Derived from
HarmonicTransformation.

TimeScale Class for time-scaling of an audio file.
Derived from FX.

TransientLPF Class for low-pass filtering transient
signal components. Derived from
TransientTransformation.
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TransientHPF Class for high-pass filtering transient
signal components. Derived from
TransientTransformation.

Table 6.2: Metamorph classes and functions (available from both C++ and Python).

Metamorph Csound opcode

The syntax of the Metamorph Csound opcode is as follows:

Opcode name: mm

Syntax: aTransformedSignal mm aInputSignal, kHarmonicScale,

kResidualScale, kTransientScale, kPreserveTransients,

kTranspositionFactor, kPreserveEnvelope, kHarmonicDistortion, kFundamentalFrequency

The opcode input parameters are described in Table 6.3.

6.4 Metamorph examples

This section presents five examples that illustrate how Metamorph can be used to

manipulate audio streams using Python, Csound and C++. The Python examples

are described first in Sections 6.4.1 and 6.4.2, performing harmonic distortion and

time-scaling transformations respectively. Sections 6.4.3 and 6.4.4 show how the

Metamorph Csound opcode can be used to transform real-time audio signals. In the

final example (Section 6.4.5) a new Transformation class is created in order to ad-

just the spectral envelope of a recorded sample. This example also demonstrates the

use of Metamorph from C++ and shows how to create new sound transformations

using the library.
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Csound opcode parameter Description

aInputSignal The input audio signal.

kHarmonicScale Factor used to scale the harmonic com-
ponent.

kResidualScale Factor used to scale the residual compo-
nent.

kTransientScale Factor used to scale the transient com-
ponent.

kPreserveTransients (0 or 1) Whether to preserve transients
or not.

kTranspositionFactor Transposition amount (in semitones).

kPreserveEnvelope (0 or 1) Whether to preserve the orignal
spectral envelope or not.

kHarmonicDistortion (0 . . . 1) Harmonic distortion amount.

kFundamentalFrequency Harmonic distortion fundamental fre-
quency.

Table 6.3: Metamorph Csound opcode.

6.4.1 Harmonic distortion

Listing 6.8 shows the application of the Metamorph harmonic distortion transfor-

mation to a sampled piano note. On line 7, a Metamorph FX object is created.

The residual_scale parameter is set to 0 on line 8, so the stochastic component

will not be present in the synthesised signal. A HarmonicDistortion instance

is then created on line 10. The two input parameters to the constructor refer to

the distortion amount α and the fundamental frequency F0 in Equation 6.1. The

HarmonicDistortion instance is added to the FX object on line 11. The trans-

formed audio signal is computed on line 13 by calling fx.process. This method

segments the input audio file into contiguous frames and calls FX.process_frame
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on each frame in sequence. Finally, the transformed signal is saved to a file called

piano_hdist.wav on lines 14 and 15.

1 import numpy as np
2 import scipy.io.wavfile as wav
3 import metamorph
4
5 audio , sampling_rate = metamorph.read_wav(’piano.wav’)
6
7 fx = metamorph.FX()
8 fx.residual_scale = 0
9

10 hdist = metamorph.HarmonicDistortion (0, 440)
11 fx.add_transformation(hdist)
12
13 output = fx.process(audio)
14 wav.write(’piano_hdist.wav’, sampling_rate ,
15 np.array(output * 32768, dtype=np.int16))

Listing 6.8: Metamorph harmonic distortion transformation using Python.

6.4.2 Time-scaling

As noted in Section 6.2.5, time-scaling is the only Metamorph transformation that

can not be performed in real-time because it requires an initial analysis pass. The

first uses our real-time note segmentation technique to locate all transient regions in

the signal. As these regions will not be time-scaled3, the overall time-scale factor

in non-transient segments must be adjusted so that the final scaled audio signal is of

the required duration. Once the time-scale factor for non-transient regions has been

calculated, the deterministic and stochastic components are then synthesised, and

connected to transient regions using a short cross-fade.

The TimeScale transformation is therefore quite different to the other harmonic

and stochastic transformations, and cannot be implemented using a Metamorph

3Transient regions are not time-scaled by default, although it is possible to change this.
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Transformation class. Instead, TimeScale is derived directly from FX. Listing 6.9

shows how this transformation can be used to time-scale a vocal sample by a factor

of 3. The TimeScale object is created on line 7, the scale factor is set on line 8

and then the scaled signal is computed using a overwritten version of the process

method on line 9.

1 import numpy as np
2 import scipy.io.wavfile as wav
3 import metamorph
4
5 audio , sampling_rate = metamorph.read_wav(’vocal.wav’)
6
7 ts = metamorph.TimeScale ()
8 ts.scale_factor = 3
9 output = ts.process(audio)

10
11 wav.write(’vocal_transposed.wav’, sampling_rate ,
12 np.array(output * 32768, dtype=np.int16))

Listing 6.9: Metamorph time-scale transformation using Python.

6.4.3 Real-time synthesis of the stochastic component

The use of the Metamorph Csound opcode is demonstrated in Listing 6.10. It takes

real-time input from the sound card (device 0) and outputs audio back to the default

output device. The Csound instrument is defined on lines 14-18. aIn is set to

read audio from input channel 1 on line 15. The Metamorph opcode mm is used to

synthesise the stochastic component of the input audio stream on line 16 by setting

the scale factors for the harmonic and transient components to 0. The resulting

signal is saved to aProcessed which is output on line 17. Lines 21-23 define a

short score that plays this instrument for 60 seconds.
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1 <CsoundSynthesizer >
2
3 <CsOptions >
4 -iadc0 -odac -b512 -B2048
5 </CsOptions >
6
7 <CsInstruments >
8 sr = 44100
9 kr = 86.1328125

10 ksmps = 512
11 nchnls = 1
12 0dbfs = 1
13
14 instr 1
15 aIn inch 1
16 aProcessed mm aIn , 0, 1, 0
17 out aProcessed
18 endin
19 </CsInstruments >
20
21 <CsScore >
22 i1 0 60
23 </CsScore >
24
25 </CsoundSynthesizer >

Listing 6.10: Using Metamorph to synthesise the stochastic component in real-time using
Csound.

6.4.4 Transposition

A second example that uses the real-time Metamorph Csound opcode is given in

Listing 6.11, this time transposing the input audio signal. As in the example in

Section 6.4.3, input device 0 and the default output device are used for real-time

sound input and output. However, different parameters are given to the mm opcode

on line 16. Only the harmonic component is synthesised by Metamorph as the scale

values for the harmonic, noise and transient components are set to 1, 0 and 0 respec-

tively. The fifth parameter is also 0, so transient components will not be preserved

in this transformation. The final parameter passes the value of the orchestra macro

$transpose to Metamorph which sets the desired transposition factor4

4This value for this parameter is specified in the command-line arguments.
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1 <CsoundSynthesizer >
2
3 <CsOptions >
4 -iadc0 -odac -b512 -B2048
5 </CsOptions >
6
7 <CsInstruments >
8 sr = 44100
9 kr = 86.1328125

10 ksmps = 512
11 nchnls = 1
12 0dbfs = 1
13
14 instr 1
15 aIn inch 1
16 aProcessed mm aIn , 1, 0, 0, 0, $transpose
17 out aProcessed
18 endin
19 </CsInstruments >
20
21 <CsScore >
22 i 1 0 60
23 </CsScore >
24
25 </CsoundSynthesizer >

Listing 6.11: Using Metamorph to transpose the harmonic component in real-time using
Csound.

6.4.5 Spectral Envelope Interpolation

This section shows that the Metamorph C++ library can be used to manipulate the

spectral envelope of an audio file. It also demonstrates how to create new effects us-

ing Metamorph’s analysis data. The first part of the example is given in Listing 6.12.

The first three lines include the C++ header files for the iostream library, libsndfile

and the Metamorph library.

1 #include <iostream >
2 #include <sndfile.hh>
3 #include "metamorph.h"
4
5 using namespace metamorph;
6
7
8 class EnvInterp : public SpecEnvTransformation {
9 private:
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10 FX* _fx;
11 int _num_frames;
12 double _interp;
13 double _interp_step;
14 std::vector <double > _env;
15
16 public:
17 EnvInterp(FX* fx, int num_frames) {
18 _fx = fx;
19 _num_frames = num_frames;
20
21 _interp = 0.0;
22 _interp_step = 1.0 / num_frames;
23
24 _env.resize(fx->env_size ());
25
26 // create a linear ramp from 0.5 to 0 over the duration
27 // of the envelope
28 for(int n = _env.size() - 1; n >= 0; n--) {
29 _env[n] = (( double)n / 2.0) / (_env.size() - 1);
30 }
31 fx->apply_envelope(_env);
32 }
33
34 void process_frame(simpl::Frame* frame , std::vector <double >& env) {
35 // gradually change envelope interpolation until the applied
36 // envelope is the linear ramp
37 _interp += _interp_step;
38 _fx ->env_interp(_interp );
39 }
40 };

Listing 6.12: Using Metamorph to manipulate the spectral envelope of an audio file (lines 1-40).

A definition of a new class called EnvInterp begins on line 8, which derives from

SpecEnvTransformation. The goal of the transformation is to begin synthesising

output using the original spectral envelope, but to smoothly interpolate the envelope

for a specified time duration so that by the end it is using a new envelope. The

constructor for the class is shown on lines 17-32. The input parameters are a pointer

to a Metamorph FX instance and the desired interpolation duration (in frames). A

new spectral envelope is created on lines 24-31 which consists of a linear ramp over

the duration of the envelope between 0.5 and 0. This envelope is saved in the FX

instance on line 31.

The process_frame method is defined on lines 34-39. This method is called

once for each frame of audio by the process_frame method in the FX instance, just
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before the spectral envelope is applied to the current sinusoidal partials. Lines 37

and 38 slowly adjust the linear interpolation between the original envelope and the

new envelope over the duration of the sample.

The main function is shown in Listing 6.13. The paths to the input and output

files are passed as command line parameters, so the number of supplied parameters

is checked on lines 44-48. A libsndfile SndfileHandle is created on line 50, which

is used to read the input audio file. A Metamorph FX object is instantiated on line

56. The hop size and frame size are set on lines 57 and 58 respectively, then on line

59 spectral envelope preservation is set to true so that the spectral envelope of the

input sound will be calculated and then applied (possibly with modifications) before

synthesis of the deterministic component. An instance of the new EnvInterp class

is created on line 61 and then added to the FX object on line 62. On lines 69-71 the

fx.process_frame method is called on each contiguous frame in the input signal.

The output waveform is saved to the std::vector of samples called output, which

is then written to the output file using libsndfile on lines 77-82.

43 int main(int argc , char* argv []) {
44 if(argc != 3) {
45 std::cout << "Usage: " << argv [0] << " <input file > <output file >";
46 std::cout << std::endl;
47 exit (1);
48 }
49
50 SndfileHandle input_file = SndfileHandle(argv [1]);
51 int num_samples = (int)input_file.frames ();
52 int hop_size = 512;
53 int frame_size = 2048;
54 int num_frames = (num_samples - frame_size) / hop_size;
55
56 FX fx;
57 fx.hop_size(hop_size );
58 fx.frame_size(frame_size );
59 fx.preserve_envelope(true);
60
61 EnvInterp env_interp = EnvInterp (&fx, num_frames );
62 fx.add_transformation (& env_interp );
63
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64 std::vector <double > input(num_samples );
65 std::vector <double > output(num_samples );
66
67 input_file.read (&( input [0]), num_samples );
68
69 for(int n = 0; n < (num_samples - hop_size ); n += hop_size) {
70 fx.process_frame(hop_size , &(input[n]), hop_size , &( output[n]));
71 }
72
73 int output_format = SF_FORMAT_WAV | SF_FORMAT_PCM_16;
74 int output_channels = 1;
75 int output_sampling_rate = 44100;
76
77 SndfileHandle output_file = SndfileHandle(argv[2],
78 SFM_WRITE ,
79 output_format ,
80 output_channels ,
81 output_sampling_rate );
82 output_file.write (&( output [0]), num_samples );
83
84 return 0;
85 }

Listing 6.13: Using Metamorph to manipulate the spectral envelope of an audio file (lines 43-
85).

6.5 Conclusions

This chapter introduced Metamorph, a software library which provides a new envi-

ronment for performing high-level sound manipulation. It is based on a real-time

sinusoids plus noise plus transients model, combining the sinusoidal modelling,

onset detection and note segmentation libraries that were discussed in chapters 3,

4 and 5 respectively. Metamorph includes a collection of flexible and powerful

sound transformations: harmonic distortion, adjusting the noisiness and transience

of an audio signal, manipulating the spectral envelope before synthesising the har-

monic component, transposition (with and without spectral envelope preservation),

time-scaling and transient processing. An overview of the design and implemen-

tation of Metamorph was presented in Section 6.3, which included a discussion of

how additional transformations can be added to Metamorph in order to extend the
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functionality of the library. Section 6.4 described five examples that demonstrated

how Metamorph could be used to manipulate audio streams using Python, C++ and

Csound.

6.5.1 Metamorph in comparison to existing tools for spectral

modelling and manipulation of sound

Section 2.7 provided an overview of existing software packages for spectral pro-

cessing of audio signals. These software packages were further categorised into

two groups; systems that specialised in spectral processing, and general purpose

systems that contained tools for spectral manipulation. As Metamorph belongs in

the former category, some comparisons with the other software tools in the group

will be made in this section.

Metamorph does not include a GUI for viewing and editing spectral data un-

like ATS, SPEAR and AudioSculpt. It also does not directly support importing or

exporting sinusoidal partial data to common file formats such as SDIF. However,

Metamorph is available as a Python extension module and it integrates well with

Python’s libraries for scientific computing, and so both of these tasks can be per-

formed using a relatively small amount of Python code. This is evident when look-

ing at the code required to plot sinusoidal analysis data using the Simpl library in

Section 3.4.2.

The majority of the software packages in the specialised tools category inte-

grate well with one or more of the general purpose signal processing applications

that are listed in Section 2.7.2. Like Loris, Metamorph is available as a Csound

opcode, allowing it to be used with a powerful system for audio signal processing

219



and sound design. Similarly, Libsms can be used with Pure Data, ATS can be used

with SuperCollider, Csound and Pure Data, and SuperVP is available as an external

object for Max/MSP.

However, only Metamorph and SuperVP manipulate audio signals in real-time

using a model that is based on separating sounds into deterministic, stochastic and

transient components. Metamorph and SuperVP both include a means of estimat-

ing and manipulating the spectral envelope of the analysed sound. Both are also

modular systems, but unlike SuperVP, Metamorph includes a series of “plugin”

points. This enables developers to create new transformations by altering the data

that is created at every stage of the analysis process. Another important distinc-

tion between the two systems is that Metamorph is open source software, which

allows other researchers and developers to extend the current functionality and also

makes it useful as a teaching tool. The additional note segmentation phase in the

Metamorph model could also be used to improve the quality of existing sound mor-

phing techniques. Caetano and Rodet showed that by considering the temporal evo-

lution of a sound source, morphing effects can be created that are judged to be more

“perceptually meaningful” than methods that simply interpolate spectral parameters

[20].
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Chapter 7

Conclusions

The preceding chapters documented the design and implementation of new open

source software tools for sound manipulation. The main motivation behind the de-

velopment of these systems was to enable composers, musicians and researchers to

perform flexible and intuitive transformations on live audio streams, with a partic-

ular focus on manipulating the timbres of live musical sounds. As the perception

of timbre is closely linked to the temporal evolution of the spectrum, the sinusoidal

model was chosen as the underlying synthesis by analysis system. There are well-

documented weaknesses with sinusoidal models however:

1. They are not ideally suited to providing meaningful control of signals that

contain noise-like components.

2. As sinusoidal models are based on the assumption that the underlying signal

components will evolve slowly in time, the quality of the synthesis of transient

components can be compromised. This is particularly problematic during the

attack region of musical sounds as these regions are perceptually salient.
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3. Sinusoidal models can potentially suffer from the problem of having too many

control parameters to allow the synthesised sounds to be manipulated in a

meaningful manner.

Addressing the first problem lead to the development of sinusoids plus noise

models of sound such as Spectral Modelling Synthesis and the bandwidth-enhanced

model. The open source software packages libsms and Loris can be used to analyse

and synthesise sounds using these two sinusoidal models. However, when working

with sinusoidal models it is often desirable to have an expressive, interactive system

that facilitates rapid-prototyping of ideas, and with a set of tools for performing

standard signal processing techniques and data visualisation. The experience of

experimenting with different sound models can also be simplified if it is possible to

interact with analysis data and parameters in a consistent manner.

The appeal of such a system motivated the development of the Simpl sinusoidal

modelling library. It is an open source software library that is written in C++ and

Python. It provides a consistent API for accessing implementations of Spectral

Modelling Synthesis, the bandwidth-enhanced model, the sinusoidal modelling sys-

tem that is part of the SndObj library and an implementation of the McAulay-

Quatieri method. Analysis and synthesis can be performed on pre-recorded audio

samples or on streams of audio frames (as long as this is supported by the underlying

sinusoidal modelling algorithm). When used with Python, Simpl uses NumPy ar-

rays to store audio samples, making it trivial to integrate the functionality provided

by the library with the SciPy suite of software for scientific computing. Simpl also

includes a module that visualises sinusoidal analysis data using Matplotlib. Simpl is

discussed in Chapter 3, which provides an overview of the software library followed
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by an in-depth look at the implementation of one of the peak detection modules.

The chapter concludes with some examples that demonstrate the functionality of

the library.

In order to improve the synthesis of note attack regions it is necessary to be able

to accurately locate and identify these transient signal components. The attack por-

tion of a musical note is usually taken to be a region (possibly of varying duration)

that immediately follows a note onset, and so the first stage in our solution to this

problem was to detect note onset locations. Chapter 4 describes Modal, a new open

source software library for real-time onset detection, written in C++ and Python.

It includes implementations of onset detection functions from the literature that are

based on measuring frame-by-frame variations in signal energy, average spectral bin

magnitude values, and a combination of spectral magnitude and frequency values.

Modal also includes a database of 71 samples that have creative commons licensing

which allows them to be freely redistributed. Each sample has associated metadata

containing hand-annotated onset locations for each note in the sample. The database

contains 501 onsets in total.

The Modal sample database was used to evaluate the detection accuracy of all

of the onset detection functions. We then show how the use of linear prediction

can improve the detection accuracy of the literature methods, but this improvement

comes at the expense of much greater computational cost. A novel onset detection

function that is based on measuring changes between spectral peak amplitude values

in sinusoidal partials is then presented, which is shown to be more accurate than the

literature methods while having similar computational performance characteristics.

Chapter 5 describes a method for detecting the duration of the attack transient

region that follows a note onset. However in addition to locating attack regions, it is
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desirable to be able to accurately identify other temporal sections in a musical note

that have distinct characteristics. Therefore Chapter 5 presented a new technique for

the real-time automatic temporal segmentation of musical sounds. Attack, sustain

and release segments were defined using cues from a combination of the amplitude

envelope, the spectral centroid, and a measurement of the stability of the sound that

is derived from an onset detection function. This segmentation method is then com-

pared to an implementation of a leading non-real-time technique from the literature

and it is shown to generally be an improvement. The note segmentation software is

free software, also written in C++ and Python.

The Simpl sinusoidal modelling library, Modal onset detection library and note

segmentation library are then combined in a real-time sound synthesis by analysis

tool called Metamorph which is described in Chapter 6. Metamorph is an open

source software library for performing high-level sound transformations based on

a sinusoids plus noise plus transients model. It is written in C++ and can be built

as both a Python extension module and a Csound opcode. The chapter examines

the sinusoids plus noise plus transients model that is used in Metamorph before de-

scribing each of the sound transformations that can be performed using the library:

harmonic distortion, adjusting the noisiness and transcience of an audio signal, ma-

nipulating the spectral envelope before synthesising the harmonic component, trans-

position (with and without spectral envelope preservation), time scaling and tran-

sient processing. The implementation of Metamorph is then discussed, followed by

examples of transformations performing using Metamorph from C++, Python and

Csound.
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7.1 Discussion and suggestions for future work

The Simpl library provides a consistent API for interacting with some leading sinu-

soidal modelling implementations from the literature. Simpl adds another layer of

abstraction on top of the existing implementations, however the C++ library is still

suitable for real-time analysis and synthesis. As sinusoidal models have been an

active research area for several decades there are more analysis models that could

be implemented and added to the library [94, 8, 26, 73, 121, 98, 62, 63]. The major-

ity of this research has focused on the identification and modelling of the harmonic

content in an audio signal, but there is potentially still room for improvement in

the modelling and synthesis of the residual component. It would also be of great

benefit to see a comprehensive evaluation of the performance of sinusoidal analysis

and synthesis methods, and indeed some progress towards such an evaluation has

occurred in recent years [61, 87].

The topic of real-time onset detection was discussed in Chapter 4. The per-

formance of seven onset detection functions is compared using a set of reference

samples (the Modal database). Our linear prediction and peak amplitude difference

methods were shown to perform better than techniques from the literature, how-

ever the composition and size of the sample set must be taken into account. The

samples are quite diverse in nature, consisting of percussive and non-percussive

sounds from a mixture of western orchestral instruments, contemporary western in-

struments, electronic sounds and vocal samples. Ideally the size of the database

would be larger in order to increase the confidence in the results. However, the

ability to freely distribute both the samples, their associated metadata, and all of the

analysis code was deemed to be extremely important as it enables other researchers
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to reproduce the results and to potentially improve upon the proposed methods. At

the time of publication there are no other known publicly available onset detection

resources that include these three components, but hopefully more sample sets and

source code will be made available in future which will make it possible to extend

Modal.

Our real-time note segmentation method was introduced in Chapter 5, and is

shown to compare favourably to a leading non-real-time technique from the liter-

ature. Both methods identify note onset, attack and sustain locations with a high

degree of accuracy. Neither method was particularly accurate in detecting the posi-

tions of release and offset events however, and so both region boundaries would be

good targets for potential improvement.

Chapter 6 introduced a new open source software tool for real-time sound ma-

nipulation called Metamorph, consisting of six transformations that are based on

high-level parameters [109]. Improvements could be made to the existing code base

in order to expose some of the model parameters that are currently hard-coded. For

example, there is a minimum time that must elapse between the detection of consec-

utive onsets (currently set to 200 ms), which limits the number of notes per second

that can be accurately transformed by the model. Ideally, the user should be able to

adjust this value depending on the nature of the input sound. The number of model

parameters that are available in the Csound opcode could also be increased, as some

of the existing C++ parameters cannot currently be controlled from Csound.

