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Abstract

A lower bound for the number of integer polynomials which simultaneously have “close” complex roots
and “close” p-adic roots is obtained.
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In this paper, information is obtained regarding the number of integer polynomials of degree
at least three which have close conjugate roots in the complex and p-adic fields simultaneously.
Before we proceed, some notation is needed. Throughout the paper, P is an integer polynomial,
so P € Z[x] where

P(f)y =anf" + - +aif +ao,

and has degree deg P < n and height H(P) = maXxo<;<, |a;|. We assume from now on that
n > 3. In general, a complex root of P will be denoted by « = «(P) and a p-adic root of P will
be denoted by y = y(P).

Let 1(A1) be the Lebesgue measure of a measurable set A1 C R, and u>(A>) the Haar
measure of a measurable set Ay C Q,. Using these definitions, define the product measure p
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on R x Q, by setting u(A) = p1(A)u2(Az) for aset A = Ay x Az. Throughout the paper,
#S§ stands for the cardinality of a set S. By < (>>), we will mean the Vinogradov symbols with
implicit constants depending only on n. If the phrase “Q sufficiently large” is used then this size
will also depend only on n.

Let o1 and a» be complex roots of an irreducible polynomial P. Define A, to be the infimum
of real numbers w for which the inequality

loy —aa| > H(P)™"

holds for H (P) sufficiently large and deg P < n. For any distinct roots o1, o of P € Z[x], of
degree deg P = n, n > 2, it is well known that the inequality

o) — o] > H(P)™"t!

holds (see [8] for details), i.e. A,, <n — 1.

The question of how sharp this inequality is remains open. It was proved by Evertse [7] that
A3 = 2 and it is not difficult to show that A, = 1. In [6], a special type of polynomial P is
constructed which demonstrates that A,, > % foroddn > 5 and A, > % for even n > 4.
Recently, Bugeaud and Dujella [5] have improved all known lower bounds for A, when they
showed that A, > 7 + 431__21 ) for n > 4. The polynomials constructed in these papers are exotic
and nothing is known of their quantity. An alternative approach was taken in [1] where it was
proved that A, > (n + 1)/3 for all n. Let P,(Q) = {P € Z[f] : degP < n, H(P) < Q}.
In that paper, the authors obtained an estimate for the number of polynomials with at least two

“close” real roots. More precisely in their Corollary 2 they show that there exist at least Q"%]
polynomials P € P,(Q) for which at least two of the roots of P satisfy the inequality

n+l
3

ley — 2| € Q7

When we use the Vinogradov symbol we suppress the dependence of the constant on n which we
consider to be fixed. In the present paper, it will similarly be demonstrated that there exist a large
number of polynomials which have both close real and close p-adic roots. Usually the subset
Pn(Q) C P,(Q) will be considered where P, (Q) is the set of irreducible P € P, (Q) such that

lanlp > 1, lan| = H(P)/2, ged(ap, ... an) = 1. (D
(The 2 is not essential but used for convenience, any positive constant greater than 1 will do.)
Theorem 1. Fix vy with0 < v < 1/3 and let Qo(n) € R be a large constant. Let N, (Q) be the
number of polynomials P € P,(Q) which have at least two roots a1, oy € C and at least two
roots yi1, y2 € Qj, satisfying

log —az| € Q7Y y1 =yl € Q7"
Then, for all Q > Qy,

Nn(Q) >> QYH‘] —41)1 .
(Here Q; is the smallest field containing Q, and all algebraic numbers.)

This question is closely related to the question of how many polynomials have “small”
discriminant. Such problems were considered by Bernik et al. in the real case [2] and the p-
adic case [3]. In [4], these results were combined using similar methods to [2,3] to obtain a lower
bound on the number of polynomials with small discriminant in the real and p-adic metrics
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simultaneously. Some of the methods used in [1-3] will be used to prove Theorem 3 below which
lies at the heart of Theorem 1 and is of interest in its own right. It is a substantial improvement
of Theorem 1.2 of [4], formulated here as Theorem 2, which did not contain the restrictions on
the second derivative. The latter part of the proof of Theorem 3 (for the inessential domains) is
very similar to that in [4] and therefore will not be done in full. The proof of Theorem 1 will be
done after the proof of Theorem 3.

