Journal of New Music Research, 2013

Vol. 42, No. 1, 97110, http://dx.doi.org/10.1080/09298215.2013.778890

% Routledge

Taylor & Francis Groug

The Development of Computer Music Programming Systems

Victor Lazzarini

University of Ireland, Ireland

Abstract

This article traces the history and evolution of Music Pro-
gramming, from the early off-line synthesis programs of the
MUSIC N family to modern realtime interactive systems. It
explores the main design characteristics of these systems and
their impact on Computer Music. In chronological fashion, the
article will examine, with code examples, the development of
the early systems into the most common modern languages
currently in use. In particular, we will focus on Csound, high-
lighting its main internal aspects and its applications. The text
will also explore the various paradigms that have oriented
the design and use of music programming systems. "This dis-
cussion is completed by a consideration of computer music
eco-systems and their pervasiveness in today’s practice.

1. Introduction

The evolution of Computer Music as an artistic and research
discipline has, on one hand, instigated, and on the other, ben-
efitted from, a series of technological developments. One of
the most enduring of these is a class of software collectively
known as Music Programming Systems. As these packages
were shaped and developed by composers and researchers,
they enabled and supported a host of discoveries and inno-
vations, some of which were later appropriated by the music
industry as essential components in the ubiquitous presence
of digital audio observed in production and performance.

Computer Music Programming systems, as evoked by the
name, are software packages that enable the use of a digital
computer to create music programmatically. They provide an
environment for defining the sequencing of events that make
up a musical performance, both in static and dynamic ways,
with great precision. In addition, and quite importantly, the
audio signal processing involved in the syntheses or transfor-
mations is also programmable to a very [ine degree of detail
and accuracy.

Some systems only partially offer these capabilities. On
one hand, we have packages that allow the implementation of

event generation and scheduling algorithms, without offering
sound synthesis means. On the other, audio libraries, signal
processing specilication languages and programmable soft-
ware synthesizers also only partially offer the elements that
make up a music programming system. Itis the case, however,
that users can benefit from the integration of a variety of tools
into a multi-language environment for computer music, as
discussed later in this article.

2. Early systems

The first direct digital synthesis program by Max Mathews, in

1957, MUSIC I, and its descendants (Mathews, 1963) paved
the path to modern music programming systems. Their devel-
opment was characterized by an increased generality and flex-
ibility, from simple synthesis programs to fully-fledged pro-
gramming languages. Some fundamental technologies were
proposed along the way: the table-lookup oscillator, which
is the single most common component in digital synthesizers,
was introduced by Mathews in MUSIC I1. The principles of the
unit generator, a synthesis module and a compiler for computer
instruments, which are still essential to modern systems, were
introduced in MUSIC 111 (Mathews, 1961; Smith, 1991).
The original idea of the unit generator is one that has been
applied almost universally in music systems. It figures not only
in software synthesis programs, but also in hardware instru-
ments, such as the classic analogue modular systems (which
were in fact preceded by MUSIC III), and in the way most
synthesizers are structured. Together with this, the acoustic
compiler was also a breakthrough invention, in that it enabled
an unlimited number of sound synthesis structures to be cre-
ated in the computer. In that sense, the computer became not
only a musical instrument, but a musical instrument generator.

The principle of the compiler exists today in different forms

in all modern music programming systems.

We observe in the software that followed MUSIC 111 the
emergence of a set of design principles which are referred to
as the MUSIC N paradigm, which we will examine in more
detail later.

Correspondence: Victor Lazzarini, Music Department, National University of Ireland, Maynooth, Co. Kildare, Ireland.

E-mail: victor.lazzarini @ nuim.ie

© 2013 Taylor & Francis

98 Victor Lazzarini

2.1 MUSIC 1V

It is accepted that the first general model of a music pro-
gramming system was provided by MUSIC 1V, which ran on
the IBM7094 computer, although some of the functionality
seen in modern computer music synthesis systems had already
been present in MUSIC IIT (Park, 2009). MUSIC TV was a
complex software package, something that can be glimpsed
from its programmer’s manual (Mathews & Miller, 1964) and
Tenney's (1963) tutorial. The software comprised a number
of separate programs that were run in three distinct phases
or passes, producing at the very end the samples of a digital
audio stream stored in computer tape or disk file. Playback of
such files was not a part of MUSIC V.

The first pass took control data in the form of a numeric
computer score and associated function-table generation in-
structions, in an unordered form and stored in temporary tape
files. This is effectively a card-reading stage, with little extra
functionality. However, at this point, FORTRAN-language
subroutines could be applied to modify the score data before
this is saved. Memory for 800 events was made available by
the system. The first pass data was then input to the second
pass, where the score was sorted in time order and any de-
fined tempo transformations applied, producing another set of
temporary files. Finally, a synthesis program was loaded for
the third pass, taking the score from the previous stage, and
generating the audio samples to be stored in the output file for
subsequent playback via a digital-to-analogue converter.

The pass 3 program was created by the MUSIC IV acoustic
compiler, written in BE FAP (Bell Fortran Assembly Program,
the Bell Telephone Labs IBM7094 assembler). Effectively a
block-diagram language compiler, this was used to connect the
different unit generators defined in the system and available to
the programmer to create an orchesira, the synthesis program,
made up of instruments, the separate code blocks. Some basic
conventions governed the MUSIC 1V orchestra language, such
as the modes of connections allowed, determined by each
unit generator and how they were organized syntactically. An
incipient type system was present, defining U (unit generator
outputs), C (conversion function outputs), P (note parameters),
F (function tables) and K (system constants) data types. Dur-
ing performance, the score would be allowed to run a certain
number of parallel instances of each instrument, which was
fixed in the orchestra definition. Each score event was required
to be scheduled for a specific free instrument mstance.

The MUSIC 1V compiler allowed for [ifteen unit genera-
tors: three types of oscillators; three addition operators, for
two, three and four inputs; a multiplication operator; a table
lookup operator; a resonance unit based on ring modulation;
a second-order band-pass filter (resonator); two band-limiting
noise generators, of sample-hold and interpolating types; lin-
ear and table-lookup envelope generators; and an output unit
(Table 1).

An example from the MUSIC IV manual is shown in
Table 2, where we can see the details of the orchestra language.
Unit generator signals are referenced by U names (relating in

Table 1. MUSIC IV Unit generators.

ouT output unit

OSCIL standard table-lookup oscillator

COSCIL table-lookup oscillator with no phase reset
VOSCIL table-lookup oscillator with variable table number
ADD2 add two inputs

ADD3 add three inputs

ADD4 add four inputs

RANDI interpolating bandlimited noise generator
RANDH sample-and-hold bandlimited noise generator
MULT multiply two inputs

10 VEMULT table-lookup unit

000 00 =] O Lh fa ld b —

12 RESON ring-modulation based resonant wave generator
13 FILTER second-order all-pole bandpass filter

14 LINEN linear envelope generator (trapezoidal)

15 EXPEN single-scan table-lookup envelope

Table 2. MUSIC 1V instrument example (Mathews & Miller, 1964).

WAIL INSTR
OSCIL P4, C3, Fl
OSCIL P6, P7, Fl
RANDI P8, PO
ADD3 Ps, U2, U3
OSCIL Ul, U4, F3
ouT Us
END

WAIL COUNT 10
FINE

this case to the order in which they appear), whereas score
parameters and constants are denoted by P and C. It is a
simple instrument, whose sound is generated by an oscillator
(US) to which an amplitude envelope (U1) and frequency
modulation are applied. The latter is a combination of periodic
(U2) and random (U3) vibrato signals, mixed together with
the fundamental frequency (U4).

It can be argued that MUSIC IV was the first fully-fledged
computer music programming environment, as the system
allowed a good deal of programmability, which is specially
true in terms of synthesis program design. In particular, the
system structure models closely the principles of general-
purpose programming, in the use of multiple passes for spe-
cific data processing tasks. Following its beginnings at Bell
Labs, the package was brought over and recreated at Princeton
University as MUSIC IVB (Randall, 1965) and then as MU-
SIC 4BF (Howe, 1996; Roberts, 1965), written in FORTRAN
(and using that language for the programming of instrument
definitions).

2.2 MUSIC 1V variants

MUSIC 1V lives on as MUSIC 4C (M4C), which is a C-
language port, still available on modern UNIX-derived op-
erating systems. M4C preserves the three passes of earlier
versions, albeit with some modifications (Beauchamp, 1996).

