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Abstract. We investigate 2-colour QCD with 2 flavours of Wilson fermion at nonzero temperature T and
quark chemical potential µ, with a pion mass of 700 MeV (mπ/mρ = 0.8). From temperature scans at fixed
µ we find that the critical temperature for the superfluid to normal transition depends only very weakly on
µ above the onset chemical potential, while the deconfinement crossover temperature is clearly decreasing
with µ. We find indications of a region of superfluid but deconfined matter at high µ and intermediate
T . The static quark potential determined from the Wilson loop is found to exhibit a ‘string tension’ that
increases at large µ in the ‘deconfined’ region. The electric (longitudinal) gluon propagator in Landau gauge
becomes strongly screened with increasing temperature and chemical potential. The magnetic (transverse)
gluon shows little sensitivity to temperature, and exhibits a mild enhancement at intermediate µ before
becoming suppressed at large µ.

PACS. 11.15Ha Lattice gauge theory – 12.38Aw Lattice QCD calculations – 21.65Qr Quark matter –
12.38Mh Quark-gluon plasma

1 Introduction

The properties and phase diagram of quantum chromo-
dynamics (QCD) at large baryon density remain largely
unknown, despite substantial theoretical efforts. One im-
portant reason for this is the failure of traditional Monte
Carlo methods for lattice QCD at nonzero density, due to
the infamous sign problem. While progress has been made
in the region of high temperature T and moderate baryon
chemical potential µB , the region of low T and large µB

remains inaccessible to Monte Carlo simulations. 1

There are, however, QCD-like theories which are not
affected by the sign problem, at least for an even number of
flavours Nf , among them QCD with gauge groups SU(2)
(QC2D) [5,6,7], or G2 [8], with nonzero isospin density
[9] or with adjoint fermions [10,11]. These theories allow
first-principles lattice simulations and may hence be used
as benchmarks for other methods that are not encum-
bered by the sign problem, but which may involve uncon-
trolled approximations. Such methods may include model
studies such as NJL and quark–meson models (possibly
augmented by a Polyakov loop potential); effective theo-
ries valid for example for heavy quarks or at high density;
or functional methods such as the functional renormali-
sation group (FRG), Dyson–Schwinger equations (DSEs)

1 Some progress has recently been made using complex
Langevin [1,2] and other methods [3,4], but neither have as
yet been shown to work for QCD.

or n-particle irreducible (nPI) methods, which rely on as-
sumptions about higher-order vertices.

Among these QCD-like theories, QC2D is the sim-
plest, both mathematically and computationally; however,
it shares important properties with full QCD, in particu-
lar a hadronic phase and deconfinement. Therefore, it has
been adressed in various approaches like analytic continu-
ation methods at high temperature and low density [12,13,
14], chiral effective theories [15,16,17,18,19,20,21,22,23,
24,25,26,27,28], (Polyakov–)Nambu–Jona-Lasinio or (Polyakov–
)Quark-Meson(-Diquark)models [29,30,31,32,33,34,35,36,
37,38,39], Dyson–Schwinger equations [40] and lattice gauge
theory [41,42,43,44,45,46,47,5,6,48]. From these studies
a conjectured phase diagram in the (µ, T ) plane has emerged.
At small values for chemical potential and temperature,
quarks are confined but their chiral symmetry is broken
which leads to a non-vanishing chiral condensate as in full
QCD, hence a hadronic phase. However, the Pauli–Gürsey
symmetry of QC2D leads to a characteristic difference. In
the chiral limit for two flavours, the spontaneous sym-
metry breaking by the chiral condensate necessitates 5
(massless) Nambu–Goldstone bosons, three of which are
the pions, while the remaining two are the diquark and
antidiquark. This pattern is realised approximately also
for small quark masses. The (anti-)diquarks play the role
of the baryons, hence having Bose–Einstein statistics in
QC2D. For vanishing temperature but increasing chemi-
cal potential the Silver Blaze property [49] dictates that

http://arxiv.org/abs/1303.3223v2
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observables must not change up to the threshold of the
quark chemical potential µ = mbaryon/Nc, hence half of
the pion mass for two colour matter. Above this thresh-
old, the different statistics of the baryons lead to a qual-
itatively different phase structure compared to full QCD:
For µ > mπ/2 the baryons condense and form a BEC
of diquarks 〈qq〉 6= 0, which possibly turns into a BCS
condensate at high densities, in contrast to the colour-
superconductor picture in full QCD. For increasing tem-
peratures also QC2D is expected to exhibit a crossover
transition to a deconfined phase, like full QCD. This tran-
sition is signalled by the rise of the Polyakov-loop 〈L〉. The
structure of at least three distinct phases is characterised
by vanishing or nonvanishing diquark condensate 〈qq〉 and
Polyakov loop 〈L〉 and can be summarised by

– a vacuum or hadronic phase at low T and µ, charac-
terised by vanishing quark number density nq and with
〈qq〉 = 0, 〈L〉 ≈ 0;

– a superfluid, confined (quarkyonic) region at low T and
intermediate to large µ, with 〈L〉 ≈ 0, 〈qq〉 6= 0;

– a deconfined quark–gluon plasma at high T , with 〈L〉 6=
0, 〈qq〉 = 0; and possibly

– a deconfined, superfluid region at large µ and interme-
diate T , with 〈L〉 6= 0, 〈qq〉 6= 0.

