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Abstract 

During the last two decades, the production of renewable energy by anaerobic digestion (AD) in 

biogas plants has become increasingly popular due to its applicability to a great variety of organic 

material from energy crops and animal waste to the organic fraction of Municipal Solid Waste 

(MSW), and to the relative simplicity of AD plant designs. Thus, a whole new biogas market emerged 

in Europe, which is strongly supported by European and national funding and remuneration schemes. 

Nevertheless, stable and efficient operation and control of biogas plants can be challenging, due to the 

high complexity of the biochemical AD process, varying substrate quality and a lack of reliable online 

instrumentation. In addition, governmental support for biogas plants will decrease in the long run and 

the substrate market will become highly competitive. 

The principal aim of the research presented in this thesis is to achieve a substantial improvement in the 

operation of biogas plants. At first, a methodology for substrate inflow optimization of full-scale 

biogas plants is developed based on commonly measured process variables and using dynamic 

simulation models as well as computational intelligence (CI) methods. This methodology which is 

appliquable to a broad range of different biogas plants is then followed by an evaluation of existing 

online instrumentation for biogas plants and the development of a novel UV/vis spectroscopic online 

measurement system for volatile fatty acids. This new measurement system, which uses powerful 

machine learning techniques, provides a substantial improvement in online process monitoring for 

biogas plants. 

The methodologies developed and results achieved in the areas of simulation and optimization were 

validated at a full-scale agricultural biogas plant showing that global optimization of the substrate 

inflow based on dynamic simulation models is able to improve the yearly profit of a biogas plant by up 

to 70%. Furthermore, the validation of the newly developed online measurement for VFA 

concentration at an industrial biogas plant showed that a measurement accuracy of 88% is possible 

using UV/vis spectroscopic probes. 
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1 IntroductionEQUATION CHAPTER (NEXT) SECTION 1 

“The apparent goal of the present world system is 

to produce more people with […] more for each person […] 

if society continues to strive for that goal, 

it will eventually reach one of many earthly limitations.” 

{Donella H. Meadows, The limits to growth, p. 94, 1972} 

In a world of seven billion people and with an annual population growth of 78 million people  

(UNPF 2011), resources such as food, water and fossil fuels will become scarce and may even be 

completely depleted, eventually. Furthermore, the increasing consumption of resources results in an 

ever increasing production of waste. In 1972 Meadows et. al analyzed the consequences of constant 

growth in a report for the Club of Rome's
2
 project on the predicament of mankind (Meadows et al. 

1972). In a review of the original assumptions and predictions, which was conducted in 2004 

(Meadows et. al 2004), most of them were found to be surprisingly accurate, which according to 

Meadows leaves the world with two choices to achieve a sustainable future (Becker 2012): (1) 

advancement through crisis, or, (2) advancement through proactive change. 

Looking at the energy sector in Europe, it is a bit of both. On the one hand, catastrophes such as the 

tsunami in Japan, which resulted in the meltdown of a nuclear reactor at Fukushima (NISA 2011) 

showed the world the danger of nuclear power production, which in turn led to policy changes towards 

renewable energies in many countries in Europe and beyond. On the other hand, many European 

governments and the European Commission (EC 2009) have developed policies to support and 

increase sustainable renewable energy production. 

In addition to proactive change through political instruments, technical innovations in the area of 

renewable energy have proven to be a very powerful instrument and the development of highly 

efficient renewable energy processes and their optimization moves at an unprecedented pace (Da Rosa 

2013). Thus, the share of renewable energy in gross final energy consumption in Europe was increased 

by more than 50% between 2004 and 2010 from 8.1% to 12.5% (Eurostat 2013a) with renewable 

energy from biomass being the main contributor (Eurostat 2013b). 

A relatively small part of the renewable energy from biomass (6.3%) is generated from biogas in so-

called biogas or AD
3
 plants (Eurostat 2013b). Nevertheless, the biogas market has shown exponential 

growth, with an increase of 450% and is one of the fastest growing markets in Europe (Eurostat 

2013b). The energy-rich biogas, mainly consisting of methane, carbon dioxide, hydrogen and 

                                                      
2
  http://www.clubofrome.org/ 

3
  AD – Anaerobic Digestion 
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hydrogen sulphide, is produced from degradable organic material in the absence of oxygen. This 

conversion is called anaerobic digestion (AD). In general, biogas plants can be divided into two 

groups: (1) agricultural biogas plants (ABP) and (2) industrial biogas plants (IBP), where ABPs 

mostly use energy crops and animal waste products for biogas production, and IBPs focus on the 

digestion of different kinds of waste, for example municipal solid waste (MSW) or organic waste from 

the food industry as well as waste sludge from WWTP. As the majority of biogas plants in Europe and 

particularly in Germany are ABPs, the thesis focuses on the optimization and instrumentation of 

ABPs. 

The success of renewable energy from biogas is due to its applicability to a great variety of organic 

material from energy crops and animal waste to the organic fraction of MSW, and to the relative 

simplicity of AD plant designs. Furthermore, renewable energy production using AD is not influenced 

by external weather conditions, which makes it well-suited to stable continuous electrical and thermal 

energy production. Consequently, renewable energy from biogas is heavily supported by lucrative 

funding and remuneration schemes at a European and national level (EC 2013, BMU 2011). The effect 

of this support becomes obvious in Figure 1-1, which shows the development of the number of biogas 

plants in Germany over the last 20 years. After the first two amendments of the German Renewable 

Energy Law (REL) in 2004 and 2009 that were in favor of renewable energy from biogas, the number 

of biogas plants shows a strong increase. With a projected 7,874 biogas plants by 2013 in Germany 

alone, Germany is the leader in the European biogas market and is a good reference for the current 

state of the art in biogas technology. 

 

Figure 1-1: Development of the number of biogas plants in Germany over the last 20 years (Fachverband Biogas 2013) 



Simulation, optimisation and control of agricultural biogas plants 

1. Introduction 

 

  
3 

 

  

The current state of renewable energy production from biogas in Europe (Figure 1-2) shows that 

countries in central Europe are the most successful in the biogas market whereas biogas production in 

countries like Great-Britain, Ireland, Portugal and the majority of the eastern European countries is 

still in its infancy. This shows the great potential for renewable energy production from biogas in 

Europe. 

 

Figure 1-2: Biogas production from Agricultural Biogas and Municipal Solid Waste Methanisation Plants in the 

European Union (Observ’ER 2012) 

Nevertheless, stable and efficient biogas plant operation and control can be difficult, due to the high 

complexity of the biochemical AD process, which consists of four stages that depend on each other 

and each requires a different set of optimal process parameters. An analysis of ABP performance in 

Germany performed by Schmitz in 2008 shows that the average capacity utilization in terms of 

electrical power production generally is much less than target optimal values of 90-98% (Schmitz 

2008). 
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Figure 1-3: Degree of capacity utilization with regard to the average electrical power production 

 of biogas plants in Germany (Schmitz 2008) 

While small ABPs seem to reach high degrees of capacity utilization between 80% and 92%, bigger 

ABPs perform rather poorly with values between 60% and 70%. This clearly indicates that the room 

for improvement in terms of plant efficiency is huge, if more than 30% of a plant’s capacity remains 

unused. 

With regard to steadily decreasing governmental support for ABPs in the long run and a highly 

competitive substrate market, plant efficiency becomes the major priority in order to assure sustainable 

plant operation going forward (BMU 2011). Thus, new innovative developments in the area of biogas 

plant optimization and control are needed to tap the full potential of biogas plants while maintaining 

process stability. Furthermore, these developments need to work properly within the existing 

limitations caused by a lack of online instrumentation. 

To allow for optimization and control strategies to work in practice, detailed online monitoring of the 

AD process is a prerequisite. Unfortunately, this is not the case for the majority of ABPs as proven by 

the German Agency for Renewable Resources (FNR 2009). With less than 70% of German biogas 

plants measuring biogas yield and biogas quality online, let alone more detailed process operating 

parameters, it can be concluded that instrumentation of biogas plants is mostly inadequate for process 

monitoring and control. Therefore, new online measurement systems for biogas plants that are robust, 

low maintenance and financially feasible, need to be developed. 

Being aware of the issues in instrumentation, optimization and control of biogas plants, a great deal of 

research has been conducted in these areas over the last 20 years (Steyer 2006, Madsen et al. 2011). 

Nevertheless, many of the developed optimization and control strategies and online measurement 

systems could not be upscaled successfully from lab-, or pilot-scale to full-scale application. 

In this thesis tools are developed, adapted and tested that give a new and much more effective 

approach to the area of optimization and instrumentation of full-scale ABPs: 
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Based on dynamic simulation models and commonly measured process variables, an optimization 

toolbox for substrate inflow optimization of ABPs was developed (Gaida and Wolf et al. 2011) to 

maximize process efficiency by increasing biogas yield, quality and degree of substrate degradation 

while maintaining stable plant operation. 

Due to the high complexity of the optimization problem, two new optimization methods based on 

surrogate models were developed: (1) LH-based S-KSM (Latin Hypercube based Sequential Kriging 

Surrogate Model optimization) and (2) PSO-based S-KSM (Particle Swarm based Sequential Kriging 

Surrogate Model optimization). The innovation is the sequential update of a Kriging surrogate model 

(Matheron 1963) for each iteration of an optimization run, which improves surrogate model accuracy 

based on intermediate optimization results. The use of Kriging surrogate models in combination with 

computationally expensive optimization methods significantly reduces the overall number of fitness 

function evaluations. Thus, optimization performance is substantially increased. 

With a combination of these methods and a dynamic simulation model the substrate inflow of a 

German ABP, named Sunderhook, located in Vreden in northwest Germany was optimized. The 

results show a fundamental improvement in yearly profit while maintaining process stability. 

Furthermore, a UV/vis spectroscopic online measurement system for Volatile Fatty Acids (VFA), a 

key process parameter of AD, was developed and successfully tested at a full-scale IBP. As 

measurement accuracy is crucial, a broad set of machine learning methods was used for calibration of 

the system to compare measurement performance and provide a guideline as to which methods are 

generally best suited for this kind of application.  

1.1 Aims and scope of the thesis 

This thesis aims to achieve a substantial improvement in the operation of ABPs by using dynamic 

simulation models and computational intelligence
4
 (CI) methods for substrate inflow optimization, 

followed by the development of a novel UV/vis spectroscopic online measurement system for VFA 

using powerful machine learning techniques in order to improve the state of instrumentation of ABPs. 

In the first half of the thesis an optimization strategy for the substrate inflow of ABPs, which 

determines the optimal substrate inflow with regard to biogas production and quality/composition, 

degree of substrate degradation and process stability based on the current state of the plant, is 

introduced. The optimization strategy is used in combination with a dynamic simulation model, which 

                                                      
4
 “… Computational Intelligence is defined as a methodology involving computing that exhibit an ability to learn 

and/or deal with new situations such that the system is perceived to possess one or more attributes of reason, 

such as generalization, discovery, association and abstraction. The output of a computationally intelligent system 

often includes predictions and/or decisions. Put another way, computational intelligence comprises practical 

adaptation concepts, paradigms, algorithms and implementations that enable or facilitate appropriate actions 

(intelligent behavior) in complex and changing environments.” (Eberhart, et al. 1996) 
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is calibrated based on commonly measured process variables to allow for application to a broad variety 

of ABPs, to optimize the substrate inflow of the full-scale Sunderhook ABP (Vreden, Germany). 

Dynamic simulation models are commonly used for development and testing of optimization and 

control strategies as they offer unique possibilities for testing of strategies under safe conditions. To 

profit from these features, dynamic simulation models need to be calibrated based on operational data 

to reflect real operation scenarios. In the case of ABPs, the availability of operational data is a weak 

point due to a lack of reliable online process measurements and complex analytical methods for 

substrate characterization. To address this problem, a simulation toolbox for easy model building and 

calibration based on basic available operational data was developed. 

In the second half of the thesis, a practice test of available online measurement systems for biogas 

plants was conducted at an ABP and IBP to assess the current state of online instrumentation of biogas 

plants and an UV/vis spectroscopic online measurement system for VFA is developed and validated at 

a full-scale IBP (Lindlar, Germany) in order to improve online instrumentation of biogas plants. One 

of the main issues with spectroscopic measurement systems is the complex calibration needed to 

extract valuable process information from the spectral data sets. To solve this issue, six powerful 

machine learning techniques are investigated for the calibration of the UV/vis spectroscopic 

measurement system. The performance results in terms of accuracy and speed can serve as guideline 

for the use of machine learning methods for calibration of spectroscopic online measurement systems 

in the future. 

Thus, the thesis covers a broad variety of topics from the areas of simulation, optimization and 

instrumentation of biogas plants with the main goal of substantially improving biogas plant operation 

in the long run. 

1.2 Objectives and contributions 

The research presented in this thesis aimed at the development of a methodology for the optimization 

of ABP operation based on commonly measured process variables using dynamic simulation and CI 

methods and at the development of robust and reliable online instrumentation for biogas plants using 

UV/vis spectroscopy and machine learning techniques. The main new contributions of the thesis are as 

follows: 

(1) A detailed survey on recent advances and the current state of the art in the areas of simulation, 

optimization and instrumentation of biogas plants. The large amount of research conducted in 

the fields of simulation, optimization and control of AD plants makes it difficult to get an 

overview of available developments. Thus, a chronological review of developed simulation 

models, optimization and control strategies as well as online measurement systems for the 

biogas sector is given. This allows the assessment of the new contributions of the thesis in the 
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context of previous achievements in the wide field of AD process simulation, optimization and 

instrumentation. 

(2) The development of an open source Matlab
®5

 toolbox for the simulation and calibration of 

biogas plants using basic operational data and based on the Anaerobic Digestion Model No. 1 

(ADM1) (Batstone et al. 2002). The main advantage of the toolbox is the fast and straight 

forward design and calibration process, which allows modeling of ABPs without extensive 

laboratory analysis. Further, the design and calibration of an ADM1-based AD model of the 

full-scale Sunderhook ABP was performed. 

(3) The development of a novel approach for simulation based optimization of complex nonlinear 

and multi-dimensional fitness functions. The use of global optimization algorithms (such as 

genetic algorithms or particle swarm optimization) for the optimization of the substrate inflow 

of biogas plants is computationally expensive as these methods optimize the fitness function 

by alteration of sets of parameters, whereby a simulation run is calculated for each set of 

parameters. In this work an alternative method for the optimization of parameters is proposed 

and tested in a full-scale study: Two novel optimization methods based on Kriging surrogate 

models of the fitness function, which are sequentially updated during an optimization run, are 

developed. By using these methods the computation time required can be substantially 

reduced by up to 98%. 

(4) The development of a novel optimization strategy for optimizing the substrate inflow of 

ABPs. The substrate inflow is the main actuating variable of the AD process and the total 

amount of substrate fed to a digester as well as the composition of the substrate inflow 

determine biogas production and process stability. In order to optimize the substrate inflow 

with respect to total amount of substrate and substrate inflow composition, the ABP optimal 

substrate inflow optimization problem was defined in detail, taking account of plant 

efficiency, biogas yield, operating costs and process stability. The evaluation of the 

performance of the developed optimization strategy for optimizing the Sunderhook ABP 

substrate feed showed a substantial improvement in plant operation. 

(5) The application of the newly developed optimization strategy to the full-scale Sunderhook 

ABG. The simulation based optimization strategy was successfully applied to the Sunderhook 

ABG to optimize its substrate inflow. Overall, optimization runs for substrate inflows 

consisting of up to five different substrates were performed and evaluated. The evaluation 

shows that yearly profit of the Sunderhook ABP can be substantially improved by up to 70% 

in the case of the best solution, which equals an increase in yearly net profit of 219,000 €. 

(6) The practical testing and evaluation of state of the art online measurement systems for pH, 

ORP and TS at an ABP and an IBP. Online measurement systems for biogas plants are 

available in the market but it is difficult for the end user to assess accuracy, maintenance and 

                                                      
5
  http://www.mathworks.com 
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robustness of the systems during long term operation. Therefore, state of the art online 

measurement systems for pH, ORP and TS were installed at an ABP and IBP to assess long 

term stability. Furthermore, measurement values from the online measurement systems were 

compared to operational data from the plant to evaluate their ability to recognize process 

disturbances. 

(7) The development of a novel UV/vis spectroscopic online measurement system for VFA 

concentration in digesters. As VFA concentration is one of the most important process 

parameters, its online measurement provides real-time information about process stability. 

Therefore, the online measurement of VFA concentration is important but also difficult to 

realize due to the high TS content of the substrate. The practical testing of the indirect 

measurement using a UV/vis spectroscopic probe showed that a measurement accuracy of 

88% could be achieved. 

(8) Evaluation of different machine learning methods for spectral analysis to compare their 

suitability and performance. The analysis of data from spectroscopic probes is needed for 

calibration but is a challenge due to the large number of wavelengths and the high nonlinearity 

of absorption. To allow for a fast and thorough analysis of spectral data sets, analysis of the 

spectral data was performed using six powerful machine learning methods, which are well-

suited to this kind of problem. Results show that by applying dimension reduction and 

multiple transformations to the data, relevant information can be efficiently extracted, 

enabling good calibration results to be achieved. 

1.3 Outline of the thesis 

The remainder of the thesis is organized in six chapters as follows. 

Chapter 2 outlines the basic principles for the present work and provides background information on 

the AD process (section 2.1) as well as on process and operational parameters that are important for 

monitoring and control applications (section 2.2). Furthermore, a short introduction to ABPs focusing 

on modes of operation and digester types is given in section 2.3. 

Chapter 3 describes the dynamic modeling and simulation of ABPs. Section 3.1 provides a detailed 

review of dynamic AD models from the last 40 years followed by section 3.2 which provides a 

complete description of the ADM1 model. Then section 3.3 describes the development and calibration 

of an ADM1 based AD model for the full-scale Sunderhook ABP using the developed simulation 

toolbox. Finally section 3.4 provides a short summary of the achieved results on modeling and 

simulation of ABPs within this chapter. 

Chapter 4 focuses on the development of two novel optimization strategies using Kriging surrogate 

models. Section 4.1 gives a short survey of existing and frequently used metamodeling methods and 

then focuses on the Kriging approximation, which was chosen as the metamodeling method in this 
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work. The PSO optimization method and the selection of its parameters are explained in Section 4.2. 

Section 4.3 then introduces two novel optimization methods using PSO and two different methods to 

sequentially update the Kriging surrogate model. Method I uses latin hypercube (LH) sampling to 

update the Kriging model (LH-based S-KSM) and method II uses a separate PSO to update the 

Kriging model with new positions of the PSO particles (PSO-based S-KSM). The last section 

investigates the performance of the two novel optimization methods on four test problems and 

compares the results to conventional PSO optimization. 

Chapter 5 presents a novel method for the optimization of ABPs by determining the optimal substrate 

inflow which maximizes plant efficiency by maximizing biogas yield, minimizing costs and 

guaranteeing process stability. Section 5.1 gives a short survey of advances in the area of optimization 

and control of AD plants in general and section 5.2 describes the optimization problem of ABPs with 

regard to an optimal substrate inflow and introduces the fitness function used in the optimization 

algorithm. The achieved optimization results based on this fitness function are given in section 5.3 

where subsections 5.3.1 to 5.3.4 show the main optimization results of this work based on a 

combination of S-KSM and PSO. To sum up, a conclusion on the results obtained and their relevance 

in practice is given in section 5.4. 

Chapter 6 describes the practical testing and evaluation of state of the art online measurement 

systems for biogas plants and the development of a new UV/vis spectroscopic online measurement 

system using machine learning techniques. In section 6.1 a detailed literature review of the state-of-

the-art in online measurement systems is provided together with descriptions of full-scale applications 

of well-known and innovative monitoring systems. In addition, the current market situation for online 

measurement systems is analyzed with regard to existing and future technologies. Then section 6.2 

introduces and demonstrates the reasons why online measurement systems are urgently needed, giving 

a practical example from an industrial biogas plant in Germany. Section 6.3 presents and discusses 

results from a field test of online measurement systems for pH, ORP and TS at an agricultural and an 

industrial biogas plant highlighting advantages and limitations. The development of a new innovative 

online measurement system for VFA based on UV/vis spectroscopy is introduced in section 6.4 and its 

full-scale application at an industrial biogas plant described in detail. The analysis of the spectral data 

set using powerful machine learning techniques is described in section 6.5. A short summary of the 

results and the derived conclusion are given in section 6.6. 

Chapter 7 summarizes the results and discusses prospects for further research. 
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2 Anaerobic Digestion and Agricultural Biogas PlantsEQUATION CHAPTER 2 SECTION 1 

Anaerobic Digestion (AD) in general describes the degradation of organic material by several groups 

of anaerobic bacteria in the absence of oxygen. During this degradation process, the so-called biogas is 

produced which mainly consists of methane (CH4), carbon dioxide (CO2), hydrogen (H2) and 

hydrogen sulphide (H2S). With methane being the primary energy carrier in biogas, the produced 

biogas is mostly burned in cogeneration units for power and heat production. Other possibilities for 

biogas processing include its liquefaction to use it as fuel and its enrichment with methane to achieve 

natural gas quality so that it can be supplied to the gas grid. The applications for AD are multifaceted. 

It is not only used in the food and pharmaceutical industry but also for the treatment of wastewater and 

organic waste. For the last 20 years, the use of AD for renewable energy production from waste and 

energy crops in industrial and agricultural biogas plants (IBPs and ABPs) has become increasingly 

popular due to the strong legislative support in many countries by Renewable Energy Laws
6
. 

The aim of this chapter is to provide background information on the AD process (section 2.1) as well 

as on process and operational parameters that are important for monitoring and control applications 

(section 2.2). Furthermore, a short introduction to ABPs focusing on modes of operation and digester 

types is given in section 2.3. Thus, this chapter provides the basis for all subsequent developments and 

results that are presented in the thesis. 

2.1 The Anaerobic Digestion Process 

The AD process is a very complex process which is why it took a long time before the four main 

stages of the AD process, namely hydrolysis, acidogenesis, acetogenesis and methanogenesis, were 

fully understood. The history of AD is well described by McCarty in 1982 who claimed that an Italian 

physicist with the name Volta was the first to prove the production of combustible gas from organic 

material in 1776 (McCarty 1982). Some 92 years after this discovery, Bechamp reported that methane 

production is caused by a microbiological process and another 22 years went by before Omelianski 

successfully identified that anaerobic bacteria were responsible for the release of hydrogen, acetic acid 

and butyric acid during the anaerobic digestion of cellulose (Abbasi et al. 2012). Söhngen confirmed 

these results in 1910 and assumed that there were two different kinds of pathways for methane 

production, one from hydrogen and carbon dioxide and the other from acetic acid (Ferry 1993). This 

was the first time that the methanogenesis was fully described. One of the first full descriptions of the 

AD process was given by McCarty in 1964 who described three stages of the AD process: hydrolysis 

and acidogenesis as stage I, acetogenesis as stage II and methanogenesis as stage III (McCarty 1964). 

The most detailed and comprehensive description of the AD process with four process stages and six 

bacterial populations which was used as basis for the development of the ADM1 simulation model, 

                                                      
6
  http://www.res-legal.eu/home/ - Portal from the European Commision on Renewable Energy Legislation in 

Europe 
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was introduced by Gujer and Zehnder (1983). The presently generally accepted process scheme of the 

AD process is shown in Figure 2-1. 

 

Figure 2-1: The four phases of the AD process adapted from Gruber (2004) 

2.1.1 Hydrolysis 

Hydrolysis is considered to be the main rate limiting step in the AD process (Pavlosthatis and Gossett 

1985) because it is responsible for the enzymatic breakdown of long-chain starch, sugar and protein 

molecules of the particulate organic fraction of the input substrates. Due to the fact that the subsequent 

phases of the AD process can only process the hydrolyzed readily degradable soluble substrate, the 

hydrolysis is the “bottleneck” of the AD process determining the reaction rates of the other process 

stages. If hydrolysis is slow, substrate limitation is the main reason for an inhibition of subsequent 

processes. Hydrolysis is mainly performed by exoenzymes which are released by other anaerobic 

bacteria to perform metabolic reactions, such as the breakdown of nutrients, outside the bacterial cell. 

Furthermore, exoenzymes act as a catalyst for the other process stages by decreasing their activation 

energy which leads to an increase in their reaction rates. Therefore, fast hydrolysis is important for a 

well-balanced AD process and can be achieved due to the short generation time of exoenzymes 

ranging from several hours up to two days (Thomas 1988). 

The reaction pathways (2.1), (2.2) and (2.3) illustrate the hydrolysis for carbohydrates, proteins and 

lipids (Koppe and Stozek 1993). 
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Carbohydrates: 

 
6 12 6

( . . )

( . . )

polysaccharide i e starch oligosaccharide

disaccharide monosaccharide i e glucose C H O

 


  (2.1) 

Proteins: 

 
2 2( . . )

proteins peptone polypeptide oligopeptide

amino acids i e aminoaceticacid NH CH COOH

  

  
  (2.2) 

Lipids: 

 tri palmiticacid glycerel ester tri palmiticacid glycerol    (2.3) 

2.1.2 Acidogenesis 

Acidogenesis is the second phase of the AD process which uses the hydrolyzed particulates for the 

production of organic acids such as butyric, valeric, propionic and in particular acetic acid  

( 3CH COOH ). Acetic acid is then later used by the methanogenic bacteria to produce methane. The 

acidogenic bacteria feed on monsaccharides, amino acids and long chain fatty acids (LCFA) from 

hydrolysis and produce the aforementioned volatile fatty acids (VFA). Furthermore, small amounts of 

hydrogen, carbon dioxides and alcohol are produced. 

As acidogenesis is the main acid producing stage, the high production of organic acids strongly affects 

the pH value. The pH value itself and the substrate concentration decide which end product is mainly 

produced by the acidogenic bacteria. Bischofsberger et al. (2003) stated that in the case of a neutral pH 

mainly acetic acid as well as hydrogen and carbon dioxide are produced whereas for high substrate 

concentrations and a 7pH   more propionic and butyric acid are produced. If the pH drops below 4.5 

the process completely shifts towards the production of lactic acid. Therefore, a detailed monitoring 

and control of the acidogenic process step is important to prevent high concentrations of propionic and 

lactic acid which indicate severe process disturbances have an inhibitory effect and acetogenesis and 

methanogenesis. Furthermore, a stable pH is required. For ABPs pH stability is not an issue under 

normal process conditions due to the high buffer capacity of the substrates. 

2.1.3 Acetogenesis 

Acetogenesis uses the end and by-products from acidogenesis to produce acetic acid and acetate. The 

following reactions show the production of acetic acid from propionic and butyric acid as described in 

the Scientific and Technical Report No. 13 from the IWA (Batstone et al. 2002). 

 

3 2 2 3 2 2

Propionic acid:

2 3CH CH COOH H O CH COOH CO H   
  (2.4) 
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 3 2 2 3 22

Butyric acid:

2 2 2CH CH COOH H O CH COOH H  
  (2.5) 

These reactions show that a relatively high amount of hydrogen is produced which affects the 

hydrogen partial pressure and thus the pH value. If the pH value drops because of an increase in 

hydrogen production, the acetogenic bacteria are strongly inhibited as they need a neutral, even 

slightly alkaline environment to get enough energy from their metabolism. Therefore, a control of the 

hydrogen concentration is necessary which is realized by the hydrogenotrophic methanogenic bacteria 

which use hydrogen and carbon dioxide to produce methane. This dependency between acetogenesis 

and methanogenesis is a symbiotic relationship. If hydrogen production from the acetogenesis is low, 

the hydrogenotrophic methanogenesis is inhibited due to substrate limitation and if hydrogen 

consumption from the hydrogenotrophic methanogenesis is low, low pH values result in inhibition of 

the acetogenesis. 

2.1.4 Methanogenesis 

The last step of the AD process is methanogenesis which uses acetic acid, hydrogen and carbon 

dioxide produced in the previous processes to produce methane. Two different pathways for methane 

production exist: (1) hydrogenotrophic and (2) acetoclastic methanogenesis. The hydrogenotrophic 

methanogenesis uses hydrogen and carbon dioxide to produce methane whereas the acetoclastic 

methanogenesis only uses acetic acid. 

 

2 2 4 2

hydrogenotrophic methanogenesis:

4 2CO H CH H O  
  (2.6) 

 

3 4 2

acetoclastic methanogenesis:

CH COOH CH CO 
  (2.7) 

Due to the high dependency on the continuous availability of the end products from acidogenesis and 

acetogenesis, the main reason for inhibition of methanogenesis is substrate limitation. Furthermore, 

Thomas (1988) determined the generation time of methanogenic bacteria to be between three and 

fifteen days which is long compared to the short generation time of exoenzymes as described in 

section 2.1.1. This means that the methanogenic bacteria need longer to recover from process 

disturbances, which makes their well-being a priority. 

Based on results from Gujer and Zehnder (1983) on the digestion of waste-activated sludge, 

acetoclastic methanogenesis was considered the main methanogenic pathway with 70% of the total 

methane production whereas hydrogenotrophic methanogenesis only contributed about 30%. This was 

proven to be wrong for ABPs by Lübken et al. (2010), who stated that hydrogenotrophic 

methanogenesis is far superior to acetoclastic methanogenesis. 
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2.2 Process and operational parameters 

The description of the AD process shows its complexity due to the four different process steps and the 

high number of different bacteria involved. Thus, monitoring and control of the AD process is a 

challenge and requires knowledge about relevant process and operational parameters. The following 

two sections introduce the main process and operational parameters that are important to monitor and 

to assess process efficiency. 

2.2.1 Process parameters 

2.2.1.1 Temperature 

Temperature is one of the most important variables for process stability as anaerobic bacteria 

populations can only survive in certain temperature ranges. Furthermore, sudden changes and 

permanent fluctuations in the process temperature lead to inhibition of bacteria populations. Therefore, 

controlling process temperature so that it remains constant at all times is crucial to maintaining stable 

plant operation. There are three different temperature ranges (Gruber 2004): 

 Psychrophilic bacteria - 25T C   

 Mesophilic bacteria - 30 45C T C     

 Thermophilic bacteria - 50T C   

This means that an AD process can be operated in one of these three temperature ranges with the 

corresponding bacteria population. Nevertheless, the mesophilic temperature range is preferred for 

most AD processes. The main reasons for this are that AD performed by psychrophilic bacteria is 

slower than by mesophilic and thermophilic bacteria and that it is difficult to maintain such low 

process temperatures, in particular during the summer time. Furthermore, thermophilic bacteria are 

known to be very sensitive to disturbances, which requires costly process monitoring and control, 

although biogas productivity is the highest (Gruber 2004). Therefore, most ABPs are also operated in 

the mesophilic temperature range. 

2.2.1.2 Total Solids (TS) and Volatile Solids (VS) 

TS and VS concentrations of the substrates as well as the digestate provide useful information about 

the biogas yield that can be expected and process efficiency. Furthermore, mechanical components of 

an AD plant such as pumps and stirrers can only safely process material with a certain TS 

concentration. 

The TS basically describes the dry matter of a substrate as a percentage of the total weight or in grams 

per kilogram. Therefore, a certain amount of the substrate is weighed and then dried at 105°C for 24 

hours until its water content is zero. Finally, the weight after drying is divided by the original weight 

to get the TS value. A detailed description of the measurement procedure is given in DIN EN 12880 

(DIN 2001). 
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The VS concentration is defined as the organic fraction of the TS and is commonly measured as a 

percentage of TS or in grams per kilogram. To isolate the inorganic from the organic fraction of the 

TS, the already dried substrate is burned in a muffle furnace at 550°C. The residue after incineration is 

the inorganic fraction. The weight of the dried substrate minus the weight of the inorganic fraction is 

then divided by the weight of the dried substrate in order to get the VS concentration (DIN 2001). 

The VS concentration is commonly used to assess AD process efficiency. Not only can the biogas 

potential of a substrate be estimated based on its VS content, but also the degree of degradation 

achieved by the AD process by comparing VS input to the digester and VS output. Thus, monitoring of 

the VS concentration is important but very difficult to realize online as shown in chapter 6. 

2.2.1.3 pH 

The pH value of a stable AD process should be between six and nine. A 6pH   is indicative of 

inhibition due to high VFA concentrations and a 9pH   results in a significant increase of ammonia 

which also has a strong inhibitory effect. Due to the fact that the first two stages of the AD process, in 

particular the hydrolysis stage, prefer lower pH values between four and 7, a two stage digestion with 

two digesters is often used for the digestion of hard to degradable substrate (FNR e.V. 2010).  

Furthermore, the pH value of the AD process is often used to assess process stability as high VFA 

concentrations from the acidogenic and acetogenic process steps result in a drop in the pH value. This 

is basically true but if a sudden change in the pH value is detected it is often already too late. The main 

reason for this can be found in the total alkalinity (TA) of the process which acts as a buffer for the pH 

value. This means that as long as the TA of an AD process is high, elevated VFA concentrations cannot 

be detected by measuring the pH value. In particular for ABPs, TA is normally very high so that the 

pH value cannot be used as an early warning measurement system. 

2.2.1.4 VFA and VOA/TIC 

The VFA concentration in a digester yields important information about process efficiency and 

stability. In 1982, Braun stated that an AD process for municipal organic waste is stable for VFA 

concentrations below 1,000 mg/l and that concentrations greater than this clearly indicate an inhibition 

and possible process failure (Braun 1982). On the contrary, Kaiser et al. (2007) stated that for ABPs 

the total VFA concentration should be around 4,000 mg/l for stable plant operation. The main problem 

with such limit values is that biological processes in general and the AD process in particular have the 

ability to adapt to suboptimal process conditions. The results from Industrial I in chapter 6 support this 

assumption showing that stable operation at 2,000 mg/l is possible and that inhibition and the eventual 

breakdown occurred at 3,000 mg/l. Thus, an absolute value of the VFA concentration is difficult to 

interpret but deviations from values during normal operating conditions provide valuable process 

information. Apart from the total concentration of VFAs, the concentration of single VFAs is also 

important for process monitoring. Thus, propionic acid concentration should be lower than 1,000 mg/l 
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and a ratio to acetic acid of 2:1 is considered to be optimal. Furthermore, the remaining VFAs should 

be below 500 mg/l. 

As previously mentioned, the buffer capacity TA has a strong influence on pH because it alleviates the 

effect of high VFA concentrations, which is why the ratio of all volatile organic acids (VOA) and the 

total inorganic carbon buffer (TIC), which is closely related to TA, is the most popular and commonly 

used measure for AD process stability. The VOA/TIC ratio is measured via titration and is defined by 

the standard VDI 4630 (VDI 2006). A two-point titration is performed using 0.05-mol sulphuric acid 

(H2SO4). The acid consumption until 5pH   determines the TIC concentration whereas the titration 

until 4.3pH   gives the VOA concentration. For ABP operation a VOA/TIC ratio below 0.3 represents 

a stable process, whereas higher ratios indicate process disturbances. Nevertheless, ABPs with higher 

ratios up to 0.6 have been found to be stable after a long adaptation process (VDI 2011). 

2.2.1.5 Ammonium (NH4) 

The NH4 concentration plays a major role in the AD process as NH4 is transformed into the strong 

inhibitor ammonia (NH3) at high temperatures and high pH values as described by Emerson et al. 

(1975) 

 1
3 4 1

10
[ ]

exp 6344(273 ) 10

pH

pH
NH NH g l

T






   

, (2.8) 

where NH4 and NH3 are the ammonium and ammonia concentrations in gram per liter, T is the 

temperature in °C and pH is the pH value. 

In particular, substrates such as manure and chicken excrement cause high NH4 concentrations in the 

digesters of ABPs which results in elevated ammonia levels. According to the FNR
7
 NH4 

concentrations below 3,000 mgl
-1

 indicate a stable AD process (FNR 2010), but again the author 

visited an ABP near Darmstadt, Germany which was stable at NH4 concentrations of 7,000 mgl
-1

. 

Thus, deviations from values acquired during normal operation are more important than absolute 

measurement values. 

  

                                                      
7
 Fachagentur für nachwachsende Rohstoffe (Agency for Renewable Resources) 
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2.2.1.6 Biogas yield and quality 

Biogas yield and quality mainly determine the efficiency of an AD process. A change in biogas yield 

automatically means that the AD process is inhibited, although the reason for the inhibition remains 

unknown. Thus, close monitoring of the biogas yield, which is measured in m³ per day, is absolutely 

necessary. 

Biogas quality is mainly determined by the composition of the biogas. The biogas consists of CH4, 

CO2, H2, H2S and O2, from which CH4, H2 and H2S are particularly interesting for process monitoring. 

To guarantee a burnable gas composition, the methane concentration needs to be at least 50%. 

Furthermore, a decrease in methane concentration indicates problems with the methanogenic process 

steps due to substrate limitation or substrate abundance. This is automatically reflected in the H2 

concentration in the biogas. If methanogenesis is inhibited, plenty of H2 is produced by acetogenesis, 

but cannot be processed to methane by methanogenesis. Thus, H2 is a perfect parameter to monitor to 

provide an early warning of process disturbances. In addition, high H2S concentration also indicates 

process instability. H2S is a well-known lethal poisonous gas, which causes a strong inhibition of the 

anaerobic bacteria populations. Besides its inhibitory effect, H2S causes aggressive corrosion in motors 

and pipes as well which makes cleaning of the biogas necessary. Nevertheless, H2S is normally not a 

problem at ABPs because of slight aeration of the digesters which is so small that the anaerobic 

conditions are not endangered. Due to the reaction of H2S with O2, H2S is split into water (H2O) and 

elementary sulphur (S2). 

 2 2 2 22 2H S O H O S     (2.9) 

2.2.2 Operational parameters 

2.2.2.1 Hydraulic Retention Time (HRT) 

The HRT is calculated based on the volume of the anaerobic digester ( [ ³]DV m ) and daily substrate 

inflow (
1[ ³ ]Sx m d 

). 

 [ ]D

S

V
HRT d

x
   (2.10) 

The HRT determine the degree of substrate degradation. If the HRT is below 20 days, most of the 

energy crops used in ABPs cannot be fully digested, which results in a loss of energy (Gruber 2004). 

Thus, it is important to operate at an HRT that is appropriate for the amount of substrate fed to a plant. 

2.2.2.2 Digester Load 

The digester load ( DL ) is the main operational parameter to measure the capacity of the AD process. 

DL  is defined as the ratio of VS inflow (
1[ ]inVS kgVSd 

) and digester volume ( [ ³]DV m ). 
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3 1[ ]in

D

D

VS
L kgVSm d

V

    (2.11) 

In general, a digester load of 2.5 kgVSm
-3

d
-1

 is considered to be normal for ABPs. Higher values 

indicate that the AD process is highly efficient but also potentially unstable. Thus, strong variations of 

the digester load should be avoided to maintain a stable AD process. 

2.2.2.3 Volumetric VS degradation efficiency and degree of VS degradation 

The VS degradation determines the efficiency of an AD process. If VS degradation is high, most of the 

available organic fraction of the input substrates is fully digested. However, if VS degradation is low, 

most of the input substrate is not fully processed to biogas, which means that the AD process is 

inefficient. 

The volumetric VS degradation efficiency [ deg,effVS ] is defined as the VS concentration in the outflow 

of the digester (VDI 2011). 

 
3 1[ ]deg,eff outVS VS kgVSm d    (2.12) 

The degree of VS degradation, which is often used, is calculated by the ratio of VS inflow [ inVS ] and 

VS outflow [ outVS ] of the digester (VDI 2011). 

 100[%]out
deg

in

VS
VS

VS
   (2.13) 

2.2.2.4 Biogas and methane rate of yield 

The biogas and methane rate of yield describe biogas and methane yield in relation to the VS 

concentration of the substrate inflow, which is another measure of process efficiency (VDI 2011). The 

higher the biogas and methane rate of yield, the higher the process efficiency. Furthermore, a 

theoretical biogas yield can be calculated which allows a comparison of the measured biogas rate of 

yield with the theoretical one. If there is a significant difference, the AD process is inhibited. If the 

measured value is equal to, or even greater than the theoretical value, process efficiency is high. This 

is also valid for the methane rate of yield. 

 
3 1

, [ ]
in

gas

gas rate gas VS

in

Y
Y Nm t

VS

   (2.14) 

 
3 14

4, 4[ ]
in

ch
ch rate ch VS

in

Y
Y Nm t

VS

   (2.15) 
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2.2.2.5 Biogas and methane productivity 

Instead of using VS inflow concentration as a reference for biogas and methane yield, the digester 

volume ( [ ³]DV m ) is used to calculate biogas and methane productivity (VDI 2011). The higher the 

biogas and methane yield per m³ of digester volume, the higher the efficiency of the AD process. 

 
3 3 1

, [ ]
gas

gas prod gas D

D

Y
Y Nm m d

V

    (2.16) 

 
3 3 14

4, 4[ ]ch
ch prod ch D

D

Y
Y Nm m d

V

    (2.17) 

2.3 Agricultural Biogas Plants (ABP) 

ABPs primarily use AD to produce electrical and thermal energy which can be sold. Due to the 

extremely high increase in the number of ABPs in Germany by 450% during the last 10 years, many 

different designs of ABPs and modes of operation exist. The aim of this section is to give an overview 

of the plant designs, process models and modes of operation that are commonly used. 

The typical ABP consists of two digesters (primary and secondary digester) of similar size, a final 

storage tank for the digestate and two cogeneration units for electrical and thermal energy production. 

Furthermore, drive-in silos and manure tanks are commonly used for substrate storage and a container 

with shifting bottom plates for the feeding of substrate with high TS content to the digesters. Figure 

2-2 shows a 3D scheme of such an ABG, where the red pipes describe the heating grid and the yellow 

pipes the gas grid. 

 

Figure 2-2: Typical design of an ABP8 

2.3.1 Wet and dry AD 

Based on the TS content of the substrate inflow, two different kinds of AD can be distinguished, (1) 

wet digestion for 15%TS   and (2) dry digestion for 25%TS   as defined by (Gruber 2004). AD 

                                                      
8
  used with permission from PlanET Biogas (http://www.planet-biogas.com) 
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processes with a TS concentration between 15% and 25% are considered to be a combination of wet 

and dry digestion. 