The Development of Computer Music Programming Systems 99

Instruments are written in C and compiled in an orchestra as
before, which is now built into a single program that does all
the processing stages. Pass 1 initializes the output soundfile,
reads the score file, set parameters and allocates instances of
instruments. Pass 2, as before, does the time sorting of the
score. Pass 3 runs the sorted score through a scheduler that
instantiates instruments at the correct times.

In M4C, similarly to MUSIC 1V, distinct programs will be
created for each orchestra, with maximum available instances
predefined for each instrument. Such orchestras can be writ-
ten with instrument template files that combine some basic
commands and C code blocks. An example of a very simple
instrument is shown in Listing 1, a simple sinewave oscillator
whose amplitude is driven by an envelope. The template fields
specily what data 1s expected from the score (.scorecard),
and the instrument code is divided into instantiation (.start),
initialization (.note) and performance (.sample) sections, for
which C code fragments are supplied.

Listing 1. M4C instrument example.
prefix
OSCINS
filename
0SCins c

scorecard
pitch 4 0C 12 00 octpitch & 00
amp 0 32000 amplitude 2000C
att 0 1 sec (5
dec 0 1 sec (5]
susl 01 level 7|
sus?2 C 1 level 1)
rel 0 5 sec 2
l1frac 0 1 balance 1!

instrument
float freg, ampi, phase, Ilfraci;
ADeSE astate,

globals
#fdefine FINALAMF (001

start
phase = 0 ;
astate out = 0

note
fc = sipitch pitch);
ampi = amp;
adesr_set att, dec, DUR, susl, sus2 rel,
FINALAMP, &astate, ;
lfraci = lfrac;

sample
mono oscili adesr ampi. &astatel' ., fe, Sine.
&phase) |

From these template files, the INSDES translator gene-
rates C code that can be used to build a M4C program which

includes the orchestra and the three passes outlined above.
For this, the user will compile the C code and link to the
other object files containing the code for the three passes
into a complete command-line application. Each one of these
separate compiled M4C programs will feature a given set of
instruments available to the composer. ‘lo synthesize audio,
this program is given a score file and an output soundfile. For
orchestra design, M4C will require the C language toolchain to
be present (preprocessor, compiler, linker), but as the system
was designed for UNIX, this is taken for granted. In addition to
the INSDES compiler, the package also includes an orches-
tra processor (NOTEPRO), which translates a textual score
containing traditional staff notation music attributes (12-tone
equal temperament pitches, metric rhythms, etc.) into a M4C
numerical score. This system is still maintained for modern
UNIX-like operating systems.

While strictly not a MUSIC IV variant, but nevertheless,
a descendant, CMix (Pope, 1993) also employs similar prin-
ciples to M4C. Here C-written instruments are compiled and
linked into a main program that can be controlled by a score
written in a scripting language, Minc. A main difference is that
CMix does not employ an intermediary instrument specifica-
tion as in M4C, but expects its orchestras to be written directly
in C. For this, it provides a basic library of commonly-used
unit generator functions.

MUSIC 360 was written at Princeton University by Vercoe
(1973) for the large IBM 360 computer (Lefford, 1999). It was
directly derived from MUSIC IVB and MUSIC 1VBE, which
were also developed at Princeton, and thus equivalent to those
systems as a MUSIC IV variant. This program was taken to
other IBM 360 and 370 installations, including for instance the
one at MIT. However, as it was tied in to those large computer
installations, it did not suit smaller institutions, and was not
widely available.

The structure of MUSIC 360 is very similar to its predeces-
sors, utilizing the basic three passes discussed above. Unlike
the original MUSIC 1V program, all passes are combined into
a single ‘load module’ (the program) after the orchestra is
compiled and linked to the library subroutines. Pass | reads the
score and implements the carry preprocessing (where values
can be ‘carried over’ from one note statement to another).
Pass 11 sorts the score in its correct temporal order and applies
any tempo warping defined in it. Pass III calls the orchestra,
initializing its instruments and synthesizing the sound.

MUSIC 360 allowed any number of concomitant instances
of instruments to be performed at the same time. An important
innovation seen in this system is the clear definition of the
initialization-time and performance-time stages, with separate
programming routines set for each, The importance of this
feature is evident in the separation of ‘initialization’ and ‘per-
formance’ descriptions of each unit generator in the reference
manual. Many of the modern systems will employ similar
principles in their design. The orchestra syntax is very close
to assembly language, based on operator codes (opcodes) rep-
resenting the unit generators, something that will be inherited

by MUSIC 11 and Csound.

100 Victor Lazzarini

Another advanced aspect of the language was that arith-
metic expressions of up to 12 terms could be employed in the
code, with the basic set of operations augmented by a number
of conversion functions. Data types included ‘alpha’-types,
which could hold references to unit generator results (both
at I-time and P-time), K-types, used to hold values from a
KDATA statement (that was used to hold program constants),
P-types for note list p-fields and U-types, which could be
used to reference unit generator results (as an alternative to
‘alpha’ variables). There was scoping control, as symbols
could be global orlocal, which included a facility for accessing
variables that were local to a given instrument. The language
also supported conditional control of flow, another advanced
feature when compared to equivalent systems. Some means of
extendability were provided by opcodes that were able to call
external FORTRAN IV subroutines at I- or P-time. In addition,
to facilitate programming a macro substitution mechanism
was provided. MUSIC 360 was quite a formidable system,
well ahead of its competitors, including MUSIC V.

An example of a simple orchestra program featuring an
instrument based on an oscillator and trapezoidal envelope
combination is shown in Listing 2. In this example, we can
observe the use of U-types, which refer to the output of unit
generators previously defined in the code. In this case Ul is a
reference to the unit one line above the current. The PSAVE
statement 1s used to indicate which p-fields from score cards
will be required in this instrument. The ISIPCH converter is
used to convert ‘octave.pitch_class’ notation into a suitable
sampling increment, operating at initialization time only. OS-
CIL and LINEN are the truncating oscillator and trapezoidal
envelope, respectively, used to generate the audio, the oscil-
lator depending on function Table 1, which is defined as a
score statement, Readers familiar with the Csound language
will probably recognize the orchestra syntax, as much of it
was the basis of MUSIC 11, and consequently Csound.

Listing 2. MUSIC 360 instrument example (Vercoe, 1973).

PRINT NOGEN

ORCH

DECLARE SR=1C000
S1IMPL, INSTR 1

PSAVE 3 5]

151PCH P5

OSCIL P4 U1,1

LINEN U1, 03 P3, 06

ouT U1

ENDIN

ENDORCH

END

At the MI'T Experimental Music Studio, Vercoe developed
MUSIC 11 (Vercoe, 1981), a version of the MUSIC 360 sys-
tem for the smaller PDP-11 minicomputer (Vercoe, 1983).
As the PDP 11 popularity grew in the 1970s, and with the
introduction of the UNIX operating system, the program was
used al various institutions both in the USA and elsewhere for

over lwo decades. As we would expect, not only many of the
innovative features of MUSIC 360 were carried over to the
new system, but also important concepts were pioneered here.

One of the main design aspects first introduced in MUSIC
11 was the concept of control (k-) and audio (a-) computation
rates. In this mechanism, for each control sample, a vector
of ksmps audio samples was produced. This made the sys-
tem possibly the most computationally efficient software for
audio synthesis of its time. Together with the i-time concept,
this established the main operation principle of the orchestra
language, dividing instrument action times into initialization
and performance at two rates, which was realized in the three
basic data types: i,k (scalars) and a (vectors). Global, local
and temporary variables were available (marked as g, | or t).
MUSIC 11 also featured dynamic memory management, as
allocated instrument spaces, when free, could be taken over
by new instances.

Listing 3 shows a version of the MUSIC 360 example, now
in MUSIC 11 form. Although there are many similarities,
some fundamental differences have been introduced in the
language. The header declaration now include the definition
of a control rate (kr) and the audio vector size (ksmps), as well
as the number of output channels to be used (nchnls). The type
system has been simplified, we observe the presence of the k-
and a-type variables, which now have been defined to hold
signals (and not just references to unit generator outputs) of
control and audio forms, respectively. Also, taking advantage
of the introduction of the control rate concept, and vector-
based computation, the oscillator and envelope have had their
positions exchanged in the synthesis graph: the envelope now
is a control signal generator, rather than an amplitude proces-
sor, so the instrument can be run more efficiently.