A quarkyonic phase was first conjectured in [50] in the
context of large Nc and defined as confined and chirally
symmetric. It was later found [51] that chiral symmetry
may be broken in unconventional ways, and it seems more
appropriate instead to define quarkyonic as a state of mat-
ter where (weakly interacting) quarks form the bulk de-
grees of freedom, but which remains confined, ie all ex-
citations are hadronic. Quarkyonic matter in QC2D was
studied in [34], and in [6] evidence for a quarkyonic region
was presented from lattice simulations.

In the present paper we extend the analysis of [7],
where rough estimates for the phase boundaries between
these regions of QC2D were presented. We study the phase
transitions in more detail and attempt to pinpoint their
location. Since we are using Wilson fermions and quite
heavy quarks, we are not in a position to study chiral
symmetry directly. An exploratory attempt to adress this
issue was made in [7].

We will also attempt to cast further light on the confin-
ing properties of the theory at low temperature and the
nature of the putative deconfinement transition at high
density, by computing the static quark potential in the
low-temperature region.

In contrast to quantities which may not be directly
comparable between theories, the effects of the medium
on low order Green functions in QC2D may provide a re-
liable guideline to full QCD. Quark and gluon correlation
functions are of great interest, as the theory can be fully
expressed in terms of these. Propagators play a predomi-
nant role, in particular in continuum descriptions, and in
some cases their behaviour suffices to shed light on the
critical physics of the phase diagram, e.g. the deconfine-
ment transition [52,53,54,55]. In this paper, we will study
how the gluon propagator responds to both temperature
and quark chemical potential.

In Sec. 2 we set out the details of our lattice simula-
tions, including the action, parameters and lattice volumes
used. Then, in Sec. 3 we study the superfluid to normal
and deconfinement transition by performing a tempera-
ture scan at 3 different values of the chemical potential.
The response of the static quark potential to µ is investi-
gated in Sec. 4, while in Sec. 5 results for the gluon propa-
gator are reported. Appendix A contains some further de-
tails about the diquark source extrapolation of the super-
fluid condensate. Preliminary results for the gluon prop-
agator have been reported in [56,57], and for the static
quark potential in [58].

2 Simulation details

We use a standard Wilson gauge action with two flavours
of unimproved Wilson fermion, with the addition of a di-
quark source term to lift the low-lying eigenmodes and
allow a controlled study of diquark condensation effects.
Further details about the action and the simulation method
can be found in [5,6,7]. The results obtained will depend
on the diquark source j; in the end the j → 0 limit must
be taken to obtain ‘physical’ results.2

We use the same parameters as in [6,7], namely β =
1.9, κ = 0.168, corresponding to a lattice spacing a =
0.178(6)fm and a pion mass amπ = 0.645(8), or mπ =
717(25)MeV. The lightest baryon, the scalar diquark, is
degenerate with the pion in the vacuum, and at zero tem-
perature we therefore expect an onset transition to a su-
perfluid phase at m = mπ/2. This has been corroborated
in previous simulations [5,6,7].

In addition to the ensembles used and described in [7],
we have generated gauge configurations on 163 ×Nτ lat-
tices with Nτ =4–20, in order to study in detail the ther-
mal transitions at aµ = 0.35, 0.4, 0.5 and 0.6. The details
of these ensembles are given in table 1. For most tem-
peratures, two diquark sources ja = 0.02 and 0.04 have
been used, enabling us to perform a linear extrapolation
to the j = 0 limit. In the region of the superfluid to normal
transition, where a linear extrapolation is known to be in-
valid, two additional j-values have been added to allow
for a controlled extrapolation.