In general, wet digestion is preferred for ABPs and mostly used, as plant operation is easier and 

requires less maintenance because substrates can be pumped and digesters can be stirred properly 

(FNR 2009). Furthermore, a continuous substrate inflow to the digesters is manageable which also 

allows for continuous biogas production. This in turn is important for the control of the cogeneration 

units which require a nearly constant flow of biogas to the gas engines to maximize efficiency of the 

incineration. 

Dry digestion is much more complicated as the substrate inflow is semisolid and not suitable for 

pumping. Thus, it is difficult to achieve a continuous biogas production. This is why batch digestion is 

commonly performed in multiple so-called digester garages which are filled at different times. 

Therefore, biogas production reaches it maximum in each garage digester at a different time so that the 

average biogas production is stable. Nevertheless, there is one exception, the Valorga
9
 system, which 

is described in more detail in section 6.2.1 of chapter 6. As stirring of the digester content is not 

possible, a mixing of the substrate is realized by the injection of compressed biogas into the bottom of 

the digester. Due to these complications dry digestion is rarely used at ABPs. 

2.3.2 Number of process stages 

Most AD plants have one or two process stages as shown in the biogas measurement program of the 

FNR (2009), which is why these two fundamental plant designs are discusses in further detail. 

ABPs with two separate process stages consider the fact ideal process conditions for hydrolysis and 

acidogenesis are different from acetogenesis and methanogenesis. Therefore, the idea is to operate one 

digester under optimal conditions for hydrolysis and acidogenesis, which means a pH value between 

four and seven and temperature normally between 25-35°C, and the second digester operating under 

normal AD conditions with a pH value of seven and at mesophilic temperature. Due to the optimized 

process conditions, reaction rates can be substantially increased which also results in faster substrate 

degradation which in turn reduces the HRT required to fully digest a substrate.  

Nevertheless, most plants only have one process stage (FNR 2009). The main reason is that two 

separate process stages mean double the costs for digesters as well as the instrumentation and control. 

Thus, operating conditions for single stage digesters have to be a compromise for all four phases of the 

AD processes, which is far from optimal due to a higher HRT and slower reaction rates. In order to 

increase substrate degradability and biogas yield under these circumstances, the digestate is often 

recirculated from the final storage tanks back to the digester. Adjusting the recirculation rate and 

volume according to the fed substrates, the HRT of the digestate in the digester is increased. 

                                                      
9
  http://www.valorgainternational.fr 
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2.3.3 Digester types 

Many different types of digester have been developed for AD, including many for special applications 

such as the digester developed by the company Entec
10

 who developed a digester with two chambers, 

one for hydrolysis and the other for the remaining three stages of the AD process. In general, all 

digesters used for energy production have a liquid phase in which the substrate is digested and a gas 

phase to collect the produced biogas. The two digester designs that are mainly used for energy 

production at ABPs are (1) CSTR
11

 digesters and (2) plug flow digesters (FNR 2009). The following 

two sections give a detailed description of these two digester types. 

2.3.3.1 CSTR digesters 

CSTR digesters are upright tanks that are normally operated using wet digestion. Long and slow 

turning paddle agitators provide an optimal mixing of the digester content. Generally, two different 

modes of operation are used for the mixing of the substrate. Continuous mixing, which results in well-

homogenized digester content but also involves very high energy consumption due to the high 

viscosity of the substrate, or discontinuous mixing which is energy efficient but also causes 

sedimentation that might be difficult to mobilize. As energy efficiency has a high priority for the 

operator of an AD plant, mostly discontinuous mixing is used, although the disadvantages are obvious 

(FNR 2010). Figure 2-3 shows two different types of CSTR digesters with different mixing 

techniques.  

 
 

Figure 2-3: Typical CSTR digesters. a. CSTR with paddle agitators and b. tall upright CSTR with central agitator 

It is obvious that tall upright CSTRs have one main disadvantage compared to the normal CSTR (a.), 

which is that the central agitator is very sensitive to lever forces. This means that high substrate 

viscosity due to high TS content can easily cause shearing of the complete agitator, which happened in 

the case of the ABP Sunderhook which is used for simulation and optimization in this thesis. 

                                                      
10

  http://www.entec-biogas.com 
11

  CSTR – continuous stirred-tank reactor 

a. b. 
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Therefore, the TS content inside the digester needs to be closely monitored at all times. Nevertheless, 

tall CSTRs are often used when the available building site is small as it is space-saving. 

Both types of CSTR digesters possess one feed pipe for substrate inflow and one outlet pipe for the 

outflow of the digestate. Because of the homogenized substrate mix inside a CSTR, an outflow of 

fresh, not fully digested substrate cannot be prohibited. Thus, the HRT of substrates may vary 

substantially between the minimum and maximum HRT. 

2.3.3.2 Lying plug flow digesters 

Lying plug flow digesters were mainly developed for two reasons. Dry digestion can be easily realized 

using a plug flow process and HRT of the substrate is maximized as premature outflow of substrate is 

prohibited with substrate inflow and outflow located at opposite sides. Nevertheless, mixing of the 

digester content is necessary to allow the effusion of biogas into the gas phase and to allow the 

bacteria to evenly access the substrate. Two different types of mixing are commonly used and shown 

in Figure 2-4. 

 

 

Figure 2-4: Lying plug flow digesters with a. agitators oriented against the longitudinal direction and b. oriented in 

longitudinal direction. 

Mixing with agitators oriented against the longitudinal direction has one major disadvantage as it leads 

to heavy sedimentation between the paddles, which significantly reduces the digester volume. In order 

to solve this problem, agitators oriented in the longitudinal direction were developed. These basically 

shovel the substrate from one paddle to the next, thus preventing sedimentation occurring between the 

paddles. 

2.3.4 Modes of operation 

The modes of operation of AD plants are multifaceted, which is why this section focuses on the modes 

of operation of ABPs. Compared to other processes, the operation of ABPs is difficult because of the 

long dead times of the AD process and a considerable lack of online instrumentation and control (see 

a. 

b. 
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chapter 6). Therefore, operation of ABPs is still in its infancy in many aspects and plant operation is 

far from optimal (Schmitz 2008). 

The investigation of Zimmermann et al. (2003) identifies two major modes of operation of ABPs that 

can be confirmed by the experience of GECOC: (1) low substrate inflow – high process stability 

versus (2) high substrate inflow – low process stability. 

2.3.4.1 Low substrate inflow – high process stability 

To maintain process stability is crucial for efficient ABP operation so that a constant, methane-rich 

biogas flow to the cogeneration units is guaranteed. In the event of process failure, ABP downtime can 

vary from several weeks to several months before the AD process is running at its full capacity again. 

During this time, the financial losses for the plant operator can easily mount up to 50,000€ to 100,000€ 

if the daily benefit of an ABP is assumed to be between 1,000€ and 2,000€. 

Therefore, a common strategy of many ABP operators is to reduce the substrate inflow which in turn 

reduces the digester load. Thus, plant capacity is not fully used and process stability can be easily 

maintained. Due to the high remuneration rates for electricity production from ABPs, plant operation 

is still financially feasible. Nevertheless, governmental support will be substantially reduced in the 

future, which will require ABPs to tap their full potential. 

2.3.4.2 High substrate inflow – low process stability 

An increase in substrate inflow always results in an increase in biogas yield, unless the AD process is 

inhibited. Thus, a high substrate feed is a good way to operate an ABP at its full capacity. 

Unfortunately, it is also a high risk strategy as a high substrate inflow might also result in an overload, 

which causes massive production of organic acids leading to process failure, eventually. The main 

problem in this case is the lack of instrumentation for online process monitoring, which makes a 

comprehensive assessment of process stability impossible. Therefore, it is very risky to increase the 

substrate inflow with only limited and delayed feedback from the AD process as process stability 

remains unknown. Nevertheless, this mode of operation is applied to many ABPs in order to increase 

biogas yield which in turn increases a plant’s net profit. 

The solution to this problem is a combination of instrumentation for proper process monitoring and 

optimization and control methods to maximize biogas yield while maintaining process stability. The 

following chapters investigate the different aspects of this solution. 
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3 Modeling and Simulation of Biogas PlantsEQUATION CHAPTER 3 SECTION 1 

The modeling and simulation of industrial plants and processes is commonly used for their design, 

optimization and control. In particular, dynamic simulation models are widely applied to chemical and 

process engineering problems (Ogunnaike and Ray 1994) because they have two main advantages 

when it comes to process optimization and control: (1) Easy and fast implementation of new 

optimization and control strategies and; (2) safe testing and evaluation of their negative and positive 

effects on process and overall plant performance. Both advantages apply especially to the optimization 

and control of ABPs. Firstly, a variety of optimization and control strategies can be fully implemented 

in a dynamic simulation model of a plant and then further adapted and optimized based on the 

simulation results. Secondly, this results not only in faster implementation times but also allows a 

comprehensive assessment of potential risks and benefits, which can subsequently be minimized or 

maximized respectively. As the implementation of new optimization and control strategies at ABPs 

strongly affects the biological process, operational risks are high. Events, such as process overload and 

plant breakdown in the worst case cause extremely high costs, which can be averted by the application 

of a dynamic simulation model for process design and control. There is a wide range of applications 

for dynamic simulation models of anaerobic digestion processes (AD models) which offers great 

potential for the design, monitoring and control of AD plants whether they are ABPs or AD-WWTPs. 

Table 3-1 gives a survey of the possible applications of AD models and states the corresponding 

model requirements. Based on this survey, it is evident that complex and high-dimensional models are 

needed for the optimization and control of ABPs to capture authentic ABP behavior in the AD model. 

Therefore, the Anaerobic Digestion Model No. 1 (ADM1) was chosen from a variety of available AD 

models to optimize the substrate feed of ABPs. Advantages of the ADM1 are that its complexity is 

high enough to allow a comprehensive development, implementation and evaluation of new 

optimization strategies and that it is nevertheless computationally manageable. 

The main contributions of this chapter are (1) a detailed review of available dynamic AD models to 

show the variety of AD models and to provide the rationale for selecting ADM1 as the model of 

choice for ABP simulation in this thesis as well as (2) the design and calibration of an ADM1-based 

AD model of a full-scale ABP. This model which was developed based on an open source Matlab
®
 

toolbox for simulation and modeling which was also developed at the Gummersbach Environmental 

Computing Center at Cologne University of Applied Sciences during this thesis. 

The detailed review of dynamic AD models from the last 40 years is presented in section 3.1 followed 

by section 3.2 which provides a more complete description of the ADM1 model. Then section 3.3 

describes the development and calibration of an ADM1 based AD model for a full-scale ABP. Finally 

section 3.4 provides a short summary of the achieved results on modeling and simulation of ABPs 

within this chapter. 
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Table 3-1: Applications and requirements for AD models adapted from Batstone (2006) 

Aim Application Technical considerations 

Model-based analysis and 

optimization of existing systems 

(operational analysis) 

An existing AD plant where 

operational parameters are 

known and can be optimized. 

Limitations by plant operation. 

Necessary process data is 

available. Parameters can be 

specifically adapted for that 

process. Model needs to 

consider limiting or controlling 

mechanisms. 

Model-based design Design of new, full-scale 

systems. 

Model needs to be standardized 

and accepted. High number of 

realistic parameter sets needed. 

Information about inflow 

characteristics is required. 

Hydraulics and particle 

behavior needs to be 

considered. 

Technology development Development of new 

technology using AD models. 

Use of AD models to assess 

new technology. 

Model needs factual, 

fundamental basis. 

Parameter estimation Estimation of transferable 

parameters for other 

applications and design. 

Parameter estimation method 

needs to be robust and adaptive. 

Highly defined model required. 

Integrated system analysis Process chain evaluation. 

Process selection and 

justification. 

AD models interact with other 

models. Models need to be 

suited for design and selection 

applications. 

Sensor analysis and 

development 

Sensor accuracy, performance. 

Soft-sensors 

Model needs to include relevant 

underlying processes. Good 

model accuracy.  

Model-based control Non-linear control of AD 

systems. 

Low-dimensional, fast model 

that adequately describes I/O 

system behavior. 

Control, optimization and 

operation system benchmarking 

Development and testing of 

new strategies 

Complex, high-dimensional 

model needed, which is as 

realistic as possible. 

3.1 Literature review 

The number of available steady state and dynamic AD models is great and so are the differences 

between the models in terms of complexity, number of input variables as well as number of kinetic 

and stoichiometric model parameters. The aim of this literature review is to give a survey of existing 

AD models by summarizing their features and capabilities and to retrace the historical development 

over the last 40 years. A comparative overview of all discussed AD models is given at the end of this 

section in Table 3-2. Furthermore, this literature review justifies the decision to use the ADM1 instead 

of other available AD models for the simulation and optimization of ABPs. 
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Table 3-2: Survey of the most relevant AD models developed over the past 40 years 

Publication Model 

type 

Adapted 

substrate 

Growth 

kinetics 

Composition 

variables 

Main 

processes 

Model 

parameters 

Bacteria 

groups 

Hydrolysis 

kinetics 

Inhibition 

functions 

Type of 

inhibition 

(Andrews 1969) dynamic; 

steady state 
sludge 

modified 

Monod 
3 2 7 1 none 2 VFA, pH 

(Hill and Barth 

1977) 

dynamic; 

steady state 
organic waste 

modified 

Monod 
5 6 18 2 none 3 

VFA, pH and 

NH3 

(Eastman and 

Ferguson 1981) 
dynamic sludge Monod 3 - COD based 3 5 1 first order none none 

(Pavlostathis 

and Gossett 

1986) 

dynamic sludge Monod 6 - BOD based 5 12 2 first order none none 

(Shimizu et al. 

1993) 
dynamic sludge 

first order 

and Monod 

15 - COD 

based 
14 6 4 first order none none 

(Vavilin et al. 

1994) dynamic 

complex 

organic 

material 

first order 

and Monod 
32 13 28 7 first order 5 

H2, pH, NH, 

H2S, 

Propionate 

(Angelidaki et 

al. 1999) 

dynamic; 

steady state 
organic waste 

modified 

Monod 
17 11 11 8 first order 3 

LCFA, acetic 

acid, NH3 

(Massé and 

Droste 2000) 
dynamic swine manure 

modified 

Monod 

11 - COD 

based 
11 48 6 first order none none 

(Siegrist et al. 

1993, 2002) 

dynamic; 

steady state 
sludge 

modified 

Monod 

23 - COD 

based 
18 11 6 first order 4 

H2, pH, NH3, 

acetic acid 

(Batstone et al. 

2002) 

dynamic; 

steady state 

wide variety 

of substrates 

modified 

Monod 

24 - COD 

based 
22 55 8 first order 4 

H2, pH, NH3, 

butyric acid 

(Keshtkar et al. 

2003) 
dynamic cattle manure 

modified 

Monod 
13 25 14 4 first order 3 

pH, VFA and 

NH3 

(Sarti et al. 

2004) 
dynamic wastewater first order 8 12 9 1 none none none 

(Sötemann et al. 

2005a) 
dynamic sludge Monod 

15 - COD 

based 
10 19 4 Contois 1 H2 

(Sötemann et al. 

2005b) steady state sludge none 
14 - COD 

based 
12 8 none 

first order, 

Monod, 

saturation 

none none 

(Blumensaat 

and Keller 2005) 

dynamic; 

steady state 
sludge 

modified 

Monod 

32 - COD 

based 
28 37 8 first order 4 

H2, pH, NH3, 

butyric acid 

(Gali et al. 2009) dynamic; 

steady state 
agro-waste 

modified 

Monod 

41 - COD 

based 
32 80 8 first order 5 

H2, pH, iN, 

NH3, H2S 
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The first dynamic AD model was developed by Andrews (1969) to simulate the anaerobic digestion of 

waste-activated sludge from WWTPs. Due to advances in computing capacity, the use of dynamic 

simulation models became possible and feasible. Andrews included three main process steps in his 

model, namely hydrolysis by exo-enzymes, acid and methane production. Furthermore, the inhibition 

of the anaerobic digestion process by volatile acids, pH and ammonia was considered and modeled 

using Michaelis-Menten kinetics. To model bacterial growth, Andrews based his model on the 

achievements of Monod (1949) who was the first to fully describe the growth of bacterial cultures. 

The only changes compared to standard Monod kinetics were made by integrating inhibition terms 

into the equations for bacterial growth. Thus, changes in pH or volatile acid concentration strongly 

affect process stability in the model. The three composition variables (S, X, HS) of the model come 

from the wastewater treatment sector and describe the concentration of soluble (S), particular (X) and 

unionized substrate in the unit COD
12

. Overall, the model possesses seven kinetic and stoichiometric 

parameters for model calibration and was tested and evaluated in comparison to a lab-scale digester in 

batch and continuous operation. 

In 1974, Graef and Andrews adapted the AD model from 1969 to use it for process stability analysis 

and control applications (Graef and Andrews 1974). Three control strategies were closely investigated: 

(1) Scrubbing of carbon dioxide from the gas phase with subsequent gas recycle, (2) addition of a base 

to increase buffer capacity and (3) recirculation of sludge. Over the following years it became obvious 

that Andrews’ AD model had several limitations such as only one microbial culture and one organic 

acid, namely acetic acid and a very simple hydrolysis without a disintegration step. Furthermore, the 

characterization of substrates using just three variables has proven not to be suitable for more complex 

substrates than sludge. Therefore, Hill and Barth (1977) developed a dynamic AD model for the 

simulation of animal waste digestion with five composition variables, two microbial cultures and 24 

model parameters to capture the characteristics of animal waste. Another approach to improve AD 

models proposed by Eastman and Ferguson (1981) was to integrate the hydrolysis step into the acid 

production, modeling it by first order kinetics. Thus, hydrolysis was considered to be the main rate 

limiting processes. The importance of hydrolysis was confirmed later by Pavlosthatis and Gossett 

(1985) who closely investigated the kinetics of cell death, lysis as well as acidogenesis and 

methanogenesis to integrate them into a new BOD
13

-based AD model where cell death, lysis and 

hydrolysis are the main rate limiting process steps. Cell death and lysis were modeled using first order 

kinetics and acidogenesis and methanogenesis using the well-known Monod kinetics. Although, this 

AD model has 12 kinetic and stoichiometric parameters, Pavlosthatis and Gossett argued that less than 

                                                      
12

  “The chemical oxygen demand is a measure of the oxygen equivalent of the organic matter content of a 

sample that is susceptible to oxidation by a strong chemical oxidant.” 

(American Public Health Association 1981) 
13

  “The biochemical oxygen demand measures the molecular oxygen utilized during a specified incubation 

period for the biochemical degradation of organic material (carbonaceous demand) and the oxygen used to 

oxidize inorganic material such as sulfides and ferrous iron.” (American Public Health Association 1981) 
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half of theses parameters needed to be adapted for model calibration and that the digestibility of the 

input substrate is the most important parameter. 

In another attempt to further improve substrate characterization, Shimizu et al. (1993), divided each 

substrate into the three substances, carbohydrates, proteins and lipids. Furthermore, hydrogenotrophic 

methanogenesis was added in addition to acetoclastic methanogenesis to allow a broad range of 

applications for the model. Nevertheless, Shimizu’s model was still far away from being a 

comprehensive AD model which captures most of the known AD processes. 

The first attempt to develop a comprehensive AD model containing hydrolysis, acidogenesis, 

acetogenesis as well as acetoclastic and hydrogenotrophic methanogenesis was undertaken by Vavilin 

et al. (1994). For the first time sulphur reactions were included in the model to trace hydrogen sulphur 

(H2S) production and inhibition during anaerobic digestion of animal waste. However, the complexity 

of the model with 13 processes, 32 state variables, 28 kinetic and stoichiometric parameters and an 

additional 72 inhibition constants is difficult to handle as many of the model parameters cannot be 

measured or have to be determined in long laboratory tests. Nevertheless, using many parameter 

values from literature good accordance was achieved with measurements from a lab-scale reactor, fed 

with wastewater from the food industry. Only five years later Vavilin, Angelidaki et al. (1999) 

published an even more complex AD model containing eight different bacterial groups focusing on the 

hydrolysis of carbohydrates and insoluble proteins and on eight biological reactions within acido-, 

aceto- and methanogenesis. This model was the first to incorporate inhibition by long chain fatty acids 

(LCFA) for all process steps. In addition, ammonia inhibition was not modeled with first order 

kinetics but rather with the Briggs-Haldane equation (Briggs and Haldane 1925). Based on 

Angelidaki’s AD model Vavilin et al. (2000) adapted the previously developed AD model from 1994 

to include inhibition by LCFA and closely evaluated the model with regard to its sensitivity to process 

disturbances. Results showed that the COD:S ratio is crucial for a well-functioning AD process and 

that free H2S and pH are the main inhibitions causing system failure. Due to the fact that AD models 

became more and more complicated over the years and thus difficult to use, Massé and Droste (2000) 

developed an AD model that only uses measurable parameters and variables. Therefore, several 

compromises had to be made, so that the effect of pH on microbial growth was considered irrelevant 

and that growth rates of microorganisms are not significantly affected by high VFA or ammonium 

concentrations. Although these assumptions are arguable, results for the simulation of the digestion of 

swine manure in a lab-scale sequencing batch reactor were consistent with obtained measurements. 

The year 2002 was a breakthrough in the development of AD models. Two very similar AD models 

were published by Siegrist et al. (1993, 2002) and Batstone et al. (2002) that had only one goal to 

unify all existing dynamic AD models in one standardized, detailed simulation model. Comparing 

both models, the AD model from Siegrist is simpler with less processes and parameters. It is focused 
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on the meso- and thermophilic digestion of waste-activated sludge and aims to capture the process 

dynamics under varying substrate feed and digester temperature. The ADM1 developed by Batstone 

aims to be a universally applicable model that can not only be used for different digester temperatures, 

but also for a broad variety of input substrates. Developed within the IWA
14

 Task Group for 

Mathematical Modeling of Anaerobic Digestion Processes, the ADM1 is a very complex model with 

22 processes and over 50 model parameters. Nevertheless, it has gained wide acceptance and has been 

the standard AD model used and adapted to different applications more often than any other model. 

Furthermore, over the past decade many issues associated with the application of the ADM1 have been 

addressed, further enhancing its utility. One of the main advantages of the ADM1 is the disintegration 

as an additional process step before the hydrolysis. Modeled with first order kinetics, disintegration 

describes the breakup of the degradable, particulate COD fraction into carbohydrates, proteins and 

lipids, which is especially important for the digestion of complex substrates such as energy crops and 

organic waste.  

Although the ADM1 is one of the most comprehensive AD models available, other models focusing 

on specific applications were developed and the ADM1 was further improved. For example, Keshtkar 

et al. (2003) included mixing in an AD model using a classic model by Levenspiel (1962) and 

validated the model on the digestion of cattle manure because until 2003 all available AD models 

considered the digesters of an AD plant to be CSTRs, which is mostly not true but makes model 

development much easier. Sarti et al. (2004) developed a very simplistic AD model with only 9 model 

parameters and 8 variables also considering hydrodynamic characteristics. Furthermore, Sötemann et 

al. (2005a) developed a steady state AD model for AD plant design and evaluation of optimal 

operating conditions as well as a more complex dynamic AD model (Sötemann et al. 2005b). Also in 

2005, Blumensaat and Keller (2005) adapted the ADM1 model to a two stage digestion process with 

one thermophilic stage for hydrolysis and acido- and acetogenesis and a subsequent mesophilic stage 

for methanogenesis. It is remarkable that Blumensaat and Keller used a pilot-scale plant (160 l) 

equipped with sophisticated online and lab measurement systems to evaluate their AD model instead 

of a lab-scale digester. To facilitate model calibration parameter values from Siegrist et al. (2002) 

were used. Over all a good agreement between simulation results and measurement data was achieved 

during normal loading conditions after steady state and dynamic model calibration. Nevertheless, 

extreme process conditions such as high loadings or process breakdown could not be captured by the 

model. 

Due to the fact that the determination of ADM1 input variables was still very difficult at that time, 

Jeppson et al. (2007) modified the ADM1 and developed two conversion blocks that calculate the 

ADM1 input variables based on the well-known ASM1 (Henze 2000) parameters. Thus, substrate 
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characterization for the ADM1 became much easier and the fast and easy integration into WWTP 

models for sludge digestion was possible. Although, determination of the ADM1 input variables was 

significantly improved by Jeppson et al., the application of the ADM1 for agricultural waste or energy 

crops was still extremely challenging as standard COD measurements are impossible to handle due to 

the matrix of the substrates. Therefore, Gali et al. (2009) modified the ADM1 by adding standard 

parameters for the characterization of energy crops to the input parameters, such as (TSS and VSS). 

The adapted AD model was compared against a four liter laboratory digester and was sufficiently 

accurate. Nevertheless, the addition of extra input variables made the ADM1 again more complex. A 

further improvement in handling of the ADM1 was achieved by Zaher et al. (2009) who developed a 

comprehensive simulation toolbox based on the ADM1 and Matlab
®
 Simulink. The purpose of this 

toolset is the simulation of co-digestion and the evaluation of different waste stream compositions and 

hydraulic retention times in order to maximize biogas production. As the composition of the input 

substrates is dynamically changing in terms of their contents of carbohydrates, proteins, lipids, TS and 

VS, which is difficult to implement in the hydrolysis of the ADM1, hydrolysis was modeled in a 

separate model. The outputs of the hydrolysis model are then fed to the ADM1. To speed up 

simulation of the ADM1, a special ADM1 DAE model developed by Rosen et al. (2006) for plant-

wide WWTP benchmark simulations was used. Due to the economic boom in the biogas market, in 

particular ABPs, the applications of the ADM1 increased rapidly. Nevertheless, one main problem still 

remained unsatisfactorily solved; the easy and feasible characterization of the input substrates. One of 

the best solutions to this problem was presented by Koch et al. (2010) who did no longer measure the 

necessary COD fractions of the substrates but rather calculated them based on standard measurements 

for the characterization of energy crops and waste, the Weender analysis (Basler 1976). Thus, a 

theoretical COD value (ThCOD ) was introduced. Furthermore, Koch et al. suggested a standard 

procedure for model calibration by setting all model parameters to standard ADM1 values and 

subsequently varying the sensitive model parameters until the model performance shows good 

agreement with the measurement values. Model performance was evaluated using the Nash-Sutcliffe 

coefficient (Nash and Sutcliffe 1970). 

In parallel with all the white box dynamic AD models (using a defined set of differential equations), 

several black box models have been developed in recent years using mainly Computational 

Intelligence (CI) methods. In 2005, Brus applied recursive system identification techniques to 

drastically reduce model degree and the number of model parameters of an AD model. The application 

of the recursive prediction error method (RPEM) for nonlinear identification problems showed that a 

second order nonlinear model is sufficient to accurately model AD processes. Around the same time, 

Strik et al. (2005) developed a black box ANN model for the prediction of trace compounds such as 

ammonia and hydrogen sulphide based on experimental data from a 20l lab-scale CSTR. Another 

application at a full-scale anaerobic digester treating sludge from the primary sedimentation of a 
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Turkish WWTP with 800,000 PE was developed by Cakmakci (2007) who used a two stage adaptive 

neuro-fuzzy interference system (ANFIS) to predict VS effluent concentration in the first stage and 

methane production in the second stage. Also in 2007, ANN were used again by Ozkaya et al. when 

they built a model to predict the methane concentration in the biogas from a landfill site. Based on 

data from 34 month where the leachate and landfill gas components were monitored, a two layer ANN 

was trained using back propagation. Another interesting approach was developed by Abu Qdais et al. 

(2010) who trained an ANN with two hidden layers to predict the methane concentration in the biogas. 

The four process parameters used for ANN training were pH, temperature, VS and TS. Based on the 

fully trained ANN model Abu Qdais tried to optimize these four parameters with a Genetic Algorithm 

to maximize methane concentration in the biogas. 

To sum up, this survey of existing AD models shows the high number and variety of available AD 

models as well as the historical development of these models. However, it is not an exhaustive survey. 

Other reviews by Gavala et al. (2003), Batstone (2006) as well as Tomei et al. (2009) are therefore 

recommended to get additional information for a complete and comprehensive overview of AD 

modeling.  

Looking at all the available AD models it seems difficult to decide which one is most suited for the 

simulation and optimization of ABPs, but due to the high number of publications on ADM1 

applications and the variety of model adaptations, the ADM1 was used for the optimization of ABPs. 

The implementation of the ADM1 used for the developments in this thesis was programmed by the 

ifak system GmbH
15

 and is called ADM1xp (Wett et al. 2006). The ADM1xp only differs slightly 

from the original ADM1 using two different state variables and several modified reaction rates. The 

following section will give a detailed description of this ADM1xp which will be called ADM1 in the 

remainder of this thesis. 
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3.2 The Anaerobic Digestion Model No. 1 (ADM1) 

The ADM1 model is one of the most comprehensive AD models and thus model complexity in terms 

of number of differential equations and parameters is high. The aim of this section is to explain the 

ADM1 in detail and to evaluate its strengths and limitations for the simulation of ABPs. Most 

composition and process variables are expressed in COD concentrations (kgCOD/m³) except nitrogen 

(
+
4NH  and NH3) and inorganic carbon (CO2 and 

-
3HCO ) concentration variables which are expressed 

in kmolN/m³ and kmolC/m³ respectively. The main two reasons to choose COD-based variables are: 

(1) high compatibility with existing Activated Sludge Models (Henze 2000) developed by the IWA 

and, (2) use of a standardized unit for most of the model variables. Furthermore, the ADM1 was 

initially parametrized for the digestion of waste-activated sludge as described in the Scientific and 

Technical Report No. 13 of the IWA (Batstone et al. 2002), which is normally characterized by its 

soluble and particulate COD fractions.  

In general, the process of anaerobic digestion can be subdivided in two different kinds of processes:  

(1) Biochemical processes, which describe intracellular processes such as the degradation of 

soluble organic material by different bacterial populations resulting in biomass growth and 

decay, and extracellular processes such as disintegration of particulate organic material and 

enzymatic hydrolysis. 

(2) Physico-chemical processes, which include ion association and dissociation and liquid-gas 

transfer. Both processes are needed for comprehensive modeling of AD processes as physico-

chemical state variables such as pH, carbon buffer and biogas composition strongly affect the 

biochemical reactions causing inhibitions and thus a rate-limiting effect. 

In the following three sections the state variables of the ADM1 as well as the two main process groups 

are explained in further detail. 

3.2.1 ADM1 state variables 

The state of the ADM1 is described by 24 variables that can be divided into two main groups of 

soluble and particulate components, which are labeled as S  and X  respectively. These two groups are 

subsequently split into inert components expressed by IS  and IX  and further degradable components. 

Those degradable soluble components consist of organic and inorganic compounds whereas the 

particulate components apart from IX  are considered to be organic as the inorganic compounds are 

part of IX . 

Table 3-3 shows a list of all soluble as well as particulate state variables of the ADM1 and their 

corresponding notation. 
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Table 3-3: ADM1 state variables 

Monosaccharides (kgCOD m
-3

) suS   

Amino acids (kgCOD m
-3

) aaS   

Long chain fatty acids (kgCOD m
-3

) faS   

Total valerate (kgCOD m
-3

) vaS   

Total butyrate (kgCOD m
-3

) buS   

Total propionate (kgCOD m
-3

) proS   

Total acetate (kgCOD m
-3

) acS   

Hydrogen gas (kgCOD m
-3

) 2hS   

Methane gas (kgCOD m
-3

) 4chS   

Inorganic Carbon (kmoleC m
-3

) 2coS   

Inorganic Nitrogen (kmoleN m
-3

) 4nhS   

Soluble inerts (kgCOD m
-3

) IS   

Composites (kgCOD m
-3

) cX   

Carbohydrates (kgCOD m
-3

) chX   

Proteins (kgCOD m
-3

) prX   

Lipids (kgCOD m
-3

) liX   

Sugar degraders (kgCOD m
-3

) suX   

Amino acid degraders (kgCOD m
-3

) aaX   

LCFA degraders (kgCOD m
-3

) faX   

Valerate and butyrate degraders (kgCOD m
-3

) 4cX   

Propionate degraders (kgCOD m
-3

) proX   

Acetate degraders (kgCOD m
-3

) acX   

Hydrogen degraders (kgCOD m
-3

) 2hX   

Particulate inerts (kgCOD m
-3

) IX   

 

Those ADM1 state variables are affected by the biochemical and physico-chemical processes of the 

AD process. In particular, the degradation of substrates and the biogas production are described by the 

COD-based state variables. Figure 3-1 shows the COD flux through the different stages of the AD 

process. In a first step the complex source substrate is split into an inert and a degradable COD 

fraction, where the degradable fraction disintegrates to carbohydrates, proteins and lipids. The 

compounds are then degraded to sugars, amino acids and LCFA before they are transformed into 

organic acids and hydrogen, which are eventually used to produce methane. The different bacteria 

populations involved in all these conversion steps, so-called degraders, are also represented in 

particulate COD fractions. 

Thus, modeling and simulation of AD processes requires a good characterization of the input 

substrates used for digestion. In particular, the soluble and particulate inert fractions and the 

particulate fractions of carbohydrates, proteins and lipids need to be analyzed or properly estimated 

based on available substrate data. 
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Figure 3-1: Description of the COD flux through the AD process of the ADM1 for complex substrates such as MSW16 

using COD-based state variables (modified from Batstone et al. 2002) 

3.2.2 Biochemical processes 

The ADM1 consists of 19 biochemical processes which describe the five main degradation processes 

of AD: (1) disintegration, (2) hydrolysis, (3) acidogenesis, (4) acetogenesis and (5) methanogenesis as 

previously mentioned in chapter 2. Disintegration and hydrolysis are extracellular processes whereas 

the remaining three main processes are intracellular. As described by Batstone et al. (2002) the 

extracellular processes are modeled by first order kinetics whereas intracellular processes are modeled 

by Monod-type kinetics to describe substrate uptake as well as bacterial growth and decay. 

Furthermore, intracellular kinetics of biochemical processes is affected by inhibition. Overall, five 
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different inhibition functions are implemented in the ADM1; two functions modeling pH inhibition 

and three for the modeling of ammonia as well as butyrate and valerate inhibition. 

Table 3-4 gives a survey of all biochemical processes and the corresponding kinetics, which are 

influenced by the inhibition functions mentioned in Table 3-5. In turn, the complete reaction rates for 

each state variable consist of several biochemical processes whose effect is determined by 

stoichiometric model coefficients. (Table 3-6 and Table 3-7) These stoichiometric coefficients need to 

be defined for each process and state variable based on literature or measurement values. Due to the 

large amount of stoichiometric coefficients per biochemical reaction and state variable a matrix 

representation called Peterson matrix (Peterson 1965) is used to give a comprehensive overview of the 

complete ADM1 implementation. Thus, this form of model presentation is commonly used. 

The Peterson matrices for the soluble and particulate state variables are given in Annex I of this thesis. 

Table 3-4: Processes and corresponding reaction rates of the ADM1 

Process Reaction rates 

1p : Disintegration dis ck X   (3.1) 

2p : Hydrolysis of Carbohydrates ,hyd ch chk X   (3.2) 

3p : Hydrolysis of Proteins ,hyd pr prk X   (3.3) 

4p : Hydrolysis of Lipids ,hyd li lik X   (3.4) 

5p : Uptake of Sugars 
, 1

su
m su su

S su

S
k X I

K S
  (3.5) 

6p : Uptake of Amino Acids 
, 1

aa
m aa aa

S aa

S
k X I

K S
  (3.6) 

7p : Uptake of LCFA 
, 2

fa

m fa fa
S fa

S
k X I

K S
  (3.7) 

8p : Uptake of Valerate 
, 4 4 2

1

1

va
m c c

S va bu va

S
k X I

K S S S 
 (3.8) 

9p : Uptake of Butyrate 
, 4 4 2

1

1

bu
m c c

S bu va bu

S
k X I

K S S S 
 (3.9) 

10p : Uptake of Propionate 
, 2

pro

m pro pro
S pro

S
k X I

K S
  (3.10) 

11p : Uptake of Acetate 
, 3

ac
m ac ac

S ac

S
k X I

K S
  (3.11) 

12p : Uptake of Hydrogen 2
, 2 2 1

2

h
m h h

S h

S
k X I

K S
  (3.12) 

13p : Decay of suX  , sudec X suk X   (3.13) 
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14p : Decay of aaX  , aadec X aak X   (3.14) 

15p : Decay of faX  , fadec X fak X   (3.15) 

16p : Decay of 4cX  
4, 4cdec X ck X   (3.16) 

17p : Decay of proX  , prodec X prok X   (3.17) 

18p : Decay of acX  , acdec X ack X   (3.18) 

19p : Decay of 2hX  
2, 2hdec X hk X   (3.19) 

1I  
_1 4pH nhI I   (3.20) 

2I  
2 4_1 4 ,pH nh h cI I I   (3.21) 

3I  
3_ 2 4pH nh nhI I I   (3.22) 

Table 3-5: Inhibition functions implemented in the ADM1 

Inhibiting parameter Functional description 

pH (form 1) 0.5( )

_1 ( ) ( )

1 2 10

1 10 10

LL UL

UL LL

pH pH

pH pH pH pH pH
I



 

 


 
  (3.23) 

pH (form 2) 
2

_ 2

exp 3

1

UL

UL LL

ULpH

UL

pH pH

pH pH
pH pHI

pH pH


  
          



 

 (3.24) 

Ammonia 
3

3

3

1

1

nh
I nh

I nh

I
S

K





  (3.25) 

Hydrogen and butyrate, 

valerate inhibition 
2 4

2

2 4

,

1

1

h c
h

I h c

I
S

K





  (3.26) 

Nitrogen (mainly 4NH ) 
4

4

4

1

1

nh
I nh

I nh

I
K

S





  (3.27) 
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Table 3-6: Reaction rates for the soluble ADM1 state variables 

Monosaccharides 

(kgCOD m
-3

) 
 1 , 4 51su

fa li

dS
p f p p

dt
      (3.28) 

Amino acids 

(kgCOD m
-3

) 
3 6

aadS
p p

dt
     (3.29) 

LCFA 

(kgCOD m
-3

) 
, 4 7

fa

fa li

dS
f p p

dt
     (3.30) 

Total valerate 

(kgCOD m
-3

) 
  , 6 81va

aa va aa

dS
Y f p p

dt
     (3.31) 

Total butyrate 

(kgCOD m
-3

) 
   , 5 , 6 91 1bu

su bu su aa bu aa

dS
Y f p Y f p p

dt
       (3.32) 

Total propionate 

(kgCOD m
-3

) 
     , 5 , 6 4 8 101 1 1 0.54

pro

su pro su aa pro aa c

dS
Y f p Y f p Y p p

dt
        (3.33) 

Total acetate 

(kgCOD m
-3

) 

     
     

, 5 , 6 7

4 8 4 9 10 11

1 1 1 0.7

1 0.31 1 0.8 1 0.57

ac
su ac su aa ac aa fa

c c pro

dS
Y f p Y f p Y p

dt
Y p Y p Y p p

     

      

 (3.34) 

Hydrogen gas 

(kgCOD m
-3

) 

     
     

2
2, 5 2, 6 7

4 8 4 9 10 12

1 1 1 0.3

1 0.15 1 0.2 1 0.43

h
su h su aa h aa fa

c c pro

dS
Y f p Y f p Y p

dt
Y p Y p Y p p

     

      

 (3.35) 

Methane gas 

(kgCOD m
-3

) 
   4

11 2 121 1ch
ac h

dS
Y p Y p

dt
      (3.36) 

Inorganic Carbon 

(kmoleC m
-3

) 

2
2, 1 2, 4 2, 5 2, 6

2, 7 2, 8 2, 9 2, 10

2, 11 2, 2 12 2, 13 2, 14

2, 15 2, 16 2, 17 2, 18 2, 19

co
co xc co xli co su co aa

co fa co va co bu co pro

co ac co h co xb co xb

co xb co xb co xb co xb co xb

dS
f p f p f p f p

dt

f p f p f p f p

f p f p f p f p

f p f p f p f p f p

   

   

   

    

 (3.37) 

Inorganic 

Nitrogen 

(kmoleN m
-3

) 

 4
5 6 7 4 8

4 9 10 11 2 12

sin, 13 sin, 14 sin, 15 sin, 16 sin, 17

sin, 18 sin, 19

nh
su bac aa aa bac fa bac c bac

c bac pro bac ac bac h bac

xb xb xb xb xb

xb xb

dS
Y N p N Y N p Y N p Y N p

dt

Y N p Y N p Y N p Y N p

f p f p f p f p f p

f p f p

     

   

    

 

 (3.38) 

Soluble inerts 

(kgCOD m
-3

) 
1I C

I
S X

dS
f p

dt
   (3.39) 
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Table 3-7: Reaction rates for the particulate ADM1 state variables 

Composites 

(kgCOD m
-3

) 
1 13 14 15 16 17 18 19

CdX
p p p p p p p p

dt
          (3.40) 

Carbohydrates 

(kgCOD m
-3

) 
, 1 2 , 13 , 14 , 15

, 16 , 17 , 18 , 19

C

ch
ch X ch xb ch xb ch xb

ch xb ch xb ch xb ch xb

dX
f p p f p f p f p

dt

f p f p f p f p

    

   
 (3.41) 

Proteins 

(kgCOD m
-3

) 
, 1 3 , 13 , 14 , 15

, 16 , 17 , 18 , 19

C

pr

pr X pr xb pr xb pr xb

pr xb pr xb pr xb pr xb

dX
f p p f p f p f p

dt

f p f p f p f p

    

   
 (3.42) 

Lipids 

(kgCOD m
-3

) 
, 1 4 , 13 , 14 , 15

, 16 , 17 , 18 , 19

C

li
li X li xb li xb li xb

li xb li xb li xb li xb

dX
f p p f p f p f p

dt

f p f p f p f p

    

   
 (3.43) 

Sugar degraders 

(kgCOD m
-3

) 
5 13

su
su

dX
Y p p

dt
    (3.44) 

Amino acid degraders 

(kgCOD m
-3

) 
6 14

aa
aa

dX
Y p p

dt
    (3.45) 

LCFA degraders 

(kgCOD m
-3

) 
7 15

fa

fa

dX
Y p p

dt
    (3.46)

 

Valerate and butyrate 

degraders (kgCOD m
-3

) 

4
4 8 4 9 16

c
c c

dX
Y p Y p p

dt
     (3.47) 

Propionate degraders 

(kgCOD m
-3

) 
10 17

pro

pro

dX
Y p p

dt
    (3.48) 

Acetate degraders 

(kgCOD m
-3

) 
11 18

ac
ac

dX
Y p p

dt
    (3.49) 

Hydrogen degraders 

(kgCOD m
-3

) 

2
2 12 19

h
h

dX
Y p p

dt
    (3.50) 

Particulate inerts 

(kgCOD m
-3

) 
, 1I C

I
X X

dX
f p

dt
   (3.51) 

 

3.2.3 Physico-chemical processes 

The physico-chemical processes make up the second set of equations which are used in the ADM1. 

