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In this paper, we give a review of the Inverse Frobenius—Perron problem (IFPP): how to create
chaotic maps with desired invariant densities. After describing some existing methods for solving
the IFPP, we present a new and simple matrix method of doing this. We show how the invariant
density and the autocorrelation properties of the maps can be controlled independently. We
also give some fundamental results on switching between a number of different chaotic maps
and the effect this has on the overall invariant density of the system. The invariant density of
the switched system can be controlled by varying the probabilities of choosing each individual
map. Finally, we present an interesting application of the matrix method to image generation,
by synthesizing a two-dimensional map, which when iterated, generates a well-known image.
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1. Introduction

There has been increasing interest in recent years
in the area of chaos control. Chaos control can
refer to the stabilization of unstable orbits, such
as in the seminal work of Ott et al. [1990], but it
can also refer to controlling the statistical prop-
erties of chaotic systems [Chen & Dong, 1997].
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Inverse Frobenius—Perron Problem (IFPP) refers to
the problem of controlling the invariant densities of
chaotic maps [Lasota & Mackey, 1994] (or synthesiz-
ing maps with prescribed invariant densities). The
invariant density describes the statistical distribu-
tion of iterates in the state-space. A number of dif-
ferent approaches to this problem have appeared in
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the literature, including conjugate function-based,
control-based, and matrix-based approaches [Gross-
mann & Thomae, 1977; Bollt, 2000; Gora &
Boyarsky, 1993], as well as direct solutions of the
Frobenius—Perron equation such as the work of
Pingel et al. [1999]. Bollt [2000] gave a neat sum-
mary of the previous work on the topic. The IFPP
may be viewed as a stepping-stone to new applica-
tions of chaos, which may flourish as new systematic
synthesis and control techniques become available.
Applications, therefore, are the main motivation
behind this work. It is only when we have full con-
trol over a phenomenon, that we will be able to fully
utilize it. Readers will be aware of applications of
chaos in secure communications and various other
ideas generally related to cryptography [Kocarev,
2001; Pareschi et al., 2006]. Are there other areas
which could benefit from some added chaos? We do
not know the answer to this, but we believe that
having systematic and straightforward procedures
for generating and controlling chaos should make it
easier for chaos to find applications, especially with
nonspecialists in the area.

We recently developed a straightforward matrix
approach to the IFPP which is completely mechan-
ical, requiring little effort to generate a chaotic
map with a desired invariant density. This
work has potential applications in data model-
ing [Boyarsky & Goéra, 2002] and creating ran-
dom numbers with desired statistics, and was first
described in [Rogers et al., 2004]. A longer expo-
sition of the method appeared in [Rogers et al.,
2008]. In this article, we shall describe in some
detail the Inverse Frobenius—Perron problem, and
describe existing methods of solving it. We then
describe the new matrix method of solving the
IFPP and then look at the autocorrelation prop-
erties of the maps. We show that variation of some
key parameters can be used to control the rate of
autocorrelation decay. We then consider the effect
of switching between a number of alternative maps
at each time step. For the class of chaotic maps
we consider, the overall invariant density of the
switched system is a weighted sum of the individ-
ual invariant densities. Finally, we show how the
method can be used to synthesize two-dimensional
and higher-dimensional maps, and illustrate the
idea by creating a two-dimensional map which has
an image encoded into its invariant density. Iter-
ation of the maps leads to the image gradually
emerging.

2. Background to the Inverse
Frobenius—Perron Problem

The main tool used to analyze the statistical prop-
erties of chaotic maps is the Frobenius—Perron oper-
ator (FPO). The Inverse Frobenius-Perron problem
(IFPP) is the technical name given to the synthesis
problem: how to find a map that has a prespeci-
fied invariant density. There are several approaches
to this problem in the literature, and they will be
discussed along with the FPO in this section. The
IFPP is interesting in both theoretical and practi-
cal ways. Theoretically, it is interesting that there
is a method, indeed several methods, for control-
ling the invariant density of a map, and this is
of practical use in areas such as the modeling of
data (see [Boyarsky & Goéra, 2002]). There are sev-
eral key references on the FPO, the most notable
being the book by Lasota and Mackey [1994]. The
background material in this section is quite well
known.

Normally, when we iterate a chaotic map on a
computer starting from some initial condition z,
the iterates fall chaotically on some attractor. It
may be difficult to see the attractor if we just look
at the time-series of the iterates. If we partition the
state space into a series of bins, and count the frac-
tion of iterates in each bin, a statistical picture of
the chaotic attractor emerges. For almost all initial
conditions (with respect to Lebesgue measure), the
same picture emerges: a unique invariant density
p(x). It is true that for certain initial conditions (a
set, of points of Lebesgue measure zero made up of
rational numbers, or extreme points) other invari-
ant densities are possible, but for the maps we will
be considering, there will be only one physically rel-
evant invariant density [Schuster, 1989]. This den-
sity is stable if a small amount of noise is added
to the system. In order to characterize the den-
sity mathematically, we consider an ensemble of ini-
tial conditions described by a probability density
function po(z) and observe how it changes as the
entire ensemble is iterated. Eventually, the invari-
ant density is reached, after, say n iterates. Fur-
ther iteration of the ensemble of points just gives
the invariant density p(x) each time. The collec-
tion of initial conditions reaches a stable fixed-point.
We now define the Frobenius—Perron operator, P,
which is a linear operator acting on distributions of
points:

Pn+1 = Fpn (1)



2.1.