3 Phase transitions

3.1 Superfluid to normal transition

Figure 1 shows the order parameter for superfluidity, the
(unrenormalised) diquark condensate

〈qq〉 = 〈ψ2trCγ5τ2ψ
1 − ψ̄1Cγ5τ2ψ̄

2tr〉 , (1)

2 In cases where model studies could be carried out with
j 6= 0 one might also compare directly results for nonzero j;
however, most other studies will not contain any explicit di-
quark source term, so the j → 0 limit is crucial.
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Nτ

µa ja 20 18 16 15 14 13 12 11 10 9 8 7 6 5 4
0.35 0.02 270 370 250 270 510 560 800 520 1100 300 250
0.35 0.04 250 270 4550 710 500 500 675 510 900 300 250
0.4 0.02 270 250 500 500 500 550 1000 250 250 300
0.4 0.03 250 280 300
0.4 0.04 1020 1080 1050 1000 1000 1050 1000 1000 1000 1000
0.4 0.05 250 240 216
0.5 0.02 280 512 250 255 275 1000 250 300
0.5 0.03 280 270 280 1000
0.5 0.04 3075 3020 2570 3835 3340 3200 3240 2620 1000 1000 1050 1200 1000 1200 1000
0.5 0.05 300 270 270
0.6 0.02 350 320 310 300 300 300 1000 300 300
0.6 0.03 290 280 280
0.6 0.04 4200 2300 2210 1840 1000 1128 1005 1000 1040 1200 1020 1000
0.6 0.05 255 300 300

Table 1. Number of trajectories for different temperatures, T = 1/(aNτ ), chemical potentials µ and diquark sources j. All
trajectories have average length 0.5, and the spatial lattice size is Ns = 16 in all cases.
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Fig. 1. Diquark condensate 〈qq〉 as a function of temperature
T for chemical potential µa = 0.35, 0.4, 0.5, 0.6 (top to bot-
tom). The circles are data extrapolated to j = 0 using a linear
Ansatz for ja ≤ 0.04; the shaded circles denote the results of
a linear extrapolation using j = 0.02, 0.03 only.

as a function of the temperature T , for µa = 0.35, 0.4, 0.5
and 0.6. Also shown are the results of a linear extrapola-
tion to j = 0. Note that renormalisation will only amount
to multiplying these data by a µ- and T -independent con-

stant, and will hence not change the µ- and T -dependence
of the results.

We can clearly observe a transition from a superfluid
phase, characterised by 〈qq〉 6= 0, at low temperature, to
a normal phase with 〈qq〉 = 0 at high temperature, with
a transition in the region 0.08 . Ta . 0.12 for all three
values of µ. In an attempt to more precisely locate the
transition, we have performed simulations with 4 differ-
ent j-values in the transition region, which may allow for
a controlled j → 0 extrapolation. However, none of the
functional forms we have used give satisfactory results.
Details of these extrapolations are given in Appendix A.

With our current data at only a single volume we are
not in a position to determine the order of the transition,
although it would be expected to be a second order phase
transition in the universality class of the 3-dimensional XY
model. This could be tested by attempting a universal fit
of the data at j 6= 0 in the transition region to a scaling
form given by the appropriate critical exponents: note that
at fixed µ, the diquark source j would be the magnetic field
variable in this scaling function. This would also provide
an alternative method for determining Ts.

Because of the uncertainties in the j → 0 extrapola-
tion in the critical region, we have estimated the critical
temperatures Ts for the superfluid to normal transition by
determining the inflection points for 〈qq〉 at ja = 0.02 and
0.04, and extrapolated the resulting values to j = 0 using
a linear Ansatz. The results are given in table 2. We see
that Ts is remarkably constant over the whole range of µ-
values considered. The indications are that the transition
happens at a somewhat lower temperature at µa = 0.35,
but this point is already very close to the onset from vac-
uum to superfluid at T = 0, µoa = mπa/2 = 0.32, sug-
gesting that Ts(µ) rises very rapidly from zero at µ = µo

before suddenly flattening off.
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aµ 0.35 0.40 0.50 0.60
aTs(0.04) 0.121(6) 0.108(2) 0.111(5) 0.102(6)
aTs(0.02) 0.097(16) 0.096(5) 0.097(2) 0.093(5)

aTs 0.073(24) 0.084(8) 0.083(5) 0.083(6)
Ts (MeV) 82(27) 94(9) 93(6) 93(7)

Table 2. Inflection points Ts(j) for 〈qq〉(T ) at ja = 0.04, 0.02
and critical temperature Ts obtained from extrapolating Ts(j)
to j = 0. The uncertainties are estimates of the systematic
uncertainty in determining the inflection points and in the j →
0 extrapolation.

3.2 Deconfinement transition

The Polyakov loop 〈L〉 serves as the traditional order pa-
rameter for deconfinement in gauge theories, with 〈L〉 6= 0
signalling the transition to a deconfined phase. Strictly
speaking, 〈L〉 is never zero in a theory with dynamical
fermions, but it typically increases with temperature from
a very small value in a fairly narrow region, which may be
identified with the deconfinement transition region.