For two main reasons, these processes are particularly significant for the modeling of AD systems. 

Firstly, many of the inhibitors introduced in Table 3-5 rely on the correct implementation of physico-

chemical processes. pH, the acid-base equilibrium as well as the concentration of soluble gas 

compounds in the liquid phase of the bioreactor are calculated based on physico-chemical principles. 

Secondly, significant state variables such as biogas flow and carbon buffer depend on physico-

chemical processes. 
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Overall, two major types of physico-chemical reactions are implemented within the ADM1. 

(1) Liquid-liquid processes (mainly acid-base reactions) 

(2) Liquid-gas processes (liquid-gas transfer of the biogas compounds) 

In the following two subsections the acid-base reactions and the liquid-gas transfer of the biogas 

compounds are briefly explained. 

3.2.3.1 Acid-base reactions 

One of the main liquid-liquid processes is the acid-base equilibrium. Through ion association and 

dissociation with hydrogen ( H 
) and hydroxide ( OH  ) ions acid-base pairs react with each other in 

order to reach an equilibrium. The magnitude of these acid-base reactions is determined by 

dissociation constants ( aK ) for each acid-base pair of the AD process. Large positive dissociation 

constants are associated with weak acids where the degree of dissociation is very small whereas low 

positive dissociation constants are characteristic of strong acids whose dissociation is almost complete. 

As the range of values for aK  is extensive, the negative logarithm of the base 10 is commonly used to 

scale down the range of aK . Thus, aK  is mostly denoted as 10loga apK K  . Furthermore, 

dissociation constant values are strongly temperature dependent which is why temperature 

compensation is necessary for the dissociation constants of some acid-base equilibria. In the ADM1, 

temperature compensation is implemented for the acid-base pairs 2CO / 3HCO
 and 4NH 

/ 3NH . Due 

to the fact that the apK  values for organic acids remain mostly constant within the common 

temperature range of AD processes (273 K – 333 K), temperature compensation is neglected in this 

case. The importance of these acid-base reactions and the respective dissociation constants becomes 

obvious in the calculation of the pH value, which is the negative logarithm to the base 10 of the 

hydrogen protons, 10logpH H   . Thus, a correct calculation of the hydrogen proton concentration 

in the liquid phase mainly depends on the acid-base reactions and the apK  values.  

Table 3-8: Acid dissociation constants for AD acid-base reactions (Batstone et al. 2002) 

Acid/base pair apK  (298 K) 

2CO / 3HCO
  6.35 

4NH 
/ 3NH  9.25 

2H S / HS
 7.05 

2H O /  OH H   14.00 

HAc / Ac  4.76 

HPr /
-Pr  4.88 

n HBu / Bu
 4.82 

i HBu / Bu
 4.86 

n HVa /Va
 4.86 

i HVa /Va
 4.78 
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3.2.3.2 Liquid-gas transfer 

The liquid-gas transfer is important for modeling the biogas flux of an AD system as well as the 

concentration of gas components in both, the liquid and the gas phase. In the ADM1 implementation 

used, three main gas components are considered in the liquid-gas transfer: 2H , 2CO  and 4CH . The 

transfers of 3NH  as well as of 2H S  were not considered in the ADM1. In particular, 2H S  production 

is not modeled as sulfate reduction is not included in the biochemical processes. Although, dissolved 

2H S  is a strong inhibitor in the liquid phase of the AD process and it also causes problems for the 

cogeneration units in the gas phase. Nevertheless, in practice this does not have an impact on the 

modeling of ABPs because 2H S  production is normally controlled by regular dosage of compressed 

air to the liquid phase. 

The transfer of gas between the liquid and the gas phase mainly depends on the gas concentration in 

the liquid phase ( ,liq iS ) and the corresponding partial pressure of the gas phase ( ,gas ip ). Based on 

Henry’s law a steady state is achieved between both phases, which can be described for each biogas 

component i  by  

 , , 0H gas i liq iK p S  . (3.52) 

Unfortunately, the solubility of each gas component is different which affects the liquid-gas transfer 

and the transfer of relatively insoluble gases such as 2H  and 4CH  which is also inhibited by a liquid 

film surrounding the gas bubbles. However, 2CO  has a high solubility, which is about 100 times 

higher than the solubility of 4CH . Therefore, a mass transfer coefficient 
1( )Lk ms  is introduced 

which, if multiplied by the specific transfer area 
2 3( )a m m

 of a gas bubble, regulates the specific 

mass transfer rate ,T i  for each gas i . 

  , , ,T i L liq i H gas ik a S K p     (3.53) 

Due to the fact that gas concentrations in the ADM1 are modeled by COD-based state variables the 

Henry constant HK  needs to be corrected by a factor 16 and 64 for 2H  and 2CO  respectively. 
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3.3 Design and calibration of an AD model for an ABP 

The design and calibration of an AD model for the full-scale Sunderhook ABP provides the basis for 

ABP optimization, which is described in chapter 5. Thus, accurate modeling and calibration is 

important to achieve realistic substrate feed optimization results which are transferable to full-scale 

plant operation. Although, high model accuracy is a priority, calibration and substrate characterization 

was based on commonly available measurement and plant parameters. This results in a slight decrease 

of model accuracy but also guarantees that model calibration and substrate characterization can be 

performed relatively easily for full-scale plants without requiring extensive laboratory analysis in 

addition to available measurement and performance values. Due to the fact, that the goal of the 

developed substrate feed optimization is to be applicable to full-scale ABPs, the underlying simulation 

model is a compromise between model accuracy and practicability. 

The comprehensive simulation model for the Sunderhook ABP and its calibration will be described in 

the following two sections. 

3.3.1 Design of the simulation model for the Sunderhook ABP  

The Sunderhook ABP is a typical agricultural biogas plant with a power production of 750 kW and 

two digesters (one primary and one secondary digester). Due to the fact, that remuneration rates for 

electricity are higher if energy crops and manure are used for AD, the substrate feed of the ABP 

Sunderhook consists mainly of maize, grass silage and bull manure. 

Table 3-9: Characteristics of the ABP Sunderhook 

 Sunderhook ABP  

Substrate feed 

maize 

grass silage 

oat 

rye 

bull manure 

Digesters 

primary digester - 3,190 m³ 

secondary digester – 3,435 m³ 

final storage tank – 3,435 m³ 

Measurement systems 

solid substrate feed (t/d) 

liquid substrate feed (m³/d) 

digester temperature (°C) 

gas analysis (CH4, H2S, H2, O2) 

pH, ORP and TS online probes 

power and heat production (kWh) 

Energy production 750 kWel and 790 kWth 

Location Gronau-Epe (GERMANY) 
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Table 3-9 gives an overview of the characteristics of the Sunderhook ABP whereas the plant’s layout 

and pictures are shown in Figure 3-2 and Figure 3-3 respectively. 

 

Figure 3-2: Layout of the Sunderhook ABP 

 

  

Figure 3-3: Sunderhook ABP - a. primary digester with system for solid substrate input, b. primary digester, c. drive-

in silo for maize and rye 

Based on information about digester sizes and temperatures, electrical and thermal efficiency of the 

cogeneration units as well as pump characteristics, the simulation model of the Sunderhook ABP was 

implemented in Matlab
®
/Simulink using a specially designed Biogas toolbox. This toolbox was 

developed at the Cologne University of Applied Sciences (Gaida et al. 2011) over several years based 

a. b. 

c. 
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on an existing AD toolbox from the ifak system GmbH called SIMBA
®17

. Advantages of this toolbox 

are: (1) the fast simulation of complex models due to precompiled model blocks programmed in C, (2) 

compatibility with 64 bit operating systems for faster simulation, and, (3) a substantial toolbox for the 

optimization and control of biogas plants. To allow for an easy and fast setup of ABP simulation 

models, the Simulink model is automatically generated based on information which is entered via 

several GUIs for plant setup, substrate feed and flow paths. Thus, errors in model setup and 

configuration are minimized. Figure 3-4 shows the GUIs used to define plant structure and to 

characterize the substrates feed of the ABP, whereas Figure 3-5 shows the complete Matlab
®
/Simulink 

simulation model of the Sunderhook ABP. 

 

 

Figure 3-4: GUIs for ABP model design. a. GUI to define plant structure and components, b. substrate 

characterization 

                                                      
17

 http://simba.ifak.eu/ 

a. 

b. 



Simulation, optimisation and control of agricultural biogas plants 

3. Modeling and Simulation of Biogas Plants 

 

  
50 

 

  

 

Figure 3-5: Matlab implementation of the simulation model of the Sunderhook ABP based on the ADM1 
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3.3.2 Calibration of the Sunderhook ABP simulation model 

As a proper calibration of the simulation model is needed to allow for good and valid optimization 

results, two aspects need to be considered for model calibration: (1) substrate characterization, and,  

(2) adaptation of kinetic model parameters. 

3.3.2.1 Substrate characterization 

Substrate characterization for the ADM1 requires the determination of degradable and non-degradable 

COD fractions which were previously described in Figure 3-1 and Table 3-3. Unfortunately, the 

measurement of the total totCOD  is difficult (Buffière et al. 2006). One the one hand, online 

measurement of totCOD  is costly and highly inaccurate due to the high TS content of the substrates; 

and on the other side laboratory analysis requires extensive homogenization of the substrate to obtain 

representative results. Thus, alternatives are required, which allow a calculation of the needed totCOD  

and its degradable and non-degradable fractions based on standard analytical substrate parameters. 

Such an alternative was presented by Koch et al. (2009) who calculated the ThCOD  based on the 

extended Weender analysis (Basler 1976). The Weender analysis thoroughly analyses the degradable 

and non-degradable VS fractions by dividing VS into raw protein ( RP ), raw lipid ( RL ) as well as 

carbohydrates consisting of the sum of raw fibre ( RF ) and nitrogen free extracts ( NfE ). The 

carbohydrates are then subdivided into starch which is calculated carbohydrates minus neutral 

detergent fibres ( NDF ), cellulose consisting of acid detergent fibre ( ADF ) minus acid detergent 

lignin ( ADL ) as well as hemicellulose ( NDF ADF ) and lignin ( ADL ) (Figure 3-6). 

 

Figure 3-6: Substrate characterization by extended Weender analysis from Koch et al. (2010) 
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The advantage of the Weender analysis is that the COD-based fractions for proteins, lipids and 

carbohydrates of the ADM1 can be easily and accurately determined. Thus, the total amount of 

degradable substrate CX  can be calculated based on Weender fractions, TS, substrate density s  and 

ThCOD  of proteins, lipids, carbohydrates and lignin. 

 
3pr li

C s COD
ch I

RP ThCOD RL ThCOD
X TS kg m

RF NfE ADL ThCOD ADL ThCOD
     

         
  (Koch et al. 2010) (3.54) 

The ThCOD  of the four fractions of (3.54) is calculated based on the basic chemical formulas of 

proteins ( 5 7 2C H O N ), lipids ( 57 104 6C H O ), carbohydrates ( 6 10 5( )nC H O ) and lignin ( 11 14 6C H O ) as 

defined by Angelidaki and Sanders (2004) and Koch et al. (2010). The formula for the ThCOD  

developed by Koch et al. (2010) is given below. 

 2
16(2 0.5( 3 ) )

12 16 14
a b c d

O

C H O N

ga b d c
ThCOD

a b c d g

   
  

     

  (3.55) 

To calculate the COD fractions ,pr liX X  and chX  from CX , constant values determining the 

percentages of proteins ( ,pr xcf ), lipids ( ,li xcf ) and carbohydrates ( ,ch xcf ) are defined based on the 

ratios of the respective Weender parameters and the VS concentration in the substrate. The lignin 

fraction of CX  is considered to be completely inert and thus added to IX . 

 

,

,

,

pr xc

li xc

ch xc

RP
f

VS

RL
f

VS

RF NfE ADL
f

VS





 


 (3.56) 

In the case of the simulation model of the Sunderhook ABP, results from the Weender analysis and 

actual COD laboratory analysis from each substrate were used to achieve a comprehensive level of 

substrate characterization and to validate ThCOD  and actual COD concentrations of the substrate. 

Overall, seven substrates which are or were used at the Sunderhook ABP were characterized. These 

substrates are maize, bull manure, green rye, grass silage, oat, bull manure (solid phase) and silo juice 

from the drive-in silos. In addition to all biological and physico-chemical substrate parameters, the 

market price of the substrate was also considered within the simulation model. Although not necessary 

for the simulation itself, it is important for the optimization of the substrate feed of the Sunderhook 

ABP as it may be more economical to replace costly substrates with cheaper ones. 
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Table 3-10: Substrate parameters used for substrate characterization of the Sunderhook ABP simulation model 

 maize bull 

manure  

green 

rye 

grass 

silage 

oat bull manure 

(solid phase)  

silo 

sugar 

juice 

pH value 3.8 7.2 4.5 4.08 4 8.8 3.8 

COD [g/l] 375 35 144 117.3 100 91.6 312.3 

COD filtered [g/l] 112.5 27.3 50.4 29.3 30 37.6 296.7 

NH4-N [g/l] 0.2 1.7 1.71 0.28 1.2 1.3 0.5 

TS [%] 25.2 8.9 24.03 22.6 34 14.3 5.1 

VS/TS [%] 93.2 82.4 93.2 88.7 80.7 85.8 83.6 

Temperature [°C] 20 24 18 18 18 24 20 

Density [g/m³] 937,000 900,000 951,610 844,134 864,000 950,000 950,000 

Acetic acid [mg/l] 2.2 4.5 1 1 1 1 2.2 

Propionic acid 

[mg/l] 

4 2.3 0.5 0.5 0.5 0.5 4 

Butanoic acid [mg/l] 1 0.2 0.1 0.1 0.1 0.1 1 

Alkalinity [mol/m³] 2 2 5 5 5 2 5 

RP [g/kg] 87 122 107 158.9 112 24 87 

RF [g/kg] 181 177.9 374 281.6 102 57 181 

RL [g/kg] 24 43 20 36.6 45 13 24 

Price [€/m³] 40 9.31 30 25.43 10 7 0 

 

3.3.2.2 Adaptation of kinetic model parameters 

Following a proper substrate characterization, model parameters need to be adapted for each 

simulation model of a full-scale ABP to adjust for the specific biological activity of each AD process. 

Due to the high number of model parameters included in the ADM1, model calibration is time-

consuming and complex. Furthermore, values of many sensitive model parameters range over several 

orders of magnitude which makes model calibration even harder (see Table 3-11). The approach 

developed by Wichern et al. (2009) offers an alternative to extensive model calibration. The results of 

a sensitivity analysis show that in particular the disintegration rate disk , hydrolysis parameters ,hyd prk , 

,hyd lik  and ,hyd chk  as well as the Monod maximum specific uptake rates for propionate acetogenesis  

( ,m prok ) and aceticlastic methanogenesis ( ,m ack ) are sensitive model parameters. Thus, these 

parameters were optimized during model calibration. Furthermore, the yield uptake rates for sugars  

( suY ), amino acids ( aaY ) and acetate ( acY ) were slightly changed to improve model performance. The 

adaptation of the ADM1 model parameters was performed based on literature values and manual 

optimization within the ranges given in Table 3-11. The following table (Table 3-11) shows the 

calibrated ADM1 model parameters and their range as given by Batstone et al. (2002). 
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Table 3-11: Kinetic model parameters after calibration and their range as defined by Batstone et al. (2002) 

kinetic model 

parameters 

value 

after calibration 

min 

– 

literature value 

max 

– 

literature value 

disk [ 1d  ] 0.25 0.0041 1 

,hyd prk [ 1d  ] 10 0.2 10 

,hyd lik [ 1d  ] 10 0.1 10 

,hyd chk [ 1d  ] 10 0.25 10 

,m prok  

[ 1 1COD COD d  ] 

4 0.16 141 

,m ack  

[ 1 1COD COD d  ] 

3.85 0.14 52 

suY [
1

X SCOD COD
] 0.1 0.1 0.17 

aaY [
1

X SCOD COD
] 0.08 0.058 0.15 

acY [
1

X SCOD COD
] 0.05 0.025 0.076 

 

3.3.3 Calibration results 

The overall goal of the calibration of the Sunderhook ABP model was to perform model calibration 

based on online measurements that are commonly available at most ABPs to achieve high 

practicability. Therefore, the online measurement parameters total biogas production ( biogasQ ), 

methane concentration of the biogas ( 4CH ) and total electricity production ( elP ) were used for model 

calibration. To properly evaluate model performance, the mean absolute percentage error (MAPE) and 

the root mean square percentage error (RMSPE) were calculated between the simulated and measured 

values. Due to the high order of magnitude of biogasQ  and elP , these percentage based errors were 

preferred over the MAE and RMSE methods. 

 
1

100%
N

n n

nn

m s
MAPE

N s


    (3.57) 

 

2

1

1
100%

N
n n

nn

m s
RMSPE

N s

 
   

 
  , (3.58) 

where nm  and ns  denote the measured and simulated parameter values, respectively.  
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Figure 3-7: Model performance of the Sunderhook ABP simulation model 

c. 

a. 

b. 
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Figure 3-7 shows the comparison of simulated and measured process parameters during the complete 

nine month calibration period. It is obvious that measured and simulated values are similar but still 

differ significantly from each other from time to time. The main issue of simulation model validation 

against full-scale plant data becomes clear. It is a fact that some disturbances occurring at full-scale 

plants cannot be captured with a simulation model as a simulation model is always a compromise 

between model complexity and practicability. The main disturbances are caused by measurement 

errors of the online-measurement systems and variations in quality of the input substrates. Theses 

quality changes occur due to rain which strongly affects the TS content of maize in the silo and 

different degrees of ensiling throughout the whole silo. Due to the relatively low number of substrate 

laboratory analysis once a month or even every two months, these changes in substrate characteristics 

cannot be detected. Therefore, many periods of the whole calibration period were not considered for 

the evaluation of the Sunderhook ABP simulation model. A region, where measurement data quality 

was good due to low drift and regular maintenance was used to evaluate model performance using the 

aforementioned performance measures. In this region, which spanned from April 2009 to mid-May 

2009, a good agreement was achieved between simulated and measured data was achieved. 

The percentage error measures prove that the error is well within the acceptance range with values 

between four and seven percent, which is why calibration of the Sunderhook ABP simulation model is 

considered to be accurate and practicable enough to be used for the substrate feed optimization of 

biogas plants. In general, errors below 10% for a simulation model based on measurement data from a 

full-scale ABP are considered to be acceptable for use with optimization and control methods. 

Table 3-12: MAPE and RMSPE errors for the comparison of simulated and measured process data 

Process parameter MAPE [%] RMSPE [%] 

biogasQ  6.4 7.1 

elP  7.5 7.1 

4CH  4.0 4.8 
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3.4 Conclusion on the modeling and simulation of ABPs 

This chapter about modeling and simulation of biogas plants presented the basis for the simulation 

based optimization of biogas plants by (1) describing the history of AD process modeling and its 

applications, (2) giving a full description of the ADM1, which will be used for substrate feed 

optimization in chapter 5, and, (3) providing an example for modeling and calibration of a full-scale 

ABP. 

These contributions illustrate that modeling and simulation of AD processes is common for lab-scale 

applications but very rare for full-scale AD plants. The main reason for this is high model complexity 

due to many biochemical reactions and even more model coefficients and kinetic parameters. This 

makes model design, substrate characterization and model calibration extremely difficult. Therefore, 

manageable methods for model design and calibration are needed, which were presented in section 

3.3. The biogas toolbox developed by the Cologne University of Applied Sciences (Gaida et al. 2011) 

facilitates model design and simulation by the centralized configuration of the complete ABP using 

several GUIs for substrate feed characterization and plant design. 

Furthermore, calibration of AD models, requiring proper substrate characterization and adaptation of 

kinetic model parameters, was explained in detail in sections 3.3.2 and 3.3.3. A fairly new method for 

substrate characterization by Koch et al. (2010) was implemented, which uses substrate parameters 

that are commonly measured together with the extended Weender analysis. Thus, complex laboratory 

analysis can be reduced to a minimum, which not only reduces costs but also allows easier and faster 

substrate characterization for ABP modeling and simulation. The adaptation of kinetic model 

parameters was performed based on ADM1 standard parameters and literature values based on 

experiments and experience with ABP modeling. 

The overall calibration results show that sufficient agreement between simulation and measured 

process parameters was achieved, so that the Sunderhook ABP simulation model can be used for 

optimization purposes in combination with advanced CI and surrogate modeling methods. 

Nevertheless, the issues involved with modeling and simulation of full-scale ABPs became clear in the 

calibration results presented in section 3.3.3. Thus, in this case, perfect calibration of simulation 

models is very hard to achieve as full-scale plant operation is affected by many different kinds of 

disturbances and the degree of instrumentation and accuracy of online measurement values is normally 

low. Therefore, simulation model design and calibration always needs to be a compromise between 

accuracy and practicability. 
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4 Optimization methodologyEQUATION CHAPTER 4 SECTION 1 

The optimization of industrial processes, component designs and simulation models is often very 

complex and time-consuming, in particular, if these optimization problems are of high dimensionality 

and nonlinear (Simpson et. al 2001, Huang et. al 2006). Nevertheless, optimization is necessary and 

widely applied to tap the full potential of industrial processes, to choose optimal design parameters 

and to calibrate and optimize simulation parameters (Yusup et. al 2012, Chandra Mohan and Baskaran 

2012). Unfortunately, in most real-world engineering applications the limiting factor for the 

application of existing optimization methods is the evaluation of so-called cost or fitness functions, 

which is computationally intensive (Jin et. al 2001). These fitness functions typically involve complex 

engineering simulations from full-scale processes or designs, for example CAD (Computer Aided 

Design) models of cars, planes and computer chips or detailed dynamic simulation models of process 

plants such as refineries, wastewater treatment plants and biogas plants. These engineering simulations 

are often slow and take from several seconds up to several hours to complete for a given set of 

parameters, which makes an optimization using such simulation models in a fitness function very 

inefficient. 

This means, that given a fitness function ( )J x , which is computationally expensive and where x  is 

the set of parameters to be optimized, the common approach is to seek to estimate ( )J x  with a 

surrogate model ˆ( )J x , estimated on set samples of  , ( )Jx x , where ˆ( )J x  is efficient to compute 

once estimated. These surrogate models Ĵ  are also often called metamodels and there exists a wide 

variety of different methods to build these models. The main advantage of using metamodels is their 

short execution time in comparison to the true fitness function J . 

When it comes to the optimization of biogas plants, the optimization problem is very similar. The 

overall goal is to optimize the substrate feed to biogas plants in order to tap their full potential in terms 

of biogas/energy production, biogas quality and costs. To do this, a dynamic nonlinear simulation 

model of a biogas plant, which uses the previously explained ADM1, is used to evaluate plant 

performance for different substrate combinations and compositions. Due to its complexity, an 

optimization of the substrate feed using the true fitness function, which involves computing the ADM1 

simulation model, is very time-consuming and takes from several hours to several days depending on 

the design parameters of the optimization method and the number of substrates that need to be 

optimized. To speed up the optimization process two novel and similar global optimization methods 

using sequential Kriging surrogate models (S-KSM) and Particle Swarm Optimization (PSO) (Clerc 

2006) were developed and are introduced in this chapter. 
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Over all, there are two major contributions in this chapter: 

1. The development of two novel Kriging based global optimization methods and 

2. an evaluation of the performance of these two methods relative to the original PSO algorithm 

on four test problems. 

The outline of this chapter is as follows. Section 1 gives a short survey of existing and frequently used 

metamodeling methods and then focuses on the Kriging approximation, which was chosen as the 

metamodeling method in this work. The PSO optimization method and the selection of its parameters 

are explained in Section 2. Section 3 then introduces two novel optimization methods using PSO and 

two different methods to sequentially update the Kriging surrogate model. Method I uses latin 

hypercube (LH) sampling to update the Kriging model (LH-based S-KSM) and method II uses a 

separate PSO to update the Kriging model with new positions of the PSO particles (PSO-based S-

KSM). The last section investigates the performance of the two novel optimization methods on four 

test problems and compares the results to conventional PSO optimization. 

4.1 Kriging approximation 

Kriging as a method for approximation was developed by the engineer Danie G. Krige from South 

Africa in the early 1950s but it was not published until a few years later by Matheron (1963) who 

mathematically formulated the method. Further descriptions of Kriging were given by Sacks et. al 

(1989) and Booker et. al (1998). 

Nevertheless, Kriging is just one of the possible methods for metamodeling. The most common are: 

 Polynomial Regression (PR) (Stigler 1974) 

 Response Surface Methodology (RSM) (Myers and Montgomery 1995, Box et. al 2005) 

 Kriging (see above) 

 Artificial Neural Networks (ANN) (Smith 1993, Cheng and Titterington 1994) 

 Multivariate Adaptive Regression Splines (MARS) (Friedmann 1991) 

 Radial Basis Function Approximations (RBFA) (Hardy 1971, Dyn et. al 1986) 

In this case Kriging was chosen because a good metamodel can be achieved even with a small amount 

of data samples and because it is known to deliver good results for nonlinear problems (Jin et. al 2001, 

Simpson et. al 2001). This does not mean that the other methods are worse than Kriging for the 

construction of metamodels. In general optimization using a surrogate model, which is introduced in 

section 4.3, is just as valid with the use of any of the other methods as it is with Kriging. As such, the 

novel contributions in this chapter relate specifically to the method of generating new data samples to 

update the metamodels. 
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4.1.1 Literature review on Kriging 

Although developed in the early 1960s, it was relatively late before Kriging was used for the 

construction of metamodels for real-world engineering applications. One of the first papers on the 

application of ordinary Kriging is from Currin et. al (1988), who used a Bayesian approach. Later on 

Kriging was used for many engineering applications (Martin and Simpson 2003, 2005). For example, 

Gao and Wang (2008) used a Kriging model to minimize warpage deformations in injection molding 

and Kim and Shin (2008) optimized the shape of a staggered dimpled surface to enhance turbulent 

heat transfer in a rectangular channel. Other applications include aerostructural design optimization 

(Lam et. al 2009), prediction of NOx concentration in an air quality monitoring network (Kassteele et. 

al 2009), aerodynamic design of a low pressure turbine exhaust hood (Wang et. al 2010) and robust 

design of a bearingless rotation motor (Seo et. al 2011). 

In addition to the mere direct application of Kriging to engineering applications, Kriging has also been 

benchmarked against other metamodeling methods and it has been further adapted to enhance 

surrogate model performance. Lefèbvre et. al (1996) investigated the use of Kriging for two test cases 

from the field of electromagnetics. The results showed that an adequate prediction and estimation of 

model accuracy is possible with Kriging, although the Kriging model does not have any kind of 

phenomenological background. Furthermore, it was shown that the parameter   of the correlation 

function (introduced later) is one of the most important parameters when it comes to achieving good 

model accuracy. In case of a small   the sample points are not linked to each other, whereas a large   

closely links the values of the sample points resulting in a very smooth interpolation. This effect has 

been intensively investigated by Armstrong and Wackernagel (1988) and Simpson et. al (2001) and 

eventually confirmed by Lin et. al (2004). Lefèbvre used a constant regression model and a gaussian 

covariance function. One of the first comprehensive comparative studies of different metamodeling 

methods was performed by Jin et. al (2001). In total four metamodeling methods were investigated, 

namely PR, Kriging, MARS and RBFA. The most important influencing factors were found to be 

nonlinearity and dimensionality of the underlying simulation as well as the data sampling technique 

used to choose the sample points for the metamodel and the internal parameter settings of the 

respective metamodeling method. Kriging was found to be best for large-scale and low order nonlinear 

problems, although some disadvantages of Kriging are mentioned as well. In general, metamodel 

construction is time-consuming in the case of high sample numbers and high dimensionality of the 

underlying simulation, which was also proven by Gano et. al (2006). A direct comparison of RSM and 

Kriging made by Simpson et. al (2001) and Jin et. al (2003) shows that both methods deliver similar 

results. They are both well-suited for deterministic simulations and problems with high 

dimensionality, though Kriging cannot handle problems with more than 50 variables. A good review 

of all the applications of Kriging metamodels and the common issues in implementation and use are 

presented by Kleijnen (2009). In Kleijnen’s paper the well-known Kriging Matlab toolbox DACE 
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developed by Lophaven et. al (2002) is used to build Kriging metamodels. The same toolbox is used 

for Kriging metamodels in the following sections. One important aspect of the DACE toolbox is the 

fact that it requires lower and upper limits to be defined for   the covariance function parameters, 

which have proven to be difficult to specify in practice (Kleijnen 2009). 

Due to the rapidly increasing computation time of Kriging models in relation to the number of 

samples, Sequential Kriging Metamodels (SKM) were introduced by Sasena et. al (2002), Huang 

(2006) and Gano (2006). The advantage of these SKM-methods is that model accuracy can be 

substantially improved without significantly increasing the computation time of the Kriging model. 

Sasena et. al (2002) introduced a novel algorithm called Efficient Global Optimization (EGO) that 

uses kriging metamodels. Several sampling criteria to update the Kriging model are reviewed. The 

results show, that the sampling criterion for each Kriging model update has a strong influence on how 

efficiently and accurately EGO locates the optimum. EGO was then further developed by Huang 

(2006), who used a novel function to estimate the expected improvement of the metamodel for new 

sample points. It is clearly stated that SKM, are in general only suitable for expensive engineering 

simulations and if small sample numbers are used. The maximum number of dimensions tried by 

Huang (2006) is ten. Two other sequential update strategies for Kriging metamodels were developed 

by Gano (2006) who introduced a so-called Trust Region and likelihood ratio Metamodel Update 

Management Scheme (TR-MUMS and L-MUMS). These update strategies determine whether a new 

calculation of the Kriging model parameters is necessary or not, based on the ratio of likelihood values 

or the trust region ratio. Thus, Kriging model parameters are only updated if absolutely necessary, 

eventually resulting in significant savings in computation time. 

All in all, it can be stated that Kriging has been used as a metamodel for the optimization of many 

engineering and design applications over the last decade. In particular, Kriging was compared to many 

other metamodel methods and has proven itself due to its good accuracy for small sample numbers and 

highly nonlinear problems. The development of SKM methods addresses the main issue of relatively 

high computation times compared to other metamodeling methods and is a valid approach for the 

optimization of problems with high complexity that are extremely computationally intensive. 

4.1.2 Background and formulation of the Kriging approximation 

Kriging builds a metamodel for an underlying true model based on a set of input/output data samples 

from this model. Denoting 1 T[ ]m X x x  with 
i nx  as the input sample values and 1 T[ ]m Y y y  

with i qy  as the corresponding output values, the aim is to estimate a model ŷ using this data, 

which represents the deterministic response of the true model ( ) qy x  for an n dimensional input 

vector nD x . In the particular case of using Kriging for optimization purposes the true model is 

equal to the previously defined true fitness function J . 
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The idea behind Kriging is that such a model ŷ  can be realized as combination of a regression 

function ( , )F β  x , where β  is a vector of regression coefficients, and a stochastic Gaussian process 

( )Z x  

 ˆ( ) ( , ) ( )F Z y x β x x  (4.1) 

Furthermore, Z  is assumed to have mean zero and covariance 

 2[ ( ), ( )] [ ( )]j ji iCov Z Z R Rx x θ, x , x , (4.2) 

where R is the correlation matrix and ( )jiR θ, x , x  is the correlation model selected by the user with 

parameters θ . i and j running from 1 to m representing the number of sample data points. R is always 

symmetric and possesses unit values along the diagonal. For both, the regression and the Gaussian 

process functions one can choose between several functions with different characteristics. In the case 

of the regression function, which is an underlying global trend function, the following functions (4.3, 

4.4, 4.5) are most commonly selected. 

Constant: ( , )F β  x , where   is a constant value (4.3) 

Linear: 1 2 1 1( , ) n nF x x     β  x  (4.4) 

Quadratic: 
2 2 2

1 2 1 3 1 2 4 2 1 5 2 1
( 1)( 2) 1

2

( , ) n
n n

F x x x x x x x     
  

     β  x  
(4.5) 

The correlation model can be likewise represented by different correlation functions of the form  

 
1

( ) ( )ji

n
i j

r r r r

r

R R x x



 θ, x , x ,  (4.6) 

Commonly used correlation functions are 

Linear:  
1

( ) max 0,1ji

n
i j

r r r

r

R x x



  θ, x , x  with i, j = 1,…, m (4.7) 

Exponential: 
1

( )
i j

r r rji

n
x x

r

R e
 



θ, x , x  with i, j = 1,…, m (4.8) 

Gaussian: 
 

2

1

( )
i j

r r rji

n
x x

r

R e
 



θ, x , x  with i, j = 1,…, m (4.9) 

 

The estimates ˆ( )y x  for the true model values ( )y x  at new values of x  are predicted by the Kriging 

model and the mean squared error (MSE) between estimates and true model is calculated as 

  
2

ˆ( ) ( )MSE    
 

y x y x . (4.10) 

A minimization of the MSE over the samples gives the so-called Kriging predictor, which is 
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 Tˆ ˆˆ ( ) ( )   -1
Ry c r x y c  (4.11) 

in case of a constant regression function, where ̂  is a constant. Furthermore, y is the vector of 

responses to the true model samples i
x  for i=1,…, m and c is a constant vector of all ones with length 

m. ( )r x is the correlation between the value at untried new location x  and the values at the sample 

locations i
x . The two relevant parameters for the Kriging predictor are ̂  and r , where r  is the 

most significant parameter in determining the correlation factors r  and R . The correlation vector is 

 
T 1

1( ) ( , , ), , ( , , )m
mR R   

 
r x x x x x  . (4.12) 

The unknown parameters r  and ̂  are determined using maximum likelihood estimation (MLE) 

introduced by Giunta and Watson (1998) to best fit the true model observations y . 

 

1

2

2

ˆ ˆ( ) ( ) ( )
exp

ˆ2
( | )

ˆ(2 ) ( )

T
r

r
m

r

L

  




 

   
  
 



R

R

y c y c

y  (4.13) 

Due to the fact, that the logarithmic likelihood is much simpler than 4.13, ( | )rL  y  is commonly 

expressed as  

 
2T 1

2

ˆ ˆ ˆln(2 ) ln( ( ) )( ) ( ) ( )
( | )

2ˆ2

rr
r

m
l

   




    
  

 
 

RRy c y c
y  (4.14) 

To find the optimal values for ̂  and 2  the derivatives of 4.14 are set to zero. The optimal values 

are 

 T 1 1 T 1ˆ ( )    R Rc c c y  and (4.15) 

 2 T 11 ˆ ˆˆ ( ) ( )
m

     
 

Ry c y c . (4.16) 

The last step then is to find the optimal parameters for the correlation function r , which are 

determined by maximizing 4.14. This relatively complex problem can be reduced to 

 

2ˆln(2 ) ln( ( ) )
Maximize

2

subject to: 0<

r

r

r

m



 






 

R

. (4.17) 
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4.2 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization is one of several methods for global optimization from the field of 

Computational Intelligence (CI). It was developed by Kennedy and Eberhart (1995) and is a 

population-based evolutionary computation algorithm for problem solving which simulates social 

behaviour in swarms. The advantages of PSO are its global search capability and the relatively small 

population of particles in comparison to other methods, for example Genetic Algorithms (GA) (Ujjin 

and Bentley 2003), which makes PSO a very fast optimization algorithm. Nevertheless, there are lots 

of other methods for global optimization, which can be separated into two basic groups of methods: 

deterministic and probabilistic methods, whereas the probabilistic methods can be subdivided into 

Monte Carlo algorithms and Evolutionary Computation (EC) algorithms (Figure 4-1). 

4.2.1 Short survey of global optimization methods 

Deterministic methods such as the simplex algorithm (Nelder 1965) and the quasi-newton method 

(Shanno 1970) are effective at finding local solutions in the search space, but cannot guarantee that the 

solution is the global optimum solution if a search space is multi-modal. Users need to be aware of this 

and decide whether a given local solution is sufficient or not. In practice if the search space is multi-

dimensional and highly non-linear, a priori knowledge is necessary to select a good starting point near 

an optimum for deterministic methods to yield good results. Otherwise, they are likely to get stuck in 

local optima that are far away from the true optimum and consequently deliver poor optimization 

results. The advantage of deterministic methods is that they require a lot less computation time than 

probabilistic methods and are able to quickly give sufficient optimization results if appropriately 

initialized. 
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Figure 4-1: Overview of optimization methods derived from (Weise 2009) 

In contrast, probabilistic methods possess the ability to globally search for an optimum, but they are 

not deterministic, which means that no guarantee can be given that the solution obtained is a global 

optimum. In general, probabilistic methods use a selection process, often random, in order to define 

the input samples within an allowed input space. Most of these methods follow the following pattern 

(Fishman 2008): 

 Definition of the input space. 

 Selection of a group of input samples in the input space at random or based on previous 

results. 

 Evaluation of the input samples using a fitness function. 

 Combination of the fitness results into a set of interim results. 

 Repetition of the previous steps until a pre-defined end criterion is reached. 

Although, these basic steps are similar for all algorithms, they differ significantly in terms of the 

selection of input or update samples and in the way fitness results are used to converge to an optimum. 

A detailed description of most of the probabilistic algorithms can be found in Schwefel (1995) and 

Weise (2009). 
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For the optimization of the substrate feed at ABPs, PSO was chosen for global optimization due to the 

following reasons: (1) The ADM1 model is high dimensional and highly nonlinear, which requires the 

use of a probabilistic optimization method; (2) A study on the feasibility of global optimization 

methods conducted by Ebel (2009) shows that ES, GA and PSO are well-suited for this kind of 

optimization problems; (3) Optimization should require as few fitness function evaluations as possible 

because of the computationally intensive ADM1 model. For this case, PSO has proven to be faster in 

terms of convergence and more robust than GA (Wolf et. al 2008). 

4.2.2 Introduction to PSO 

PSO belongs to the field of Swarm Intelligence and works on the basis that a group of individuals, 

called particles, which communicate with each other as they move around, is able to find a global 

optimum in large, complex and highly nonlinear search spaces. In determining how to move, particles 

exchange information with their neighbours, thereby influencing their behaviour and eventually the 

movement of the whole swarm. This process allows a swarm to move towards the most interesting site 

in a search space, as information about interesting sites is slowly propagated to the whole swarm. 

Thus, in PSO, the behaviour of each particle in a swarm is governed by two basic principles: particle 

communication and particle movement. 

Particle communication is controlled by the parameter KN, defined as the number of neighbouring 

particles a particle is exchanging information with. To guarantee sufficient particle communication KN 

has to be carefully selected. If it is too small the propagation of important information to all particles 

might take too long and if too large, particles might get stuck in a local optimum. The probability 

)(tPr  for a particle to be reached at least once after the t
th
 run is described by formula 4.18 (Clerc 

2006), where N is the number of particles and KN is the number of neighbours for information 

exchange. 

 

( )
1

( ) 1 1

t
NK

rP t
N

 
   

 
 (4.18) 

As the probability increases quickly with t, even with a small number of neighbours, KN, information 

propagation throughout the whole swarm can be rapid. 

The movement of a PSO particle in a search space is defined in terms of its position vector x(t) and 

three parameter vectors: 

 Velocity ( v ): The speed at which the particle moves through the search space. 

 Personal best position ( p ): The best position a particle has currently found. 

 Global best position ( g ): The best position found by informants of a particle. 

Using these parameters a particle’s position and velocity are updated at the t
th
 iteration as follows: 
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   1 1 2 2( 1) ( ) ( ) ( ( ) ( )) ( ( ) ( ))

( 1) ( ) ( )

t t t c t t c t t

t t t

       

  

v v p x g x

x x v
 (4.19) 

The function ( )t  and the constants 1c  and 2c  are parameters that determine the importance of the 

three different vectors ( )tv , ( ) ( )t tp x  and ( ) ( )t tg x , where ( )tv  is the actual velocity of a particle, 

( ) ( )t tp x  is the distance between the actual particle position x  and the personal best position p and 

( ) ( )t tg x  is the distance between x  and g . ( )t is a time varying inertia weight as introduced by 

Yuhui and Eberhart (1998) and represents the confidence of a particle in its direction of movement. 

Constants 1c  and 2c , so-called acceleration constants, represent the confidence of a particle in its 

personal best position and its best reported global position, respectively. Furthermore, the influence of 

p  and g  is manipulated by 1  and 2 , which are random numbers between 0 and 1 and cause a 

random oscillation of the particles around p  and g . Using these mechanisms a swarm of particles 

moves through a search space looking for an optimal solution to a defined optimization problem. In a 

similar fashion to GAs, at each iteration all particles are evaluated using a fitness function and this 

information is used to update the current position, personal best position and global best position of 

each particle as can be seen in the following pseudo code. 

swarm = createSwarm (nParticles); 

while (End criteria) // e.g. Max Number of Iterations or expected fitness 

swarm = evaluate (swarm); 

globalBest = getGlobalBest(swarm); 

for i = 1 to numberParticles 

localBest = getLocalBest(swarm(i)); 

swarm(i).velocity = updateVelocity(localBest,globalBest); 

swarm(i).position = updatePosition(swarm(i).velocity); 

  end; 

end; 

return globalBest; 

4.2.3 Literature Review on PSO 

As previously mentioned PSO was developed by Kennedy and Eberhart (1995), who developed the 

algorithm based on the simulations of Stone and Reynolds (1987) and Heppner and Grenander (1990). 