The invariant density is a fixed point of the
Frobenius—Perron operator (FPO). More formally,
consider the iterates of some one-dimensional map,
f(x). An initial condition z will map to f(x¢), and
a delta-function distribution §(z — xg) will map to
0(x — f(xp)) after one iteration. Now, utilizing the
sifting property of delta functions,

/ F(@)6(z — z0)dz = f(z0) 2)

we get the following relationship:

The Frobenius—Perron equation

5z — f(z0)) = /0 5 — FW)3(y —)dy  (3)

Now we simply replace the 6(y — x¢) with the more
general p,(z), some arbitrary density after n itera-
tions of f(x), to get the Frobenius—Perron equation:

1
pri () = /0 (@)@ — f@))dy ()

The invariant density p(x) is a fixed point of Eq. (4),
and so we get:

plz) = /0 p(2)8( — F(y)dy (5)

The Frobenius—Perron equation governs the time
evolution of some arbitrary distribution of initial
conditions py,(x) under some mapping f(x). We
shall only be concerned with mappings on the unit
interval (hence the limits of integration in the above
equations). Equation (4) is not particularly useful
in itself. We now show how to recast it in a usable
form.

2.2. The Frobenius—Perron
operator in explicit form

Consider some one-dimensional map f acting on
the unit interval, and an arbitrary subset of the
state-space, A. Let p, and p,11 be densities at time
steps n and n + 1, respectively. From conservation
of probability, we can write that:

[ psaterts = [ ey (6)

The right-hand integral must consist of all points
mapped to A under one iteration of the map. There-
fore A’ is the preimage of A under the mapping f.
We denote the preimage of A as A’ = f~1(A). Sup-
pose A is an interval contained in [0,1] of the form
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A = [a,z]. A may have many preimages under the
mapping f. Equation (6) can be written as:

/ pr1(y)dy = / pn(y)dy (7)
a fﬁl([avw])

Now take the derivative with respect to x to get:
d
pen@) = 5[ gy (3)
A2 J=1(fa,])

Finally, the invariant density will be a fixed point
of this equation, so we drop the subscripts to get:

d
P = g | ooy )

Equation (9) is the most common form of the FPO.
For example, to find the invariant density of the
logistic map f(z) = 4x(1 — z), we first find the
preimages of the interval [0, z]. These can be easily
found as

1 1 1 1
F740,2) = [O, 5 5\/1 — LL'] U [2 + 5\/1 -z, 1}
Equation (9) then becomes:
d [y2-1/2vi-z

-2 /0

d 1
_|_ -

dz 1/241/2y/1—x

Po(z) p(y)dy

p(y)dy (10)

Leibniz’s rule is used to evaluate the integrals in
Eq. (10):

d v(z)

dv du
i L, 0= F0E) G - S g

A simple calculation then gives us:

A5

+p(;+;m> (11)

Notice that this is a functional equation, and was
famously solved by Ulam and von Neumann [1947].

O —
mx(l —z)
There is no general analytic method for solving such
equations, although the invariant densities of some
of the other well-known chaotic maps have been
determined.

There is a useful alternative representation of
the FPO for one-dimensional piecewise monotonic
functions which is often cited in the literature. If we

Pp(x)
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let x»(y) = f;'(y) be the k preimages of y under f,
with o = 1, . ,k, then Eq. (6) can be written as:
b x(b)
[rn@a =3[ Cp@a 2
a o 7/x (a)

In the right-hand integral, we make the substi-
tution £ — s (y). We must find the derivative of
Xo(y) by using the rule for derivatives of inverse
functions:

1 1

N _
T PO = ) ~ o)
Equation (12) becomes

pn Xo y))dy
/ pra(® d"”‘Z/ Py M

Since f'(x,(y)) is a constant and as [a, b] is an
arbitrary interval, the integrands on both sides must
be equal, allowing us to write:

) =2 e (15)

Finally, we rewrite Eq. (15) in operator form,
and slightly simpler notation:

p(x)
o

Equation (16) can be used to give functional
equations for the invariant densities of piecewise
linear maps.

Xo(y) = ( (13)

Po(y) =

2.3. The inverse Frobenius—Perron
problem and the FPO as a
Markov operator

We saw in the previous section how the FPO gives
rise to functional equations which must be solved for
p(z). This is a difficult (if not impossible) problem
for arbitrary continuous maps: Firstly, the invariant
density! may be a fractal or Cantor set, in which
case the intervals concerned have measure zero’;
secondly, it may not be possible to solve the result-
ing functional equations, assuming the invariant
measure is continuous. So the inverse problem, of
choosing an arbitrary invariant measure, and find-
ing which map gives rise to it, must seem like quite

an impossible task. All is not lost though. There
are two main approaches to this inverse Frobenius—
Perron problem (IFPP) in the literature. The first
method uses a conjugate function approach, the sec-
ond is based on approximation of the FPO by a
Markov matrix.

The conjugate function approach, which was
first described by Grossman and Thomae [1977],
makes use of the following equivalence relation
between two mappings: The maps f : I — [ and

g : J — J on intervals I and J are conjugate if

there exists a one-to-one map h : I o2 7 such that

g(x) = h(f[h"(2)]) (17)
The conjugating function h, assumed to be contin-
uous and sufficiently smooth, establishes a one-to-
one correspondence between the iterates of the two
maps [ and g. The invariant densities of g and h
are related as follows:
dh=Y(z)

dx

Numerous examples are given in the paper by
Grossman and Thomae. Also, this approach can
be used to find the invariant density of the logistic
map. It is conjugate to the tent map through the
conjugating function h(z) = sin?(rz/2) (see [Ott,
2002] for details). The invariant density of the tent
map is constant and equals one, and so Eq. (18)
reduces to

(18)

(19)

pg(x) = ‘dh_l(x)

dx

The inverse function if1 can be shown as
) = sm RRVZ, (20)

We can find the derivatlve, and thus the required
invariant density, as follows:

d (2 . 1

i) = g (Zsin Vi) = e

Figure 1 illustrates the two conjugate maps, the
conjugating function h(x) = sin®(7z/2), and the
invariant densities of the logistic and tent maps.

