
Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

A STREAMING AUDIO MOSAICING VOCODER IMPLEMENTATION

Edward Costello, Victor Lazzarini, Joseph Timoney

The Sound and Digital Music Technology Group
National University of Ireland

Maynooth, Ireland
Edward.Costello@nuim.ie
Victor.Lazzarini@nuim.ie
Joseph.Timoney@nuim.ie

ABSTRACT

This paper introduces a new extension to the concept of Au-
dio Mosaicing, a process by which a set of unrelated sounds are
blended together to form a new audio stream of shared sonic char-
acteristics. The proposed approach is based on the algorithm that
underlies the well-known channel vocoder, that is, it splits the in-
put signals into frequency bands, which are then processed indi-
vidually, and then recombined to form the output. In a similar
manner, our mosaicing scheme first uses filterbanks to decompose
the set of input audio segments. Then, it introduces the use of Dy-
namic Time Warping to perform the matching process across the
filterbank outputs. Following this, the re-synthesis stage includes a
bank of Phase Vocoders, one for each frequency band to facilitate
targeted spectral and temporal musical effects prior to recombi-
nation. Using multiple filterbanks means that this algorithm lends
itself well to parallelisation and it is also shown how computational
efficiencies are achieved that permit a real-time implementation.

1. INTRODUCTION

From the works of James Tenney and John Oswald to popular
music’s embrace of sampling and remixing, the re-appropriation
of existing acoustic material into musical works is still a popu-
lar composition tool for electronic musicians [1]. More recently,
the concept of Audio Mosaicing was introduced. In essence this
means combining segments from different audio samples in such
a way as to create a new hybrid sonic texture. The rules governing
the assembly are particular to the individual mosaicing algorithm.
However, to ensure perceptual continuity some form of matching
between the segments needs to be made. Originally this was user-
driven, that is, the composer painstakingly worked through many
possibilities to find the best combination. This could be intensive
and very time consuming. Therefore, automation of this audio
mosaicing process has become an active area of research in recent
years and has incorporated a wide variety of audio analysis and
re-synthesis techniques.

Figure 1 gives a general overview of how an automated au-
dio mosaicing system works that is audio input driven. These
systems consist of an audio pre-processing component and a per-
formance component. At the pre-processing stage a database of
audio samples is analysed and one or more audio feature vectors
are derived from each of the samples. These feature vectors and
the corresponding samples are stored in the system’s memory, in
some cases using a database component. At the performance stage,
the system takes a streaming audio input signal and splits it into

Audio
Segmentation

Audio
Input

Feature Analysis Matching
Algorithm

Database of
Audio Segments +

Feature Data

Audio
Output

Audio Mosaic
Synthesis

Figure 1: Diagram showing the operation of an audio driven sound
mosaicing system.

smaller segments. Each segment is then analysed using one or
more analysis feature vectors. The feature vectors derived from
the streaming input are then compared to the corresponding fea-
ture vectors for each sample in the database. When a suitable
match from the database has been found according to the matching
algorithm, this audio is output from the system.

Most audio mosaicing systems either use some form of spec-
tral decomposition or a series of high level audio descriptors to de-
scribe the audio samples used for synthesis. The system described
in [2] performs real-time concatenation synthesis using a database
of audio units and pre-analysed descriptors. Segments are selected
for output based on their calculated geometric proximity to a tar-
get position within a descriptor space. The system proposed by
[3] incorporates models to predict the high-level descriptors of the
transformed audio segments rather than using the many instances
of the transformation itself. This produces computational savings.
Other methods such as [4] use an 11-band spectral loudness mea-
sure to match a pre-analysed corpus and re-synthesise the data us-
ing a phase vocoder.

Similar to some previous work, the system proposed in this
paper also uses spectral analysis to describe the audio. The au-
dio input and pre-analysed audio are compared using the dynamic
time warping algorithm. Matching is also done on a per band basis

DAFX-1

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

rather than across the whole spectrum because this ensures that the
output segments will have a more fine-grained spectral similarity.
This work also augments the number of output re-synthesis pos-
sibilities by enabling the combination of segments from different
spectral bands at different time points in an audio file. The system
proposed here shares many properties with the channel vocoder
[5] and can be thought of as a modification to this synthesis ap-
proach. It replaces the carrier with a pre-analysed audio file and
phase vocoder re-synthesis, and the envelope follower with dy-
namic time warping segment comparison and selection. Using a
phase vocoder for re-synthesis, this system in essence performs a
limited descriptor driven transformation as per [3] that is in the
form of a linear time stretch applied to the selected output seg-
ments so that they match the length of the analysed input segments.
Although this is, compared to some corpus based systems, a com-
putationally expensive method of audio mosaicing, some imple-
mentation optimisations can be introduced that will help make this
approach feasible for real-time performance. It is the aim of this
audio mosaicing implementation to produce an audio output which
closely resembles the audio input in sonic character, yet has recog-
nisable tonal characteristics from the pre-analysed audio used for
the synthesis.