We will here take the pragmatic view in which QC2D,
like QCD, is considered to be confining at low T and µ.
This is also reflected in the behaviour of the static quark
potential, which will be studied in the following section:
it rises linearly at intermediate distances, before string
breaking sets in.

Unlike the diquark condensate, the renormalisation of
the Polyakov loop does depend on temperature; specifi-
cally, the relation between the bare Polyakov loop L0 and
the renormalised Polyakov loop LR is given by

LR(T, µ) = ZNτ

L L0(
1

aNτ
, µ) . (2)

In order to investigate the sensitivity of our results to
the renormalisation scheme, we have used two different
conditions to determine the constant ZL,

Scheme A LR(T =
1

4a
, µ = 0) = 1 ,

Scheme B LR(T =
1

4a
, µ = 0) = 0.5 .

Scheme A is the scheme that was already used in [7]. Fig-
ure 2 shows 〈L〉 evaluated in both schemes, as a function
of temperature. The Scheme B data have been multiplied
by 2 to ease the comparison with the Scheme A data. Also
shown are cubic spline interpolations of the data and the
derivative of these interpolations, with solid lines corre-
sponding to Scheme A and dotted lines to Scheme B.

At all µ, we see a transition from a low-temperature
confined region to a high-temperature deconfined region.
In contrast to the diquark condensate, we see a clear, sys-
tematic shift in the transition region towards lower tem-
peratures as the chemical potential increases. For all four
µ-values, the Polyakov loop shows a nearly linear rise as
a function of temperature in a broad region, suggesting
that the transition is a smooth crossover rather than a
true phase transition. This is reinforced by the difference

µa Tda Td (MeV)
0.0 0.193(20) 217(23)
0.35 0.140–0.220 157–247
0.40 0.108–0.200 121–225
0.50 0.080–0.200 90–225
0.60 0.060–0.135 67–152

Table 3. Estimates for the deconfinement crossover tempera-
ture Td from the Polyakov loop at ja = 0.04. The µ = 0 result
is taken from [7].

between Scheme A and Scheme B, with the crossover oc-
curing at higher temperatures in Scheme B. At µ = 0,
the difference between the two schemes is small, but in-
creases with increasing µ, suggesting a broadening of the
crossover.

Because of the smaller value of ZL, our results for
Scheme B are considerably less noisy than those for Scheme
A. For this reason, we choose to define the crossover re-
gion to be centred on the inflection point from Scheme
B, with a width chosen such that it also encompasses the
onset of the linear region from Scheme A. Our summary
of transition temperatures taken from the ja = 0.04 data
is given in table 3. From Fig. 2 we see that at low T , the
value of 〈L〉 increases as j is reduced, and at µa = 0.6, the
crossover region will most likely move to smaller T in the
j → 0 limit. However, we do not have sufficient statistics
for ja = 0.02 at low T to make any quantitative statement
about this.

4 Static quark potential

The potential between two static quarks (or a quark–
antiquark pair), and in particular its asymptotic behaviour
at large separations, has traditionally been taken as the
tell-tale indicator, or even definition, of confinement of
quarks [59]. A linearly rising potential has been observed
in numerous lattice simulations, and has also formed the
basis of successful phenomenological descriptions of bound
states of heavy quarks. In QCD with dynamical quarks,
the string will break at a finite distance, but at interme-
diate distances a linear rise can still be observed.

At high temperature, the potential is expected to ex-
hibit Debye screening, and this has been observed in nu-
merous calculations of the quark–antiquark free energy us-
ing Polyakov loop correlators. However, it is not yet clear
how this quantity relates to the (complex) potential that
appears in effective theories of heavy quarkonia at high
temperature [60,61,62,63]. Very recently, the static quark
potential has also been determined from Wilson loops at
high temperature [64]; this does not show any screening
for T . Tc.

There has also been some recent progress in determin-
ing the potential between heavy (finite mass) quarks at
zero [65] and non-zero [66] temperature. Some properties
of bound states of heavy quarks in QC2D at nonzero tem-
perature and density were reported in [67]; a potential
model description should reproduce these results. Here we



Tamer Boz et al.: Phase transitions in 2-colour matter 5

0

0.5

1

0 0.1 0.2
Ta

0

0.5

1

1.5<
L>

0 0.1 0.2

µa=0.35 µa=0.40

µa=0.50 µa=0.60
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(dashed) lines are the derivatives of cubic spline interpolations of the data points for Scheme A (B). The smaller, shaded symbols
are results for ja = 0.02. The black circles and thick lines in the bottom right panel are the µ = j = 0 results from [7].
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Fig. 3. The static quark potential computed from the Wilson
loop, for the 123 × 24 lattice and different values of µ, with
ja = 0.04.

compute the static quark potential from Wilson loops for
our lowest temperature, the 123 × 24 lattices.