The Markov matrix approach, upon which our
new results are based, was first suggested by Ulam
[1960]. The FPO is a Markov operator, in the sense
that the density at step n + 1 is only a function of

(21)

1We assume that there is a single physically relevant invariant density, or natural invariant density [Ott, 2002], which is stable
in the presence of weak random noise. There are infinitely many invariant densities, but they are not physically relevant

[Schuster, 1989].

“The concept of sets of measure zero comes from Lebesgue integration, and means that they are negligible sets that can be
ignored, as they can be enclosed within an arbitrarily small interval [Strichartz, 2000].
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the density at step n (see [Luenberger, 1979]). Ulam
suggested that the state-space (the unit interval in
all of our work) be arbitrarily partitioned into N
subintervals, I1,...,In. Then define a probability
vector at step n:

P, = {/I pn(a:)da:,...,/]N pn(x)dx} (22)

Now introduce an N x N transition matrix, W,
which gives the probabilities of iterates moving from
any subinterval to any other subinterval in the par-
tition. Ulam hypothesized that the FPO could now
be approximated by the following matrix equation:

Py = WP, (23)

It is clear that as N — oo, Eq. (23) gives a bet-
ter and better approximation of the FPO. Ulam’s
hypothesis was later proved by Li [1976]. It is
remarkable that the statistical properties of chaotic
systems can be represented by such a simple lin-
ear equation, allowing us to bring many of the
results of positive matrix theory to bear on the
problem.

2.4. Other work on the IFPP and
applications

There has been a surprisingly large amount of work
done on controlling the statistical properties of 1-D
maps. Apart from the seminal work of Grossman
and Thomae cited earlier, we mention the paper
of Baranovsky and Daems [1995], in which piece-
wise linear Markov maps are used as references
whose statistical properties are known. These maps
are then transformed into non-Markov maps and

X

(b)

06 ‘ ]
05 1
X

(c)

(a) Logistic and tent maps, (b) Conjugating function, (c) Invariant densities of both maps.

smooth maps, using conjugating functions. They
also consider the problem of designing maps with
prescribed correlation functions.

Pingel, Schmelcher and Diakonos [Pingel et al.,
1999] manage to solve the Frobenius—Perron equa-
tion exactly for a class of unimodal chaotic maps,
whose invariant densities are members of a class
of beta distributions. By varying parameters in
the maps which control symmetry and pointedness,
they can obtain a variety of different invariant den-
sities. Interestingly, the logistic map is a member of
their class of maps. This group subsequently devel-
oped a Monte-Carlo approach, based on their class
of parameterized maps, for generating maps with
desired invariant densities and correlation functions
[Diakonos et al., 1999].

In a series of papers, the group led by Setti have
studied the Markov approach to the IFPP with a
view to applying it to signal processing tasks (see
especially [Setti et al., 2002] and the copious refer-
ences therein). They consider a variety of piecewise
linear maps including n-way Bernoulli shifts and
develop a matrix-tensor formulation for quantifying
high-order correlations of such maps. In [Setti et al.,
2002], they also discuss applying chaos to help with
EMC (electromagnetic compatibility) issues, and
they discuss the use of chaos in spread-spectrum
communication schemes.

Another active area of research is the use of
chaotic maps to model packet traffic in computer
networks. Packet traffic is notoriously prone to
bursts, and chaotic maps are ideal for modeling
the fractal properties of the traffic. Mondragon
neatly summarizes the previous work in this area in
[Mondragon, 1999], and introduces some different
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types of intermittency maps along with a discus-
sion of the statistical properties of these maps.

3. A Matrix Method for Solving
the IFPP

A recent analysis of the Transmission Control
Protocol (TCP) in synchronized communication
networks [Shorten et al., 2003; Berman et al., 2004]
gave rise to a positive matrix with special properties
that allow us to solve the IFPP in an elegant way.
In the TCP protocol, each data source is allocated
a congestion window which governs how much data
it can send. The protocol uses an Additive-Increase
Multiplicative-Decrease (AIMD) algorithm for allo-
cating window size: if the network is uncongested,
the amount of data each source can send increases
additively, but when congestion is detected, the
sources back off in a multiplicative way [Tanen-
baum, 2002]. It can be shown that if there are n
sources competing for some finite bandwidth, and
all these sources are operating the TCP conges-
tion control algorithm in the presence of a drop-tail
buffer bottleneck, then the dynamics of the system
may be modeled by the following matrix equation:

W(k+1) =AW (k) (24)
where W (k) is a vector of the congestion win-

dows of each source. The matrix A has the
form:

ﬂl 0 e 0 aq
0 ﬁz 0 0 1 a9
A= . , + — :
: 0 -0
>
0 o .- ﬂn — oy,
x(1=p1 1= 1—13,) (25)

The «; are the additive increase parameters for each
of the n sources, and the 3; are the corresponding
multiplicative decrease parameters. The matrix A
has many interesting properties which we outline
here:

1. Matrix A is column stochastic (which means
each column sums to 1).

2. The matrix is a positive matrix (all entries are
positive real numbers).

3. The matrix has a single dominant eigenvalue of
value 1.

4. There is a single eigenvector of A in the posi-
tive orthant called the Perron eigenvector, cor-
responding to the dominant eigenvalue, whose

value is given by:
o[ e e
N R R e A
5. If the eigenvalues (\;) and the f; are arranged in

decreasing order, then the following interlacing
scheme holds

1:/\1>512/\22/822"'2An25n (27)

(26)

The interlacing result and the form of the Perron
eigenvector are given in the paper by Wirth [Wirth
et al., 2006], and are based on standard results on
the symmetric eigenvalue problem (see for exam-
ple [Golub & van Loan, 1996], or [Horn & Johnson,
1985)).