Section two of this paper will explain how the system pre-
sented here is designed and implemented. Starting initially with
how it resembles the channel vocoder, the pre-analysis stage is de-
scribed showing how the audio used for synthesis is processed into
filtered spectral magnitude vectors used during the segment com-
parison process. This process uses dynamic time warping which
is shown to achieve accurate segment matches. The re-synthesis
process is covered next, and it is detailed how a bank of phase
vocoders can be used here for additional processing flexibility.
At the end of section two implementation optimisations are dis-
cussed. Since much of the processing is done using filterbanks,
the algorithm should be amenable to parallelisation. If considered
carefully, it should be sufficiently fast to achieve real-time per-
formance, even when comparing large numbers of segments. In
section three some test results are presented comparing spectral
features from the systems input to the processed audio output. Fi-
nally in the concluding section a summary evaluation of the work
is given followed by a number of possible improvements to the
system that are currently being investigated.

2. SYSTEM OVERVIEW

A high level overview of the audio mosaicing synthesis system
presented here is shown in Figure 2. This system creates audio mo-
saics by combining segments of audio which are split in the time
and frequency domain. The system consists of a pre-processing
and performance stage. At the pre-processing stage, an audio file
is read into the system and is split into smaller audio segments
in the time domain. Each of these segments is analysed using a
high level audio description algorithm, producing a feature vector.
This feature vector is further split into a number of sub-vectors
which correspond to a particular frequency band within the audio
segment. During the performance process, audio is read into the
system from a streaming input, such as a microphone, and is also
split into smaller segments in the time domain. Each streaming
input segment is analysed with the same high level audio descrip-
tion algorithm as the pre-analysed audio segments. The current
input feature vector is also then split into sub-vectors that are rep-
resentative of the audio at different frequency bands within the

input signal. Each of the sub-vectors from the input signal are
then compared to sub-vectors in every pre-analysed segment at the
corresponding frequency band. When this comparison has been
completed across every pre-analysis segment, the best matching
sub-vector from each frequency band is selected for output. The
corresponding audio of each selected sub-vector is combined at
every frequency band into a new audio segment created from the
pre-analysis audio. Finally, this audio segment is output from the
system.

Feature Analysis

Freq. Band Split Similarity
Matching

Pre-Analysed Audio Segment Data

Freq. Band Join

Freq. Band Split

Performance

Audio Stream
Input

Audio
Output

Audio
Segmentation

Audio Mosaic
Synthesis

Audio
Segmentation

Audio File
Input

Pre-processing

Feature Analysis

Figure 2: Diagram showing an overview of the audio mosaicing
system described here.

2.1. A Modified Channel Vocoder

This system bears many similarities to the standard channel vocoder
synthesiser. This section will detail the design of the channel
vocoder followed by an explanation of how the audio mosaicing
system presented here is similar in implementation.

DAFX-2

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

The channel vocoder takes two input signals to perform syn-
thesis, these are known as the carrier and modulator respectively.
The carrier is normally a spectrally rich sound source and provides
the frequency content of the synthesised sound. The modulator is
optimally a signal with high sound energy fluctuation and it con-
trols the amplitude of each frequency band in the carrier signal.
As shown in Figure 3 both inputs are split into frequency bands
using two identically configured filter banks. The filter banks use
band pass filters with their centre frequencies and bandwidths log-
arithmically distributed across the audio frequency spectrum. The
energy levels of each band produced by the modulators filter bank
are tracked by an envelope follower. The output of the envelope
follower is used to control each of the gains in the corresponding
bands of the carrier’s filter bank.

Modulator

BP

Env

Carrier

BPBP

Env

BP

Env

BP

Output

BP

BP = Bandpass filter
Env = Envelope follower

Figure 3: The channel vocoder using a filter bank comprised of
three bandpass filters and three envelope followers

Figure 4 shows how the design of this system differs from the
channel vocoder. Instead of using a carrier and modulator sig-
nal this audio mosaicing system uses an audio file and any arbi-
trary streaming sound source as input. The audio from the file and
streaming input is segmented in the time domain prior to any pro-
cessing. Similar to the channel vocoder, when audio has been input
to the system and analysed using a high level feature vector, in this
case using a filter bank, this feature vector is split into sub-vectors
which represent different frequency bands. Whereas the channel
vocoder uses the amplitude variations in the modulator to control
the carrier channel in each frequency band, this system uses fea-
ture vectors derived from the audio input using a filter bank and
dynamic time warping to select output segments from an audio
file. When the best matching segments from each frequency band
are selected they are synthesised using a phase vocoder and output
from the system. This system can use mono or stereo audio for
the audio input and pre-analysis files. If the audio is in a stereo
format it is mixed to mono for the feature analysis and segment
comparison components of this system.