In fig. 3 we show the static quark potential computed
from the Wilson loop at Nτ = 24, for µa = 0.3, 0.5, 0.7, 0.9
and 1.1. The data have been obtained from fits to the
asymptotic form of the Wilson loop,W (r, τ) = C exp(−V (r)τ),
assuming ground state dominance for τ ≥ 3. We find that
as we enter the superfluid region, the potential becomes
slightly flatter, but as µ is increased further no additional
screening is observed, and at µa = 0.9, which according
to our analysis of the Polyakov loop should be in the de-
confined region, the potential is consistent with the µ = 0
potential. This is in qualitative agreement with the pat-
tern that was already observed in [5].

To quantify the variation of the static quark potential
with µ, we have performed a fit to the Cornell potential,

V (r) = C(µ, j) + σ(µ, j)r +
α(µ, j)

r
, (3)

and a screened potential with an exponential term to allow
for screening effects and a decay of the linear part,

V (r) = C(µ, j) +
σ(µ, j)r

B(µ, j)
e−Br +

α(µ, j)

r
, (4)
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Fig. 4. The parameters σ (top), α (middle) and B (bottom) in
the screened Cornell potential (4), as a function of the chemical
potential µ, for the 123 × 24 lattice. Also shown are the results
for σ and α using the pure Cornell potential (3).

for each µ and j. The results for the “string tension” σ
and the Coulomb factor α are shown in fig. 4. For µa < 0.6
we do not see any systematic trend, but for larger µ we
find that σ increases with µ. We also see that there is
no significant dependence on the diquark source j. The
exponential term appears to be insensitive to µ, and is
clearly non-zero already at µ = 0, and should therefore not
be interpreted as a screening mass. For the same reason,
the values for σ and α from the two fits cannot be directly
compared.

In [68] it was observed that the static quark potential
extracted from Wilson loops in QCD at µ = 0 is more
weakly screened at intermediate temperature than the free
energy determined from Polyakov loop correlators. Our
results at large µ appear consistent with this. There are,
however, several possible complicating factors:

1. The transition may be to a medium characterised by
long-range interactions, rather than by colour screen-
ing. If that is the case, one would expect typical cor-
relation lengths to also grow with µ. Reconciling an

unscreened potential with a nonzero Polyakov loop re-
mains a challenge, though.

2. The quark–antiquark potential may be screened at large
distances, but this is not observed in the Wilson loop
because of poor overlap with the relevant states. This
corresponds to the standard scenario at low tempera-
ture, where explicit mesonic states must be introduced
to observe string breaking [69]. Clearly, our observa-
tion of a linearly rising potential (area law for the Wil-
son loop) does not prove that the medium is confining.
The increasing slope could however be indicative of a
large internal energy for static quark–antiquark pairs
at intermediate distances.
In [67] it was found that the binding energy of heavy
quarkonia in QC2D increases up to µa ≈ 0.7, and de-
creases again beyond that. This appears to run counter
to the conjecture above, in which the quarkoniummight
be expected to become more strongly bound.

3. A more pessimistic scenario is that the whole region
of µa > 0.6 could be dominated by lattice artefacts.
Unfortunately our previous data at β = 1.7 [5] are
probably outside the scaling region so a comparison
with those is likely to be not very revealing. Simula-
tions at smaller a, which are underway, should confirm
or rule out this scenario.

Computing the static quark potential using Polyakov
loop correlators rather than Wilson loops might yield fur-
ther insight into this issue. However, the Polyakov loop
correlator suffers from the same signal to noise problem
at low T (large Nτ ) as the Polyakov loop itself, and we
have not been able to obtain any signal for Nτ = 24 ex-
cept for µa & 0.9. Results for higher temperatures using
both the Wilson loop and Polyakov loop correlators will
be presented in a future publication.

5 Gluon propagator

In this section we extend previous studies [5,56,57] and
present results for in-medium gluon propagators, where we
study the dependence on both parameters, chemical po-
tential and temperature. In Landau gauge only the trans-
verse part of the vacuum propagator is non-zero. However,
the external parameters break manifest Lorentz invari-
ance, hence the gluon propagator D must be decomposed
into chromoelectric and chromomagnetic modes, DE and
DM , respectively,

Dµν = PM
µνDM + PE

µνDE , (5)

where the individual dependence on (discrete) temporal
and spatial momenta has been omitted. The projectors
on the longitudinal and transversal spatial subspaces, PE

µν

and PM
µν , are defined by

PM
µν (q0, q ) = (1− δ0µ) (1− δ0ν)

(

δµν −
qµqν
q 2

)

,

PE
µν(q0, q ) =

(

δµν −
qµqν
q2

)

− PM
µν (q0, q ) . (6)
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Fig. 6. The zeroth (top) and first (bottom) Matsubara mode of the magnetic (left) and electric (right) gluon propagator as a
function of chemical potential µ for selected values of the spatial momentum qs, for Nτ = 24, different spatial volumes.
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Fig. 5. The gluon dressing function in the vacuum from the
163 × 24 and 123 × 24 lattice. The inset shows the gluon prop-
agator for infrared momenta. A cylinder cut has been applied
to the data to reduce lattice spacing artefacts.