Listing 3. MUSIC 11 instrument example.

sr = 100CQ
kr = 100

ksmps = 100
nchnls = 1

instr 1

k1 linen pd, 03 p3 06

al oscil k1, cpspch pb&!, 1
out al
endin

With the introduction of the concepts of control rate and
block-based (as opposed to sample-by-sample) processing of
audio, two issues arise. Firstly, control signals are lable to
produce audio artifacts such as amplitude envelope zipper
noise, which are caused by the staircase nature of these sig-
nals, introducing discontinuities in the audio output waveform
(and a form of aliasing that results in wideband noise). Sec-
ondly, score events are quantized at the control rate, and take
place only at sample block (ksmp) boundaries, which can
affect the timing precision in some situations. In fact, this
issue has been noted as particularly problematic in more recent

The Development of Computer Music Programming Systems 101

realtime-oriented software such as Pure Data (Puckette, 2007),
which employs the principle of block-based processing. To
mitigate these effects, a balance between efficiency and preci-
sion needs to be reached, where the block size 1s small enough
to prevent poor results, but high enough to be efficient.

2.3 MUSICV

The culmination of Mathews’ efforts at Bell Labs was MUSIC
V (Mathews, Miller, Moore & Pierce, 1969), a new version
of the system, mostly written in FORTRAN, which made 1t
portable to other computer installations (in fact, it still can be
run on modern operating systems). It still featured a three-pass
process, however, the operation steps were more integrated
than in MUSIC IV. The orchestra compilation step was now
combined with pass 3, without the need to generate a separate
synthesis program. FORTRAN conversion subroutines were
also integral to the program code. Also the whole MUSIC V
code was written in a single score, which contained both the
note lists and the instruments. Unlike MUSIC 1V, there was no
maximum instance count for each instrument. Unit generators
could be written either in FORTRAN or as separate machine-
language subroutines.

MUSIC V, as its predecessor, provides simple orchestra
data types: P (score parameters), V (scalar values), B (audio
signal buffers) and F (function tables). Audio is generated
in a series of sample blocks (or vectors), which by default
held 512 samples. Vector-based processing became standard
in most modern computer music systems (albeit with some
notable options). Although no longer maintained, MUSIC V
has been ported to modern systems using the gfortran com-
piler (Boulanger & Lazzarini, 2010). In Listing 4, we can
observe a simple MUSIC V score, implementing the well-
known Risset—Shepard tones (Risset, 1969a). The istrument
employs three interpolating oscillators (10S), generating an
amplitude envelope (from a bell function), a frequency en-
velope (a decaying exponential) and a sine wave controlled
by these two signals (in B3 and B4 respectively). Ien parallel
oscillators are started, each with a 10% phase offset relative to
the preceding one (tables are 512 samples long). Each NOT in
the score defines an oscillator instance, with the first three pa-
rameters (P2, P3, P4) defined as start time (0), instrument (1),
duration (14). Oscillator frequencies are defined by sampling
increments (in P6 and P7). The top frequency of the decaying
exponential is P60 f; /512, where [is the sampling rate. The
amplitude and frequency envelopes have a cycle that lasts for
S12/(f0PT).

Listing 4. MUSIC V, Risset-Shepard tones, from Risset’s (1969a)
catalogue.

COMMENT" -- RISSET CATALOGUE EXAMPLE 513
-— INS 0 1,

I0S P5 P7 B3 F2 P8 |
I0S P6 P7 B4 F3 P9 ;

I0S B3 B4 B5 F1 P25

OQuT B5 B1 ;

END

GEN 0 2 1 512 1 1

GEN 0 7 2 C |

GEN 0 7 3 -10;

NOT" 0 1 14 100 50 (€€01 € O ;

NOY' 0 1 14 100 50 0001 51 51 1 |
NOT 0 1 14 100 5C €001 102 2 1C2 2 ;
NOT @ -1 14 130 50¢ 0003 153 3 153.3 j
NOT 0 1 14 100 50 CO001 204 4 2C4 4 ;
NOT 0 1 14 100 50 €001 255 5 255 5
NOT 0 1 14 100 50 (€001 306 & 3C€ 6 ;
NOT 0 1 14 100 50 (€001 357 7 357 7 ;
NOT 0 1 14 100 50 (001 408 8 4CE& 8 ;
NOT 0 1 14 100 50 (€001 459 9 459 9 ;
TER 16 ;

Pass | of MUSIC V scans the score (which includes both
the instrument definitions and the note list proper) and pro-
duces a completely numeric representation of it. The second
pass sorts the note list in time order and applies the CONVT
routine, which can be used to convert frequencies to sampling
increments ctc. Finally, pass Il schedules the events, calls the
unit generators and writes the output.

Moore’s (1990) Cmusic, a component of the CARL com-
puter music package (Loy, 2002), was largely modelled on
MUSIC V, inheriting much of its orchestra syntax (for in-
stance, its data types, unit generator names and parameter
arrangement, among other things). It also extended the possi-
bilities by offering a C preprocessor, with macro substitutions
and include statements, as well as some conversion operators
(like hz and db, to covert frequencies into sampling incre-
ments and decibels into linear amplitudes, respectively, as
well as letters to identify equal-tempered pitches). Moreover,
its score offered the possibility of direct expression evalu-
ation in parameter ficlds, which was not present in any of
the earlier systems. Cmusic was designed to work with other
CARL programs in the context of a UNIX environment and
a medium-size multi-user computer hardware environment
(e.g. DEC VAX systems), making heavy use of interprocess
communication such as pipes and 10 redirection. Audio data
synthesized by the software could be used directly as input
to other processes, such as a reverb effect or a plotting pro-
gram, or streamed to output. This enabled the augmentation
of the music programming system with UNIX shell scripting.
Cmusic is no longer being maintained, although a version of
the system has been ported to modern UNIX-like operating
systems (Boulanger & Lazzarini, 2010).

Listing 5 shows an equivalent Cmusic instrument to Risset’s
catalogue example 513. This code is based on the discussion
of Shepard tones in Moore (1990), and is somewhat more
long winded, due to the use of a separate control instrument
and the use of a trans unit generator to control the downward
frequency glide. As it does not allow the glissando to wrap-
around at the end of its range, each component needs to be

102 Victor Lazzarini

duplicated in the score, splitting the glissando into two stages.
Parameters of 'note’ statements are similar to MUSIC V. The
example, however, demonstrates that, while a number of sim-
tlarities exist between MUSIC V and Cmusic, in certain cases,
scores do not translate in a strictly line-by-line fashion.

Listing 5. Cmusic, Risset-Shepard tones.
#include <carl/cmusic h>

ins 0 control ; | amplitude b5, and
frequency b6, control]
iosc b5 p€é p5s £3 4
trans b6 d d d 0,p7 p9 1,p8
end

ins 0 component , { single component of
Risset-Shepard tone]

mult b2 b6 pS |

loockup b4 £2 b2 A -5, A 5] ;

mult b3 b5 bd ;

icsc bl b3 b2 f1 4 ;

out bl ;
end

SINE f1;
SHEPENV f2, 10 2,
GEN4 £3, 9.0 -1 01,10 89,1 -11,0 ;

note 0 control 100 pdsec 1/10 A 5, A -5;
In p8/p7, |

note 0 component 1C0 1 ; { this is a single
glissando from A 5 to A -5]

note 0 component 9C 1/2 ; { this is one
octave below]

note 0 component 8C 1/4 ;, { another

octave below that one]

note 0 component 7C 1/8 ; | etc]

note 0 component 6C 1/16 ;

note 0 component 5C 1/32 ;

note 0 component 4C 1/64 ;

note 0 component 3C 1/128

note 0 component 2C 1/25€

note 0 component 1C 1/512 ., { this is the
lowest component, only 10 secs long |
note 10 component SC 2 ; { it then wraps
around above the first component)

note 20 component 80 4 ;| | etc]

note 30 component 70 § ;
nete 40 component €0 1€
note 50 component 50 32
note €0 component 40 &4 ;
note 70 component 30 128 ;
note 80 component 20 256 ;
note 90 component 10 512 ;

Another notable successor to MUSIC V is Common Lisp
Music (CLM) developed by Bill Schottstaedt from 1990 on-
wards, and still maintained, currently in its version 4
(Schottstaedt, 1996). The system uses the Common Lisp (CL)

language as a glue, with a lower-level backend, which is
used for audio computation. On its early implementation, the
backend was based on assembly-language code for a DSP
microprocessor (the Motorola 56000) fitted into a host com-
puter (NeX'T'), but later, the C language was used, in ports of
the language to more commonly-available computer systems
(based, for instance, on Linux and Windows operating sys-
tems). Instruments are designed in CL, with the critical parts
wrapped in a run macro, which compiles the Lisp code into the
backend code. In modern systems, this is a C language module
that is built as a dynamic library, loaded by CLM when audio
processing is requested.