There are more spectral transformations from the literature that could be added

to the library [4]. The ability to manipulate spectral envelopes that are created using

the discrete cepstrum envelope has proven to be very useful, but a thorough evalu-

ation of the discrete cepstrum envelope and the True Envelope would certainly be
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of interest to the research community. Using these spectral envelopes to manipu-

late the sound spectrum can definitely reduce the number of parameters that must

be adjusted when creating sound modifications, but much work still remains in the

quest to create meaningful ways of interacting with these envelopes, particularly in

a real-time musical performance situation.

7.2 Closing remarks

It was noted in the opening chapter that the appeal of additive synthesis and the

promise of a general-purpose sound model that can provide flexible and intuitive

control of transformations has proven hard to resist for many researchers. While

there are still improvements that can be made in order to increase the perceived

quality of real-time sinusoidal synthesis by analysis methods, and to provide per-

ceptually intuitive means of controlling the real-time synthesis process, it is hope-

fully clear that this research represents an important step towards achieving these

goals. A strong emphasis was placed on providing free, open-source software li-

braries, enabling the results from each stage of the research to be independently

evaluated and reproduced, and ideally leading to a wider dissemination of the work.
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Appendix A

Contents of the accompanying data

CD

The thesis comes with a data CD that contains the source code for the software that

is discussed in Chapters 3, 4, 5 and 6. A set of audio examples are also included.

The CD contains the following directories:

simpl: The source code to the Simpl sinusoidal modelling library (discussed in

Chapter 3).

modal: The source code to the Modal real-time onset detection library (discussed

in Chapter 4).

modal_evaluation: The code used to evaluate the onset detection functions that

are implemented in Modal.

notesegmentation: The source code to the Note Segmentation library (discussed

in Chapter 5).
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notesegmentation_evaluation: The code used to evaluate the performance of our

real-time note segmentation method and our implementation of the Caetano

et al. method.

metamorph: The source code to Metamorph (discussed in Chapter 6).

audio_examples: A collection of audio examples that were created using Simpl

and Metamorph.

The most recent versions of the four software libraries can be found online at the

author’s website: http://www.johnglover.net.
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Appendix B

Simpl: A Python library for

sinusoidal modelling

Original publication:

John Glover, Victor Lazzarini, and Joseph Timoney. Simpl: A Python library for si-

nusoidal modelling. In Proceedings of the 12th International Conference on Digital

Audio Effects (DAFx-09), Como, Italy, September 2009.
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ABSTRACT

This paper introduces Simpl, a new open source li-
brary for  sinusoidal  modelling written in  Python. 
The  library  is  presented  as  a  resource  for  re-
searchers in spectral signal processing, who might 
like to access existing methods and techniques. The 
text provides an overview of the design of the li-
brary, describing its data abstractions and integra-
tion with other systems. This is complemented by 
some brief examples exploring the functionality of 
the library. 

1.INTRODUCTION

Simpl is an open source library for sinusoidal mod-
elling [1] written in the Python programming lan-
guage  [2]  and  making  use  of  Scientific  Python 
(SciPy) [3]. The aim of this project is to tie together 
many of  the existing sinusoidal modelling imple-
mentations into a single unified system with a con-
sistent API, as well as providing implementations 
of some recently published sinusoidal modelling al-
gorithms, many of which have yet to be released in 
software. 
     Simpl is primarily intended as a tool for other  
researchers  in  the  field,  allowing  them  to  easily 
combine, compare and contrast  many of the pub-
lished analysis/synthesis algorithms. There are cur-
rently  several  open  source  software  projects  that 
either include or are dedicated solely to sinusoidal 
modelling such as PARSHL [4], the Sound Object 
Library  [5],  Csound  [6],  Loris  [7],  CLAM  [8], 
libsms [9] and SAS [10]. All of these systems exist 
as separate entities, and due to their internal work-
ings it can often be awkward to exchange analysis 
data between them for comparison. However, they 
generally share common ideas, terminology and ab-
stractions (such as the concepts of spectral  peaks 
and partial  tracking).  Simpl  allows  these  abstract 
data types to be exchanged between different un-
derlying implementations. For example, one might 
wish to compare the sinusoidal peaks detected with 

the SMS algorithm with those found by the Loris 
implementation.  Due  to  the  flexible,  modular 
design of Simpl this sort  of operation is straight-
forward. Simpl analysis/synthesis is able to render 
audio files  in non-real-time as  well  as  operate in 
real-time streaming mode, as long as the underlying 
algorithms are able to do so.

1.1.Sinusoidal Modelling

Sinusoidal modelling is based on Fourier's theorem, 
which  states  that  any  periodic  waveform can  be 
modelled as the sum of sinusoids at various ampli-
tudes  and  harmonic  frequencies. For  stationary 
pseudo-periodic sounds, these amplitudes and fre-
quencies  evolve  slowly  with  time.  They  can  be 
used as parameters to control pseudo-sinusoidal os-
cillators, commonly referred to as    partials.  The 
audio signal s can be calculated from the sum of the 
partials using:

s t =∑
1

N p

A p t cos p t                     (1)

 p t =p 02∫
0

t

f p udu  

(2)

where Np is the number of partials and Ap, fp and ϴp 

are the 
amplitude, frequency and phase of the  p-th partial 
respectively. 
Typically, the parameters are measured for every:

 t=nH /F s                                     (3)

where n is the sample number, H is the hop size and 
Fs is the sampling rate. To calculate the audio sig-
nal, the parameters must then be interpolated be-
tween measurements. Calculating these parameters 
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for each frame is referred to in this document as 
peak  detection,  while  the  process  of  connecting 
these peaks between frames is called partial track-
ing.
     In [11] McAulay and Quatieri proposed to repre-
sent  a  speech  signal  as  a  sum of  sinusoids  with 
time-varying  amplitude,  frequency  and  phase. 
While it is possible to model noisy signals with si-
nusoids, it is not very efficient, as large numbers of 
partials are often required. It is also not particularly 
meaningful, and does not seek to represent the un-
derlying structure of the sound.
     Serra and Smith extended this idea in [12], mak-
ing  a  distinction  between  the  pseudo-periodic  or 
deterministic component of a sound and the more 
noise-like or  stochastic component, modelling and 
synthesising  the  two  components  separately.  Fitz 
and  Haken  keep  this  distinction  in  [13],  but  use 
bandwidth-enhanced oscillators  to create a homo-
geneous additive sound model. 
     Later advances and refinements in the field have 
mostly  been  in  the  details  of  the  analysis  algo-
rithms, in particular in the peak detection and par-
tial  tracking processes.  A good overview of peak 
detection techniques can be found in [14]. In [15] 
Depalle and Rodet use the Hidden Markov Model 
to improve partial tracking, while in [16] Lagrange 
et al achieve this using Linear Prediction.

1.2.SciPy

SciPy  is  a  cross-platform,  open  source  software 
package for mathematics, science and engineering. 
It depends on NumPy [17], which provides fast ar-
ray processing. It has a syntax that is very similar 
to Matlab [18], with implementations of many of 
Matlab's functions: it contains packages for matrix 
manipulation,  statistics,  linear  algebra  as  well  as 
signal processing. SciPy also supports Matlab-style 
plotting and visualisation of data through the Mat-
plotlib [19] language extension. The vast library of 
functions combined with the readability and power 
of the Python language make SciPy a great tool for 
quick prototyping as well as for the development of 
larger applications.

2.THE SIMPL LIBRARY

Simpl is an object-orientated Python library for si-
nusoidal modelling. Spectral data is represented by 
two main object types: Peak (represents a spectral 
peak) and Partial. A Partial is basically just an or-
dered collection of Peak objects.
     Simpl includes a module with plotting functions 
that use Matplotlib to plot analysis data from the 
peak detection and partial tracking analysis phases, 
but generating additional plots is trivial using Mat-
plotlib's Matlab-like interface.
     All audio in Simpl is stored in NumPy arrays. 

This means that SciPy functions can be used for ba-
sic tasks such as reading and writing audio files, as 
well as more complex procedures such as perform-
ing additional processing, analysis or visualisation 
of the data.
     Each supported analysis/synthesis method has 
associated wrapper objects that allows it to be used 
with Simpl Peak and Partial data, which facilitates 
the  exchange  of  information  between  what  were 
originally unrelated sinusoidal modelling systems. 
The implementations  that  are  currently  supported 
are the Sound Object Library,  Spectral  Modelling 
Synthesis (SMS, using libsms) and Loris. Addition-
ally,  the  following  algorithms  are  included: 
McAulay-Quatieri (MQ) analysis and synthesis as 
given  in  [11],  partial  tracking  using  the  Hidden 
Markov Model (HMM) as detailed in [15] and par-
tial  tracking  using  Linear  Prediction  (LP)  as  de-
tailed in [16].
     Currently in Simpl  the sinusoidal  modelling 
process  is  broken  down into  three  distinct  steps: 
peak detection, partial tracking and sound synthe-
sis. Python objects exist for each step, which all of 
the analysis/synthesis wrapper objects derive from. 
Each object has a method for real-time interaction 
as well as non-real-time or batch mode processing, 
as long as these modes are supported by the under-
lying  algorithm.  For  any  given  step,  every 
analysis/synthesis  object  returns data  in  the same 
format, irrespective of its underlying implementa-
tion. This allows analysis/synthesis networks to be 
created in  which the algorithm that is  used for  a 
particular step can be changed without effecting the 
rest of the network. The process is summarised in 
figure 1.
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Figure 1: Simpl analysis-synthesis process

2.1.Peak Detection 

PeakDetection objects take a NumPy array of audio 
samples as input. This can be just a single frame of 
audio, or a longer signal of arbitrary length that will 
be cut up into frames for further processing inter-
nally and zero padded if necessary. For each frame, 
spectral peaks are calculated. If the input was a sin-
gle audio frame, then a single list of Peak objects is 
returned. If it was a longer signal, a separate list of 
Peaks is returned for each audio frame.

2.2.Partial Tracking

The input to PartialTracking objects is either a list 
of Peaks or an arbitrary number of lists of Peaks. 
This information is used by the partial tracking al-
gorithm to form Partial objects, which are ordered 
lists of Peaks. The return value is always a list of 
Partials.

2.3.Sound Synthesis 

SoundSynthesis objects take a list of Partials and a 
NumPy array of audio samples (the original signal) 
as  input.  They use this  data  in  various ways de-
pending on the synthesis algorithm, but the general 

process is to use the Partial data to synthesise the 
harmonic  (deterministic)  sound  component,  then 
subtract this from the original signal in order to ob-
tain  the  residual  (stochastic)  component.  All  de-
rived objects can return a fully synthesised signal, 
as well as these two components in isolation if sup-
ported.  For  example,  the MQ algorithm does not 
make this distinction and between components and 
so the MQSoundSynthesis object returns a synthe-
sised  signal  based  only  on  the  Partial  data. 
SMSSoundSynthesis on the other hand can return 
all three signal types. Audio signals are returned as 
NumPy arrays.

3.EXAMPLES

In  this  section  we  will  present  three  examples, 
demonstrating the system. The first deals with the 
basic manipulation of audio data using SciPy. The 
next  two  provide  examples  of  the  Simpl  library 
proper for two basic tasks of analysis-synthesis and 
spectral display.

3.1 Using SciPy

The following example shows how SciPy can be 
used to read in an audio file called piano.wav and 
plot it using Matplotlib. The resulting plot is dis-
played in figure 2.

from scipy.io.wavfile import read
from  pylab  import  plot,  xlabel, 
ylabel, \ 
                  title, show

input_data = read('piano.wav')

# store samples as floats between 
-1 and 1
audio_samples  =  input_data[1]  / 
32768.0
  
# plot the first 4096 samples
plot(audio_samples[0:4096])  
ylabel('Amplitude')
xlabel('Time (samples)')
title('piano.wav')
show()
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Figure 2: Resulting waveform plot

3.2.Using Simpl

This data can now be passed directly to the Simpl 
analysis objects. In the following example, peak de-
tection  is  performed using  the  Sound Object  Li-
brary, followed by partial tracking from the MQ al-
gorithm before  finally  the  sound is  resynthesised 
using SMS. All  operations are performed in non-
real-time.

from scipy.io.wavfile import read
from scipy import asarray, float32
from SimplSndObj import SndObj-
PeakDetection
from SimplMQ import MQPartial-
Tracking
from SimplSMS import SMSSynthesis
input_data = read('piano.wav')
# store audio samples as 32-bit 
floats,
# with values between -1 and 1
audio_samples = 
asarray(input_data[1], \
   float32) / 32768.0

# This detects peaks using the 
SndObj lib
# and stores them in a numpy array
pd = SndObjPeakDetection()
peaks = pd.find_peaks(audio_sam-
ples)

# Here we have partial tracking 
using
# McAulay-Quatieri method  
pt = MQPartialTracking()
partials = pt.find_partials(peaks)

# finally we synthesise the audio 
# using SMS      
synth = SMSSynthesis()
# our detected partials will be 
used to 
# form the harmonic component, and 
the 
# original audio signal will be 
used when 
# calculating the residual
audio_out = 
synth.synth(partials, \
   audio_samples)

3.3 Simpl Data Visualisation

Partial  tracking  data  can  be  displayed  using 
the Simpl plotting module. The plot produced 
by this example is shown in figure 3.

from scipy.io.wavfile import read
from scipy import asarray, float32
from SimplSndObj import SndObj-
PeakDetection
from SimplMQ import MQPartial-
Tracking
from SimplPlots import plot_par-
tials

# read audio data
input_data = read('piano.wav')
audio_samples = 
asarray(input_data[1], \
   float32) / 32768.0

# detect up to a maximum of 20 
peaks. If 
# there are more, the 20 with the 
largest 
# amplitudes will be selected 
pd = SndObjPeakDetection()
pd.max_peaks = 20
peaks = pd.find_peaks(audio_sam-
ples)

# track peaks
pt = MQPartialTracking()
partials = pt.find_partials(peaks)
# display them
plot_partials(partials)    
show()

235



Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

Figure 3: Plot of partial data. Circles represent 
peaks, lines show the resulting partials. Some 
extra peaks were created by the MQ partial 
tracking algorithm, for partial 'birth' and 

'death'.

4. FUTURE WORK

More visualisation functions will be added to the li-
brary.  In particular, we want to add the ability to 
display data during real-time analysis. The current 
plotting  functions  are  not  efficient  enough  to 
achieve this. It is expected that more analysis/syn-
thesis  algorithms  will  be  added  to  the  library, 
adapted  from  the  many  published  papers  in  the 
field. We would also like to add the ability to con-
trol algorithm parameters in real-time using Open-
Sound Control [20]. Developers are encouraged to 
contribute to the project,  and can contact the au-
thors via email.

5.CONCLUSION

Simpl provides a new environment for developing 
sinusoidal modelling applications, unifying several 
of the existing solutions in addition to implement-
ing  some  of  the  most  important  advances  in  the 
field.  Together with the flexibility  of  Python and 
the  extensive  range  of  SciPy  functions,  Simpl 
should be a valuable tool for other researchers and 
developers.
     Simpl is free software, available under the terms 
of the GNU GPL. To download it or for more infor-
mation go to:
http://simplsound.sourceforge.net

6.ACKNOWLEDGEMENTS

The authors would like to acknowledge the gener-
ous support of An Foras Feasa, who funded this re-

search.

7.REFERENCES

[1] X. Amatriain, J. Bonada, A. Loscos, X. Serra, 
"DAFX  -  Digital  Audio  Effects",  chapter 
Spectral Processing, pp 373-438,  Udo Zölzer 
Ed, John Wiley & Sons, Chichester, UK, 2002.

[2] G. Van Rossum, F. Drake, "The Python Lan-
guage  Reference  Manual", Network  Theory, 
Bristol, UK, 2006.

[3] E. Jones, T. Oliphant, P. Peterson and others, 
"SciPy:  Open  Source  Scientific  Tools  for 
Python",  http://www.scipy.org, accessed April 
6, 2009.

[4] J. Smith, X. Serra, "PARSHL: An Analy-
sis/Synthesis Program for Non-Harmonic 
Sounds Based on a Sinusoidal Representa-
tion." Proceedings of the International Com-
puter Music Conference (ICMC), San Fran-
cisco, USA, 1987.

[5] V. Lazzarini, "The Sound Object Library", Or-
ganised  Sound  5  (1),  pp  35-49,  Cambridge 
University Press, Cambridge, UK, 2000.

[6] J.  Ffitch,  "On the Design of Csound5",  Pro-
ceedings of the 3rd Linux Audio Conference 
(LAC),   pp.  37-42,  ZKM,  Karlsruhe,  Ger-
many, 2005.

[7] K. Fitz,  L.  Haken,  S.  Lefvert,  M. O'Donnel, 
"Sound Morphing using Loris and the Reas-
signed  Bandwdith-Enhanced  Additive  Sound 
Model:  Practice  and  Applications",  Proceed-
ings  of  the  International  Computer  Music 
Conference, Gotenborg, Sweden, 2002.

[8] X. Amatriain, P. Arumi, D. Garcia,"CLAM: A 
Framework for Efficient and Rapid Develop-
ment of  Cross-platform Audio Applications", 
Proceedings of ACM Multimedia, Santa Bar-
bara, California, USA, 2006.

[9] R. Eakin, X. Serra, "libsms Library for Spec-
tral  Modeling  Synthesis"  http://www.mtg.up-
f.edu/static/libsms/, accessed April 06, 2009.

[10] M. Desainte-Catherine,  S. Marchand, "Struc-
tured Additive Synthesis: Towards a Model of 
Sound  Timbre  and  Electroacoustic  Music 
Forms", Proceedings of the International Com-
puter Music Conference (ICMC), pp. 260-263, 
Beijing, China, 1999.

[11] R.  McAulay,  T.  Quatieri,  "Speech 
Analysis/Synthesis  Based  on  a  Sinusoidal 
Representation",  IEEE Transaction on Acous-
tics,  Speech  and  Signal  Processing,  vol.  34, 
no. 4, pp. 744–754, 1986.

[12] X. Serra, J. Smith, "Spectral Modeling Synthe-
sis  A Sound  Analysis/Synthesis  Based  on  a 
Deterministic plus Stochastic Decomposition", 
Computer Music Journal, Vol. 14, No. 4 (Win-
ter), 12-24, 1990.

[13] K.  Fitz,  "The  Reassigned  Bandwidth-En-
hanced Method of Additive Synthesis", Ph. D. 
dissertation, Dept. of Electrical and Computer 

236



Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

Engineering, University of Illinois at Urbana-
Champaign, USA, 1999.

[14] F. Keiler, S. Marchand, "Survey on Extraction 
of Sinusoids in Stationary Sounds", Proceed-
ings  of  the  5th  International  Conference  on 
Digital Audio Effects (DAFx), Hamburg, Ger-
many, 2002.

[15] P. Depalle, G. Garcia, X. Rodet, "Tracking of 
Partials  for  Additive  Sound  Synthesis  Using 
Hidden Markov Models",  Proceedings of the 
IEEE International  Conference on Acoustics, 
Speech and Signal Processing (ICASSP), Min-
neapolis, Minnesota, USA, 1993.

[16] M.  Lagrange,  S.  Marchand,  M.  Raspaud,  J. 
Rault, "Enhanced Partial Tracking Using Lin-
ear Prediction ", Proceedings of the 6th Inter-

national Conference on Digital Audio Effects 
(DAFx), London, UK, 2003.

[17] T. Oliphant, "Guide to NumPy", 
http://numpy.scipy.org/numpybook.pdf, ac-
cessed April 06, 2009.

[18] The MathWorks, "MATLAB - The Language 
of Technical Computing", http://www.math-
works.com/products/matlab, accessed April 
06, 2009.

[19] J. Hunter and others, "Matplotlib - Python 
Plotting",    http://matplotlib.sourceforge.net/, 
accessed April 06, 2009.

[20] M. Wright, A. Freed, A. Momeni, "OpenSound 
Control: State of the Art 2003", Proceedings of 
the Conference on New Interfaces for Musical 
Expression (NIME), Montreal, Canada, 2003.

237



Appendix C

Sound manipulation using spectral

modeling synthesis

Original publication:

John Glover, The Audio Programming Book, Richard Boulanger and Victor Lazzarini

(ed.), chapter 19. The MIT Press, 2010.

238



DVD Chapter 19 – John Glover

Sound Manipulation Using Spectral 
Modeling Synthesis

1. Introduction

There are many ways that sound can be modeled and in turn recreated by computers, 
ranging from mathematical models such as Frequency Modulation (FM) synthesis1, to 
time-based techniques such as Granular synthesis2, to physical models that aim to 
simulate the acoustic properties of a sound source3. All of these techniques are 
extremely powerful and each one can in theory be used to create any possible sound, 
but one of the biggest problems that still remains in sound synthesis is how to 
maintain the flexibility to create a wide variety of sound timbres and yet provide an 
intuitive means of controlling the synthesis process, preferably in real-time. 
Recreating specific sounds using FM synthesis is generally not an intuitive task, often 
requiring a lot of trial and error, although there have been recent improvements in this 
area4. Granular synthesis can require specifying hundreds of parameters even for 
short segments of sound, making simple yet precise real-time control difficult. 
Physical modeling can offer control parameters based on the properties of the 
modeled instrument, which can be very intuitive. For example, a physically modeled 
guitar may offer controls such as string thickness or wood type. However, physical 
models are by nature very specific to a particular sound creation process, so creating 
an arbitrary sound may require constructing a completely new physical model. This is 
not a trivial task, and may be time-consuming and unintuitive if it is not based on an 
existing physical instrument.

An alternative to the above sound models is to use a frequency domain or 
spectral model, which represents audio signals as a sum of sine waves with different 
frequencies and amplitudes. This representation is somewhat similar to the human 
hearing system, and in comparison to physical modeling it models the sound that 
arrives at the ear rather than the sound emitted by the source. Research shows that the 
perception of timbre is largely dependent on the temporal evolution of the sound 
spectrum5, and so it seems natural to use a sound model that is based on the frequency 
spectrum as a tool to manipulate timbre. Spectral models provide ways to transform 
audio signals that can be perceptually and musically intuitive, although like granular 
synthesis they can suffer from the problem of having too many parameters to allow 
for meaningful real-time control. 

This chapter focuses specifically on spectral transformations using a technique 
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called Spectral Modeling Synthesis6 (SMS), showing how an open source C library 
called libsms7 can be used to manipulate sound files in a variety of ways. Section 2 
begins by giving a brief overview of SMS, and then a simple example is given that 
demonstrates how libsms can be used to recreate a given input sound. This will serve 
as the basic template for later examples. In Section 3 we look in detail at each step in 
the SMS algorithm, focusing on how these spectral processing concepts are 
implemented in libsms. It may help if you are familiar with the section on Spectral 
Processing (from Book Chapters 7-9) before reading it, as many of the ideas here are 
based on these basic principles. In Section 4, detailed examples are given that show 
how we can use libsms to transform the input sound. In particular, we show how the 
pitch of a sound can be changed without changing its duration, how the duration of 
the sound can be changed without altering the pitch and how we can use spectral 
envelope information to create a hybrid of two input sounds.