We will be using the A matrix to describe
the transition probabilities between intervals in a
partition. At the heart of our synthesis approach
is the Perron eigenvector of A: being parameter-
ized in terms of the «; and J; unlocks the Inverse
Frobenius—Perron Problem.

Ulam’s conjecture was that the princi-
ple eigenvector of a Markov process is the
invariant density of that process, and that
transformations on the interval could be
approximated using this matrix approach.

We have a way of choosing our invariant den-
sity first, and automatically determining a Markov
process that gave rise to it. (Note that the Markov
process is not unique.) The Markov process can then
easily be turned into a chaotic map — in other
words, a solution to the Inverse Ulam problem, as
indicated by Bollt [2000].

3.1.

Suppose that the desired invariant density (Perron
eigenvector) g is:

xl = p=1[01,00,...,00) (28)

Choose the 3; subject to the constraint: 0 <
B; < 1, the §; control depends on how rapidly the
map converges on the invariant density (see [Rogers
et al., 2008]). Often, we find it convenient to keep
all the §; equal. Having chosen the (3;, determine
the «; as follows:

Synthesis procedure

ar =6(1-75)
az = 0a(1 — (o)
Qp = 571(1 - 671)



Now form the matrix A from the a; and j3;:

61 0 -+ 0 o1
0 B 0 0 1 e}
A= . . + n :
: 0 : 0
Q;
0 0 o) 2 \a
X<1*ﬁ1 1*/82 1*577/)

Next, we let the A matrix represent a 1-D
map on the unit interval to itself. We partition the
unit interval into n equal subintervals, {Iy,..., I}
(assuming A is an n X n matrix). Note that the par-
tition can also be nonuniform. Let entry a; of A
denote the probability of a transition from subin-
terval I; to I;. To construct the map, place a line
segment of slope =1 /a5 in the square defined by the
subintervals I;, I;, as illustrated in Fig. 2. By con-
trolling the slope of the line segment, we can control
how much of the overall subinterval will interact
with that portion of the map, which in turn relates
to the transition probabilities. In Fig. 2, the proba-
bility of a transition from Iy to I; is 0.5, correspond-
ing to a line of slope 2 in that region. The rest of
the chaotic map is constructed similarly.

3.2. Exzample

We now give an example of the synthesis procedure:
Invariant density z4 = p = [1,2,3]. We let 5; = 0.1

A xn+1

—
¥

\
A A !
| / Y
1
M Y 1
0 f— — X,
I e I " I
j n
Fig. 2. Illustration of the construction of a 1-D map from a

Markov matrix.
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Fig. 3. One-dimensional chaotic map with partition on unit-
interval shown.

for convenience. The values of «; are computed to
be [0.9,1.8,2.7]. The transition matrix A is then
found to be:

025 0.15 0.15
A=103 04 03 (29)
045 0.45 0.55

A is clearly column stochastic, and has eigen-
values of [1,0.1,0.1], which we could have deduced
from the interlacing property mentioned earlier.
Figure 3 shows the one-dimensional map corre-
sponding to matrix A and constructed in the man-
ner outlined above. Figure 4 is the invariant density
of the map after 20000 iterations. The y-axis has
been scaled to allow a ready comparison with 4. A
typical chaotic time-series from the map is shown
in Fig. 5.

35

Invariant Density

2
Subinterval Number

Fig. 4. Invariant density of map in Fig. 3.
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3.3. Comparison with other methods

As was mentioned earlier, there are several
approaches to the IFPP described in the literature.
They generally fall under three main headings:

1. Integration of the FPO
Examples of this approach can be seen in the
work of Pingel and the work of Kohda [Pingel
et al., 1999; Kohda, 2002]. Usually, the map
and the density are assumed to have a certain
form, or belong to a class of functions. For cer-
tain cases, such as unimodal maps, this yields
closed form solutions to the Frobenius—Perron
equation.

2. Conjugate-function approach
In this approach, which was suggested by Ulam
[1960], one tries to find a known invariant density
(belonging to a known map) which can be conju-
gated (transformed via a simple function) to the
desired invariant density. The required map can
then be found via the conjugating function. This
method is described in detail by Grossman and
Thomae [1977].

3. Matrix-based approach
These methods rely on the Ulam conjecture.
Indeed, Bollt [2000] calls this approach to the
IFPP the Inverse Ulam problem (IUP). The only
approach which is directly comparable to ours is
the method of Gora and Boyarsky. Their matrix
method is outlined in their 1993 paper [Gora &
Boyarsky, 1993] and more recently in their book
[Boyarksy & Géra, 1997].

Time-series of chaotic map in Fig. 3.

3.3.1. Three-band matrix solution to

the IFPP

In [Gora & Boyarsky, 1993], the authors introduce a
new class of piecewise linear transformation called
a semi-Markov process, and a special matrix called
a three-band matrix. They go on to prove a num-
ber of theorems around these new structures, show-
ing that given some piecewise constant density on
intervals of a partition, it is always possible to find
a semi-Markov transformation that leaves the den-
sity invariant. We will show how they generate the
three-band matrix, and then compare their method
with our own using some examples.

Definition. A semi-Markov piecewise linear trans-
formation, f, is a three-band transformation if its
transition matrix A = (ay) satisfies: for any 1 <
ZSN,alj:OIfll—]|>1

Theorem 3.1 [Gora & Boyarksy, 1993]. Let f be
a three-band transformation with transition matriz
A=(as). Let p be any f-invariant density and
pi=plr,i=1,...,N, then for 2 <i < N we have:

Gjj—1 " Pi = Aj—14 ° Pi—1 (30)

A three-band matrix is one in which all the
entries are zero except for the main diagonal entries
and the entries adjacent to the main diagonal on
either side. In terms of transitions between inter-
vals on a partition, points may only be mapped
to adjacent intervals, or stay in the same interval.
The transition matrix is not symmetric in general.