2.2. Pre-processing

The audio used for synthesis is input to the system from a sound
file which is converted into 32 bit normalised floating point sam-
ple values at a sampling rate of 44,100 Hz. The audio samples
are converted to spectral magnitudes using a windowed short-time
Fourier transform (STFT). The STFT is performed using a frame
size of 1024 samples and a hop size of 256 samples. Each frame

DTW

Output

Segmenting

Filter Bank

Band Split

BFV

Segmenting

Filter Bank

Band Split

DTW

BFV

DTW

BFV

PV = Phase vocoder
DTW = Dynamic time warping
BFV = Stored band feature vectors

File InAudio In

Band Join

PV PV PV

Figure 4: Diagram showing the structure of an audio mosaicing
vocoder using three frequency bands

is windowed using a von Hann windowing function. The spectral
magnitude is then derived from each of these frames. These mag-
nitudes are filtered using a bank of logarithmically spaced trian-
gle filters similar to the triangle filter bank used in Mel-frequency
Ceptral Coefficient processing. In this case the filters’ frequency
ranges span from 0 Hz up to the Nyquist frequency and the centre
frequencies are calculated using the following formula:

fn =
10

n
N+1 − 1

9
· Fs

2
, n = {1, 2, 3, ..., N} (1)

Where f is the centre frequency n is the filter number, N is
the amount of filters used and Fs is the sample rate.

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

Frequency Bins

M
a
g
n
it
u
d
e

Band 2Band 2 Band 4Band 4
Band 1 Band 3

Figure 5: Plot showing the filter weights of 16 triangle filters over
512 frequency bins and split into 4 frequency bands

As shown in Figure 5, the frequency ranges of the triangle fil-

DAFX-3

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

ters overlap. The ‘lower and upper’ cut-off frequencies of each fil-
ter are defined as the centre frequencies of the previous and follow-
ing filters except for the first and last triangle filters where the cut-
off is at 0 Hz and the Nyquist frequency respectively. Each STFT
frame is filtered by taking the dot product of the spectral mag-
nitude frame and the spectral weights of the triangle filter bank.
The filtered magnitude vectors are then divided into sub-vectors
which correspond to different frequency bands in the audio spec-
trum. This can also be seen in Figure 5 where the filter weights
are split into four bands. The sub-vector split is done by dividing
the filtered magnitude vector into evenly spaced sub-vectors. The
sub-vector data for each frequency band of the pre-analysis audio
is stored in memory for on-line comparison with sub-vectors from
the corresponding input audio frequency band.

Pre-analysed audio is segmented in time either by using a con-
stant based on the number of STFT frames contained within a
segment, or using a beat detection algorithm. The beat detection
algorithm is a slightly modified version of that proposed by [6].
This beat detection algorithm makes an estimate of the audio file’s
tempo. It then finds the STFT frame numbers that denote the be-
ginning of a measure. These frame numbers are used to segment
the audio file by measure. This implementation of the beat detec-
tion algorithm differs slightly from that proposed in [6] as instead
of calculating the ‘onset strength’ vector by using the first order
difference of a log-magnitude 40 channel Mel-frequency spectro-
gram, it uses the spectral flux function [7]. The spectral flux func-
tion was used due to both its simplicity of implementation and
accuracy when used for onset detection.

2.3. On-line processing

During performance audio samples are read into a buffer before
analysis. The size of this buffer is specified by the amount of
STFT analysis frames it can store, and dictates the size of each
input segment that will be compared to the pre-analysed audio. A
buffer size of four frames will yield a minimum latency of 23 mil-
liseconds at a hop size of 256 samples and sample rate of 44,100
Hz.

Input audio is processed when the input sample buffer has
been filled with the number of samples required. As with the pre-
analysed audio file, each frame of sampled audio is processed us-
ing the STFT and filtered in the frequency domain using the tri-
angle filter bank. These magnitudes are split into the previously
specified frequency bands for comparison with the pre-analysed
audio data. This comparison is performed sequentially over every
pre-analysed audio segment.

2.4. Feature vector comparison

The feature vectors derived from input audio segments are com-
pared for similarity with those stored in memory using the dy-
namic time warping algorithm. This comparison calculation is
performed on each sub-band separately and compares the current
input triangle filtered magnitudes to every segment stored from the
pre-analysis stage of processing.

The dynamic time warping algorithm is used to find a similar-
ity value of two discrete signals, in this case the triangle filtered
magnitude segments of pre-analysed audio and input audio. In or-
der to find the similarity value, a local cost matrix D of size p× q
is created where p is the amount of frames in an input triangle
filtered magnitude segment and q is the amount of frames in a pre-
analysed triangle filtered magnitude segment. This matrix contains

Local Cost Matrix DLocal Cost Matrix DLocal Cost Matrix DLocal Cost Matrix DLocal Cost Matrix DLocal Cost Matrix DLocal Cost Matrix DLocal Cost Matrix DLocal Cost Matrix DLocal Cost Matrix D