2. Spectral Modeling Synthesis

Additive synthesis is based on Fourier's theorem, which basically says that any sound 
can be modeled as the sum of sinusoids at various amplitudes and harmonic 
frequencies. For sounds with a lot of harmonic content, which includes a lot of 
musical sounds, these amplitudes and frequencies evolve slowly with time. They can 
be used as parameters to control sinusoidal oscillators that synthesize individual 
sinusoidal components or partials. The audio signal s can be calculated from the sum 
of the partials using:

    

 (1)

     

(2)

where Np is the number of partials and Ap, fp and ϴp  are the amplitude, frequency and 
phase of the p-th partial respectively. The problem is that using additive synthesis to 
create many musically interesting sounds (such as a piano note for example) may 
require large numbers of sinusoids, each with individual frequency, amplitude and 
phase parameters. These parameters could be found by hand using trial and error, but 
as this is extremely time-consuming it is usually preferable to find these parameters 
by doing some sort of analysis on recorded sound files. 
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The Short-Time Fourier Transform8 (STFT) is the usual starting point for 
sinusoidal analysis, providing a list of bin number, amplitude and phase parameters 
for each frame of analyzed audio. This principle can be extended, allowing us to track 
the individual frequencies that are present in the sound. The phase vocoder9 has been 
used quite successfully for this purpose since the 1970's. However, it does have 
problems. Firstly, as it uses a fixed-frequency filter bank, the frequency of each 
sinusoid cannot normally vary outside of the bandwidth of its channel. As the phase 
vocoder is really set up for analyzing harmonic sounds, it can be inconvenient to use 
it to work with inharmonic sounds. It also represents the entire audio signal using 
sinusoids, even if it includes noise-like elements, such as the key noise of a piano for 
example or the breath noise in a flute note. This is not a problem for straight re-
synthesis of the sound, but if any transformation is applied (such as time-stretching), 
these noisy components are modified along with the harmonic content, often resulting 
in audible artifacts. Modeling noisy components with sinusoids is computationally 
expensive, as theoretically recreating noise requires sinusoids at every frequency 
within the band limits. A sinusoidal representation of noise is also unintuitive and 
does not provide an obvious way manipulate the sound in a meaningful way.

Two similar systems were developed independently in the 1980's that 
overcame the phase vocoder problems of sinusoids varying outside the channel 
bandwidth and analyzing inharmonic sounds, PARSHL10 and another system designed 
for speech analysis by McAulay and Quatieri11. Both work by performing a STFT on 
the input audio signal, then selecting the most prominent spectral peaks (sinusoidal 
components with the largest magnitudes) that are tracked from frame to frame. These 
peaks are interpolated across frames to form partials, which may or may not be 
harmonically related.

This still left the problem of how to model and manipulate noisy sound 
components. SMS addresses this problem by breaking an audio signal down into two 
components: a harmonic component (that will be represented by a sum of sinusoids) 
and a noise or residual component (that will be represented by filtered noise). First, a 
similar scheme to that used in PARSHL and by McAulay and Quatieri is used to find 
and model any harmonic content from the sound signal. The harmonic component is 
then synthesized using this information and subtracted from the original signal, 
leaving a noise-like residual sound that can then be modeled separately. These two 
parts of the sound can be manipulated independently and then recombined to create 
the final synthesized sound. The entire process is summarized in Figure 1.
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Figure 1 SMS analysis/synthesis. 

2.1 A First Look At Libsms

This section looks at how libsms can be used to make a C program 
(analysis_synthesis.c) that performs SMS analysis and synthesis of a given input 
audio file. No transformations are applied to the sound, so the output should sound 
very similar to the input, but this program will serve as the template that later 
examples will build upon. The full source code and build instructions can be found in 
the examples folder. 

The first few lines include the libsms header file sms.h and define named 
constants for Boolean values so that the code is easier to read.

    #include "sms.h"

    #define TRUE 1
    #define FALSE 0
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Next we begin the main function and make sure that the user has supplied the correct 
number of command line arguments. There must be two in this case, the path to the 
input sound file and the path to the new output file that will be created.

    int main(int argc, char *argv[])
    {
        /* make sure that we have the correct number of 
         * command line arguments 
         */
        if(argc != 3)
        {
            printf("Error: please specify an input file and " 
                   "an output file\n");
            exit(1);
        }

Following this, we declare the variables that will be used in the rest of the program. 
The first five are all libsms data structures. analysisData will hold the result of 
analyzing one frame of audio. smsHeader contains information that is used 
throughout the entire analysis/synthesis process such as the sample rate, the total  
number of frames, etc. soundHeader will contain information about the input audio 
file such as the total number of samples, the number of audio channels and the 
sampling rate. analysisParams and synthParams are used to define parameters used 
during analysis and synthesis respectively. Some of these parameters will be used in 
the example programs discussed in this text, however there are many more, and 
depending on the audio file being analyzed each parameter can have a large impact 
on the perceived quality of the synthesized sound. For a full reference of libsms 
analysis and synthesis parameters consult the online documentation.

The remaining variables are standard C variable types. inputFile and 
outputFile are strings assigned to the two command line arguments. 
currentFrame, which will hold one frame of input audio samples, is a floating point 
array the same size as the largest possible analysis window used by libsms, 
SMS_MAX_WINDOW samples long. doAnalysis is a Boolean variable that will be used 
to control when to stop the main analysis/synthesis loop. status will contain 
information about the result of analyzing the most recent frame of audio, such as 
whether or not the analysis was completed successfully. numSamplesRead contains 
the total number of samples read from the audio input file at any given time. 
frameSize contains the size of the current audio frame, which can vary from frame to 
frame depending on the estimated pitch of the input audio file. This process is 
described in more detail in Section 3.4. audioOutput will contain one frame of 
synthesized audio.

    SMS_Data analysisData;
    SMS_Header smsHeader;
    SMS_SndHeader soundHeader;
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    SMS_AnalParams analysisParams;
    SMS_SynthParams synthParams;

    char *inputFile = argv[1];
    char *outputFile = argv[2];
    float currentFrame[SMS_MAX_WINDOW];
    int doAnalysis = TRUE;
    long status = 0, numSamplesRead = 0, frameSize = 0;
    float *audioOutput;

After defining these variables, a call is made to sms_openSF to open the input audio 
file for reading. Behind the scenes, this uses libsndfile12 to open and read the sound 
file. The return value from this function is checked to make sure that no problems 
were encountered.
    
    /* open input sound */
    if(sms_openSF(inputFile, &soundHeader))
    {
        printf("Error: Could not open the input sound file\n");
        exit(1);
    }     

Next we initialize the libsms variables that we defined previously. These function 
calls allocate memory that will be used during analysis and synthesis, and set the 
parameters to some sensible default values.
 
    /* initialize libsms */
    sms_init();
    sms_initAnalParams(&analysisParams);

    /* at 44.1 Khz this frame rate results in a hop size of 128 */
    analysisParams.iFrameRate = 344;
    sms_initAnalysis(&analysisParams, &soundHeader);
    sms_fillHeader(&smsHeader, &analysisParams,  
                   "AnalysisParameters");
    sms_allocFrameH(&smsHeader, &analysisData);
    sms_initSynthParams(&synthParams);
    synthParams.sizeHop = 128;
    sms_initSynth(&smsHeader, &synthParams);

It is important to note here that in libsms analysis, we specify a frame rate that will 
alter the analysis hop size depending on the sample rate of the input audio file. The 
formula used is:

(3)

However, for our purposes, we want to be able to analyze a frame and synthesize it 

244



again immediately, so we need to the analysis hop size to be the same as the synthesis 
hop size. We set the analysis frame rate to 344, which is equivalent to the synthesis 
hop size of 128 for audio files recorded at a sampling rate of 44.1 KHz. If you are 
using audio files at different sample rates you will have to adjust this line accordingly 
to obtain accurate results.

Next a call is made to sms_createSF that opens the output audio file for 
writing, again using libsndfile. synthParams.iSamplingRate is set to the same 
sampling rate as the input audio file by the function sms_initSynth. The third 
argument specifies an output file format. 0 is a floating point wav files, 1 is a floating 
point aiff and 2 is a 16-bit wav. After this, memory is allocated for one frame of audio 
output.

    /* initialize libsndfile for writing a soundfile */
    sms_createSF(outputFile, synthParams.iSamplingRate, 0);

    /* allocate memory for one frame of audio output */

    if((audioOutput = (float *)calloc(synthParams.sizeHop, 
       sizeof(float))) == NULL)
    {
        printf("Error: Could not allocate memory for audio "
               "output\n");
        exit(1);
    }

With all the necessary variables declared, parameters set and memory allocated, it is 
now time to being the main analysis/synthesis loop. This will run until the entire input 
file has been analyzed by libsms and the output file has been created.

    /* analysis/synthesis loop */
    while(doAnalysis)
    {
        /* update the number of samples read so far */
        numSamplesRead += frameSize;

        /* get the size of the next frame */
        if((numSamplesRead + analysisParams.sizeNextRead) < 
           soundHeader.nSamples)
        {   
            frameSize = analysisParams.sizeNextRead;
        }
        else
        {   
            frameSize = soundHeader.nSamples - numSamplesRead;
        }

First, the numSamplesRead count is updated. It is then compared to the size of the 
next audio frame, initially specified in sms_initAnalysis, but the value can change 
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as analysis continues. As long as we have enough samples of the input file remaining, 
this value is used as our new frame size. If we don't have enough samples left, the 
frame size is simply the number of remaining samples.

Now that we know how many samples need to be read from the input file, 
sms_getSound is called which copies the next frameSize worth of samples into the 
currentFrame array. Then, these audio samples are passed to sms_analyze, which 
stores one frame of analysis data in analysisData if analysis was successful. 

        /* read the next frame */
        if(sms_getSound(&soundHeader, frameSize, currentFrame, 
                        numSamplesRead))
        {
            printf("Error: could not read audio frame: %s\n", 
                   sms_errorString());
            break;
        }

        /* analyse the frame */
        status = sms_analyze(frameSize, currentFrame, &analysisData,
                             &analysisParams);

Libsms actually requires several frames of audio before it starts producing analysis 
frames. Internally it always saves some frames in a circular buffer in memory. For 
this reason, analysisData cannot be synthesized immediately on the first few runs 
through the loop; we must wait until sms_analyze reports that it is now producing 
usable data. This is signaled by the function return value. It returns one of three 
values: -1 if analysis is now finished (no more frames remaining to analyze), 0 if 
sms_analyze requires more frames of audio in order to return the first frame of 
analysis data, and 1 if analysisData contains a successfully analyzed frame. 
Similarly, even when we have read in the entire input audio file, sms_analyze will 
need to be called several times (with no audio input) in order to finish processing the 
audio frames that it has saved in memory. This is why our analysis/synthesis loop is 
terminated by checking the return value of sms_analyze rather than simply stopping 
when we have finished reading the input file.

As soon we have usable analysis data, we start synthesizing audio by passing 
it to sms_synthesize, along with a pointer to the audio output buffer and the 
synthesis parameters. This synthesized audio is then written to file by passing a 
pointer to the audio buffer and the number of samples of audio that it contains to 
sms_writeSound. When we run out of analysis data, the main loop is terminated by 
setting doAnalysis to FALSE.

        /* if the analysis status is 1, analysis was successful 
         * and we have a frame of analysis data 
         */
        if(status == 1)
        {
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            /* synthesise audio output */
            sms_synthesize(&analysisData, audioOutput, 
                           &synthParams);
            
            /* write output file */
            sms_writeSound(audioOutput, synthParams.sizeHop);
        }

        /* if status is -1, there is no more data to process, 
         * analysis is finished 
         */
        else if(status == -1)
        {
            doAnalysis = FALSE;
        }
    }

Finally, the input and output audio files are closed, and all memory that was allocated 
by libsms is released.

    /* close input sound file */
    sms_closeSF();
    
    /* close output sound file */
    sms_writeSF();

    /* free memory used by libsms */
    sms_freeFrame(&analysisData);
    sms_freeAnalysis(&analysisParams);
    sms_freeSynth(&synthParams);
    sms_free();

    return 0;
}

3. Understanding Libsms

We will now have a look at what happens to a frame of audio when calls are made to 
sms_analyze and sms_synthesize. Sections 3.1 to 3.7 all deal with steps in the 
analysis process. Sections 3.1 to 3.5 are steps in the analysis of the harmonic 
component of the signal while Section 3.6 and 3.7 describe the analysis of the 
residual sound component. Finally, Section 3.8 looks at sound synthesis using the 
analysis data.
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3.1 Spectral Analysis

The first analysis step is basically just a Short-Time Fourier Transform (STFT), as 
described in Book Chapter 8. As the audio frame must be windowed, the first step is 
to calculate an appropriate window size. If this is the first frame being analyzed, a 
default window size is used. This can be specified in the analysisParams structure, 
but if not it defaults to a value that depends on the sampling rate and the default pitch 
value (which can also be changed in analysisParams). At a sampling rate of 44.1 
KHz this value is 1681. Due to the inherent trade-off between time and frequency 
resolution in the Fourier Transform, the window size is a very important parameter. 
Any extra information that can be specified about the input sound (such as the pitch) 
prior to calling sms_analyze will result in improved analysis. For later frames this 
window size value may change depending on the results of the pitch estimation step 
described in Section 3.3.

The type of window used by default is a Blackman-Harris 70 dB window. 
This is applied to the audio frame, which is then zero-padded up to a size that is a 
power of two so that the Fast Fourier Transform algorithm can be used. This zero-
padding also introduces interpolation in the frequency domain resulting in an 
improved frequency resolution. A circular shift is performed on the frame to preserve 
zero-phase conditions and then the FFT is calculated. Figures 2-4 show the steps 
involved in this process.
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Figure 2 A frame of audio from a vocal sample.
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Figure 3 The same audio frame after a window is applied.

250



Figure 4 The FFT of the windowed frame (spectral components up to 12 KHz).

3.2 Peak Detection

The aim of harmonic analysis is to represent the stable, periodic parts of a sound as a 
number of sine waves with different frequencies and amplitudes. Unfortunately for 
most instrumental sounds it is generally not possible to tell which frequency 
components are stable and which ones are not from just one frame of spectral analysis 
data. Some of the sinusoidal components could be due to noise or analysis artifacts. A 
solution to this is to select the spectral peaks from each frame, which are the 
sinusoidal components with the largest amplitude, then compare peaks from a given 
frame to those from one or more consecutive frames and see which ones can be used 
to form stable partials. This process of selecting stable peaks is called peak 
continuation or partial tracking and is discussed in Section 3.4.

A peak is defined as a local maximum, a spectral component with a magnitude 
(expressed in decibels) larger than both its neighbors. Not all peaks are taken to be 
equal however. Generally an amplitude threshold is defined, below which all peaks 
are ignored as they are considered to either be noise or not important to the perception 
of the sound. Peak selection may also take other factors into account. For example, 
the amplitude threshold may be defined in relation to the amplitude of neighboring 
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peaks, or it may depend on the frequency of the sinusoidal component. Libsms 
includes a number of different analysis parameters that can be specified for the peak 
detection step, such as the frequency range that is searched for peaks, the minimum 
peak magnitude and the maximum number of peaks detected. As the spectrum 
returned by the STFT is sampled, each peak is only accurate to within half a bin. One 
way to improve this would be to use a large zero-padding factor, but as this is 
computationally inefficient. Instead, accuracy is improved by parabolic interpolation 
using the peak and the two neighboring samples, where the peak location is taken to 
be the maximum point of the parabola. The frequency and magnitude of the peak are 
taken from the magnitude spectrum, and the phase is obtained by unwrapping the 
phase spectrum and taking the value at the position that corresponds to the frequency 
of the peak. Figure 5 shows examples of peaks (marked with a red 'x') detected in the 
magnitude spectrum using libsms.

Figure 5 Peaks detected in one frame of a vocal sample after Fourier analysis

3.3 Pitch Estimation

This is an optional analysis step that is used when the input sound is monophonic and 
pseudo-harmonic (this is the default assumption but it can be changed in the analysis 
parameters). The objective is to find a fundamental frequency that best explains the 
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collection of harmonic peaks found in the current analysis frame. This information 
can then be used to set the guide frequencies in the partial tracking algorithm 
described in Section 3.4, and to help select an appropriate window size for the next 
frame of spectral analysis. 

Pitch estimation in libsms begins by going through every peak that is within 
specified frequency limits. If the previous frame had a detected pitch then every peak 
that is close to it in frequency is marked as a candidate, or possible new fundamental 
frequency. If there was no previous pitch estimate, each peak is assessed to see if it is 
a candidate. This involves making sure its magnitude is above a certain threshold, that 
it is not a harmonic of an existing candidate and that the average deviation between 
its harmonic series and the detected peaks is within an acceptable limit. This last 
check is ignored if the peak magnitude is very large. After all the peaks have been 
checked, if there are no candidates then there is no pitch estimation. If there is only 
one, then its value is the estimated fundamental frequency. If there is more than one, 
an attempt is made to select the best candidate peak. If there was a previous pitch 
estimate, then the closest match to this is taken. If not then the peak with the largest 
amplitude and the lowest frequency deviation from a reference frequency (specified 
in the analysis parameters) is selected.

3.4 Partial Tracking

The peak detection process results in a set of sinusoidal frequencies, amplitudes and 
phases for each frame. The final stage in the harmonic analysis is to take these values 
and track them across frames, interpolating the values between consecutive peaks to 
form partials. The harmonic component will be synthesized based on this data using 
additive synthesis, so it is important that peaks are linked together in a way that 
results in an accurate representation of the original sound. This would be easy if there 
were a constant number of peaks all with very slowly changing amplitudes and 
frequencies, however in practice this is rarely the case. 

The SMS partial tracking scheme uses a series of guides that advance from 
frame to frame looking for peaks to form partials. A guide can be thought of as a 
predicted partial trajectory. For harmonic sounds, guide frequencies are initialized 
according to the harmonic series of the detected fundamental frequency. If the sounds 
are inharmonic, guides are created dynamically depending on the detected peaks. 
When a new frame of audio arrives, guide frequencies are updated based on both 
their existing value and on the values of the harmonic series of the estimated 
fundamental frequency. Then each guide looks through the detected peaks and 
attempts to find a match, which is the peak that is closest in frequency, providing that 
it is within given amplitude and frequency thresholds. A peak can only be matched to 
one guide, so if a peak could potentially be matched to more than one guide, the 
guide that is closest in frequency gets priority and the other guide must find a new 
peak. If a guide does not find a match then it is turned off, or matched to itself with an 
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amplitude of zero. Guides can exist in an off state for a number of frames before 
being killed or made inactive. This frees up space for a new guide to be created, as 
there is limit to the number of guides that can exist at any one time. New guides are 
created from any unmatched peaks in the frame, starting with those with the largest 
amplitudes. At the end of this guide update process, any peaks that have been 
matched to guides are saved, forming partials. The rest are discarded.

After several frames have been tracked in this manner, two problems may 
emerge. There could be gaps in partials, which are areas where the amplitude has 
been set to zero because a guide was turned off, but the amplitude increases again in a 
later frame as a new peak is found for the guide before it is killed. If uncorrected, this 
will lead to an amplitude modulation effect in some of the partials, which produces 
audible artifacts in the synthesized sound. There could also be tracks that are not 
considered to have long enough durations to be stable partials, which again can lead 
to synthesis artifacts, particularly if the sound is transformed. The final step in the 
partial tracking algorithm is to search though a specified number of frames and 
correct these problems. Gaps are fixed by interpolating between the peak values 
before and after the gap. Short tracks are simply removed. 

The partial tracking process results in a collection of peaks that are ordered by 
partial number. So peak one from frame one is matched to peak one in frame two, etc. 
This information is stored in SMS_Data structures (such as analysisData in 
analysis_synthesis.c). The number of tracks is stored in the nTracks variable, while 
peak frequencies, amplitudes and phases are stored in pFSinAmp, pFSinFreq and 
pFSinPha respectively. 

3.5 Spectral Envelope Calculation

This is an optional step. It was not part of the original SMS scheme, but it is 
supported by libsms as it is useful for certain sound transformations, some of which 
are discussed in Section 4. A spectral envelope is a curve in the spectrum of one 
frame of audio that approximates the distribution of the signal's energy over 
frequency. Ideally, this curve should pass through all of the prominent peaks of the 
frame and be relatively smooth, so it does not oscillate too much or contain any sharp 
corners or discontinuities. It should preserve the basic formant structure of the frame. 
Figure 6 shows an example of a spectral envelope (in blue) calculated from one frame 
of a vocal sample using libsms.

Libsms calculates spectral envelopes using the Discrete Cepstrum Envelope13 
method, which basically provides a smooth interpolation between the detected 
sinusoidal peaks. The envelope is calculated for each analysis frame, and is stored in 
the SMS_Data structure. The variable nEnvCoeff gives the number of envelope 
coefficients, while the envelope itself is stored in pSpecEnv.
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3.6 Residual Calculation

Now that the stable partials of the sound have been detected, they can be subtracted 
from the original sound to create the residual component. Libsms performs this 
subtraction in the time domain. The first step is to use additive synthesis to create the 
harmonic sound component using the partials found during analysis. This is done on a 
frame-by-frame basis, by generating a sine wave for each partial then summing the 
results. To prevent discontinuities at frame boundaries, the parameters of each 
sinusoidal component (amplitude, frequency and phase) are interpolated across the 
frame. The instantaneous amplitude is calculated by linear interpolation. The 
frequency and phase parameters are closely related as frequency is the derivative of 
phase, and so both control the instantaneous phase that is calculated by using cubic 
interpolation14. The harmonic component is then subtracted from the original sound, 
which should leave a noise-like residual signal that is largely stochastic. 

Figure 6 The spectral envelope calculated from one frame of a vocal sample.
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3.7 Residual Approximation

As the residual signal is assumed to be stochastic, each frame of it can be 
characterized by its amplitude and the general shape of its spectrum. Each residual 
frame can therefore be approximated by applying this spectral envelope shape to a 
noise signal and scaling the amplitude to match that of the original residual. This 
process can also be viewed as time-domain filtering of a noise signal, where the 
envelope shape is used to calculate the filter coefficients.