We have fixed our gauge configurations to the minimal
Landau gauge by maximising the gauge fixing functional

F [U, g] =
∑

x,mu

TrUg
µ(x) =

∑

x,µ

Tr g(x)Uµ(x)g
†(x+ µ̂) ,

(7)

using the standard overrelaxation algorithm. The Lan-
dau gauge condition has been imposed with a precision
|∂µAµ| < 10−10. We have not investigated the effect of
Gribov copies; this will be left to a future study.

First, in figure 5 we show the gluon propagator and
dressing function in the vacuum for our two volumes, 123×
24 and 163×24. Comparing the data for the two volumes,
we see that finite volume effects are modest for these lat-
tices. In order to reduce ultraviolet lattice artefacts, we
have applied a weak cylinder cut [70]. The propagator ex-
hibits the usual infrared suppression observed in other lat-
tice studies.

In figure 6 we show the two lowest Matsubara modes
for selected spatial momenta as a function of chemical
potential from the Nτ = 24 lattices for different spatial
volumes. We find at most a very mild volume depen-
dence, even for zero spatial momentum, with some indi-
cation that the magnetic propagator is slightly smaller on
the larger volume. Note that because the available (dis-
crete) momentum values depend on the spatial volume,
the selected momenta from the 123 and 163 lattices do not
match precisely, and the discrepancy between the propa-
gator values on the two lattices at nonzero spatial momen-
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Fig. 7. The zero Matsubara mode of the magnetic (top) and
electric (bottom) gluon propagator as a function of chemical
potential µ for selected values of the spatial momentum qs, for
the 163 × 8 lattice.

tum qs = |q| is likely to be at least as much due to the
slightly different values of qs as to finite volume effects.

With respect to the infrared suppressed vacuum prop-
agator shown in fig. 5 we find a mild enhancement at in-
termediate µ, i.e. in the superfluid, confined phase, but
a suppression in the deconfined phase, i.e. for large µ for
both tensor structures.

Figure 7 shows the lowest Matsubara mode for the
high-temperature, 163 × 8 lattice, again as a function of
chemical potential and for several different spatial mo-
menta. Here we find a considerably more complex picture.
The electric form factor becomes progressively more sup-
pressed with increasing µ for all momenta, while for the
magnetic form factor the lowest momentum modes show
an interesting behaviour, with a peak at µa ≈ 0.5. For
large spatial momenta this form factor is instead enhanced
at large µ.

We now turn to the thermal behaviour of the gluon
propagator at fixed chemical potential. Fig. 8 shows the
zeroth Matsubara modes of the propagators for µa = 0.5
and ja = 0.04 on a spatial 163 lattice as a function of tem-
perature, with higher modes shown in fig. 9. The magnetic
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Fig. 8. Thermal behaviour of the zeroth Matsubara mode of
the magnetic (top) and electric (bottom) propagators at µa =
0.5 and ja = 0.04 on 163 ×Nτ lattices.

component is slightly enhanced by the effect of chemical
potential with respect to the vacuum, but interestingly
it hardly feels thermal effects over a large range of low
to intermediate temperatures. The electric propagator is
suppressed for lower temperatures already. In pure gauge
theory [71,72,73,74,75,76,77] the zero mode of the elec-
tric gluon shows strong enhancement for temperatures be-
low the deconfinement transition, whereas the magnetic
gluon is screened also below that transition. However fig.
2 entails that the chosen value of µ drives the system
close to the phase transition already at Nτ = 20, and
hence electric gluon enhancement may not be observed
here. The interplay of temperature with chemical poten-
tial may also trigger the observed non-suppression for the
magnetic mode. Our results are however in qualitative
agreement with those obtained in a recent study of QCD
with twisted-mass fermions [78]. A more detailed analy-
sis of both medium effects and in particular their mutual
interaction will be presented elsewhere.