The main aspect of that original PSO was that particles of a swarm were able to remember their 

personal best position and global best position in the search space, which is often referred to as 

autobiographical memory and publicized public knowledge. Kennedy and Eberhart first tested PSO on 

the well-known Schaffer f6 function, which was used as a benchmark for GA by Davis (1991). Three 

years later, Yuhui and Eberhart (1998) introduced an extension of the original PSO by implementing 

inertia weights to counter too fast convergence and improve exploration qualities of the swarm. 
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Without inertia weights, the original PSO behaves similar to a local search if initial particle positions 

are badly conditioned. It was found that values of 0.8< <1.2 deliver good performance results, which 

was confirmed later on by Carlisle and Dozer (2000) and Trelea (2003). Eberhart and Shi (2000) 

further investigated the use of inertia weights and came to the conclusion that a linearly decreasing   

from 0.9 to 0.4 over the whole number of generations delivers good optimization results. A first 

performance comparison of PSO and GA was made by Angeline (1998). It was shown that PSO finds 

solutions near the optimum faster than GA, although exploitation is weaker. Due to the problems of 

too fast conversion of the original PSO, Clerc and Kennedy (2002) performed a detailed analysis of 

the inner workings of PSO and introduced constriction coefficients to control the dynamical 

characteristics of the swarm, namely exploration and exploitation. Three different ways of 

implementing constriction were presented and tested on test problems. 

In 2002 and the following years several adapted PSO algorithms were developed. An overview of 

these methods can be found in Banks et. al (2007) and Poli et. al (2007). The most relevant are briefly 

mentioned in this paragraph. The Guaranteed Conversion PSO (GCPSO) was developed by Van Den 

Bergh and Engelbrecht (2002) and uses an adapted velocity update equation, which causes the best 

particle to perform a random search within a pre-set radius around g , which is defined by a scaling 

factor. The disadvantage of GCPSO is that some a priori knowledge about the search space is required 

to properly choose the scaling factor, whereas an advantage lies in the reduced swarm sizes, which 

significantly reduces the number of true function evaluations. Riget and Vesterstrøm (2002) found out 

that swarm stagnation is closely related to the diversity of the particles in the swarm. To assure a 

minimum of diversity, particles attract each other until a minimum diversity level is reached and then 

go into repulsion mode until they reach maximum diversity again. This PSO is called ARPSO 

(Attractive and Repulsive PSO). Another method to assure diversity and to prevent quick convergence 

was introduced by Silva et. al (2002) who implemented predator activity for the particle swarm by 

adding an additional particle, which is attracted to the best particle and drives off the rest of the swarm 

(PSPPO-Particle Swarm Predator Prey Optimization). The result of that approach is that particles are 

forced to explore other areas of the search space, which makes this method well-suited for highly 

nonlinear multimodal optimization problems. To allow particles to move faster through the search 

space, Kennedy (2003) developed a Gaussian PSO where the velocity vector is replaced by a random 

number around the mean of p  and g  with a Gaussian distribution. This allows particles to “teleport” 

to locations in the search space, which should allow for a quick exploration of the search space. On the 

contrary, Veeramachaneni et. al (2003) try to slow down convergence to increase exploration of the 

search space by introducing another velocity component which represents the influence of the fittest 

nearest neighbor particle. The method is known as Fitness-Distance-Ratio PSO (FDR-PSO). Another 

manipulation of the original PSO’s velocity vector is presented by Parsopoulos (2004). The constricted 

PSO is adapted, introducing two velocity vectors one depending on p  and the other depending on g . 
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These two velocities are then combined to a unified velocity update, which should increase the 

explorative behavior of the swarm. One last interesting adaptation of the original PSO was developed 

by Kaewkamnerdpong and Bentley (2005) based on the principle that a particle’s perception of its 

surrounding particles is not optimal but sometimes incorrect or blurred. Thus, particles are no longer 

allowed to communicate directly but can only observe particles in their pre-set perceptive range. 

Within this range, information from particles that are closest is considered to be more accurate. 

The configuration of PSO is also the topic of several publications, as the global search capability of 

the algorithm is significantly affected by swarm size, inertia weight and maximum particle speed. 

Therefore, Carlisle and Dozer (2001) provide guidelines for achieving a working, although not optimal 

PSO parameter set. Furthermore, Parsopoulos and Vrahatis (2002) developed a method to find optimal 

initial particle positions using the Nelder Mead Simplex algorithm (NMS) (Nelder 1965). Results 

show that apart from the additional computational effort for NMS, the improved initial positions may 

speed up the global search significantly. Last but not least, Zhang et. al (2005) further investigated the 

guideline from Carlisle and Dozier and tried different parameter combinations on problems of high 

dimensionality. The results clearly state that greater swarm sizes are necessary to tackle high 

dimensional optimization problems. 

All in all, it can be said that lots of different PSO algorithms exist that mostly address the well-known 

problems of premature convergence or the tradeoff between true function evaluations and full 

exploration of the search space. Nevertheless, the basic equations of the original PSO are still used in 

most of these PSO implementations (O'Reilly et. al 2005) and remain mostly unchanged. The high 

number of publications (18,405
18

) investigating PSO algorithms or using PSO for practical application 

shows that PSO is one of the most used Swarm Intelligence Optimization methods of our time. 

4.3 Global optimization using Sequential Kriging Surrogate Models (S-KSM) 

As stated earlier in this chapter, the global optimization of highly complex, nonlinear and multimodal 

functions or simulations requires a high computational effort. This demands a decision between local 

optimization, which is fast and deterministic or global optimization, which is slow and probabilistic. In 

most cases global optimization is the desired choice and the higher computational effort is necessarily 

accepted. Nevertheless, the all-in-one solution is desired, which does a global search with as few as 

possible true fitness function evaluations as possible. To provide such an all-in-one solution PSO is 

used in conjunction with a LH-based S-KSM and a PSO-based S-KSM. Both methods were developed 

based on the assumption that a perfect Kriging surrogate model (KSM) is not necessary at the 

beginning of an optimization run to provide useful information for locating an optimum. Thus, a 

global optimization algorithm is used to find the optimum based on an initial crude KSM, which is 

                                                      
18

  general search in the Scopus publications database for “Particle Swarm Optimization” 

(http://www.scopus.com) 
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then updated based on the newly found optimum. Then, global optimization is performed again on this 

improved KSM. This process is repeated until a maximum number of iterations is reached. 

The result of this approach is that the KSM is always sequentially updated (S-KSM) at a region of 

interest and its surroundings and not updated in regions that do not possess an optimum. This serves 

the main purpose of avoiding costly true fitness function evaluations in areas where they do not 

provide useful information for finding a new optimum. 

The two novel methods are different from existing methods (see 4.1 and 4.1.1) in two ways: (1) The 

Kriging Surrogate Model (KSM) is sequentially updated during the optimization run and not before; 

and (2) the optimization result ( g ) of the PSO algorithm is used as a priori knowledge to determine 

new sample points for the KSM in each iteration. 

It should be noted that while the methods have been developed for the use with PSO and KSM they 

can be equally used with other sampling or metamodeling paradigm. 

In the following two sections 4.3.1 and 4.3.2, LH-based S-KSM and PSO-based S-KSM are explained 

in detail and in the last section the Kriging and PSO configurations for both methods are introduced. 

4.3.1 Optimization using LH-based S-KSM 

The LH-based S-KSM uses latin hypercube sampling (LH-sampling) to sequentially update the 

Kriging surrogate model during optimization. An overview of the method’s working principle is given 

in Figure 4-2. In the following, the different steps of the method will be explained in detail. 
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Figure 4-2: Working principle of the LH-based S-KSM optimization 

4.3.1.1 Creation of initial and update samples based on LH-sampling 

The creation of initial and update samples for LH-based S-KSM is performed using LH-sampling. In 

general any sampling method can be used instead of LH-sampling as long as they fulfill one major 

condition. The samples provide a sparse representation of the search space. This means that a good 

coverage of the search space is achieved with as few samples as possible to reduce the computational 

effort of true fitness function evaluations to a minimum. In this case, LH-sampling was used, because 

it possesses these characteristics. LH-sampling was developed by McKay et. al (1979) and splits each 

 Ĵ
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dimension of the search space into intervals of equal length. Then, for each interval in every 

dimension one value is randomly generated. In the final step, these values from each dimension are 

randomly brought together in pairs. The result is a sparse sample distribution in the search space. The 

following examples in Figure 4-3 show the results of LH-sampling for a 2D and 3D search space, 

where each dimension is divided into 10 equally spaced intervals. 

  

Figure 4-3: Example for LH-sampling: a. 2D example, b. 3D example 

Whereas the initial samples cover the complete search space, the update samples are divided into two 

groups, which are generated separately. Half of the samples are created within the new search space 

and half outside of the new search space but still within the complete search space. The purpose of this 

is that on the one hand, the KSM is refined around the found optimum and on the other hand, that the 

probability of overlooking optima outside the new search space is minimized. The optimum found in 

the KSM is also added to the generated update samples within the new search space. 

4.3.1.2 Construction of KSM and global optimization using PSO 

The initial samples, as well as all update samples are evaluated using the true fitness function. The 

result is a steadily growing set of input/output data pairs, which are used to build a KSM. Due to the 

increasing number of samples, the KSM becomes more and more accurate and its construction 

becomes more and more computationally intensive. In every iteration of the optimization with LH-

based S-KSM, the global optimum of the KSM is determined using PSO. The found global best 

particle from the PSO is then used to modify the search space and to update the KSM. 

4.3.1.3 Definition of a new search space based on global best particle 

The construction of a KSM for the whole search space requires lots of true fitness function 

evaluations, which has a negative impact on the overall performance of optimization using LH-based 

S-KSM. Therefore, the search space shrinks around the global best particle with each iteration, 

allowing the update samples to refine the KSM in that particular area. As the global best particle 

probably changes throughout the optimization, the shrinking search space jumps from one global best 

particle to the next. This results in a good exploration of the complete search space in the beginning 

a. b. 
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and guarantees a precise determination of the optimum towards the end of the optimization, when the 

search space is in the immediate surroundings of the optimum. 

The shrinking of the search space is implemented in two different ways depending on the optimization 

problem: (1) First Search Then Converge (FSTC) and (2) First Converge Then Search (FCTS).  

For FSTC a quadratic function of the form 2( )f x ax bx c    is fitted to two points 

 
1

2

(1,1)

( , )t csp

P

P i p
, (4.20) 

where ti  is the total number of iterations, cspp  is the final size of the search space given as percentage 

of the complete search space and 1(1,1)P  is the angular point. 

For FCTS an exponential function of the form ( ) bxf x ae  is fitted to the points from 4.20. Figure 4-4 

shows examples for the two functions for 2000ti   and 0.0001cspp  . 

  

Figure 4-4: a. FSTC example, b. FCTS example 

In both cases the new search space boundaries are calculated by the following two equations 

  min min( 1) ( ) ( ) ( )t t t t cspi i i i p   b g b g  (4.21) 

  max max( 1) ( ) ( ) ( )t t t t cspi i i i p   b g b g  (4.22) 

where minb  and maxb  are the minimum and maximum boundaries for each dimension of the search 

space and g  is the global best particle found by PSO when applied to the KSM. 

4.3.2 Optimization using PSO-based S-KSM 

The optimization using PSO-based S-KSM works differently than the LH-based S-KSM when it 

comes to the update of the KSM. The initial samples are considered particles of a swarm that moves 

through the search space in the direction of the global optimum based on the standard PSO equations. 

Thus, the new positions of the particles at every iteration are the new update samples for the KSM 

a. b. 
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along with the global best particle from the PSO used on the KSM for global optimization. As many 

parts of the PSO-based S-KSM method are similar to the LH-based S-KSM method, only the 

generation and initialization of the initial samples as particles will be described in detail. An overview 

of the method’s working principle is given in Figure 4-5. 

 

Figure 4-5: Working principle of the PSO-based S-KSM optimization 

4.3.2.1 Creation of initial samples and initialization of velocity and personal best positions 

Similar to LH-based S-KSM, the initial samples are generated using LH-sampling, which is explained 

in section 4.3.1.1. As these initial samples are considered particles of a swarm, it becomes necessary to 

initialize their personal best positions as well as their velocities so that the update samples can be 

 Ĵ
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calculated based on these values and the global best position as previously defined in 4.19. The 

personal best position is initialized by the actual value of the samples and the initial velocities are 

defined as  

 
max min0,

2
i rand

 
  

 

b b
v , (4.23) 

where minb  and maxb  are the boundaries of the search space.  

4.3.3 Kriging and PSO configurations for the optimization using LH- and PSO-based S-KSM 

The Kriging and PSO configurations are the same for both optimization methods and were not only 

applied to the test problems but also to the substrate feed optimization of an ABP, which is described 

in detail in chapter 5. The parameter sets for both methods were determined empirically and based on 

standard parameters. A special optimization of the parameters for each of the test problems or the ABP 

substrate feed optimization was not performed to make the results comparable. 

4.3.3.1 Kriging model configuration 

The Kriging model is defined by three parameters: the regression model F , the correlation model R  

and the parameter   of the correlation model. Due to the fact that neither the test problems nor the 

ABP simulation model show a basic underlying trend, the regression model was chosen to be constant 

(eqt. 4.3). The choice of the correlation model was difficult. At the beginning a gaussian correlation 

model was chosen as this is reportedly well-suited for the creation of smooth and precise surrogate 

models (see section 4.1.1). However, the optimization results showed a poor performance with the 

optimization often sticking in local minima. A direct comparison of Kriging model performance on the 

alpine function introduced by Clerc (1999) using a Gaussian and piecewise linear correlation model 

shows that the reason for this poor performance is the Gaussian correlation model because it tends to 

overshoot at places where only local minima exist and thus creates global minima at wrong positions. 

  

Figure 4-6: Comparison of Kriging model performance on alpine function for a. gaussian correlation and b. piecewise 

linear correlation model based on 100 sample points (true global minimum at x=y=0) 

a. b. 
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This behavior of the Gaussian correlation model is not compatible with the two proposed novel 

optimization methods as the update of the KSM is strongly influenced by the global optimum found by 

PSO when applied to the KSM. Therefore, a piecewise linear correlation model was chosen, which 

shows no sign of overshooting. 

For the generation of the KSM the freely available DACE Matlab Kriging toolbox from the 

Department of Informatics and Mathematical Modeling (IMM) of the Technical University of 

Denmark is used (Lophaven et. al 2002). In this Kriging implementation an optimization of the 

correlation parameter   is performed automatically based on pre-set boundaries. For all of the 

following optimization problems the lower boundary of   was set to 5 and the upper boundary to 10 

because values in this interval are a good compromise between accurate and smooth interpolation.  

4.3.3.2 PSO configuration 

The PSO was implemented with the PSOt Matlab toolbox by Birge (2003) using a version of the 

original PSO with inertia weight (Yuhui and Eberhart 1998). The parameters employed with the PSO 

are shown in Table 4-1. 

Table 4-1: PSO parameters based on Eberhart (2000) and Birge (2003) 

PSO parameters Value 

Number of runs 300 

Number of particles 80 

Personal best influence ( 1c ) 

Global best influence ( 2c ) 

2 

2 

Initial inertia weight ( i ) 0.9 

Final inertia weight ( f ) 0.6 

 

These parameters ( 1c , 2c , i  and f ) were used with the PSO both for global optimization and for the 

generation of update samples in the case of the PSO-based S-KSM. 

4.4 Performance results on test problems 

The use of simulated examples for the testing and validation of new optimization methods is common 

practice and has several advantages. The computation time of such simulated test problems is short, 

which allows running of many different configurations of the optimization method. Thus, the 

performance over several optimization runs can be investigated as well as the use of various parameter 

configurations of the methods. The four simulated test problems used for validation and their 

characteristics are discussed in section 4.4.1 and the performance results in comparison to classic PSO 
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and non-sequential Kriging are given in section 4.4.2. A conclusion on the optimization methods using 

LH-based KSM and PSO-based KSM is provided in section 4.5. 

4.4.1 The test problems 

Usually, test problems of different difficulty (number of minima and dimensions) are used to evaluate 

optimization methods, which is why in this case four test problems were defined. The two novel 

optimization methods are then applied to 2D, 3D and 5D versions of these functions to investigate 

their capability to cope with high dimensional problems.  

4.4.1.1 Test problem I: The quadratic function 

The quadratic function is one of the easiest test problems as it has only one minimum at zero, which 

can even be found quickly using classic deterministic optimization methods such as gradient descent. 

The equation of the quadratic function is 

 2

1

( )

n

i

i

f x



x , (4.24) 

where  
T

1, , nx x x  is a n-dimensional vector with ix  . Figure 4-7 shows the quadratic function 

for 2n   and 3n  . 

  

Figure 4-7: Test problem I – the quadratic function 

4.4.1.2 Test problem II: RBF with 2 minima 

Test problem II has two minima that are very close to each other, with the global minimum being 

broader and deeper than the local minimum. The three equations 4.25, 4.26 and 4.27 represent the test 

problem with  
T

1, , nx x x  being a n-dimensional vector with ix   for  2n  , 3n  and 5n  . 

      
2 2

T T
( ) 5 exp 0.02 6,2 0.8exp 0.1 5,4f

   
         

   
x x x  (4.25) 

      
2 2

T T
( ) 5 exp 0.02 6,2,4 0.8exp 0.1 5,4, 2f

   
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   
x x x  (4.26) 
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      
2 2

T T
( ) 5 exp 0.02 6,2,4, 4,5 0.8exp 0.1 5,4, 2, 6, 8f

   
             

   
x x x  (4.27) 

Although there are two minima, it should be fairly easy to find the global minimum. Figure 4-8 shows 

the RBF functions 4.25 and 4.26. 

 
 

Figure 4-8: Test problem II - RBF with 2 minima 

4.4.1.3 Test problem III: RBF with 4 minima 

Test problem III is particularly difficult with four minima. The global minimum lies in the corner of 

the search space and is of small diameter and very steep, which makes it very difficult to detect. The 

other surrounding minima are broader adding to the complexity of the search, as this increases the 

probability of the optimization method getting stuck in one of the local and not the global minimum. 

The three equations 4.28, 4.29 and 4.30 represent the test problem with  
T

1, , nx x x  being a n-

dimensional vector with ix   for 2n  , 3n  and 5n  . 
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     

     

2 2
T T

2 2
T T

( ) 5 exp 0.02 6,2,7, 4,5 0.8exp 0.1 5,4, 2, 8, 1

0.5exp 0.1 0,8,5, 3,8 2exp 0,1 8, 6, 5,1, 9

f
   

             
   

   
            

   

x x x

x x

 (4.30) 

Figure 4-9 shows the RBF functions 4.29 and 4.30. 
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Figure 4-9: Test problem III - RBF with 4 minima 

4.4.1.4 Test problem IV: Alpine function 

The alpine function developed by Clerc (1999) is a highly nonlinear, multimodal function, which is 

perfectly suited to testing and validation of optimization methods. Of the four test problems, this poses 

the greatest challenge due to the high number of local minima and maxima. The equation of the alpine 

function is 

 
1

( ) sin( ) 0.1

n

i i i

i

f x x x



   x , (4.31) 

where  
T

1, , nx x x  is a n-dimensional vector with ix  . Figure 4-10 shows the alpine function for 

2n   and 3n  . 

  

Figure 4-10: Test problem IV - alpine function 

 

4.4.2 Performance results in comparison to classic PSO 

The performance of the two novel methods was evaluated on the four test problems introduced in 

4.4.1. In the following sections the number of true fitness function evaluations Je  for optimization 

using LH-based S-KSM and PSO-based S-KSM is compared to the number required when using the 

original PSO algorithm for optimization. To guarantee comparable and consistent results, optimization 
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was run ten times on each test problem with the exact same configuration. Optimization was 

terminated when the global optimum was reached with an accuracy of 0.05. Accuracy is defined as  

  
1

n
g o
i i

i

A x x



  , (4.32) 

where g
x  represents the coordinates of the global optimum and o

x  is the position of the optimum 

found during optimization. Results shown in this section represent mean and standard deviation values 

from ten optimization runs. The performance of original PSO on a non-sequential KSM was also 

investigated but delivered very poor optimization results. The optimization method was not able to 

reach the desired optimization accuracy of 0.05 for even one of the test problems. 

4.4.2.1 Results for test problem I 

Problem I being the simplest of all test problems shows that the optimization goal of 0.05A   can be 

achieved with very low numbers of Je  for the 2D and 3D versions of the quadratic function. The 5D 

problem requires a significantly higher effort, which was expected due to the higher dimensionality of 

the problem. 

4.4.2.1.1 Results for LH-based S-KSM optimization on test problem I 

For the LH-based S-KSM optimization on the 2D quadratic function the lowest 152Je   was achieved 

with 70 initial sample points ( ip ) and two update samples ( up ) for the KSM. As can be clearly seen in 

Figure 4-11 the higher the number of update samples, the higher the number of Je  becomes and also 

the standard deviation of Je  rises significantly. Furthermore, it is interesting to see that the 

configuration with minimum Je  is not the same as the one with the lowest standard deviation ( 10ip   

and 12up  ). 

  

Figure 4-11: Number of true fitness function evaluations Je  for LH-based S-KSM optimization of the 2D quadratic 

function: a. mean Je , b. Je  standard deviation 

Looking at results for the 3D quadratic function, results are very similar ( 60ip   and 10up  ), 

although mean Je  and standard deviation of Je  is in average much higher than for the 2D problem. 

a. b. 
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This effect can be explained by the higher dimensionality of the problem. This hypothesis is supported 

by the results for the 5D problem shown in Figure 4-13 with 40ip   and 10up  . 

 

  

Figure 4-12: Number of true fitness function evaluations Je  for LH-based S-KSM optimization of the 3D quadratic 

function: a. mean Je , b. Je  standard deviation 

  

Figure 4-13: Number of true fitness function evaluations Je  for LH-based S-KSM optimization of the 5D quadratic 

function: a. mean Je , b. Je  standard deviation 

4.4.2.1.2 Results for PSO-based S-KSM optimization on test problem I 

The results for the PSO-based S-KSM optimization for the quadratic function are very similar to the 

ones achieved with LH-based S-KSM optimization. Nevertheless, it is obvious, that Je  largely 

depends on the number of particles used for the KSM update. With increasing swarm sizes, Je  rises 

very quickly, so that optimization is often no longer computationally efficient. The best optimization 

runs show that with a well selected configuration even lower Je  than with LH-based S-KSM can be 

achieved. 

a. b. 

a. b. 
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Figure 4-14: Number of true fitness function evaluations Je  for PSO-based S-KSM optimization of the 2D (a.), 3D (b.) 

and 5D (c.) quadratic function 

The best optimization runs are in all cases the ones with the lowest number of particles 10PSOp   and 

115Je   (2D), 261Je   (3D) and 1,356Je   (5D). With the exception of the 5D version of problem I, a 

low number of particles also results in a low standard deviation. Thus, the method is robust for these 

PSOp  numbers. However, the 5D results show that a high dimensional problem makes global 

optimization difficult, resulting in high Je  values and high standard deviations. Although, the PSO-

based S-KSM optimization performs better than the LH-based S-KSM optimization on the 2D and 3D 

version of the problem, the LH-based S-KSM optimization outperforms the PSO-based S-KSM 

optimization on the 5D quadratic function. 

4.4.2.1.3 Performance comparison to original PSO 

A direct comparison of the two novel methods and original PSO clearly shows that a significant 

reduction of Je  of up to 88% for the 2D and 91% for the 3D and 5D quadratic functions can be 

achieved. The PSO-based S-KSM optimization outperforms the LH-based S-KSM optimization by up 

to 7% if small swarm sizes are used. 
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Table 4-2: Performance results of LH-based S-KSM and PSO-based S-KSM optimization in comparison to original 

PSO based on mean and standard deviation of true fitness function evaluations Je  for the 2D quadratic function 

Configuration 
LH-based 

S-KSM 

PSO-based 

S-KSM 
original PSO 

LH-based 

S-KSM 

savings 

PSO-based 

S-KSM 

savings 

LH-

based 

S-KSM 

PSO-based S-

KSM / original 

PSO 

mean std mean std mean std 
  

pi=70; 

pu=2 
10KSM PSOp p   152 56 115 52 540 384 71.85 78.7 

pi=80; 

pu=2 
20KSM PSOp p   176 59 143 99 937 659 81.22 84.7 

pi=20; 

pu=5 
30KSM PSOp p   179 55 142 107 1,070 1,006 83.27 86.7 

pi=60; 

pu=2 
40KSM PSOp p   182 65 1,931 468 1,025 1,120 82.24 -88.4 

pi=90; 

pu=2 
50KSM PSOp p   185 51 2,075 536 804 1,086 76.99 -158.1 

pi=30; 

pu=5 
60KSM PSOp p   185 51 2,207 544 1,238 1,526 85.06 -78.3 

pi=100; 

pu=5 
70KSM PSOp p   190 41 2,257 588 1,441 1,753 86.81 -56.6 

pi=100; 

pu=2 
80KSM PSOp p   192 62 2,339 523 1,602 1,874 88.01 -46 

pi=10; 

pu=2 
90KSM PSOp p   193 34 2,318 716 1,187 1,683 83.74 -95.3 

pi=50; 

pu=5 
100KSM PSOp p   197 70 2,590 30 1,075 1,553 81.67 -140.9 

mean 183 54 1,612 366 1,092 1,264 82 -41 

std 12.1 10.3 981.3 248.5 288 468.9 4.5 87.7 

The results for the 3D quadratic function confirm the 2D results, although it becomes obvious that the 

PSO-based S-KSM optimization performs particularly well with small swarm sizes and outperforms 

the LH-based S-KSM optimization with 22% less Je . Thus, a significant reduction in computation 

time is achieved. The performance of the PSO-based S-KSM optimization changes completely for the 

5D quadratic function, where it performs much worse than the LH-based S-KSM optimization. Only 

26% improvement compared to the original PSO is achieved for the smallest swarm size with ten 

particles, whereas nearly 44% improvement is reached by the LH-based S-KSM optimization. Also for 
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larger numbers of particles the PSO-based S-KSM optimization performance is in general inferior to 

the LH-based S-KSM optimization by 10 to 12%. 

Table 4-3: Performance results of LH-based S-KSM and PSO-based S-KSM optimization in comparison to original 

PSO based on mean and standard deviation of true fitness function evaluations Je  for the 3D quadratic function 

Configuration 
LH-based 

S-KSM 

PSO-based 

S-KSM 
original PSO 

LH-

based 

S-KSM 

savings 

PSO-based 

S-KSM 

savings 

LH-

based 

S-KSM 

PSO-based 

S-KSM / 

original PSO 

mean std mean std mean std 
  

pi=60; 

pu=10 
10KSM PSOp p   481 171 261 776 977 365 50.77 73.3 

pi=30; 

pu=10 
20KSM PSOp p   508 217 317 165 1,760 707 71.14 82 

pi=70; 

pu=10 
30KSM PSOp p   516 180 355 156 2,485 932 79.24 85.7 

pi=80; 

pu=10 
40KSM PSOp p   547 165 543 222 2,796 1,528 80.44 80.6 

pi=90; 

pu=10 
50KSM PSOp p   548 167 664 348 4,007 1,379 86.32 83.4 

pi=20; 

pu=10 
60KSM PSOp p   554 197 634 211 4,913 1,382 88.72 87.1 

pi=50; 

pu=10 
70KSM PSOp p   555 138 660 416 5,460 1,839 89.84 87.9 

pi=40; 

pu=10 
80KSM PSOp p   580 189 643 376 5,377 2,592 89.21 88 

pi=100; 

pu=10 
90KSM PSOp p   594 163 835 447 5,621 3,143 89.43 85.1 

pi=10; 

pu=20 
100KSM PSOp p   620 171 1,148 605 7,549 2,264 91.79 84.8 

mean 550 176 606 372 4,095 1,613 82 84 

std 39.3 20.4 249.8 190.7 1946.7 820.5 12 4.2 

 

A comparison of the overall results shows that for each version of the problem a significant 

improvement against original PSO is achieved. Considering the fact, that for most optimization 

problems larger swarm sizes of 30 particles and more are commonly chosen, it becomes evident that 

Je  savings between 80 and 90% are easily possible. 
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Table 4-4: Performance results of LH-based S-KSM and PSO-based S-KSM optimization in comparison to original 

PSO based on mean and standard deviation of true fitness function evaluations Je  for the 5D quadratic function 

Configuration 
LH-based 

S-KSM 

PSO-based 

S-KSM 
original PSO 

LH-based 

S-KSM 

savings 

PSO-based 

S-KSM 

savings 

LH-based 

S-KSM 

PSO-based 

S-KSM / 

original PSO 

mean std mean std mean std 
  

pi=40; 

pu=10 
10KSM PSOp p   883 258 1,160 623 1,570 189 43.76 26.1 

pi=20; 

pu=10 
20KSM PSOp p   899 292 1,882 592 2,866 238 68.63 343 

pi=90; 

pu=10 
30KSM PSOp p   900 241 1,876 743 3,994 477 77.47 53.1 

pi=70; 

pu=10 
40KSM PSOp p   901 234 1,965 709 5,040 359 82.12 65.8 

pi=50; 

pu=10 
50KSM PSOp p   916 224 2,060 582 6,287 527 85.43 65.7 

pi=30; 

pu=10 
60KSM PSOp p   919 221 1,920 768 6,953 1,759 86.78 73.1 

pi=80; 

pu=10 
70KSM PSOp p   926 238 2,020 594 8,427 986 89.01 77.1 

pi=60; 

pu=10 
80KSM PSOp p   942 243 1,878 921 9,334 1,418 89.91 78.4 

pi=100; 

pu=10 
90KSM PSOp p   943 236 2,078 701 10,499 808 91.02 79.5 

pi=60; 

pu=20 
100KSM PSOp p   1,029 268 1,982 736 11,646 715 91.16 81.1 

mean 926 246 1,882 697 6,662 748 81 63 

std 39 20.5 251 100 3,164.3 487.7 14 18.8 
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Figure 4-15: Comparison of the lowest Je  for the three evaluated optimization methods applied to test problem I 

4.4.2.2 Results for test problem II 

Test problem II is more difficult than test problem I as it has two minima instead of one, but is still 

fairly easy to solve. The global minimum is very broad and deep, whereas the second minimum is 

narrow and shallow as can be seen in Figure 4-8.  

4.4.2.2.1 Results for LH-based S-KSM optimization on test problem II 

The best result of the LH-based S-KSM optimization on the 2D version of test problem II is achieved 

with 90ip   and 2up   with 140Je  . In contrast to the results on test problem I, a higher number of 

initial samples seems to be beneficial to the overall performance. The detailed initial search grid with 

90 samples allows for quicker identification of the global minimum and fast convergence. 

  

Figure 4-16: Number of true fitness function evaluations Je  for LH-based S-KSM optimization of the 2D version of 

test problem II: a. mean Je , b. Je  standard deviation 

The results on the 3D version of test problem II are different from the previous 2D results with the 

best configuration of the LH-based S-KSM configuration being 100ip   and 20up   with 532Je  . 

Similar to the results for test problem I, Je
 
rises quickly with the number of dimensions, so that a 

0

200

400

600

800

1,000

1,200

1,400

1,600

2D 3D 5D

LH-based S-KSM PSO-based S-KSM original PSO

a. b. 



4. Optimization methodology 

4.4. Performance results on test problems 

 

  
91 

 

  

higher number of update samples is necessary to cover the search space. Thus, the probability of the 

optimization method to find the global optimum fast is increased. 

  

Figure 4-17: Number of true fitness function evaluations Je  for LH-based S-KSM optimization of the 3D version of 

test problem II: a. mean Je , b. Je  standard deviation 

Looking at the 5D results it is interesting and astonishing to see that Je  is even slightly lower than for 

the 3D version of test problem II with 483 and 10ip   and 10up  . The standard deviation from the 

ten optimization runs is also the lowest for 10ip   and 10up  , which shows the robustness of the 

method. 

  

Figure 4-18: Number of true fitness function evaluations Je  for LH-based S-KSM optimization of the 5D version of 

test problem II: a. mean Je , b. Je  standard deviation 

4.4.2.2.2 Results for PSO-based S-KSM optimization on test problem II 

The PSO-based S-KSM optimization is not able to outperform the LH-based S-KSM optimization for 

the 2D and 5D version of test problem II. Only for the 3D problem the PSO-based S-KSM 

optimization is slightly better. In general, the lowest Je  is still achieved for the lowest number of 

particles 10KSMp  . 

a. b. 
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Figure 4-19: Number of true fitness function evaluations 
Je  for PSO-based S-KSM optimization of the 2D (a.), 

3D (b.) and 5D (c.) versions of test problem II 

 

4.4.2.2.3 Performance comparison to original PSO 

The comparison of the performance of these two methods to the original PSO for test problem II also 

shows that a significant reduction in computation time can be achieved. 
Je  were reduced by more than 

95% for the 2D problem, between 85 and 93% for the 3D problem and between 78 and 95% for the 

5D test problem II. It is obvious that the advantage of the two novel methods is bigger when applied to 

problems of lower dimensionality. Nevertheless, savings in computation time are still high and 

encourage the use of the novel methods instead of the original PSO. 
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Table 4-5: Performance results of LH-based S-KSM and PSO-based S-KSM optimization in comparison to original 

PSO based on mean and standard deviation of true fitness function evaluations Je  for the 2D test problem II 

Configuration 
LH-based S-

KSM 

PSO-based 

S-KSM 
original PSO 

LH-based 

S-KSM 

savings 

PSO-based 

S-KSM 

savings 

LH-based 

S-KSM 

PSO-based 

S-KSM / 

original PSO 

mean std mean std mean std 
  

pi=90; 

pu=2 
10KSM PSOp p   140 35 194 28 1,074 142 86.96 81.9 

pi=40; 

pu=2 
20KSM PSOp p   141 53 178 57 1,958 218 92.8 90.9 

pi=80; 

pu=7 
30KSM PSOp p   149 52 208 55 2,801 337 94.68 92.6 

pi=90; 

pu=5 
40KSM PSOp p   151 43 199 73 3,540 527 95.73 94.4 

pi=70; 

pu=7 
50KSM PSOp p   153 36 218 89 4,410 523 96.53 95.1 

pi=20; 

pu=7 
60KSM PSOp p   154 54 246 66 5,258 658 97.07 95.3 

pi=60; 

pu=7 
70KSM PSOp p   154 64 275 93 5,912 661 97.4 95.3 

pi=30; 

pu=10 
80KSM PSOp p   156 58 312 89 6,690 779 97.67 95.3 

pi=30; 

pu=12 
90KSM PSOp p   155 59 304 123 7,313 1,047 97.88 95.8 

pi=100; 

pu=2 

100KSM PSOp p 

 
159 52 366 116 8,072 963 98.03 95.5 

mean 151 51 250 79 4,703 586 95 93 

std 5.9 9.2 58.8 27.5 2,228 283.7 3.2 4 

 

The performance results for the 2D test problem II show that for all configurations a substantial 

improvement in comparison to the original PSO is possible. 
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Table 4-6: Performance results of LH-based S-KSM and PSO-based S-KSM optimization in comparison to original 

PSO based on mean and standard deviation of true fitness function evaluations Je  for the 3D test problem II 

Configuration 
LH-based 

S-KSM 

PSO-based 

S-KSM 
original PSO 

LH-based 

S-KSM 

savings 

PSO-based 

S-KSM 

savings 

LH-based 

S-KSM 

PSO-based 

S-KSM / 

original PSO 

mean std mean std mean std 
  

pi=70; 

pu=10 
10KSM PSOp p   532 168 336 99 1,143 120 53.46 70.6 

pi=100; 

pu=20 
20KSM PSOp p   533 159 487 110 2,050 232 74 76.2 

pi=90; 

pu=20 
30KSM PSOp p   542 159 577 189 2,937 281 81.55 80.4 

pi=40; 

pu=10 
40KSM PSOp p   553 167 728 165 3,785 389 85.39 80.8 

pi=80; 

pu=20 
50KSM PSOp p   565 183 876 342 4,603 502 87.73 81 

pi=20; 

pu=20 
60KSM PSOp p   566 166 910 248 5,462 481 89.64 83.3 

pi=50; 

pu=10 
70KSM PSOp p   567 172 903 299 6,080 727 90.67 85.1 

pi=60; 

pu=10 
80KSM PSOp p   572 183 1,272 180 6,995 774 91.82 81.8 

pi=80; 

pu=10 
90KSM PSOp p   582 153 1,277 441 7,817 795 92.55 83.7 

pi=30; 

pu=10 
100KSM PSOp p   583 158 1,320 325 8,617 871 93.23 84.7 

mean 560 167 869 240 4,949 517 84 81 

std 17.7 9.7 327.2 105 2,362.6 250 11.6 4.2 

 

For the 3D test problem II, the PSO-based S-KSM optimization achieves a better performance than the 

LH-based S-KSM optimization for small up  and KSMp . Nevertheless, both methods provide faster 

optimization solutions that are also more consistent than the results from the original PSO. Overall 

standard deviations of both novel methods are smaller than for the original PSO. 

The performance results from the 5D test problem II are different as the LH-based S-KSM 

optimization outperforms the PSO-based S-KSM method with 
Je  savings over 90%. The fact that 

even lower 
Je  than for the 3D version of the problem are achieved is unexpected and difficult to 
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explain as the standard deviation of 
Je  is only slightly larger than for the 3D problem. All in all, 

Je  

savings for the PSO-based S-KSM optimization are rather poor with 18.6 and 42.3% for the two 

smallest swarm sizes. For large swarm sizes with many particles PSO-based S-KSM optimization is 

able to achieve equally good performance values around 90%. 

The best overall results in Figure 4-20 show that both novel methods achieve significant reductions in 

true fitness function evaluations 
Je  for all three versions of test problem II.  

Table 4-7: Performance results of LH-based S-KSM and PSO-based S-KSM optimization in comparison to original 

PSO based on mean and standard deviation of true fitness function evaluations Je  for the 5D test problem II 

Configuration 
LH-based 

S-KSM 

PSO-based 

S-KSM 
original PSO 

LH-based 

S-KSM 

savings 

PSO-based 

S-KSM 

savings 

LH-based 

S-KSM 

PSO-based 

S-KSM / 

original PSO 

mean std mean std mean std 
  

pi=10; 

pu=10 
10KSM PSOp p   483 117 1,424 158 1,665 203 70.99 14.5 

pi=90; 

pu=10 
20KSM PSOp p   495 174 1,746 113 2,849 253 82.63 38.7 

pi=60; 

pu=10 
30KSM PSOp p   520 137 1,835 451 4,089 335 87.28 55.1 

pi=40; 

pu=10 
40KSM PSOp p   544 190 1,931 468 5,264 415 89.67 63.3 

pi=80; 

pu=20 
50KSM PSOp p   547 150 2,075 536 6,397 490 91.45 67.6 

pi=50; 

pu=10 
60KSM PSOp p   549 191 2,207 544 7,574 600 92.75 70.9 

pi=30; 

pu=30 
70KSM PSOp p   562 130 2,257 588 8,644 620 93.5 73.9 

pi=30; 

pu=20 
80KSM PSOp p   570 166 2,340 523 9,762 668 94.16 76 

pi=100; 

pu=10 
90KSM PSOp p   573 228 2,318 716 10,850 744 94.72 78.6 

pi=90; 

pu=10 
100KSM PSOp p   584 174 2,590 30 11,978 789 95.12 78.4 

mean 543 166 2,072 457 6,907 512 89 62 

std 31.9 31.6 324.9 174.9 3,282.1 194.4 7.1 19.6 
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Figure 4-20: Comparison of the lowest 
Je  for the three evaluated optimization methods applied to test problem II 

4.4.2.3 Results for test problem III 

Test problem III, which has four minima, can be considered a very difficult optimization problem as 

the global minimum is very narrow and very deep. Furthermore the global minimum is surrounded by 

a very broad minimum and two shallow minima. Thus, the probability of getting stuck in one of the 

local minima or of actually never finding the global minima is very high. Again, test problem III was 

evaluated in 2D, 3D and 5D, but the 5D results are not shown in this section as neither the two novel 

methods nor the original PSO was able to find the global optimum in time. Nevertheless, the results 

for the 2D and 3D test problem III are given in the following sections. 

4.4.2.3.1 Results for LH-based S-KSM optimization for test problem III 

The LH-based S-KSM optimization for test problem III achieves the best results with very low 
Je  

values. The best result on the 2D test problem III was achieved with 90ip  , 2up   and 148Je  . 

The lowest standard deviation was 34 with 30ip   and 7up  . 

 
 

Figure 4-21: Number of true model evaluations 
Je  for LH-based S-KSM optimization of the 2D version of test 

problem III: a. mean 
Je , b. 

Je  standard deviation 
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For the 3D version of test problem III the best 913Je   is six times higher than for the 2D problem, 

which clearly shows the high difficulty of this optimization problem. The best configuration was 

90ip   and 60up  . Thus, a higher number of update samples than for the test problems I and II was 

necessary to find the global optimum. In general it can be said, that complex problems require a high 

number of initial samples and update samples to assure a global search with fast convergence. When it 

comes to the standard deviation, it is interesting to see that the minimum is also at 90ip   and 

60up   whereas the surrounding values are much higher. Nevertheless, one reason for such a low 

standard deviation at this position might also be the relatively low number of optimization runs (10), 

which does not seem to suffice in this case. 

  

Figure 4-22: Number of true model evaluations 
Je  for LH-based S-KSM optimization of the 3D version of test 

problem III: a. mean 
Je , b. 