The first step is to calculate the spectrum of the residual signal. The number of 
coefficients that will be used to represent this spectrum is specified in the analysis 
parameters (128 by default). If this is less than the number of spectral bins, then the 
spectrum must be approximated. In libsms, this is achieved by line-segment 
approximation. The spectrum is divided into a number of evenly spaced areas, one for 
each coefficient. The value of each coefficient is the maximum value of the spectrum 
in this area. These coefficients are then stored in the pFStocCoeff variable of the 
output SMS_Data structure. Figure 7 shows an example residual spectrum (128 bins) 
and Figure 8 shows the resulting spectrum approximation (64 coefficients).
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Figure 7 Spectrum of one frame of a residual signal from a vocal sample
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Figure 8 Approximation of the spectrum

3.8 Synthesis

Sound synthesis is performed by making calls to the sms_synthesize function. It 
takes three arguments; a pointer to an SMS_Data structure, a pointer to an output 
audio buffer and a pointer to a structure containing the synthesis parameters 
(SMS_SynthParams). Each call to sms_synthesize requires one frame of harmonic 
and residual analysis data, stored in the SMS_Data structure, and creates one frame of 
audio. SMS_Data frames can be passed to sms_synthesize in any order, as the data is 
either interpolated between frames or else overlap-add is used to avoid discontinuities 
at frame boundaries. We can synthesize just the harmonic component, just the 
residual component or both at once by changing the iSynthesisType variable in the 
SMS_SynthParams structure. By default, both components will be created.

The harmonic component is generated by additive synthesis using one of two 
schemes. Either the analysis data is used to control the instantaneous amplitudes, 
frequencies and phases of a bank of oscillators (as described in Section 3.6) or it is 
used to synthesize audio using the inverse FFT15, the latter being the default. The 
choice of additive synthesis method is specified by the iDetSynthType variable in 
SMS_SynthParams. Unlike in the residual calculation stage (Section 3.6), the 
harmonic component is synthesized without using the original phase information, as 
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it is assumed that it is not crucial to the perception of the sound. This gets rid of the 
need for the computationally expensive cubic phase interpolation. Both the 
instantaneous amplitude and the instantaneous frequency are calculated by linear 
interpolation between two frames, and phase is taken to be the integral of frequency. 
For new partials, the initial phase values are randomly generated. 

The residual component is recreated by inverting the approximation process 
described in Section 3.7. If the number of residual coefficients is less than the 
synthesis frame size, an approximate spectrum is created by linear interpolation 
between coefficients. This provides the amplitude and frequency information, while 
the phases are generated randomly. Then an IFFT is performed on this spectrum to 
create the residual audio signal. To prevent discontinuities at frame boundaries, this 
FFT size is twice the frame size and the final sound is created by an overlap-add 
between two frames, with 50% overlap. The synthesized audio frame is then created 
by adding both harmonic and residual components to the output audio buffer.

4. Sound Manipulation Using Spectral Modeling Synthesis

Now that we have a better understanding of how straight synthesis by analysis works 
using libsms, we can look in detail at the rest of the examples. Each example changes 
the analysis data in some way so that the output sound is perceptually different to the 
input. However, as they are all based on the first example (analysis_synthesis.c), we 
will only discuss the differences between the programs here and will not give the full 
code listing as before. The full source code for each example can be found in the 
examples folder, which also contains information on how to compile and run the 
examples in the file examples-guide.doc. Examples 4.1 and 4.2 show how we can 
change the pitch of a sound without effecting its duration, while Example 4.3 
demonstrates changing the duration of a sound without altering the pitch. Finally, 
Example 4.4 shows how the spectral envelope from one sound can be used to change 
the harmonic component of another.

4.1 Transposition

The first additions to this example (transpose.c) are the following two lines:

    #include <stdlib.h>
    ...
    float transpose = atof(argv[3]);

Here we are using an extra command line argument to specify the transposition 
amount in semi-tones. A positive number will transpose to a higher pitch, a negative 
number will lower the pitch. The file stdlib.h is included so that we can use the atof 
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function, which converts a string (the fourth command-line argument) into a floating-
point value that is then saved to the variable called transpose. As before, variables 
are declared when libsms is initialized, but there is one extra libsms structure 
declared that is of type SMS_ModifyParams. As the name suggests, this will contain 
parameters that will specify what modifications (if any) will be made to the analysis 
data.

    SMS_ModifyParams modifyParams;
    ...
    sms_initModifyParams(&modifyParams);
    sms_initModify(&smsHeader, &modifyParams);

sms_initModifyParams just sets some sensible default values in the modifyParams 
structure, ensuring that by default nothing will be changed. sms_initModify 
allocates some memory that will be used by the modifyParams structure. After this, 
the output sound is opened for writing and memory and is allocated for one frame of 
audio. Then the doTranspose variable in modifyParams is set to TRUE, and the 
transpose amount is set to the given command-line value.

    modifyParams.doTranspose = TRUE;
    modifyParams.transpose = transpose;

The actual modification of the analysis data happens in the main analysis/synthesis 
loop, just before sms_synthesize is called. The analysis frame that we want to 
change is passed to sms_modify along with the modifyParams structure. The 
changed analysisData is then passed to sms_synthesize to create the output audio 
signal.

    /* transpose the sound */
    sms_modify(&analysisData, &modifyParams);
    
    /* synthesise audio output */
    sms_synthesize(&analysisData, audioOutput, &synthParams);

After the analysis/synthesis loop, audio files are written and closed as before, then the 
memory used by libsms is deallocated, including the memory used by the 
modifyParams structure.

    sms_freeModify(&modifyParams);

This example shows the general structure that can be used for several different libsms 
transformations. Analyze the sound, call sms_modify to change the analysis data then 
synthesize this data. The algorithm that is performed by sms_modify is very simple in 
this instance. As noted in Section 3.4, the harmonic components of the sound 
(sinusoidal peaks) are saved in the analysisData structure. To change the perceived 
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pitch, we just multiply all of the sinusoid frequencies by the transposition amount. 
The residual component is left unchanged. The basic algorithm is:

    int i;
    for(i = 0; i < analysisData->nTracks; i++)
    {
        analysisData->pFSinFreq[i] *= sms_scalarTempered(transpose);
    }

where nTracks is the  number of partials, pFSinFreq is an array containing the 
frequencies of each peak, and sms_scalarTempered converts a transposition amount 
in semi-tones into a frequency value in Hertz. 

4.2 Transposition While Maintaining The Original Spectral Envelope

The basic transposition described in Section 4.1 works well for some sounds (such as 
the flute example), but not for others. If this example is run with a vocal sample 
instead, the results are very synthetic sounding. The reason for this is that when we 
transpose a sound by simply multiplying the component frequencies, we also change 
the shape of the resulting audio spectrum as the amplitudes of each partial stays the 
same. So if there was a very large magnitude partial at 1 KHz for example, and we 
transpose up one octave, there will now be a large magnitude partial at 2 KHz. As our 
perception of timbre is strongly linked to the temporal evolution of this spectrum, 
changes like this will effect our perception of the synthesized sound. This process is 
shown in Figures 9 and 10, the former being the original spectrum and the latter being 
the new spectrum after transposition by a major third. Notice that the original formant 
peaks at about 650 Hz and at about 2.6 KHz have now moved to about 825 Hz and 
3.25 KHz.
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Figure 9 Original spectrum of one frame of a vocal sample.
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Figure 10 Spectrum after transposition.

For some instrumental sounds this is appropriate, but sources such as the voice tend 
to have a more rigid formant structure, particularly for relatively small pitch changes 
by the same singer. To make pitch changes on these sound sources sound more 
natural, we need to alter the shape of the spectrum after transposition so it is the same 
as it was before, keeping the formants in the same areas. Example 3 
(transpose_with_env.c) shows how we can accomplish this using libsms. There are 
not many changes between this example and transpose.c. Two additional analysis 
parameters are specified. The first one sets the spectral envelope type to 
SMS_ENV_FBINS, which turns on spectral envelope calculation during analysis (it is 
off by default) and tells libsms to store the envelope as a list of frequency bins and 
magnitudes. The order of the Discrete Cepstrum Envelope is set to 80, which should 
ensure that the envelope will pass through every spectral peak and interpolate 
smoothly between them.

    analysisParams.specEnvParams.iType = SMS_ENV_FBINS;
    analysisParams.specEnvParams.iOrder = 80;

One extra modification parameter is also added, telling sms_modify to alter the 
magnitudes of the sinusoidal peaks after transposition so that they match those of the 
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spectral envelope.

    modifyParams.doSinEnv = TRUE;

sms_modify is then called as before, which performs the transposition. It multiplies 
the frequencies of the sinusoidal components by the transposition amount as shown in 
Section 4.2. Afterwards it changes the amplitude of each peak so that it matches the 
amplitude of the original spectral envelope at the new frequency value.

4.3 Time-Stretching

The structure of this example (timestretch.c) is a bit different to that of the previous 
three. We will not be passing analysis frames straight from sms_analyze to 
sms_synthesize, and we will not be making calls to sms_modify. Instead, we will 
vary the duration of the output sound by changing the rate at which new analysis 
frames are passed to sms_synthesize. To make the output twice as long as the input 
for example, each analysis frame is used twice before synthesizing the next one. To 
make it half as long, the frames are read twice as quickly (so every second frame will 
be skipped). This process will not result in any glitches or discontinuities as 
sms_synthesize interpolates smoothly between frames. 

As we want to change the rate at which analysis frames are passed to 
sms_synthesis, the analysis and synthesis processes had to be separated. We will do 
this by writing the analysis frames to disk then reading them in later at a different 
rate. The main function has been greatly simplified. It just takes in the command-line 
arguments, and calls the analyze and synthesize functions with them.
 

    int main(int argc, char *argv[])
    {
        /* make sure that we have the correct number of 
         * command line arguments 
         */
        if(argc != 4)
        {
            printf("Error: please specify an input file, an output" 
                   " file and a time stretch factor\n");
            exit(1);
        }

        char *inputFile = argv[1];
        char *outputFile = argv[2];
        float timeStretch = atof(argv[3]);

        analyze(inputFile);
        synthesize(outputFile, timeStretch);
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        return 0;
    }

The analyze function begins similarly to the main function from previous examples, 
declaring variables for a frame of analysis data, analysis parameters and header files. 
The only addition is the inclusion of a file pointer.

    FILE *smsFile;

Following this we open the input file for reading and initialize libsms. We also open a 
file called analysis_data.sms that will be used to store the analysis frames.

    sms_writeHeader("analysis_data.sms", &smsHeader, &smsFile);

The analysis loop again begins by reading in a frame of audio samples that is passed 
to sms_analyze. As soon as we have usable analysis data, instead of calling 
sms_modify or sms_synthesize we write this frame to disk and increment the 
current frame count.

    sms_writeFrame(smsFile, &smsHeader, &analysisData);
    numFrames++;

When analysis is finished this frame count is saved to the SMS_Header structure.

    smsHeader.nFrames = numFrames;

After closing the input sound file, the SMS_Header information is written to 
analysis_data.sms and the file is closed.

    sms_writeFile(smsFile, &smsHeader);

The synthesize function begins in a similar manner to analyze, declaring the same 
variables that were used in previous examples with the addition of the file pointer. 
The only real difference in this setup phase is that the file containing the analysis 
frames is opened for reading.

    sms_getHeader("analysis_data.sms", &smsHeader, &smsFile);

Libsms is initialized as before, the output sound file is opened for writing and 
memory is allocated to hold one frame of audio samples. The synthesis loop will be 
different however, as we are no longer calling sms_synthesize for each analysis 
frame. First, the number of samples that the output file should contain is calculated. 
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This is the total number of analysis frames multiplied by the synthesis hop size, 
multiplied by the time stretch amount that was read from the command-line.

    numSamples = smsHeader->nFrames * synthParams.sizeHop * 
                 timeStretch;

The synthesis loop then keeps going until this many samples have been written to the 
output file.

    while(numSamplesWritten < numSamples)
    {
        /* calculate the current frame number based on 
         * the time stretch factor 
         */
        currentFrame = numSamplesWritten / 
                       (synthParams.sizeHop * timeStretch);

        /* read in a frame of analysis data */
        sms_getFrame(smsFile, smsHeader, currentFrame, &smsFrame);

        /* synthesise audio output */
        sms_synthesize(&smsFrame, audioOutput, &synthParams);

        /* write to output file */
        sms_writeSound(audioOutput, synthParams.sizeHop);

        /* update the number of samples written */
        numSamplesWritten += synthParams.sizeHop;
    }

The first step in the synthesis loop is to calculate which frame number to read in by 
essentially imagining that the hop size changes depending on the time-stretch factor16. 
If timeStretch is 1, the current frame is the number of samples written divided by 
the hop size. As the number of samples written increases by the hop size each time 
through the loop, this will just be a sequence that increments by one each time. If 
timeStretch is 2 for example, the loop will have to go around twice before the 
currentFrame value is incremented, as the division result is truncated to an int 
value. This frame number is then passed to sms_getFrame, which reads an analysis 
frame from disk into the smsFrame variable. This frame is then passed to 
sms_synthesize and the output audio frame is written to disk as before. Finally, the 
numSamplesWritten variable is incremented by the number of samples in the frame 
that was just created. When the synthesis loop is finished, the output file is closed and 
libsms memory is deallocated as in previous examples.
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4.4 Applying A Different Spectral Envelope

The final example (change_env.c) shows how the spectral envelope calculated from 
the harmonic component of one sound can be used to shape the spectrum of another 
sound. In our example, the spectral envelope from a vocal sample is applied to the 
partials of a flute sample, creating the effect of the flute ‘talking’ while keeping its 
original pitch contour. The main function is similar to that of the previous example. 
This time the command-line arguments are the source file, the target file and the 
output file (the spectral envelope will be taken from source sound and applied to the 
target). The analyze function is called twice, producing source_file.sms and 
target_file.sms, both of which will be read in by the synthesize function. 

    int main(int argc, char *argv[])
    { 
        /* make sure that we have the correct number of 
         * command line arguments 
         */
        if(argc != 4)
        {
            printf("Error: please specify a source file, a target "
                   " file and an output file\n");
            exit(1);
        } 

        char *sourceFile = argv[1];
        char *targetFile = argv[2];
        char *outputFile = argv[3];

        analyze(sourceFile, "source_file.sms");
        analyze(targetFile, "target_file.sms");
        synthesize(outputFile);

        return 0;
    }

The analyze function is similar to the one described in Section 4.3, with the addition 
of two extra analysis parameters that turn on spectral envelope calculation and set the 
order of the Discrete Cepstrum Envelope.

    analysisParams.specEnvParams.iType = SMS_ENV_FBINS;
    analysisParams.specEnvParams.iOrder = 80;

The setup phase of synthesize is also similar to before, but as there are now two 
input files, there are two SMS_Header structures and two SMS_Data frames. Both 
headers are opened for reading, and then memory is allocated for the two frames. 
There is also an extra variable declared called envPosition that will be used to cycle 
through the samples of the spectral envelope in the synthesis loop.
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    SMS_Header *sourceSmsHeader, *targetSmsHeader;
    SMS_Data sourceSmsFrame, targetSmsFrame;
    ...
    int numFrames = 0, currentFrame = 0, envPosition = 0; 
    ...
    sms_getHeader("source_file.sms", &sourceSmsHeader,
                  &sourceSmsFile);
    sms_getHeader("target_file.sms", &targetSmsHeader,
                  &targetSmsFile);
    ...
    sms_allocFrameH(sourceSmsHeader, &sourceSmsFrame); 
    sms_allocFrameH(targetSmsHeader, &targetSmsFrame);

The number of frames of output is then set to the number of frames in the shortest 
duration input file. This is to make sure that both source and target analysis data 
exists for all synthesis frames.

    if(sourceSmsHeader->nFrames < targetSmsHeader->nFrames)
    {
        numFrames = sourceSmsHeader->nFrames;
    }
    else
    {
        numFrames = targetSmsHeader->nFrames;
    }

We again set the doSinEnv modification parameter so that the amplitudes of the 
sinusoidal components will be changed to match those of the spectral envelope. 
However in addition the sinEnvInterp parameter is set to 1. If this is 0 (as it is by 
default), the original spectral envelope will be used to change the peak amplitudes. If 
it is 1, a completely different envelope will be used (this envelope is specified in the 
synthesis loop, described below). Any value between 0 and 1 will use an envelope 
that is the appropriate linear interpolation between the two envelopes. For example a 
value of 0.1 will produce an envelope that is very close to the original envelope, 0.9 
will be very close to the new envelope and 0.5 will be half way in between the two.

    modifyParams.doSinEnv = TRUE;
    modifyParams.sinEnvInterp = 1; 

The synthesis loop begins by reading in two frames of analysis data. Then, the 
spectral envelope from the source frame is copied into the sinEnv array in the 
modifyParams structure. This is the envelope that is used to change the amplitudes of 
the sinusoidal peaks in the target frame. The modification parameters are passed to 
sms_modify along with the target frame of analysis data, and the resulting frame is 
then passed to sms_synthesize as before. The output frame is then written to disk 
and the current frame count is incremented by one.
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    while(currentFrame < numFrames)
    {
        /* read in both frames of analysis data */
        sms_getFrame(sourceSmsFile, sourceSmsHeader, currentFrame, 
                     &sourceSmsFrame);

        sms_getFrame(targetSmsFile, targetSmsHeader, currentFrame, 
                     &targetSmsFrame);

        /* copy the source envelope into the modification 
         * parameters structure 
         */
        for(envPosition = 0; envPosition < modifyParams.sizeSinEnv; 
            envPosition++)
        {
            modifyParams.sinEnv[envPosition] = 
                sourceSmsFrame.pSpecEnv[envPosition];
        }

        /* call sms_modify to apply the new envelope */
        sms_modify(&targetSmsFrame, &modifyParams);

        /* synthesise audio output */
        sms_synthesize(&targetSmsFrame, audioOutput, &synthParams);

        /* write to output file */
        sms_writeSound(audioOutput, synthParams.sizeHop);
        currentFrame++;
    }

After the synthesis loop completes, the output file is closed for writing and the 
memory that was used by libsms is deallocated.

5. Conclusion

This chapter gave an overview of the SMS process and showed how libsms can be 
used to perform synthesis by analysis on sound files. This was followed by four 
examples that showed some of the transformations that are possible when using a 
sinusoidal plus residual model of sound. Even working with just these examples, 
there is still plenty of room for experimentation. Example 4 (timestretch.c) showed 
that frames of analysis information could be synthesized at any rate and in any order, 
so the frames do not have to playback in ascending order as they do in the examples. 
Example 5 (change_env.c) demonstrated using the spectral envelope from one sound 
to shape the amplitudes of the harmonic components of another sound. There are 
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many more possible transformations based on this technique, such as gradually 
interpolating between two envelopes, generating completely synthetic envelopes, and 
so on. There are also many possibilities for sound manipulation using SMS that have 
not been mentioned here17, and of course these techniques do not have to be used in 
isolation. Great results can be achieved when SMS transformations are used in 
combination with the vast array of audio signal processing techniques that are 
discussed elsewhere in this book. 
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Abstract
This paper discusses the use of Python for
developing audio signal processing appli-
cations. Overviews of Python language,
NumPy, SciPy and Matplotlib are given,
which together form a powerful platform for
scientific computing. We then show how
SciPy was used to create two audio pro-
gramming libraries, and describe ways that
Python can be integrated with the SndObj
library and Pure Data, two existing envi-
ronments for music composition and signal
processing.

Keywords
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1 Introduction

There are many problems that are com-
mon to a wide variety of applications
in the field of audio signal process-
ing. Examples include procedures such
as loading sound files or communicat-
ing between audio processes and sound
cards, as well as digital signal processing
(DSP) tasks such as filtering and Fourier
analysis [Allen and Rabiner, 1977]. It
often makes sense to rely on existing
code libraries and frameworks to per-
form these tasks. This is particularly
true in the case of building prototypes,
a practise common to both consumer
application developers and scientific re-
searchers, as these code libraries allows
the developer to focus on the novel as-
pects of their work.

Audio signal processing libraries are
available for general purpose program-
ming languages such as the GNU
Scientific Library (GSL) for C/C++
[Galassi et al., 2009], which provides
a comprehensive array of signal pro-
cessing tools. However, it generally
takes a lot more time to develop appli-
cations or prototypes in C/C++ than
in a more lightweight scripting lan-
guage. This is one of the reasons for
the popularity of tools such as MATLAB
[MathWorks, 2010], which allow the de-
veloper to easily manipulate matrices of
numerical data, and includes implemen-
tations of many standard signal process-
ing techniques. The major downside
to MATLAB is that it is not free and
not open source, which is a consider-
able problem for researchers who want
to share code and collaborate. GNU
Octave [Eaton, 2002] is an open source
alternative to MATLAB. It is an inter-
preted language with a syntax that is
very similar to MATLAB, and it is possi-
ble to write scripts that will run on both
systems. However, with both MATLAB
and Octave this increase in short-term
productivity comes at a cost. For any-
thing other than very basic tasks, tools
such as integrated development environ-
ments (IDEs), debuggers and profilers
are certainly a useful resource if not a
requirement. All of these tools exist in
some form for MATLAB/Octave, but
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users must invest a considerable amount
of time in learning to use a program-
ming language and a set of develop-
ment tools that have a relatively lim-
ited application domain when compared
with general purpose programming lan-
guages. It is also generally more diffi-
cult to integrate MATLAB/Octave pro-
grams with compositional tools such as
Csound [Vercoe et al., 2011] or Pure
Data [Puckette, 1996], or with other
technologies such as web frameworks,
cloud computing platforms and mobile
applications, all of which are becoming
increasingly important in the music in-
dustry.

For developing and prototyping audio
signal processing applications, it would
therefore be advantageous to combine
the power and flexibility of a widely
adopted, open source, general purpose
programming language with the quick
development process that is possible
when using interpreted languages that
are focused on signal processing ap-
plications. Python [van Rossum and
Drake, 2006], when used in conjunc-
tion with the extension modules NumPy
[Oliphant, 2006], SciPy [Jones et al.,
2001] and Matplotlib [Hunter, 2007] has
all of these characteristics.

Section 2 provides a brief overview of
the Python programming language. In
Section 3 we discuss NumPy, SciPy and
Matplotlib, which add a rich set of scien-
tific computing functions to the Python
language. Section 4 describes two li-
braries created by the authors that rely
on SciPy, Section 5 shows how these
Python programs can be integrated with
other software tools for music compo-
sition, with final conclusions given in
Section 6.