To further quantify the variation of the gluon prop-
agator with T and µ we employ a global fit Dfit

M/E(q
2)
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Fig. 9. Thermal behaviour of higher Matsubara modes of the
magnetic (top) and electric (bottom) gluon propagators.

to all modes, with q2 = q
2 + q20 . The functional form we

use is inspired by [72]. However, for the momenta at hand
the perturbative running of [72] can be neglected. In the
vacuum this gives us a three-parameter fit

Dfit
M/E(q

2) =
Λ2

(q2 + Λ2)2
(

q2 + Λ2aM/E

)−bM/E . (8)

At µ = 0 = j we find Λa = 0.999(3), aM = aE = 6.85(3)
and bM =bE=−1.031(2) on the 163× 24 lattice, with a χ2

per degree of freedom of around 8 for the magnetic mode
and 5 for the electric mode. There is a slight volume de-
pendence, with the 123× 24 lattice yielding Λ = 0.961(5).
The normalisation Λ is taken to be independent of T and
µ, but medium effects modify aM/E and bM/E for mag-
netic and electric modes individually. The results for the
fit parameters are shown in fig. 10 as functions of Nτ on
the 163 ×Nτ lattices at µa=0.5 and ja=0.04, and in fig.
11 as functions of µ and lattice volume. For the available
data we have found the dependence on j to be weak. At
Nτ = 5 we did not obtain any satisfactory fit for the mag-
netic form factor, so these points are absent from fig. 10.
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M
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E
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Fig. 10. Nτ dependence of fit parameters aM/E and bM/E for
163 ×Nτ lattices at µa = 0.5 and ja = 0.04.

To illustrate the quality of these fits, fig. 12 shows the
fits for µa = 0.5, ja = 0.04 on the 163 × 24 lattice. We see
that (8) gives a reasonable description for both modes,
but the underlying Ansatz that the gluon propagator is
a function of the four-momentum q2 only, works less well
for the magnetic form factor. The χ2/Ndf is around 10 for
most fits, with the electric form factor giving in general a
somewhat better χ2. We are also planning to employ fit
models inspired by hard dense loop perturbation theory,
which depend separately on qs and q0.

6 Conclusions

We have carried out a detailed investigation of several
aspects of 2-colour, 2-flavour QCD with mπ/mρ ≈ 0.8 at
nonzero temperature T and quark chemical potential µ.
Our main findings are summarised below.

1. We have located the superfluid to normal and decon-
finement transitions in the region 0.35 ≤ µa ≤ 0.6
(µ = 385− 665 MeV). The superfluid to normal tran-
sition temperature Ts is remarkably constant in this
region, while the deconfinement temperature Td shows
a decrease with µ which appears to continuously con-
nect to the µ = 0 transition identified in [7]. It also
appears to extrapolate smoothly to the high-µ, low-T
transition previously observed [5,6,7], although in the
absence on any accurate data for the Polyakov loop at
low temperature this must be taken merely as indica-
tive.

2. The superfluid to normal transition appears to be-
have like a second order phase transition, while the
deconfinement transition looks like a smooth crossover,
which becomes broader with increasing µ. This would
have to be backed up with a careful finite volume and
critical scaling analysis.
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3. The static quark potential at low temperature is at
most only very weakly screened at large µ, suggesting
that the dense medium with 〈L〉 6= 0 is not an ordinary,
deconfined quark–gluon plasma.

4. The electric (longitudinal) gluon propagator in Landau
gauge becomes strongly screened with increasing tem-
perature and chemical potential. The magnetic (trans-
verse) gluon shows little sensitivity to temperature,
and exhibits a mild enhancement at intermediate µ
before coming suppressed at large µ.

The structure of the phase diagram is summarised in
fig. 13. We also include the estimates for the deconfine-
ment transition given in [7]. We see that these are con-
sistent with our new estimates in this paper. The indica-
tions are that the deconfinement line crosses the super-
fluid to normal transition line, giving rise to a region of
deconfined, superfluid matter, but in the absence of pre-
cise data at larger µ, we can not say this with any degree of
certainty. To map out the phase boundaries with greater
precision and to clearly establish the order of the tran-
sitions, large-scale simulations on several spatial volumes
will be required. This goes beyond our current computa-
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Fig. 12. Multimodal fits of the form eq. (8) for the magnetic
(top) and electric (bottom) gluon propagators at aµ = 0.5 and
aj = 0.04 on the 163 × 24 lattice. Note that the functions are
plotted versus four-momentum q on the abscissa.

tional capabilities, but is an interesting topic for future
investigations.

We should also note that these simulations have been
carried out with a rather large quark mass, and it remains
to be seen to what extent these features persist as the
quark mass is reduced.

The lack of screening (and possibly even antiscreening)
observed in the static quark potential requires further in-
vestigation to establish whether this is a signal of an exotic
state of matter or a result of poor overlap with relevant
states and/or lattice artefacts. We are planning to com-
pute the static quark potential at higher temperatures,
using both the Wilson loop and Polyakov loop correlator,
to further elucidate this.