1.6 1.4 1.9 1.3 1.1 1.7 1.2 1.2 1.7 1.3

1 0.7 1.3 0.8 0.5 1 0.8 0.7 1 0.8

1 0.6 1.1 0.6 0.3 0.9 0.5 0.5 0.9 0.5

1.4 0.9 1.3 1 0.7 1 0.8 0.5 1 0.6

0.5 0.2 0.8 0.3 0.2 0.6 0.4 0.6 0.6 0.5

0 0.5 0.9 0.4 0.7 0.9 0.6 1 0.8 0.9

0.5 0 0.7 0.2 0.3 0.6 0.3 0.6 0.6 0.5

0.9 0.7 0 0.8 1 0.4 0.8 0.9 0.4 0.7

0.4 0.2 0.8 0 0.4 0.7 0.3 0.8 0.7 0.6

0.7 0.3 1 0.4 0 0.7 0.3 0.5 0.7 0.4

Frame NumberFrame NumberFrame NumberFrame NumberFrame NumberFrame NumberFrame NumberFrame NumberFrame NumberFrame Number
1 2 3 4 5 6 7 8 9 10

4.8 4.5 4.1 4.6 4.4 4 4.4 3.9 4 4.1

4.9 4.8 4.3 4.8 5 4.7 4.8 4.9 4.7 4.8

3.5 3.9 3.5 3.9 4.1 3.7 3.9 4.1 3.6 4

2.9 3 3 3.1 3.1 3 3.3 3.3 3 3.2

Triangle Magnitudes Segment BTriangle Magnitudes Segment BTriangle Magnitudes Segment BTriangle Magnitudes Segment BTriangle Magnitudes Segment BTriangle Magnitudes Segment BTriangle Magnitudes Segment BTriangle Magnitudes Segment BTriangle Magnitudes Segment BTriangle Magnitudes Segment B

Fram
e N

um
ber

Fram
e N

um
ber

Fram
e N

um
ber

Fram
e N

um
ber

Fram
e N

um
ber

Fram
e N

um
ber

Fram
e N

um
ber

Fram
e N

um
ber

Fram
e N

um
ber

Fram
e N

um
ber

1
2

3
4

5
6

7
8

9
10

4.5
4.3

4.3
4

4.4
4.8

4.5
4.1

4.6
4.4

5.4
5.4

5
5

5
4.9

4.8
4.3

4.8
5

4.8
4.3

4.3
4.5

3.9
3.5

3.9
3.5

3.9
4.1

3.8
2.9

3.4
3.5

2.9
2.9

3
3

3.1
3.1

Triangle M
agnitudes Segm

ent A
Triangle M

agnitudes Segm
ent A

Triangle M
agnitudes Segm

ent A
Triangle M

agnitudes Segm
ent A

Triangle M
agnitudes Segm

ent A
Triangle M

agnitudes Segm
ent A

Triangle M
agnitudes Segm

ent A
Triangle M

agnitudes Segm
ent A

Triangle M
agnitudes Segm

ent A
Triangle M

agnitudes Segm
ent A

Figure 6: Tables showing the calculated local cost matrix as part
of a dynamic time warping comparison of two triangle filtered
magnitude band segments A and B

the euclidean distance of every frame in each of the segments. The
euclidean distance of two vectors, a and b, is given by:

D(i, j) =

√√√√ N∑
n=1

(an − bn)2. (2)

Where i is the row index of D, j is the column index of D, N
is the number of elements in each vector and n is the vector’s ele-
ment index. Figure 6 shows an example of a calculated local cost
matrix for the filtered magnitude segments A and B. These seg-
ments are 10 frames in length with each frame containing a triangle
filtered magnitude sub-vector with four filtered values, equivalent
to one of the frequency bands shown in Figure 5. A global cost
matrix C of size p × q is then calculated by moving sequentially
through every element in the local cost matrix in row major order,
and adding the minimum value from cells within a local search
grid to the current matrix cell:

C (i, j) = D (i, j) + min


C (i, j − 1) ,

C (i− 1, j) ,

C (i− 1, j − 1)

(3)

Figure 7 shows the global cost matrix C calculated from the
local cost matrix D. The similarity value of segments A and B is
given as the value at C(p, q). Typically the dynamic time warping
algorithm also computes an optimal warp path to align the two
series, but this step has not been added to this implementation.
The dynamic time warping comparison process is complete when
it has compared the current input segment to every segment in the

DAFX-4

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

Global Cost Matrix CGlobal Cost Matrix CGlobal Cost Matrix CGlobal Cost Matrix CGlobal Cost Matrix CGlobal Cost Matrix CGlobal Cost Matrix CGlobal Cost Matrix CGlobal Cost Matrix CGlobal Cost Matrix C

1.6 3 4.9 6.2 7.3 9 10 11 13 14

2.7 2.4 3.7 4.5 5 6 6.8 7.5 8.6 9.3

3.6 3 3.5 4.1 4.5 5.4 5.8 6.3 7.2 7.7

5 3.9 4.2 4.5 4.8 5.5 6.1 6.3 7.3 7.8

5.5 4 4.7 4.5 4.7 5.3 5.7 6.3 6.9 7.4

5.5 4.5 5 4.9 5.2 5.6 5.9 6.7 7.1 7.8

6 4.5 5.2 5.1 5.2 5.8 5.9 6.5 7.1 7.5

6.9 5.2 4.5 5.3 6 5.6 6.3 6.7 6.9 7.6

7.3 5.4 5.3 4.5 4.9 5.6 5.9 6.6 7.4 7.5

8 5.7 6.3 4.9 4.5 5.2 5.5 6 6.7 7.1

Segment Similarity Value

1
2

3
4

5
6

7
8

9
10

R
ow

 Index
R

ow
 Index

R
ow

 Index
R

ow
 Index

R
ow

 Index
R

ow
 Index

R
ow

 Index
R

ow
 Index

R
ow

 Index
R

ow
 Index

1 2 3 4 5 6 7 8 9 10

Column IndexColumn IndexColumn IndexColumn IndexColumn IndexColumn IndexColumn IndexColumn IndexColumn IndexColumn Index

