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Abstract In this article it is proved that there exist a large number of polynomials which have small
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1 Introduction and Main Results

In this paper the distribution of the discriminants of integer polynomials is investigated. In
particular, a lower bound for the number of polynomials which have small discriminant in both
the Euclidean and p-adic metrics is determined. Since, the p-adic norm of these discriminants is
small they are clearly divisible by large powers of p. This gives some information regarding the
distribution of the roots of polynomials and shows that a large number of integer polynomials
have roots which are simultaneously close in the p-adic and Euclidean norms. These and related
questions were first introduced and studied by Mahler [1] in 1964. Other results (detailed below)
have been separately proved for the real [2] and p-adic [3] fields. More information regarding
root separation for integer polynomials may be found in [4-7] and [8].
First some notation is needed. Throughout this paper,

P(f)=anf"+---+a1f+ao

is an integer polynomial with degree deg P = n and height H = H(P) = maxo<j<n |a;|. Let
11 (A1) be the Lebesgue measure of a measurable set A; C R, and us(Az) the Haar measure of
a measurable set Ay C Q. Using these definitions, define the product measure ;1 on R x Q,, by
setting p(A) = p1(A1)p2(As) for a set A = Ay x Ag. The cardinality of a set S will be denoted
by #S. We will use the Vinogradov symbols <« (and >>) where a < b implies that there exists
a constant C' > 0 such that a < Cb. If a < b < a then we write a < b.
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Let aq,...,ay be the complex roots of the polynomial P € Z[z]. The discriminant of P,
denoted by D(P) is defined as

D(P) = a?"? H (i — ;)%
1<i<j<n
Alternatively, D(P) can be defined as the determinant of a matrix containing only the coeffi-
cients of P. Hence D(P) € Z and if P does not have multiple roots then

1< |D(P)| < H(P)>" 2.
Consider the set of polynomials
P,.(Q)={P € Z[z] : degP < n,H(P) <Q}

and note that the cardinality of this set is comparable to Q"*!. Finally, let vy, v, € RT U {0}
and define the set of polynomials

Pu(@ v1,12) = {P € Pa(Q), 1 < [D(P)] < Q" 272", ID(P)], < @ 22},

where | - |, is the standard p-adic valuation. For this article we will consider P, (Q,v1,v1) and
for simplicity we will write P, (Q,v1) = Pn(Q, v1,v1).
Theorem 1.1 Letn >3 and 0 < vy < 1/3 and let Qp(n) € R be a large constant. Then

HP(Q,v1) > QT4 for all Q > Qo.

In [2] it was proved that #7P,(Q,v1,0) > Q"M ~2¥1 and in [3] that #P,(Q,0,v5) >
Q™t1=2v2 These results come from metric theorems of Diophantine approximation in the
real and p-adic fields respectively. To prove Theorem 1.1 it is necessary to prove a metric theo-
rem in simultaneous Diophantine approximation in R x Q,,. For n = 2 the discriminant has the
form D(P) = a? — 4apaz and the estimates can be calculated directly as follows. Define v such
that p~¥ < Q72¥1 < p~?*1. Choose as, with 0 < as < @Q such that p { az and fix a;. Then,
there exists 0 < s < p? such that for ap = s (mod pv) the linear congruence 4apas = a? (mod
p?) is satisfied. For any such triple (ao, a1, a2) we have |[D(P)], < p~% < Q~2*. It remains to
count the integers ¢ such that ag = s+ tp¥ and |a? — 4azag| < Q*2Y. From this, t must lie in
an interval of length at least Q2721 /(4ayp?) which implies that there are at least Q=41 such
t and therefore such ag. Thus #P5(Q,vy) > Q34v1,

From now on we assume that n > 3. Fix a set I x K where I is an interval contained in
[0,1) C R and K is a cylinder contained in Z,. Define the set £, = L, (vo, v1, co, o, Q) to be
the set of (z,w) € I x K such that the inequalities

|P(z)] < Q™™ |[P(w)]p < @™ (1.1)
and
SoQ' < |P(z)] < coQ' Y, §oQ 7 < [P (w)|p < coQ™ (1.2)
hold for some P € P, (Q). Theorem 1.1 will follow from Theorem 1.2 below.
Theorem 1.2 Letn > 3, vo+v1 =n/2 and 0 < vy < 1/3. For all real numbers k such that