The Common-Lisp aspect of the code is its dominant fea-
ture, so in that sense, it does not resemble MUSIC V at all,
even though it maintains its core principles. This can be seen in
Listing 6, where an equivalent of the original Risset—Shepard
tone design is implemented (based on code by Juan Reyes
from the CLLM sources).

Listing 6. CLM, Risset—Shepard tones.

definstrument shepard beg dur amp &key
dir 0; incr 00CCO01)
let* start floor * beg *srate*)),
end + start floor * dur *srate*))]’
x 0 0]
arr make-array 10],
do i C 1+ 1]
=i 10})
gsetf aref arr i] make-oscil
frequency 0 0. |
run
loop for i from start to end do
let vy 0 OC!
oscbhank 0 C!
do i 0 1+ 4.
= i length arr;]
let phoffset + x / i 10))).
if > phoffset 1, setf phoffset
- phoffset 1)
setf v - 40 * 8 0 phoffset)
incf oscbank * exp * -0 5 vy vy |
oscil aref arr i’
hz->radians expt 2 C
direction dir phoffset)).

incf x incr’
outa i * amp oscbank, | |||

b
Il

Unlike MUSIC V and many of the comparable systems,
the CLM-compiled sound synthesis code does not employ
vector-based processing of audio, but works on a sample (or
sample-frame)-by-sample basis. The C-based CLM backend
exists also as a complete C library (SndLib), which can be
used independently in synthesis programs. CLM provides ad-
vanced support for manipulating note lists due to its use of
the CL language. It can also be integrated with Snd soundfile
editor that can serve as a frontend to the system.

The Development of Computer Music Programming Systems 103

3. Realtime-oriented systems

While music programming systems have traditionally been
oriented to offline rendering of audio, the possibilities offered
by modern general-purpose computing platforms for realtime
audio processing have been explored by a number of sys-
tems. One of the earliest of these realtime-oriented systems,
Max, was originally designed simply as a scheduler for an
outboard synthesizer, the IRCAM 4X (Puckette, 2002). It
eventually incorporated its own signal processing capabilitics
and lives on in two widely-used modern systems, Pure Data
(PD) (Puckette, 2007), which 1s Free software, and MaxMSP
(Zicarelli, 2002), which is a closed-source, non-Free package.
As it is not possible to examine the source code of the latter
system, our discussion here will be limited to the former.

Aside from the superficial aspect of being graphically-edited,
a significant difference between PD and the systems discussed
in the previous sections is the absence of the concept of a score.
Here, the idea of instances of compiled instruments being
initiated and controlled by note events does not exist. In fact,
instruments, which live in PD patches, are generally single-
instance, unless copies of the patch are made. Also, given the
realtime orientation, running patches can be directly modified,
which 1s not possible with compiled instruments. This leads
to different modes of interaction and of composition, which
lean towards user interaction and improvisation.

The MUSIC N heritage lives on in PD with the concept of
unit generators as the central objects in the system. In a sense,
it embodies the most direct form of the modular synthesizer
metaphor, whereby a program is made of various boxes that
can be interconnected in various ways, with the possibility
of various external controls being applied to them. Its au-
thor disputes the application of the concept of programming
environment to it (Puckette, 2002), citing the fact that, for
economy reasons, the system lacks support for many aspects
that are fundamental to creating programs. However, if we are
considering the design of synthesizers or effects processors,
PD is a legitimate music programming system, which can be
used, of course, in context with other programming tools.

One of the essential aspects of operation in PD is its control
scheduling. Triggering and passing data are unified in a single
mechanism: simple triggers carry no data, while specific data
types will work as specific triggers to object actions. This
is embodied in PD’s messaging system, which is used every-
where in the system to send sporadic control information from
one object to another. It features a selector mechanism, where
each message is headed by an identifier, that will trigger a
method in a receiving object, producing an output.

In addition to these control messages, audio computation
employs a completely separate system. 'T'his is effected by spe-
cial unit generators, which react to a DSP message and imple-
ment vector-processing callbacks that are scheduled in a signal
processing graph. The coexistence of an asynchronous mes-
saging system and this ordered, sample-clock synchronous,
audio system is uneasy. However, although it might offer

difficulties in some situations, in practice, it can handle many
use cases with no significant problems.

Another realtime-oriented music programming system is
SuperCollider 3 (SC3) (McCartney, 2002). This is based on
two components: an interpreted language (SCLang) and a
separate Open Sound Control (OSC)-based software synthe-
sizer (SCSynth). SCLang is a complete small T'alk-like object-
oriented language that issue OSC commands over the network
to SCSynth. It is designed to break the separation of orches-
tra (instrument) and score (note-lists), typical of MUSIC-N
systems. Here, events and sound processing which can be
programmed in an integrated way, and the language features
give strong support for algorithmic composition. This is also a
feature of another Lisp-based system, Nyquist (Dannenberg,
1997), although it does not share the same realtime orientation
as SC3.

Given that precise timing is often an issue in realtime oper-
ation, the ChucK language (Wang, 2008) has been designed to
incorporate the concept of time and duration as primitives in
it. It allows strongly-timed operations, which are sample-level
precise, at the expense of some efficiency (as processing of
audio is done on a sample-by-sample basis). Earlier versions
of the system had a significant number of performance 1s-
sues, some of which have been addressed in the latest version
released in September 2012 after a three-year hiatus. The
system shows good potential for future development, although
it is at the moment not as robust and complete as SC3 and
PureData.

In this vein, it is also worth mentioning the development of
extempore (Sorensen, 2012), which aims to provide a Scheme-
based music programming language for realtime audio, based
on an LLVM (Lattner & Adve, 2004) just-in-time compiler.
This system shares similarities with CLM in that it is based
on DSP code written in Lisp, but which in this case gets
compiled and executed. The use of a just-in-time compiler
is also a feature of Pure (Graef, 2009), which is a purely-
functional language that allows the scheduling of Faust-based
(Orlarey, Fober & Letz, 2009a) unit generators. All of these
systems have allowed novel approaches to performance with
computers, such as live coding, which is a form user inter-
action based on the recall and on-the-fly elaboration of code
fragments to create and instantiate new instruments dynami-
cally. It is interesting to note that the acoustic compiler, which
in MUSIC I and I'V was a separate stage (pass) of the software
system, is now seamlessly integrated into the language syntax
in the case of these realtime systems.

4. Csound

Csound is possibly the longest running heir to the early
MUSIC N systems. It was developed alongside a number of
equivalent (at the time) systems, such as Cmusic, Cmix and
MA4C, in the 1980s, all of which employed the C language, that
became the standard for systems implementation. In time, it

104 Victor Lazzarini

developed into a much larger and multi-functional music pro-
gramming environment and with the advent of its version 5 in
2006, it introduced a number of important concepts that were
innovative for systems of this kind.

Csound appeared publicly in 1986 (mit-ems Csound), as a
C-language port of MUSIC 11, very quickly superseding it.
It inherited many aspects of its parent, but now integrating
the orchestra compiler and loader into a single program. 'The
original mit-ems Csound was based on three separate com-
mands, scsort, csound and perf. The first command would sort
the score; the second would compile and load the orchestra,
and run the sorted score on it. The third command was just a
convenient tool that called scsort and csound in a sequence.
As with all programs of the era, mit-ems Csound was writien
in Kerninghan & Ritchie (K&R)-style C.

Csound was originally a very faithful port of MUSIC 11,
so much that even today many programs for that language
can still be run on modern versions of the system. Some
small differences existed in terms of a collection of new
opcodes, and the removal of some others. Also, the separa-
tion between temporary and local variables was removed in
Csound, and a means of extending the language with new
C-code opcodes was provided. However, beyond these small
differences, the central concepts were shared between the
systems.