2 Python

Python is an open source program-
ming language that runs on many plat-

forms including Linux, Mac OS X and
Windows. It is widely used and actively
developed, has a vast array of code li-
braries and development tools, and in-
tegrates well with many other program-
ming languages, frameworks and musi-
cal applications. Some notable features
of the language include:

• It is a mature language and al-
lows for programming in several dif-
ferent paradigms including imper-
ative, object-orientated and func-
tional styles.
• The clean syntax puts an emphasis

on producing well structured and
readable code. Python source code
has often been compared to exe-
cutable pseudocode.
• Python provides an interactive in-

terpreter, which allows for rapid
code development, prototyping and
live experimentation.
• The ability to extend Python with

modules written in C/C++ means
that functionality can be quickly
prototyped and then optimised
later.
• Python can be embedded into ex-

isting applications.
• Documentation can be generated

automatically from the comments
and source code.
• Python bindings exist for cross-

platform GUI toolkits such as Qt
[Nokia, 2011].
• The large number of high-quality

library modules means that you
can quickly build sophisticated pro-
grams.

A complete guide to the language,
including a comprehensive tutorial is
available online at http://python.org.
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3 Python for Scientific
Computing

Section 3.1 provides an overview of three
packages that are widely used for per-
forming efficient numerical calculations
and data visualisation using Python.
Example programs that make use of
these packages are given in Section 3.2.

3.1 NumPy, SciPy and
Matplotlib

Python’s scientific computing prowess
comes largely from the combination
of three related extension modules:
NumPy, SciPy and Matplotlib. NumPy
[Oliphant, 2006] adds a homogenous,
multidimensional array object to
Python. It also provides functions that
perform efficient calculations based
on array data. NumPy is written in
C, and can be extended easily via its
own C-API. As many existing scientific
computing libraries are written in
Fortran, NumPy comes with a tool
called f2py which can parse Fortran files
and create a Python extension module
that contains all the subroutines and
functions in those files as callable
Python methods.

SciPy builds on top of NumPy, pro-
viding modules that are dedicated to
common issues in scientific computing,
and so it can be compared to MATLAB
toolboxes. The SciPy modules are writ-
ten in a mixture of pure Python, C and
Fortran, and are designed to operate ef-
ficiently on NumPy arrays. A complete
list of SciPy modules is available online
at
http://docs.scipy.org, but examples in-
clude:

File input/output (scipy.io):
Provides functions for reading and
writing files in many different data
formats, including .wav, .csv and
matlab data files (.mat).

Fourier transforms (scipy.fftpack):
Contains implementations of 1-D
and 2-D fast Fourier transforms, as
well as Hilbert and inverse Hilbert
transforms.

Signal processing (scipy.signal):
Provides implementations of many
useful signal processing techniques,
such as waveform generation,
FIR and IIR filtering and multi-
dimensional convolution.

Interpolation (scipy.interpolate):
Consists of linear interpolation
functions and cubic splines in
several dimensions.

Matplotlib is a library of 2-
dimensional plotting functions that
provides the ability to quickly visu-
alise data from NumPy arrays, and
produce publication-ready figures in
a variety of formats. It can be used
interactively from the Python command
prompt, providing similar functionality
to MATLAB or GNU Plot [Williams et
al., 2011]. It can also be used in Python
scripts, web applications servers or in
combination with several GUI toolkits.

3.2 SciPy Examples

Listing 1 shows how SciPy can be used
to read in the samples from a flute
recording stored in a file called flute.wav,
and then plot them using Matplotlib.
The call to the read function on line 5
returns a tuple containing the sampling
rate of the audio file as the first entry
and the audio samples as the second en-
try. The samples are stored in a variable
called audio, with the first 1024 samples
being plotted in line 8. In lines 10, 11
and 13 the axis labels and the plot ti-
tle are set, and finally the plot is dis-
played in line 15. The image produced
by Listing 1 is shown in Figure 1.

1 from scipy.io.wavfile import read
2 import matplotlib.pyplot as plt
3
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4 # read audio samples
5 input_data = read("flute.wav")
6 audio = input_data[1]
7 # plot the first 1024 samples
8 plt.plot(audio[0:1024])
9 # label the axes

10 plt.ylabel("Amplitude")
11 plt.xlabel("Time (samples)")
12 # set the title
13 plt.title("Flute Sample")
14 # display the plot
15 plt.show()

Listing 1: Plotting Audio Files

Figure 1: Plot of audio samples, gener-
ated by the code given in Listing 1.

In Listing 2, SciPy is used to perform
a Fast Fourier Transform (FFT) on a
windowed frame of audio samples then
plot the resulting magnitude spectrum.
In line 11, the SciPy hann function is
used to compute a 1024 point Hanning
window, which is then applied to the
first 1024 flute samples in line 12. The
FFT is computed in line 14, with the
complex coefficients converted into polar
form and the magnitude values stored in
the variable mags. The magnitude val-
ues are converted from a linear to a deci-
bel scale in line 16, then normalised to
have a maximum value of 0 dB in line
18. In lines 20-26 the magnitude values
are plotted and displayed. The resulting
image is shown in Figure 2.

1 import scipy
2 from scipy.io.wavfile import read
3 from scipy.signal import hann
4 from scipy.fftpack import rfft
5 import matplotlib.pyplot as plt
6

7 # read audio samples
8 input_data = read("flute.wav")
9 audio = input_data[1]

10 # apply a Hanning window
11 window = hann(1024)
12 audio = audio[0:1024] * window
13 # fft
14 mags = abs(rfft(audio))
15 # convert to dB
16 mags = 20 * scipy.log10(mags)
17 # normalise to 0 dB max
18 mags -= max(mags)
19 # plot
20 plt.plot(mags)
21 # label the axes
22 plt.ylabel("Magnitude (dB)")
23 plt.xlabel("Frequency Bin")
24 # set the title
25 plt.title("Flute Spectrum")
26 plt.show()

Listing 2: Plotting a magnitude spec-
trum

Figure 2: Flute magnitude spectrum
produced from code in Listing 2.

4 Audio Signal Processing
With Python

This section gives an overview of how
SciPy is used in two software libraries
that were created by the authors.
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Section 4.1 gives an overview of Simpl
[Glover et al., 2009], while Section 4.2
introduces Modal, our new library for
musical note onset detection.

4.1 Simpl

Simpl 1 is an open source library for
sinusoidal modelling [Amatriain et al.,
2002] written in C/C++ and Python.
The aim of this project is to tie to-
gether many of the existing sinusoidal
modelling implementations into a single
unified system with a consistent API, as
well as provide implementations of some
recently published sinusoidal modelling
algorithms. Simpl is primarily intended
as a tool for other researchers in the
field, allowing them to easily combine,
compare and contrast many of the pub-
lished analysis/synthesis algorithms.

Simpl breaks the sinusoidal modelling
process down into three distinct steps:
peak detection, partial tracking and
sound synthesis. The supported sinu-
soidal modelling implementations have
a Python module associated with every
step which returns data in the same for-
mat, irrespective of its underlying im-
plementation. This allows analysis/syn-
thesis networks to be created in which
the algorithm that is used for a particu-
lar step can be changed without effect-
ing the rest of the network. Each object
has a method for real-time interaction
as well as non-real-time or batch mode
processing, as long as these modes are
supported by the underlying algorithm.

All audio in Simpl is stored in NumPy
arrays. This means that SciPy func-
tions can be used for basic tasks such
as reading and writing audio files,
as well as more complex procedures
such as performing additional process-
ing, analysis or visualisation of the
data. Audio samples are passed into

1Available at http://simplsound.
sourceforge.net

a PeakDetection object for analysis,
with detected peaks being returned as
NumPy arrays that are used to build
a list of Peak objects. Peaks are
then passed to PartialTracking objects,
which return partials that can be trans-
ferred to Synthesis objects to create a
NumPy array of synthesised audio sam-
ples. Simpl also includes a module with
plotting functions that use Matplotlib
to plot analysis data from the peak
detection and partial tracking analysis
phases.

An example Python program that
uses Simpl is given in Listing 3. Lines
6-8 read in the first 4096 sample values
of a recorded flute note. As the default
hop size is 512 samples, this will pro-
duce 8 frames of analysis data. In line
10 a SndObjPeakDetection object is cre-
ated, which detects sinusoidal peaks in
each frame of audio using the algorithm
from The SndObj Library [Lazzarini,
2001]. The maximum number of de-
tected peaks per frame is limited to
20 in line 11, before the peaks are de-
tected and returned in line 12. In line
15 a MQPartialTracking object is cre-
ated, which links previously detected si-
nusoidal peaks together to form partials,
using the McAulay-Quatieri algorithm
[McAulay and Quatieri, 1986]. The
maximum number of partials is limited
to 20 in line 16 and the partials are de-
tected and returned in line 17. Lines
18-25 plot the partials, set the figure ti-
tle, label the axes and display the final
plot as shown in Figure 3.

1 import simpl
2 import matplotlib.pyplot as plt
3 from scipy.io.wavfile import read
4

5 # read audio samples
6 audio = read("flute.wav")[1]
7 # take just the first few frames
8 audio = audio[0:4096]
9 # Peak detection with SndObj

10 pd = simpl.SndObjPeakDetection()
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11 pd.max_peaks = 20
12 pks = pd.find_peaks(audio)
13 # Partial Tracking with
14 # the McAulay-Quatieri algorithm
15 pt = simpl.MQPartialTracking()
16 pt.max_partials = 20
17 partls = pt.find_partials(pks)
18 # plot the detected partials
19 simpl.plot.plot_partials(partls)
20 # set title and label axes
21 plt.title("Flute Partials")
22 plt.ylabel("Frequency (Hz)")
23 plt.xlabel("Frame Number")
24 plt.show()

Listing 3: A Simpl example

Figure 3: Partials detected in the first
8 frames of a flute sample, produced by
the code in Listing 3. Darker colours
indicate lower amplitude partials.

4.2 Modal

Modal 2 is a new open source library
for musical onset detection, written in
C++ and Python and released under
the terms of the GNU General Public
License (GPL). Modal consists of two
main components: a code library and a
database of audio samples. The code li-
brary includes implementations of three
widely used onset detection algorithms

2Available at http://github.com/
johnglover/modal

from the literature and four novel on-
set detection systems created by the au-
thors. The onset detection systems can
work in a real-time streaming situation
as well as in non-real-time. For more in-
formation on onset detection in general,
a good overview is given in Bello et al.
(2005).

The sample database contains a col-
lection of audio samples that have cre-
ative commons licensing allowing for
free reuse and redistribution, together
with hand-annotated onset locations for
each sample. It also includes an ap-
plication that allows for the labelling
of onset locations in audio files, which
can then be added to the database. To
the best of our knowledge, this is the
only freely distributable database of au-
dio samples together with their onset lo-
cations that is currently available. The
Sound Onset Labellizer [Leveau et al.,
2004] is a similar reference collection,
but was not available at the time of pub-
lication. The sample set used by the
Sound Onset Labellizer also makes use
of files from the RWC database [Goto et
al., 2002], which although publicly avail-
able is not free and does not allow free
redistribution.

Modal makes extensive use of SciPy,
with NumPy arrays being used to con-
tain audio samples and analysis data
from multiple stages of the onset de-
tection process including computed on-
set detection functions, peak picking
thresholds and the detected onset loca-
tions, while Matplotlib is used to plot
the analysis results. All of the on-
set detection algorithms were written in
Python and make use of SciPy’s signal
processing modules. The most compu-
tationally expensive part of the onset de-
tection process is the calculation of the
onset detection functions, so Modal also
includes C++ implementations of all on-
set detection function modules. These
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are made into Python extension mod-
ules using SWIG [Beazley, 2003]. As
SWIG extension modules can manipu-
late NumPy arrays, the C++ implemen-
tations can be seamlessly interchanged
with their pure Python counterparts.
This allows Python to be used in areas
that it excels in such as rapid prototyp-
ing and in “glueing” related components
together, while languages such as C and
C++ can be used later in the develop-
ment cycle to optimise specific modules
if necessary.

Listing 4 gives an example that uses
Modal, with the resulting plot shown in
Figure 4. In line 12 an audio file con-
sisting of a sequence of percussive notes
is read in, with the sample values being
converted to floating-point values be-
tween -1 and 1 in line 14. The onset de-
tection process in Modal consists of two
steps, creating a detection function from
the source audio and then finding onsets,
which are peaks in this detection func-
tion that are above a given threshold
value. In line 16 a ComplexODF object
is created, which calculates a detection
function based on the complex domain
phase and energy approach described
by Bello et al. (2004). This detection
function is computed and saved in line
17. Line 19 creates an OnsetDetection
object which finds peaks in the detec-
tion function that are above an adap-
tive median threshold [Brossier et al.,
2004]. The onset locations are calcu-
lated and saved on lines 21-22. Lines
24-42 plot the results. The figure is
divided into 2 subplots, the first (up-
per) plot shows the original audio file
(dark grey) with the detected onset lo-
cations (vertical red dashed lines). The
second (lower) plot shows the detection
function (dark grey) and the adaptive
threshold value (green).

1 from modal.onsetdetection \
2 import OnsetDetection

3 from modal.detectionfunctions \
4 import ComplexODF
5 from modal.ui.plot import \
6 (plot_detection_function,
7 plot_onsets)
8 import matplotlib.pyplot as plt
9 from scipy.io.wavfile import read

10

11 # read audio file
12 audio = read("drums.wav")[1]
13 # values between -1 and 1
14 audio = audio / 32768.0
15 # create detection function
16 codf = ComplexODF()
17 odf = codf.process(audio)
18 # create onset detection object
19 od = OnsetDetection()
20 hop_size = codf.get_hop_size()
21 onsets = od.find_onsets(odf) * \
22 hop_size
23 # plot onset detection results
24 plt.subplot(2,1,1)
25 plt.title("Audio And Detected "
26 "Onsets")
27 plt.ylabel("Sample Value")
28 plt.xlabel("Sample Number")
29 plt.plot(audio, "0.4")
30 plot_onsets(onsets)
31 plt.subplot(2,1,2)
32 plt.title("Detection Function "
33 "And Threshold")
34 plt.ylabel("Detection Function "
35 "Value")
36 plt.xlabel("Sample Number")
37 plot_detection_function(odf,
38 hop_size)
39 thresh = od.threshold
40 plot_detection_function(thresh,
41 hop_size,
42 "green")
43 plt.show()

Listing 4: Modal example

5 Integration With Other
Music Applications

This section provides examples of SciPy
integration with two established tools
for sound design and composition.
Section 5.1 shows SciPy integration with
The SndObj Library, with Section 5.2
providing an example of using SciPy in
conjunction with Pure Data.
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Figure 4: The upper plot shows an audio
sample with detected onsets indicated
by dashed red lines. The lower plot
shows the detection function that was
created from the audio file (in grey) and
the peak picking threshold (in green).

5.1 The SndObj Library

The most recent version of The SndObj
Library comes with support for passing
NumPy arrays to and from objects in
the library, allowing data to be easily ex-
changed between SndObj and SciPy au-
dio processing functions. An example of
this is shown in Listing 5. An audio file
is loaded in line 8, then the scipy.signal
module is used to low-pass filter it in
lines 10-15. The filter cutoff frequency is
given as 0.02, with 1.0 being the Nyquist
frequency. A SndObj called obj is cre-
ated in line 21 that will hold frames of
the output audio signal. In lines 24 and
25, a SndRTIO object is created and set
to write the contents of obj to the de-
fault sound output. Finally in lines 29-

33, each frame of audio is taken, copied
into obj and then written to the output.

1 from sndobj import \
2 SndObj, SndRTIO, SND_OUTPUT
3 import scipy as sp
4 from scipy.signal import firwin
5 from scipy.io.wavfile import read
6

7 # read audio file
8 audio = read("drums.wav")[1]
9 # use SciPy to low pass filter

10 order = 101
11 cutoff = 0.02
12 filter = firwin(order, cutoff)
13 audio = sp.convolve(audio,
14 filter,
15 "same")
16 # convert to 32-bit floats
17 audio = sp.asarray(audio,
18 sp.float32)
19 # create a SndObj that will hold
20 # frames of output audio
21 obj = SndObj()
22 # create a SndObj that will
23 # output to the sound card
24 outp = SndRTIO(1, SND_OUTPUT)
25 outp.SetOutput(1, obj)
26 # get the default frame size
27 f_size = outp.GetVectorSize()
28 # output each frame
29 i = 0
30 while i < len(audio):
31 obj.PushIn(audio[i:i+f_size])
32 outp.Write()
33 i += f_size

Listing 5: The SndObj Library and
SciPy

5.2 Pure Data

The recently released libpd 3 allows Pure
Data to be embedded as a DSP library,
and comes with a SWIG wrapper en-
abling it to be loaded as a Python exten-
sion module. Listing 6 shows how SciPy
can be used in conjunction with libpd to
process an audio file and save the result
to disk. In lines 7-13 a PdManager ob-
ject is created, that initialises libpd to
work with a single channel of audio at a

3Available at http://gitorious.org/pdlib/
libpd
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sampling rate of 44.1 KHz. A Pure Data
patch is opened in lines 14-16, followed
by an audio file being loaded in line 20.
In lines 22-29, successive audio frames
are processed using the signal chain from
the Pure Data patch, with the resulting
data converted into an array of integer
values and appended to the out array.
Finally, the patch is closed in line 31 and
the processed audio is written to disk in
line 33.

1 import scipy as sp
2 from scipy import int16
3 from scipy.io.wavfile import \
4 read, write
5 import pylibpd as pd
6

7 num_chans = 1
8 sampling_rate = 44100
9 # open a Pure Data patch

10 m = pd.PdManager(num_chans,
11 num_chans,
12 sampling_rate,
13 1)
14 p_name = "ring_mod.pd"
15 patch = \
16 pd.libpd_open_patch(p_name)
17 # get the default frame size
18 f_size = pd.libpd_blocksize()
19 # read audio file
20 audio = read("drums.wav")[1]
21 # process each frame
22 i = 0
23 out = sp.array([], dtype=int16)
24 while i < len(audio):
25 f = audio[i:i+f_size]
26 p = m.process(f)
27 p = sp.fromstring(p, int16)
28 out = sp.hstack((out, p))
29 i += f_size
30 # close the patch
31 pd.libpd_close_patch(patch)
32 # write the audio file to disk
33 write("out.wav", 44100, out)

Listing 6: Pure Data and SciPy

6 Conclusions

This paper highlighted just a few of the
many features that make Python an ex-
cellent choice for developing audio signal
processing applications. A clean, read-
able syntax combined with an extensive

collection of libraries and an unrestric-
tive open source license make Python
particularly well suited to rapid proto-
typing and make it an invaluable tool for
audio researchers. This was exemplified
in the discussion of two open source sig-
nal processing libraries created by the
authors that both make use of Python
and SciPy: Simpl and Modal. Python
is easy to extend and integrates well
with other programming languages and
environments, as demonstrated by the
ability to use Python and SciPy in con-
junction with established tools for audio
signal processing such as The SndObj
Library and Pure Data.
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Abstract

Real-time musical note onset detection plays a vital role in many audio

analysis processes, such as score following, beat detection and various sound

synthesis by analysis methods. This article provides a review of some of the
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most commonly used techniques for real-time onset detection. We suggest

ways to improve these techniques by incorporating linear prediction as well

as presenting a novel algorithm for real-time onset detection using sinusoidal

modelling. We provide comprehensive results for both the detection accu-

racy and the computational performance of all of the described techniques,

evaluated using Modal, our new open source library for musical onset detec-

tion, which comes with a free database of samples with hand-labelled note

onsets.

1 Introduction

Many real-time musical signal-processing applications depend on the temporal

segmentation of the audio signal into discrete note events. Systems such as score

followers [1] may use detected note events to interact directly with a live per-

former. Beat-synchronous analysis systems [2, 3] group detected notes into beats,

where a beat is the dominant time unit or metric pulse of the music, then use this

knowledge to improve an underlying analysis process.

In sound synthesis by analysis, the choice of processing algorithm will of-

ten depend on the characteristics of the sound source. Spectral processing tools

such as the Phase Vocoder [4] are a well-established means of time-stretching
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and pitch-shifting harmonic musical notes, but they have well-documented weak-

nesses in dealing with noisy or transient signals [5]. For real-time applications

of tools such as the Phase Vocoder, it may not be possible to depend on any prior

knowledge of the signal to select the processing algorithm, and so we must be able

to identify transient regions on-the-fly to reduce synthesis artefacts. It is within

this context that onset detection will be studied in this article.

While there have been several recent studies that examined musical note onset

detection [6, 7, 8], there have been few that analysed the real-time performance

of the published techniques. One of the aims of this article is to provide such an

overview. In Section 2, some of the common onset-detection techniques from the

literature are described. In Section 3.1, we suggest a way to improve on these

techniques by incorporating linear prediction (LP) [9]. In Section 4.1, we present

a novel onset-detection method that uses sinusoidal modelling [10]. Section 5.1

introduces Modal, our new open source library for musical onset detection. This

is then used to evaluate all of the previously described algorithms, with the results

being given in Sections 5.2 and 5.3, and then discussed in Section 5.4. This eval-

uation includes details of the performance of all of the algorithms in terms of both

accuracy and computational requirements.
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2 Real-time onset detection

2.1 Definitions

This article distinguishes between the terms audio buffer and audio frame as fol-

lows:

Audio buffer: A group of consecutive audio samples taken from the input signal.

The algorithms in this article all use a fixed buffer size of 512 samples.

Audio frame: A group of consecutive audio buffers. All the algorithms described

here operate on overlapping, fixed-sized frames of audio. These frames are

four audio buffers (2,048 samples) in duration, consisting of the most recent

audio buffer which is passed directly to the algorithm, combined with the

previous three buffers which are saved in memory. The start of each frame

is separated by a fixed number of samples, which is equal to the buffer size.

In order to say that an onset-detection system runs in real time, we require two

characteristics:

1. Low latency: The time between an onset occurring in the input audio stream

and the system correctly registering an onset occurrence must be no more

than 50 ms. This value was chosen to allow for the difficulty in specifying
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reference onsets, which is described in more detail in Section 2.1.1. All of

the onset-detection schemes that are described in this article have latency of

1,024 samples (the size of two audio buffers), except for the peak amplitude

difference method (given in Section 4.3) which has an additional latency of

512 samples, or 1,536 samples of latency in total. This corresponds to la-

tency times of 23.2 and 34.8 ms respectively, at a sampling rate of 44.1 kHz.

The reason for the 1,024 sample delay on all the onset-detection systems is

explained in Section 2.2.2, while the cause of the additional latency for the

peak amplitude difference method is given in Section 4.3.

2. Low processing time: The time taken by the algorithm to process one frame

of audio must be less than the duration of audio that is held in each buffer.

As the buffer size is fixed at 512 samples, the algorithm must be able to

process a frame in 11.6 ms or less when operating at a sampling rate of

44.1 kHz.