0 < k < 1 there exist constants dy and cy such that

w(Ly (vg,v1,c0,00,Q)) > ru(I X K)  for Q sufficiently large.
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It can be readily verified using Dirichlet’s box principle that if ¢y = (n + 1)*/* then the
upper bounds in (1.1) and (1.2) hold for all (z,w) € I x K. The main difficulty of this paper
is to prove the existence of dy.

2 Preliminary Results
The following two lemmas show that there is no loss of generality in proving the theorems for
the set of irreducible, primitive polynomials P which satisfy

H(P) < |an|, lanlp > 1. (2.1)
Let P,(Q) denote the set of such polynomials with height H < @ and degree at most n. The
first lemma was proved in [9].
Lemma 2.1 Let E(z,w) be the set of (x,w) € R x Q, such that the inequality

| P(2)[|P(w)|, < H(P)™"
has infinitely many solutions in reducible polynomials P € Z[x] with deg P < n. Then pu(E(z,
w)) =0 forw >n—1.

The next lemma was proved in [10].

Lemma 2.2 Let p be a prime number and P € Z[z] be primitive and irreducible. Let C =
C(n,p) > 0 be a constant. There exists a natural number m, 0 < m < ¢(n), where ¢(n) > 0
is a constant depending only on n, with the following property. Let F(x) = P(x +m) and
T(x) =a"F(1/x). Then T(z) = bya™ + -+ + bixz + by € Z[z] satisfies

[bo| > H(T), |bnlp > 1.

The transformations to F' and T preserve the discriminant; i.e., D(P) = D(F) = D(T)
(see [2] for details).

Let P € P,(Q) have complex roots a, ..., a, and roots v1,...,7, in @, where @ is the
smallest field containing @Q,, and all algebraic numbers. From (2.1), it can be readily verified
that

la;| <1 and |yl <1 (2.2)

for i =1,...,n; i.e., the roots are bounded (see [11]). Define the sets

Si(a;) = {z eR: |z —q5| = 11<nii£n|:l;—a,;|}, 1<j<n,

Salm) = {w e Qi fw—ly = min fw—l,}, 1<k<n.

We will consider the sets Si(a;) and Sp(yy) for fixed j and k. Without loss of generality, we
will assume that j = k = 1. The other roots of P are reordered so that
lon —ao| < a1 —ag| <+ < far — anl,
=2l <=1l < < v = mlp-
The next lemma is proved in [11].
Lemma 2.3 Let z € Si1(ay) and w € S3(y1) where aq and v1 are complex and p-adic roots

of a polynomial P € Z[x] respectively. Then,
|z — 1| < n|P(2)||P'(2)| 7,
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w —lp < [Pw)]p| P'(w)]; "
[ — | < 2" min (|P(2)[|P" (1)1, (1P@)||P'(01)| o — a2)V/?),
[w =yl < min ([Pw)[p| P’ (1)l (P@) | P ()l = 20,)?)
hold.
The following theorem [12] will deal with the case of small derivatives.

Theorem 2.4 ([12, Theorem 1.3]) For any (z,w) € I x K, there exist a neighbourhood
W=UxV CIxK of (z,w) and a constant A > 0 with the following property: for any 6 >0
and ball B C W, there exists a constant E > 0 such that the set

U {@w) e B:|P@)] <6, [P(w)ly <6, [P'()] < Koo, |P'(w)]p < Kp}
PePn (Q)

has measure at most E&*u(B), where & = max{4, (?°Q" 1K K,) 26 D) 1.