Also, there exist infinitely many three-band trans-
formations which preserve a given density function.
This is in contrast to our method where the transi-
tion matrix is unique, given the «; and f;.

Equation (30) imposes a condition on the off-
diagonal nonzero entries. Once this condition is
satisfied, the rest of the entries may be chosen arbi-
trarily, ensuring that the matrix is column (or row)
stochastic, of course.

Example. We will synthesize a chaotic map with the
following invariant density: p = (5/16)(1,8,4,2,1)
first using the three-band approach, and then using
our approach. Applying Eq. (30), we get the follow-
ing conditions:

40 5
Tg 921 = 7g 12 = 8ag1 = a1z
20 40
16 932 = 7¢ @23 = agz = 2a93
10 20
Tg @43 = g 931 = 043 = 2a34
5 10
16 954 = 1 045 = a54 = 2045

Now we arbitrarily choose the entries as follows:
a1 = 0.1 = a1a = 0.8, azo = 0.4 = a9z = 0.2,
as3 = 0.4 = agy = 0.2, asgy = 0.8 = a45 = 0.4. The
transition matrix now looks like:

0.8 0 O 0

0.1 02 0 0
A=10 04 02 0
0 0 04 0.4

0 O 0 038

0.9 g
0.8 .
07t —
0.6 .

* 050 1
0.4f —
03 —
02 —

011 B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X
n

Fig. 6. Chaotic map synthesized using the matrix method
of Gora and Boyarsky.
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1

0.9 !

0.8f 1

0.7r 4

0.6 q

0.5f q

0.4f 1

0.3 1

0.2 1

0.1, .

Il Il Il Il Il
00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 7. Chaotic map with same invariant density as that in
Fig. 6.

Next, we fill in the gaps, ensuring the matrix is row

stochastic, to get:

02 08 0 0 O
01 07 02 0 O

A=10 04 04 02 O
0 0 04 02 04
0 0 0 08 0.2

Matrix A has the following eigenvalues: [1.0,0.786,
0.31,0.031, —0.42], and its dominant eigenvector
corresponds to the desired invariant density. The
chaotic map arising from A is shown in Fig. 6,
and a chaotic map generated using our proce-
dure (using §; = 0.1) is shown in Fig. 7. It is
extraordinary that different chaotic maps give rise
to the same invariant density. Indeed, there are
an infinite number of possible maps, based both
on our method, and that of Gora and Boyarsky,
that would give the same density. The main disad-
vantage of their method is that there are N — 1
independent parameters that must be chosen. In
[Gora & Boyarsky, 1993], the authors do men-
tion that additional criteria (such as Lyapunov
exponents) need to be used to ensure the map is
unique.

4. Autocorrelation Properties

Apart from the invariant density, another key sta-
tistical property of chaotic maps is autocorrelation,
which can be thought of as a measure of how quickly
two nearby trajectories diverge. In this work, it is
also related to how quickly the invariant density
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is approached. The autocorrelation function of a
chaotic map decays from one down to zero because
of sensitivity to initial conditions. In the maps we
have been studying, the autocorrelation function is
heavily dependent on the value of the (; parame-
ters. For large values of 3; the diagonal values of A
are approximately equal to (3;, and the off-diagonal
entries are close to zero because of the 1 — 3; terms
in Eq. (25). The slopes of the segments in the map
are thus close to 1, and nearby trajectories diverge
slowly. The autocorrelation function decays slowly
to zero in this case. If §; are close to zero, then the
A matrix is dominated by «a; terms. The values of
the slopes tend to be large, and nearby trajecto-
ries diverge rapidly, leading to a rapid decay of the
autocorrelation function (see Fig. 8). It is clearly

1
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Fig. 8.

invariant density L= [1;2;3].

of interest that in synthesizing chaos we have this
second degree of freedom, apart from the invariant
density itself.

The autocorrelation function R(7) is defined as
[Box et al., 1994]:

R(r) = gig; (31)
where
1 M—1
C(r) =37 2_ (@i = P)(@wirr = 7)
=1
1 M—1 B ) B
== > (zi —2)(f (i) =) (32)
1
o5 1
% 02 04 06 08 1

‘e ce et \..:t C et. P .« o
0 200 400 600 800 1000
Iteration Number

(e)

0 10 20 30 40
lag
(f)

(a)—(c) 1-D map, time-series and autocorrelation plots with [; = 0:9; (d)—(f) [4 = 0:1. Both maps have the same



and C(0) is the variance

(33)

M

1 .

C(0) =o0% = 7 g (z; — T)?
i=1

Note that f(7) denotes 7-times composition of the
map f, and M is the number of points in the
time-series.

These equations may be used to determine
the autocorrelation from the chaotic time-series.
It is also possible to use the Markov property of
the map to write down an expression in terms
of the map parameters and transition matrix
elements:

x(j) is the value of state j
x(k) is the value of state k
p; is the probability of being in state j
pjkr is the probability of moving from state j to
state k in 7 time-steps
N is the number of states in the Markov chain.
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Autocorrelation

5 10 15 20
lag

Fig. 9. Actual and theoretical (dotted line) autocorrelation
values for a 20 x 20 transition matrix/map.

We also have that
N

Pik(T) = D Djn (T = 1) = (A7)

n=1

(35)

The x variable can take on any value within
a subinterval (state), but as the invariant densities
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Fig. 10.

Lag-1 autocorrelation coefficient variation against [; for three different invariant densities.
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are constant within a subinterval, the midpoint of
each subinterval can be taken as the value of x. The
expression for the autocorrelation is then

R(T)ZézN:ZNX%_%) (%_%>

j=1k=1
aj T —2
A7)y —
X A (36)
where
N )
2 (673 ) 21— 1
w_;1—@- 2N (37)

Here we have assumed that the trajectory is ergodic
and so the time-average and space-average of x
are equal, and that the choice of initial condition
is almost always unimportant. Clearly Eq. (36) is
an approximation but it becomes very close to
the real autocorrelation as N gets large. Figure 9
shows a typical autocorrelation curve from a chaotic
time-series generated from a 20 x 20 transition
matrix, along with the predicted value using
Eq. (36).