Figure 7: Figure showing the calculated global cost matrix C

pre-analysed audio at every frequency band. Once this is done it
will have identified which frequency bands of which segments in
the pre-analysed audio will need to be synthesised.

2.5. Synthesis

The audio synthesis for this project is performed using the Csound
audio programming language and the underlying Csound API. The
segments for each frequency band are synthesised using separate
instances of a Csound instrument shown in Figure 8 that uses the
streaming phase vocoder opcodes. Using the phase vocoder op-
codes greatly simplifies doing any necessary time-dilation of the
pre-analysed audio. This is needed when the segments of pre-
analysed audio are selected using the beat detection method as they
will differ in length with the input audio segments and possibly
other segments in the pre-analysed audio file. The audio segments
are also split into frequency bands in the frequency domain by
scaling the magnitude part of the phase vocoder data.

When the pre-analysis of the audio file input has completed,
Csound’s pvanal program is invoked to convert the input audio
files samples to a phase vocoder (PVOCEX) data file that can be
read by the phase vocoder opcodes. The pvsfread opcode reads
the phase vocoder data file and converts it into streaming phase
vocoder data. This opcode takes a control rate time pointer vari-
able which is used to read each section of the audio file. Each
phase vocoder’s time position is read from a function table allo-
cated using the Csound API before performance. When the seg-
ment comparisons for each band of the current input segment have
been completed, the program writes the time positions of the se-
lected segments for every frame to the table. The phase vocoder
time position tables are read using a single always-on instrument
that outputs a global phasor value at control rate, oscillating one
cycle for every input buffer segment read. Although linear time
dilation can be achieved by simply changing the oscillation rate
of the phasor opcode and using the phasor’s output value directly
with the pvsfread opcode, the strategy used here makes the pos-
sible future implementation of non-linear time stretching a more

PVOCEX Data

Phase Vocoder Signal

Mags Freqs

Filter

pvsfread opcode

Phasor

Time values
function table

Phase Vocoder
Synthesis

Phase Vocoder Signal

Audio
Out

Figure 8: Diagram showing the design of the phase vocoder in-
strument used in Csound

straightforward process.
The band pass filtering of the phase vocoder data is performed

in the frequency domain using the pvsftw and pvsftr opcodes. Dur-
ing performance the magnitudes of every current frame of phase
vocoder data are written to a function table. This magnitude vec-
tor is then multiplied by a vector containing the sum of the triangle
filters magnitudes for the corresponding frequency band.

The Csound code for the instrument which synthesises the sys-
tem’s output is discussed in the following paragraphs. Each part of
the Csound code is preceded by a discussion of the code’s function
within the instrument. At the start of the instrument code, variables
are declared to denote the number of the table that stores the time
values for reading through phase vocoder buffer and a gain table
to filter the phase vocoder magnitude data to a specific frequency
band. The table to store the magnitudes from the phase vocoder
signal is also generated using the ftgen opcode.

i_TimeTableNumber = p5 + $WarpPathBase
i_GainTableNumber = p5 + $BandGainBase
gi_PVSMagnitudes ftgen 0, 0, gi_FFTSize /

2, -2, 0

The time pointer which reads through the phase vocoder stream
is read from the table which stores the time values. This time
pointer is used with the pvsfread opcode to read from the phase
vocoder data stored in the file "PVSInput.pvoc". This is done for
two channels as the output is in stereo.

gk_TimePointer table gk_PhasorIndex ,
i_TimeTableNumber, 1

DAFX-5

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

f_ChannelOne pvsfread gk_TimePointer,
"PVSInput.pvoc", 0

f_ChannelTwo pvsfread gk_TimePointer,
"PVSInput.pvoc", 1

The magnitude part of the phase vocoder signal is written to
the magnitudes table using the pvsftw opcode. The values stored in
the table are multiplied by the values in the table which stores the
gain values for filtering the signal to a particular frequency band.
This multiplication is done using the vectorial opcode vmultv. The
magnitudes are read from the table using the pvsftr opcode and
copied back into the phase vocoder signal.

k_flag pvsftw f_ChannelOne,
gi_PVSMagnitudes

vmultv gi_PVSMagnitudes,
i_GainTableNumber, gi_FFTSize / 2

pvsftr f_ChannelOne, gi_PVSMagnitudes
k_flag pvsftw f_ChannelTwo,

gi_PVSMagnitudes
vmultv gi_PVSMagnitudes,

i_GainTableNumber, gi_FFTSize / 2
pvsftr f_ChannelTwo, gi_PVSMagnitudes

Finally the phase vocoder signal is converted to audio samples
using the pvsynth opcode and output from the instrument.

a_ChannelOne pvsynth f_ChannelOne
a_ChannelTwo pvsynth f_ChannelTwo
outs a_ChannelOne, a_ChannelTwo

2.6. System Optimisation

As the data processing required to synthesise audio with this sys-
tem is quite processor intensive, some optimisations were intro-
duced to this implementation in order to achieve an efficient oper-
ation. These optimisations were achieved by using Single instruc-
tion, multiple data (SIMD) programming libraries and the OpenCL
programming language.