Using the notation of [12], f(t) = (t,t%,...,t"), Ty =--- =T, =Q, R =7, g(Z) = 1 and
S = {p, o0} so that #S = 2.
3 Proof of Theorem 1.1

Following (2.1) we need only to prove the theorems for P € P,(Q). Let (z,w) € L,. Then,
there exists P € P,(Q) such that (1.1) and (1.2) hold. Let x € S1(a1) and w € Sa(y1), then

from Lemma 2.3, we obtain
|z — ai] < nepdy QT and  |w — 1|, < cody QU (3.1)
Let v1 < 1/3 so that from vy + v; = n/2 we have vy = 2v; + 8 which implies that
v — v =v1 + 0 (3.2)

for some 3 > 0. Develop the polynomial P’ as a Taylor series in the neighborhood of the roots
aq and 7y;. This will be demonstrated for the p-adic coordinate. Estimating each term of the
Taylor series P'(w) = Y1, (i) 7P (1) (w — 71)* ! gives

V1 — U 6 Q_’Ul
Pl — iy < @ < P2
. . . O Q*QH
P TS (j=1)(v1—vo) 0
| (71)|p|w ryl‘p <<Q < 4(%—2)

for j = 3,...,n and @ sufficiently large. The fact that P € Z[x] and (2.2) have been used to
obtain the trivial bound |PU)(y;)|, < 1. Thus,
5@ |P'(w)
2 < 2

Similarly in the real case, using (3.1) and (3.2), for @ sufficiently large, we obtain

1—vy /
60Q2 < |P2(:1:)| < |P'(a)| < 2|P'(x)] < 2c0Q* 1. (3.4)

(Again the trivial bound |PY)(a)| < @ is used for j > 2.) Using the facts that P'(a;) =
an [T1y(en — ;) and P'(y1) = an [ (71 — ), the formulae for the discriminants can be

b < 1P (), < 2P ()] < 200Q " (3.3)
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rewritten to obtain

ID(P)| = a2 [ (ci—0a)?| =P ()Pa* ] (ai—0ay)?,
1<i<j<n 2<i<j<n (3 5)
IDP)p=|ar** [T (=% =1P’olja I (i—)?
1<i<j<n p 2<i<j<n p
As all the roots are bounded, it follows from Lemma 2.2, (3.3), (3.4) and (3.5) that
|D(P)| < |P/(O£1)|2Q2n_4 < QQn—2—2v1, (3 6)

ID(P)|p < laz"[p| P (y)l; < @7

Thus, for every point (z,w) € L,, there exists a polynomial P € P,(Q) which satisfies (3.6).
Also, for any such point there exists a polynomial P with roots («, ;) satisfying the system
of inequalities

|z — ;| < nepdy QT w — 4, < cody QYT (3.7

for 1 < 4,5 < n. For each pair of roots (a;,7;) of P denote the set of solutions of (3.7) by
M;;j(P). Let M(P) = U, <; j<, Mij(P). Let s be the number of polynomials P € P,(Q)
which satisfy (3.6). By (3.7) and the inequalities

wp(I x K) < p(Ln) < sp(M(P)) < 28sn3cls,2Q 202t « 5@ 2vot2vi—1)

we obtain s > Q2vo—2v1+1l = Qn+1-4v1  Note that by Theorem 1.2 we may choose & to be close
to 1.

4 Proof of Theorem 1.2

Again, from the arguments in Section 2 we need only to prove the theorem for polynomials
which satisfy (2.1). Suppose that for dgp > 0 one or both of the lower bounds in (1.2) does not
hold. This defines two sets:

L, = {(z,w) satisfying (1.1) : [P'(z)| < coQ' ™", |P'(w)[, < 60Q™ "'},
L) = {(z,w) satisfying (1.1) : |P'(2)| < soQt v, |P'(w)], < coQ "'}

Then, £, = (I x K)\ (£, UL). It will be demonstrated that pu(L]) < 5=u(l x K).
Similar results can be obtained in exactly the same way for £!!. This will obviously imply
that p(Ly,) > ku(I x K).

First we deal the case of small first derivatives. Note that since v; < 1/3 there exists € > 0
such that v; = 1/3 —e. Choose a real number v > 0 such that v < 3¢/2 and let B,, denote the
set of (z,w) € L], satisfying

QT < P )| < @@, QT < [Pl < 00@ (4.)