The values of the correlation coefficients appear
to increase linearly with ; as illustrated in Fig. 10.
Here we show variation in the lag-1 autocorrelation
coefficient C'(1) against f3; for three different invari-
ant distributions. Note that we vary all of the j;
from 0 to 1 in the graph. The constant invari-
ant density (lower left inset) and the twin-peak
density (lower right inset) have much lower val-
ues of autocorrelation coefficient compared with the
ramp-type invariant density (upper left inset). It
may be possible to model the effect of the 3; on the
correlation coefficients, and this will be the focus of
future work.

5. Switching Between Chaotic Maps

An interesting extension of the work in Sec. 3 is to
consider what happens when we switch randomly
between some set of 1-D maps at each iteration
of the process. This question has been considered
by Boyarsky and Gora [2002], where they use this
process to model the famous two-slit experiment in
quantum physics. In the work below, each chaotic
map’s invariant density acts like a basis vector, and
the overall invariant density of the switched sys-
tem is a linear combination of the basis invariant
densities.

Theorem 5.1. Let A(k) € Ay, As and let p, =
p(A(k)) be chosen from the set. Assume the values

of B; to be the same for both maps. Let p1 and po be
the invariant densities of the two maps. If we choose
either Ay or Ay randomly (identically distributed
independently) at each step of an iterative process
with fized probabilities p1 and ps respectively, then
the invariant density of the resultant orbit, p is

gwen by p =pip1 + p2p2.

Proof.
pr 0O 0 a1
0 B 0 0 a2
A= . +
0 0
0 O On, o
x(1=p1 1—p 1—0,)
B 0 - 0 a1
0 B 0 0 2
AQ = +
0 .0 :
0 0 - B, Qi
><(1_51 1— 5o 1_/8n>

It is well known that the expected value of the
transition matrix which results when switching ran-
domly between two matrices is given by Ay =
E(Il) = p1Ay + paAs.

By simple substitution we can show that

Bi1 0 -+ 0 pro + paiy
0 B 0 0 p1ag + pade
A= . , +
: 0 0
0 0 - By P10y, + p2duy,
X(l—ﬁl 1_/32 1_571)

Ap thus has a Perron eigenvector of

T |:p1041 + 201 prag + padia
xp =

1-p 7 1—=py 77
plan+p26¢n
P1n T P20 38
S ] (39)
u

Theorem 3.1 shows that when the values of 3 are
the same in each matrix, the overall invariant den-
sity is just a weighted sum of the invariant den-
sities of the original maps. This result also holds
when switching between any number of maps. We
illustrate this in the figures below where we switch
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Fig. 11. State-space plot of switched-chaotic map.

between two maps. The maps have invariant den-
sities p1 = 0.1[1,2,3,4] and py = 0.1[4,3,2,1], and
each map is chosen with probability 0.5. As can be
seen in Fig. 11 the state-space plot of the switched
system is just the superposition of the two indi-
vidual maps, and the invariant density shown in
Fig. 12 is the average of the two individual invariant
densities.

We now look at a more general case where the
values of f3; are not necessarily the same in each
matrix.

Theorem 5.2. Let A(k) € Ay, Ag,..., Ay and let
pr = p(A(k)) be chosen from the set. Let I =
A(k)A(k —1)--- AQ1). If A(k) represents a chaotic

0.35

0.25¢

o
¥

o
-
&)

Invariant Density r

©
—

0.05¢

1 2 3 4

Subinterval Number

Fig. 12. Invariant density of switched chaotic map: average
of constituent invariant densities.
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map, then the expected invariant density obtained
by switching randomly between the A(k) is given
by the Perron eigenvector of the following matriz:
B =p1A1 +p2As+ -+ pmAnm

Proof. The expected value, E(Ily) = (p141 +
p2As + - + puAn)® = BF for any k. Given a
stochastic matrix P, there exists a unique probabil-
ity vector p > 0 such that Pp = p. Let zg be some
initial condition. We then have that the eigenvector

p= lim Przg (39)
k—o0

If P represents a map, then p is the invariant den-

sity of that map (Ulam’s conjecture). As long as

B is a stochastic matrix (easy to show), the result

follows. [

Unfortunately, Theorem 4.2 does not give us a
closed form expression for the expected invariant
density, though it is possible to obtain expressions
when the number and dimension of the matrices are
small.

1. Switching between two 2[] 2 matrices
As before, we let the probability of choosing A;
be p; and that of choosing A, be ps, where
p1 + po = 1. It is assumed that the values of
0; are different for both matrices. The expected
value of the overall transition matrix resulting
from the switching is:

B =pi1 A1 + p2Ao

D) e w
</?01 ;L) + (;:) (1 -8 1 52)}

)T

=DP1

+p2

To find the Perron eigenvector (x,y)", we solve
the following matrix equation, where the terms
a---d represent the complicated expressions
when the above equation is multiplied out:

)6)-C)

Solving Eq. (40), arbitrarily assuming y = 1, we
find that the Perron eigenvector has the follow-
ing form:

(40)

pro (1 — B2) + pacri (1 *“?2)
praz(l — B1) + paca(1 — B1)]
1

(41)
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2. Switching between three 2 ] 2 matrices

If we have three matrices Ay, Ao, A3 with associated probabilities p1, ps and ps, it is straightforward to
show that the Perron eigenvector is as follows, again assuming that y = 1:

)- :