It is also important to draw a distinction between the terms onset, transient and

attack in relation to musical notes. This article follows the definitions given in [6],

summarised as follows:

Attack: The time interval during which the amplitude envelope increases.
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Transient: A short interval during which the signal evolves in a relatively unpre-

dictable way. It often corresponds to the time during which the excitation is

applied then dampened.

Onset: A single instant marking the beginning of a transient.

2.1.1 The detection window

The process of verifying that an onset has been correctly detected is not straight-

forward. The ideal situation would be to compare the detected onsets produced

by an onset-detection system with a list of reference onsets. An onset could then

be said to be correctly detected if it lies within a chosen time interval around the

reference onset, referred to here as the detection window. In reality, it is difficult

to give exact values for reference onsets, particularly in the case of instruments

with a soft attack, such as the flute or bowed violin. Finding reference onsets

from natural sounds generally involves human annotation of audio samples. This

inevitably leads to inconsistencies, and it was shown in [11] that the annotation

process is dependent on the listener, the software used to label the onsets and the

type of music being labelled. In [12], Vos and Rasch make a distinction between

the Physical Onset Time and the Perceptual Onset Time of a musical note, which

again can lead to differences between the values selected as reference onsets, par-
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ticularly if there is a mixture of natural and synthetic sounds. To compensate for

these limitations of the annotation process, we follow the decision made in a num-

ber of recent studies [6, 7, 8] to use a detection window that is 50 ms in duration.

2.2 The general form of onset-detection algorithms

As onset locations are typically defined as being the start of a transient, the prob-

lem of finding their position is linked to the problem of detecting transient inter-

vals in the signal. Another way to phrase this is to say that onset detection is the

process of identifying which parts of a signal are relatively unpredictable.

2.2.1 Onset-detection functions

The majority of the algorithms described in the literature involve an initial data

reduction step, transforming the audio signal into an onset-detection function

(ODF), which is a representation of the audio signal at a much lower sampling

rate. The ODF usually consists of one value for every frame of audio, and should

give a good indication as to the measure of the unpredictability of that frame.

Higher values correspond to greater unpredictability. Figure 1 gives an example

of a percussive audio sample together with an ODF calculated using the spectral

difference method (see Section 2.3.2 for more details on this technique).
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2.2.2 Peak detection

The next stage in the onset-detection process is to identify local maxima, also

called peaks, in the ODF. The location of each peak is recorded as an onset lo-

cation if the peak value is above a certain threshold. While peak picking and

thresholding are described elsewhere in the literature [13], both require special

treatment to operate with the limitations of strict real-time operation (defined in

Section 2.1). As this article focuses on the evaluation of different ODFs in real-

time, the peak-picking and thresholding processes are identical for each ODF.

When processing a real-time stream of ODF values, the first stage in the peak-

detection algorithm is to see if the current values are local maxima. In order

to make this assessment, the current ODF value must be compared to the two

neighbouring values. As we cannot ‘look ahead’ to get the next ODF value, it

is necessary to save both the previous and the current ODF values and wait until

the next value has been computed to make the comparison. This means that there

must always be some additional latency in the peak-picking process, in this case

equal to the buffer size which is fixed at 512 samples. When working with a

sampling rate of 44.1 kHz, this results in a total algorithm latency of two buffer

sizes or approximately 23.2 ms. The process is summarised in Algorithm 1.
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2.2.3 Threshold calculation

Thresholds are calculated using a slight variation of the median/mean function

described in [14] and given by Equation 1, where σn is the threshold value at

frame n, O[nm] is the previous m values of the ODF at frame n, λ is a positive

median weighting value, and α is a positive mean weighting value:

σn = λ×median(O[nm]) + α×mean(O[nm]) +N. (1)

The difference between (1) and the formula in [14] is the addition of the term N ,

which is defined as

N = w × v, (2)

where v is the value of the largest peak detected so far, and w is a weighting

value. For indefinite real-time use, it is advisable to either set w = 0 or to update

w at regular intervals to account for changes in dynamic level. Figure 2 shows

the values of the dynamic threshold (green dashes) of the ODF given in Figure 1,

computed using m = 7, λ = 1.0, α = 2.0 and w = 0.05. Every ODF peak that is

above this threshold (highlighted in Figure 2 with red circles) is taken to be a note

onset location.
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2.3 Onset-detection functions

This section reviews several existing approaches to creating ODFs that can be

used in a real-time situation. Each technique operates on frames of N samples,

with the start of each frame being separated by a fixed buffer size of h samples.

The ODFs return one value for every frame, corresponding to the likelihood of

that frame containing a note onset. A full analysis of the detection accuracy and

computational efficiency of each algorithm is given in Section 5.

2.3.1 Energy ODF

This approach, described in [5], is the most simple conceptually and is the most

computationally efficient. It is based on the premise that musical note onsets often

have more energy than the steady-state component of the note, as in the case of

many instruments, this is when the excitation is applied. Larger changes in the

amplitude envelope of the signal should therefore coincide with onset locations.

For each frame, the energy is given by

E(n) =
N∑

m=0

x(m)2, (3)

where E(n) is the energy of frame n, and x(m) is the value of the mth sample in

the frame. The value of the energy ODF (ODFE) for frame n is the absolute value
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of the difference in energy values between consecutive frames:

ODFE(n) = |E(n)− E(n− 1)|. (4)

2.3.2 Spectral difference ODF

Many recent techniques for creating ODFs have tended towards identifying time-

varying changes in a frequency domain representation of an audio signal. These

approaches have proven to be successful in a number of areas, such as in detect-

ing onsets in polyphonic signals [15] and in detecting ‘soft’ onsets created by

instruments such as the bowed violin which do not have a percussive attack [16].

The spectral difference ODF (ODFSD) is calculated by examining frame-to-frame

changes in the Short-Time Fourier Transform [17] of an audio signal and so falls

into this category.

The Fourier transform of the nth frame, windowed using a Hanning window

w(m) of size N is given by

X(k, n) =
N−1∑

m=0

x(m)w(m)e−
2jπmk
N , (5)

where X(k, n) is the kth frequency bin of the nth frame.

The spectral difference [16] is the absolute value of the change in magnitude

between corresponding bins in consecutive frames. As a new musical onset will
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often result in a sudden change in the frequency content in an audio signal, large

changes in the average spectral difference of a frame will often correspond with

note onsets. The spectral difference ODF is thus created by summing the spectral

difference across all bins in a frame and is given by

ODFSD(n) =

N/2∑

k=0

||X(k, n)| − |X(k, n− 1)||. (6)

2.3.3 Complex domain ODF

Another way to view the construction of an ODF is in terms of predictions and

deviations from predicted values. For every spectral bin in the Fourier transform

of a frame of audio samples, the spectral difference ODF predicts that the next

magnitude value will be the same as the current one. In the steady state of a

musical note, changes in the magnitude of a given bin between consecutive frames

should be relatively low, and so this prediction should be accurate. In transient

regions, these variations should be more pronounced, and so the average deviation

from the predicted value should be higher, resulting in peaks in the ODF.

Instead of making predictions using only the bin magnitudes, the complex

domain ODF [18] attempts to improve the prediction for the next value of a given

bin using combined magnitude and phase information. The magnitude prediction

297



is the magnitude value from the corresponding bin in the previous frame. In polar

form, we can write this predicted value as

R̂(k, n) = |X(k, n− 1)|. (7)

The phase prediction is formed by assuming a constant rate of phase change be-

tween frames:

φ̂(k, n) = princarg[2ϕ(k, n− 1)− ϕ(k, n− 2)], (8)

where princarg maps the phase to the [−π, π] range, and ϕ(k, n) is the phase of

the kth bin in the nth frame. If R(k, n) and φ(k, n) are the actual values of the

magnitude and phase, respectively, of bin k in frame n, then the deviation between

the prediction and the actual measurement is the Euclidean distance between the

two complex phasors, which can be written as

Γ(k, n) =

√
R(k, n)2 + R̂(k, n)2 − 2R(k, n)R̂(k, n) cos(φ(k, n)− φ̂(k, n)).

(9)

The complex domain ODF (ODFCD) is the sum of these deviations across all the

bins in a frame, as given in

ODFCD(n) =

N/2∑

k=0

Γ(k, n). (10)
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3 Measuring signal predictability

The ODFs that are described in Section 2.3, and the majority of those found else-

where in the literature [6], are trying to distinguish between the steady-state and

transient regions of an audio signal by making predictions based on information

about the most recent frame of audio and one or two preceding frames. In this

section, we present methods that use the same basic signal information to the ap-

proaches described in Section 2.3, but instead of making predictions based on just

one or two frames of these data, we use an arbitrary number of previous values

combined with LP to improve the accuracy of the estimate. The ODF is then the

absolute value of the differences between the actual frame measurements and the

LP predictions. The ODF values are low when the LP prediction is accurate, but

larger in regions of the signal that are more unpredictable, which should corre-

spond with note onset locations.

This is not the first time that LP errors have been used to create an ODF.

The authors in [19] describe a somewhat similar system in which an audio signal

is first filtered into six non-overlapping sub-bands. The first five bands are then

decimated by a factor of 20:1 before being passed to a LP error filter, while just

the amplitude envelope is taken from the sixth band (everything above the note

B7 which is 3,951 kHz). Their ODF is the sum of the five LP error signals and the
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amplitude envelope from the sixth band.

Our approach differs in a number of ways. In this article we show that LP can

be used to improve the detection accuracy of the three ODFs described in Section

2.3 (detection results are given in Section 5). As this approach involves predicting

the time-varying changes in signal features (energy, spectral difference and com-

plex phasor positions) rather than in the signal itself, the same technique could

be applied to many existing ODFs from the literature, and so it can be viewed as

an additional post-processing step that can potentially improve the detection ac-

curacy of existing ODFs. Our algorithms are suitable for real-time use, and the

results were compiled from real-time data. In contrast, the results given in [19]

are based on off-line processing, and include an initial pre-processing step to nor-

malise the input audio files, and so it is not clear how well this method performs

in a real-time situation.

The LP process that is used in this article is described in Section 3.1. In

Sections 3.2, 3.3 and 3.4, we show that this can be used to create new ODFs

based on the energy, spectral difference and complex domain ODFs, respectively.
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3.1 Linear prediction

In the LP model, also known as the autoregressive model, the current input sample

x(n) is estimated by a weighted combination of the past values of the signal. The

predicted value, x̂(n), is computed by FIR filtering according to

x̂(n) =

p∑

k=1

akx(n− k), (11)

where p is the order of the LP model and ak are the prediction coefficients.

The challenge is then to calculate the LP coefficients. There are a number of

methods given in the literature, the most widespread among which are the autocor-

relation method [20], covariance method [9] and the Burg method [21]. Each of

the three methods was evaluated, but the Burg method was selected as it produced

the most accurate and consistent results. Like the autocorrelation method, it has a

minimum phase, and like the covariance method it estimates the coefficients on a

finite support [21]. It can also be efficiently implemented in real time [20].

3.1.1 The Burg algorithm

The LP error is the difference between the predicted and the actual values:

e(n) = x(n)− x̂(n). (12)
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The Burg algorithm minimises average of the forward prediction error fm(n) and

the backward prediction error bm(n). The initial (order 0) forward and backward

errors are given by

f0(n) = x(n), (13)

b0(n) = x(n) (14)

over the interval n = 0, . . . , N−1, whereN is the block length. For the remaining

m = 1, . . . , p, the mth coefficient is calculated from

km =
−2

∑N−1
n=m[fm−1(n)bm−1(n− 1)]∑N−1

n=m[f 2
m−1(n) + b2m−1(n− 1)]

, (15)

and then the forward and backward prediction errors are recursively calculated

from

fm(n) = fm−1(n)− kmbm−1(n− 1) (16)

for n = m+ 1, . . . , N − 1, and

bm(n) = bm−1(n− 1)− kmfm−1(n) (17)

for n = m, . . . , N − 1, respectively. Pseudocode for this process is given in

Algorithm 2, taken from [21].
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3.2 Energy with LP

The energy ODF (given in Section 2.3.1) is derived from the absolute value of the

energy difference between two frames. This can be viewed as using the energy

value of the first frame as a prediction of the energy of the second, with the dif-

ference being the prediction error. In this context, we try to improve this estimate

using LP. Energy values from the past p frames are taken, resulting in the sequence

E(n− 1), E(n− 2), . . . , E(n− p).

Using (13)–(17), p coefficients are calculated based on this sequence, and then a

one-sample prediction is made using (11). Hence, for each frame, the energy with

LP ODF (ODFELP) is given by

ODFELP(n) = |E(n)− PE(n)|, (18)

where PE(n) is the predicted energy value for frame n.

3.3 Spectral difference with LP

Similar techniques can be applied to the spectral difference and complex domain

ODFs. The spectral difference ODF is formed from the absolute value of the

magnitude differences between corresponding bins in adjacent frames. Similarly

to the process described in Section 3.2, this can be viewed as a prediction that
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the magnitude in a given bin will remain constant between adjacent frames, with

the magnitude difference being the prediction error. In the spectral difference

with LP ODF (ODFSDLP), the predicted magnitude value for each of the k bins

in frame n is calculated by taking the magnitude values from the corresponding

bins in the previous p frames, using them to find p LP coefficients then filtering

the result with (11). Hence, for each k in n, the magnitude prediction coefficients

are formed using (13)–(17) on the sequence

|X(k, n− 1)|, |X(k, n− 2)|, . . . , |X(k, n− p)|.

If PSD(k, n) is the predicted spectral difference for bin k in n, then

ODFSDLP(n) =

N/2∑

k=0

||X(k, n)| − PSD(k, n)|. (19)

As is shown in Section 5.3, this is a significant amount of extra computation per

frame compared with the ODFSD given by Equation 6. However, it is still capable

of real-time performance, depending on the chosen LP model order. We found

that an order of 5 was enough to significantly improve the detection accuracy

while still comfortably meeting the real-time processing requirements. Detailed

results are given in Section 5.
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3.4 Complex domain with LP

The complex domain method described in Section 2.3.3 is based on measuring

the Euclidean distance between the predicted and the actual complex phasors for

a given bin. There are a number of different ways by which LP could be applied

in an attempt to improve this estimate. The bin magnitudes and phases could

be predicted separately, based on their values over the previous p frames, and

then combined to form an estimated phasor value for the current frame. Another

possibility would be to only apply LP to one of either the magnitude or the phase

parameters.

However, we found that the biggest improvement came from using LP to es-

timate the value of the Euclidean distance that separates the complex phasors for

a given bin between consecutive frames. Hence, for each bin k in frame n, the

complex distances between the kth bin in each of the last p frames are used to

calculate the LP coefficients. If R(k, n) is the magnitude of the kth bin in frame

n, and φ(k, n) is the phase of the bin, then the distance between the kth bins in

frames n and n− 1 is

Γ(k, n) =
√
R(k, n)2 +R(k, n− 1)2 − 2R(k, n)R(k, n− 1) cos(φ(k, n)− φ(k, n− 1)).
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LP coefficients are formed from the values

Γ(k, n− 1),Γ(k, n− 2), . . . ,Γ(k, n− p)

using (13)–(17), and predictions PCD(k, n) are calculated using (11). The com-

plex domain with LP ODF (ODFCDLP) is then given by

ODFCDLP(n) =

N/2∑

k=0

|Γ(k, n)− PCD(k, n)|. (20)

4 Real-time onset detection using sinusoidal mod-

elling

In Section 3, we describe a way to improve the detection accuracy of several ODFs

from the literature using LP to enhance their estimates of the frame-by-frame

evolution of an audio signal. This improvement in detection accuracy comes at the

expense of much greater computational cost, however (see Section 5 for detection

accuracy and performance results).

In this section, we present a novel ODF that has significantly better real-time

performance than the LP-based spectral methods. It uses sinusoidal modelling,

and so it is particularly useful in areas that include some sort of harmonic analysis.

We begin with an overview of sinusoidal modelling in Section 4.1, followed by
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a review of previous study that uses sinusoidal modelling for onset detection in

Section 4.2 and then concludes with a description of the new ODF in Section 4.3.

4.1 Sinusoidal modelling

Sinusoidal modelling [10] is based on Fourier’s theorem, which states that any

periodic waveform can be modelled as the sum of sinusoids at various amplitudes

and harmonic frequencies. For stationary pseudo-periodic sounds, these ampli-

tudes and frequencies evolve slowly with time. They can be used as parameters to

control pseudo-sinusoidal oscillators, commonly referred to as partials. The audio

signals can be calculated from the sum of the partials using

s(t) =

Np∑

p=1

Ap(t) cos(θp(t)), (21)

θp(t) = θp(0) + 2π

∫ t

0

fp(u) du, (22)

where Np is the number of partials and Ap, fp and θp are the amplitude, frequency

and phase of the pth partial, respectively. Typically, the parameters are measured

for every

t = nh/Fs,

where n is the sample number, h is the buffer size and Fs is the sampling rate.

To calculate the audio signal, the parameters must then be interpolated between
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measurements. Calculating these parameters for each frame is referred to in this

article as peak detection, while the process of connecting these peaks between

frames is called partial tracking.

4.2 Sinusoidal modelling and onset detection

The sinusoidal modelling process can be extended, creating models of sound

based on the separation of the audio signal into a combination of sinusoids and

noise [22], and further into combinations of sinusoids, noise and transients [23].

Although primarily intended to model transient components from musical sig-

nals, the system described in [23] could also be adopted to detect note onsets.

The authors show that transient signals in the time domain can be mapped onto

sinusoidal signals in a frequency domain, in this case, using the discrete cosine

transform (DCT) [24]. Roughly speaking, the DCT of a transient time-domain

signal produces a signal with a frequency that depends only on the time shift of

the transient. This information could then be used to identify when the onset oc-

curred. However, it is not suitable for real-time applications as it requires a DCT

frame size that makes the transients appear as a small entity, with a frame duration

of about 1 s recommended. This is far too much a latency to meet the real-time

requirements that were specified in Section 2.1.
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Another system that combines sinusoidal modelling and onset detection is pre-

sented in [25]. It creates an ODF that is a combination of two energy measure-

ments. The first is simply the energy in the audio signal over a 512 sample frame.

If the energy of the current frame is larger than that of a given number of previous

frames, then the current frame is a candidate for being an onset location. A multi-

resolution sinusoidal model is then applied to the signal to isolate the harmonic

component of the sound. This differs from the sinusoidal modelling implementa-

tion described above in that the audio signal is first split into five octave spaced

frequency bands. Currently, only the lower three are used, while the upper two

(frequencies above about 5 kHz) are discarded. Each band is then analysed us-

ing different window lengths, allowing for more frequency resolution in the lower

band at the expense of worse time resolution. Sinusoidal amplitude, frequency

and phase parameters are estimated separately for each band, and linked together

to form partials. An additional post-processing step is then applied, removing any

partials that have an average amplitude that is less than an adaptive psychoacoustic

masking threshold, and removing any partials that are less than 46 ms in duration.

As it stands, it is unclear whether or not the system described in [25] is suitable

for use as a real-time onset detector. The stipulation that all sinusoidal partials

must be at least 46 ms in duration implies that there must be a minimum latency
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of 46 ms in the sinusoidal modelling process, putting it very close to our 50 ms

limit. If used purely as an ODF in the onset-detection system described in Section

2.3, the additional 11.6 ms of latency incurred by the peak-detection stage would

put the total latency outside this 50-ms window. However, their method uses a

rising edge detector instead of looking for peaks, and so it may still meet our real-

time requirements. Although as it was designed as part of a larger system that was

primarily intended to encode audio for compression, no onset-detection accuracy

or performance results are given by the authors.

In contrast, the ODF that is presented in Section 4.3 was designed specifically

as a real-time onset detector, and so has a latency of just two buffer sizes (23.2 ms

in our implementation). As we discussed in Section 5, it compares favourably to

leading approaches from the literature in terms of computational efficiency, and it

is also more accurate than the reviewed methods.

4.3 Peak amplitude difference ODF

This ODF is based on the same underlying premise as sinusoidal models, namely

that during the steady state of a musical note, the harmonic signal component can

be well modelled as a sum of sinusoids. These sinusoids should evolve slowly in

time, and should therefore be well represented by the partials detected by the sinu-
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soidal modelling process. It follows then that during the steady state, the absolute

values of the frame-to-frame differences in the sinusoidal peak amplitudes and

frequencies should be quite low. In comparison, transient regions at note onset

locations should show considerably more frame-by-frame variation in both peak

frequency and amplitude values. This is due to two main factors:

1. Many musical notes have an increase in signal energy during their attack re-

gions, corresponding to a physical excitation being applied, which increases

the amplitude of the detected sinusoidal components.

2. As transients are by definition less predictable and less harmonic, the basic

premise of the sinusoidal model breaks down in these regions. This can re-

sult in peaks existing in these regions that are really noise and not part of any

underlying harmonic component. Often they will remain unmatched, and

so do not form long-duration partials. Alternatively, if they are incorrectly

matched, then it can result in relatively large amplitude and/or frequency

deviations in the resulting partial. In either case, the difference between the

parameters of the noisy peak and the parameters of any peaks before and

after it in a partial will often differ significantly.
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Both these factors should lead to larger frame-to-frame sinusoidal peak amplitude

differences in transient regions than in steady-state regions. We can therefore cre-

ate an ODF by analysing the differences in peak amplitude values over consecutive

frames.

The sinusoidal modelling algorithm that we used is very close to the one de-

scribed in [26], with a couple of changes to the peak-detection process. Firstly,

the number of peaks per frame can be limited to Mp, reducing the computation

required for the partial-tracking stage [27, 28]. If the number of detected peaks

Np > Mp, then the Mp largest amplitude peaks will be selected. Also, in order to

allow for consistent evaluation with the other frequency domain ODFs described

in this article, the frame size is kept constant during the analysis (2,048 sam-

ples). The partial-tracking process is identical to the one given in [26]. As this

partial-tracking algorithm has a delay of one buffer size, this ODF has an addi-

tional latency of 512 samples, bringing the total detection latency (including the

peak-picking phase) to 1,536 samples or 34.8 ms when sampled at 44.1 kHz.

For a given frame n, let Pk(n) be the peak amplitude of the kth partial. The

peak amplitude difference ODF (ODFPAD) is given by

ODFPAD(n) =

Mp∑

k=0

|Pk(n)− Pk(n− 1)|. (23)
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In the steady state, frame-to-frame peak amplitude differences for matched peaks

should be relatively low, and as the matching process here is significantly eas-

ier than in transient regions, less matching errors are expected. At note onsets,

matched peaks should have larger amplitude deviations due to more energy in the

signal, and there should also be more unmatched or incorrectly matched noisy

peaks, increasing the ODF value. As specified in [26], unmatched peaks for a

frame are taken to be the start of a partial, and so the amplitude difference is equal

to the amplitude of the peak, Pk(n).