Let B], be defined by £/, = B, U B,,. From Theorem 2.4, the measure of B), tends to zero as
Q — oo. Hence, for Q sufficiently large, u(B),) < 15" u(I x K). It remains to be shown that
1(Bn) < 255 u(I x K) for sufficiently small do.

Assume without loss of generality, that the closest roots of P to x and w are a; and ¥,
respectively. Estimates for |P’(aq)| and |P’(v1)| are now obtained. From Lemma 2.3, (1.1)
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and (4.1), it follows that
|z — 1| < ncoQP ™Y w — 1l < QY.
Using Taylor’s theorem for P’'(f) and (3.2) the inequalities
1 1
S IP'@I < [P(a) <2[P(w)],  SIP'(w)lp <[P (m)lp <2/ (w)ly
can be obtained in the same way as (3.3) and (3.4). Thus, from (4.1)
1 1
infvr'Y < |P'(a1)] < 2c0Q* "1, 5Q7U177 < |P'(m)]p < 200Q7 . (4.2)
Let o(P) denote the set of points for which (1.1) and (4.2) hold. Using Lemma 2.3 this set is
defined by the inequalities
|z = on| < ncoQ [P (a1)| 7, w = milp < Q7P ()l
Note that By, C Upep, (q) o(F). We will show that the measure of this union is small.
Choose two real numbers u; and us with the following properties:
u1+u2 - 1_27)1’
vo>up >2v +2y—1>0 — 1, (4.3)
vy > ug > 2v1 + 2y > vy,
That this is possible can be readily verified using the conditions on vy, vg and ~. Then, define
the set o1(P) as the set of (x,w) for which the inequalities
[z —on| < QT P (en)| ™ w =l < Q7P (r)l !

hold for ¢; to be chosen later. From (4.3) and @ sufficiently large we have that o(P) C o1(P).
The polynomial P is now developed as a Taylor series in o1 (P) and each term is estimated from

above. Only the real coordinate will be demonstrated. We have
1 ) . )
[P’ ()]l — an] < e1Q7™, FIP(])(al)IIx — i < QI

for j = 2,...,n. The fact that |PU)(a1)| < Q was used. Thus, from (4.3), |P(z)| < 2c,Q™"
for @ sufficiently large. It is similarly possible to estimate P’(x) on o1(P) so that |P'(z)| <

3co@ . In exactly the same way the inequalities
[P(w)lp <2Q7",  |P/(w)]p < 360Q ™™

can also be obtained.

Let b be the vector (ay,...,as) and let P2(Q) be the set of polynomials in P, (Q) which
have the same vector b. Note that the number of vectors b is at most (2Q +1)"~! < (3Q)"~*.
We now use Sprindzuk’s method of essential and inessential domains (see [11] for details). A
polynomial P € PP (Q) is called essential if yu(o1(P) No1(P')) < §u(o1(P)) for all polynomials
P’ € P2(Q). Tt is called inessential otherwise. Let E2(Q) be the set of essential P and I2(Q)

13

be the set of inessential P. Thus P2 (Q) = I?(Q) U E2(Q) and

U J(P):< U a(P)>U< U a(P)>.

PeP} (Q) PEER (Q) PERR (Q)
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First we consider the essential polynomials. Note that p(o(P)) < %Q_QU‘)+“1+“ZM(01 (P)).
Clearly > pepo gy #(01(P)) < 2u(I x K). Thus, from (4.3) and the fact that vy +v1 = n/2,
the set of points lying in sets o(P) for P € E®(Q) satisfies

nch72vo+u1+u2
(U U o)< ¥ wern=y 3 T ko)
b PeE} (Q) b PeRt (@) b PeR?(Q) '
n—1,2 n—1.2
S 3 COnQn—lQ—2vo+u1+u2#(I % K) _ 3 COnM(I % K)
Cc1 C1
Thus, by choosing ¢; = % the measure of the set of points lying in sets o(P) for P €