Je  standard deviation 

4.4.2.3.2 Results for PSO-based S-KSM optimization for test problem III 

The PSO-based S-KSM optimization performs very poor in comparison to the LH-based S-KSM 

optimization requiring much more 
Je  to achieve the same accuracy A. For the 2D test problem III, the 

lowest 530Je   is achieved with the maximum swarm size 100KSMp  . This illustrates the difficulty 

of this test problem as smaller swarm sizes are not able to cover the complete search space as well as 

big swarms. 

  

Figure 4-23: Number of true fitness function evaluations 
Je  for PSO-based S-KSM optimization of the 2D (a.) and 3D 

(b.) versions of test problem III 
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The results for the 3D test problem III are similar. Although, the lowest 1,368Je   is achieved with 

only 10KSMp  , it is obvious that bigger swarm sizes cause a slight decrease in 
Je . The high standard 

deviations in both cases clearly indicate that ten optimization runs can only give a first impression and 

that more runs would give more accurate results. Due to the computation time required for each 

optimization run, more than ten runs would not have been feasible. 
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4.4.2.3.3 Performance comparison to original PSO 

The performance evaluation of the two novel methods on test problem III in comparison to the original 

PSO shows that significant improvement of more than 90% is achieved with the LH-based S-KSM 

optimization, whereas the PSO-based S-KSM optimization fails to considerably improve the overall 

Je . In particular for small swarm sizes the improvement of the PSO-based S-KSM optimization is 

minimal. For larger swarm sizes a reduction of up to 93% can be achieved. The design of test problem 

III seems to make it particularly difficult for the PSO-based S-KSM optimization as bigger swarm 

sizes are necessary, which automatically results in higher 
Je  values. 

Table 4-8: Performance results of LH-based S-KSM and PSO-based S-KSM optimization in comparison to original 

PSO based on mean and standard deviation of true fitness function evaluations Je  for the 2D test problem III 

Configuration 
LH-based 

S-KSM 

PSO-based 

S-KSM 
original PSO 

LH-based 

S-KSM 

savings 

PSO-based 

S-KSM 

savings 

LH-based 

S-KSM 

PSO-based 

S-KSM / 

original PSO 

mean std mean std mean std 
  

pi=90; 

pu=2 
10KSM PSOp p   148 55 873 633 1,147 203 87.1 23.9 

pi=80; 

pu=10 
20KSM PSOp p   148 38 937 628 2,039 253 92.74 54 

pi=30; 

pu=10 
30KSM PSOp p   150 46 746 596 3,299 335 95.45 77.4 

pi=100; 

pu=2 
40KSM PSOp p   155 44 636 551 3,708 415 95.82 82.8 

pi=70; 

pu=10 
50KSM PSOp p   160 51 645 538 4,418 490 96.38 85.4 

pi=80; 

pu=5 
60KSM PSOp p   161 40 567 466 5,287 600 96.95 89.3 

pi=60; 

pu=7 
70KSM PSOp p   162 65 875 560 6,079 620 97.34 85.6 

pi=60; 

pu=5 
80KSM PSOp p   163 60 728 498 6,480 668 97.48 88.8 

pi=90; 

pu=7 
90KSM PSOp p   165 49 621 433 7,466 744 97.79 91.7 

pi=90; 

pu=10 

100KSM PSOp p 

 
165 54 530 329 8,025 789 97.94 93.4 

mean 158 50 716 523 4,795 512 95 77 

std 6.5 8.1 133.1 89.7 2,162.5 194.4 3.2 20.7 
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Table 4-9: Performance results of LH-based S-KSM and PSO-based S-KSM optimization in comparison to original 

PSO based on mean and standard deviation of true fitness function evaluations Je  for the 3D test problem III 

Configuration 
LH-based 

S-KSM 

PSO-based S-

KSM 
original PSO 

LH-based 

S-KSM 

savings 

PSO-based 

S-KSM 

savings 

LH-based 

S-KSM 

PSO-based 

S-KSM / 

original PSO 

mean std mean std mean std 
  

pi=90; 

pu=60 
10KSM PSOp p   913 141 1,368 1,142 1,368 147 33.26 0 

pi=100; 

pu=10 
20KSM PSOp p   957 382 1,750 998 6,096 2,663 84.3 71.3 

pi=90; 

pu=30 
30KSM PSOp p   962 377 1,922 791 8,259 4,011 88.35 76.7 

pi=90; 

pu=20 
40KSM PSOp p   991 406 1,829 771 10,668 5,130 90.71 82.9 

pi=60; 

pu=60 
50KSM PSOp p   1,010 388 1,715 707 11,135 6,301 90.93 84.6 

pi=40; 

pu=20 
60KSM PSOp p   1,066 480 1,813 617 8,458 4,860 87.4 78.6 

pi=80; 

pu=10 
70KSM PSOp p   1,068 591 1,673 524 7,091 814 84.94 76.4 

pi=100; 

pu=20 
80KSM PSOp p   1,106 580 1,642 511 8,191 820 86.5 80 

pi=70; 

pu=30 
90KSM PSOp p   1,135 489 1,609 492 9,753 2,527 88.36 83.5 

pi=70; 

pu=10 
100KSM PSOp p   1,139 589 2,050 335 11,145 4,505 89.78 81.6 

mean 1,035 442 1,737 689 8,216 3,178 82 72 

std 75.3 130.1 176.8 233.7 2,796.3 1,996.8 16.5 24.2 

 

Figure 4-24: Comparison of the lowest 
Je  for the three evaluated optimization methods applied to test problem III 
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4.4.2.4 Results for test problem IV 

Test problem IV is nearly as challenging as test problem III but it is completely different. The 

difficulty lies in the many local minima and is highly nonlinear behavior of the alpine function. 

Because of these characteristics, test problem IV is often used for the test and validation of global 

optimization methods. For the LH-based and PSO-based S-KSM optimization methods, this test 

problem is considered to be the most difficult test to determine whether computation time for global 

optimization can be significantly reduced. 

4.4.2.4.1 Results for LH-based S-KSM optimization for test problem IV 

The LH-based S-KSM optimization results show that a very low number of 
Je  is needed to find the 

global optimum. Furthermore, it is interesting to see that slightly less 
Je  are needed for the 5D test 

problem IV than for the 3D problem as was previously observed for test problem II. The reason for 

this behavior is not clear as a rise of 
Je  would have been expected. 

The best result for the 2D alpine function was achieved with 40ip  , 10up   and 298Je  . The 

lowest standard deviation for the ten optimization runs was 100 for 20ip   and 10up  , which is 

higher than for all the other test problems. 

  

Figure 4-25: Number of true model evaluations 
Je  for LH-based S-KSM optimization of the 2D version of test 

problem IV: a. mean 
Je , b. 

Je  standard deviation 

The best result for the 3D alpine function with 575Je   is achieved with the exact same values for 

40ip   and 10up   as for the 2D function. The lowest standard deviation of 170 is achieved for 

90ip   and 10up  . In the case of the 5D alpine function, 403Je   is considerably lower than for the 

3D alpine function, but the number of initial samples is the maximum with 100ip  . Furthermore, the 

number of update samples is also higher than for the lower dimensional problems with 20up  . The 

lowest standard deviation of 36 was achieved with 20ip   and 30up  . 

a. b. 
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Figure 4-26: Number of true model evaluations 
Je  for LH-based S-KSM optimization of the 3D version of test 

problem IV: a. mean 
Je , b. 

Je  standard deviation 

  

Figure 4-27: Number of true model evaluations 
Je  for LH-based S-KSM optimization of the 5D version of test 

problem IV: a. mean 
Je , b. 

Je  standard deviation 

 

4.4.2.4.2 Results for PSO-based S-KSM optimization for test problem IV 

The results for the PSO-based S-KSM optimization are much better than the LH-based results on the 

2D and 3D alpine function with 
Je  values that are about 50% lower, which indicates that the method 

very useful for problems of lower dimensionality. For the 2D alpine function 108Je   true model 

evaluations and 10KSMp   particles were needed to find the global optimum. The results for the 3D 

alpine function with 191Je   and 10KSMp  as well as for the 5D alpine function with 1,305Je   and 

10KSMp   show, that the number of 
Je  increases steadily with increasing dimensionality as was 

already discovered for the previous test problems. Nevertheless, standard deviations for all three 

versions of test problem IV are higher than the standard deviations achieved with the LH-based S-

KSM optimization. This indicates, that PSO-based S-KSM optimization might be able to find a global 

optimum quicker than the LH-based S-KSM optimization, but that it is not that robust. 

 

 

a. b. 

a. b. 



4. Optimization methodology 

4.4. Performance results on test problems 

 

  
103 

 

  

  

 

Figure 4-28: Number of true fitness function evaluations 
Je  for PSO-based S-KSM optimization of the 2D (a.), 

3D (b.) and 5D (c.) versions of test problem IV 

 

4.4.2.4.3 Performance comparison to original PSO 

The performance comparison of the two novel optimization methods to the original PSO shows that 

savings in computation time for test problem IV are the biggest compared to the performance results 

for the previous test problems. 

For the 2D alpine function, 
Je  savings from 82% for LH-based S-KSM optimization and 88% for 

PSO-based S-KSM optimization are achieved.  
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Table 4-10: Performance results of LH-based S-KSM and PSO-based S-KSM optimization in comparison to original 

PSO based on mean and standard deviation of true fitness function evaluations Je  for the 2D test problem IV 

Configuration 
LH-based 

S-KSM 

PSO-based 

S-KSM 
original PSO 

LH-based 

S-KSM 

savings 

PSO-based 

S-KSM 

savings 

LH-based 

S-KSM 

PSO-based 

S-KSM / 

original PSO 

mean std mean std mean std 
  

pi=40; 

pu=10 
10KSM PSOp p   298 152 108 49 556 838 46.4 80.6 

pi=20; 

pu=10 
20KSM PSOp p   316 209 181 104 363 930 12.95 50.1 

pi=60; 

pu=10 
30KSM PSOp p   324 194 214 111 1,829 2,246 82.29 88.3 

pi=30; 

pu=10 
40KSM PSOp p   362 290 260 126 661 1,531 45.23 60.7 

pi=30; 

pu=20 
50KSM PSOp p   392 313 565 647 1912 3,124 79.5 70.4 

pi=50; 

pu=10 
60KSM PSOp p   398 309 736 615 498 1,257 20.08 -47.8 

pi=70; 

pu=10 
70KSM PSOp p   398 389 690 607 1,018 2,341 60.9 32.2 

pi=10; 

pu=20 
80KSM PSOp p   410 362 421 167 1,210 2,889 66.12 65.2 

pi=100; 

pu=20 
90KSM PSOp p   414 374 454 245 725 2,099 42.9 37.4 

pi=90; 

pu=10 
100KSM PSOp p   417 309 533 289 943 2,626 55.78 43.5 

mean 373 290 416 296 972 1,988 51 48 

std 42.4 76.2 207.4 224 510.3 768 21.6 36.3 

 

In the case of the 3D alpine function, 
Je  savings are considerably higher with a maximum of 95% for 

both methods.  
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Table 4-11: Performance results of LH-based S-KSM and PSO-based S-KSM optimization in comparison to original 

PSO based on mean and standard deviation of true fitness function evaluations Je  for the 3D test problem IV 

Configuration 
LH-based 

S-KSM 

PSO-based 

S-KSM 
original PSO 

LH-

based 

S-KSM 

savings 

PSO-based 

S-KSM 

savings 

LH-based 

S-KSM 

PSO-based 

S-KSM / original 

PSO 

mean std mean std mean std 
  

pi=40; 

pu=10 
10KSM PSOp p   575 249 191 128 2,435 1,172 76.39 92.2 

pi=90; 

pu=10 
20KSM PSOp p   636 170 217 134 4,546 1,839 86.01 95.2 

pi=80; 

pu=10 
30KSM PSOp p   641 252 399 189 4,965 3,446 87.09 92 

pi=20; 

pu=10 
40KSM PSOp p   642 200 489 334 8,545 3,159 92.49 94.3 

pi=70; 

pu=10 
50KSM PSOp p   654 342 577 300 7,651 5,398 91.45 92.5 

pi=50; 

pu=10 
60KSM PSOp p   667 211 603 306 11,591 4,729 94.25 94.8 

pi=30; 

pu=10 
70KSM PSOp p   671 214 945 395 6,721 7,631 90.02 85.9 

pi=10; 

pu=10 
80KSM PSOp p   672 208 772 462 11,633 8,315 94.22 93.4 

pi=60; 

pu=10 
90KSM PSOp p   675 216 688 366 14,205 8,748 95.25 95.2 

pi=50; 

pu=20 
100KSM PSOp p   734 251 763 401 13,542 

10,50

8 
94.58 94.4 

mean 657 231 564 302 8,583 5,495 90 93 

std 38 44 232 110 3,822 3,009 5.5 2.6 

 

The performance results on the 5D alpine function confirm the very good results for the 2D and 3D 

problem. With Je  savings of up to 98% (LH-based) and 92% (PSO-based), it is obvious that the two 

novel global optimization methods are perfectly suited to solve computationally intensive optimization 

problems. 
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Table 4-12: Performance results of LH-based S-KSM and PSO-based S-KSM optimization in comparison to original 

PSO based on mean and standard deviation of true fitness function evaluations Je  for the 5D test problem IV 

Configuration 
LH-based 

S-KSM 

PSO-based 

S-KSM 
original PSO 

LH-based 

S-KSM 

savings 

PSO-based 

S-KSM 

savings 

LH-based 

S-KSM 

PSO-based 

S-KSM / 

original PSO 

mean std mean std mean std 
  

pi=100; 

pu=10 
10KSM PSOp p   403 90 1,305 834 5,005 982 91.95 73.9 

pi=100; 

pu=20 
20KSM PSOp p   409 135 2,002 634 7,861 2,061 94.8 74.5 

pi=90; 

pu=10 
30KSM PSOp p   418 134 1,875 809 10,940 2,698 96.18 82.9 

pi=30; 

pu=20 
40KSM PSOp p   427 129 1,726 851 14,785 1,703 97.11 88.3 

pi=50; 

pu=10 
50KSM PSOp p   429 128 2,156 640 17,471 3,054 97.54 87.7 

pi=60; 

pu=10 
60KSM PSOp p   434 109 1,873 653 21,130 2,151 97.95 91.1 

pi=80; 

pu=10 
70KSM PSOp p   436 55 1,933 797 23,719 3,088 98.16 91.9 

pi=40; 

pu=10 
80KSM PSOp p   437 104 2,015 675 23,863 8,937 98.17 91.6 

pi=70; 

pu=20 
90KSM PSOp p   452 122 2,151 672 29,007 3,821 98.44 92.6 

pi=30; 

pu=10 
100KSM PSOp p   455 154 2,200 550 31,939 4,714 98.58 93.1 

mean 430 116 1,924 712 18,572 3,321 97 87 

std 16 27 249.7 97.4 8,492 2,128 2 6.9 

 

Figure 4-29: Comparison of the lowest Je  for the three evaluated optimization methods applied to test problem IV 

0

2,000

4,000

6,000

2D 3D 5D

LH-based S-KSM PSO-based S-KSM original PSO



4. Optimization methodology 

4.4. Performance results on test problems 

 

  
107 

 

  

All in all, the performance result for test problem IV clearly prove that significant improvement in 

terms of computation time and Je  in comparison to optimization using the original PSO algorithm can 

be achieved by the use of LH- and PSO-based S-KSM optimization. Thus, both methods are perfectly 

suited for high dimensional, highly nonlinear optimization problems. 

4.4.3 Computation time of the LH-based S-KSM and PSO-based S-KSM optimization 

The investigation of Je  for LH-based and PSO-based S-KSM optimization in comparison to the 

original PSO is not enough to fully evaluate the performance of the two novel methods. Due to the fact 

that the regular update of the KSM requires additional computation time KSMt , both the computation 

time Jt  for each Je  and KSMt  need to be considered in determining the overall optimization time ot . 

Thus, ot  is computed as 

  with o KSM J J J Ot k t e t e e k   
,
 (4.33) 

where k  is the number of iterations of the optimization algorithm, Oe  the number of initial true fitness 

function evaluations,   the number of true fitness function evaluations for each KSM update 

performed during one iteration of the optimization and Je  the number of total true fitness function 

evaluations. To properly estimate the average computation time of a KSM update, KSMt  was measured 

for a different number of dimensions (2, 3, 4, 5) and a different number of sample points per KSM 

(100-2,500) for the alpine function. It becomes clear that KSMt  increases significantly with higher 

dimensions and higher number of samples used to build the KSM. The computational complexity of 

the KSM derived from the results of Figure 4-30 is 
3( )O n  for n data points, which is confirmed by 

Cressie and Johannesson (2008). 

 

Figure 4-30: Dependency of KSMt  on dimensionality and number of samples of the true fitness function 

(exemplary data for the alpine function) 
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Based on the data from Figure 4-30 the average computation time KSMt  over all KSM updates for the 

2D, 3D and 5D versions of the test problems was set as shown in Table 4-13. 

Table 4-13: Average KSMt  over all KSM updates for the different dimensionalities of the test problems 

2D 2.8s 

3D 5s 

5D 12s 

As Jt  is the most critical parameter when determining the total optimization time ot , Jt  was estimated 

to be 30s based on dynamic simulations with a small biogas plant model (one digester). For more 

complex dynamic models Jt  can easily take values from several minutes up to several hours. 

Computation time for test problem I 

A comparison of the computation times of all three versions of the quadratic function shows that in 

each case a significant reduction of ot  of several hours can be achieved. Due to the effects described in 

Figure 4-30, it is obvious that computation time savings are significantly lower with only 41.6% (LH-

based S-KSM) and 22.6% (PSO-based S-KSM) for the 5D quadratic function. For the 2D and 3D 

functions ot  savings are up to 78.5%. 

Table 4-14: Computation time savings for test problem I of LH-based and PSO-based S-KSM in comparison to 

original PSO 

Test problem I - 2D LH-based S-KSM PSO-based S-KSM original PSO 

 KSMk t = 2.8s  41 12 - 

 J Je t = 30s  152 115 540 

ot  [min] 77.9 58.1 270 

ot  savings [%] 71.1 78.5  

Test problem I - 3D 
   

 KSMk t = 5.03s  42 26 - 

 J Je t = 30s  481 261 977 

ot  [min] 244 132.7 488.5 

ot  savings [%] 50 72.8  

Test problem I - 5D 
   

 KSMk t = 12.05s  84 136 - 

 J Je t = 30s  883 1160 1570 

ot  [min] 458.4 607.3 785 

ot  savings [%] 41.6 22.6  
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Computation time for test problem II 

The computation time results for test problem II are also very good for the 2D and 3D versions of the 

problem and still acceptable for the 5D version, although the PSO-based S-KSM optimization is only 

slightly better than the original PSO (11% savings). For the 3D test problem savings of 52.8% (LH-

based S-KSM) and 70.1% (PSO-based S-KSM) are very good, resulting in optimization times that are 

more than six hours faster than the original PSO. Nevertheless, 2D computation times are again much 

faster with 86.7% (LH-based S-KSM) and 81.8% (PSO-based S-KSM) savings. 

Table 4-15: Computation time savings for test problem II of LH-based and PSO-based S-KSM in comparison to 

original PSO 

Test problem II - 2D LH-based S-KSM                           PSO-based S-KSM                           original PSO 

 KSMk t = 2.8s  25 19 - 

 J Je t = 30s  140 194 1074 

ot  [min] 71.2 97.9 537 

ot  savings [%] 86.7 81.8  

Test problem II - 3D    

 KSMk t = 5.03s  46 34 - 

 J Je t = 30s  532 336 1143 

ot  [min] 269.9 170.9 571.5 

ot  savings [%] 52.8 70.1  

Test problem II - 5D    

 KSMk t = 12.05s  84 142 - 

 J Je t = 30s  483 1424 1665 

ot  [min] 258.4 740.5 832.5 

ot  savings [%] 69 11.1  

Computation time for test problem III 

The fact, that test problem III is the most difficult optimization task, is reflected in the computation 

time that is required to find the global optimum for this problem. In particular PSO-based S-KSM 

optimization performs rather poorly with 23.2% savings on the 2D problem and no savings on the 3D 

problem where even more computation time is needed. The performance of LH-based S-KSM 

optimization is much better with very high 86.9% savings on the 2D and after all 33.1% on the 3D test 

problem.  
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Table 4-16: Computation time savings for test problem III of LH-based and PSO-based S-KSM in comparison to 

original PSO 

Test problem III - 2D LH-based S-KSM PSO-based S-KSM original PSO 

 KSMk t = 2.8s  29 87 - 

 J Je t = 30s  148 873 1147 

ot  [min] 75.4 440.6 573.5 

ot  savings [%] 86.9 23.2 
 

Test problem III - 3D 
   

 KSMk t = 5.03s  14 136 - 

 J Je t = 30s  913 1368 1368 

ot  [min] 457.7 695.4 684 

ot  savings [%] 33.1 -1.7 
 

Computation time for test problem IV 

As test problem IV is a benchmark for many global optimization methods, computation time results 

are of particular interest to evaluate the overall performance of LH-based and PSO-based S-KSM 

optimization. Similar to the previously described results, performance for the 2D and 3D alpine 

function are good with computation time savings between 80% and 92% in the case of PSO-based S-

KSM optimization. Performance of LH-based S-KSM optimization is much poorer than PSO-based S-

KSM optimization but still high with 46% (2D) and 76% (3D). In the case of the most complex 5D 

alpine function, surprisingly both novel methods substantially outperform the original PSO with 

computation time reduced by 91.7% (LH-based S-KSM) and 72.9% (PSO-based S-KSM). In this case 

Ot  is reduced by more than 38 hours compared to the original PSO. 

  



4. Optimization methodology 

4.5. Conclusion for the global optimization with LH- and PSO-based S-KSM 

 

  
111 

 

  

Table 4-17: Computation time savings for test problem IV of LH-based and PSO-based S-KSM in comparison to 

original PSO 

Test problem IV - 2D LH-based S-KSM PSO-based S-KSM original PSO 

 KSMk t = 2.8s  25 11 - 

 J Je t = 30s  298 108 556 

ot  [min] 150.2 54.5 278 

ot  savings [%] 46 80.4 
 

Test problem IV - 3D 
   

 KSMk t = 5.03s  53 19 - 

 J Je t = 30s  575 191 2435 

ot  [min] 291.9 97.1 1217.5 

ot  savings [%] 76 92 
 

Test problem IV - 5D 
   

 KSMk t = 12.05s  30 130 - 

 J Je t = 30s  403 1305 5005 

ot  [min] 207.5 678.6 2502.5 

ot  savings [%] 91.7 72.9 
 

4.5 Conclusion for the global optimization with LH- and PSO-based S-KSM 

The survey of surrogate models and PSO, given in section 4.1 and 4.2, shows that the use of surrogate 

models in combination with global optimization methods is not only common but a valid method to 

reduce optimization time for highly complex problems. Nevertheless, the creation of a surrogate 

model that adequately matches the true fitness function J  based on a small amount of Je  is difficult. 

To keep these Je  to a minimum, two novel methods were developed and introduced in this chapter, 

namely LH-based S-KSM and PSO-based S-KSM optimization. These methods update a Kriging 

surrogate model during the optimization run based on new sample points and the intermediate 

optimization result, which is new in comparison to existing methods described in section 4.1. Results 

obtained on four test problems of differing levels of complexity prove that the number of Je  can be 

reduced by up to 98% in comparison to conventional optimization methods. This translates to a 

minimum computation time Ot  required for the optimization of computationally intensive true fitness 

functions. 

The performance results presented in section 4.4 show that both novel methods are far superior to 

optimization using standard PSO. Computation time can be reduced by several hours; in the case of 

test problem IV the reduction was of the order of 1.5 days. Thus, LH-based S-KSM and PSO-based S-
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KSM optimization have two major advantages, when used for the optimization of complex true fitness 

functions. 

1. They provide a significant reduction in the number of true function evaluations required for 

global optimization. 

2. The overall computation time to perform the optimization is substantially reduced. 

Furthermore, the developed strategies to update a surrogate model are universally applicable, which 

means that these strategies can be applied to any kind of surrogate model and any kind of global 

optimization method. In general, the higher the time for one true function evaluation, the higher the 

reduction of the overall computation time for an optimization run. Thus, if one true function 

evaluation takes one hour, computation time savings of several days can be easily achieved, which 

makes such optimization problems perfectly suited for LH-based S-KSM and PSO-based S-KSM 

optimization. Due to the very good optimization results on the test problems, the optimization of the 

substrate feed of a biogas plant based on the ADM1 model is performed with these two optimization 

methods. 
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5 Optimization of ABPsEQUATION CHAPTER 5 SECTION 1 

The optimization of ABPs is important to maintain stable operation and to constantly improve process 

efficiency as previously mentioned in chapter 2. In particular, rising prices for biomass due to high 

demand and steadily decreasing remuneration rates for electricity and heat from biogas plants driven 

by revised Renewable Energy Laws (BMU 2011) put additional pressure on biogas plant operators and 

biogas service providers to maximize biogas production while reducing substrate and energy costs. 

Thus, the optimization and control of AD plants is a central topic of research and development. 

Unfortunately, the majority of developments in this area have been largely confined to lab-scale 

digesters and to the digestion of waste-activated sludge (Steyer et al. 2006). The main reasons why 

research on optimization and control has rarely been applied and validated on full-scale AD plants and 

particularly on ABPs are the lack of necessary online measurements and the difference in process 

behavior between lab- and full-scale processes, which make upscaling of such developments very 

difficult. Therefore, novel and innovative optimization and control methods, that consider the 

aforementioned challenges and which are (1) suitable for full-scale application and (2) manageable for 

ABP service providers as well as ABP operators, need to be developed. 

This chapter presents such a novel method for the optimization of ABPs by determining the optimal 

substrate inflow which maximizes plant efficiency by maximizing biogas yield, minimizing costs and 

guaranteeing process stability. The introduced method is a model based optimization method which 

combines the fully calibrated simulation model of the Sunderhook ABP from chapter 3 with the newly 

developed optimization methods using S-KSM and PSO from chapter 4. The combination of these 

tools allows for a fast and effective optimization of ABP substrate inflows which can be easily 

implemented in full-scale operation. Thus, the main contributions of the chapter are (1) the definition 

of the ABP optimal substrate inflow optimization problem, and (2) the evaluation of the performance 

of the developed optimization method for optimizing the Sunderhook ABP substrate inflow.  

The remainder of the chapter is organized as follows. Section 5.1 gives a short survey of advances in 

the area of optimization and control of AD plants in general and section 5.2 describes the optimization 

problem of ABPs with regard to an optimal substrate inflow and introduces the fitness function used in 

the optimization algorithm. The achieved optimization results based on this fitness function are given 

in section 5.3 where subsections 5.3.1 to 5.3.4 show the main optimization results of this work based 

on a combination of S-KSM and PSO. To sum up, a conclusion on the results obtained and their 

relevance in practice is given in section 5.4. 

5.1 Short review on optimization and control of AD processes 

This short review about developments in the area of optimization and control of AD processes 

introduces some of the most significant ideas and concepts from the last 20 years. Due to the high 
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number of publications in this area with more than 140 original research papers on Scopus alone
19

, 

only a small extract is discussed in chronological order.  

In 1993 Polihronakis et al. developed one of the first model-based control algorithms for AD of waste-

activated sludge based on a simplified version of the dynamic simulation model developed by 

Andrews (1969). Three control strategies were developed; (1) substrate concentration control in the 

effluent, (2) methane production rate control and (3) a combined control strategy of (1) and (2). The 

overall goal of the combined controller is to hold both set points for substrate concentration and 

methane production in the face of process disturbances and highly oscillating inflow concentrations. 

The practical implementation of the combined control strategy was straight forward. At each sample 

point the actual value for both controlled variables is compared with the set point. If the deviation 

from the set point for one controlled variable is greater than a predefined margin the algorithm 

switches to the controller for this variable. If the actual value is within that margin the controller for 

the other controlled variable is used. Thus, at each sample point a switching between control strategies 

(1) and (2) occurs. The control variables for the whole system were the dilution rate of the digester 

inflow and the feed rate in relation to the digester volume (i.e. the digester load). The developed 

controllers were tested using the full simulation model by Andrews (1969) and at a full-scale digester 

with a capacity of 1,600 m³ fed from a municipal WWTP with 110,000 PE
20

. Results show that the 

controller was able to closely follow changes in substrate concentration and methane production of 

10%. 

A practical control strategy which is easy to implement was introduced by Steyer et al. (1999) who 

decided to monitor and analyze the reaction of an AD process to sudden changes in substrate inflow 

and concentration. The disturbances of the substrate inflow were a maximum 20% more than the 

previous substrate inflow and process reaction was monitored through the controlled variables pH and 

biogas yield. The idea behind the controller is that an increase in substrate inflow should result in a 

comparable increase in biogas yield under normal process conditions. If this is not the case, the AD 

process is inhibited in some way and the substrate inflow needs to be reduced. Therefore, a ratio R  

between the real and the expected biogas yield is calculated. If R  is close to 1 after a step change in 

substrate inflow, the substrate inflow is increased and if R  is between predefined boundaries minR  and 

maxR  the substrate inflow is kept constant. In the case that R  is below or equal to minR , the substrate 

inflow is decreased. This control strategy was validated at a 15 l lab-scale digester and a 120 l pilot-

scale digester. Although this method is straight forward its transfer to ABP operation is difficult for 

two main reasons. Firstly, pH is not a reliable process parameter as buffer capacity in ABPs is 

extremely high. Thus, significant changes in pH would already result in complete process failure. 
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Secondly, a step change in substrate inflow of up to 20% is very high and can easily result in severe 

process inhibition and eventually process breakdown. Therefore, the risks involved in the application 

to ABPs are too high for ABP operators. 

Another highly complex control strategy with a focus on adaptive and robust model-based control of 

AD processes was developed by Hilgert et al. (2000). The aim of the controller was to manipulate the 

substrate inflow to achieve a set point for the biogas outflow rate. The model employed was an 

ARMAX (Auto Regressive Moving Average) model of the form 

 ( )( ) ( )( ) ( )n eq n eq nA q y y B q u u C q e      (5.1) 

where nu  and ny  are the input and output values of the system at time n  and 15equ   [
-1lh ] and 

110eqy  [
-1lh ] define the steady state operating conditions of the system. Furthermore, q  and e  

represent a delay operator and white noise and ,A B  and C  are polynomials which need to be 

determined. As these types of models are trained to represent one specific operating region defined by 

( ,eq equ y ) and do not cope well with disturbances and volatile process parameters, the applied 

ARMAX model was transformed into a parameter free model using nonparametric estimation for the 

determination of unknown or uncertain process parameters. Although this procedure is mathematically 

complex and time-consuming, controller test results at a 120 l pilot plant show that the controller was 

able to track set point changes quickly and accurately. 

Liu et al. (2004) a former PhD student of Gustaf Olsson
21

 who is well-known for his achievements in 

the area of industrial automation and control of WWTPs, developed another control strategy using 

standard PI controllers on the inner level for the control of pH and gas flow rate, while using a rule-

based supervisory control system on the outer level defining the set points of the gas flow rate. This 

cascaded controller uses pH, gas flow rate and methane concentration in the biogas as controlled 

variables and the substrate feeding rate as manipulating variable. The whole control setup was tested at 

a 1.8 l lab-scale reactor under different disturbance conditions which could all be successfully rejected. 

The main advantage of this control system is the use of different time constants in the inner and outer 

level of control to adequately react to slow and fast process changes. This allows for plant operation at 

maximum productivity while guaranteeing process stability. Nevertheless, the use of pH as the 

controlled variable is again not optimal for ABP control applications, which renders this inner control 

loop useless. 

Instead of using pH or biogas production as the controlled variable, Boe et al. (2008) measured 

propionate concentration online as high propionate concentration causes strong process inhibition. The 

overall goal of the controller is to manipulate substrate inflow so that propionate concentration is 

always below 10 mMol. The controller itself is simple and consists of a feature state controller which 
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adjusts the substrate inflow according to fixed ranges of propionate concentration. In total, three 

different configurations of the feature state controller were tested and manually adapted based on 

expert knowledge. The performance of the feature state controller was tested at a lab-scale digester 

(9 l) fed with manure. To allow for a comprehensive evaluation of the control strategy, additional 

online measurements for pH, biogas production, total VFA as well as specific VFAs were performed 

on a regular basis. The results show that adaptation of the substrate inflow according to propionate 

concentration in the digester is far from optimal as high fluctuations in biogas concentration are one of 

the consequences. Furthermore, there are only three states in each configuration of the feature state 

controller which results in rapid and drastic changes of the substrate inflow. Therefore, Boe et al. 

(2008) suggests the use of biogas flow rate as controlled variable to maintain a continuously stable 

biogas production while using propionate concentration as an early warning system for process 

inhibitions. Even though the feature state controller was successfully evaluated at lab-scale its 

upscaling is very difficult as the online measurement of VFA or even single VFAs is very expensive 

and hard to manage. Nevertheless, in combination with the online measurement system for VFAs 

introduced in chapter 6, this controller could be implemented at full-scale. 

An interesting controller design which was developed and validated with the ADM1 was developed by 

Alferes et al. (2008) whose idea was to use equalization tanks to buffer the substrate inflow to 

digesters of a WWTP treating slaughterhouse waste. Through efficient use of these equalization tanks, 

the substrate inflow can be flexibly adapted to the current state of the process. Due to the fact that this 

controller relies on the developments from Liu et al. (2004), the same online measurements are used as 

controlled variables (pH and gas flow rate) with the gas flow used as a set point. Although the 

controller is basically the same as the one from Liu et al. (2004) only that the equalization tanks are 

also controlled, a remarkable amount of testing was performed on ADM1 simulation models of a lab-

scale digester (1.2 l), a 1 m³ pilot-scale digester and a full-scale AD plant for slaughterhouse 

wastewater with two digesters of 68 m³ and 171 m³ capacity respectively. Overall, an average increase 

of 30% was achieved in the total amount of biogas produced. These results prove the suitability of the 

ADM1 for AD plant control and optimization. 

A good example of the use of Computational Intelligence for ABP control was given by Scherer et. al 

(2009) who designed a fuzzy logic controller (FLC) for an ABP digesting sugar beets as a mono-

substrate. The main problem with the digestion of sugar beets is the extremely low pH value (3.3) of 

the input substrate which makes stabilizing the AD process a major priority as buffer capacity is 

extremely low. The FLC was implemented in Labview
22

 and the rule set was based on the online 

measurements of pH, biogas flow and methane concentration in the biogas. The control system was 

evaluated at lab-scale using a 15 l digester and results of a long term study over several years show 
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that process stability was successfully maintained during that period and that the FLC was able to 

compensate disturbances caused by changing digester load and temperature. 

In 2010, Alferes and Irizar made another attempt to improve AD control based on equalization tanks. 

A fuzzy-based supervisory module monitoring the state of equalization tanks of AD plants was 

implemented at the highest level of the previously developed controller (Alferes et al. 2008) whose 

purpose was to optimize methane production in the long run. The maximum methane production set 

point was defined by the state of the equalization tank determined by fill level and substrate 

concentration. Control performance was measured through four indexes: (1) Effluent Quality Index 

(EQI) determined by COD, TSS and TKN concentrations in the effluent, (2) COD Removal Efficiency 

(Ref) determined by the ratio of inCOD  and outCOD , (3) Unitary Methane Production (UMP) 

described by the ratio of methane production and substrate inflow, (4) Energy Recovery Index (

1kwhd 
). Evaluation of the controller performance showed an increase in effluent quality and 

methane production by 10-15%. 

Another multi-objective cascaded controller was recently developed by García-Diéguez et al. (2011) 

who used VFA concentration in the effluent and methane flow rate as controlled variables. The 

difference in comparison to other existing control strategies is the use of a low-maintenance, easy to 

manage online measurement system for VFA concentration called ANASENSE
®
 (de Neve and 

Lievens 2004) which makes the transfer of this control strategy to full-scale AD plants possible. The 

two operational objectives of the controller were to (1) maximize methane production in the inner 

control loop, and (2) improve effluent quality in the outer control loop. Validation of the controller 

was performed in two stages. In the first stage the ADM1 simulation model of a 1.15 m³ pilot-scale 

digester was used before application to the actual pilot-scale reactor. Results show that the controller 

was able to successfully reject all disturbances during the validation phase. 

This small selection of developments in the area of optimization and control of AD processes 

illustrates that the main manipulated variable is always the substrate inflow. Thus, the challenge in the 

case of ABP optimization and control is to find the optimal substrate combination for the present state 

of the AD process. Furthermore, the review shows that model-based approaches as well as the use of 

CI methods are common in this case due to the high non-linearity of the underlying processes. 

Therefore, CI methods were used in combination with an ADM1 simulation model for substrate feed 

optimization of the Sunderhook ABP. 
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5.2 Description of the optimization problem 

The optimization problem for ABPs can best be described by looking at a general description of an 

ABP system to identify the main input, output variables and the important influencing factors also 

called disturbances (Figure 5-1). It becomes obvious that the number of manipulated and controlled 

variables is very small. In addition to the most prominent manipulated variable, the substrate feed Sx , 

mixing of the digester, pH control as well as digestate and biogas recirculation are among the few 

important manipulated variables. Due to the fact, that the substrate feed Sx  has a strong influence on 

process stability and the produced electrical and thermal energy ( ,Eel Ethy y ), Sx  is used as the key 

manipulated variable in the inflow of an ABP with the view to improving biogas quality and 

performance of the cogeneration units. Other influencing variables acting as disturbances cannot be 

controlled because they are very hard to monitor. Most of these disturbances are caused by variations 

in substrate quality which is determined by TS, VS and pH as well as by inhibition caused by high 

VFA, NO3, NH4 and H2S concentrations. 

 

Figure 5-1: System description of a standard ABP 

For industrial AD plants treating the organic fraction of municipal solid waste (oMSW) the different 

n  substrate components of 
1
,...,

n

T

S S Sx x   x  are normally not known and cannot be properly 

separated nor characterized which makes optimization of the substrate feed according to the current 

state of the AD process very difficult. The only possibility is to reduce or increase the total amount of 

substrate (
T
Sx  ) over time, that is 

 
T
Sd

dt

x
 , where 

1
i

n
T
S S

i

x x


   (5.2) 

Instead ABPs offer diverse possibilities to change and optimize the substrate feed Sx . Not only can 

the number of substrates n  be changed if new substrates are available on the market, but also the ratio 
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of the substrates in Sx  can be adapted. Thus, Sx  is determined by n  and the amount of each single 

substrate 
iSx  for 1,...,i n . 

 i nS SS
dx dxd

dt dt dt

 
  
 

x
  (5.3) 

In the case of the Sunderhook ABP, substrate inflow optimization is performed for 2,3,4,5n   

substrates, which are maize, bull manure, green rye, grass silage and oats. 

As the literature review from the previous section showed, many of the developed methods used for 

optimization and control of ABPs are model or state based and involve CI methods, which indicates 

that the AD process is difficult to optimize and control. What makes optimization difficult is the 

highly nonlinear behavior of the AD process, which is documented in Figure 5-2. A basic simulation 

model of an ABP was fed with steadily increasing amounts of maize and green rye which eventually 

resulted in complete process failure. The sudden drop in biogas production and methane concentration 

proves the nonlinearity of AD processes. The more substrates are used the more difficult the 

optimization of the substrate inflow becomes, which is why nonlinear optimization methods such as 

CI methods are perfectly suited for this problem.  

 

 

Figure 5-2: Nonlinearity of the AD process shown by simulation results of an ABP fed with steadily increasing 

substrate inflow, a. biogas production, b. methane concentration 

a. 

b. 
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To use CI methods, an assessment of optimization quality is necessary, which is implemented in the 

form of a fitness function ( )SJ x . The design of this fitness function is described in the following 

section. 

5.2.1 The fitness function 

The fitness function ( )SJ x  used for the assessment of substrate feed quality in order to achieve a 

highly efficient AD process is a weighted combination of separate performance measures and 

penalties. The weights 

  
deg , 4 /, , , , , , ,i COD pH TS gas excess fin ch COD VOA TICw w w w w w w w w   (5.4) 

for each of the fitness function components were determined based on expert knowledge and in close 

collaboration with the operator of the Sunderhook ABP. The complete fitness function ( )SJ x  is 

defined as 

 

 

, ,

/

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

/ ( )

degS COD fitness S fitness S pH fitness S TS limit S

gas excess gas excess S fin S CH4 limit S COD limit S

VOA TIC limit S

J w SS XS w pH w TS

w Q w C w CH4 w COD

w VOA TIC

    

   

x x x x x

x x x x

x

  (5.5) 

where the different components are calculated based on the simulation results of the Sunderhook ABP 

model. The actual fitness value is calculated based on the state of the model after 200 days of 

simulation when it can be assured that the AD process is again in a steady state. In general, the smaller 

the fitness value of a substrate inflow, the better its performance. Therefore, the goal of the 

optimization is to minimize ( )SJ x . 

 * : argmin ( )
S

S SJ
x

x x   (5.6) 

A detailed description of the fitness function components is given in the following paragraphs and a 

list of fitness function parameters is shown in Table 5-1. 

SSfitness and XSfitness 

In the case of a stable AD process the total amount of soluble and particulate degradable COD (SS and 

XS) is nearly completely degraded and transformed into biogas, which means that the ratios SSout vs 

SSin  and XSout vs XSin describing the degrees of degradation degSS  and degXS  are a measure of the 

efficiency of the biogas production process. If those ratios are small, substrate degradation is almost 

complete. If they are close to one, it means that a high percentage of potentially degradable substrate 

remains unused. 
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,min

,max ,min

( )
( )

deg S deg

fitness S

deg deg

SS SS
SS

SS SS






x
x   (5.7) 

 
,min

,max ,min

( )
( )

deg S deg

fitness S

deg deg

XS XS
XS

XS XS






x
x   (5.8) 

pHfitness 

The pH value is a crucial process parameter which needs to stay within certain boundaries to guarantee 

stable process conditions. If pH is far below its neutral value ( 7pH  ) the VFA concentration in the 

digester is too high, indicating a severe inhibition of the AD process, in particular of the 

methanogenesis. However, if 9pH  , a substantial amount of NH4 is transformed into NH3 which 

also has a strong inhibitory effect. Thus, the overall fitness is punished if the pH exceeds predefined 

lower and upper limits. 

 
min max

min max

1 ( ) ( )
( )

0 ( )

S S

fitness S

S

pH pH pH pH
pH

pH pH pH

  
 

 

x x
x

x
  (5.9) 

TSlimit 

A limit for the maximum TS concentration of the substrate inflow is introduced because too high 

concentrations result in heavy operational problems such as deadlock of the stirrers inside a digester or 

malfunction of pumps. Therefore, substrate inflows with TS concentrations greater than a predefined 

TSmax are punished with a higher fitness value. 

 
max

max

1 ( )
( )

0 ( )

S

limit S

S

TS TS
TS

TS TS


 



x
x

x
  (5.10) 

Qgas,excess 

In some cases, the amount of substrate fed to the ABP might result in such a high biogas yield that it 

cannot be fully burned in time by the cogeneration units. For safety reasons, this excess gas is burned 

as a flare so that neither its potential electrical nor thermal energy is supplied to the respective grids. 