Wherever possible the DSP components of this system were
programmed using Apple Inc.’s Accelerate framework. This frame-
work contains a number of libraries such as vDSP and cblas that
use SIMD in order to speed up common DSP tasks such as FFT,
convolution, and vector / matrix arithmetic.

It was also necessary to optimise the dynamic time warping
comparison calculations in order for the system to process streams
of audio in real-time due to the number of comparisons required
using large pre-analysis data sets. A pre-analysed audio file of
three minutes length and a sample rate of 44,100 Hz will contain
approximately 31,000 STFT frames using a frame size of 1024
samples and a hop size of 256. If this audio is segmented using
a frame size of eight and a frequency band count of four this will
require approximately 15,500 feature vector comparisons for each
segment input to the system from the audio in stream.

The feature vector comparison process lends itself well to par-
allelisation and this was exploited in order to achieve good per-
formance over large input audio files and numbers of frequency
bands. The feature vector comparison is implemented using the
OpenCL programming language which allows for a large number
of lightweight threads known as kernels to execute concurrently.

This greatly optimises the vector comparison operation on multi-
threaded processors.

Every segment comparison for each band is calculated using
separate OpenCL kernels, which are executed simultaneously on
every processor core, or queued and executed on subsequent free
processor cores as they become idle. When the comparison has
completed, the segment with the lowest total cost value in each
frequency band is selected for re-synthesis.

3. RESULTS

The aim of creating this audio mosaicing system is to produce an
audio output that closely resembles the sonic character of the au-
dio input but yet is synthesised using audio segments taken from
another sound source. In order to quantify this, some test exam-
ples have been created with the audio mosaicing system that use
several audio input and analysis files.

These tests use a number of different system settings which are
shown as the column headers in Table 1. The first column however
indicates the test number. The ‘Mode’ setting determines how the
pre-analysed audio is segmented, whether it is segmented based on
a constant frame size are using beat detection. In ‘framed’ mode
the ‘Seg. Length’ setting specifies the number of frames in each
segment taken from audio input stream and the size of each seg-
ment in the pre-analysis audio. In ‘beat detection’ mode this set-
ting only effects the audio input stream. The ‘Tri. Filters’ setting
indicates the number of triangle filters present in the filter bank.
The ‘Bands’ setting designates how many frequency bands each
audio segment is split into.

The spectrograms showing the audio input and resulting audio
output were made using a MATLAB script entitled logfsgram.m
available from [8] which creates a log-frequency spectrogram. The
spectrograms were created using an FFT frame size of 1024 sam-
ples and a hop size of 256 samples using a Hamming window.
The resulting amplitudes were also normalised to 0 dB and any
amplitudes below -80 dB were reduced to -∞ dB. This was done
in order make the colours on each spectrogram representing any
given amplitude values identical, further clarifying the similarities
and differences between each spectrogram. It should be noted also
that due to the way this system is implemented there will always
be a slight latency introduced between the input and output audio.
This can be seen on each of the spectrogram pairs presented in
these results.

Test Mode Seg. Length Tri. Filters Bands
1 Framed 2 30 10
2 Beat Detect 20 30 10

Table 1: Audio mosaicing test settings

3.1. Test 1

The first test was performed in framed mode with a short input
segment size and using a high number of triangle filters and fre-
quency bands as shown in Table 1. Figure 9 shows spectrograms
of the first second of audio from the input and mosaicing output.
These spectrograms share a number of similarities but there are
also some notable differences. For instance, at the beginning of the
mosaicing output spectrogram there is an area of silence spanning

DAFX-6

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

0 0.2 0.4 0.6 0.8 1

135

240

427

761

1356

2416

4305

7671

13669

0 0.2 0.4 0.6 0.8 1

135

240

427

761

1356

2416

4305

7671

13669

−70

−60

−50

−40

−30

−20

−10

0

−70

−60

−50

−40

−30

−20

−10

0

Audio Input 1

Mosaicing Output 1
A B C

Fr
eq

ue
nc

y
(H

z)
Fr

eq
ue

nc
y

(H
z)

Time (seconds)

Time (seconds)

A
m

pl
itu

de
 (

dB
)

A
m

pl
itu

de
 (

dB
)

Figure 9: Spectrograms from Test 1 comparing audio input and
synthesised output from the system

the entire frequency spectrum for the first ~0.04 seconds. This si-
lence is introduced in the output due to the inherent latency within
the audio-mosaicing system caused by input buffering and the syn-
thesis component.