5 Evaluation of real-time ODFs

This section provides evaluations of all of the ODFs described in this article.

Section 5.1 describes a new library of onset-detection software, which includes

a database of hand-annotated musical note onsets, which was created as part of

this study. This database was adopted to assess the performance of the different

algorithms. Section 5.2 evaluates the detection accuracy of each ODF, with their

computational complexities described in Section 5.3. Section 5.4 concludes with

a discussion of the evaluation results.
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5.1 Musical onset database and library (modal)

In order to evaluate the different ODFs described in Sections 2.3, 3 and 4.3, it was

necessary to access a set of audio files with reference onset locations. To the best

of our knowledge, the Sound Onset Labellizer [11] was the only freely available

reference collection, but unfortunately it was not available at the time of publica-

tion. Their reference set also made use of files from the RWC database [29], which

although publicly available is not free and does not allow free redistribution.

These issues lead to the creation of Modal, which contains a free collection of

samples, all with creative commons licensing allowing for free reuse and redis-

tribution, and including hand-annotated onsets for each file. Modal is also a new

open source (GPL), cross-platform library for musical onset detection written in

C++ and Python, and contains implementations of all of the ODFs discussed in

this article in both programming languages. In addition, from Python, there is on-

set detection and plotting functionality, as well as code for generating our analysis

data and results. It also includes an application that allows for the labelling of

onset locations in audio files, which can then be added to the database. Modal is

available now at http://github.com/johnglover/modal.
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5.2 Detection results

The detection accuracy of the ODFs was measured by comparing the onsets de-

tected using each method with the reference samples in the Modal database. To be

marked as ‘correctly detected’, the onset must be located within 50 ms of a refer-

ence onset. Merged or double onsets were not penalised. The database currently

contains 501 onsets from annotated sounds that are mainly monophonic, and so

this must be taken into consideration when viewing the results. The annotations

were also all made by one person, and while it has been shown in [11] that this is

not ideal, the chosen detection window of 50 ms should compensate for some of

the inevitable inconsistencies.

The results are summarised by three measurements that are common in the

field of Information Retrieval [15]: the precision (P ), the recall (R), and the F-

measure (F ) defined here as follows:

P =
C

C + fp
, (24)

R =
C

C + fn
, (25)

F =
2PR

P +R
, (26)

where C is the number of correctly detected onsets, fp is the number of false

positives (detected onsets with no matching reference onset), and fn is the number
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of false negatives (reference onsets with no matching detected onset).

Every reference sample in the database was streamed one buffer at a time to

each ODF, with ODF values for each buffer being passed immediately to a real-

time peak-picking system, as described in Algorithm 1. Dynamic thresholding

was applied according to (1), with λ = 1.0, α = 2.0, and w in (2) set to 0.05. A

median window of seven previous values was used. These parameters were kept

constant for each ODF. Our novel methods that use LP (described in Sections 3.2,

3.3 and 3.4) each used a model order of 5, while our peak amplitude difference

method described in Section 4.3 was limited to a maximum of 20 peaks per frame.

The precision, recall and F-measure results for each ODF are given in Figures

3, 4 and 5, respectively. In each figure, the blue bars give the results for the

ODFs from the literature (described in Section 2.3), the brown bars give the results

for our LP methods, and the green bar gives the results for our peak amplitude

difference method.

Figure 3 shows that the precision values for all our methods are higher than the

methods from the literature. The addition of LP noticeably improves each ODF

to which it is applied to. The precision values for the peak amplitude difference

method is better than the literature methods and the energy with LP method, but

worse than the two spectral-based LP methods.
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The recall results for each ODF are given in Figure 4. In this figure, we see

that LP has improved the energy method, but made the spectral difference and

complex domain methods slightly worse. The peak amplitude difference method

has a greater recall than all of the literature methods and is only second to the

energy with LP ODF.

Figure 5 gives the F-measure for each ODF. All of our proposed methods

are shown to perform better than the methods from the literature. The spectral

difference with LP ODF has the best detection accuracy, while the energy with LP,

complex domain with LP and peak amplitude difference methods are all closely

matched.

5.3 Performance results

In Table 1, we give the worst-case number of floating-point operations per second

(FLOPS) required by each ODF to process real-time audio streams, based on our

implementations in the Modal library. This analysis does not include data from

the setup/initialisation periods of any of the algorithms, or data from the peak-

detection stage of the onset-detection system. As specified in Section 2.1, the

audio frame size is 2,048 samples, the buffer size is 512 samples, and the sampling

rate is 44.1 kHz. The LP methods all use a model of the order of 5. The number
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of peaks in the ODFPAD is limited to 20.

These totals were calculated by counting the number of floating-point oper-

ations required by each ODF to process 1 frame of audio, where we define a

floating-point operation to be an addition, subtraction, multiplication, division or

assignment involving a floating-point number. As we have a buffer size of 512

samples measured at 44.1 kHz, we have 86.133 frames of audio per second, and

so the number of operations required by each ODF per frame of audio was multi-

plied by 86.133 to get the FLOPS total for the corresponding ODF.

To simplify the calculations, the following assumptions were made when cal-

culating the totals:

• As we are using the real fast Fourier transform (FFT) computed using the

FFTW3 library [30], the processing time required for a FFT is 2.5N log2(N)

where N is the FFT size, as given in [31].

• The complexity of basic arithmetic functions in the C++ standard library

such as √, cos, sin, and log is O(M), where M is the number of digits of

precision at which the function is to be evaluated.

• All integer operations can be ignored.

• All function call overheads can be ignored.
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As Table 1 shows, the energy-based methods (ODFE and ODFELP) require

far less computation than any of the others. The spectral difference ODF is the

third fastest, needing about half the number of operations that are required by the

complex domain method. The worst-case requirements for the peak amplitude

difference method are still relatively close to the spectral difference ODF and

noticeably quicker than the complex domain ODF. As expected, the addition of LP

to the spectral difference and complex domain methods makes them significantly

more expensive computationally than any other technique.

To give a more intuitive view of the algorithmic complexity, in Table 2, we

also give the estimated real-time CPU usage for each ODF given as a percentage

of the maximum number of FLOPS that can be achieved by two different proces-

sors: an Intel Core 2 Duo and an Analog Devices ADSP-TS201S (TigerSHARC).

The Core 2 Duo has a clock speed of 2.8 GHz, a 6 MB L2 cache and a bus speed

of 1.07 GHz, providing a theoretical best-case performance of 22.4 GFLOPS [32].

The ADSP-TS201S has a clock speed of 600 MHz and a best-case performance of

3.6 GFLOPS [33], and scores relatively well on the BDTI DSP Kernel Benchmarks

[34]. Any value less than 100% here shows that the ODF can be calculated in real

time on this processor.
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5.4 Discussion

The F-measure results (shown in Figure 5) for the methods described in Section

2.3 are lower than those given elsewhere in the literature, but this was expected

as real-time performance is significantly more challenging at the peak-picking

and thresholding stages. The nature of the sample set must also be taken into

account, as evidently, the heavy bias towards monophonic sounds is reflected by

the surprisingly strong performance of the energy-based methods. As noted in [8],

the various parameter settings can have a large impact on overall performance. We

tried to select a parameter set that gave a fair reflection on each algorithm, but it

must be noted that every method can probably be improved by some parameter

adjustments, especially if prior knowledge of the sound source is available.

In terms of performance, the LP methods are all significantly slower than their

counterparts. However, even the most computationally expensive algorithm can

run with an estimated real-time CPU usage of just over 6% on the ADSP-TS201S

(TigerSHARC) processor, and so they are still more than capable in respect of

real-time performance. The energy with LP ODF in particular is extremely cheap

computationally, and yet has relatively good detection accuracy for this sample

set.

The peak amplitude difference method is also notable as it is computationally
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cheaper than the complex domain ODF and compares favourably with the spectral

difference ODF, while giving better accuracy for our sample set than the other two.

For applications such as real-time sound synthesis, which may already include a

sinusoidal modelling process, this becomes an extremely quick method of onset

detection. One significant difference between the peak amplitude difference ODF

and the others is that the computation time is not fixed, but depends on the sound

source. Harmonic material will have well-defined partials, potentially requiring

more processing time for the partial-tracking process than noisy sound sources,

for this sinusoidal modelling implementation at least.

6 Conclusions

In this article, we have described two new approaches to real-time musical onset

detection, one using LP and the other using sinusoidal modelling. We compared

these approaches to some of the leading real-time musical onset-detection algo-

rithms from the literature, and found that they can offer either improved accuracy,

computational efficiency, or both. It is recognised that onset-detection results are

very context sensitive, and so without a more extensive sample set it is hard to

make completely conclusive comparisons to other methods. However, our soft-
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ware and our sample database are both released under open source licences and are

freely redistributable, so hopefully other researchers in the field will contribute.

Choosing a real-time ODF remains a complex issue and depends on the nature

of the input sound, the available processing power and the penalties that will be

experienced for producing false negatives and false positives. However, some

recommendations can be made based on the results in this article. For our sample

set, the spectral difference with LP method produced the most accurate results,

and so, if computational complexity is not an issue, then this would be a good

choice. On the other hand, if low complexity is an important requirement then

the energy with LP ODF is an attractive option. It produced accurate results at a

fraction of the computational cost of some of the established methods.

The peak amplitude difference ODF is also noteworthy and should prove to

be useful in areas such as real-time sound synthesis by analysis. Spectral process-

ing techniques such as the Phase Vocoder or sinusoidal models work well during

the steady-state regions of musical notes, but have problems in transient areas

which follow note onsets [5, 23]. One solution to this problem is to identify these

regions and process them differently, which requires accurate onset detection to

avoid synthesis artefacts. It is in this context that the peak amplitude difference

ODF is particularly useful. It was shown to provide more accurate results than the
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well-established complex domain method with noticeably lower computation re-

quirements, and as it integrates seamlessly with the sinusoidal modelling process,

it can be added to the existing sinusoidal modelling systems at very little cost.
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Figure 1: Percussive audio sample with ODF generated using the spectral difference method.
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Figure 2: ODF peaks detected (circled) and threshold (dashes) during real-time peak picking.
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Figure 3: Precision values for each ODF.
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Figure 4: Recall values for each ODF.
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Figure 5: F-measure values for each ODF.
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FLOPS

ODFE 529,718

ODFSD 7,587,542

ODFCD 14,473,789

ODFELP 734,370

ODFSDLP 217,179,364

ODFCDLP 217,709,168

ODFPAD 9,555,940

Table 1: Number of floating-point operations per second (FLOPS) required by each ODF

to process real-time audio streams, with a buffer size of 512 samples, a frame size of 2048

samples, a linear prediction model of the order of 5, and a maximum of 20 peaks per frame

for ODFPAD
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Core 2 Duo (%) ADSP-TS201S (%)

ODFE 0.002 0.015

ODFSD 0.034 0.211

ODFCD 0.065 0.402

ODFELP 0.003 0.020

ODFSDLP 0.970 6.033

ODFCDLP 0.972 6.047

ODFPAD 0.043 0.265

Table 2: Estimated real-time CPU usage for each ODF, shown as a percentage of the maxi-

mum number of FLOPS that can be achieved on two processors: an Intel Core 2 Duo and

an Analog Devices ADSP-TS201S (TigerSHARC)
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Input: ODF value

Output: Whether or not previous ODF value represents a peak (Boolean)

IsOnset←− False

if PreviousValue > CurrentValue and PreviousValue > TwoValuesAgo then

if PreviousValue > CalculateThreshold() then
IsOnset←− True

end

end

UpdatePreviousV alues()

return IsOnset

Algorithm 1: Real-time peak picking (one buffer delay).
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f ←− x

b←− x

a←− x

for m← 0 to p− 1 do
fp←− f without its first element

bp←− b without its last element

k ←− −2bp · fp/(fp · fp+ fp · fp)

f ←− fp+ k · bp

b←− bp+ k · fp

a←− (a[0], a[1], . . . , a[m], 0) + k(0, a[m], a[m− 1], . . . , a[0])

end

Algorithm 2: The Burg method.
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Appendix F

Real-time segmentation of the

temporal evolution of musical sounds

Original publication:

John Glover, Victor Lazzarini, and Joseph Timoney. Real-time segmentation of

the temporal evolution of musical sounds. In The Acoustics 2012 Hong Kong

Conference, Hong Kong, China, May 2012.
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1. INTRODUCTION

The segmentation of musical instrument sounds into contiguous regions with distinct characteristics has
become an important process in studies of timbre perception [1] and sound modelling and manipulation
[2]. Since the time of Helmholtz, it has been known that the temporal evolution of musical sounds
plays an important role in our perception of timbre. Helmholtz described musical sounds as being a
waveform shaped by an amplitude envelope consisting of attack, steady state and decay segments [3].
Here the attack is the time from the onset until the amplitude reaches its peak value, the steady state is
the segment during which the amplitude is approximately constant, and the decay is the region where
the amplitude decreases again. A number of automatic segmentation techniques have been developed
based on this model, taking only the temporal evolution of the signal amplitude into account when
calculating region boundaries [4, 5]. However, more recent research has shown that in order to better
understand the temporal evolution of sounds, it is necessary to also consider the way in which the
audio spectrum changes over time [1]. In [6] Hajda proposed a model for the segmentation of isolated,
continuant musical tones based on the relationship between the temporal evolution of the amplitude
envelope and the spectral centroid, called the amplitude/centroid trajectory (ACT) model. Caetano et al.
devised an automatic segmentation technique based on the ACT model and showed that it outperformed
a segmentation method based solely on the temporal evolution of the amplitude envelope [7]. While
this method works well in an off-line situation, it cannot be used to improve real-time systems. We
are particularly interested in real-time musical performance tools based on sound synthesis by analysis,
where the choice of processing algorithm will often depend on the characteristics of the sound source.
Spectral processing tools such as the Phase Vocoder [8] are well established means of time-stretching
and pitch-shifting harmonic musical notes, but they have well documented weaknesses in dealing with
noisy or transient signals [9]. For real-time applications of tools such as the Phase Vocoder, it may not be
possible to depend on any prior knowledge of the signal to select the processing algorithm, so being able
to accurately identify note regions with specific characteristics on-the-fly is crucial in order to minimize
synthesis artifacts.

In this paper, we present a new technique for the real-time automatic temporal segmentation of musical
sounds. We define attack, sustain and release segments using cues from a combination of the amplitude
envelope, the spectral centroid, and a measurement of the stability of the sound that is derived from an
onset detection function. In Section 2 we describe some existing approaches to automatic segmentation.
Our new method is given in Section 3. We provide an evaluation of our method in Section 4, followed
by conclusions in Section 5.

2. AUTOMATIC SEGMENTATION

Automatic segmentation consists of the identification of boundaries between contiguous regions in a
musical note. Typical boundaries are at note onsets, the end of the attack or the start of the sustain, the
end of the sustain or the start of the release and at the end of the note (offset). Regions and boundaries
can vary however, firstly depending on the model used by the segmentation technique and secondly
based on the nature of the sound being analyzed, as not all instrumental sounds are composed of the
same temporal events. In [4] Peeters notes that the well-known ADSR envelope does not apply to most
natural sounds, as depending on the nature of the sound, one or more of the segments is often missing.
Therefore, he proposes segmenting musical sounds into two regions named attack and rest. This only
requires the detection of two region boundaries; the start and end of the attack region. Two techniques
are described for detecting these boundaries. The first of these is just to apply a fixed threshold to the
amplitude envelope, the start of attack being when the envelope reaches 20% of the peak value and
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the end of attack occurring when it reaches 90% of the peak value. The second technique is called
the weakest effort method, and is based on an indirect measurement of the changes in the slope of the
amplitude envelope.

Although the amplitude envelope often provides a good approximation of the temporal evolution of
the internal structure of a musical sound, it simply does not provide enough information to allow for
accurate, robust and meaningful segmentation of the signal into regions with distinct characteristics. In
particular the attack region, which has often become synonymous with the amplitude rise time [10], is
not well delineated by the amplitude envelope. The attack is a transient part of the signal that lasts from
the onset until a relatively stable periodicity is established, and as a result the steady state is generally
achieved before the end of the initial amplitude rise time [1]. During the steady state, the amplitude
envelope can often show considerable variation, particularly in the presence of tremolo and/or vibrato.
This makes it difficult to detect the boundary between the steady state and the release using just the
amplitude envelope, especially if operating under the constraints of a real-time system. The ACT model,
which we describe in Section 2.1, has addressed many of these issues.

2.1. Automatic segmentation using the amplitude/centroid trajectory model

Hajda proposed a new model for the partitioning of isolated non-percussive musical sounds [6], based
on observations by Beauchamp that for certain signals the root mean square (RMS) amplitude and
spectral centroid have a monotonic relationship during the steady state region [11]. An example of this
relationship is shown for a clarinet sample in Figure 1. The spectral centroid is given by Equation 1,
where f is frequency (in Hz) and a is linear amplitude of frequency band b up to m bands which are
computed by Fast Fourier Transform. The Fourier Transform is performed on Bartlett windowed analysis
frames that are 64 samples in duration. This results in 32 evenly spaced frequency bands (up to 11025
Hz), each with a bandwidth of about 345 Hz.

centroid(t) =
∑m

b=1 fb(t)×ab(t)
∑m

b=1 ab(t)
(1)

Hajda’s model, called the amplitude/centroid trajectory (ACT), identifies and detects the boundaries for
four contiguous regions in a musical tone:

Attack: the portion of the signal in which the RMS amplitude is rising and the spectral centroid is falling
after an initial maximum. The attack ends when the centroid slope changes direction (centroid
reaches a local minimum).

Attack/steady state transition: the region from the end of the attack to the first local RMS amplitude
maximum.

Steady state: the segment in which the amplitude and spectral centroid both vary around mean values.
Decay: the section during which the amplitude and spectral centroid both rapidly decrease. At the end

of the decay (near the note offset), the centroid value can rise again however as the signal amplitude
can become so low that denominator in Equation 1 will approach 0. This can be seen in Figure 1
(starting at approximately sample number 100200).

Hajda initially applied the ACT model only to non-percussive sounds. However, Caetano et al.
introduced an automatic segmentation technique based on the ACT model [7], and proposed that it could
be applied to a large variety of acoustic instrument tones. It uses cues taken from a combination of
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FIGURE 1. The relationship between the RMS amplitude envelope and spectral centroid for a clarinet sample.
The full-wave-rectified version of the audio sample is given, with the RMS amplitude envelope shown by the black
dashes, and the spectral centroid by the red dots. The RMS amplitude envelope and the spectral centroid have both
been normalised and scaled by the maximum signal value.

the amplitude envelope and the spectral centroid, where the amplitude envelope is calculated using a
technique called the true amplitude envelope (TAE) [12]. The TAE is a time domain implementation of
the true envelope [13], which is a method for estimating a spectral envelope by iteratively calculating the
filtered cepstrum, then modifying it so that the original spectral peaks are maintained while the cepstral
filter is used to fill the valleys between the peaks. In the TAE this algorithm is applied to the time domain
signal instead of the Fourier spectrum, so that the resulting envelope accurately matches the time domain
amplitude peaks.

For each musical tone the onset, end of attack, start of sustain, start of release and offset boundaries
are detected as follows:

Onset: start of the note, found by using the automatic onset detection method described in [14]. This
technique basically involves looking for signal regions in which the center of gravity of the instan-
taneous energy of the windowed signal is above a given threshold. Or in other words, if most of
the energy in a spectral frame is located towards the leading edge of the analysis window, then the
frame is likely to contain a note onset.

End of attack: position of the first local minima in the spectral centroid that is between boundaries 1
and 3.

Start of sustain: boundary detected using a modified version of Peeters’ weakest effort method.
Start of release: also detected using a version of the weakest effort method, but starting at the offset and

working backwards.
Offset: the last point that the TAE attains the same energy (amplitude squared) as the onset.

Notably, they allow the same point to define the boundary of two distinct contiguous regions. This
signifies that the region is too short to be detected as a separate segment and makes the model more
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robust in dealing with different types of sounds.
Caetano et al. compare the performance of their automatic segmentation technique to that of the one

described by Peeters [4]. They do this by visual inspection of plots of the waveform, spectrogram and de-
tected boundaries produced by both methods, showing 16 analyzed samples consisting of isolated tones
from western orchestral instruments (plus the acoustic guitar). They find that their model outperformed
the Peeters method in all cases, although for one sample (a marimba recording) the amplitude envelope
and spectral centroid do not behave in the manner that is assumed by the model, and so neither method
gives good results. However, this provides strong evidence that the ACT model assumptions can be ap-
plied to a wide variety of sounds, and shows that using a combination of the amplitude envelope spectral
centroid can lead to more accurate note segmentation than methods based on the amplitude envelope
alone.

The automatic segmentation technique proposed by Caetano et al. cannot be used to improve the
performance of real-time synthesis by analysis systems however, as the method for detecting the start
of sustain and start of release boundaries requires knowledge of future signal values. Also, although
the spectral centroid has been shown to be a useful indirect indicator as to the extent of the attack
region, in order to help reduce synthesis artifacts when using tools such as the Phase Vocoder it would
be preferable to have a more accurate measure of the attack transient, by locating the signal regions in
which the spectral components are changing rapidly and often unpredictably. We address both of these
issues in Section 3.

3. A REAL-TIME METHOD FOR THE AUTOMATIC TEMPORAL
SEGMENTATION OF MUSICAL SOUNDS

In this section we propose a new method for the real-time automatic segmentation of the temporal
evolution of musical sounds, using cues from a combination of the RMS amplitude envelope, the spectral
centroid and an onset detection function (the latter is described in Section 3.1). In our segmentation
model, boundaries are defined for the onset, start of sustain, start of release and offset as follows:

Onset: start of the note, detected using the peak amplitude difference method [15].
Start of sustain (end of attack): boundary occurs as soon as the attack transient has finished. This

calculation is described in detail in Section 3.1.
Start of release (end of sustain): occurs when the following conditions are met:

(1) The RMS amplitude envelope is less than 80% of the largest amplitude value seen between the
onset and the current frame.
(2) The RMS amplitude envelope is decreasing for 5 consecutive frames.
(3) The current value of the spectral centroid is below the cumulative moving average of the values
of the centroid from the onset to the current frame.
This boundary also occurs if the RMS amplitude value drops to less than 33% of the peak value.
The RMS amplitude here is subject to a 3 point moving average filter, and the spectral centroid is
given by Equation 1.

Offset: the point at which the RMS amplitude value is 60 db below the peak amplitude value.