Thus, excess gas is wasted and its production should be avoided. The amount of excess gas is 

calculated by the difference in the total biogas yield gasQ  and the amount of biogas consumed by the 

cogeneration units ,gas cogQ . 

 , ,( ) ( ) ( )gas excess S gas S gas cog SQ Q Q x x x   (5.11) 

Costs (C) 

The total costs and turnover of ABP operation as a function of different substrate inflows is the most 

important fitness parameter for the plant operator because an increase in profit directly benefits a 
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financially secure operation of the ABP in the long run. The main costs, considered in C, are costs for 

electrical energy of pumps and digester heating ( consE ) and the electricity price (
consEp ) as well as 

substrate costs ( SC ). The turnover is then calculated based on the sales of electrical ( ,el gasE ) and 

thermal energy ( ,th gasE ), the respective remuneration rates ( ,
el thE Ep p ) and the manure bonus  

( ,,
elmanure E manureb p ), if used. 

 
,

1

( )
S i i

n

S S x S

i

C C x


x   (5.12) 

 
,

1
, , ,

( ) ( ) ( )

( ) ( ) ( ) €
pl el

el th

S cons S E el gas S E

manure el gas S E manure th gas S E S S

C E p E p

b E p E p C d 

  

    

x x x

x x x
  (5.13) 

CH4limit 

The quality of the produced gas determines whether it can be directly burned in the cogeneration units 

without needing an additional ignition gas. Therefore, the methane concentration of the gas has to be 

greater than 50%. 

 
min

min

1 50

0 50
limit

CH4
CH4

CH4


 



  (5.14) 

CODlimit 

As previously explained the degradation rate of the particulate COD ( XS ) determines the efficiency 

of the biogas production within the AD process. In order to additionally punish very poor degXS  

values, the overall fitness of substrate inflows with 65%degXS   is increased by 1. 

 

1 65

0 65

deg

limit

deg

XS

COD
XS




 


  (5.15) 

VOA/TIClimit 

The ratio of Volatile Organic Acids (VOA) and Total Inorganic Carbon (TIC) is the most important 

stability measure for AD processes. High VOA concentrations alone do not necessarily result in 

process inhibition if the carbon buffer (TIC) is high enough to stabilize the pH. But if the carbon 

buffer is low, even small concentrations of VOA cause process instabilities which result in a complete 

process breakdown eventually. Therefore, the /VOA TIC  ratio is regularly measured using a titration 

method. In general, an AD process with a / 0.3VOA TIC   is considered to be stable, whereas values 

above 0.3 indicate an imbalance. Thus, the fitness of substrate inflows with a / 0.3VOA TIC   is 

increased by 1. 
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max

max

1 / 0.3
/

0 / 0.3
limit

VOA TIC
VOA TIC

VOA TIC


 



  (5.16) 

Table 5-1: List of fitness function parameters and their values 

fitness function 

parameters 

value fitness function 

parameters 

value 

minpH  

(low limit of pH) 

6 
elEp * 

(remuneration for 

electrical energy) 

0.21 €/kWhel 

maxpH  

(upper limit of pH) 

9 
,elE manurep * 

(remuneration for 

manure bonus) 

0.04 €/kWhel 

optpH  

(optimal pH) 

7.5 
thEp * 

(remuneration for 

thermal energy) 

0.015 €/kWhth 

minCH4  

(lower limit for methane 

concentration) 

50 
degCODw  

(weighting of COD 

degradation) 

1

9
 

maxTS  

(upper limit of TS) 

26 
CODw  

(weighting of 

punishment of low XS 

degradation) 

1

18
 

,mindegSS  

(lower limit for SS 

degradation) 

0 
4chw  

(weighting of methane 

concentration) 

1

6
 

,maxdegSS  

(upper limit for SS 

degradation) 

100 
finw  

(weighting of financial 

profit) 

1

6
 

,mindegXS  

(lower limit for XS 

degradation) 

0 
pHw  

(weighting of pH 

punishment) 

1

6
 

,maxdegXS  

(upper limit for XS 

degradation) 

100 
TSw  

(weighting of TS 

punishment) 

1

6
 

max/VOA TIC  

(lower limit for VOA/TIC) 

0.3 
/VOA TICw  

(weighting of 

VOA/TIC punishment) 

1

6
 

plEp * 

(energy price paid by the 

ABP for consumed energy) 

0.18 €/kWh 
manureb  

(flag whether manure 

bonus is considered) 

1 

* electricity price according to the local power provider and remuneration rates according to the 

German Renewable Energy Law (BMU 2012) 
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5.3 Optimization results 

The optimization results presented in this section were obtained using the previously developed 

surrogate optimization method, which was explained in detail in chapter 4. Substrate inflow 

optimization for the Sunderhook ABP was performed based on the simulation model introduced in 

chapter 3 and based on the fitness function ( )SJ x  described in the previous section. In order to 

account for the nonlinearity of the AD process PSO was used as the nonlinear optimization method for 

all optimization runs. The necessity of a surrogate model for ABP optimization was proven by Wolf et 

al. (2008) where 12,000 evaluations of ( )SJ x  were required to find the optimal substrate inflow when 

using PSO and GA as optimization methods. For a fully calibrated simulation model like the 

Sunderhook ABP model whose simulation for 200 days takes about 60s, one complete optimization 

run would take more than 8 days, instead of 16 hours using S-KSM and PSO which requires only 

1,000 fitness function evaluations. 

The following section shows the optimization results 
*

Sx  for 2,3,4 and 5n   substrates and compares 

the performance against the original substrate inflow from the Sunderhook ABP. As the Sunderhook 

ABP currently uses the manure bonus
23

, two optimization runs were performed for each n , one 

including the manure bonus and the other without the manure bonus. 

5.3.1 Optimization results for two substrates 

In this case, the two most common substrates, maize and bull manure, were used for substrate inflow 

optimization of the Sunderhook ABP. Figure 5-3 shows a graph of the fitness function ( )SJ x  for both 

optimization runs, with and without manure bonus. It becomes clear that J  is particularly nonlinear in 

the border areas of the search space and that local minima can be found in the long extended valley. 

  

Figure 5-3: Plot of the fitness function J for a substrate inflow optimization with 2 substrates. a. bmanure=0, b. bmanure=1 

A comparison of the optimization results with the original substrate inflow of the Sunderhook ABP is 

given in Table 5-2. It is obvious, that not only is the overall biogas yield per day substantially 

                                                      
23

  To receive the manure bonus, 30% of the total substrate inflow needs to be manure. 

a. b. 



5. Optimization of ABPs 

5.3. Optimization results 

 

  
131 

 

  

improved but also that the AD process seems to be more stable with a significantly lower VOA/TIC 

ratio and a higher degradation rate of XS. This indicates that substrate utilization is more efficient.  

Table 5-2: Comparison of the original substrate inflow with the optimized substrate inflow for two substrates 

 orig. substrate 

inflow (bmanure=1) 

opt. Substrate inflow - 2 

substrates (bmanure=0) 

opt. Substrate inflow - 

2 substrates (bmanure=1) 

maize [m³/d] 41.30 40.71 39.92 

bullmanure [m³/d] 22.20 8.46 17.62 

greenrye [m³/d] - 0.00 0.00 

grass [m³/d] 3.50 0.00 0.00 

oat [m³/d] - 0.00 0.00 

stiffmanure [m³/d] 1.78 0.00 0.00 

SSdeg [%] 99.46 99.88 99.85 

XSdeg [%] 59.14 69.39 69.61 

TS [%] 13.63 20.26 18.69 

Excess gas [m³/d] 0.00 0.01 0.00 

CH4 [%] 54.16 50.00 50.40 

gas yield [m³/d] 7521.00 8170.83 8095.62 

pH 7.30 7.43 7.40 

VOA/TIC 0.31 0.05 0.08 

fitness 0.20 -0.36 -0.47 

 

Looking at financial aspects of the optimization results, a higher turnover is already indicated by the 

higher biogas production. Table 5-3 proves that assumption showing that the daily profit of the 

Sunderhook ABP can be increased by 599.92 € without the manure bonus and by 545.75 € if the 

manure bonus is used. This results in a yearly profit increase of 218,969.34 € and 199,198.75 € 

respectively. Thus, the optimization of the substrate inflow significantly improves ABP efficiency. 

Table 5-3: Financial benefits for the substrate inflow optimization with two substrates 

 

orig. 

sustrate 

inflow 

(bmanure=0) 

orig. 

substrate 

inflow 

(bmanure=1) 

opt. Substrate 

inflow - 2 substrates 

(bmanure=0) 

opt. Substrate 

inflow - 2 substrates 

(bmanure=1) 

SC  1,960.15 € 1,960.15 € 1,707.13 € 1,760.98 € 

consEC   331.74 € 331.74 € 188.82 € 208.27 € 

el,gas th,gasE +EC   4,066.36 € 4,787.92 € 4,270.34 € 5,011.03 € 

Daily profit 1,774.47 € 2,496.03 € 2,374.39 € 3,041.78 € 

Yearly profit 647,681.55 € 911,050.95 € 866,650.89 € 1,110,249.70 € 
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5.3.2 Optimization results for three substrates 

The optimization with three substrates (maize, bull manure and grass) shows similar results, with the 

exception that the optimized substrate feed without manure bonus fails to be financially better than the 

original substrate inflow with manure bonus. This is caused by the higher remuneration rate if the 

manure bonus is active. Nevertheless, the AD process is again more stable than before (Table 5-4). 

Figure 5-4 also shows the growing complexity of the four-dimensional fitness function, which makes 

optimization difficult. 

 

 

Figure 5-4: Plot of the fitness function J for a substrate inflow optimization with 3 substrates. a. bmanure=0, b. bmanure=1 

Table 5-4: Comparison of the original substrate inflow with the optimized substrate inflow for three substrates 

 orig. substrate 

inflow (bmanure=1) 

opt. Substrate inflow - 3 

substrates (bmanure=0) 

opt. Substrate inflow - 

3 substrates (bmanure=1) 

maize [m³/d] 41.30 37.83 37.95 

bullmanure [m³/d] 22.20 26.96 19.02 

greenrye [m³/d] - 0.00 0.00 

grass [m³/d] 3.50 3.01 3.65 

oat [m³/d] - 0.00 0.00 

stiffmanure [m³/d] 1.78 0.00 0.00 

SSdeg [%] 99.46 99.83 99.85 

XSdeg [%] 59.14 69.64 69.45 

TS [%] 13.63 17.51 18.52 

Excess gas [m³/d] 0.00 0.00 0.00 

CH4 [%] 54.16 50.54 50.16 

gas yield [m³/d] 7521.00 7992.77 7984.75 

pH 7.30 7.44 7.43 

VOA/TIC 0.31 0.10 0.07 

fitness 0.20 -0.32 -0.45 

 

a. b. 
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The comparison of the performance measures from Table 5-4 clearly shows that both degradation rates 

SSdeg and XSdeg are 10% higher than before the optimization and also that the biogas yield is increased. 

In addition, the methane concentration in the produced biogas is significantly lower at 50% instead of 

54%. 

The financial calculations prove that a substantial benefit is generated for the ABP owner through 

substrate inflow optimization. Without manure bonus, an increase in daily profit of 371.46 € and with 

manure bonus of 411.32 € is generated. Projected for a whole year, the overall profit of the plant can 

be increased by 135,581.44 € and 150,133.26 € respectively. 

Table 5-5: Financial benefits for the substrate inflow optimization with three substrates 

 

orig. 

sustrate 

inflow 

(bmanure=0) 

orig. 

substrate 

inflow 

(bmanure=1) 

opt. Substrate 

inflow - 3 substrates 

(bmanure=0) 

opt. Substrate 

inflow - 3 substrates 

(bmanure=1) 

SC  1,960.15 € 1,960.15 € 1,840.77 € 1,787.73 € 

consEC   331.74 € 331.74 € 233.94 € 217.45 € 

el,gas th,gasE +EC   4,066.36 € 4,787.92 € 4,220.63 € 4,912.53 € 

Daily profit 1,774.47 € 2,496.03 € 2,145.93 € 2,907.35 € 

Yearly profit 647,681.55 € 911,050.95 € 783,262.99 € 1,061,184.21 € 

 

 

5.3.3 Optimization results for four substrates 

The optimization of the substrate inflow with four substrates gives results similar to the 

aforementioned results but it becomes obvious that the magnitude of improvement is steadily 

declining with the number of substrates as it becomes more difficult to reduce substrate costs while 

maintaining or even increasing biogas yield. Nevertheless, the four dimensional solutions for the 

substrate inflow also manage to reduce the overall substrate costs for more than 100 € while increasing 

biogas yield. This can only be realized by reducing the fraction of maize, which is a very expensive 

substrate at 40 €/m³ and to replace it with the much cheaper substrates such as grass and green rye. 

The financial calculations reflect this steady decline in improvement in the overall profit. Only 

143.98 € without manure bonus and 285.11 € with manure bonus can be gained in addition to the 

original daily profit. Therefore, the yearly profit is equally reduced to 52,553.06 € and 104,064.79 € 

respectively. 
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Table 5-6: Comparison of the original substrate inflow with the optimized substrate inflow for four substrates 

 orig. substrate 

inflow (bmanure=1) 
opt. Substrate inflow - 4 

substrates (bmanure=0) 

opt. Substrate inflow - 

4 substrates (bmanure=1) 

maize [m³/d] 41.30 32.70 36.00 

bullmanure [m³/d] 22.20 19.60 20.96 

greenrye [m³/d] - 11.27 1.73 

grass [m³/d] 3.50 1.15 5.01 

oat [m³/d] - 0.00 0.00 

stiffmanure [m³/d] 1.78 0.00 0.00 

SSdeg [%] 99.46 99.85 99.85 

XSdeg [%] 59.14 68.53 69.29 

TS [%] 13.63 18.67 18.30 

Excess gas [m³/d] 0.00 0.00 0.00 

CH4 [%] 54.16 50.17 50.08 

gas yield [m³/d] 7521.00 7661.07 7854.78 

pH 7.30 7.37 7.42 

VOA/TIC 0.31 0.05 0.06 

fitness 0.20 -0.28 -0.43 

 

Table 5-7: Financial benefits for the substrate inflow optimization with four substrates 

 

orig. 

sustrate 

inflow 

(bmanure=0) 

orig. 

substrate 

inflow 

(bmanure=1) 

opt. Substrate 

inflow - 4 substrates 

(bmanure=0) 

opt. Substrate 

inflow - 4 substrates 

(bmanure=1) 

SC  1,960.15 € 1,960.15 € 1,858.16 € 1,814.27 € 

consEC   331.74 € 331.74 € 231.54 € 226.24 € 

el,gas th,gasE +EC   4,066.36 € 4,787.92 € 4,008.14 € 4,821.65 € 

Daily profit 1,774.47 € 2,496.03 € 1,918.45 € 2,781.14 € 

Yearly profit 647,681.55 € 911,050.95 € 700,234.62 € 1,015,115.74 € 

 

5.3.4 Optimization results for five substrates 

Finally, another optimization was performed for five substrates. The results for five substrates show 

similar improvements in the degradation rates SSdeg and XSdeg (10%) as well as in the total biogas 

yield. 

The financial profits were slightly increased in comparison to the profits obtained with four substrates 

but are still lower than the ones obtained for two substrates. All in all, an increase in daily profits of 

379.71 € without manure bonus and 364.07 € with manure bonus was achieved. Thus, yearly profits 

can be enhanced by 138,592.33 € and 132,885.92 €.  
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Table 5-8: Comparison of the original substrate inflow with the optimized substrate inflow for five substrates 

 orig. substrate 

inflow (bmanure=1) 
opt. Substrate inflow - 5 

substrates (bmanure=0) 

opt. Substrate inflow - 

4 substrates (bmanure=1) 

maize [m³/d] 41.30 37.11 36.43 

bullmanure [m³/d] 22.20 20.89 25.99 

greenrye [m³/d] - 2.00 2.85 

grass [m³/d] 3.50 2.00 2.29 

oat [m³/d] - 2.00 3.46 

stiffmanure [m³/d] 1.78 0.00 0.00 

SSdeg [%] 99.46 99.85 99.84 

XSdeg [%] 59.14 69.05 68.75 

TS [%] 13.63 18.68 18.36 

Excess gas [m³/d] 0.00 0.00 0.00 

CH4 [%] 54.16 50.08 50.04 

gas yield [m³/d] 7521.00 8011.43 8112.65 

pH 7.30 7.41 7.40 

VOA/TIC 0.31 0.06 0.07 

fitness 0.20 -0.32 -0.44 

 

Table 5-9: Financial benefits for the substrate inflow optimization with five substrates 

 

orig. 

sustrate 

inflow 

(bmanure=0) 

orig. 

substrate 

inflow 

(bmanure=1) 

opt. Substrate 

inflow - 4 substrates 

(bmanure=0) 

opt. Substrate 

inflow - 4 substrates 

(bmanure=1) 

SC  1,960.15 € 1,960.15 € 1,809.55 € 1,877.22 € 

consEC   331.74 € 331.74 € 226.94 € 245.34 € 

el,gas th,gasE +EC   4,066.36 € 4,787.92 € 4,190.67 € 4,982.66 € 

Daily profit 1,774.47 € 2,496.03 € 2,154.18 € 2,860.10 € 

Yearly profit 647,681.55 € 911,050.95 € 786,273.88 € 1,043,936.87 € 

 

5.4 Conclusion on ABP substrate inflow optimization 

This chapter about ABP substrate inflow optimization gave a brief overview of advances in the area of 

AD optimization and control showing that the substrate inflow is the main variable used to manipulate 

the dynamics of the AD process. Thus, ABP optimization has to optimize the substrate inflow in order 

to maximize plant efficiency by increasing biogas yield, reducing costs and guaranteeing stable ABP 

operation. Such optimization with multiple optimization criteria was realized using PSO and S-KSM 

in combination with a fitness function which is particularly adapted to the substrate inflow 

optimization of ADPs. 

The potential of substrate inflow optimization was shown at the Sunderhook ABP by doing five 

optimization runs for 2,3,4 and 5n   substrates. Results prove that a substantial improvement in terms 
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of AD process stability and financial profit can be achieved. Figure 5-5 gives a summary of the 

financial benefits of the optimization results, while Figure 5-6 shows the percentage of profit increase 

for each optimization result in comparison to the originally applied substrate inflow of the Sunderhook 

ABP. 

 

Figure 5-5: Summary of the costs and daily profits of the optimization runs (opt.) for 2, 3, 4 and 5 substrates with (+) 

and without manure bonus in comparison to the original substrate inflow (orig.) 

 

Figure 5-6: Summary of the increase in profit for each of the optimization results (opt.) compared to the profit made 

with the original substrate inflow (orig.) with (+) and without manure bonus 

0.00 € 

1,000.00 € 

2,000.00 € 

3,000.00 € 

4,000.00 € 

5,000.00 € 

6,000.00 € 

orig. orig. + opt. 2 opt. 2 + opt. 3 opt. 3 + opt. 4 opt. 4 + opt. 5 opt. 5 +

CS Cecons CEeel,gas+Eth,gas profit

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

opt. 2 opt. 2 + opt. 3 opt. 3 + opt. 4 opt. 4 + opt. 5 opt. 5 +

[%
] 

Increase in profit compared to profit with orig. substrate inflow  (bmanure=0)

Increase in profit compared to profit with orig. substrate inflow  (bmanure=1)

SC

 
consEC

 
, ,el gas th gasE EC   



5. Optimization of ABPs 

5.4. Conclusion on ABP substrate inflow optimization 

 

  
137 

 

  

 

Figure 5-7: Yearly profit of the Sunderhook ABP for each optimization run (opt.) and the original substrate inflow 

(orig.) with (+) and without manure bonus 

All in all, the best optimization result, yielding the highest profit, is achieved for two substrates with 

manure bonus. The substrate inflow consisting of 39.9 m³d
-1

 maize and 17.6 m³d
-1

 bull manure results 

in an increase in yearly profit of 70% compared to the original substrate inflow without manure bonus 

and of 21.8% compared to the original substrate inflow with manure bonus. This equals an 

improvement in net profit of 219,000 € and 199,000 € respectively. Thus, this substrate inflow was 

suggested to the operator of the Sunderhook ABP and successfully implemented. 

The large increase in yearly profits makes this optimization of the ABP substrate inflow an important 

tool to help ABP operators and service providers to optimize plant efficiency in the long run. The 

ability to generate a customized fitness function ( )SJ x  gives the end-user the flexibility to adapt 

optimization solutions to the actual state of the plants. As hardware costs for the implementation of 

this optimization are minimal, the return on investment is given within 6 month or earlier depending 

on the service charge claimed for the optimization service. If steadily decreasing remuneration rates 

are factored into the financial profit, the optimization of the substrate inflow is absolutely necessary to 

guarantee sustainable ABP operation in the future. 
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6 Instrumentation of Biogas PlantsEQUATION CHAPTER 6 SECTION 1 

The instrumentation of industrial plants in general is a key prerequisite to making efficient and 

continuous process monitoring and control possible in the first place (Lipták 2003). Looking at biogas 

plants, both agricultural and industrial, good instrumentation has proven to be essential to maintaining 

stable and efficient AD processes. In particular, the high volatility of AD processes due to their high 

sensitivity to varying process conditions such as temperature, pH, carbon buffer, acetic acid 

concentration, ammonia inhibition and substrate composition, requires close monitoring at all times 

(Kujawski and Steinmetz 2009a). This kind of process monitoring allows the setup of an early 

detection and warning system for process disturbances to prevent breakdowns and, as such, is of direct 

monetary benefit to the plant operator. Nevertheless, instrumentation at full-scale biogas plants is still 

in its infancy as shown by the recent biogas measurement program in Germany (FNR e.V. 2009). 

Currently 70% of biogas plants in Germany possess measurement systems for biogas production while 

60% have systems for measuring biogas composition. Liquid and solid substrate feed are measured at 

50% and 80% of the plants, respectively. In contrast, the more sophisticated measurement systems, 

such as online pH, ORP or even VFA analysis are available at less than 5% of all plants. This leaves 

lots of potential for the application of innovative online measurements to improve plant performance 

and presents a huge market for manufacturers of online measurement systems. Furthermore, there is 

substantial research activity in this area aiming to provide new robust and feasible measurement 

systems. 

However, the research conducted in the field of AD control and optimization shows that in most cases 

sophisticated lab equipment (online gas chromatography, HPLC, spectrophotometric titration, etc.) is 

used for detailed process monitoring (Jantsch and Mattiasson 2004, Boe et al. 2007b, Méndez-Acosta 

et al. 2008, Ward et al. 2011), which delivers very good measurement accuracy but is very expensive 

and maintenance-intensive at the same time. Thus, transition of such methods and systems to full-scale 

applications is difficult, and mostly not feasible, due to high installation and maintenance costs. This 

concerns small and medium-sized agricultural plants in particular, where plant operators also have a 

lack of the required expert knowledge to operate these complex and sensitive systems. Nevertheless, 

current research in the area of online measurement systems for anaerobic digestion processes shows 

that the development of reliable, low-maintenance and feasible systems is far from trivial as the 

challenges are multifaceted (Spanjers and van Lier 2006). On the one hand, high contents of dry 

matter with many sharp and hard objects render the use of sensitive electrodes nearly impossible and 

on the other hand calibration and maintenance procedures need to be simple so that they can be 

performed by the plant operators themselves (Wolf et al. 2011a). 
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The main contributions of this chapter are: 

 a detailed survey of existing online measurement methods and systems 

 critical analysis of a biogas plant breakdown 

 test and validation of existing online probes for pH, TS and ORP at an agricultural and an 

industrial biogas plant 

 development and validation of a new online UV/vis spectroscopic measurement system 

for organic acids and buffer capacity 

 evaluation of different machine learning methods for spectral analysis to compare their 

suitability and performance 

The remainder of the chapter is organized as follows. In section 6.1 a detailed literature review of the 

state-of-the-art in online measurement systems is provided together with descriptions of full-scale 

applications of well-known and innovative monitoring systems. In addition, the current market 

situation for online measurement systems is analyzed with regard to existing and future technologies. 

Then section 6.2 introduces and demonstrates the reasons why online measurement systems are 

urgently needed, giving a practical example from an industrial biogas plant in Germany. Section 6.3 

presents and discusses results from a field test of online measurement systems for pH, ORP and TS at 

an agricultural and an industrial biogas plant highlighting advantages and limitations. The 

development of a new innovative online measurement system for VFA based on UV/vis spectroscopy 

is introduced in section 6.4 and its full-scale application at an industrial biogas plant described in 

detail. The analysis of the spectral data set using powerful machine learning techniques is described in 

section 6.5. A short summary of the results and the derived conclusion are given in section 6.6. 

6.1 Literature Review for Online-Monitoring of Anaerobic Digestion Plants 

The large number of developments and research papers in the history of monitoring of AD processes 

illustrates the importance of reliable, low-maintenance and feasible online measurement systems. One 

of the first papers to consider the topic was McCarty (1982). In this paper McCarty gave a review of 

the developments in anaerobic digestion in the last century and pointed out that “recent advances in 

fundamental understanding of the [anaerobic] process have yet to be translated into practical 

application for process design, optimization and control.” Therefore, online-monitoring is crucial, but 

to choose the most viable process parameters for online monitoring is even more important. In 2000 

the parameters pH, partial alkalinity (PA), gas production rate and composition as well as VFA 

concentration were compared under varying organic loading rates (pulse loads) at a lab-scale reactor to 

evaluate their suitability for monitoring purposes (Björnsson et al. 2000). The results showed 

significant change in PA and VFA concentration under the pulse loads, whereas a detected decrease in 

the pH could not be separated from normal operating conditions. Thus, pH was considered unreliable 

for early warning purposes as a significant drop in the pH only occurred under a heavy organic 
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overload of the system. Results for gas composition and gas production rate monitoring were also 

delayed and merely significant in case of overload. These findings are confirmed by Ahring et al. 

(1995) and recently supported by Boe et al. (2010), all leading researchers in the AD community. In a 

substantial study the behavior of pH, VFA and dissolved hydrogen was investigated under different 

kinds of disturbances. It became evident that pH is an important parameter in the case of AD systems 

with low buffering capacity and that the sum of VFA concentrations is less meaningful than the 

separate investigation of acetic, butyric and propionic acid. A fast response to disturbances was also 

detected in dissolved hydrogen, but an increase was not always related to process instability, which 

suggests a check against other parameters, such as VFA concentration, for the reliable detection of 

process instability. The use of pH and ORP online probes for process monitoring in combination with 

biogas production rate was investigated further in a research project by UTEC GmbH in Bremen, 

Germany (Zimmermann et al. 2003). It was shown at two full-scale biogas plants using co-digestion 

that a combination of these three process parameters allows a good assessment of process stability. In 

addition to alkalinity, VFA, pH and ORP, total and volatile solids have proven to be valid process 

parameters to predict biogas production and to monitor the substrate feed of biogas plants as well as 

significant indicators like volume load, volatile solids (VS) degradation or methane yield (FNR e.V. 

2010). These publications as well as a summary of recent developments, online measurement methods 

and applications for AD were summarized clearly by Madsen et al. (2011), who concluded that the 

most important variables for process monitoring are: 

 VFA 

 alkalinity (PA and TA) 

 TS and VS 

 biogas composition 

 biogas yield 

 pH 

 ORP and 

 temperature 

This list of process parameters can be divided into two classes according to the availability of online 

measurement systems, their reliability and their suitability for practical use at a biogas plant. On the 

one hand, biogas composition/yield, temperature, pH and ORP can be considered as state of the art for 

agricultural biogas plants as the existing technology is sufficiently robust and reliable. On the other 

hand, the online measurement of alkalinity, TS/VS and VFA is still subject to substantial research. 

Even though measurement systems for biogas plants already exist for these parameters, high prices 

and high maintenance efforts still pose a problem, reducing the acceptance of such technology in 

practice. Therefore the two classes of process parameters are state of the art parameters for process 

monitoring and new innovative parameters. Unfortunately, the state of the art parameters have proven 

to be less effective at determining the current process state of a biogas pant than the innovative 

parameters, which emphasizes the need for online measurement systems in the latter field. The 

following two sections describe the current state of research and practice for these two classes of 

process parameters. 
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6.1.1 State of research 

Research in the field of online measurement systems for AD processes is mainly focused on a few 

parameters, such as biogas production and composition, pH, ORP, TS, VS as well as alkalinity and 

VFA. Of these parameters VS, alkalinity and VFA, which belong to the class of innovative parameters, 

have received lots of attention concerning the development of new measurement methods and systems 

(Table 6-1). In contrast, several long-term practice tests were conducted for the parameters biogas 

production/composition, pH, ORP and TS to prove their reliability and capability to detect process 

disturbances (Wiese and Kujawski 2008, Kujawski and Steinmetz 2009b). Looking at all the 

publications in this area, as summarized in Table 6-1, it becomes clear that there is a trend to go from 

direct biochemical measurement of process parameters to indirect measurement using spectroscopic 

methods in combination with powerful machine learning techniques. In particular, the indirect 

measurement of VS, alkalinity and VFA using UV/vis, near-infrared or even mid-infrared spectroscopy 

has proven to be a good alternative to expensive wet chemistry analyzers (Spanjers et al. 2006, Holm-

Nielsen et al. 2008b, Wolf et al. 2010). These spectroscopic measurement systems analyze absorbance 

or reflection spectra over certain wavelengths using machine learning techniques (ANN, SVM, PLS, 

etc.) to indirectly measure biochemical parameters. The advantage of such systems is that they offer 

the possibility of measuring directly inside the measurement medium and to measure several 

parameters with one system using different basis calibrations. Due to the fact that the description of all 

published R&D results would be too long, only the most important and relevant developments are 

briefly described. 

Table 6-1: List of developed and tested online measurement methods for AD processes in the past 20 years 

 Method References 

Biogas yield/ 

composition 

gas chromatography 

lab-scale fermentation tests 

volumetric gas flow meter 

near-infrared laser optical spectrometry/ 

CF-IRMS 

pressure-based near-infrared analyzer 

(Slater et al. 1990) 

(Scaglione et al. 2008) 

(Cadena Pereda et al. 2010a) 

(Keppler et al. 2010) 

 

(Bishop et al. 2010) 

pH/ORP electro-chemical 

 

 

 

calculation from bicarbonate and carbon 

dioxide concentration 

(Monzambe et al. 1988) 

(Zimmermann et al. 2003) 

(Wiese and Haeck 2006) 

(Wolf et al. 2011a) 

(Hawkes et al. 1994) 

TS/VS microwave 

backscattered light 

 

near-infrared spectroscopy 

(Nacke et al. 2010) 

(Wiese and Haeck 2006) 

(Wolf et al. 2011a) 

(Lomborg et al. 2009) 
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VFA/COD 

PA/TA 

 

titration 

 

 

 

ion-selective electrode arrays 

membrane-inlet mass spectrometry 

spectrophotometric 

multi-wavelength fluorometry 

spectrofluoremetric 

headspace gas chromatography 

saturation with CO2 and acidification with 

sulfuric acid 

UV/vis spectroscopy (UV/vis) 

near-infrared spectroscopy (NIR) 

 

 

 

 

 

mid-infrared spectroscopy (MIR) 

(Powell and Archer 1989) 

(Feitkenhauer et al. 2002) 

(Lahav and Morgan 2004) 

(de Neve and Lievens 2004) 

(Witkowska et al. 2010) 

(Ward et al. 2011) 

(Jantsch and Mattiasson 2004) 

(Morel et al. 2004) 

(Palacio-Barco et al. 2010) 

(Boe et al. 2007a) 

(Guwy et al. 1994) 

 

(Wolf et al. 2011b) 

(Tosi et al. 2003) 

(Holm-Nielsen et al. 2007) 

(Holm-Nielsen et al. 2008b) 

(Lomborg et al. 2009) 

(Jacobi et al. 2009b) 

(Wiese and König 2009b) 

(Steyer et al. 2002) 

(Spanjers et al. 2006) 

Biogas yield/composition 

Research to-date on biogas quantity and quality measurements for AD processes primarily focuses on 

lab-scale applications, where measurement data needs to be as accurate as possible. For this reason the 

developments are mostly very expensive and their applicability to full-scale biogas plants is limited. 

Nevertheless the methods developed by Cadena Pereda et al. (2010b) and Keppler et al. (2010) are 

worth mentioning. Cadena Pereda used a volumetric cell, where the biogas is isolated from the 

displacement liquid, with an optical level detection allowing for a measurement range from 10 to 

55,000 cm³. Furthermore, the fill level data is automatically analyzed using a FPGA
24

 board, which 

also controls the measurement system. Keppler investigated the measurement of carbon isotope ratios 

(13C/12C) of methane, which are considered a valuable process parameter to quickly detect changes in 

AD processes. The use of optical spectrometry in comparison to the conventional method using 

continuous-flow isotope ratio mass spectrometry was evaluated. Results show that these two methods 

deliver similar results, with the accuracy of the online spectrometry only varying by 0.7% from the 

conventional method. 

  

                                                      
24

 field-programmable gate array 
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pH/ORP 

The use of pH and ORP probes for online-monitoring of AD processes was strongly suggested by 

Zimmermann in 2003. It was shown that a combination of biogas production rate, pH and ORP 

measurements is well suited to the assessment of process stability. Due to the fact that absolute values 

for pH and ORP differ widely from plant to plant, the trends of pH and ORP measurements were used 

in this case. Based on this analysis, Wiese and König (2009b) and Wolf et al. (2011a) tested the 

application of pH and ORP probes of different manufacturers on full-scale agricultural biogas plants. 

Results indicate that available systems are reliable and sufficiently robust for agricultural plants, if 

calibration is carried out regularly every two or three weeks. Unfortunately, a correlation between 

process stability and pH/ORP measurement data could only be detected if process instability was 

imminent, which is in most cases too late. Nevertheless, long-time trends in AD processes can be 

properly monitored. 

TS/VS 

The most promising technologies for online TS/VS monitoring were introduced by Lomborg et al. 

(2009) and Nacke et al. (2010). The use of NIR spectroscopy for TS/VS measurement was introduced 

by Lomborg. Based on the pattern of reflected light in the NIR wavelength range (800nm – 2000nm) 

by the measurement medium, an indirect measurement of TS and VS is possible. Lomborg clearly 

showed that very good results can be achieved for low TS and VS concentrations (between 4.6 and 

6.5), but that further investigation is essential for higher concentrations, as the normal range at 

agricultural biogas plants goes from 6 to 10% TS.  The measurement system introduced by Nacke uses 

a microwave sensor manufactured by hf-sensor GmbH (Leipzig, Germany). The absorption of 

microwave radiation is measured, because different materials such as polar molecules have very high 

absorption coefficients and non-polar molecules very low absorption coefficients. Based on these 

differences TS and VS content can be measured. Overall, TS concentrations between 6 and 13% were 

successfully measured. Calibration of the microwave sensor was performed using PLS models. 

VFA/COD and PA/TA 

The most common methods for VFA and PA/TA measurement are titration, chromatography and 

spectroscopy. In 2002, Feitkenhauer (Feitkenhauer et al. 2002) developed a robust, online titration 

system for the two step titration defined by Anderson (Anderson and Yang 1992) for VFA 

measurement. Thereby, the measurement medium is titrated down to pH 5.1 in the first step and down 

to 3.5 in the second step, which yields the VFA and carbon buffer concentrations of the medium. In 

contrast to other titration methods, the titration cell was specifically designed to cope with the original 

measurement medium without previous biomass separation. A similar system for online titration of the 

measurement medium to measure VFA and PA/TA was developed by de Neve in 2004 (de Neve and 
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Lievens 2004). It is called AnaSense
®
 and has been distributed by the ProzessAnalysenInstrumente 

GmbH
25

 in Germany since 2004. Titration is performed using hydrochloric acid for titration after pH 

stabilization with sodium hydroxide in the case of very low initial pH values (< 5). The chemical 

dosage is added by peristaltic pumps. As the measurement system requires a particle size below 

200µm, an additional preprocessing unit is necessary for most applications, in particular for 

agricultural AD plants. Furthermore, regular maintenance (every week) of the pH probe, the peristaltic 

pumps and the preprocessing unit is necessary to guarantee reliable long-time operation. Looking at 

these titration based methods, it becomes evident that the pH measurement is not only the most 

important part of these systems but also one, which requires extensive maintenance. Thus, Jantsch and 

Mattiasson (2004) developed a system to measure PA in AD processes based on titration principles but 

without a pH probe. Instead, a pH indicator (Methylred) is added to the measurement medium, whose 

color is detected by a spectrophotometer at the wavelengths 438nm (protonated – red) and 516nm 

(unprotonated – yellow). During titration, the ratio between absorptions at these two wavelengths 

indicates the pH value. If the pH reaches the desired level of 5.75 (titration according to Björnsson et 

al. 2000), acid consumption is measured and PA is calculated. To improve measurement quality, pre-

filtering of the medium is also necessary. In this case, a nylon cloth with a mesh size of 20µm was 

used. 

Besides titration and chromatographic online measurement systems, spectroscopic methods, be it 

UV/vis, NIR or MIR spectroscopy, have proven to be very reliable, robust and low-maintenance. 

Nevertheless, this technology is not widely accepted in practice due to high cost of spectrometers and 

fiber-optics. At the moment, NIR spectroscopy dominates the market of online measurement systems 

for AD processes because it has been applied to full-scale bioreactors in several cases as described by 

Wiese and König (2009a) and Jacobi et al. (2009a). It allows not only for online VFA measurement 

but also for PA/TA and VS measurement. One well-known system is the TENIRS probe (Transflexive 

Embedded Near Infra-Red Sensor) developed by Holm-Nielsen and Andrée in 2007 (Holm-Nielsen et 

al. 2007). The TENIRS probe measures reflection spectra in the wavelength range from 900-1600nm. 

A first application study under laboratory conditions was published in 2008, showing that good 

measurement results (up to 96% accuracy) could be achieved for acetic acid, iso-butanoic acid and 

total VFA concentration (Holm-Nielsen et al. 2008a). Further investigation of the TENIRS system at a 

full-scale 1MW biogas plant in Germany took place in 2009 (Jacobi et al. 2009b). During 

thermophilic plant operation, calibration and online measurement of VFA, acetic acid and propionic 

acid in a bypass was successfully implemented and provided good measurement results for a period of 

500 days. It was concluded that calibration for VFA and propionic acid yielded very good performance 

results with coefficients of determination of 0.95 and 0.89 respectively. Unfortunately, results for 
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acetic acid were relatively poor with 0.69 compared to 0.89 achieved by Lomborg (Lomborg et al. 

2009). 

In comparison to UV/vis and NIR spectroscopy, MIR spectroscopy is the most anticipated alternative 

because reflection spectra of relevant AD process parameters have a highly distinctive fingerprint in 

the MIR wavelength range from 3µm to 50µm. Thus, measurability and selectivity is much higher in 

this wavelength range. Steyer was the first to evaluate applicability of MIR spectroscopic probes for 

the online monitoring of AD processes in 2002 (Steyer et al. 2002). Using FT-IR spectroscopy 

(Fourier Transform IR) the absorbance patterns of raw wine distillery effluents which were treated in 

an AD-WWTP (wastewater treatment plant) were analyzed for wavelengths in the range 2µm to 

10µm. Parameters COD, TOC, VFA as well as PA and TA were successfully measured. Nevertheless, 

severe problems were caused by the coupling of the fiber-optics with the MIR spectrometer due to 

high signal losses depending on fiber length and bending. In 2002, production of fiber-optics suitable 

for online and on site operation was still in its infancy. A few years later, Spanjers et al. (2006) used 

these results and developed and tested an online MIR system for a full-scale AD process to measure 

COD, VFA, ammonium and TKN. These variables could be measured with sufficient accuracy. To 

assure reliable long-time operation of the system an automatic preprocessing unit for filtering was 

necessary. Furthermore, the observation window required regular cleaning once a day. 

This overview of research developments in online monitoring of AD processes over the last decade 

shows that many different systems have been proposed but only a few have been fully developed and 

deployed in full-scale applications. The reasons for this are multifaceted: high costs, high 

maintenance, low reliability and very often the failure to develop industrially applicable prototypes. 

Thus, the development of industry-ready measurement systems is still necessary and highly 

anticipated due to rising substrate prices and continually reducing remuneration rates, in particular for 

older biogas plants. The following section will introduce a few available monitoring systems for 

biogas plants, which allow a more detailed process monitoring compared to common practice and 

which are already used at several plants in Germany. 

6.1.2  State of practice and current market situation  

The current state of online monitoring of biogas plants is mostly limited to the state-of-the-art 

parameters pH, ORP, temperature, biogas composition and biogas yield. But even their use, excluding 

temperature, is often limited to innovative biogas plant operators, who are open-minded towards new 

technology or to large biogas plants with a power production above 500kW that can afford the 

additional costs. In the course of two research projects PROBIG
26

 and MOBIO
27

 successfully executed 

by the Cologne University of Applied Sciences in close cooperation with two biogas plant 
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manufacturers and operators and funded by the BMWi
28

, it was clearly stated that only temperature 

and biogas composition are considered to be standard parameters at agricultural biogas plants. 