In the 1990s, the centre of development of Csound moved
from MIT to University of Bath. Realtime operation had been
introduced to the system (Vercoe & Ellis, 1990) in the mit-
ems version. From this, the system developed into an offline
composition and realtime synthesis language with widespread
applications explored in Boulanger (2000). Examining the
source code of the 1995 version, we see the system re-written
in the established ANSI C89 form of the language (from
the original K&R C dialect), supporting realtime audio on a
number of hardware platforms running UNIX: Sun, NeXT,
DEC, SGI and HP. The program had been ported to PC-
DOS, also with realtime audio via soundblaster soundcards.
Separately, at Mills College, a version of the system for the
Macintosh platform had been developed (Ingalls, 2000). In
fact, at the end of the 1990s, the system had been ported to
almost all modern general-purpose computing platforims with
a C compiler.

In addition, separately it was ported to run on custom DSP
hardware, in a closed-source version designated extended
Csound (Vercoe, 1996). This version eventually became part
of acommercial project of Analog Devices, inc., to supply sim-
ple synthesizers for embedded applications (Vercoe, 2004).
Meanwhile, a large international developer community was
involved in expanding the open-source system, which even-
tually came under the Lesser GNU Public License (and thus
Free software). Many new unit generators were developed
for it, culminating on the Csound 4.23 version in 2002. The
consensus among the community was that the system required
a major re-engineering to be able to move forward. A code
freeze was established so that the new Csound 5 system could
be developed.

4.1 Csound 5

The main goals of the development of Csound 5 were: to
provide a clean, re-engineered system, away from the original
monolithic program; to support re-entrant instances of the
system in a dynamic-loadable library; and to provide a plugin
mechanism for various aspects of the system (unit genera-
tors, utilities, function tables) (ffitch, 2006). A final goal, only
achieved in later versions of the system, was to provide a
new orchestra language parser, based on the bison compiler
compiler and the flex lexer, which would be maintainable and
extendable. The main motivation behind this work was to
adopt more up-to-date design paradigms (see Section S below)
and to allow for a variety of uses for the system. Csound 5.00
was eventually launched in 2006, 20 years after the first mit-
ems release in 1986.

With this version, Csound became a programming library,
which could be used to embed the system as a synthesis
engine for a variety of applications. In fact, since version 4.21,
Csound had been released as a library with a public applica-
tion programming interface (API), however with a number
of limitations (for instance, only a single copy of the engine
could be used by hosts). In Csound 5, all of these issues were
removed and the system became fully re-entrant.

The orchestra language has also undergone some impor-
tant transformations, although always maintaining backwards
compatibility. Facilities for the development of opcodes in the
orchestra language itself were provided in the form of user-
defined opcodes (UDOs), which allowed for local vector sizes
(and single-sample feedback), as well as recursion. New data
types were introduced for self-describing frequency-domain
data and generic arrays. Another significant change to the
system as a whole is the provision of alternative means of
instrument instantiation, rendering the need for a separate
sorted score optional. Listing 7 shows an example of a Csound
program for spectral morphing, which uses some of its newer
language features.

Listing 7. Csound 5 spectral processing example.

<CsoundSynthesizer>
<CsOptions>

-0 dac -i adc
</CsOptions>
<CsInstruments>

nchnls = 2

chnset 0 5,
chnset 0 5,

'ampmorph' | amp morphing init
'fregmorph' ; freq morphing init

alwayson 1
instr 1

iws = 2048
ihs = iws/8

window size
hopsize
al, a2 ins ; inputs

The Development of Computer Music Programming Systems 105

kam chnget 'ampmorph' ;, amp morphing
kfm chnget 'fregmorph' ; freq morphing
fsigl pvsanal al, iws, ihs, iws, 1

; chn 1 analysis

fgig2 pvsanal a2, iws, ihs iws, 1

; chn 2 analysis

fmorph pvsmorph fsigl fsig2 kam kfm
am pvsynth fmorph ; PV resynthesis

outs am, am

morph

endin

</CsInstruments>
<CsScore>

</CsScore>
</CsoundSynthesizer>

In the wake of these changes, many elements were in-
troduced to provide a flexible use of the engine. The API
made it possible to use the system from a variety of pro-
gramming languages and various third-party host/frontend
applications were developed. Listing 8 demonstrates a trivial
Python frontend for Csound. Such facilities allow for Csound
to be inserted into a variety of Computer Music composition
and performance scenarios.

Listing 8. Csound 5 python example.
import sys
import csnd
cgound = csnd Csound |
csound Compile sys argv 1))
while not csound PeformBuffer
pass
csound Reset |

These developments enabled, amongst other things, the
porting of Csound to mobile operating systems (the Mobile
Csound Platform, MCP (Yi & Lazzarini, 2012)), and its use
as a plugin in a variety of formats, and in the One Laptop
Per Child project, running on the XO computer (Lazzarini,
2008). Such applications were, in fact, somewhat forerun by
the adoption of a Csound-like language, Structured Audio
Orchestra Language (SAOL), in the MPEG4 standard for
structured audio encoding (150, 1998).

5. Paradigms

The development of modern music programming systems,
which was traced in the previous sections, has relied on a
number of established paradigms. Some of these are borrowed
from general programming practice, such as object orienta-
tion, others emerged from the evolution of music systems
themselves. In this section, we would like to explore some
important paradigms that have influenced these software pack-
ages.

5.1 The MUSIC N paradigm

The MUSIC N paradigm is an emergent set of properties from
the main music programming systems discussed above. Al-
though the concept has been used widely, there has never been
a full definition for it. The essence of the paradigm is that an
environment for Computer Music should be programmable.
The existence of a compiler in MUSIC III, hailed by Mathews
(1961) as its most important breakthrough, is something that
survives in one shape or another in all of its descendants. This
had the role of translating a symbolic description of a synthesis
signal flow into a DSP graph, which would run in the computer.
The term *acoustic compiler’, coined by Mathews, defines this
element of the paradigm.

In some systems, instead of a compiler, we might find
some sort of an interpreter, that would assemble the graph
by creating and connecting instances of the processing boxes,
the unit generators. These are also important components of
the paradigm. Their existence is universal among music pro-
gramming systems. They have also appeared elsewhere in
electronic music instruments, such as the modular synthesizer,
such 1s the pervasiveness of the concept. The table lookup
oscillator, sometimes defined as the workhorse of digital syn-
thesis, is an example of unit generator that is ubiquitously
present in music programming. Given its importance, it can be
argued that it also plays a central role in the paradigm, together
with the concept of function tables and their generation (GEN)
routines.

A more disputed aspect of the MUSIC N paradigm is the
presence of a separate score data specification language. While
the most traditional systems, like the original MUSIC IV-V,
Cmusic, CMix, MUSIC4C support and depend on the prin-
ciple, other systems do not espouse it, at least directly (PD,
SC3, Nyquist). Systems like CLM try to integrate it by making
the score and orchestra language the same (Common Lisp),
although maintaining a degree of separation between them. We
propose that the essential point of this aspect of the paradigm
is not so much the existence of a separate score language, but
the principle of instrument classes, from which objects can be
instantiated programmatically during performance to produce
audio. Most of the systems described here would embrace this
principle. The case of PD is, however, particular, in that it
does not allow direct instantiation, requiring the user to create
copies of instruments manually.

5.2 Object-oriented programming

From the perspective of programming, the MUSIC N paradigm
is then realized through the principles of Object-Oriented Pro-
gramming (OOP). This realization might be partial, with re-
gards to what some view as the complete set of concepts
involved in this paradigm. However, the essential ideas are
present in all systems.

There is a general consensus that the first example of the
OOP paradigm appeared in the Simula 67 language (Nygaard
& Dahl 1978). But it can be argued that systems like MUSIC

106 Victor Lazzarini

IV already embodied the central aspects of object orientation,
the idea of classes, as a description or template, and objects,
the concrete instances of these. MUSIC IV provided these
at two levels. Firstly, the unit generator can be thought of
as a class, whose objects are instantiated in the instrument
definition. Secondly, the instrument, as pointed out above, is
also a class that can be instantiated a number of times by score
events (the 'note cards’ in MUSIC 1V).

The OOP paradigm, it seems, serves the work involved
in music programming very well, as it does in the case of
Simula, the tasks of simulation. This is, in part, because much
of the activities of music composition and performance can be
modelled in object-oriented terms. For traditional music, we
have the abstract idea of a note, of which instances a musical
composition is made. This works even in extended concepts of
music, where notes are not a valid concept anymore, but where
sound objects, textures, gestures, etc., can all be decomposed
into objects, which we can describe in terms of types. So it is
not a coincidence that the principle was discovered to fit the
purposes of Computer Music very early on.

