ЧЕБЫШЕВСКИЙ СБОРНИК Том 9 Выпуск 1 (2008)

SIMULTANEOUS DIOPHANTINE APPROXIMATION OF INTEGRAL POLYNOMIALS IN THE DIFFERENT METRICS

Natalia Budarina and Detta Dickinson

Throughout, let

$$P(f) = a_n f^n + a_{n-1} f^{n-1} + ... + a_1 f + a_0$$

be an integer polynomial of degree $\deg P \leqslant n$ and height $H = H(P) = \max_{1 \leqslant j \leqslant n} |\alpha_j|$. In this paper we will consider a problem of Diophantine approximation on such polynomials in the real, complex and p-adic fields simultaneously. That is, we will study the approximation of zero by the values of |P(x)|, |P(z)| and $|P(w)|_p$, where $x \in \mathbb{R}, z \in \mathbb{C}, w \in \mathbb{Q}_p$.

Let Ψ be a monotonically decreasing function. In [9] it is shown that if the volume sum $\sum_{r=1}^{\infty} \Psi(r)$ converges then the set of points $(x, z, w) \in \mathbb{R} \times \mathbb{C} \times \mathbb{Q}_p$ which satisfy the inequalities $|P(x)| \leq H^{-\nu_1} \Psi^{\lambda_1}(H)$, $|P(z)| \leq H^{-\nu_2} \Psi^{\lambda_2}(H)$ and $|P(w)|_p \leq H^{-\nu_3} \Psi^{\lambda_3}(H)$, where $\nu_1 + 2\nu_2 + \nu_3 = n - 3$ and $\lambda_1 + 2\lambda_2 + \lambda_3 = 1$, for infinitely many integer polynomials P has measure zero.

A more specialised result is that of V.N. Borbat in [8] who showed that the system of inequalities

$$\left\{ \begin{array}{l} |P(x)| < H^{-n+\nu'}, \\ |P'(x)| < H^{1-\nu'-\varepsilon'}, \ 0 \leqslant \nu' < 1, \end{array} \right.$$

for any $\epsilon' > 0$ has infinitely many solutions $P \in \mathbb{Z}[x]$ only for a set of measure zero. Borbat's result allows us to find a lower bound for the Hausdorff dimension of the set of real numbers x which are approximated by special algebraic numbers at which the derivative of the minimal polynomial is relatively small.

In the present paper, we generalize this result to simultaneous approximation on $\mathbb{R} \times \mathbb{C} \times \mathbb{Q}_p$ and consider some applications.

Before we proceed, some notation is needed. Let $\mu_1(A)$ be the Lebesgue measure of a measurable set $A \subset \mathbb{R}$, $\mu_2(A)$ the Lebesgue measure of a measurable set $A \subset \mathbb{C}$ and $\mu_3(A)$ the Haar measure of a measurable set $A \subset \mathbb{Q}_p$. Using these definitions, define the measure μ on a set $A \subseteq \mathbb{R} \times \mathbb{C} \times \mathbb{Q}_p$ by $\mu(A) = \mu_1(A)\mu_2(A)\mu_3(A)$.

Let $L_n(\nu)$ denote the set of points lying in a parallelepiped $T = I \times K \times D$, where I is an interval in \mathbb{R} , K is a disc in \mathbb{C} and D is a cylinder in \mathbb{Q}_p , for which the system of inequalities

$$\max(|P(x)|, |P(z)|, |P(w)|_{p}|) < H^{-\frac{n-3}{4} + \nu} \Psi^{\frac{1}{4}}(H),$$

$$\max(|P'(x)|, |P'(z)|) < H^{1-\nu},$$

$$|P'(w)|_{p} < H^{-\nu},$$

$$(1)$$

has infinitely many solutions $P \in \mathbb{Z}[x]$.

Theorem 1. If $n \ge 3$ and $\sum_{H=1}^{\infty} \Psi(H) < \infty$ then $\mu(L_n(\nu)) = 0$ with $0 \le \nu \le 0.027$.

For n=3 this theorem is easily proved. Hereafter, only the case $n\geqslant 4$ will be considered.

As Ψ is monotonic and the series $\sum_{H=1}^{\infty} \Psi(H)$ converges it is easy to show that on average $\Psi(H) < c_1 H^{-1}$, where c_1 is independent of H. Therefore, instead of the first inequality of (1) the weaker inequality

$$\max(|P(x)|, |P(z)|, |P(w)|_p) \ll H^{-\frac{n-2}{4} + \nu},$$
 (2)

may be considered at some stages for simplicity. Here and throughout $A \ll B$ means that there exists a constant C > 0 such that $A \leqslant CB$.