1) (42)
Comparing this with Eq. (41), a pattern emerges, allowing us to write down a general expression for
switching between N different 2 x 2 matrices:

proa (1 — B2) + pada (1 — [:32) + psai (1 —
prag(l — Br) + pada(l — f1) + psaia(l —
1

B
5

N
Zpyzau(l — B2i)
i1

N
Z picoi (1 — Bu;)
i—1

1

. Switching between two 3| 3 matrices
As the matrices get bigger, the calculations become more laborious. For the 3 x 3 case, we find the
Perron eigenvector (z,y, 2)” to have the following form:

pioa(1— B)* + pséa (1 — @) + pipa(1 = B)(1 — @)(al +d1)
T pros(l — B)* + pads(1 — B)* + pip2(l — B)(1 = B)(as + é3)
y | = plaa(l = B)* + prda(l — B) +pip2(1 = B)(1 — 5:)(062 + do) (44)
z plas(l— B)% + p3ds(l — )% + pip2(1 — B)(1 — B)(as + as)
1

Here, we have assumed z = 1 to fix the vector, and we have also assumed [ = 2 = 83 = 8 for matrix
Aq, and for matrix A all of the 3 values are equal to 3. There is a pleasing symmetry to the expressions,
although we have not been able to write it in a simpler form.

Another interesting case is what is the result-
ing invariant density when we switch periodically
between two of the synthesized chaotic maps. It
turns out that it does not matter what order the
maps are iterated in, periodic switching and ran-
dom switching lead to the same result. We outline
the proof here.

Theorem 5.3. Let Ay and As be two transition
matrices with corresponding chaotic maps fi1 and
fo. Let the transition matrices be rank 1 matri-
ces (or close to rank 1 matrices), e.g. B; — 0. Let
f1 and fs possess invariant densities of p1 and po,
respectively. Suppose we iterate, switching periodi-
cally between maps f1 and fo. If t1 and ty are the
fractions of time spent iterating maps fi and fo,
respectively, then the resultant invariant density is
gwen by p = t1p1 + t2pa2.

Outline Proof. We consider two different situations.
First, iterate map f; N times, and then iterate map

fo N times, so that the overall period is 2/N. Start-
ing from an initial condition xg, we have:
2 N
20— fi(wo) = i (@o) = - = i (@0)
N iterates will approach the invariant density p;

asymptotically for large N, by definition. Now
switch to map fo and iterate for IV iterations:

(o) = 2 — fula) — F () = -
= ()

The N iterates of fy will approach the invariant den-
sity pa, but considering all 2N iterates together, the
invariant density is p = (p1 + p2)/2. This is clearly
true for large N but what happens if V is small?
Let N = 1, and consider the iterates of fi as
supplying initial conditions for fs and vice versa.
An ensemble of initial conditions, when mapped
under f1, will have an invariant density p1, and



similarly fo will have an invariant density ps. The
initial conditions will not be uniformly distributed
across the interval [0, 1], but will be piecewise con-
stant across the subintervals of the Markov parti-
tion. (It is a standard result that piecewise affine
maps have piecewise constant invariant densities.)
In rank 1 matrices all columns are equal, and thus
the slopes in each subinterval are the same. It makes
no difference which subinterval the initial conditions
are in, so long as they are uniformly distributed in
that subinterval (see Fig. 13). So, switching with
N =1 for, say, M periods, will lead to the ensemble
of M initial conditions from map f; being mapped
under fy resulting in an invariant density po, and
similarly the other M initial conditions will result
in an invariant density p;. Taking all 2M iter-
ates together, the invariant density is, once again,

p=(p1+p2)/2. U

Clearly, this result holds for any type of peri-
odic sequence between any number of maps, so long

x1'11-1

Xn
0 1
A T A
5 e
c S
53
5
o9
20
23
=
Xn
1 2 3
Subintervals
Fig. 13. Piecewise constant distribution of initial conditions

being applied to chaotic map derived from a rank 1 transition
matrix.
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as they are rank 1 matrices (or close to rank 1
matrices). The result also implies that periodic
switching is just a special case of random switch-
ing for these types of maps.

6. Applications to Image Generation

We have shown how to synthesize one-dimensional
maps using the method based on positive matrix
theory, and now wish to extend this method to two-
dimensional maps, and possibly to N-dimensional
maps. We describe two possible ways of doing
this. The first method shown below generates a
pseudo two-dimensional chaotic map from a one-
dimensional map. A second method is given by
Bollt [2000] and is based on affine functions.
These methods are easily extendable to higher-
dimensions. We then show how an image can be
embedded within the invariant density of a 2-D
map, so that the iteration of the map gradually
reveals the picture.

6.1.

We start by partitioning the unit square into N2
smaller squares each of side 1/N. We then num-
ber the squares consecutively from 1 to N?, and
arrange the squares in a line, and then rescale the
squares so that they are all contained in the unit
interval. We form a 1-D vector of the desired densi-
ties, and use the synthesis method to form a tran-
sition matrix, as outlined elsewhere. The transition
matrix is transformed into a 1-D chaotic map, pro-
ducing some sequence of iterates p,. We generate
the 2-D map essentially by transforming this 1-D
time series into our required form, by mapping each
iterate to a point in the unit square. The x,, iterates
are produced from the p, using a simple modulo
operation. We generate the v, iterates by perform-
ing a Bernoulli shift on each p,, iterate. This ensures
that the sequence of y iterates is also chaotic. The
transformations required are:

Pseudo 2-D map from 1-D map

Zp = Np, mod 1 (45)
kpn, — |k N
Y = Pn LPJ"VJHP"J, k>1  (46)

6.2. N-dimensional maps

Clearly this method is easily extendable to
N-dimensional maps. For the 3-D case, we partition
the unit cube into N smaller cubes, and form a one-
dimensional vector of desired densities in each little
cube. We then work backwards, this time applying
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State-space plot of 2.0 map with cheguered invariant density

T

0 01 0z 03 0.4

Fig. 14.

two Bernoulli shifts to each chaotic iterate to gen-
erate a three-dimensional chaotic trajectory.