Other aspects of OOP are not supported in general by MU-
SIC N languages, but make an appearance in various systems.
For instance, SC3 has a full set of [eatures that have been mod-
elled on the SmallTalk language, supporting various ancillary
aspects of OOP. Kyma was a pioneer system, which offered
many features of object-orientation (Scaletti, 2002). Csound
5 is a fully object-oriented programming library, which has
both a C and a C++ API, as well as interface extensions
and wrappers for various OOP languages. For the develop-
ment of large music systems, this paradigm is essential. It
has been found particularly useful as a means of supporting
loadable modules, which use the concept of classes to provide
a common interface between host systems and plugins. Such
interfaces are found not only in music programming systems,
such as PD, SC3 and Csound, but in architectures for vari-
ous programs (Linux Audio Developer’s Simple Plugin API,
LADSPA; Virtual Studio Technology, VST; etc.).

5.3 The multi-language paradigm

At the core of music programming lies the multi-language
design paradigm, that of the use of a domain-specific language
(DSL, in this case, the one provided by the music program-
ming system) and, at different times, a system-implementation
language (C/C++, FORTRAN) and/or a scripting language.
This arrangement is very similar to what has been advanced
by authors such as OQusterhout (1998), where glue code is
used to connect components implemented in languages that
are closer to hardware. Such glue code can take the form of
the instrument design language and any scripting that might
be involved in, for instance, score generation.

This approach has been present in Computer Music since
MUSIC 1V, where the event generation for a given score
was completely separated from the design of the synthesis
program which would receive the score (Mathews & Miller,

1964). The MUSIC N languages themselves can be seen as
glue code connecting unit generators implemented in a lower-
level language (Mathews, Moore & Risset, 1974). This con-
cept was extended to be the basis for the CARL system, where
components were connected using shell scripting (Loy, 2002).
Similarly, it was used in Cmix (Pope, 1993), where synthesis
programs written in C were glued by a score code written in
MinC. More recently, it is the basis of the meta-programming
principles embodied by Faust (Orlarey, Fober & Letz, 2009a).
Since the advent of Csound 3, it has become an organic mode
of operation for users of that system, where Csound can be part
of a system involving a number of other languages. In fact,
Csound itself can embed other languages (such as Python and
Lua).

A multi-language approach in music programming may
also allow users to strike a balance between generality and
efficiency. Depending on the task, the point of entry for the
programmer can be chosen to be at different grades of com-
plexity. A lower, more general, level requires more involved
code design, but allows a wider range of results. On the other
hand, if we can operate at a higher, more specialised and
specific, plane, the process would be more efficient from the
perspective ol programming effort.

5.4 The open source dimension

"The mechanism that propelled such momentous development
in music programming, such as the one described in this paper,
is indisputably the availability and exchange of source code.
All the MUSIC N-derived systems were de facto open-source,
even if the term and concept were never current at the time.
However, we can see that these were given to any interested
parties, with pleasure. These enabled the cross-fertilization
of ideas, with the results clearly seen in the evolution of
Computer Music as a research and artistic discipline.

The account of the earlier days of computer music perhaps
demonstrate how the open source paradigm not only benefits
the community of users, but also the evolution of the software
itself. A large user base and developer community will facil-
itate its permanence and continued usefulness. Csound is a
good demonstration of this principle, as it has benefitted from
a wide adoption to continue to develop over a period of more
than 25 years. As with similarly widespread systems, such as
PD and SC3, shared use and development has shaped what
these packages have become.

As an example of these benefits, we can compare the fate
of two major systems of the same era: Cmusic and Csound.
In 2006, 20 years after its first release, Csound was going
strong with the release of the all-powerful version 5, whereas
Cmusic had effectively disappeared. Some of the reasons for
this were put forward very well by Richard Dobson, earlier on
in 1999: 'Tsuppose one significant difference between Cmusic
and Csound, which might explain the relative lack of “mod-
ern” opcodes in the former, is that while Cmusic has largely
remained the property and product of ER. Moore, Csound has

The Development of Computer Music Programming Systems 107

reaped the benefit of a large, skilful, enthusiastic and mostly
unrestrained net-wide user and development group’ (Dobson,
1999).

The open-source paradigm has emerged from all of the ex-
periences of developers in trying to evolve the sharing of ideas
and the building of communities around software systems.
Much of it has been put to the fore by the Hree Software
Foundation and its originator, Stallman (2010). Although his
principles go beyond the simple general guarantees for the
copying, modification and distribution of source code, there
is much that is common between what is Free software and
what is open source.

One of the important aspects that guarantees the status of
open source software is the use ol an appropriate license. In the
case of Csound, the licensing issue was a question that took a
while to be solved. The software had been originally released
under the MIT License, which in the view of many people
in the community was problematic and confusing. Csound
was moved to the (Free-software) Lesser GNU Public License
(GPL), for its version 5 release, after consultation with all
its contributors and negotiations with the original copyright
holders.

One of the major issues regarding the uncertain license
status of certain open-source software was the fact that many
developers did not really understand the need for licenses.
For some, this was due to ignorance, and for others, hke John
ffitch himself and so many others, it was because they came
from an era where the concept of open-source did not exist.
As he explained, ‘in those days, the question was not there as
everyone shared their software. In fact, when we managed to
get a program to work we were so happy that we wanted to
give it to everybody’ (ffitch, 2005).

With Csound, as with other systems, it is not only the case
that the source code for the music programming system is
available, but also that the Csound-language code itselfl is
freely distributed. Catalogues of Csound instruments were
around for people to use, learn and modify. From Richard
Boulanger’s Toots to the well-known Amsterdam Catalogue,
a wealth of code has been made available for the commu-
nity. All these things are incredibly useful for people learning
computer music, composition, signal processing, etc. For this
community, such resources are often more important than the
software source code itself.

5.5 Parallel processing

‘T'he presence of multicore processors as a standard feature of
computing systems, and the availability of parallel graphical
processing units (GPUs), has urged the consideration of par-
allel and concurrent architectures for audio and music. Here,
we are not so much speaking of an established paradigm, but
of an emerging challenge. Music and audio have a number of
eminently parallelizable processes, so for some applications
there 1s quite a good fit (ffitch, Dobson & Bradford, 2009).

For instance, DFT-based algorithms, additive synthesis, cer-
tain types of filterbanks, some types of physical models, linear
time-invariant processing (e.g. convolution), are all examples
of good applications for parallel processing, and, indeed, this
has been demonstrated in practice (Battenberg, Freed and
Wessell, 2010; Battenberg & Avizienis, 201 1; Webb & Bilbao,
2012). Algorithms involving feedback/recursion are less prone
to these implementations, but as components of a larger pro-
cess (i.e. a series of instrument instances), would of course
benefit from parallelization on a larger level.

Apart from the pioneer effort of porting Csound to trans-
puters (Manning, Berry, Bowler, Bailey & Purvis, 1990), mu-
sic programming systems have not been customarily imple-
mented in parallel forms. This has changed significantly in the
past few years, with efforts on allowing widely-used systems
to take advantage of multicore processors. Examples of this
are found in parallel Csound (ffitch, 2009), the supernova im-
plementation of SCSynth (Blechmann, 2011), both of which
are present in the official releases of these software, and in
custom versions of Pure Data, such as the one implemented at
the University of Berkeley (Colmenares, Saxton, Battenberg,
Avizienis, Peters, & Asanovic, 2011).

Approaches o concurrent performance vary, but there is a
consensus that the major problem to be solved by music pro-
gramming systems is that of communication/synchronization
between processes/threads and their granularity level. Also,
due to the particular aspect of time dependency in realtime
audio, systolic architectures (standard in many other concur-
rent applications) are in general not very practical, as they
introduce undesirable latencies in the process.

Algorithms implemented with a fine level of granularity,
which is translated into the size of independent processing
blocks, suffer from inefficiencies due to communication over-
heads, as reported for instance in Orlarey, Letz and Fober
(2009b). The level at which parallelism is introduced is there-
fore crucial. It is generally understood that the best practice
is to consolidate unit generators at instrument level (ffitch,
2009), which is also referred to as an aggregated task level
in Colmenares, Saxton, Battenberg, Avizienis, Peters, and
Asanovic (2011), before splitting these to multiple cores.