6.1.2.1 Standard process monitoring at agricultural biogas plants 

In general, process monitoring at agricultural biogas plants is done by laboratory analysis at regular 

intervals. These intervals vary widely from once a week up to once a month depending on the reigning 

process conditions or operational problems. In the case of a change in input substrates, laboratory 

analysis of the substrates is necessary to estimate biogas production, quality and possible inhibitory 

effects. Based on the analytic results, the substrate feed to the plant is properly adjusted. Common 

monitoring parameters are TS, VS and pH of the input substrates and VFA, PA/TA and ammonium 

(NH4) of the anaerobic sludge in the digesters. In particular, the ratio between VOA and TIC is 

considered to be an important process stability measure. In practice, a VOA/TIC ratio higher than 0.8 is 

considered to indicate a severe process disturbance, although some biogas plants operate under higher 

ratios due to highly adapted bacteria populations (FNR e.V. 2010). As for many other process 

parameters, the rule of thumb is that deviations from measurement values, which are considered to be 

normal, are more important than definite limit values. One of the main problems with this kind of 

offline process monitoring by laboratory analysis is the time delay between sample drawing and 

analysis, which makes fast reactions to operational problems impossible. Furthermore, costs for 

regular laboratory analysis are high (between €60 and €120 per sample) (Landwirtschaftskammer 

Nordrhein-Westfalen 2012) and thus strike most plant operators as unnecessary from a cost-benefit 

point of view. 

Even standard online parameters such as biogas yield and biogas composition are far from 

maintenance-free. Biogas yield is mostly calculated based on power production of the cogeneration 

units and not directly measured (Bongards and Wolf 2008), (Wolf et al. 2011c). The challenge to 

accurately measuring the biogas volume flow is how to take account of gas humidity, pressure, 

temperature and gas flow velocity. Commonly used measurement principles are thermal and Fluidistor 

measurement as well as pressure difference and bellows-type measurement. Unfortunately, all these 

measurement principles have considerable disadvantages. The thermal measurement has problems 

with fouling, is very sensitive to gas humidity and does not cope well with changing biogas 

composition and the Fluidistor measurement only measures gas volume without considering gas 

pressure and temperature. Common problems with inaccuracies in pressure difference measurement 

systems are caused by low gas pressure and unknown gas composition as the gas density needs to be 

known. Furthermore, pressure difference systems can only be applied to processes with high gas flow 

velocities. Most problems occur with the bellows-type measurement, which is very susceptible to 

adhesion caused by an accumulation of humidity and impurities in the gas as well as to abrasion of the 
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mechanical parts. In this case regular maintenance is absolutely necessary. Overall, biogas volume 

flow measurement is far from trivial if the biogas is not properly dried and cleaned before it is 

measured. (Keitlinghaus 2011)  

For biogas composition commercial measurement systems do exist and are widely applied in 

agricultural biogas plants. The most common gases measured are methane (CH4), oxygen (O2) and 

hydrogen sulfide (H2S), whereas gas analyzers are recently often refitted with hydrogen (H2) units as 

hydrogen has proven to be very sensitive to process disturbances (Boe et al. 2010). The measurement 

systems commonly use infrared (CH4, CO2, H2, H2S, O2), electro-chemical (H2, H2S, O2) and 

paramagnetic sensors (O2, H2) to measure the different gas components. Although all these 

measurement principles are well developed, impurities in the biogas make an accurate long term gas 

analysis difficult. Small particles in the biogas as well as high humidity cause the sensors to drift over 

time (four to twelve weeks), which results in deviations from the actual gas concentrations of up to 

10% (PlanET Biogastechnik GmbH and Fachhochschule Köln 2010). Thus, regular calibrations by the 

manufacturer of the online gas analyzers are absolutely necessary and though costly, highly 

recommended to maintain measurement accuracy in the long run. 

When it comes to pH, ORP and TS online measurement probes, their application at full-scale 

agricultural biogas plants started more than six years ago and was published by Wiese and Haeck in 

2006 (Wiese and Haeck 2006). Nevertheless, the use of these online probes is rare at agricultural 

biogas plants in Germany with approximately only 240 out of 6,000 plants using one of the above 

mentioned online measurement systems (FNR e.V. 2009). The main reasons are high costs for probes 

and installation fittings, which lie between 1.500€ and 5.000€ (all together), depending on probe 

material and additional equipment and the regular maintenance, which consists of cleaning and 

recalibration. Throughout several practice tests at agricultural and industrial biogas plants, it was 

shown that taking measurements at low TS concentrations (<10%) does not cause any problems, 

whereas high TS concentrations (>15%) can cause severe damage to the electrodes of pH and ORP 

probes (Wolf et al. 2011a, Wiese and Kujawski 2008). Therefore, special probes with open aperture 

for pH measurement at high dirt loads and platin ring electrodes for robust ORP measurement should 

be chosen for high TS concentrations. For TS probes, high TS concentrations do not pose a serious 

threat. 

6.1.2.2 Current market situation 

The current market situation for online measurement systems for biogas plants will be analyzed in this 

section, introducing the most important and known manufacturers for such systems and the European 

biogas market. Thereby, the focus will be on systems that are well established in practice as well as on 

those that are state of the art and highly innovative products. 
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Manufacturers of measurement systems for standard process parameters 

Online measurement systems for biogas flow meters are produced by all major instrumentation and 

automation companies in Europe, for example ABB
29

, Endress+Hauser (E+H)
30

, Siemens
31

, 

Yokogawa
32

, etc. Among these only E+H developed a gas flow meter (Proline Prosonic Flow B 200), 

which is specially designed for biogas and landfill gas and is able to cope with the impurities and the 

humidity in the gas (Endress+Hauser Messtechnik GmbH & Co. KG 2011). 

 

(ABB AG) 

 

(Endress+Hauser 

Messtechnik GmbH 

& Co. KG) 

 

(Siemens AG 2010) 

 

(Yokogawa Electric 

Corporation) 

Figure 6-1: Examples of available gas flow meters: a. ABB Sensyflow FMT 200-D, b. E+H Proline Prosonic Flow B 

200, c. Siemens SITRANS FX-300, d. Digital YEWFLOW DY-D 

Furthermore, the methane concentration in the biogas is measured as well. Online analyzers for biogas 

composition are widespread at German biogas plants and mostly manufactured by German small and 

medium-sized companies. The companies that are well-known are ADOS GmbH
33

, ExTox 

Gasmesssysteme GmbH
34

 and Pronova Analysentechnik GmbH & Co. KG
35

, whose gas analyzers can 

be found at most biogas plants in Germany. 

 

 

(ADOS GmbH) 

 

 

(ExTox Gasmesssysteme 

GmbH) 

 

 

(Pronova Analysentechnik 

GmbH & Co. KG) 

Figure 6-2: Examples of biogas analyzers: a. ADOS Biogas 40, b. ExTox ET-4D2, c. Pronova SSM6000 

                                                      
29

 http://www.abb.com/ 
30

 http://www.endress.com/ 
31

 http://www.siemens.com/ 
32

 http://www.yokogawa.com/ 
33

 http://www.ados.de/ 
34

 http://www.extox.de/ 
35

 http://www.pronova.de/ 

a. b. c. d. 

a. b. c. 
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For process parameters such as pH, ORP and TS in low TS environments, Hach-Lange
36

 and E+H are 

the market leaders, offering a broad range of different probes and installation fittings, which even 

allow for recalibration and maintenance during process operation. Nevertheless, these companies are 

not able to measure pH, ORP and TS in high TS environments, which makes the systems useless for 

dry digestion or bio-waste processing plants. This is why the company Knick Elektronische 

Messgeräte GmbH & Co. KG
37

 specialized in manufacturing pH and ORP probes for extreme process 

conditions such as high temperature/pressure and high TS concentration. Furthermore, the company 

hf-sensor GmbH developed an online measurement system especially for high TS concentrations 

above 15% using microwave sensors. 

 

(Endress+Hauser Messtechnik 

GmbH & Co. KG) 

 

(Endress+Hauser Messtechnik 

GmbH & Co. KG) 

 

(Endress+Hauser Messtechnik 

GmbH & Co. KG) 

 

(Knick Elektronische 

Messgeräte GmbH & Co. KG) 

 

(Endress+Hauser Messtechnik 

GmbH & Co. KG) 

 

(hf-sensor GmbH) 

Figure 6-3: Example pH, ORP electrodes and TS probes and installation fittings: a. E+H Cleanfit W CPA450 

installation fitting for pH and ORP electrodes, b. E+H Orbisint CPS11D pH electrode, c. E+H Orbisint CPS12D ORP 

electrode, d. Knick SensoGate® WA 130 installation fitting for pH and ORP electrodes, e. E+H TurbiMax W CUS 41 

TS probe, f. hf-sensor MWTS PP TS probe 
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Manufacturers of measurement systems for non-standard process parameters 

The online measurement of VFA, PA/TA, COD and TOC is possible but it has been applied to only a 

few plants in Europe. The main reasons are high costs (between 10,000 and 40,000€) and the fact that 

most systems require an extensive level of maintenance and expert knowledge, which is mostly not 

available. The companies S::CAN and Trios manufacture UV/vis spectroscopic probes for online 

measurement of COD and TOC, which can also be used to measure VFA concentration and TA. 

 

 

 

(s:can Messtechnik GmbH) 

 

 

 

(TriOS Optical Sensors GmbH) 

Figure 6-4: UV-vis spectroscopic probes from a. s::can and b. TriOS 

Prices for UV/vis spectroscopic measurement systems range from 10,000 to 20,000€ depending on 

probe material and number of baseline calibrations, one per measurement parameter. As these online 

UV/vis spectroscopic systems measure absorption and not reflection, dilution of samples is mostly 

necessary. In particular, samples with TS concentrations above 10% require a high degree of dilution 

(1:100 or even 1:200) to get clear absorption spectra, which is why such systems are not well suited 

for processes with high TS contents. Therefore, the companies TENIRS GmbH
38

 (recently bought by 

the m-u-t AG
39

) and art photonics
40

 develop spectroscopic probes, which cover the NIR and MIR 

spectrum and measure the reflection spectra. The advantage of these systems is their ability to measure 

samples with high TS contents (even up to 40%), which makes them perfectly suited to measure 

substrate feed composition as well as process parameters in the digester. Nevertheless, these systems 

are still very expensive with approximately 20,000€ for NIR and up to 100,000€ for MIR systems. 

 

(Andree 2009) 

 

(Viacheslav Artyushenko 2010) 

Figure 6-5: NIR and MIR measurement systems from a. TENIRS GmbH and b. art photonics GmbH PIR 

(Polycrystalline InfraRed) fibre probe 
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Currently the Cologne University of Applied Sciences works together with art photonics in a research 

project to develop an online MIR measurement system specially adapted for the use in biogas plants  

and with a total price between 10,000€ and 15,000€
41

. 

Other online measurement systems for VFA as well as PA/TA exist but are rarely applied due to very 

high prices in the case of online gas chromatography or HPLC analyzers or due to a lack of robustness 

in the case of systems such as the AnaSense
®
 online titration system, which requires extensive 

maintenance. 

Potential in the European biogas market 

The market potential for new online measurement systems for biogas plants in Europe is estimated to 

be huge, due to the high number of biogas plants in Europe. Based on estimates from the 

trend:research institute (trend:research 2010) the number of biogas plants will double by 2020 from 

8,000 (2010) to 16,000. With more than 7,000 biogas plants in Germany in 2012 alone (Fachverband 

Biogas e.V. 2011) and a rise in the European biogas production of 31% from 2009 to 2010, it becomes 

clear that the European biogas market is one of the fastest growing renewable energy markets in 

Europe (Liébard and Civel 2011). Nevertheless, the market for online measurement systems is smaller 

than the 16,000 plants envisaged by 2020. In many cases such systems are not feasible for smaller 

biogas plants with an energy production below 300kW, because of the additional costs for installation 

and maintenance. In Germany, this leaves us with biogas plants of 300kW and above, which still 

account for more than 50% of all biogas plants in Germany (FNR e.V. 2009). Overall, these numbers 

show that the potential market for new online measurement systems for biogas plants is high and will 

further increase as remuneration rates in most European countries will slowly decrease. This makes 

efficient plant operation and availability a top priority.  

6.2 Necessity for online monitoring for biogas plants – an example from an 

industrial biogas plant 

As long as biogas plants operate under stable process conditions, variations in plant stability and 

energy production are minimal. Thus, online monitoring does not seem necessary to many plant 

operators. The following example of an IBG “Industrial I
42

” shows that, in spite of the fact that most 

process parameters (pH, biogas production, biogas quality) were in the range of normal plant 

operation, plant stability was endangered by high VFA concentrations and steadily decreasing buffer 

capacity (TA), which eventually led to complete process failure.  

                                                      
41

 ZIM-KF project „INNO-MIR Biogas - Entwicklung und Automatisierung eines innovativen MIR-Online-

Messsystems für Biogasanlagen“ funded by the BMWi (Grant No. KF2137807AK1) 
42

 Industrial biogas plant using bio-waste near Gummersbach, NRW, Germany 
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6.2.1 Description of the plant Industrial I 

Industrial I is situated on a former landfill site near Gummersbach in Germany and primarily uses bio-

waste from private households, which mainly consists of leftovers in the winter months and garden 

waste and lop in the summer months. The daily amount of bio-waste delivered to the landfill for 

processing and transportation to other facilities ranges from 100-250t from which 80-150t are digested 

in the biogas plant Industrial I depending on substrate composition, quality and process stability. Due 

to the fact that the bio-waste consists of many different kinds of materials and often contains dead 

animals, straw, tree branches and even sometimes non-degradable waste like stones, bottle caps, glass, 

car tires and construction waste, a sophisticated preprocessing step to sort and filter the bio-waste is 

absolutely necessary. After preprocessing, the bio-waste is fed to two digesters with 2,500m³ liquid 

phase and 500m³ gas phase. Both digesters use dry digestion due to the high TS content of the input 

material, which ranges from 30-50%. The digester uses the Valorga
43

 system, which is characterized 

by a vertical dividing wall that extends up to 75% into the middle of the cylindrical digesters. The 

substrate input and output are on opposite sides of the dividing wall to maximize the retention time of 

the digestate by creating a plug flow through the digester. To assure a mixing of the digester content, 

biogas is pressurized between 10 and 100bar and then injected through gas injection ports at the 

bottom of the digester. The high pressure of up to 100bar is necessary to prevent sedimentation in the 

digester and clogging of the gas injection ports, which is mainly caused by the high TS content of the 

substrate feed in such plants and is well-known to become a serious problem after a few years of 

operation. (Nayono 2010) 

 

Figure 6-6: Digester Design from Valorga (Etzkorn 2008) 

The overall layout of the biogas plant Industrial I is shown in Figure 6-7. The digesters are followed 

by two dewatering steps for the digestate to separate the liquid from the dry matter, which is then 

transported by conveyer to a nearby composting plant. The plant has been in operation since 1997 and 

operational and process data has been available since 1998. Next to flow and temperature 
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measurements, several laboratory measurements are collected on a daily basis: TS and VS from the 

input substrates, the digestate and from the press and filter cakes as well as important AD process 

parameters such as pH, TA and VFA from the press water after the screen drums. Due to operational 

problems in 2007 an extensive data analysis was conducted to investigate possible reasons and to find 

out whether these problems could have been detected and prevented in advance. For this data analysis 

values from the measurement points shown in Figure 6-7 are taken from the years 2003 to 2007. 

 

Figure 6-7: Plant layout of the biogas plant Industrial I including flow measurements and laboratory sample points 

6.2.2 Data Analysis for Industrial I 

The results of the data analysis clearly show that the operational problems could have been detected at 

least one month in advance by performing a detailed data analysis and could have been prevented if 

the appropriate counter measures, such as reduction of substrate feed, were taken. Figure 6-8 illustrates 

that the substrate throughput of Industrial I rose constantly from October 2005 to September 2007, 

resulting in a rising biogas production and eventually in the complete breakdown of the AD process. 

Such continuous increase in digester load significantly lowers the overall retention time of the biomass 

in the digesters, which puts the bacteria under high stress. 

 

Figure 6-8: Comparison of bio-waste throughput with biogas production between 2003 and 2007 
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The consequences of such organic overload can be seen very well by looking at the development of 

VFA and TA. Caused by the increased bio-waste throughput a high rise in VFA concentration was 

measured, which eventually led to an acidification of the digester biology and the heavy drop in biogas 

production. Yet, the rise in VFA concentration alone would not have led to a complete breakdown of 

the process if TA was high enough to buffer the acids and to stabilize the pH value. 

 

Figure 6-9: Comparison of VFA in digesters D1 and D2 with biogas production between 2003 and 2007 

Unfortunately, the buffer capacity also suffered two severe drops as can be seen in Figure 6-10. The 

first drop occurred at the end of 2006 from which the process recovered before it eventually dropped 

to an all-time low at the end of 2007, which made a complete recovery impossible. 

 

Figure 6-10: Comparison of carbon buffer in digesters D1 and D2 with VFA concentration between 2003 and 2007 

One would expect to see comparable drops in the pH levels of the digesters because of high VFA 

concentrations and low TA values. Nevertheless, no such effects could be clearly detected in the data 

(Figure 6-11). Variation of the pH levels in digester one and two is too small to be of any significance. 

This corroborates the observations in the literature review that online measurement of pH levels does 

not provide additional valuable information about problematic process conditions in environments 

with high buffer capacities (Wiese and König 2009b, Wolf et al. 2011a). As soon as a considerable 

drop in pH level is detected, it is mostly already too late. 
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Figure 6-11: Comparison of pH levels in digesters D1 and D2 with VFA concentration between 2003 and 2007 

Based on these results it becomes obvious that two things are of great importance when it comes to 

process monitoring of AD processes. Firstly, relevant process parameters (VFA, TA, TS, VS) need to be 

closely monitored on a regular basis. Thereby, online monitoring is recommended due to the 

availability of consistent process data and documentation as well as faster reaction times in case of 

operational problems. Secondly, available process data needs to be properly analyzed, if possible 

automatically to extract valuable process information in time. In particular, the second aspect poses a 

challenge to many biogas plant operators as process data is mostly not gathered in regular intervals, 

which makes a comparison among different parameters difficult. Furthermore, most operators do not 

possess the required expert knowledge for the application of effective data preprocessing methods 

(filtering, smoothing and interpolation) as well as for the use of more complex data analysis methods 

(cross-correlation, non-linear regression, Principal Component Analysis, etc.).  

The practical example of operational problems from Industrial I shows that online measurement 

systems do not only create additional costs but help to provide highly valuable information about 

reigning process conditions, which eventually allows for the early detection of operational problems. 

In the case of Industrial I, restarting the AD process in the digesters required the complete emptying of 

one digester and cost several hundred thousand. If such an incident was prevented by the use of online 

measurement systems, prices of up to 40,000€ for this kind of equipment would still be a good 

investment. 

6.2.3 pH, ORP and TS installation and test at Sunderhook ABP  

The probes installed at the Sunderhook ABP are manufactured by E+H and are the same as the ones 

shown in Figure 6-3. The pH and ORP probes from E+H, which were used in this case, are called 

“memosens”-probes because the connection between electrode and controller is an inductive plug 

connector. This connector allows for easy and fast calibration and replacement of the electrodes and 

helps to reduce maintenance time. To guarantee a stable long-term operation of the probes, probes and 

installation fittings are made out of stainless steel. Due to the fact that the immediate surroundings of 
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the digesters are zone 0 or 1 according to the European ATEX guidelines for explosion prevention and 

prediction
44,45

 installation of the probes directly into the digester wall is not possible. For this reason, 

the three probes were installed in a pump station, which is used to pump substrates into the first 

digester and digestate out of the first into the secondary digester. The main advantages are that the 

installation fittings and measurement controllers do not need to be ATEX certified and that different 

material flows can be measured and logged with only one installation. Furthermore, the installation 

fittings are so-called quick-change fittings, which make it possible to pull the probes out of the process 

under operating conditions. The measurement data of the probes is sent to three small controllers 

(Liquisys M Endress+Hauser Messtechnik GmbH & Co. KG 2012), one for each probe, and from 

there sent as current signal (4-20 mA) to a PLC with an OPC server. An OPC client is running on the 

central computer with the software iPCOIN (intelligent Process Control Integration, Bongards et al. 

2004) developed by the GECOC research group from Cologne University of Applied Sciences. 

iPCOIN reads the measurement values from the OPC server and stores them in a PostgreSQL database 

for further analysis. 

 
  

Figure 6-12: Installation of pH, ORP and TS probe at the Sunderhook ABP: a. complete installation, b. TS probe, 

c. pH and ORP probe 

6.2.3.1 Comparison of online measurement values with laboratory measurements 

A validation of the online measurement values was performed with regular laboratory samples. As the 

number of laboratory measurements is relatively small in comparison to the number of online 

measurement values, a t-test is used for an unbiased comparison. 

                                                      
44

  Directive 94/9/EC on equipment and protective systems intended for use in potentially explosive 

atmospheres (ATEX) 
45

  Directive 1999/92/EC on minimum requirements for improving the safety and health protection of workers 

potentially at risk from explosive atmospheres 
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Figure 6-13: Comparison of pH online measurement values and laboratory samples 

The result of the t-test confirms that both values represent the same normally distributed signal with 

equal mean and standard deviation as 0h   and thus the hypothesis cannot be rejected at the 5% 

significance level. The results for the f-test are different for the whole validation period and the one 

after the calibration of the probe. The variance for the whole period is not equal according to the f-test 

as the hypothesis is rejected ( 1h  ) at the 5% significance level, whereas for the period after 

calibration the hypothesis cannot be rejected ( 0h  ) and variances are equal. 

 

Figure 6-14: Comparison of TS online measurement values and laboratory samples 

The comparison of TS online and laboratory measurements clearly show that before the calibration TS 

values were too low and do not match with the laboratory measurements at all. This is also reflected 

by the results of the f-test, where the hypothesis that the variances of the two signals are equal is 

rejected ( 1h  ) at the 5% significance level for the period before calibration. For the following period 

after calibration the hypothesis is confirmed with h  being 0 . On the contrary, results from the t-test 

are the same for both periods. The hypothesis, that both signals possess the same mean and the same 

unknown variances, cannot be rejected ( 0h  ). 
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For the ORP probe no laboratory samples were taken, because the exact measurement values do not 

have any significance in practice. Nevertheless, calibration of the ORP probe was performed on a 

regular basis every two weeks using calibration fluids. Trends in the overall level of the ORP are much 

more important and indicative of operational problems (Zimmermann et al. 2003). Thus, a steady 

increase in ORP indicates that an organic overload is probable. Figure 6-15 shows the development of 

the ORP values for the investigated period. 

 

Figure 6-15: ORP online measurement values 

6.2.3.2 Maintenance and robustness of the probes at Sunderhook ABP  

The probes at Sunderhook ABP are low-maintenance products when compared to more complex 

online measurement systems like online titrators or gas chromatographs. Thus, maintenance is 

required once every two weeks or once every month depending two main factors: measurement drift 

and fouling. Due to a slow drift in measurement values over time, regular calibration of the pH and TS 

probe is absolutely necessary to gain accurate process data in the long run. The shortest required 

calibration interval varies from plant to plant and is strongly influenced by substrate composition and 

TS concentration of the digestate. For the Sunderhook ABP calibration of the pH probe was performed 

once every two weeks at the beginning of the test period and later on once every month. For the pH 

probe a two-point calibration at pH 4 and pH 7 is necessary, which can be easily performed using the 

Liquisys M controller. Therefore, the probe needs to be pulled out of the installation fitting and to be 

properly cleaned. Because of the quick-change fittings, the whole procedure of removing the probe 

from the process, cleaning the electrode and calibration of the electrode, takes between 15 and 20 

minutes. For the TS probe, the calibration interval was much smaller during the test period. Calibration 

was performed once every two months, because no significant drift could be detected. In general, there 

are two calibration procedures available: one-point calibration with an additional damping parameter 

or two-point calibration. The large maintenance interval is an advantage for the plant operator, as both 

calibration procedures of the TS probe are time-consuming. In both cases, samples from the digestate 

have to be taken and measured with the TS probe. Then, the samples need to be measured in a drying 
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chamber. After 24 hours the results from these samples are available and can be programmed into the 

controller along with the TS probe results. 

When it comes to fouling around the electrodes in case of pH and ORP probes or at the process 

window of the TS probe, the degree of fouling and its effects on the measurement quality depend 

mainly on substrate composition. High TS concentrations can easily cause clogging of the complete 

probe heads; in particular fibrous material tends to get stuck between the electrode and the installation 

fitting. For the TS probe, which possesses a flat probe head made from steel with integrated process 

window for the optics, greasy and oily substances pose a serious problem as they cause schlieren, 

which are difficult to remove. To counter fouling, the probes were pulled from the process once every 

two weeks at the beginning of the test period and later on once every month. 

  

  

  

Figure 6-16: pH (a. & b.), ORP (c. & d.) and TS (e. & f.) probes after one month of operation before and after cleaning 

a. b. 

c. d. 

e. f. 
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Figure 6-16 clearly shows that even at low TS concentrations, which lie between 6 and 10% at the 

Sunderhook ABP, regularly cleaning is necessary. Nevertheless, cleaning itself is easy because no 

special cleaning products are required. Over the whole test period cleaning was performed with normal 

supply water. 

  

  

Figure 6-17: Long term effects of the digestate on pH and ORP probes at Sunderhook ABP  

After one year of operation, changes at the pH and ORP electrodes were detected. The gel inside the 

pH electrode changed its color from clear to a mixture of green and brown, which slowed down the 

reaction time of the probe significantly. Furthermore, the calibration interval needed to be increased to 

once a week. Eventually, a replacement of the electrode was necessary. Concerning the ORP 

electrode, a bend, which was caused by the bulking material in the digestate, developed over time. 

This bend might lead to a break of the electrode in the future, but this has not happened so far. 

Changes other than these were not detected during the long term operation of the probes, which makes 

them well-suited for the use in biogas plants. 

6.2.3.3 Suitability of pH, ORP and TS probes for online monitoring of the Sunderhook ABP  

The purpose of the application of pH, ORP and TS probes at the Sunderhook ABP was also to 

investigate whether useful process information could be gathered to monitor the AD process and to 

enable early detection of anomalies. Therefore, the process signals from biogas production and 

methane concentration in the biogas are compared to the data from the three different probes. Due to 

different range of values, the process signals were scaled between 0 and 1 according to their min and 

max values. Unfortunately, a comparison of the curves does not reveal a clear connection between the 

a. b. 

c. d. 
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signals as can be seen in Figure 6-18. A further investigation of any connection between pH, ORP, TS 

and biogas production and methane concentration was conducted using cross correlation and k-means 

clustering. Although cross-correlation does not show a significant similarity in the curve progression 

between the signals, k-means shows that low biogas production and low methane concentration go 

hand in hand with low pH levels and high TS concentrations. ORP does not seem to have an influence 

on either biogas production or methane concentration. 

  

  

  

Figure 6-18: Comparison of pH, ORP and TS with biogas production (left) and methane concentration in the biogas 

(right) 
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Figure 6-19 shows the results of k-means clustering.  

  

  

  

Figure 6-19: k-means clustering of pH, ORP and TS values against biogas production (left) and methane concentration 

(right) 

It becomes obvious that the center of cluster 4 deviates clearly from the other centers of cluster one to 

three for pH and TS values, which indicates that low pH values and high TS values might cause a 

decrease in biogas production. If the pH is low, the AD process is inhibited and the high TS makes 
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mixing much more difficult. The effect of high TS concentrations on biogas production was confirmed 

by the plant operator, who stated that mixing of the digester becomes nearly impossible if TS 

concentration rises to 10% and above. This results in severe operational problems, which cause a drop 

in biogas production and methane concentration. The following 3D k-means clusters in Figure 6-20 

show the influence of pH and TS on biogas production. 

 

Figure 6-20: k-means clustering of pH and TS against biogas production 

All in all, it can be said that pH and TS monitoring with online probes seems to be a good additional 

way to monitor the AD process at the Sunderhook ABP. The ORP values do not provide any new 

knowledge of the process and thus is not deemed necessary. When it comes to long term operation of 

the probes, all three probes are very well suited for the use at ABPs if TS concentration of the digestate 

is not too high (>12%). The probes are very robust and relatively low maintenance products. 

Furthermore, maintenance is fairly easy and does not require any expert knowledge, so that the plant 

operator can take care of the probes himself. 

6.3 Field test of online measurement systems for pH, ORP and TS at an 

agricultural and industrial biogas plant 

Online measurement systems for pH, ORP and TS exist for various applications from water, 

wastewater to AD monitoring. Although, existing probes for pH, ORP and TS are commercially 

available for biogas plants, they are not widely applied due to a lack of knowledge about their 

existence and due to the costs for probes and suitable installation fittings. Furthermore, not much 
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information is available about the suitability of these systems for biogas plants in terms of 

maintenance intensity and robustness. In 2006 Wiese and Haeck published an article about the 

instrumentation and automation of a full-scale agricultural biogas plant in Germany, which also 

mentions the use of pH, ORP and TS probes for online monitoring (Wiese and Haeck 2006). 

Nevertheless, results in terms of long-term operation and robustness are not presented, which is why 

pH, ORP and TS probes from two different manufacturers were tested at an agricultural biogas plant 

and an industrial biogas plant (Industrial I). Probes from E+H were tested at the agricultural biogas 

plant near Gronau-Epe in Germany (Sunderhook ABP), whereas probes from Hach-Lange
46

 were 

installed at Industrial I. The probes were monitored over a period of several months and the 

measurement values compared to laboratory samples. The accuracy of the probe measurement values 

was validated with a t-test and f-test. The t-test examines, whether the null hypothesis, that data in two 

data vectors x  and y  are independent random samples from a normally distributed process signal 

with equal means and equal but unknown variances, is true ( 0h  ) or false ( 1h  ). The f-test is used 

to check whether data in two data vectors x  and y  are independent random samples from a normal 

distribution with equal variances ( 0h  ) or different variances ( 1h  ). 

6.3.1 pH, ORP and TS installation and test at Industrial I 

The probes installed at Industrial I are from Hach-Lange, which is one of the competitors of E+H on 

the market for online measurement systems for various environmental applications. Similar to the 

Sunderhook ABP, the probes were installed in a bypass pipe, which is used to pump digestate out of 

the two digesters into the following screen drums. The probes were not installed inside the digester 

walls due to the prevailing ATEX regulations. To allow for as easy maintenance as possible, quick-

change fittings were used for all three probes. In general, the test conditions are comparable to the 

ones at the Sunderhook ABP, except for the extreme TS concentration of around 20%, which is 

already considered to be dry digestion. Such high TS content is a big threat to the sensitive electrodes 

of the pH and ORP probes used in this case.  

  

 

Figure 6-21: Probes used for the test installation at Industrial I: a. pH47, b. ORP48, c. TS49 

                                                      
46

  http://www.hach-lange.de 
47

  http://www.hach-lange.at/medias/sys_master/8796405006366/67392_L.jpg 
48

  http://www.hach-lange.at/medias/sys_master/8796443148318/rd1r-us_L.jpg 
49

  http://www.hach-lange.at/medias/sys_master/8796405006366/67392_L.jpg 

a. b. c. 
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Control and data acquisition of the probes is managed by a SC1000 (Hach Lange GmbH 2012) 

controller using three 4-20mA signals. The controller itself is connected to a netbook PC, which is 

accessible over the internet using the remote monitoring software Teamviewer
50

. An additional 

computer program accesses the gathered data once a week and sends it by email to the GECOC 

research group.  

  

  

Figure 6-22: Installation of the probes at Industrial I. a. pH and ORP probes, b. TS probe, c. SC1000 controller, d. 

Overview of probe control and data acquisition 

 

6.3.1.1 Quality of online measurement data 

The online measurement results from the test period clearly show that pH and ORP probes of this kind 

are not suited for application in high TS environments at all. After several weeks, first the pH electrode 

was irreparably destroyed and a month later the ORP electrode was shorn off due to sharp particles in 

the digestate. The moment of destruction of the electrodes becomes obvious in the figures showing the 

curve progression of the two probes over the test period. The data after the break is meaningless and 

the electrodes were not replaced as the test proved that they are not robust enough for this 

environment. 

                                                      
50

  http://www.teamviewer.com/ 

b. 

c. d. 

a. 
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Figure 6-23: Online measurement data from the pH probe over the test period. Destruction of the electrode after one 

week of operation. 

 

Figure 6-24: Online measurement data from the ORP probe over the test period. Destruction of the electrode after 

seven weeks of operation. 

Only the TS probe was able to measure correctly over the whole test period, mainly because of the 

highly robust stainless steel casing and the scratch-resistant sapphire glass. Unfortunately, due to 

severe operational problems during the test period, the number of comparable laboratory TS 

measurements is very low (4 samples). Thus, the validity and significance of the results is very 

doubtful, although laboratory samples and online measured TS values show a good match. The time 

period of the TS probe test is shorter compared to the ones for the pH and ORP probes as the 

installation of the quick-change fitting took longer than expected. 
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Figure 6-25: Comparison of TS online measurement values and laboratory samples 

 

6.3.1.2 Maintenance and robustness of the probes at Industrial I 

The pH and ORP probes used at Industrial I can definitely not be used in environments with high TS 

concentration. It is even doubtful whether more robust probe casings made of stainless steel would 

allow for a successful long time measurement of pH and ORP. The sensitive electrodes are the main 

problem because they come directly in touch with the process and can be easily damaged by sharp 

objects in the digestate. Without a proper protection no probe with a comparable design is likely to 

survive long in such a measurement medium. Figure 6-26 makes it obvious that the electrode was 

shattered at both probes, whereas the TS probe was not damaged at all.  

  

Figure 6-26: Damaged pH probe (a.) and damaged ORP probe (b.) 

Maintenance of the TS probe was performed regularly every two weeks. The TS probe was properly 

cleaned and freed from small grains of sand and furring grains, which got stuck around the sapphire 

glass causing a clogging of the probe in the long run. As the test period was very short with four 

weeks of operation, no recalibration of the probe was necessary during that time.  

a. b. 
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Figure 6-27: TS probe after one month of operation before and after cleaning 

6.4 A novel method for VFA prediction in biogas plants using UV/vis 

spectroscopic online measurements 

The availability of UV/vis spectroscopic probes offers a new approach to measuring organic acid 

concentrations indirectly and online. By employing powerful feature extraction and classification 

methods, organic acid concentrations can be predicted from the absorption spectra measurements 

taken from diluted fermentation sludge. As the use of UV/vis spectroscopic probes is well established 

in the wastewater sector for the online-measurement of the COD in sewage systems and wastewater 

treatment plants, these probes have proven to be extremely robust, requiring less maintenance than the 

alternatives mentioned above (Bongards et al. 2007). 

Thus, this section presents a novel methodology for the online measurement of VFA in biogas plants 

based on UV/vis spectroscopy. The methodology consists of two key components: 

 An online measurement system comprising the UV/vis spectroscopic probe and a dilution 

system for the fermentation sludge 

 Machine learning based analysis software for generating VFA concentration predictions from 

the fermentation sludge absorption spectra measurements 

A brief introduction to the practical background, the novel measurement system and its general 

functional principle is given in section 6.4.1. A key consideration for the proposed methodology is the 

proper choice of machine learning algorithm. This is addressed in section 6.5 where a detailed 

evaluation of a number of state-of-the-art machine learning techniques is presented and the optimum 

approach and configuration identified. 

6.4.1 Measurement system methodology and practical application 

The newly developed approach is to use UV/vis spectroscopy, which uses ultraviolet light (200nm - 

750nm) to determine the concentration of a certain substance in a liquid sample. The general principle 

of the UV/vis based online measurement system for VFA concentration in biogas plants is shown in 

Figure 6-28. This measurement system is considered to be an indirect measurement as the actual VFA 

a. b. 
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concentration in the fermentation sludge is not measured but predicted based on spectral data from an 

UV/vis probe. Thus, changes in VFA concentration result in varying absorption intensities at certain 

wavelengths in the UV/vis waveband. The main challenge is to detect these variations in the measured 

absorption spectra and to translate them into VFA predictions. As this translation is a high 

dimensional, non-linear problem, powerful machine learning methods have proven to be well suited 

for this task. The final result of the data analysis is a time series of VFA concentrations, which can be 

used to monitor plant stability and to implement control strategies. 

 

Figure 6-28: Principle of UV/vis based online measurement of VFA concentration in biogas plants 

The main problem for the application of this measurement system on biogas plants is the high 

concentration of organic acids in the substrate and also the relatively high concentration of solids. 

Thus, an automated sample preparation and dilution system has been developed that addresses these 

issues. This has been installed and validated on Industrial I near Gummersbach, Germany. Industrial I 

primarily uses biological municipal waste for digestion. In particular high amounts of leftovers, which 

rapidly increase organic acid production, may compromise plant operation and stability. Due to these 

operating conditions, the plant operator has a high interest in testing and validating new promising 

measurement systems. 

Laboratory tests conducted with the S::CAN spectro::lyser show that organic acid concentrations can 

be detected by analyzing the absorption over several wavelengths as shown in Figure 6-29 (Schmidt 

2008). Different organic acids (acetic acids, propionic acid, lactic acid) were measured in different 

concentrations to determine the effect on the measured absorption intensity. It is obvious that with 

higher concentrations the maximum absorption shifts towards longer wavelengths and that for all three 

acids the absorption-maximum is at 230nm which makes it very difficult to distinguish between 

different organic acids. This indicates that organic acid concentrations cannot be measured separately 

but as a composite parameter, which makes UV/vis spectroscopy well suited for organic acid 

measurement on biogas plants. 
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Figure 6-29: Laboratory measurements of different acids and concentrations using an S::CAN UV/vis probe 

A very popular machine learning method often used to deduce chemical parameters from UV/vis 

measurements is Partial Least Squares Regression (PLS) (Langergraber et al. 2003). However, an 

initial investigation of PLS for this problem yielded very poor results with error rates of about 50%. 

This led us to consider advanced pattern recognition methods in preference to more traditional linear 

regression tools. 

6.4.1.1 Online-measurement apparatus 

Due to the fact, that TS concentration in the digester is up to 20%, a direct measurement of the 

absorption of the substrate at different wavelengths is not feasible, as the 1mm gap width of the 

UV/vis probe (S::CAN spectro::lyser) is easily soiled. For this reason, it is necessary to build up a 

special dilution system for the fermentation sludge. In this case, water from fermentation sludge 

dewatering is used for online-measurements, as organic acids are mainly present in the liquid phase of 

the sludge. 

Laboratory tests have shown that the optimal ratio between water and sample is 1:80 to get a clear 

spectrum. To reach this dilution degree for an accurate measurement with the S::CAN spectro::lyser 

probe, the dilution unit is filled with four liters of water every 30 minutes (batch process). A peristaltic 

pump is used to administer a defined amount of the fermentation press water (50ml). Figure 6-30 

shows the layout of the measurement and dilution system.  
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Figure 6-30: a. UV/vis-probe with 1mm gap width; b. Complete layout of the measurement system; c. Online-

measurement in progress; d. Control cabinet for the measurement system; e. Flexible-tube pump for exact dosing of 

the fermentation sludge; f. Collection container for the press water of the fermentation sludge 

A baseline calibration of the UV/vis probe is necessary to assure an accurate measurement of the 

absorption throughout the whole wavelength spectrum. Normally, deionized water is used for baseline 

calibrations, but in this case the mains water, which is used for dilution of the sample, was used for 

calibration. The reason is that the mains water itself already contains substances, which cause an 

additional absorption over the spectrum and thus influence the absorption of the sample. By using 

mains water for the baseline calibration, this absorption is taken into account so that the measured 

absorption for the diluted sample represents the sample matrix without the mains water matrix. 

  

a. b. 

c. d. 

e. f. 
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6.5 Application and comparison of machine learning techniques 

The use of powerful computational intelligence and data analysis methods in conjunction with new 

and existing online-measurement and advanced control systems allows the development of highly 

sophisticated and robust systems for efficient process monitoring and optimization. There is a vast 

range of applications, for example Artificial Neural Networks for modeling and prediction purposes, 

Fuzzy-Control to include expert knowledge in plant operation, Genetic Algorithms for the 

optimization of complex processes, and machine learning methods to detect critical operation states or 

to further process online-measured information in so-called soft sensors (Puñal et al. 2003, Strik et al. 

2005, Ozkaya et al. 2007, Steyer et al. 2002). The application of feature extraction and classification 

methods to predict organic acid concentrations in anaerobic digestion processes using UV/vis 

spectroscopic probes is an example of such a hybrid system. 

Two factors support the use of pattern recognition methods for this type of application: (1) Organic 

acid concentrations can be divided into different concentration ranges/classes, which correspond to 

different process conditions; (2) a high precision measurement of organic acid concentrations is not 

necessary as the determination of concentration ranges is sufficient for plant operation. Furthermore, 

the chosen concentration ranges/classes can be easily applied to the development of Fuzzy-Control 

systems. In this approach we consider the well-known Linear Discriminant Analysis (LDA) and the 

Generalized Discriminant Analysis (GerDA), which is a novel and powerful extension of the classical 

LDA algorithm (Stuhlsatz et al. 2010b), to extract features automatically from the raw UV/vis 

spectrogram measurements. In addition to these feature extractors, we use linear classifiers to classify 

the extracted features into different concentration ranges. For comparison, we also investigate the use 

of Random Forest (RF), Neural Networks (Multilayer Perceptron, MLP), Support Vector Machines 

(SVM) and Relevance Vector Machines (RVM), which have proven to be very efficient methods for 

multi-class classification (Balabin et al. 2011, Guo et al. 2011, Wang et al. 2010, Yogameena et al. 

2010). RF is used for feature selection and classification, whereas MLPs are used for the classification 

of reduced feature spaces created by applying Partial Least Squares regression (PLS), Forward 

Selection Regression (FSR) and GerDA to the raw measurements. Finally, SVMs and RVMs are 

investigated for direct classification of the spectrogram as well as for classification of the GerDA and 

RF features. 

