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The interquark potential in charmonium states is calculated for the first time in both the zero and
non-zero temperature phases from a first-principles lattice QCD calculation. Simulations with two
dynamical quark flavours were used with temperatures T in the range 0.4Tc . T . 1.7Tc, where Tc

is the deconfining temperature. The correlators of point-split operators were analysed to gain spatial
information about the charmonium states. A method, introduced by the HAL QCD collaboration
and based on the Schrödinger equation, was applied to obtain the interquark potential. We find a
clear temperature dependence, with the central potential becoming flatter (more screened) as the
temperature increases.
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Introduction – The quark-gluon plasma (QGP) phase
of QCD has been studied extensively both in heavy-ion
collision experiments at RHIC [1, 2] and the LHC [3] as
well as in theoretical calculations. However, a complete
understanding of this phase is still some distance away.
Experiments are hindered by uncertainties in the phe-
nomenology of the QGP such as the equation of state,
transport properties, and spectral features of hadrons.
These quantities are required to model the QGP fireball
in heavy-ion collisions as it expands and cools back into
the hadronic phase in order that the events in the detec-
tors can be properly interpretted.
One of the quantities of interest is the interquark po-

tential in the QGP phase. A temperature dependent
charmonium potential underlies the widely cited J/ψ
suppression model of Ref. [4]. More recent work on
statistical models of charmonium production [5, 6] and
studies assuming transport models of charmonium pro-
duction [7, 8] lead to alternative interpretations. An anal-
ogous suppression has recently been found in bottomo-
nium yields in heavy-ion collisions [9, 10].
Theoretical work on the interquark potential at high

temperature includes early models [11] and perturbative
QCD calculations [12]. Furthermore, there have been
some recent non-perturbative (i.e. lattice) QCD studies
of interquark potentials which are relevant to the work
presented here. These fall into two categories: (i) non-
zero temperature studies of the static quark potential
[13–17] and (ii) zero temperature studies of the potential
between quarks with finite masses [18]. The work pre-
sented here is a study of the interquark potential of char-
monium using physical charm quark masses at finite tem-
perature and uses two flavours of light dynamical quark.
A particular feature of our work is that our lattices are
anisotropic which has the significant advantage that our
correlation functions are determined at a large number
of temporal points, hence aiding our analysis.
The method we use is based on the HAL QCD collabo-

ration’s calculation of the internucleon potential relevant
for nuclear physics and utilised the Schrödinger equation

[19]. In this work we use their “time-dependent” method
[20] to determine the real part of the interquark char-
monium potential. In our work we do not consider the
width of the state and therefore have access to the real
part of the potential only. The possible limitations of
the underlying assumption, that a nonrelativistic poten-
tial description is valid for these temperatures and quark
masses, is a separate issue which will not be discussed
here.
Our main conclusion is that the charmonium potential

as a function of distance is steepest for low temperatures
T , and becomes flatter at large distances as T increases.
This work extends our earlier work in [21].
Time-dependent Schrödinger Equation Approach – Fol-

lowing HAL QCD, we determine the potential using their
“time-dependent” method [20]. The first step is to define
charmonium point-split operators,

JΓ(x; r) = q(x) ΓU(x, x + r) q(x+ r), (1)

where r is the displacement[31] between the charm and
anti-charm quark fields q and q, x is the space-time point
(x, τ) and Γ is a Dirac matrix used to generate vector
(J/ψ) or pseudoscalar (ηc) channels. U(x, x+r) is the
gauge connection between x and x + r. The correlation
functions,

CΓ(r, τ) =
∑

x

〈JΓ(x, τ ; r) J
†
Γ(0;0)〉. (2)

of the point-split and local operators, can be expressed
in the usual spectral representation,

CΓ(r, τ) =
∑

j

ψ∗
j (0)ψj(r)

2Ej

(

e−Ejτ + e−Ej(Nτ−τ)
)