6.3. Bollt’s affine function method

In [Bollt, 2000], the author introduces piecewise
affine transformations f, : Q — @, Q € R?, where
the Q; form a grid, which have similar properties to
Anosov diffeomorphisms in that they have expand-
ing and contracting directions and are invertible.
The transformation is designed to have the column
stochastic matrix A as its Frobenius—Perron oper-
ator. In his paper, Bollt uses control theory meth-
ods to achieve a desired invariant density. We shall
apply our new synthesis method to generate the
transition matrix, and then use Bollt’s affine func-
tions to realize the chaotic map. The construction of
the affine functions is illustrated in Fig. 16. Follow-
ing Bollt’s notation, we partition the unit square
into a grid of sub-squares (); each of side e. The
transition matrix A then determines the propor-
tion of each (); that maps to another cell Q);. The
rule used is that 100 - A% of cell Q; is mapped
onto 100 - A/ >, A% of Q;. Horizontal strips
of the cell @; are compressed in the z-direction,
and expanded in the y-direction using the affine

05 06 07 08 09 1
X{n)

Synthesized 2-D map with chequer-board invariant density.

transformation:
g i
£9(z,y) = Z.( )
(Jnj (y)
/
Amji 0
B AIjj_
0 Ay,ji
Ay
!
T — T Ty
i , (47)
Y= Y5 Yl

Equation (47) takes the rectangle Ry = Az x
Ay (as shown in Fig. 16) and maps it onto the rect-
angle R, = Az’ x Ayl;. In our implementation, we
mapped rectangles progressively starting from the
lower edge of @); onto the left edge of @;, though
there are other possibilities.

The action of the map 47 is similar to the
action of the Baker’s map, leading to striations
along the y-direction. There is also self-similarity
evident in the density of orbits in each partition
element, which arises naturally from the action of
the map, as illustrated in Fig. 15.
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Fig. 15.

Bollt mentions several lemmas relating to the
transformation f,, including that the transfor-
mation is hyperbolic if the transition matrix A
is irreducible and aperiodic, and that the grid
does indeed form a Markov partition under these
circumstances.

6.4. Statistical image generation

An interesting application of 2-D map synthesis is
that one can generate maps which, upon iteration,
will generate a desired pattern, image or code. The
image or code only appears after many thousands
of iterations. As an example, we will encode part of

Fig. 16.

Iterates of a synthesized map with

I=1;2; 3; 4 showing self-similar structure.

the well-known Lena image in a 2-D chaotic map,
and then observe how the image emerges upon iter-
ation of the map.

We have taken a small section of the origi-
nal image (30 x 30 pixels) in order to keep the
transition matrix of a manageable size. The image
is a matrix of numbers ranging from 1 to 128
representing gray-scales from black to white. We
converted this matrix to a 900 x 1 vector represent-
ing the invariant density of a one-dimensional map,
using the synthesis method presented in Sec. 3.
We then synthesized the required 900 x 900 tran-
sition matrix which would give rise to this invari-
ant density (using ; = 0.1). This matrix was then

Bollt’s piecewise affine function designed as an Anosov diffeomorphism.
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Fig. 17. Steps involved in encoding an image.

used to generate a set of affine functions accord-
ing to Bollt’s method, and these functions were
iterated from some random initial condition in the
unit square. The procedure is synopsized in Fig. 17.

n 15 o F3 n

Fig. 18. Part of the Lena image (30 x 30 pixels).

The original image is shown in Fig. 18, and Figs. 19
and 20 show the image emerging from the chaos.
Depending on the resolution and size of the image,
there will come a point where further iterations will
actually degrade the image as more and more of the
unit square gets filled in.

An alternative to Bollt’s affine function
method, which rids the state-space structure of any
self-similarity, is to map each rectangle Ii; onto the
entire target partition element ();, and rotate the
points in Q; by /2 radians.

; ()
£ y) = |
gn ()
/
0 Lyji T — T3y xlji
B Ay |- Y—Yi ’ Y,
10 .
(48)
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Fig. 19. Lena emerges as the map is iterated.

Fig. 20. 80000 iterations of the map.
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Fig. 21.

7. Conclusions

The Inverse Frobenius—Perron problem (IFPP) has
achieved widespread attention in recent years as
it offers a way of controlling the invariant den-
sity of chaotic maps, which in turn may lead to
new ways to use chaos. In this paper, we described
a matrix method which we have developed for
solving the IFPP. In the method outlined, one
has complete control over the map in terms of
invariant density and autocorrelation function. The
method described is straightforward and amenable
to computer implementation. We also developed a
closed form approximation for the autocorrelation
and showed how it closely ties to expected val-
ues of autocorrelation. It was shown via simula-
tion how the autocorrelation coeflicients increase
linearly with 8. Modeling this variation will be a
focus of our continuing work on these fascinating
maps. The method described in the paper can be
used to generate desired distributions of (quasi-)
random numbers with desired decay of autocorrela-
tion coefficients, or to model chaotic phenomena or
time-series.

We also gave some fundamental results for
a switched-chaotic map system, where one may
obtain a desired invariant density by switching peri-
odically or randomly among a set of piecewise
linear maps. This class of positive matrices and
associated chaotic maps possess many interesting
properties, not least their parameterized solution to
the inverse eigenvalue problem. Finally, we showed
how the method could be extended to higher dimen-
sions, and presented an interesting application of
the IFPP by embedding an image into the invari-
ant density of a chaotic map. We hope this paper
will spur others into studying the theoretical and
practical aspects of these systems.

Noninvertible affine mapping with no self-similarity.
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