In the main, positive constants which depend only on n will be denoted by c(n). Where necessary these constants will be numbered $c_k(n)$, $k = 1, 2, \ldots$

It is shown in [1, 7, 10] and [11] that, without loss of generality, it is enough to prove the theorem for the set of polynomials P satisfying (1) which are irreducible and also satisfy

$$H(P) = |a_n|, |a_n|_p > p^{-n}.$$
 (3)

Let $\mathcal{P}_n(H)$ denote this set and define $\mathcal{P}_n = \bigcup_{H=1}^\infty \mathcal{P}_n(H)$.

Let $P \in \mathcal{P}_n(H)$ have roots $\alpha'_1, \alpha'_2, \ldots, \alpha'_n$ in \mathbb{C} and roots $\gamma_1, \gamma_2, \ldots, \gamma_n$ in \mathbb{Q}_p^* , where \mathbb{Q}_p^* is the smallest field containing \mathbb{Q}_p and all algebraic numbers. From (3) it is shown in [3] and [5] that

$$|\alpha_i'|\leqslant 2,\quad |\gamma_i|_p< p^n,\quad i=1,\dots,n.$$

From among the roots α_i' choose a real root α_1 and a non-real root α_j' which will hereafter be denoted by β_1 . Order the roots α_i' according to their distance from α_1 or β_1 as follows:

$$\begin{aligned} |\alpha_1 - \alpha_2| &\leqslant \ldots \leqslant & |\alpha_1 - \alpha_{n_1}|, \\ |\beta_1 - \beta_2| &\leqslant \ldots \leqslant & |\beta_1 - \beta_{n_2}|, \\ |\gamma_1 - \gamma_2|_p &\leqslant \ldots \leqslant & |\gamma_1 - \gamma_n|_p, \end{aligned}$$

with $n_1 + n_2 = n$, and define the sets

$$\begin{split} S_1(\alpha_1) &= \{x \in \mathbb{R} : |x - \alpha_1| = \min_{1 \leq j \leq n_1} |x - \alpha_j|\}, \\ S_2(\beta_1) &= \{z \in \mathbb{C} : |z - \beta_1| = \min_{1 \leq j \leq n_2} |z - \beta_j|\}, \\ S_p(\gamma_1) &= \{w \in \mathbb{Q}_p : |w - \gamma_1|_p = \min_{1 \leq j \leq n} |w - \gamma_j|_p\}. \end{split}$$

For example, $S_p(\gamma_1)$ is the set of those points $w \in \mathbb{Q}_p$, for which γ_1 is the nearest root.

Fix $\epsilon > 0$ where ϵ is sufficiently small and suppose that $\epsilon_1 = \epsilon N^{-1}$ where N = N(n) > 0 is sufficiently large and let $T = [\epsilon_1^{-1}]$. For a polynomial P define the real numbers ρ_{ij} , i = 1, 2, 3, and the integers k_j , l_j , m_j by

$$\begin{array}{rcl} |\alpha_{1} - \alpha_{j}| & = & H^{-\rho_{1j}}, & 2 \leqslant j \leqslant n_{1} \\ |\beta_{1} - \beta_{j}| & = & H^{-\rho_{2j}}, & 2 \leqslant j \leqslant n_{2} \\ |\gamma_{1} - \gamma_{j}| & = & H^{-\rho_{3j}}, & 2 \leqslant j \leqslant n, \end{array}$$

and

$$\frac{k_j-1}{T}\leqslant \rho_{1j}<\frac{k_j}{T},\quad \frac{l_j-1}{T}\leqslant \rho_{2j}<\frac{l_j}{T},\quad \frac{m_j-1}{T}\leqslant \rho_{3j}<\frac{m_j}{T}.$$

Further define the numbers q_i , r_i , s_i by

$$\begin{split} q_i &= \frac{k_{i+1}+\ldots+k_n}{T}, \quad (1\leqslant i\leqslant n_1-1) \\ r_i &= \frac{l_{i+1}+\ldots+l_n}{T}, \quad (1\leqslant i\leqslant n_2-1) \\ s_i &= \frac{m_{i+1}+\ldots+m_n}{T}, \quad (1\leqslant i\leqslant n-1). \end{split}$$

Each polynomial $P \in \mathcal{P}_n(H)$ is now associated with three integer vectors $\mathbf{q} = (k_2, \ldots, k_{n_1})$, $\mathbf{r} = (l_2, \ldots, l_{n_2})$ and $\mathbf{s} = (m_2, \ldots, m_n)$ and the number of these vectors is finite (and depends only on \mathbf{n} , \mathbf{p} and \mathbf{T}). Let $\mathcal{P}_n(H, \mathbf{q}, \mathbf{r}, \mathbf{s})$ denote the set of polynomials $P \in \mathcal{P}_n(H)$ with the same triple of vectors $(\mathbf{q}, \mathbf{r}, \mathbf{s})$.