Fix a set / x K where [ is an interval contained in [0, 1) C R and K is a cylinder contained
in Z,. From now on, vy and v; will be fixed real numbers such that

0<vi <1/3 and vo+v; =n/2. 2)

For real numbers cg, 8p, Q two sets are defined. First, £, (vo, v1, cg, 8o, Q) is the set of points
(x, w) € I x K such that the system of inequalities

|[P(xX)| <co@™™, |P(w)lp <coQ™", (3)

500" < [P’ < 0@ 807" < [Py <00, “)
holds for some P € P,(Q). Similarly, define the set /C,, (vo, v1, co, 80, Q) to be the set of points
(x, w) € I x K which satisfy (3) and (4) together with

|P"(x)] > &0, [P (w)lp > 8o (%)

for some P € P,(Q). Also, define the set P,’IC(Q) of polynomials P € P, (Q) for which (3)—(5)
are satisfied for some (x, w) € I x K. It will be shown that if P € Pf(Q) then two of the
roots of P are “close”; thus only a lower bound on the cardinality of P,’lC(Q) is needed to prove
Theorem 1.

The following theorem was proved in [4].

Theorem 2 (Theorem 1.2 from [4]). For all real numbers k' where 0 < k' < 1 there exist
constants 8y and co depending only on n such that

(L (vo, v1, co, 80, Q) > &'l x K)
for Q sufficiently large.

This will be used to prove the next theorem.

Theorem 3. For all real numbers k where 0 < k < 1 there exist constants 8o and co depending
only on n such that

M(Kn(v()a Ulv COa 801 Q)) > KI’L(I X K)

for Q sufficiently large.

We should point out that the final phrase for Q sufficiently large was omitted from the
statement of Theorem 1.2 of [4]. This is an error which we correct here.

Before the main results are proved some more notation is introduced together with some
preliminary calculations. Let P € P, (Q). For «, a complex root of P, and y a p-adic root of P,
define the sets

Sp(a)z{xeRzlx—od: min |x—o/|},
a’eC:P(a’)=0

Tr(y)={weQp:lw—vyl,= min - Jw—y'pt.
g P yreqpp=0 ?
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Thus, if x € Sp(«) then the closest root of P to x is «. Clearly, each point (x, w) lies in at least
one set Sp(a) X Tp(y) and there are at most n? distinct sets Sp(a) x Tp (y) for each P.

From (1), it is not difficult to show that the roots of P for each P € P, (Q) are bounded, more
precisely,

lai| < 2n, lyilp <p™., i=1...,n. ©6)
This is proved in [9, pages 13 & 85].

The next lemma contains some inequalities which will be used throughout the rest of the
paper.
Lemma 1. Let P € P, (Q) such that (3) and (4) hold for some (x, w) € Sp(a) X Tp(y). The
following inequalities hold:

lx —al < 2ncoQ " |P () ©)
< dncosy QU )
lw—ylp < 0@ ™IP'WI, ©)
< cody Q. (10)

Proof. It was shown in [9, pages 13 & 75], and in fact is easy to prove, that for P € P,(Q),
x € Sp(w)and w € Tp(y)

Ix —a| <nlP@)|IP' ()|, (11)
lw—ylp < [PW)],|P'w),". (12)

By considering the Taylor series of P’, the values of P’ at « and y are now compared to the
values of P’ for points (x, w) € Sp(a) x Tp(y). The details will only be provided for the real
coordinate. The arguments for the p-adic coordinate are similar. Note that, since v; < % the
equation vy + v; = 7 implies that

vy > 2v1 + B, (13)

for any B with0 < 8 < % Each term of the Taylor series
n
P'x)y=Y (=)' PO@)x —a) !
i=1
is estimated for x € Sp(«) satisfying (3) and (4). From (11) and (13)

UjﬁWme—w*<QWFW“W”<Qw*,zsnw, (14)

for Q sufficiently large. Here, using (6), the trivial bound |PD ()| < O has been used. There-
fore, for x € Sp () satisfying (3) and (4) it follows that

l 1-v; 1 ’ ’ I 1—v;
250Q <SIP @ <[Pl < 2[P (x)] <2¢0Q 7" 5)
Similarly, using (12), (13) and the properties of the ultrametric we obtain

800" < [P'(w)lp =P W)p <coQ™™ (16)
for w € Tp(y) satisfying (3) and (4). Using this it is easily shown that (7)—(10) hold. [
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1. Proof of Theorem 3

By Theorem 2, there exist co and §, such that

M(El‘l(v()7 U],CO,SE), Q)) > K/l'l’(] X K)‘

It should be clear that for any & < &,
w(Ly(vo, v1, co, 80, @) = (L (vo, v1, co, 8y, Q) > 'l x K).