In the areas marked by label A in both spectrograms, a strip
of high amplitude audio can be seen spanning the whole of the
audio input, and starting at ~0.04 seconds and spanning the rest of
the length of the audio output. This area has a frequency range of
from 0 Hz to ~427 Hz in the audio input and from 0 Hz to ~700
Hz in the audio output. The area spanning from ~0.72 seconds to
the end of the input spectrum with a frequency range of from 0 Hz
to ~240 Hz and an amplitude ~-30 dB however does not seem to
have been reproduced in the audio output.

In the areas marked by label B, three columns of higher am-
plitude audio can be seen in both spectrograms. These columns
start at ~0.16,~0.32 and ~0.46 seconds in the audio input, and
~0.22,~0.34 and ~0.55 seconds in the audio output. The amplitude
range in these sections spans from ~-65 dB to ~-25 dB in both the
audio input and audio output.

In the areas marked by label C, the spectrogram of the audio
input does not seem to have been synthesised as accurately in the
audio output. A defined strip of high amplitude content ranging
from ~0.7 to 1.0 seconds from ~740 Hz to ~900 Hz shown in the
input spectrogram, cannot be clearly seen in the output spectro-
gram.

3.2. Test 2

This test was performed using the same triangle filter and fre-
quency band settings as the first test, but uses beat detection mode

0 0.5 1 1.5 2

135

240

427

761

1356

2416

4305

7671

13669

0 0.5 1 1.5 2

135

240

427

761

1356

2416

4305

7671

13669

−70

−60

−50

−40

−30

−20

−10

0

−70

−60

−50

−40

−30

−20

−10

0

Audio Input 2

Mosaicing Output 2
A B C

Fr
eq

ue
nc

y
(H

z)
Fr

eq
ue

nc
y

(H
z)

Time (seconds)

Time (seconds)

A
m

pl
itu

de
 (

dB
)

A
m

pl
itu

de
 (

dB
)

Figure 10: Spectrograms from Test 2 comparing audio input and
synthesised output from the system

and a larger input segment size. As can be seen from the spectro-
grams in Figure 10 a larger number of artefacts are introduced to
the output signal than when using lower segment sizes in framed
mode.

As can be seen at label A, the low amplitude section at the
beginning of the audio input is reproduced in the audio output. In
the output spectrogram however, a number of narrow columns of
audio at ~-55 dB are present.

In the sections labelled by B, there are some notable features of
the input spectrogram that can be seen in the output spectrogram.
For example, similar columns of high amplitude audio between
~-30 dB and ~-20 dB can be seen in both spectrograms. These
begin at ~0.1 and ~0.85 seconds in the input spectrogram and at
~0.25 and ~0.9 seconds in the output spectrogram. Large areas of
low amplitude audio can also be seen in the audio input spanning
from ~1.25 to ~1.6 seconds and ~1.65 to ~1.8 seconds ranging
from ~1000 Hz to 22,050 Hz. Similar areas can also be found
in the output from ~1.4 to ~1.65 seconds and ~1.7 to 2 seconds.
Due to this test being performed in beat detection mode, there is
a noticeable recurring spectral pattern present every ~0.1 seconds
in the output spectrogram that is not shown in the input spectrum.
This is due to the longer segment length of the pre-analysed audio.

In the areas shown by label C, there is an area of high am-
plitude in the input spectrogram spanning from the ~0.1 seconds
to the 2.00 seconds mark, with a notable area of weaker ampli-
tude spanning from ~1.3 seconds to ~1.6 seconds with a frequency
range of from 0 Hz to ~240 Hz. In the corresponding area of the
output spectrum, areas of high amplitude can also be seen in this
section with the notable difference that there is a sequence of lower

DAFX-7

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

amplitude areas occurring at ~0.1 second intervals beginning at the
~0.5 second mark. These lower amplitude sections become weaker
in amplitude in the area corresponding to the lower amplitude sec-
tions in the input spectrogram. Similar to the area labelled B, the
recurring pattern introduced into the output which is not present in
the input spectrum is an artefact of using the beat detection mode.

3.3. Discussion

As can be seen in the first test, using small segment lengths with
a large number of triangle filters and frequency bands can pro-
duce an output spectrum that closely resembles the audio input,
albeit slightly offset in time due to latency introduced to the sys-
tem by buffering and synthesis. There are a number of differences
between the spectrograms also but this should be expected as the
pre-analysed audio may not contain the necessary audio content
for a truly accurate reconstruction.

Beat detection mode was used during the second test, and as
can be seen in the output spectrogram, this introduces a repeating
pattern in the resulting audio spectrum caused by the large pre-
analysis segment sizes created when using this mode. Although
the spectral differences produced using this mode are clear be-
tween the input and output, a number of the more prominent fea-
tures from the input are reproduced in the output.