Up E2(Q) is at most 157 u(I x K).
Now, let P € IP(Q). Then there exists P’ € P2(Q) such that u(oy(P) N oy(P')) >
Su(o1(P)). Let R = P — P’ so that R(f) = b1 f + bo. Then, R satisfies

b1z + bo| <41 Q™™ |R(z)] = |br| < 6coQ' ",

(4.4)
[brw + b0|p <@, |R/(w)|p = |b1|p < 300Q™M

on o1(P) Noy(P"). From this it follows that |b;| < 6co@'~¥1. Define s; and sy such that
pt < Q < ptt! and p*2 < §p < p*>t!. Also note that 1 < 3 < p? for all primes p. Let
[-] denote the integer part. Then, as [bi|, < 360Q~"* < p*2*+3~[s1%1] we have by = pd} for
some integer by with (b},p) = 1 and L > [s;v1] — so — 3. Since K is a cylinder we can write
K = B(c,p7!) where ¢ € Z and |c|, = p~T for some T with T < I. Thus, if w € K then
|wl, = p~T and |hyw|, = p~T~L. There are now two cases to consider. First assume that
p~(THL) > Q=2 Then, as |byw + bol, < Q@ *2 we have |bo|, = |byw|, = p~ L so that
bo = pLb}) for some b} € Z. Thus bix + by = p=(bjz + b)) and [b;| < 6cop~LQI~* for i = 0, 1.
From (4.4) and previously it follows that

bz + by < deip™FQT™, biw + b, < pFQ T2

For an inessential polynomial P these inequalities will hold for some b}, ). Thus, the problem
has now been reduced to considering the measure of the set of points (x,w) for which the above
inequalities hold for some suitable b/, bj. The measure of the set of (z,w) satisfying this system
for a fixed b)) and b} is

—Uuir—u2 > —uir—u2
Q < 8a@

< &c
R A M |1

as b is an integer and (b},p) = 1. Next, for a fixed b}, we obtain an upper bound for the
number of bj such that by/by € I and bj/b) € K. From these two inclusions we have that
by € biI and bjy/b) = c+ > 0y a;p'™ with a; € {0,...,p — 1}. Assume that b{/b} lies in both
I and K and assume that ¢/b] also lies in K. Then
t 0 L N~ I
=g T ma
1 L =0
with m; € {0,...,p —1}. Thus t = b} + mebip! + --- > by + b} p'. Hence t — by, > p' and the
0
number of ¢ for which ¢/b] lies in both I and K is at most m® D |61 |u(I x K). Therefore,

pl
summing over all b] with |b}| < 6cop~ZQ1~"" we have that the set of (z,w) satisfying this
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system has measure at most
48cocip  FQI T M T 2TV (T x K) < 48c¢oerdopt T QT T2 T2 (T x K)
< 48000150p4+”1u(l X K)

from (4.3) and the definitions of s1, s5 and L. Clearly, there exists dy such that the measure of
the set of points (x,w) which lie in ¢y (P) for at least one P € I®(Q) is at most 1_T“,u(l x K).

Now we consider the second case when p_(T"'L) < Q7 *2. In this case we have that |by|, <
Q"2 < pl12l Hence, for Q sufficiently large, there exists by € Z such that by = pls1421=Tp).
We can also write by = pld = plorwl=Tpl—[s1wl+Ty et pf = pl-ls1wl+Ty g0 that #b) =
#b) < 12cop~ Q' "t and ||, = p~ L~ ls142l+T) a5 (1), p) = 1. Thus

Bz + U] < derp BT QT b 4 b, < plrel =T Q.

Again the measure of the set of (z,w) satisfying this system for a fixed bf, and bf is

Q—Ul—UQ Q—ul—ugpL—[slu2]+T
‘b//||b//| < 8¢y |b"‘
1 1ip 1

As before the number of b, for a fixed b is |bY|pu(I x K). Finally therefore, the measure of the

< 8¢y

set of (x,w) satisfying the system is at most
960061p_LQ1_”1Q_“l_“sz_[s”‘?HTu(I x K) = 96cole1_“1_“2_7’1p_[51“2]+Tp(I x K).
Using the definition of s; this is
< 96cperpte HIHT QL m—2u2—0 (] ¢ [,

which can be made arbitrarily small for @ sufficiently large by (4.3). This completes the proof
of the theorem.
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