To prove Theorem 3, it is sufficient to demonstrate that the set points (x, w) which satisfy (3), (4)
and either | P”(x)| < 80Q or |P”(w)|, < 8o is sufficiently small. There are two sets to consider.
Let F| be the set of points (x, w) € I x K such that if (3) and (4) hold for some P € P, (Q)
then |P”(x)| < 80Q also holds. Similarly, let , be the set of points (x, w) € I x K such that
if (3) and (4) hold for some P € P,(Q) then |P”(w)|, < 8o also holds. It will be shown that
if 0 < k < «’, then 8 can be chosen so that u(F;) < K/Z_"M(I x K),i = 1, 2. The proofs are
almost exactly the same except that at one step different lemmas are used which will be detailed
later.

Define the set of polynomials P € P,(Q) which satisfy (3), (4) and |P”(x)| < 8oQ for
some point (x,w) € I x K as 77”]: (Q). Let A(P) be the set of complex roots of P and
define Ar(P) € A(P) to be the set of roots o for which there exists x € Sp(«) satisfying
(3), ) and |P"(x)| < 80Q. Similarly, let G(P) be the set of p-adic roots of P and define
G r(P) € G(P) to be the set of roots y for which there exists w € Tp(y) satisfying (3) and (4).
For a polynomial P with complex root o and p-adic root y define o («, y, P) to be the set of
solutions of (7) and (9) and define o (P) = Ugear (P) Uyece (p) 0 (o, ¥, P). It should be clear
that 71 € Upepr () 0 (P). It will be shown that the measure of this union is small.

Now, we follow the proof of Theorem 1.2 in [4]. The initial details will be done in full as the
constants are different. Choose two real numbers u; and u, with the following properties:

uy +up =1-2uvy,
vo>uy >2v—1>v —1, 17
vy > Uy > 2v4.

That this is possible can be readily verified using the conditions (2) on vy and vg. The first
equation of (17) is necessary as the measures of two different sets which need to be “small”,
will be shown to have bounds depending on 8o Q%1 1*2~ 142V and §oQ~*1~#2+1=2v1_ Clearly, if
equality does not hold then one of these sets could be large. For a polynomial P with complex
root o and p-adic root y define the set o1 («, y, P) of points (x, w) for which the inequalities

x—al < QTP (@], lw—yl, < Q7P (18)

hold. Clearly, from (17), o (¢, y, P) C o1(e, y, P). The Taylor series of P is considered for each
point in o1 (¢, y, P) in the neighbourhood of the roots and each term is estimated from above.
Once more this will be demonstrated for the real coordinate with similar estimates for the p-adic
coordinate. Using (15), (17), (18) and the trivial bound | P/)(«)| < Q, it can be readily verified
that there exists € > 0 such that

[P'(e)]]x — | < Q7"1,

1 ; . .
=P @llx —al) < @I7/Hm) < gmii=e 2 < j <. (19)
J:
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Thus,

|P(x)| <207%" onoi(a,y, P). (20)

Using a similar argument to that of Lemma 1 by considering the Taylor series of P” in the

neighbourhoods of « and y it is easy to obtain

[P ()] <2800, [P (") < co
on o («, y, P). For the real example use the estimate

1

(—2)!

which is obtained in the same way as (14).

In exactly the same way as above, using this, (15) and (17), estimates for the Taylor series of
P’(x) and P”(x) are extended to o} (c, y, P). For this, instead of (19), the bounds

PO (@)lx — a2 € QITUTDMT0TD < gl7e =3,

j j—1 1= =D @ +1-vy) I—vj—e¢ T
|P(j)(oe)||x—ot|] <0 <0 , J=2,...,n

(G —D!
oo PO (@)|lx —alf 72 « @It o gl=e - j =3 n
are used to show that
|P'(x)] < 4coQ'™" and |P"(x)| <480 2D

on o1 («a, y, P). It can similarly be readily verified by u, > 2v; that the inequalities
|[Pw)lp < 07", |P'(w)lp < coQ™™, |P"(w)l, < co (22)

also hold on o1 (e, y, P).