A crucial question is also to do with how concurrency is
to be presented to the user. In general, two opposing views
exist. One states that the implementation of parallelism is a
metaprogramming problem and a compiler should resolve it
automatically, a strategy adopted by Csound (ffitch, 2009),
and the other that users should be responsible for deciding
how the processes are to be split between cores, seen in Su-
percollider (Blechmann, 2011). In the first case, the advantage
is that code analysis can also include consideration of load
balancing and that sometimes what appears to be an obvious
solution from the user perspective does not actually result in
an efficient implementation. On the other hand, allowing users
to program parallelism directly is perhaps more flexible and
allows comparative studies of concurrency in audio process-
ing algorithms.

108 Victor Lazzarini

6. Ecosystems for music programming

A software ecosystem can be defined as a group of packages
that bear a certain cooperative and/or complementary rela-
tionship and reside in the same or in related environments or
platforms. The model for music programming in the twenty-
first century is based on such an ecosystem of applications,
which will provide support for a variety of tasks that are of
value to Computer Music. Two of these can be identified as
DSP programming/music application development, and com-
position. Music programming systems have to be able to be
flexible enough to allow for the emergence of this eco-system,
either by participating in it, in a multi-application, multi-
language environment, or by supporting (i.e. providing the
tools for) the development of cooperating applications.

6.1 DSP programming and application development

The translation of signal processing algorithms into running
code has been a preoccupation of music programming since
MUSIC III. Mathew’s principle of unit generators as building
blocks for a synthesis program has already been discussed
above as a central aspect of computer music environments.
Another important feature for the realization of DSP algo-
rithms is support for elementary operations on signals, which
was provided in terms of support for expressions in MU-
SIC360. Although this existed in MUSIC IV and MUSIC V via
addition and multiplication, the possibility to use expressions,
combined with some simple functions, allowed a compact
way to translate formulae. In fact, Vercoe (1983) states as one
of the core aspects of a music programming language is the
possibility to reproduce the operation of a unit generator using
language primitives.

In this sense, the modern systems such as Csound, SC3
and PD enable DSP programming to a fine degree of detail.
This is particularly important as it enables the use of these
systems in a scienlific and research context. Notably, they
might be a better option to demonstrate audio and music
signal processing ideas than the usual general-purpose mod-
elling software (e.g. octave, or even python with its scientific
packages), as they can provide real-world implementations
(Lazzarini, Yi & Timoney, 2012) as well as code that can be

easy to read.
In some systems, some essential operations are awkward:

for instance single-sample delays in PD are possible, but not
intuitive to program. However, by taking advantage of the
multi-language scenario, in these cases, it is possible to use
a system that is designed to translate DSP flowcharts and
algorithms, such as Faust, to compile unit generators for a host
music programming system (such as PD, Csound or SC3).
That way, a large design problem can be broken down into
separate components, utilizing the principle of separation of
concerns (Damasevicius & Stuikys, 2002). Depending on the
task at hand, a number of alternatives exist for DSP program-
ming in a software ecosystem that includes computer music
languages.

This principle is even more evident when we come to the
task of application development utilizing music programming
systems. While environments such as SC3, PD and Csound
can provide, to various extents, support for the authoring of
music applications on their own, there is more flexibility and
scope to using them in a multi-language scenario. Taking
the case of Csound, for instance, it is very straightforward
to create host applications in a variety of platforms, using
either scripting or implementation languages, which use its
music programming capabilities. With software developer kits
(SDKs) such as the Mobile Csound Platform, Csound becomes
the audio/music component in an agile development envi-
ronment, in combination with the application-authoring lan-
guages (Objective-C lori0S; Java for Android and Web apps).

This scenario demonstrates a typical application ecosysiem
with various cooperating components. Here users can first
prototype and develop their signal processing algorithms us-
ing Csound through one of its host frontends, using Faust (or
C/C++) for creating new unit generators for the language if
necessary. In complement, they can author their target applica-
tion for a given system (desktop, mobile, web-based), add the
Csound engine, which will load and run the processing code.
This application can in turn be made to cooperate with other
apps: for instance, a mobile app might be able to communicate
with a desktop app, which can be used to design or make
alterations to the Csound code, or share projects between the
two in a variety of ways.

6.2 Composition

Composition has always been the prime area of music pro-
gramming. Early non-realtime systems have been mainly
composition environments, although they have also been used
in signal processing research (a classic case is Chowning’s
(1973) development of FM synthesis) and acoustics (e.g. Ris-
set’s (1969b) studies of Shepard tones). Thus, all modern
music programming systems, continue in this tradition, even
though some have been originally designed with performance
in mind, as in the case of PD (Puckette, 2002).

The tasks involved in the composition of Computer Mu-
sic are a mix of instrument development, DSP design (as
discussed above), and event programming/scheduling, which
in many situations form a single continuum. Facilitating the
integration of these tasks is important for some composers,
whereas [or others, a more clear separation between them
is required. Music programming systems should be flexible
enough to accommodate these two distinct needs, even if they
are designed to give more support to one of them.

Even though some systems are designed to offer powerful
support for algorithmic composition on their own as in SC3
and in CLM and Nyquist (due to their underlying language,
Lisp), it is quite common to see the multi-language paradigm
at play in this scenario. Composers will often feel at home
using a well-designed general purpose language, such as for
instance, Python, in music creation, which would in some way
interface with their preferred music programming system. For

The Development of Computer Music Programming Systems 109

this combination, the often criticized split between score and
orchestra programming (which is also a type of separation
of concerns as discussed above) is very welcome. It is very
unwieldy to combine programming of events in a separate
language with a music environment such as SC3, unless we
are to discard completely its language component. However,
we must of course note that, in some cases the combination
of algorithmic composition and sound synthesis, with roots in
the practice of composers such as lannis Xenakis and Barry
Truax, can benefit from such integrated environments (see for
instance DiScipio, 1994).

It might be fair to consider that the simpler the score
language, the easier it is to find means of integrating it within
an ecosystem for composition. It allows for substantial
customization by composers, who might find it awkward to
write directly in any music programming system. For this
purpose, Csound not only allows tight integration via its API,
but also provides a simple mechanism to allow plugin score
processors, written in any language, to be embedded in its
code. These only need to output a legal Csound score as ASCII
text to the standard output, and can be used to translate any
code the composer writes in place of the usual score.

7. Conclusions

Following the discussion in this article, we can reach a more
well-defined concept of what constitutes a music program-
ming system. Such a software package should be one that
allows users to develop musical applications and compositions
of various forms, with full support for a variety of synthesis
and processing methods. It needs to be extendable, and allow
signal processing algorithms to be expressed in its language,
but also capable of integration into an ecosystem of appli-
cations and environments. Support for object-oriented pro-
gramming approaches is also a basic characteristic of these
systems. 'The open source dimension is an important aspect,
which facilitates the study and dissemination of ideas, and one
which enabled the significant developments to date.

In the 50-0dd years of their existence, the software packages
discussed here have brought an exceptional richness to all
arcas of Computer Music, from research to composition and
performance. We can only hope that the next fifty years of
development can bring just as many new possibilities as the
ones provided so far.

References

Battenberg, E., & Avizienis, E. (2011). Implementing real-
time partitioned convolution algorithms on conventional
operating systems. In Proceedings of the 14th International
Conference on Digital Audio Effects DAFx-11, IRCAM, Paris,
313-321.

Battenberg, E., Freed, A., & Wessell, D. (2010). Advances in the
parallelization of music and audio applications. In Proceedings
of the ICMC 2010, New York, USA, 349-352.

Beauchamp, 1. (1996). Introduction to MUSIC 4C. Urbana, IL:
School of Music, University of lllinois at Urbana-Champaign.

Blechmann, T. (2011). Semantic Aspects of Parallelism for
SuperCollider. In Proceedings of the Linux Audio Conference
2011. Maynooth, Ireland, 29-32.

Boulanger, R. (Ed.) (2000). The Csound Book. Cambridge, MA:
MIT Press.

Boulanger, R., & Lazzarini, V. (Eds.) (2010). The Audio
Programming Book. Cambridge, MA: MIT Press.

Chowning, J. (1973). The synthesis of complex audio spectra
by means of frequency modulation. Journal of the Audio
Engineering Society, 21, 526-534.