Fix $\delta_1 > 0$. Any complex number z lying in the parallelepiped \mathbf{T} with $|\text{Im } z| < \delta_1$ will be excluded. As δ_1 is arbitrary this can be done without loss of generality. Hence, from now on we assume that $|\text{Im } z| \ge \delta_1$. Later, there will be inequalities of the kind $|z - \beta| < \mathsf{H}(\mathsf{P})^{-\nu}$, $\nu > 0$; as the RHS tends to zero it will follow that there exists a root β such that $|\text{Im } \beta| > \frac{1}{2}\delta_1$. In this case there is also a conjugate root $\bar{\beta}$ of P such that $|\beta - \bar{\beta}| > \delta_1$, and for any real root α of P the inequalities $|\beta - \alpha| = |\bar{\beta} - \alpha| > \frac{1}{2}\delta_1$ hold. Collecting this information, we have

$$|\operatorname{Im} \beta| > \frac{1}{2}\delta_1, \quad |\operatorname{Im} z| \geqslant \delta_1, \quad |\beta - \bar{\beta}| > \delta_1, \quad |\beta - \alpha| > \frac{1}{2}\delta_1.$$
 (4)

1 Preliminary Results

From now on it will be assumed without loss of generality that $x \in S_1(\alpha_1)$, $z \in S_2(\beta_1)$, $w \in S_p(\gamma_1)$. In many places in the proof of the theorem values of polynomials will be estimated by means of a Taylor series. To obtain an upper bound on the terms in the Taylor series (and for other purposes) the following two lemmas (proved in [4] and [10]) will be used.

Lemma 1. If
$$P \in \mathcal{P}_n(H)$$
 then

$$\begin{split} |u - \alpha| & \leq 2^{n} |P(u)| |P'(\alpha)|^{-1}, \\ |w - \gamma_{1}| & \leq |P(w)|_{p} |P'(\gamma_{1})|_{p}^{-1}, \\ |u - \alpha| & \leq \min_{2 \leq j \leq n} \left(2^{n-j} |P(u)| |P'(\alpha)|^{-1} \prod_{k=2}^{j} |\alpha - \alpha_{k}| \right)^{\frac{1}{j}}, \\ |w - \gamma_{1}|_{p} & \leq \min_{2 \leq j \leq n} \left(|P(w)|_{p} |P'(\gamma_{1})|_{p}^{-1} \prod_{k=2}^{j} |\gamma_{1} - \gamma_{k}|_{p} \right)^{\frac{1}{j}} \end{split}$$

where u represents x or z and α is α_1 or β_1 as required.

Lemma 2. Let
$$P \in \mathcal{P}_n(H, \mathbf{q}, \mathbf{r}, \mathbf{s})$$
. Then

$$\begin{array}{lcl} |P^{(l)}(\alpha_1)| & < & c(n)H^{1-q_l+(n-l)\epsilon_1}, \\ |P^{(l)}(\beta_1)| & < & c(n)H^{1-r_l+(n-l)\epsilon_1}, \\ |P^{(l)}(\gamma_1)|_p & < & c(n)H^{-s_l+(n-l)\epsilon_1}, \end{array}$$

for $1 \le l \le n-1$.

The next lemma is proved in [12].

Lemma 3. Let G(v) be the set of points (x, z, w) for which the inequality

$$|P(x)||P(z)|^2|P(w)|_p < H^{-\nu}, \quad n = \deg P \geqslant 3, \quad H = H(P),$$

has infinitely many solutions $P \in \mathbb{Z}[x]$. Then, for $\nu > n-2$

$$\mu(G(v)) = 0.$$

The following lemma is proved in [6]. At several points in the proof of the theorem there are various cases (of different types of polynomial) to consider; usually the existence of one case is disproved by finding a contradiction to the final inequality in the lemma below.

Lemma 4. Let P_1 and P_2 be two integer polynomials of degree at most n with no common roots and $\max(H(P_1),H(P_2)) \leqslant H$. Let $\delta > 0$ and $\eta_i > 0$ for i=1,2,3. Let $I \subset \mathbb{R}$ be an interval, $K \subset \mathbb{C}$ be a disk and $D \subset \mathbb{Q}_p$ be a cylinder with $\mu_1(I) = H^{-\eta_1}$, diam $K = H^{-\eta_2}$ and $\mu_p(D) = H^{-\eta_3}$. If there exist $\tau_1 > -1$, $\tau_2 > -1$ and $\tau_3 > 0$ such that for all $(x,z,w) \in I \times K \times D$

$$\begin{array}{rcl} \max_{x \in I}(|P_1(x)|,|P_2(x)|) & < & H^{-\tau_1}, \\ \max_{z \in K}(|P_1(z)|,|P_2(z)|) & < & H^{-\tau_2}, \\ \max_{w \in D}(|P_1(w)|_p,|P_2(w)|_p) & < & H^{-\tau_3}, \end{array}$$

then

$$\tau_1 + 2\tau_2 + \tau_3 + 3 + 2\max(\tau_1 + 1 - \eta_1, 0) + 4\max(\tau_2 + 1 - \eta_2, 0) + 2\max(\tau_3 - \eta_3, 0) < 2n + \delta.$$

Finally, we state two classical results. The first is proved in [2] and is an adaptation of Cauchy's Condensation Test. The second is the convergence half of the Borel–Cantelli Lemma which will be used throughout the proof of the theorem.