The polynomials in ”Pf (Q) are now partitioned into sets which have the same coefficients for
x? to x". Forintegers a;,i =2, ..., nletbbe the (n—1)-tuple (a,, . .., a2) and let P?(Q) be the
set of polynomials in Pf (Q) for which the coefficient of x' is a; fori = 2, ..., n. An adaptation
of Sprindzuk’s method of essential and inessential domains is now used (see [9] for details). An
interval o (e, y, P) is called essential if u(oy(e, vy, P) No1(a, y, P)) < %,u(al (a, v, P)) for
all polynomials P € P,ll’ (Q), P # P and all roots &, j of P. It is called inessential otherwise.
These definitions imply that a point (x, w) can lie in an essential interval for at most two distinct
polynomials. Clearly,

e U U U o@r.p

beZ"=1:|b|<Q PePP(Q) ¢€4F (P)
€ Ib|<Q PePR(Q) veGr (P

U U oe@r.p

PePP(Q) *€4F (P)

and

v€GE (P)
-l U U eernfUl U U o@rp
PePb acAg (P) PePb acAg (P)
P y€GE (P) Pr(o) y€GE (P)
oy (e, y,P) essential o1 (a,y,P) inessential

Note that by |b| we mean the sup norm so that |b| = max;—>

.....
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First we consider the essential intervals. The next lemma will be used to count the number of
b for which P € PP(Q) satisfies |P” (x)| < 4600Q.

Lemma 2. Let f be a continuously differentiable real valued function on J = [a, b] C R which
satisfies maxyey | f'(x)| < M. Let K(J, B) be the set of integers d such that the inequality
|f(x)+d| < B, B> 1, has a solution for x € J. Then #K (J, B) < 2B + M|J|.

Proof. It is necessary to obtain an upper bound for the number of integers d for which the curves
y = f(x)+d intersect the box [a, b] x [— B, B]. As the curves are continuous they must intersect
the boundary of this box at least twice. Since the vertical distance between the curves is 1 the
maximum number which can intersect one of the vertical boundary lines (i.e. x = a or x = b)
is 2B. Using the mean value theorem the horizontal distance between the curves is at least 1/M.
Thus the maximum number which can intersect one of the horizontal boundary lines (i.e. y = B
ory = —B)is (b —a)M. Therefore, #K (J, B) < 2B + M|J| as required. [J

It can be readily verified that P®x) < n4Q for every P € P,(Q), x € I. Let J be the
interval defined by (8) so that |J| < 8n6080_1 QY11 To use the lemma take M = n*Q and
B = 480 Q. Fix integers as, . . ., a, and let P(x) = a,x" + - - - + a3x> + arx? 4+ a;x + ap. Then,
the number of coefficients ay such that | P”(x)| < 489 Q is given by

#ay < 8500 + 16n°cod; ' Q'™ < 98,0

from (17) for Q sufficiently large since vi — vo < 0. The number of vectors b = (ay, ..., az)
with a5 fixed is (2Q + 1)*~2. Thus, the total number of vectors b such that | P”(x)| < 48¢Q for
Pe P,?(Q) is at most

9500120 + 1)"% < 3"500" L.

Denote the set of these vectors by D.
Note that u(o (a, ¥, P)) < 2nc§Q‘2vO+’”+“2u(al (o, y, P)). As a point (x, w) can lie in an
essential interval for at most two polynomials, we have

> Y. iy, P) <20’u x K).
b acAg (P)
PePP(Q) VEG'; )
o1 (a,y. P) essential

The n? comes from the fact that there are at most n2 pairs of roots «, y for each P. Summing
overall b € D gives

> > Y oy, P) < 380" 2ncg QA0 M2 (1 x K)

beD pcpb acAg (P)
PhQ) e

o1 (e, y, P) essential

k' — K

<

u( x K)

for 8o chosen appropriately and because n — 1 —2vg+u; +up = —1 +uy +up +2v; = 0 from
(17). When calculating the measure for the inessential sets the same power (—1 4 u| 4+ u2 +2v1)
will also appear but multiplied by —1.

Now, the inessential sets are considered so assume that o1 (c, y, P) is inessential. Thus, there
exists P € PP(Q) such that u (o (e, v, P) No1(@, 7, P)) = fu(oi(e, y, P)).Let R=P — P
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so that R(f) = b1 f + by for some by, b1 € Z with |b;| < 2Q. Then, from (20)-(22), R
satisfies

|b1x + by| <4Q7H
IR'(x)| = |b1] < 8coQ' ™
biw + bol, < Q72
IR'(w)lp = Ib1lp < c0Q ™™

ono((a, y, P)Noy(a, y, P), (cf [4, (4.4)] and further). The proof from this point is now exactly
the same as that in [4]. Using that proof it is shown that the set of points which lie in at least one
inessential interval has measure at most

8oC Q'™ (I x K)

where C is a constant depending on n. By (17), this is equal to §oCu (I x K). Thus, again &g
can be chosen so that the set of points which lie in at least one inessential interval has measure
at most K:K/L(I x K).