Colmenares,].A., Saxton, 1., Battenberg, E., Avizienis, R., Peters,
N., & Asanovic, K. (2011). Real-time musical applications on
an experimental operating system for multi-core processors. In
Proceedings of ICMC 2011, Huddersfield, UK, 216-223,

Damasevicius, R., & Stuikys, V. (2002). Separation of concerns
in multi-language specifications. Informatica, 13(3), 255-274.

Dannenberg, R. (1997). Machine Tongues XIX: Nyquist, a
language for composition and sound synthesis. Computer
Music Journal, 21(3), 50-60.

di Scipio, A. (1994). Formal processes of timbre composition
hallenging the dualistic paradigm of computer music. In
Proceedings of the ICMC 1994, Aarhus, Denmark, 202-208.

Dobson, R. (1999). Computer Music Books (was Re: cmusic).
Email to the music-dsp list: http://www.music.columbia.edu/
pipermail/music-dsp/1999-June/034758 . html

ffitch, J. (2005). On the open-source question. personal
communication.

ffitch, I. (2006). On the design of Csound 5. In Proceedings of
4th Linux Audio Developers Conference, Karlsruhe, Germany,
79-85.

ffitch, J., (2009). Parallel execution of Csound (pp. 16—
21). Montreal, Canada: In Proceedings of the International
Computer Music Conference, Montreal, Canada, 16-21.

ffitch, J., Dobson, R., & Bradford, R. (2009). The imperative
for high-performance audio computing. In Proceedings of the
Linux Audio Conference 2009, Parma, ltaly, 73-80.

Grael, A. (2009). Signal processing in the pure programming
language. In Proceedings of the Linux Audio Conference 2009,
Parma, Italy, 137-144.

Howe, H. (1966). A report from Princeton. Perspectives of New
Music, 4, 68-75.

Ingalls, M. (2000). Improving the composer’s interface: Recent
developments to Csound for the Power Macintosh computer.
In: R. Boulanger (Ed.), The Csound Book. Cambridge, MA:
MIT Press.

ISO/IEC JTC 1/SC 29/WG 11, (1998). Information Technology
- Coding of Audiovisual Objecis - Low Bitrate Coding
of Multimedia Objects. London: International Standards
Organisation.

Lattner, C., & Adve, V. (2004). LLVM: A compilation framework
for lifelong program analysis & transformation. In Proceedings
of the (2004). International Symposium on Code Generation
and Optimization (CGO'04). CA: Palo Alto.

Lazzarini, V. (2008). A toolkit for audio and music applications
in the XO computer. In Proceedings of the International

110 Victor Lazzarini

Computer Music Conference 2008, Belfast, Northern Ireland,
62-65.

Lazzarini, V., Yi, S., & Timoney, J. (2012). Digital audio effects
on mobile platforms. In Proceedings of 15th International
Conference on Digital Audio Effects (DAFX-12), York, UK,
287-292.

Lefford, N. (1999). An interview with Barry Vercoe. Computer
Music Journal, 23, 9-17.

Loy, G (2002). The CARL system: Premises, history and fate.
Computer Music Journal, 26(4), 23-54.

Manning, P, Berry, R., Bowler, L., Bailey, N., & Purvis, A. (1990).
Studio report, University of Durham, England. In Proceedings
of the ICMC 1990, Glasgow, UK, 415-416.

Mathews, M. (1961). An acoustical compiler for music and
psychological stimuli. Bell System Technical Journal, 40, 553~
557.

Mathews, M. (1963). The digital computer as a musical
instrument. Science, 183, 553-357.

Mathews, M., & Miller, J. E. (1964). MUSIC IV Programmer's
Manual. Berkeley Heights, NJ: Bell Telephone Labs.

Mathews, M., Miller, J. E., Moore, F. R., & Pierce, J. R. (1969).
The Technology of Computer Music. Cambridge, MA: MIT
Press.

Mathews, M., Moore, F. R., & Risset, J. C. (1974). Computers
and future music. Science, 183, 263-268.

McCartney, J. (2002). Rethinking the computer music language:
Supercollider. Computer Music Journal, 26(4), 61-68.

Moore, F. R. (1990). Elements of Computer Music. Engelwood
Cliffs, NJ: Prentice-Hall.

Nygaard, K., & Dahl, O. (1978). The development of the
SIMULA languages. ACM SIGPLAN Notices, 13, 245-272.
Orlarey, Y., Fober, D., & Letz, S. (2009a). Faust: An efficient
functional approach to DSP programming. New Computational
Paradigms for Computer Music. Sampzon, France: Edition

Delatour.

Orlarey, Y., Letz, S., & Fober, D. (2009b). Adding automaltic
parallelization to Faust. In Proceedings of the Linux Audio
Conference 2009, Parma, Italy, 81-92.

QOusterhout, J. (1998). Scripting: Higher-level programming for
the 21st century. IEEE Computer, 31(3), 23-30.

Park, T. (2009). An interview with Max Mathews. Computer
Music Journal, 33, 9-22.

Pope, S. (1993). Machine Tongues XV: Three packages for
software sound synthesis. Computer Music Journal, 17(2),23—
54,

Puckette, M. (2002). Max at seventeen. Computer Music Journal,
26(4), 31-43.

Puckette, M. (2007). The Theory and Technique of Computer
Music. New York: World Scientific.

Randall, J. K. (1965). A report from Princeton. Perspeciives of
New Music, 3, 84-92.

Risset, J. C. (1969a). An Introductory Catalogue of Computer
Synthesized Sounds. Berkeley Heights, NJ: Bell Telephone
Labs.

Risset, J. C. (1969b). Pitch control and pitch paradoxes
demonstrated with computer-synthesized sounds. Journal of
the Acoustical Society of America, 146, 88.

Roberts, A. (1965). MUSIC 4BF, an All-FORTRAN music-
generating computer program. In Proceedings of the 17th
Annual Meeting of the AES. (Preprint 397) Audio Engineering
Society.

Scaletti, C. (2002). Computer music languages, Kyma, and the
future. Computer Music Journal, 26(4), 69—82.

Schottstaedt, W. (1996). Common Lisp Music 4 Manual. Stanford,
CA: Centre for Computer Research in Music and Acoustics,
Stanford University.

Smith, J. O., & (1991). Viewpoints on the history of
digital synthesis. Proceedings, (1991). International Computer
Music Conference, Montreal (pp. 1-10). San Francisco, CA:
Computer Music Association.

Sorensen, A. (2012). Extempore Sources. Retrieved from: hitps://
github.com/digego/extempore

Stallman, R. (2010). Free Software, Free Society: Selected Essays
of Richard M. Stallman. Boston, MA: GNU Press.

Tenney, J. (1963). Sound generation by means of a digital
computer. Journal of Music Theory, 7, 24-70.

Vercoe, B. (1973). Reference Manual for the MUSIC 360
Language for Digital Sound Synthesis. Cambridge, MA: Studio
for Experimental Music, MIT.

Vercoe, B. (1981). MUSIC 11 Reference Manual. Cambridge,
MA: Studio for Experimental Music, MIT.

Vercoe, B. (1983). Computer system and languages for audio
research. The New World of Digital Audio (Audio Engineering
Society Special Edition), 245-250.

Vercoe, B. (1996). Extended Csound. Proceedings of the
International Computer Music Conference (1996). Hong
Kong (pp. 141-142). San Francisco, CA: Computer Music
Association.

Vercoe, B. (2004). Audio-Pro with multiple DSPs and dynamic
load distribution. British Telecom Technology Journal, 180-
186.

Vercoe, B., & Ellis, D. (1990). Real-time Csound, software
synthesis with sensing and control. In Proceedings of the
International Computer Music Conference 1990, Glasgow. San
Francisco, CA: Computer Music Association, 209-211.

Wang, G (2008). The ChucK audio programming language, a
strongly-timed and on-the-fly environ/mentality (PhD thesis).
Princeton University, Princeton, NJ.

Webb, C., & Bilbao, S. (2012). Binaural simulations using audio
rate FDTD schemes and CUDA. In Proceedings of the 15th
International Conference on Digital Audio Effects DAFx-12,
York, UK, 97-100.

Yi, S., Lazzarini, V., & (2012). Csound for Android. In
Proceedings of Linux Audio Developers Conference, (2012).
Stanford. CA: Centre for Computer Research in Music and
Acoustics, Stanford University.

Zicarelli, D. (2002). How I learned to love a program that does
nothing. Computer Music Journal, 26(4), 31-43.