Similarly to the Caetano et al. method [7], we allow multiple boundaries to occur at the same time. An
example of the boundaries detected by our method is given in Figure 3, with boundary positions shown
by vertical blue dashes. We use a frame size of 512 samples, resulting in a latency of 11.6 ms when
operating at a sampling rate of 44.1 kHz. The maximum delay in detecting a boundary is 5 frames (or 58
ms).
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3.1. Identifying the attack transient from an onset detection function

FIGURE 2. Onset detection function (solid green line) for the clarinet sample, and detected transient region
(between red vertical dashes).

As onset locations are typically defined as being the start of a transient, the problem of finding their
position is linked to the problem of detecting transient regions in the signal. Another way to phrase this is
to say that onset detection is the process of identifying which parts of a signal are relatively unpredictable.
The majority of the onset detection algorithms described in the literature involve an initial data reduction
step, transforming the audio signal into an onset detection function (ODF), which is a representation of
the audio signal at a much lower sampling rate. The ODF usually consists of one value for every frame
of audio and should give a good indication as to the measure of the unpredictability of that frame. Higher
values correspond to greater unpredictability. The onset detection function used in our model is the peak
amplitude difference method, one of the best-performing methods discussed in [15]. It is based on the
premise that during the steady state of a musical note, a quasi-harmonic signal can be well modelled
as a sum of sinusoidal partials with slowly evolving amplitudes, frequencies and phases. Therefore,
the absolute values of the frame-to-frame differences in the sinusoidal peak amplitudes and frequencies
should be quite low. In comparison, transient regions at note onset locations should show considerably
more frame-by-frame variation in both peak frequency and amplitude values, so an ODF can be created
by measuring these frame-by-frame amplitude and frequency variations. As this effectively measures
errors in the partial tracking stage of sinusoidal modelling [17], it can also be used to measure the
stability of the detected sinusoidal partials in the audio signal. Peaks in the ODF should therefore occur
at regions where the spectral components in the signal are most unstable or are changing unpredictably.
It should be noted that this does not only apply to our ODF, but indeed any ODF that measures the
variability of spectral components in the audio signal.

We define the attack transient as being the region from the onset until the next local minimum in
the ODF. Additionally, we also signal the end of the attack segment if the RMS amplitude envelope
reaches a local maxima. This technique is similar to the transient detection method proposed in [9],
where the authors detect transient regions based on peaks in the energy of the noise signal resulting
from the identification and removal of the deterministic signal component. However, as we do not do a
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separation of the deterministic component from the stochastic, our method should require considerably
less computation. In addition, we do not low-pass filter the resulting ODF, as doing so widens the ODF
peak (and in turn, the detected transient region), without presenting an obvious way to compensate for
this deviation. An example of the ODF and corresponding transient region can be seen in Figure 2.

FIGURE 3. Boundaries detected by our proposed real-time segmentation method. The boundaries (from left to
right) are the onset, start of sustain (end of attack), start of release (end of sustain) and offset.

4. RESULTS

To evaluate the performance of our proposed segmentation model, we compared the locations of the
detected boundaries with those found by our implementation of the method given by Caetano et al.
[7]. We took a selection of 36 samples of isolated musical sounds from the Modal database [15],
which is a freely available database of samples with creative commons licensing allowing for free
reuse and redistribution. More information about the Modal database can be found at http://www.
johnglover.net. The samples are quite diverse in nature, covering percussive and non-percussive
sounds from a mixture of western orchestral instruments, contemporary western instruments and vocal
samples. Initially created to evaluate the performance of real-time onset detection algorithms, Modal
includes hand-annotated onset locations for each sample. For this work, three additional annotations were
added for each sample: start of sustain, start of release and note offset. The annotations were all made
by one person, which will inevitably lead to some degree of inaccuracy and inconsistency as is shown in
[16], however they should still give some indication as to the performance of the automatic segmentation
methods. In addition to the hand-annotated boundaries, we also developed an automatic technique for
identifying regions in the audio signal with the highest level of sinusoidal partial instability. This was
done by first performing sinusoidal analysis on each sample using the Spectral Modelling Synthesis
method [17], then calculating a detection function from the sum of the frame by frame variations in log
frequency (scaled by log amplitude) for each partial. Areas with unstable partials were then defined as
the area around peaks in this detection function. The automatically detected segmentation boundaries
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were compared to each of the hand-annotated boundaries plus the additional partial instability region
measurement.

Table 1 gives the average difference in milliseconds between the automatically detected boundary
and reference boundary for our method and the Caetano et al. method. The onset detection results are
identical, as we used the same onset detection algorithm for both methods (the peak amplitude difference
technique). The Caetano et al. method sustain boundary is slightly closer to the hand-annotated sustain
locations on average (by 2.2 ms), but our sustain section is considerably closer to the end of the region
with the highest level of partial instability. Our method also fares better in detecting start of release
and note offset locations in comparison with the Caetano et al. method. A large part of the error in the
Caetano et al. offset detection can be attributed to the fact that they define this boundary based on the
energy the signal has at the onset location, and as our onset detector is a real-time method there is a slight
latency before it responds, by which stage the signal energy has already started to increase.

TABLE 1. Average deviation from boundaries in reference samples for our proposed method and for the
Caetano et al. method.

Boundary Proposed Method Avg. Dev. (ms) Caetano et al. Method Avg. Dev. (ms)

Onset 16.6 16.6
Start of sustain 67.1 64.9
End of unstable partials 40.5 80.0
Start of release 541.6 900.7
Offset 329.5 1597.7

TABLE 2. Model accuracy for our proposed method and for the Caetano et al. method.

Boundary Proposed Method Accuracy (%) Caetano et al. Method Accuracy (%)

Onset 97.2 97.2
Start of sustain 83.3 77.8
End of unstable partials 91.7 69.4
Start of release 30.6 38.9
Offset 58.3 25.0

When evaluating onset detection algorithms, an onset is commonly regarded as being correctly de-
tected if it falls within 50 ms of the reference onset location in order to allow for human error when
creating the set of reference values [10, 16]. As the note segmentation boundaries are often a lot more
difficult to annotate accurately (the start of the sustain section in particular is not easy to define), we
have allowed a more lenient detection window of 100 ms. Table 2 gives the percentage of automatically
detected boundaries that fall within 100 ms of the reference values for both segmentation methods. Here,
our proposed method is slightly more accurate in detecting the sustain boundary, but our sustain section
is again considerably closer to the end of the unstable partial region. The Caetano et al. method is more
accurate in detecting the release, with our method performing better at note offset detection.

The results show that both methods perform reasonably well at detecting the start of the sustain
region, although our start of the sustain region is significantly closer to the end of the region with high
partial instability. Neither method performs particularly well in detecting the release and offset with high
accuracy, although on average our proposed model behaves more robustly. Our model is also suitable for
real-time use unlike the Caetano et al. method.
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5. CONCLUSIONS

This paper proposed a new model for the real-time segmentation of the temporal evolution of musical
sounds, using cues from the amplitude envelope, spectral centroid and an onset detection function that
is based on measuring errors in sinusoidal partial tracking. We evaluated our method by comparing it
with the technique proposed by Caetano et al. and found that in the average case it generally performs
better and is more robust. Our method can run in real-time and with considerably lower computation
requirements as it does not calculate the computationally costly true amplitude envelope. Neither method
was particularly accurate in detecting the release and offset boundaries, so future work could include
some research in this area. We will also work on integrating the segmentation system with a real-time
performance tool based on sinusoidal synthesis by analysis. The code for our segmentation method, our
reference samples and all of the code needed to reproduce our results can be found online at
http://www.johnglover.net.
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ABSTRACT
Spectral models provide ways to manipulate musi-
cal audio signals that can be both powerful and in-
tuitive, but high-level control is often required in or-
der to provide flexible real-time control over the po-
tentially large parameter set. This paper introduces
Metamorph, a new open source library for high-level
sound transformation. We describe the real-time si-
nusoids plus noise plus transients model that is used
by Metamorph and explain the opportunities that it
provides for sound manipulation.

1. INTRODUCTION

When creating software musical instruments or au-
dio effects, we generally want to have the flexibil-
ity to create and manipulate a wide variety of mu-
sical sounds while providing an intuitive means of
controlling the resulting timbres. Ideally we would
like to control these instruments and effects in real-
time, as this provides valuable feedback for com-
posers and sound designers as well as enabling the
possibility of live performance. As it has been shown
that the perception of timbre is largely dependent on
the temporal evolution of the sound spectrum [1], it
seems natural to use a sound model that is based on
the frequency spectrum as a tool to manipulate tim-
bre. Spectral models, which represent audio signals
as a sum of sine waves with different frequencies and
amplitudes, are therefore an excellent choice of tool
for performing musical sound transformations. This
frequency domain representation of sound is some-
what similar to the analysis performed by the hu-
man hearing system, which enables spectral models
to provide ways of transforming audio signals that
can be perceptually and musically intuitive. How-
ever, they generally suffer from the problem of hav-
ing too many control parameters to allow for mean-

ingful real-time interaction. One solution to this prob-
lem is to provide high-level controls that may change
many of the spectral model parameters at once but
still allow for precise manipulation of the synthe-
sised sound.

This paper introduces Metamorph, a new open
source software library for the high-level transfor-
mation of sound using a real-time sinusoids plus noise
plus transients model. Sinusoidal models in general
are described in Section 2, with our sinusoids plus
noise plus transients model described in Section 2.2.
The high-level transformations that are available in
Metamorph are then described in Section 3, with
conclusions in Section 4.

2. SINUSOIDAL MODELS

Sinusoidal modelling is based on Fourier’s theorem,
which states that any periodic waveform can be mod-
elled as the sum of sinusoids at various amplitudes
and harmonic frequencies. For stationary pseudo-
periodic sounds, these amplitudes and frequencies
evolve slowly with time. They can be used as param-
eters to control pseudo-sinusoidal oscillators, com-
monly referred to as partials. To obtain the sinu-
soidal parameters, the Short-Time Fourier Transform
(STFT) is often used to analyse an audio stream or
a recorded sound file. This results in a list of bin
number, amplitude and phase parameters for each
frame of analyzed audio, which can then be used to
estimate the spectral peak frequency and amplitude
values [2]. Although this approach works well for
certain musical sounds, problems can arise due to
the fact that the entire audio signal is represented us-
ing sinusoids, even if it includes noise-like elements
(such as the key noise of a piano or the breath noise
in a flute note). If any transformation is applied to
the model parameters, these noisy components are
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modified along with the harmonic content which of-
ten produces audible artifacts. A sinusoidal repre-
sentation of noise is also unintuitive and does not
provide an obvious way to manipulate the sound in a
meaningful manner. These issues lead to the devel-
opment of sinusoids plus noise models of sound.

2.1. Sinusoids Plus Noise Models

With Spectral Modelling Synthesis (SMS) [3] Serra
and Smith addressed the problems that can occur
when noisy sounds are modelled as a sum of sinu-
soids by splitting the audio signal into two compo-
nents: a deterministic (harmonic) component and a
stochastic (residual) component. Equation 1 shows
how the output signal s is constructed from the sum
of these two components, whereAp(t) and θp(t) are
the instantaneous amplitude and phase of the p-th
component, and e(t) is the stochastic component at
time t.

s(t) =

Np∑

p=1

Ap(t)cos(θp(t)) + e(t) (1)

As it is assumed that the sinusoidal partials will change
slowly over time, the instantaneous phase is taken to
be the integral of the instantaneous frequency. This
is given by Equation 2, where ω(t) is the frequency
in radians per second and p is the partial number.

θp(t) =

∫ t

0

ωp(t)dt+ θp(0) (2)

The sinusoidal parameters are found by computing
the STFT, locating sinusoidal peaks in the magni-
tude spectrum then matching peaks across consecu-
tive frames to form partials. The harmonic compo-
nent is then generated from the partials using addi-
tive synthesis and subtracted from the original sig-
nal leaving a noise-like residual signal. This resid-
ual component can then optionally be modelled as
filtered white noise. The two signal components can
now be manipulated independently and then recom-
bined to create the final synthesised sound.

Other sinusoids plus noise models have been pro-
posed since the release of SMS, such as the model
introduced by Fitz and Haken in [4]. It also uses
the harmonic partials versus noise distinction, but in-
stead uses bandwidth-enhanced oscillators to create
a homogeneous additive sound model. The combi-
nation of harmonic and stochastic signals is partic-
ularly effective when working with sustained notes
that have a relatively constant noise component, but
in order to successfully manage shorter noise-like
signal regions, sinusoidal models have been further
extended to include ways to model transients.

2.2. Sinusoids Plus Noise Plus Transients Models

It has been widely recognised that the initial attack
of a note plays a vital role in our perception of tim-
bre [5]. These transient signal regions are very short
in duration and can often contain rapid fluctuations
in spectral content. Although it is possible to model
this sort of signal with sinusoids, doing so can re-
sult in the same problems that are encountered when
trying to model any noisy signal with sinusoids; it is
inherently inefficient and does not offer possibilities
for meaningful transformations. Transients are also
not well modelled as filtered white noise (as is the
case with the SMS stochastic component), as they
tend to lose the sharpness in their attack and sound
dull [6].

Several systems have been proposed that inte-
grate transients with a sinusoids plus noise model.
The method described by Masri in [7] aims to repro-
duce the sharpness of the original transient during
synthesis. First a pre-analysis scan of the audio sig-
nal is performed in order to detect transient regions,
which are defined as being the areas between a note
onset and the point at which the onset detection func-
tion (based on an amplitude envelope follower) falls
below a fixed threshold or reaches a maximum dura-
tion, whichever is shorter. This information is then
used during sinusoidal analysis to make sure that the
edges of the analysis windows are snapped to the re-
gion boundaries. During synthesis, the missing over-
lap at the region boundaries is reconstructed by ex-
trapolating the waveforms from the centres of both
regions slightly then performing a short cross-fade.
However, this method can not run in real-time due to
the need for a pre-analysis scan of the audio signal.

Levine [8] introduced a sinusoids plus noise model
that includes transform-coded transients. Note on-
sets are located using a combination of an amplitude
rising edge detector and by analysing the energy in
the stochastic component. Transient regions are then
taken to be fixed-duration (66 ms) sections immedi-
ately following a note onset. The transients are trans-
lated in time during time scaling and pitch transposi-
tion, however as the primary application of this work
was for use in data compression there is no ability to
musically manipulate the transients.

Verma and Meng proposed a system that extends
SMS with a model for transients in [6]. They show
that transient signals in the time domain can be mapped
onto sinusoidal signals in a frequency domain using
the discrete cosine transform (DCT). However, it is
not suitable for real-time applications as it requires a
DCT frame size that makes the transients appear as
a small entity, with a frame duration of about 1 sec-
ond recommended. This is far too much a latency to
allow it to be used in a performance context.

Metamorph uses a flexible real-time sinusoids
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Figure 1: The sinusoids plus noise plus transients
model that is used in Metamorph.

plus noise plus transients model which is summarised
in Figure 1. Deterministic and stochastic compo-
nents are identified using Simpl [9], which provides
a choice of several different sinusoidal modelling im-
plementations. Onsets are located using the peak
amplitude difference method, one of the best-performing
methods discussed in [10]. As this effectively mea-
sures errors in the partial tracking stage of the sinu-
soidal modelling process, it can also be used to pro-
vide an indication of the stability of the detected si-
nusoidal partials in the audio signal. Peaks in the on-
set detection function should occur at regions where
the spectral components in the signal are most un-
stable or are changing unpredictably. We use this
information to locate transient regions, which are de-
fined as the region from the onset until the next lo-
cal minima in the onset detection function. We also
mark the end of the transient region if the root mean
square amplitude envelope reaches a local maxima
or if the transient reaches a maximum duration of
200 ms (whichever is shorter). An example con-
sisting of an audio signal (a saxophone sample), our
onset detection function and the corresponding tran-
sient region is shown in Figure 2. More information
on this process is given in [11]. When no transfor-
mations are applied to the signal, transients in Meta-
morph are simply blocks of unmodified raw sample

Figure 2: Saxophone sample (grey), onset detection
function (solid black line) and detected transient re-
gion (between vertical black dashed lines).

values, with no sinusoidal analysis or synthesis per-
formed during transient regions. During synthesis,
we extend the output of the transient region slightly
(currently for a single 512 sample frame) in order to
perform a short cross-fade between the unmodified
sample values in the transient region and the syn-
thesised signal in the note region that follows. The
sample values in transient regions may be altered if a
transformation is applied however, as we discuss in
Section 3.

3. METAMORPH: HIGH-LEVEL SOUND
TRANSFORMATIONS

Metamorph is a new open source library for per-
forming high-level sound transformations based on a
sinusoids plus noise plus transients model. It is writ-
ten in C++, can be built as both a Python extension
module and a Csound opcode, and currently runs on
Mac OS X and Linux. It is designed to work primar-
ily on monophonic, quasi-harmonic sound sources
and can be used in a non-real-time context to pro-
cess pre-recorded sound files or can operate in a real-
time (streaming) mode. Here we define a real-time
analysis/synthesis system to be one that can operate
with low enough latency and computational require-
ments so that it is usable in a live musical perfor-
mance context. While there is no absolute rule that
specifies how much latency is acceptable in a live
performance context, Metamorph’s default latency
of 512 samples (or about 11.6 ms) should meet these
requirements in many cases. The computational re-
quirements for Metamorph vary depending on the
supplied sinusoidal modelling parameters, the type
of transformation being applied and on the nature of
the sound source itself. However as an example, the
noisiness and transience transformation (described
in Section 3.2) streaming Csound opcode with de-
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fault parameters requires approximately 20% of one
CPU core on a 2.4 GHz Mac Intel Core 2 Duo pro-
cessor.

Metamorph is available under the terms of the
GNU General Public License (GPL). For more in-
formation and to get the software, go to http://
www.johnglover.net. In this section, we de-
scribe the sound transformations that are currently
available in Metamorph.

3.1. Harmonic Distortion

As described in [12], the harmonic distortion of a
sound is a measure of the degree of the deviation of
the measured partials from ideal harmonic partials.
The Metamorph harmonic distortion transformation
allows the user to alter the deviation of each syn-
thesised partial in a sound from the ideal harmonic
spectrum according to Equation 3, where i is the par-
tial number, f is the analysed partial frequency, F0

is the estimated fundamental frequency, α is the in-
put parameter (between 0 and 1) and F is the output
frequency of the synthesised partial.

Fi = (α× fi) + ((1− α)× (F0 × i)) (3)

3.2. Noisiness and Transience

The noisiness [12] of a synthesised frame is calcu-
lated by taking the ratio of the amplitude of the resid-
ual component to the total signal amplitude. Meta-
morph allows the user to easily adjust this balance
by altering the amplitudes of the deterministic and
stochastic components independently. It also enables
the independent manipulation of the amplitude of
transient regions. We call this effect changing the
signal transience.

3.3. Spectral Envelope Manipulation

A spectral envelope is a curve in the spectrum of an
audio signal that approximates the distribution of the
signal’s energy over frequency. Ideally this curve
should pass through all of the prominent peaks of the
frame and be relatively smooth, preserving the ba-
sic formant structure of the frame without oscillating
too much or containing discontinuities. Spectral en-
velopes in Metamorph are calculated using the dis-
crete cepstrum envelope (DCE) method [13] which
provides a smooth interpolation between the detected
sinusoidal peaks. However, further comparison with
the true envelope method [14] is desirable in future,
as it seems to produce spectral envelopes that are as
good (if not better) than the DCE and it can now
be computed efficiently [15]. This was not an im-
mediate priority as the main problem that the au-
thors in [15] had with the DCE was that it required

a potentially computationally expensive fundamen-
tal frequency analysis or other means of identify-
ing spectral peaks, but this is already a requirement
for other parts of the sinusoidal modelling process
so there is no extra cost associated with this step in
Metamorph.
The spectral envelope transformation in Metamorph
allows the user to alter the amplitudes of the syn-
thesised sinusoidal partials to match the correspond-
ing amplitude values in a different spectral envelope.
This can be a fixed envelope, or the user can specify
a different sound source to use as the target envelope.
The user may also alter the synthesised partial am-
plitudes based on a linear interpolation between the
original spectral envelope and the target envelope.
Although similar techniques can be performed using
the Phase Vocoder [15], spectral envelope manipu-
lation using sinusoidal models enables the preserva-
tion (or independent manipulation) of the stochastic
signal component, offering greater possibilities for
sound transformation. In Metamorph this is taken a
step further, enabling the alteration of a spectral en-
velope while preserving the initial note attack.

3.4. Transposition

Sounds can be transposed in Metamorph in two dif-
ferent ways. Both techniques involve initially mul-
tiplying the frequency values of all synthesised par-
tials by the same factor. The second process addi-
tionally adjusts all of the partial amplitude values
so that they match those of the original spectral en-
velope. The latter approach preserves the original
formant structure, which results in a more natural
sounding transposition for certain types of sounds.
The transient region is left unmodified for both types
of transposition.

3.5. Time Scaling

Time scaling is the only Metamorph transformation
that is not available in real-time mode. The time
scaling algorithm works by keeping the analysis and
synthesis frame rates identical, but instead of passing
each analysis frame directly to the synthesis module,
frames may be repeated (or skipped) depending on
the required time scale factor. This approach does
not result in any synthesis artifacts or discontinuities
as the synthesis module interpolates smoothly be-
tween input frames, and has been shown to produce
high-quality time scaling [16]. Frames from tran-
sient regions are treated differently however; they
are always passed to the synthesis module in the orig-
inal order, with the sample values passed unmodi-
fied to the output so that the transient is maintained.
This means that the time scale factor has to be ad-
justed slightly during non-transient regions in order
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to make sure that the final output signal is of the re-
quired length.

3.6. Transient Processing

Most transformations in Metamorph aim to preserve
the original transient region, but it is also possible
to explicitly alter the output transient. The most ba-
sic effect is to either filter the transient using either
low- or high-pass filters, which although relatively
simple can have quite a large impact on the result-
ing sound. The transient can also be removed alto-
gether. Another interesting effect is transient substi-
tution, where the transient regions in the audio signal
can be replaced by a different set of audio samples
(which may or may not themselves be transients).
This allows for the creation of various hybrid instru-
ments, for example combining the attack of a drum
sound with a sustained woodwind instrument tone.

4. CONCLUSIONS

This paper introduced Metamorph, a software library
which provides a new environment for performing
high-level sound manipulation. It is based on a real-
time sinusoids plus noise plus transients model, which
enables it to perform a collection of flexible and pow-
erful sound transformations. Metamorph is free soft-
ware, can be used as a C++ library, Python exten-
sion module or set of Csound opcodes and is avail-
able under the terms of the GNU General Public Li-
cense. To download it or for more information go to
http://www.johnglover.net.
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