To obtain a bound for the measure of 7> the only difference to above is in counting the number
of possible b for which P € P,';’(Q) satisfies |P”(w)|, < 8o. For this instead of Lemma 2 the next
lemma is used. The aim is to count the number of polynomials P which satisfy |P”(w)|, < 8o
on a ball defined by (10).

Lemma 3. Let p be a prime and M C Z, be a cylinder such that (M) = p~h 1y > 1. Let
T € P,(Q). Define [ by the inequalities p_l2 <y < p‘lZJrl and assume that [y > I+ 1. Then,
for w € M, the inequality

|T(w) +d|p < o
has at most 2Q8¢y + 1 solutions in integers d with |d| < Q.
Proof. First, fix a point wg € M. If dy € 7Z satisfies the inequality
|T (wo) + dolp < do,
then all other solutions of |T (wp) + d|, < & are of the form d = d' + > 02, m; p*, m; €
{0, ..., p — 1}. For any point w € M which satisfies |w — wo|, < p~!' we have
IT (w) +dolp = max{|T (w) — T (wo)lp, T (wo) + dolp} < do
since, by the p-adic mean value theorem for polynomials,
IT(w) — T (wo)lp < [w — wol, < d.

Hence, |T (w) + dol, < 8o. Therefore, if dy satisfies |T (wo) + dolp < Jo then it also satisfies
|T (w) + dol, < 8 and the only solutions are of the form d = do + Y oo, m;p"2* for
m; € {0, ..., p—1}. Thus, the number of such d satisfying |d| < Q is at most fTQz"H <2800+1
which completes the proof of the lemma. [J

Therefore, for any fixed § and Q sufficiently large (so that cod, ! QVIT% < §p) the number of
vectors b which satisfy | P”(w)| < 8¢ on the ball defined by (10) is at most 289 Q + 1. The proof
from hereon is exactly the same as for the real case.
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Thus, finally, it has been shown that pu(F;) < ’(’2_ Ku(I x K) so that

M(KYL(UO’ vlv CO’ 805 Q)) > KI‘L(I X K)

2. Proof of Theorem 1

Let P € P,’lc(Q). Fix roots & € A(P) and y; € G(P); the other roots of P are then ordered
so that

lor —ao| < |ap —a3| < -+ < |ag —ayl,
lvi—=v2lp < lvi =w3lp < Z V1 — Vaulp-

The arguments below are for the p-adic coordinate; the arguments for the real coordinate are
similar. Using the inequalities above and the fact that |P'(y1)|, = lanlplyi — v2lp .- 1¥1 — Valps
it should be clear that |P"(y1)|, > |anlplyr — y2|’1’,_1. Therefore, by (2), (10), (16) and because

n > 3, the inequalities |y; — y2|, < Q7T and |w —y2|p, < max{|w —y1lp, ly1 —12lp} K Q71
hold for w € Tp(y1). Consider the second derivative of P where

P'(w) =a, Yy (w—yi) - (w—¥,,)

and the sum is taken over all distinct (n — 2)-tuples (i1, ..., i,—2) withi; € {1,...,n} for j =
1,...,n—2.Every summand in this second derivative contains at least one of the factors w — yx
fork = 1,2, 3. Since | P”(w)|, > 8y it can be readily verified that [w —yyp. ..., [w—y3], > 1.

Then, since |w — 1|, < Q%1 it follows that
M=walp=...2ni =yl =lw—y3) —(wW—y)lp=lw—y3lp > 1
Therefore, from (6), (16), and the fact that P'(y1) = a,(y1 — y2) ]_[33-5”()/1 — ¥;) we have

i —nalp < Q7 Vanl,' < Q7 (23)
by (1). Similarly, for the real case, it can be shown that
oy — o] < Q' a7 < Q7Y (24)

Hence, every polynomial P € P,’lC(Q) has at least two complex roots o1, o and at least two
p-adic roots y1, y» which satisfy (23) and (24), respectively. Also, (8) and (10) hold so that

pl U oy, P = D ul@y, P) <n’@ncgs, >0 20",

acA(P) acA(P)
yeG(P) vyeG(P)
Thus, since

Ka(vo,vi,c0.8. 00 | J | o@r. P
PEPK (Q) acath)

we have, by Theorem 3,
k(I x K) < p(Kn(vo, v1, co, 80, Q)) < #Py (Q)4n Gy > 0> 2071,

Finally, this implies that #P,QC(Q) > Q2—2uitl — gntl=4v1 which proves the theorem.
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