, (3)

where the sum is over the states j with the same quan-
tum numbers as the operator JΓ, and ψj(r) are the cor-
responding Nambu Bethe Salpeter (NBS) wavefunctions.
Nτ is the number of lattice points in the temporal direc-
tion and is related to the temperature by T = 1/(aτNτ ),
where aτ is the temporal lattice spacing.
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From now on we consider only radially symmetric (S-
wave) states. We differentiate Eq.(3) w.r.t. time and ap-
ply the Schrödinger equation which, in Euclidean space-
time is

[

−
1

2µ

∂2

∂r2
+ VΓ(r)

]

ψj(r) = Ejψ(r), (4)

where µ is the reduced mass of the cc̄ system, µ = 1
2mc ≃

1
4MJ/ψ. Ignoring the backward moving contribution, we
obtain

∂CΓ(r, τ)

∂τ
=
∑

j

(

1

2µ

∂2

∂r2
− VΓ(r)

)

ψ∗
j (0)ψj(r)

2Ej
e−Ejτ

=

(

1

2µ

∂2

∂r2
− VΓ(r)

)

CΓ(r, τ). (5)

This can be trivially solved for the potential VΓ(r).
Notice that the NBS wavefunction, ψ(r), is not ex-

plicitly required in the above derivation of V (r). How-
ever, we note that HAL QCD’s original “wavefunc-
tion” method extracts ψ(r) from a fit to the large
time behaviour of the correlation function, C(r, τ) →
ψ0(0)ψ0(r) e

−Ejτ , and then uses this ψ0(r) as input into
the Schrödinger equation to obtain the potential [18].
HAL QCD’s time-dependent method used here has the
distinct advantage that the correlation functions are used
directly, without requiring a fit to the asymptotic state.
The S-wave potential can be expressed as

VΓ(r) = VC(r) + s1 · s2 VS(r), (6)

where VC is the spin-independent (or “central”) poten-
tial, VS is the spin-dependent potential, and s1,2 are the
spins of the quarks. We have s1 · s2 = −3/4, 1/4 for the
pseudoscalar and vector channels respectively.
Lattice Parameters and Correlators – We performed

lattice calculations of QCD with two dynamical flavours
of light quark using a Wilson-type action with anisotropy
of ξ = as/aτ = 6, as ≃ 0.162fm and a−1

τ ≃ 7.35GeV
[22, 23]. The other lattice parameters are listed in Table
I. We note that the range of temperatures is from the
confined phase up to ∼ 1.7Tc where Tc is the deconfin-
ing transition. The charm quark is simulated with the
(anisotropic) clover action and its mass is set by match-
ing the experimental ηc mass at zero temperature.

Ns Nτ T (MeV) T/Tc Ncfg

12 80 90 0.42 250
12 32 230 1.05 1000
12 28 263 1.20 1000
12 24 306 1.40 500
12 20 368 1.68 1000

TABLE I: Lattice parameters used, including spatial and tem-
poral dimension, Ns and Nτ , temperature, and number of
configurations, Ncfg.
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FIG. 1: The results for the central potential VC(r) obtained
from Eq. (5) for (a) T = 0.42Tc and (b) 1.68Tc. The horizon-
tal axis is the Euclidean time, τ , appearing in Eq. (5)

.

Results – We now apply Eq. (5) to obtain the poten-
tial, VΓ(r), for the temperatures listed in Table I for the
vector and pseudoscalar channels separately. In Eq. (5),
standard symmetric lattice finite differences are used for
the spatial and temporal derivatives. Figure 1 shows the
central potential obtained for T/Tc = 0.42 and 1.68 as a
function of the time, τ , appearing in Eq. (5). For each τ
value in Fig.1, we have vertically shifted the data points
so that VC(r/as = 1) = 0.
As can be seen, there is a good plateau where the po-

tential VC(r) is stable. The lack of a plateau at small
times is presumably due to lattice artefacts caused by
contact terms at the source. The upward trend of data
points at large times and high temperature corresponds
to time values close to the centre of the lattice which are
contaiminated by backward moving states. We have con-
firmed this interpretation by successfully modelling the
effects of these backward moving states.
The central values for the potentials are obtained from