The screening of the static magnetic gluon propagator
(zero Matsubara mode) at high µ and low T is a clear
signal of the breakdown of resummed perturbation theory,
which predicts that this mode is unscreened to all orders.
This is likely to be relevant also for real QCD, and should
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be taken into account in any future study using model
gluon propagators to compute for example the superfluid
or superconducting gap.

In an ongoing study we will compare the lattice gluon
propagator at non-vanishing chemical potential and tem-
perature with results from functional continuum methods,
extending studies of thermal propagators [79,80,81] to fi-
nite density. As there are no insurmountable problems in
QC2D, in particular no sign problem, a direct analysis
serves to identify possible technical limitations in either
method, stemming from finite size and finite volume arte-
facts in the lattice formulation, or from inevitably neces-
sary truncations in the continuum description. We are also
in the process of computing the quark propagator, which
will give further input to these studies.

We are currently extending our study of QC2D to
smaller lattice spacings, which will enable us to perform a
controlled extrapolation to the continuum limit and clar-
ify the possible role of lattice artefacts at large µ.
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and the DiRAC Facility jointly funded by STFC, the Large Fa-
cilities Capital Fund of BIS and Swansea University. We thank
the DEISA Consortium (www.deisa.eu), funded through the
EU FP7 project RI-222919, for support within the DEISA Ex-
treme Computing Initiative. The simulation code was adapted
with the help of Edinburgh Parallel Computing Centre funded
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edge the use of the USQCD cluster at Fermilab for part of this
work. The work has been carried out with the support of Sci-
ence Foundation Ireland grant 11-RFP.1-PHY3193. DM is sup-
ported by U.S. Department of Energy grant under contract no.
DE-FG02-85ER40237. We thank Pietro Giudice, Simon Hands
and Jan Pawlowski for stimulating discussions and advice.

Fit µa Nτ A B α χ2/Ndf

(9) 0.4 9 0.0036(1) 0.695(3) 26
0.4 10 0.0056(1) 0.711(4) 102
0.4 11 0.0096(1) 0.646(4) 9.8
0.5 9 0.0037(2) 0.829(4) 51
0.5 10 0.0095(2) 0.790(6) 54
0.5 11 0.0155(2) 0.712(6) 45
0.6 9 0.0034(2) 0.966(4) 46
0.6 10 0.0095(2) 0.976(6) 48
0.6 11 0.0203(2) 0.849(6) 180

(10) 0.4 9 0.490(8) 0.852(5) 7.4
0.4 10 0.438(7) 0.793(5) 40
0.4 11 0.321(5) 0.683(5) 11
0.5 9 0.617(10) 0.875(5) 28
0.5 10 0.439(9) 0.734(6) 9.4
0.5 11 0.315(6) 0.612(6) 1.6
0.6 9 0.746(11) 0.893(5) 20
0.6 10 0.576(9) 0.767(5) 19
0.6 11 0.357(6) 0.584(5) 55

(11) 0.4 9 -0.003(1) 0.76(4) 0.40(3) 8.7
0.4 10 -0.019(4) 0.47(4) 0.24(1) 3.2
0.4 11 0.003(3) 0.85(6) 0.45(4) *
0.5 9 -0.008(2) 0.70(4) 0.42(3) 29
0.5 10 -0.012(4) 0.55(5) 0.31(3) *
0.5 11 -0.005(4) 0.54(5) 0.28(2) 0.88
0.6 9 -0.010(2) 0.69(3) 0.48(3) 0.05
0.6 10 -0.006(4) 0.68(6) 0.59(6) *
0.6 11 -0.055(12) 0.28(4) 0.269(4) *

Table 4. Parameters for the j → 0 extrapolation of 〈qq〉 in the
transition region, using a linear (9), power-law (10) and power
+ constant (11) Ansatz. All four values of j have been used.
Where there is a star in the column for χ2/Ndf , the central fit
value was outside the 68% confidence interval, and the quoted
value is instead taken to be in the middle of the 68% confidence
interval.

A Diquark source extrapolation

We have used 3 different functional forms to extrapolate
the diquark condensate to zero diquark source,

linear: 〈qq〉 = A+Bj , (9)

power law: 〈qq〉 = Bjα , (10)

constant + power: 〈qq〉 = A+Bjα . (11)

The results of these extrapolations are summarised in ta-
ble 4. We find that the linear form is clearly disfavoured;
however, the pure power law does not give a good fit ei-
ther in most cases, while the constant + power Ansatz is
unstable and tends to give a negative intercept at j = 0.
Clearly, more work is needed to obtain good control over
the j → 0 extrapolation.
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