As can be seen from the results this audio mosaicing system
can produce an output that retains many of the sonic characteristics
of the input used for processing yet introduces a number of unique
spectral features to the produced audio. A more accurate reproduc-
tion of the input can be achieved when applying a high resolution
of analysis to the audio by using a small segment size and high
number of frequency bands. Lower resolutions will also produce
output with similar audio characteristics to the input but will have
introduced a number of differences within the audio spectrum.
The audio for these tests is included with the source code for this
system which is available at https://github.com/eddyc/Streaming-
Audio-Mosaicing-Vocoder.

4. CONCLUSION

This paper has described the implementation of an audio mosaic-
ing vocoder system. The system uses dynamic time warping of
filtered magnitudes to identify similar audio segments over a num-
ber of separate frequency bands. By combining frequency bands
from different sections of the pre-analysed audio file, the system
can produce audio that more closely matches the input. Program-
ming the dynamic time warping system in OpenCL has enabled the
system to perform a larger amount of segment comparisons over
a constrained time frame by taking advantage of multi-threaded
processing.

5. FUTURE WORK

This system is under active development and the implementation
of a number of improvements to the synthesis system is currently
being investigated.

A possible method to improve performance of the segment
comparison component could be accomplished by implementing
dynamic time warping by calculating each row of the local and
global cost matrix on a per-frame basis rather than all at once when
a full segment has been buffered by the input. This method would
spread the calculation over more than one audio callback perhaps

enabling drop-out free performance with an increased amount of
segment comparisons.

The resemblance of synthesised output to the input may be im-
proved by performing the warp path calculation when the dynamic
time warping comparison has been completed and the best match-
ing segments from each band are identified. The warp path can
then be used to alter the speed at which the segment is read by the
phase vocoder bank. Another possibility of improvement could
be to perform dynamic frequency warping producing a warp path
to alter the magnitude spectrum of each phase vocoder to more
closely match the spectrum of the target input audio segment.

6. ACKNOWLEDGEMENTS

This work is supported by the Program of Research in Third Level
Institutions (PRTLI5) of the Higher Education Authority (HEA) of
Ireland, through the Digital Arts and Humanities programme.

7. REFERENCES

[1] Kevin Holm-Hudson, “Quotation and context: Sampling and
john oswald’s plunderphonics,” Leonardo Music Journal, pp.
17–25, 1997.

[2] Diemo Schwarz, Grégory Beller, Bruno Verbrugghe, Sam
Britton, et al., “Real-time corpus-based concatenative syn-
thesis with catart,” in Proc. of the 9th Int. Conference on
Digital Audio Effects (DAFx-06), 2006.

[3] Graham Coleman, Esteban Maestre, and Jordi Bonada,
“Augmenting sound mosaicing with descriptor-driven trans-
formation,” in Proc. of the 13th Int. Conference on Digital
Audio Effects (DAFx-10), 2010.

[4] Miller Puckette, “Low-dimensional parameter mapping us-
ing spectral envelopes,” in Proceedings, International Com-
puter Music Conference, Miami, 2004.

[5] Sadaoki Furui, Digital Speech Processing: Synthesis, and
Recognition, vol. 7, CRC PressI Llc, 2001.

[6] Daniel PW Ellis and Graham E Poliner, “Identifying ‘cover
songs’ with chroma features and dynamic programming beat
tracking,” in Acoustics, Speech and Signal Processing, 2007.
ICASSP 2007. IEEE International Conference on. IEEE,
2007, vol. 4, pp. IV–1429.

[7] Simon Dixon, “Onset detection revisited,” in Proc. of the 9th
Int. Conference on Digital Audio Effects (DAFx-06), 2006.

[8] Dan Ellis, “Spectrograms: Constant-q (log-frequency)
and conventional (linear),” http://www.ee.
columbia.edu/ln/rosa/matlab/sgram/, ac-
cessed <20/05/2013>.

[9] Aymeric Zils and François Pachet, “Musical mosaicing,” in
Proceedings of the COST G-6 Conference on Digital Audio
Effects (DAFX-01), 2001.

[10] Victor Lazzarini, Joseph Timoney, and Thomas Lysaght,
“Streaming frequency-domain dafx in csound 5,” in Proc. of
the 9th Int. Conference on Digital Audio Effects (DAFx-06),
2006.

[11] Simon Dixon, “Live tracking of musical performances using
on-line time warping,” in Proc. of the 8th Int. Conference on
Digital Audio Effects (DAFx-05), 2005.

DAFX-8

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

https://github.com/eddyc/Streaming-Audio-Mosaicing-Vocoder
https://github.com/eddyc/Streaming-Audio-Mosaicing-Vocoder
http://www.ee.columbia.edu/ln/rosa/matlab/sgram/
http://www.ee.columbia.edu/ln/rosa/matlab/sgram/

	1 Introduction
	2 System Overview
	2.1 A Modified Channel Vocoder
	2.2 Pre-processing
	2.3 On-line processing
	2.4 Feature vector comparison
	2.5 Synthesis
	2.6 System Optimisation

	3 Results
	3.1 Test 1
	3.2 Test 2
	3.3 Discussion

	4 Conclusion
	5 Future work
	6 Acknowledgements
	7 References