τ = 6, 7, 7, 7 and 24 for NT = 20, 24, 28, 32 and 80 re-
spectively. The resulting VC and VS are shown in Figs.
2 and 3. The left-hand error bars are statistical, and
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the systematic uncertainty of choosing different values
of τ to define the potentials are depicted in the right-
hand error bar. In Fig.2 we include the Cornell potential,
V (r) = −κ

r +
r
a2 +V0 with κ = 0.52 and a = 2.34 GeV−1

[24], as a point of reference.
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FIG. 2: Spin independent (i.e. central) potential, VC(r), for
the temperatures in Table I obtained from eq.(6). The data
points have been shifted horizontally for clarity. The solid
curve is a fit to the Cornell potential [24] (see text).
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FIG. 3: Spin dependent potential, VS(r), for the temperatures
in Table I obtained from eq.(6). The data points have been
shifted horizontally for clarity.

From Fig.2 we see a clear temperature dependence. In
the confined phase, T = 0.42Tc, we see evidence of a
linearly rising potential in agreement with the Cornell
potential. As the temperature increases beyond Tc, the
potential flattens for large distances, in agreement with
expectations of a deconfined phase. The spin dependent
potential is plotted in Fig.3 and shows a repulsive core.
We now compare our results with those using static

quarks. There are two general approaches to extract
the interquark potential between static (infinitely heavy)

quarks, both of which have limitations. The first calcu-
lates the free energy of a static quark pair as a function
of their separation via various correlators of Polyakov
loops [13–15]. However, the potentials thus derived suffer
from either gauge dependence (in the case of the “singlet”
channel), or do not reduce to the correct Debye screened
potential in the perturbative limit (in the case of the “av-
eraged” channel) [15, 25]. The second uses Wilson loops
or correlators of Wilson lines [15–17] and requires there
to be good ground state dominance. However, this cre-
ates tension because the temporal extent of the lattice,
Nτ ∼ 1/T is necessarily small at high temperature. As a
result, precision results are difficult to obtain.
The method discussed here is gauge invariant by con-

struction and produces results with reasonable system-
atics. Furthermore it calculates the potential between
quarks with masses tuned to the physical charm.
In Fig.4 we compare our results from Fig.2 with those

obtained from static quark calculations – the singlet free
energy [14] and the Wilson loop and line [17]. We note
a clear discrepancy between the our results and those
obtained from static quarks.
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FIG. 4: Comparison of VC from this work with the singlet
free energy calculation, F1, from [14] and the Wilson loop,
V�, and Wilson line correlator, V||, from [17]. The error bars
of the free energy data are smaller than the symbols. The
data from this work follows the legend in Fig. 2.

Conclusions – There is a significant body of theoret-
ical work studying the interquark potential at non-zero
temperature using model, perturbative and lattice (non-
perturbative) approaches. The work outlined here uses
a lattice simulation of QCD with two light dynamical
flavours on an anisotropic lattice. We determine the char-
monium potential at a variety of temperatures using rel-
ativistic quarks tuned to the physical charm quark mass.
This improves upon earlier lattice simulations performed
in the static limit. It thus represents the first ab initio
calculation of the charmonium potential of QCD at finite
temperature.
The method we use is based on the HAL QCD “time-
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dependent” approach which obtains the real part of the
potential from correlators of point-split operators [19].
This allows the extraction of the potential without the
need to first define the NBS wavefunctions by fitting the
large time behaviour of the correlation functions.
Our determination of the potential shows a linearly

rising potential for T < Tc and a clear temperature
dependent flattening of the potential for T > Tc. We
demonstrate a significant deviation between our results
and those obtained using static quarks via either the free
energy or Wilson loops/lines.
This work adds to previous charmonium studies per-

formed by our collaboration with the same lattice param-
eters [23, 26] and our earlier work on the potential using
the HAL QCD wavefunction method [21].
In forthcoming work we will simulate on significantly

larger lattices with 2+1 light quark flavours. We also
hope to extend our work to the potential between heavier

quarks using the NRQCD approach [27–29].
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