A detailed description of the dataset used for training and validation of the machine learning methods 

is given in section 6.5.1 followed by a short introduction to the feature extraction and classification 

methods investigated, namely: LDA, GerDA, RF, MLP, SVM and RVM for classification is given in 

sections 6.5.2 to 6.5.8. The classification results and a comparison of the performance of the different 

methods are provided in section 6.5.8, which is followed by a final evaluation of the pattern 

recognition methods considered as well as a discussion of the novel measurement system. 
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6.5.1 Description of the measurement data set 

The measurement data set was created from online measurements using the UV/vis measurement 

system installed at Industrial I and laboratory measurements, which are regularly taken at Industrial I 

to monitor organic acid concentration in the two digesters. Thus, no synthetic data set was used for 

training and validation of the machine learning methods. 

The spectrometric measurement device provides a characteristic absorption curve, called a fingerprint, 

over pN  wavelengths. The values are given in  Au m  and stored as a column vector, where the  

i th
 one is denoted by i x X , with the feature space 

pX . In total we have N  such 

fingerprints, i.e. 1, ,i N . Associated with each such vector ix  is the i th
 VFA sample with unit 

 g l , denoted by ,a ic  . To formulate the mapping from ix  to ,a ic  as a classification problem the 

measurements ,a ic  are clustered into 5C   classes, which account for the whole range of given ac ’s. 

The class   to which the i th
 VFA measurement belongs to is given by i  , where 

: {1,2,3,4,5}   are the class labels as defined in table 1. These classes correspond to low, low-

normal, normal, normal-high and high VFA concentrations, respectively. A total of 4437N 
 
samples 

were obtained from the biogas plant and these were used to generate training and validation data sets 

with 3326TN   and 1109VN   samples respectively. The distribution of the samples across classes is 

illustrated in Table 6-2. 

Table 6-2: Definition of the class labels and the number of samples in each class   for the complete ( N ), training  

( ,TN  ) and validation dataset ( ,VN  ) 

Class   Organic acid concentration  ac g l  N  ,TN   ,VN 

 

1 (low) 1.1, …, 1.4 228 171 57 

2 (low - normal) 1.5, …, 1.8 1528 1146 382 

3 (normal) 1.9, …, 2.2 1880 1410 470 

4 (normal - high) 2.3, …, 2.6 731 549 182 

5 (high) 2.7, …, 3.0 70 52 18 

 

From an initial investigation of the data set for the full spectrum spanning (200nm - 750nm) using 

LDA it was determined that better results could be obtained by omitting the longer wavelengths, hence 

as a final pre-processing step wavelengths above 640nm were removed leaving a 176p   dimensional 

feature vector ix
 
for analysis. This cut-off point was determined by optimizing the LDA classification 

results with respect to p. This is simply a reflection of the fact that better generalization can be 

obtained if irrelevant feature vectors are discarded. The absorption beyond 300nm is very low, which 

leads to the conclusion that absorption characteristics at higher wavelengths do not have a high impact 

on the concentration of organic acids. Nevertheless, the inclusion of wavelengths above 300nm is 
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justified to take account of substrate coloring and the changing matrix of mains water in the 

measurement. Therefore, the appropriate cut-off point needs to be determined. 

6.5.2 Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis searches for a linear transformation
m pA , m p , such that the 

transformed data  Y A X , 1: ( , , ) T

T

m N

N


 Y y y , can be linearly separated better than the 

original feature vectors 1: ( , , ) T

T

p N

N


 X x x . The linear transformation A  is determined by 

solving an optimization problem which corresponds to maximizing the well-known Fisher 

discriminant criterion: 

 
1( )T Btrace  S S , (6.1) 

where TS  and BS  are the total scatter-matrix and between-class scatter-matrix, respectively as 

defined in Duda et. al. (2001). 

The LDA and a subsequent linear classifier are both implemented in MATLAB
®
 (Moore, 2009). An 

LDA transformation into a feature space of 1 4m C    dimensions yields the best subsequent linear 

classification results. Nevertheless, it becomes obvious at the 2D and 3D feature space representations 

of the data set that a clear separation of all five classes using LDA transformation is not possible with 

a linear classifier. 

  

Figure 6-31: Representation of the five VFA concentration classes in (a.) the 2D-LDA-feature space and (b.) the 3D-

LDA-feature space 

6.5.3 Generalized Discriminant Analysis (GerDA) 

LDA is a popular preprocessing and visualization tool used in different pattern recognition 

applications. Unfortunately, LDA and subsequent linear classification procedures produce high error 

rates on many real world datasets, because a linear mapping cannot transform arbitrarily distributed 

features into independently Gaussian distributed ones. A natural generalization of the classical LDA is 

to still rely on having intrinsic features ( )fh x  with the same statistical properties as assumed for 

LDA features. Unlike LDA a function space F  of nonlinear transformations : p mf   is used. 

The idea is that a sufficiently large space F  potentially contains a nonlinear feature extractor 
*f F  

a. b. 
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that can increase the discriminant criterion (6.1) compared to what can be achieved with the optimum 

linear extractor A . 

GerDA defines a large space F  using the topology of a Deep Neural Network (DNN), and 

consequently the nonlinear feature extractor 
*f F  is given by the DNN which is trained with 

measurements of the data space such that the objective function (6.1) is maximized. Unfortunately, 

training a DNN with standard methods, like back-propagation, is known to be challenging due to 

many local optima in the objective function considered. Therefore, randomly initializing the network 

parameters and restarting until thrown near to a good solution is ineffective for optimizing DNNs. 

To efficiently train a large DNN with respect to (6.1), Stuhlsatz et al. (2010a, 2010b) have developed a 

stochastic pre-optimization based on greedily layer-wise trained Restricted Boltzmann Machines 

(RBM) (Hinton et al. 2006). In order to appropriately initialize a full GerDA-DNN, a stack of trained 

RBMs is used (Figure 6-32). Each RBM is trained with the inputs clamped to the output states of its 

predecessor RBM via minimizing the difference of two Kullback-Leibler distances d , 

   0: ( ; ) ( ; )n

nCD d P P d P P   Λ Λ  (6.2) 

with respect to the network parameters Λ . 

The RBM’s states are assumed to be Boltzmann distributed according to the distributions 
0P , 

nP  and 

P
. Minimizing (6.2) can be performed using a very efficient training method for RBMs called 

Contrastive Divergence (CD) (Hinton 2002). In Stuhlsatz et al. (2010b), the CD heuristic is adapted 

for learning input-output associations by an output RBM (Figure 6-33). Training of all RBMs in a 

stack is unsupervised, with the exception of the output RBM which requires supervised training 

through minimization of the Mean Squared Error (MSE) between specific target codes 

1: { , , }i C   t t , ,1 ,: [ , , ]T C

j j j Ct t t , and the RBM’s predictions ( )out C

i v x . Minimizing 

the MSE with respect to the coding 

 ,

if 
:

0 otherwise

T k
j k

N N j k
t

 
 


      j, k=1,…,C (6.3) 

where kN  is the number of examples of class k , can be shown to asymptotically maximize the 

discriminant criterion (6.1) at the hidden units 
mh  (Osman and Fahmy 1994). A layer-wise 

training, with all weights W  and biases b  up to the last hidden layer h , i.e. the output layer of the 

output RBM is discarded, is used to initialize a GerDA-DNN. Nevertheless, pre-optimization is 

suboptimal in maximizing (6.1), thus a subsequent fine-tuning of the GerDA-DNN is performed using 

a modified back-propagation of the gradients of (6.1) with respect to the network parameters. In 

Stuhlsatz et al. (2010a, 2010b) it is shown that stochastic pre-optimization and subsequent fine-tuning 
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yields very good discriminative features and training time is substantially reduced compared to 

random initialization of large GerDA-DNNs. 

 

 

 

Figure 6-32: A simple stack of two RBMs Figure 6-33: An input-output associative RBM 

For the extraction of intrinsic features from the raw measurements, we used GerDA with a p-250-50-

25-m topology, i.e. a 5 layer DNN consisting of one input layer with p  units, 3 hidden layers with 

250, 50 and 25 units respectively, and one output layer with m  units resulting in more than 265 

million free parameters. To avoid the effect of overfitting of the training data, we terminated the fine-

tuning after the pre-training stage using an early-stopping criterion dependent on the training error. 

The topology of GerDA as well as the early-stopping criterion was evaluated on the training data via 

5-fold cross-validation. Additionally, the best intrinsic dimensionality 1m C   was cross-validated, 

too. The GerDA-framework is implemented in MATLAB
®
. The results presented in section 6.5.8 were 

obtained by using a DNN with the topology p-250-50-25-m, with 176p   and 4m  . A topology 

with 5m   was also examined, but classification performance obtained was slightly inferior. Looking 

at the GerDA-transformed 2D and 3D feature space for the data set, the good separation capability of 

GerDA becomes obvious. 

  

Figure 6-34: Representation of the five VFA concentration classes in (a.) the 2D-GerDA-feature space and (b.) the 3D-

GerDA-feature space 

a. b. 
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6.5.4 Random Forest (RF) 

Random Forest is an efficient algorithm for solving complex classification and regression problems, 

introduced by Breiman (2001). The RF-algorithm used here is the, R based randomForest package for 

Classification and Regression presented by Liaw and Wiener (2002). R is a free software environment 

for statistical computing and graphics R (R Development Core Team 2010). 

The algorithm is an ensemble of unpruned decision trees. Hence, the classification consists of an 

ensemble of classification trees, where each tree is trained on a bootstrapped sample of the original 

training data set (also called in-Bag), and at each new branch the candidate set of variables is a random 

subset of all variables. For the investigation of the UV/vis spectral data set the number of input 

variables was set to thirty and the number of trees in the forest set to 800. 

One third of the training data set is not present in the in-Bag. This left over data is known as out-of-

bag (oob) data and is used to get a running unbiased estimate of the classification error as trees are 

added to the forest as well as to get estimates of variable importance. The average misclassification 

over all trees is known as the oob-error estimate. In this case, the algorithm estimates the importance 

of all variables by looking at how much the oob-error increases for one variable, while all other 

variables are not considered. This importance information can be used to minimize the number of 

variables in the dataset in order to minimize computation time and costs. The output of the classifier is 

determined by a majority vote of the trees. 

6.5.5 Neural Networks (MLP) 

The Multilayer Perceptron (MLP) is a feedforward artificial neural network, which consists of 

multiple layers of neurons that are fully connected from one layer to the next. Being an advancement 

of the standard linear perceptron, MLPs can distinguish data that is not linearly separable, which 

makes them perfectly suited for learning highly complex and non-linear mappings (Cybenko 1989). 

Furthermore, MLPs have several desirable properties like universal function approximation 

capabilities, good generalization properties and the availability of robust efficient training algorithms 

(Haykin 1999). For the classification problem at hand a single hidden layer MLP is used to map the 

non-linear relationship between the intrinsic GerDA features  * *:
i i

fh x  and the corresponding 

class labels i
 , 1, ,

T
i N . Applying PLS and FSR on the original data set two further feature sets are 

generated which are also mapped to the class labels by a second and third MLP. This feature 

extraction significantly accelerates MLP design optimization. MLP training is performed using a 

BFGS training algorithm with stopped minimization used to prevent over-fitting (McLoone et al. 

1998). The optimum number of neurons in the hidden layer and the optimum number of input features 

were determined for each model by cross-validation on the test data set. For PLS the optimal MLP 

design was 30p  , 40hn   and for FSR 25p  , 60hn  . Here p  is the number of input features 

and hn  is the number of neurons in the hidden layer. 
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6.5.6 Support Vector Machines (SVM) 

Support Vector Machines (SVMs) offer a computationally efficient method for multi-class 

classification problems by finding hyperplanes, which separate data sets into classes in a high 

dimensional feature space. For the classification problem under consideration a C-Support Vector 

Classification is used with soft margin optimization and a Radial Basis (RBF) Kernel Function (RBF 

Kernel). 

For a simple 2-class classification problem with data set  i i,x , 1i , ,N , with 
p

i x  and 

 1, 1i    the soft margin hyperplanes of a SVM can be described by the following set of equations, 

where 
pw and b  are weight vector and bias, respectively, and i   is the slack variable for 

the i
th
 set of  i i,x  and is the error allowed in the classification (Haussler et al. 1992, Cortes and 

Vapnik 1995). 

 
1 if 1

1 if 1

T
i i i

T
i i i

b

b

 

 

     


      

w x

w x
   with   0i  , 1i , ,N  (6.4) 

The optimization goal is to maximize the functional margin 

 

2 2

1
:

2

T T

i i i  
 

    
 
 

w w
x x

w w
 (6.5) 

between the two classes with class labels 1 and -1 with corresponding data point vectors i


x  and i


x  

while at the same time minimizing the classification error i . By solving (6.6), where c  is a 

tradeoff parameter between margin and error, this goal is achieved. 

 

 

2, ,
1

1
min

2

subject to 1 1,...,

N

i
b

i

T
i i i

c

b i N



 



 

     


w ξ

w

w x

 (6.6) 

The dual representation of this optimization problem in the more general kernel-based version can be 

described as 

 

 
1 1 1

N

i

i 1

1
max ,

2

subject to 0 and  0 1,...,

N

N N N

i i j i j i j
R

i i j

i i

k

c i N

   

 


  



 

   

 



α

x x

 (6.7) 

where i  is a Lagrange multiplier and      , :i j i jk   x x x x  is the kernel function that maps the 

training vectors ix  into a higher dimensional feature space by applying the function : p  , so 

that classification can be performed using a linear SVM (Cristianini and Shawe-Taylor 2000). 
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For classification of the spectral data set a Gaussian RBF kernel of the form 

  2

2

1
( , ) exp  with  :

2
i j i jk  


    x x x x  (6.8) 

is used, because of several advantages. The RBF kernel is perfectly suited for a non-linear relation 

between class labels and attributes and the linear kernel is a special case of the RBF kernel as proven 

by Keerthi and Lin (Keerthi and Lin 2003). Furthermore, the number of parameters that have to be 

optimized is limited to two parameters c  (see 6.6) and   which makes model selection easier and 

faster, when compared to polynomial kernels. A grid search is performed to determine the best 

parameters c  and   for the RBF kernel function according to the training data set using the SVM 

implementation LIBSVM (Chang and Lin 2001). The training is performed with a 5-fold cross-

validation procedure (one against one) and different pairs of c  and   values are tested. Finally, the 

one that yields the best cross-validation accuracy is picked. As suggested by Hsu in 2003, in a first 

pass exponentially growing sequences of c  and   are evaluated to identify interesting regions for a 

detailed grid search (Hsu et al. 2003). Figure 6-35 shows the result of a global, as well as a detailed grid 

search for parameter optimization of c  and   on the training data set. 

 

Figure 6-35: RBF and SVM parameter optimization results doing a grid search with LIBSVM. 

The best parameters for the data set are shown in Table 6-3. 

Table 6-3: Grid search results for the Training data set 

 c    MCR [%] (6.9) 

TN  955.425 0.87055 11.0 

 

Due to the biased training and validation data sets, SVM performance on class 5 is rather poor, which 

made weighting of the classes necessary to achieve better results according to the performance 

x 

x 
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measure NMCR, which is introduced in section 6.5.8.1. The following results were achieved by a grid 

search where class 5 was given a weighting factor of 100 compared to 1 for all the other classes. 

Table 6-4: Grid search results for the Training data set using a weighted SVM implementation to increase 

performance on class 5 

 c    MCR [%] (6.9) 

TN  4096.0 0.50000 11.1 

6.5.7 Relevance Vector Machines 

The Relevance Vector Machine (RVM) is a Bayesian formulation of the classification problem with 

priors selected to encourage sparse representations. They are structurally similar to SVMs and have 

been shown to provide comparable performance while offering a number of additional benefits. RVM 

predictions are probabilistic, facilitating the estimation of the uncertainty in predictions, and typically 

the number of relevance vectors can be reduced significantly compared to SVMs leading to more 

robust and computationally more efficient predictions. The RVM was introduced by Tipping (2000) as 

part of a general Sparse Bayesian learning framework in which sparsity is achieved by assigning 

parameterized priors to the model weights that encourage sparsity (Tipping 2000). As a result 

predictions for new data are made by estimating the marginal likelihood over the parameters of the 

priors (referred to as hyperparameters). For the classification at hand the RVM is used with a Gaussian 

RBF kernel so that it is directly comparable to the SVM implementation employed. The toolbox used 

for RVM classification is Version 2 of the Sparse Bayesian Modelling toolbox developed by Tipping 

(2009). Due to the fact that RVM training for data sets of high dimensionality has proven to be very 

slow, RVMs are applied on the intrinsic 4D-GerDA features and the reduced 30D-RF features only 

(Silva and Ribeiro 2010). As the toolbox only supports two-class RVMs, a separate RVM is trained 

and optimized for each class using a one-versus-all methodology and the overall prediction is 

determined by selecting the RVM with the highest class probability. The width parameter of the RBF 

kernels,  , used with each RVM is determined by cross-validation on the test data set. The 

optimization is performed using Particle Swarm Optimization (Clerc 2006) for   in the range 
51 10

to 
15 10 . 
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6.5.8 Classification results and analysis 

6.5.8.1 Performance Measures 

To validate and compare the classification performances of different methods the mean 

misclassification rate MCR in percent can be used, 

 
1

1
MCR : 100 1 1( )

VN

i

iV
N 

 
    

 
 x ,…….

1 if ( )
1( ) :

0 otherwise

classifier i i

i

f 
 


x
x  (6.9) 

where :classifierf   is the mapping function. Since in our experiments the number of samples per 

class is not uniformly distributed, the large classes, such as classes 2 and 3, may dominate the mean 

MCR too optimistically. 

Because our goal is to identify each class with equal certainty performance measure (6.9) is not a good 

choice. Given the confusion matrix ,
: ( ) C C

j l
k  K , with ,

1

100
C

j l

l

k


 , 1, ,j C , for each 

classifier, an alternative measure of performance, called the Normalized MCR (NMCR), that gives 

equal weighting to each class is given by: 

 ,

1

1
NMCR : 100

C

j j

j

k
C 

    (6.10) 

We decided to use the latter measure for validation, because it is an unweighted measure of 

performance independent of the number of samples N . 

6.5.8.2 Comparison of classification results 

In order to compare the machine learning methods used in this case, confusion matrices and MCR and 

NMCR performance measures were computed for the test data set. These are presented in Table 6-5 

and Table 6-7, respectively. The NMCR results show that some machine learning methods 

substantially outperform others for this classification problem. Significantly, some of the methods that 

underperform are competitive in terms of their MCR, suggesting that the highly unbalanced data set 

may be a contributing factor. It is clear that GerDA and RF are both capable of achieving very high 

accuracy for all classes despite the heavily unbalanced data set. In particular, the combination of the 

GerDA features and RF classification is very effective and yields one of the best classification results 

with an NMCR of 12.1%. In contrast, the MLP, SVM and RVM classifiers have serious problems 

classifying class 5 correctly due to the small number of samples in this class, whereas their recognition 

of the remaining classes is even better than obtained with GerDA and RF. The MLP results on the PLS 

features, both weighted and unweighted, were comparable but slightly inferior to the MLP results on 

the FSR features, so that only the MLP-FSR results are included as representative of both of them in 

Table 6-5, Table 6-6, Table 6-7. 
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It can be concluded that distinguishing between classes 4 and 5 seems to be very challenging and even 

more difficult because of the uneven distribution of training examples. One approach to correct for the 

unbalanced data set is to apply a weighting to class 5 during the training process.  In the case of the 

SVM implementation, libSVM, this weighting can be introduced directly as a parameter in the 

optimization process. For the MLP and RVM the weighting can be achieved by replicating the 

samples in class 5 and adding them to the dataset. Using this approach the SVM, MLP and RVM 

classifiers were retrained with a 10-fold weighting applied to class 5. The resulting confusion matrices 

are given in Table 6-6 and the corresponding MCR and NCMR values are recorded in Table 6-7. As 

can be seen the NMCR performances of SVM, MLP and RVM classifiers have improved significantly. 

The weighted SVM results yield the best overall performance for the NMCR (12.0%). A comparison 

of the weighted SVM and weighted RVM results on the 4D GerDA data set shows that both methods 

provide very good and comparable results with only 0.8% difference in the MCR and 0.2% in the 

NMCR. However, the number of support vectors used is significantly lower for the RVM, which uses 

60 support vectors instead of 398 for the SVM. 
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Table 6-5: Confusion matrices for different feature extraction and classification methods applied to the UV/vis 

spectrum data set: (a) LDA used as a feature extractor to get a 4D feature space followed by linear classification; (b) 

GerDA used as feature extractor to get a 4D feature space followed by linear classification; (c) RF used for feature 

selection and classification on a 30D feature space; (d) RF used for classification of the 4D GerDA features; (e) MLP 

used for classification on the 30D FSR features; (f) MLP used for classification on the 4D GerDA features; (g) SVM 

used for classification on the 30D RF features; (h) SVM used for direct classification on the raw dataset, (i) RVM used 

for classification on the 4D GerDA features and (j) RVM used for classification on the 30D RF features. 

a) LDA predicted 

 [%] 1 2 3 4 5 

g
iv

en
 

1 68.4 14.0 8.8 8.8 0.0 

2 7.1 64.9 20.2 6.0 1.8 

3 1.9 17.0 71.1 8.7 1.3 

4 1.6 17.0 30.8 42.3 8.2 

5 0.0 5.6 5.6 5.6 83.3 

 

b) GerDA predicted 

 [%] 1 2 3 4 5 

G
iv

en
 

1 98.3 0.0 0.0 0.0 1.8 

2 3.1 91.6 4.2 0.8 0.3 

3 0.0 4.5 88.7 4.0 2.8 

4 1.1 3.3 12.1 68.7 14.8 

5 0.0 0.0 11.1 0.0 88.9 

 

c) RF predicted 

 [%] 1 2 3 4 5 

g
iv

en
 

1 82.1 10.7 3.6 3.6 0.0 

2 3.4 87.4 6.0 2.4 0.8 

3 0.0 7.0 82.1 8.9 1.9 

4 1.1 4.4 12.6 75.8 6.0 

5 0.0 5.6 0.0 5.6 88.9 

 

 

d) RF predicted (GerDA features) 

 [%] 1 2 3 4 5 

g
iv

en
 

1 91.1 7.1 0.0 0.0 1.8 

2 2.4 91.9 4.5 1.0 0.3 

3 0.0 4.5 89.1 4.0 2.3 

4 1.1 3.8 8.8 73.1 13.2 

5 0.0 0.0 5.6 0.0 94.4 

 

e) MLP predicted (FSR features) 

 [%] 1 2 3 4 5 

g
iv

en
 

1 86.0 12.3 1.7 0.0 0.0 

2 5.0 90.6 4.4 0.0 0.0 

3 0.0 7.4 89.8 2.8 0.0 

4 0.0 0.0 39.6 58.8 1.6 

5 0.0 0.0 11.1 66.7 22.2 

 

f) MLP predicted (GerDA features) 

 [%] 1 2 3 4 5 
g

iv
en

 

1 86 12.3 0.0 1.7 0.0 

2 2.6 91.4 5.7 0.3 0.0 

3 0.0 3.8 92.1 4.1 0.0 

4 0.0 3.3 19.8 76.9 0.0 

5 0.0 0.0 16.7 83.3 0.0 

 

g) SVM predicted (RF features) 

 [%] 1 2 3 4 5 

g
iv

en
 

1 94.6 3.6 0.0 1.8 0.0 

2 3.1 90.6 6.0 0.3 0.0 

3 0.0 8.7 88.8 1.5 1.0 

4 3.3 4.9 13.3 76.9 1.6 

5 0.0 5.6 16.7 38.8 38.9 

 

h) SVM predicted 

 [%] 1 2 3 4 5 

g
iv

en
 

1 93 5.3 1.7 0.0 0.0 

2 2.0 92.4 5 0.6 1.8 

3 0.2 6.0 89.4 3.6 0.8 

4 2.7 4.4 6.0 85.2 1.7 

5 0.0 5.5 16.7 33.3 44.5 

 

i) RVM predicted (RVM, GerDA 

features) 

 [%] 1 2 3 4 5 

g
iv

en
 

1 84.2 12.3 0.0 3.5 0 

2 2.1 92.9 3.5 1 0.5 

3 0.0 3.8 90.6 3.7 1.9 

4 1.1 2.2 9.9 83.0 3.8 

5 5.6 0.0 11.1 33.3 50.0 

 

 

j) RVM predicted 
(RVM, RF features) 

 [%] 1 2 3 4 5 

g
iv

en
 

1 89.3 5.3 3.6 1.8 0 

2 3.4 88.5 5.7 2.4 0 

3 0.6 5.8 87.9 5.1 0.6 

4 1.6 3.3 22.0 71.5 1.6 

5 0.0 5.6 11.1 50.0 33.3 
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Table 6-6: Confusion matrices for different feature extraction and classification methods with weighting introduced to 

class 5 during training to compensate for the uneven distribution of samples in the training data: (a) MLP 

classification of the 30D FSR features using a weighted training set; (b) MLP classification of the 4D GerDA features 

using a weighted training set; (c) SVM classification on the 30D RF features using a weighted SVM optimization; (d) 

SVM classification from the raw dataset using a weighted SVM optimization; (e) SVM classification on the 4D GerDA 

features using a weighted training set; and (f) RVM classification on the 4D GerDA features using a weighted training 

set. 

 

a) W-MLP predicted (FSR features) 

 [%] 1 2 3 4 5 

g
iv

en
 

1 64.9 31.6 1.8 1.7 0.0 

2 4.7 89.8 5.2 0.3 0.0 

3 0.2 11.0 84.3 3.4 1.1 

4 0.0 1.7 51.1 41.2 6.0 

5 0.0 0.0 0.0 33.3 66.7 

 

b) W-MLP predicted (GerDA features) 

 [%] 1 2 3 4 5 

g
iv

en
 

1 87.7 10.5 0 1.8 0.0 

2 1.8 91.6 6.3 0.3 0.0 

3 0.0 3.4 90.9 4.7 1.0 

4 0.0 2.7 22 65.9 9.4 

5 0.0 0.0 0.0 22.2 77.8 

 

c) W-SVM predicted 

(weighted SVM, RF features) 

 [%] 1 2 3 4 5 

g
iv

en
 

1 94.6 3.6 0.0 0.0 1.8 

2 3.4 89.8 6 0.5 0.3 

3 0.0 8.1 86.0 4 1.9 

4 2.7 4.4 9.9 72.5 10.4 

5 0.0 0.0 0.0 5.6 94.4 

 

d) W-SVM predicted 

(weighted SVM) 

 [%] 1 2 3 4 5 

g
iv

en
 

1 94.7 3.5 1.8 0.0 0.0 

2 2.4 91.4 5.2 1 0.0 

3 0.0 6.2 89.1 3.2 1.5 

4 2.2 3.3 9.9 75.8 8.8 

5 0.0 5.5 0.0 5.6 88.9 

 

e) W-SVM predicted 

(weighted SVM, 
GerDA features) 

 [%] 1 2 3 4 5 

g
iv

en
 

1 86.0 10.5 0.0 1.8 1.7 

2 2.3 92.9 3.7 0.8 0.3 

3 0.0 4.5 90.6 3.0 1.9 

4 1.6 2.7 11.6 72.0 12.1 

5 0.0 0.0 0.0 5.6 94.4 

 

f) W-RVM predicted 

(weighted RVM, 
GerDA features) 

 [%] 1 2 3 4 5 

g
iv

en
 

1 82.5 12.3 0.0 3.5 1.7 

2 2.9 92.7 3.1 1 0.3 

3 0.6 4.3 89.6 3.6 1.9 

4 1.6 2.7 9.9 75.8 9.9 

5 5.6 0.0 0.0 0.0 94.4 
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Table 6-7: Overall results with NMCR and MCR 

Feature 

Extractor 

Classifier NMCR 

[%] 

MCR 

[%] 

LDA linear 34.0 35.7 

GerDA linear 12.8 13.1 

RF RF 16.7 17.0 

GerDA RF 12.1 12.4 

none SVM 19.1 10.8 

RF SVM 19.1 10.8 

RF RVM 25.9 15.4 

GerDA RVM 19.8 10.8 

FSR MLP 30.5 16.3 

GerDA MLP 30.7 12.4 

none W-SVM 12.0 12.0 

RF W-SVM 12.5 14.3 

GerDA W-SVM 12.8 11.8 

GerDA W-RVM 13.0 11.0 

GerDA W-MLP 17.2 13.3 

FSR W-MLP 30.6 22.1 

6.5.9 Summary of classification results for the novel UV/vis measurement system 

The developed measurement system demonstrates a new approach for on-line estimation of organic 

acid concentrations using UV/vis spectrometric measurements, which offers new possibilities for 

advanced plant operation and control. The close monitoring of anaerobic digestion processes and the 

development of control strategies for optimal organic acid concentrations will substantially increase 

process efficiency and stability. However, results show that this online-measurement is far from 

trivial, such that advanced pattern recognition methods are needed to achieve good results. A 

comparison of the different feature extraction, selection and classification methods shows that the 

unbalanced data set available for training is a major problem, when it comes to achieving low NMCR 

results with some classifiers. However, application of appropriate class weightings during the training 

process can effectively counter the effect of the very small set of samples available for class 5. 

The optimum results were obtained using Support Vector Machines (SVM) and a novel method named 

Generalized Discriminant Analysis (GerDA) in combination with Random Forest (RF) classification, 

both of which yielded an NMCR of 12%. This is sufficiently accurate to be of value for the online-

measurement of organic acids.  

The relatively poor MLP results suggest that the complexity of the classification space cannot be 

captured adequately with a single hidden layer network. Further tests with multi-hidden layer network 

designs may lead to better results and are the subject of future work. 
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Of the methods considered the combination of RF and GerDA yields the best error rate for the 

unweighted data set (12.1%) and further has many desirable properties. The GerDA-framework is self-

contained and easy to use with learning performed in a partly unsupervised and partly supervised 

manner. It can be used as a pre-processing dimension reduction step for different classification 

methods. Furthermore, the extracted features are very low-dimensional and particularly suitable for 

simple linear classification (Stuhlsatz et al. 2010b) and data visualization. Consequently classification 

can be performed very quickly and the method is naturally applicable to multi-class problems. With 

regards to the weighted data set, SVM achieves the best overall results with an NMCR of 12% without 

requiring any feature selection or extraction methods. The comparison of the weighted SVM and 

weighted RVM on the GerDA features reveals that both methods perform equally well on the test data 

set, but that RVMs are more robust and provide more efficient predictive performance due to the 

significantly lower number of support vectors. This makes RVM well suited for applications where 

fast classification is the highest priority. As the dynamics of AD processes are slow (on the order of 

hours and days), the frequency of measurement of organic acids does not need to be high. 

Measurement intervals of 30-60 minutes are sufficient. As such the time taken to perform VFA 

classification is not an issue for this application. 

As already noted the non-uniform distribution of class sizes biases the training of the pattern 

recognition methods in favor of the larger class sizes. To detect this effect it is important to use an 

unbiased performance measure such as the NMCR for validation and also for the determination and 

optimization of classifier hyperparameters. 

To address the problems posed by having a biased dataset, other possibilities like the sampling with 

replacement methods exist and can be considered for the generation of balanced datasets for training. 

Furthermore, the introduction of additional meta-classes, which are constructed by the unification of 

different classes, offers another solution. Since the organic acid concentration is a continuous quantity, 

this may facilitate more effective time series analysis. 

Summing up, the results obtained show that a variety of methods can successfully deliver sufficient 

measurement performance to be of practical value, with measurement errors between 12 and 20% 

(NMCR) for the best methods. In particular GerDA, RVM and SVM and their ability to cope with the 

highly biased dataset as well as the high dimensionality ( 176p  ), have proven to be perfectly suited 

to this kind of tasks. Thus, these methods are highly recommended to be used in the future for the 

analysis of UV/vis spectral data as well as for NIR and MIR spectral data. 

6.6 Conclusion on the instrumentation of biogas plants 

This chapter has demonstrated that research on instrumentation of biogas plants is multifaceted with 

many significant advances being made, but that a substantial gap exists between the current state of 

research and practice as presented in the literature review. Thus, the demand for industry-driven 
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research is huge and will continue to increase due to the rapid increase in the number of biogas plants 

across Europe. Sections 6.2 and 6.2.3 have highlighted that the need for online measurement systems 

in particular, is great, because of the lack of robust and affordable online monitoring systems. These 

are needed to detect critical process conditions before the AD process collapses and to develop 

efficient optimization and control strategies for biogas plants. The use of pH, ORP and TS probes can 

be considered state of the art for ABPs as the practical field trials described in section 6.3 show that 

they are well suited for ABPs. In general, good agreement between laboratory and online measurement 

values could be achieved for these properties. Unfortunately, standard pH and ORP probes from 

manufacturers such as E+H and Hach-Lange cannot be used with biogas plants which have high TS 

concentration in their digesters, because the sensitive electrodes are quickly damaged. 

Due to the fact, that the measurement of VFA concentration is of great importance for biogas plant 

operation, an online measurement system based on UV/vis spectroscopy was successfully developed 

and tested at the industrial biogas plant Industrial I. The critical step in developing a valid system for 

analysis of the spectral absorption patterns was the search for suitable machine learning techniques to 

detect different levels of VFA concentration. Several state-of-the-art machine learning methods were 

tested and validated and SVM and GerDA were recommended as particularly well suited for the 

analysis of spectral data. This investigation of machine learning methods provides a good overview of 

existing state-of-the-art techniques and can serve as a useful guideline for their application to the 

analysis of high dimensional spectral data sets. 

All in all, it can be said, that suitable online measurement systems for practical application at ABPs 

and at IBPs exist and provide good measurement results, which can not only be used for online 

process monitoring but also for online process control of AD processes in general. The contributions 

of this chapter show that the existing gap between research and practice can be successfully crossed by 

industry-driven research and extensive practical field tests. 
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7 Discussion and ConclusionEQUATION CHAPTER 7 SECTION 1 

During the last two decades, the production of renewable energy by anaerobic digestion in biogas 

plants has become increasingly popular due to its applicability to a great variety of organic material 

from energy crops and animal waste to the organic fraction of MSW, and to the relative simplicity of 

AD plant designs. Thus, a whole new biogas market emerged in Europe, which is strongly supported 

by European and national funding and remuneration schemes. In particular, ABPs, which produce 

biogas from energy crops and animal waste, are strongly supported and form the majority of biogas 

plants in Europe. 

Nevertheless, stable and efficient ABP operation and control can be challenging, due to the high 

complexity of the biochemical AD process and varying substrate quality. In addition, governmental 

support for ABPs will decrease in the long run and the substrate market will become highly 

competitive. Thus, plant efficiency becomes the major priority in order to assure sustainable plant 

operation going forward (BMU 2011). In order to tap the full potential of biogas plants while 

maintaining process stability new innovative developments in the area of biogas plant optimization, 

control and instrumentation are needed.  

Thus, the principal aim of the research presented in this thesis was to develop a suite of tools and 

methodologies comprising developments in the areas of simulation, instrumentation and control in 

order to cover all aspects, which are relevant for ABP operation. This suite of tools uses dynamic 

simulation models and computational intelligence (CI) methods for substrate inflow optimization, as 

well as a novel UV/vis spectroscopic online measurement system for VFA using powerful machine 

learning techniques. Although, these tools were not combined together to be validated in full-scale 

operation to quantify the overall improvement, they provide a valuable toolset for process and 

operational optimization of ABPs. 

As a result a simulation based optimization methodology for the optimization of ABP substrate 

inflows was developed and successfully applied to the full-scale Sunderhook ABP. Results show that 

significant improvement of plant efficiency can be achieved. The best optimization result for a 

substrate inflow consisting of maize and bull manure, showed an increase in yearly profit of 

219,000 €, which makes the developed substrate inflow optimization strategy very attractive to end 

users. 

In order to achieve these results, a dynamic simulation model of the Sunderhook ABP was 

successfully developed based on available operational data. As model design and substrate 

characterization of AD is difficult and normally requires a substantial amount of laboratory analysis, 

an open source Matlab
®
 toolbox for modeling and simulation of ABPs was developed to facilitate 

model design and simulation by centralized configuration of the complete ABP using several GUIs for 
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substrate feed characterization and plant design. Thus, the use of dynamic simulation models for 

optimization and control purposes becomes manageable as no excessive expert knowledge is required. 

Furthermore, two novel optimization methods for the optimization of complex nonlinear and multi-

dimensional fitness functions were developed and successfully tested on four test problems and on the 

Sunderhook ABP model. As global optimization algorithms (such as genetic algorithms or particle 

swarm optimization) are computationally expensive for the optimization of the substrate inflow of 

biogas plants, optimization time is the main critical parameter. In this work an alternative method for 

the optimisation of parameters based on Kriging surrogate models of the fitness function, which are 

sequentially updated during an optimization run, was proposed. By using these methods the 

computation time required was substantially reduced. Speed-ups of a factor of 50 or greater were 

observed in the experiments conducted in chapter 4. 

The achievements developed in the area of simulation and optimization show that global optimization 

of the substrate inflow of ABPs based on dynamic simulation models, or complex optimization 

problems in general, can be realized by application of the right toolset. 

To address the lack of robust and reliable online instrumentation for process monitoring and control of 

ABPs, state of the art online measurement systems for pH, ORP and TS were tested and evaluated at 

an ABP and an IBP in order to assess their long term stability. Furthermore, measurement values from 

the online measurement systems were compared to operational data from the plant to evaluate their 

ability to recognize process disturbances. Results showed that pH and TS probes provide valuable 

information with regard to process stability, whereas ORP probes showed no correlation to the 

operational plant data. Moreover, in the market available pH and ORP probes were not suitable for the 

application in dry digestion as the probes were seriously damaged by the high TS content in the 

digester. 

As VFA concentration is one of the most important process parameters, its online measurement 

provides real-time information about process stability. What makes the online measurement of VFA 

concentration difficult is the high TS content of the substrate. Therefore, a novel UV/vis spectroscopic 

online measurement system for VFA concentration in digesters was successfully developed. The 

practical testing of the indirect measurement using a UV/vis spectroscopic probe showed that a 

measurement accuracy of 88% could be achieved. 

These results were achieved using powerful machine learning methods for spectral analysis. The 

analysis of data from spectroscopic probes is needed for calibration but is a challenge due to the large 

number of wavelengths and the high nonlinearity of absorption. To allow for a fast and thorough 

analysis of spectral data sets, analysis of the spectral data was performed using six powerful machine 

learning methods, which are well-suited to this kind of problem. Results show that by applying 
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dimension reduction and multiple transformations to the data, relevant information can be efficiently 

extracted, enabling good calibration results to be achieved. The most effective machine learning 

techniques were a combination of GerDA and RF and SVM with an NMCR of 12.4% and 12% 

respectively. In particular, GerDA managed to substantially reduce the 176 dimensional data to four 

dimensions allowing very fast classification using RF. Classification with SVM was slightly slower 

due to the large number of support vectors required for classification (398). Thus, GerDA in 

combination with RF and SVM, can be recommended for the analysis of spectral data. Furthermore, 

the obtained results can be used as a guideline for further developments in the area of spectroscopic 

online measurements. 

All in all, the developed methodologies and optimization strategies as well as the measurement results 

show that ABP operation can be substantially optimized and improved using dynamic simulation 

models, CI based optimization strategies, newly developed spectroscopic online measurement systems 

and powerful machine learning techniques. Thus, sustainable and efficient ABP operation is possible. 

7.1 Topics for future research 

The methodologies and developments presented in this thesis offer new possibilities for ABP 

optimization and control. 

One of the obvious next steps is the practical implementation of the complete toolset from online 

measurement system for VFA concentration to substrate feed optimization using dynamic simulation 

models and CI methods at several full-scale ABP and IBP in order to verify the optimization potential. 

Therefore, the UV/vis measurement system needs to be further developed into a commercial 

prototype. In particular, the dilution system needs to be adapted and fully automated to allow for easy 

and thus fast installation and robust operation. Furthermore, the simulation model needs to be 

calibrated based on process data from these plants, which requires algorithms to automate the 

calibration procedure and allow for a continuous recalibration based on newly available process data. 

The optimization algorithm itself can be implemented on an Industrial PC and connected to the 

SCADA system of the plants using the OPC protocol. Thus, optimized substrate feed compositions 

can be transmitted to a local PLC. 

The VFA online measurement system could also be further developed into an early warning system 

for biogas plants similar to a “traffic light” system. Using machine learning techniques, the current 

VFA measurement could be compared against historical VFA data and integrated with information 

derived from other available process variables to provide an assessment of the current operational state 

of a biogas plant. This could then be used to give visual feedback to the operator on the state of his 

plant: e.g. “green” – everything is in order, “yellow” – light disturbances, “red” – strong inhibition, 

operational problems are immanent. 
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In addition, the idea of substrate inflow optimization based on simulation models can be exploited 

further to develop Nonlinear Model Predictive Controllers (NMPC) for continuous adaptation of the 

substrate inflow according to the current state of the AD process. Through the development of a state 

estimator, which predicts the state of the AD process based on available online measurements using a 

fully calibrated simulation model of an ABP, such a control system could efficiently compensate 

process disturbances. A first attempt at implementing an NMPC based on the results of this thesis has 

already made by Gaida et al. (2012) showing promising results. 

Furthermore, novel online measurement systems for biogas plants should be developed in order to 

allow the reliable online monitoring of process parameters that are crucial for process stability such as 

VFA, VOA/TIC, TA and concentration of carbohydrates, proteins and lipids. Recent developments in 

the area of middle infrared spectroscopic diamond-tipped probes show promising results. Due to 

newly developed polycrystalline fibers (PIR) for signal transmission, signal strength and reflection 

intensity have been substantially improved. First laboratory trials with anaerobic sludge from an IBG 

show that VFA concentration can be measured (Janz et al. 2012). 

These are just some examples for future research in the area of optimization, control and 

instrumentation of biogas plants that show the great potential in this broad field of research. 
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