Lemma 5. Let $\Psi(H)$, $H=1,2,\ldots$, be a monotonically decreasing sequence of positive numbers. If the series $\sum_{H=1}^{\infty} \Psi(H)$ converges, then for any number c>0 the series $\sum_{k=0}^{\infty} 2^k \Psi(c2^k)$ converges respectively.

Lemma 6 (Borel–Cantelli). Let (Ω, μ) be a measure space with $\mu(\Omega)$ finite and let A_i , $i \in \mathbb{N}$ be a family of measurable sets. Let

$$A = \{ \omega \in \Omega : \omega \in A_i \text{ for infinitely many } i \in \mathbb{N} \}$$

and suppose the sum $\sum_{i=1}^\infty \mu(A_i) < \infty.$ Then $\mu(A) = 0.$

2 Proof of the Theorem

Since $|\alpha_i| \leq 2$, $|\gamma_i|_p < p^n$ for $1 \leq i \leq n$ and $|w|_p \ll 1$ it follows from Lemma 1 (using j = n and $H \leq H_0$) that the set of points (x, z, w), for which (1) is satisfied, is a subset of the set $T = I \times K \times D$, where I = [-3, 3], $K = \{z : |z| \leq 3\}$, $D = \{w : |w|_p \ll 1\}$.

The proof of the theorem will consist of a series of propositions. As a reminder, it is only necessary to consider irreducible polynomials P over the rational numbers. Let

$$\mathcal{P}^t = \mathcal{P}^t(n,\mathbf{q},\mathbf{r},\mathbf{s}) = \bigcup_{2^t \leqslant H < 2^{t+1}} \mathcal{P}_n(H,\mathbf{q},\mathbf{r},\mathbf{s})$$

and suppose that the polynomials $P \in \mathcal{P}^t$ are irreducible and satisfy (3). In much of what follows system (2) will be used rather than (1). A polynomial is called (i_1, i_2, i_3) -linear if for $i_j = 0$, j = 1, 2, 3, the system of inequalities

$$q_{1} + k_{2}T^{-1} < \frac{n+2}{4} - \nu,$$

$$r_{1} + l_{2}T^{-1} < \frac{n+2}{4} - \nu,$$

$$s_{1} + m_{2}T^{-1} < \frac{n-2}{4} - \nu,$$
(5)

holds, and for $i_j=1, j=1,2,3$, the inequality signs in (5) are reversed. For example, (0,1,1)-linearity means that in (5) the first inequality has < and the second and third have \ge . Denote by $\mathcal{P}^t(i_1,i_2,i_3)\subset\mathcal{P}^t$, $i_j=0,1,\ j=1,2,3$, the class of (i_1,i_2,i_3) -linear polynomials. As there are only 8 kinds of linearity we shall consider them in turn.

We will use the constants

$$d_1 = q_1 + 2r_1 + s_1, \quad d_2 = (k_2 + 2l_2 + m_2)T^{-1}$$

heavily for the rest of the proof with different ranges of d_1+d_2 considered separately.

Proposition 1. If $\sum_{H=1}^{\infty} \Psi(H) < \infty$ then $\mu(L_n(\nu)) = 0$ when the polynomials are restricted to the subclass $\mathcal{P}^t(0,0,0)$ for which $d_1 + d_2 > n + \epsilon$.

Proof. By Lemma 1, all $\mathbf{u} = (x, z, w) \in S(\alpha_1) \times S(\beta_1) \times S(\gamma_1)$ satisfying (2) belong to the parallelepiped $\sigma(P)$ defined as the set of points \mathbf{u} satisfying

$$|x - \alpha_1| \ll 2^{-t(\frac{n+2}{4} - q_1 - \nu)},$$

$$|z - \beta_1| \ll 2^{-t(\frac{n+2}{4} - r_1 - \nu)},$$

$$|w - \gamma_1|_p \ll 2^{-t(\frac{n-2}{4} - s_1 - \nu)}.$$
(6)

The initial parallelepiped ${\bf T}$ is divided into smaller parallelepipeds $M=I_M\times K_M\times D_M$ such that

$$\mu_1(I_M) = 2^{-tk_2T^{-1}}, \quad \text{diam}(K_M) = 2^{-tl_2T^{-1}}, \quad \mu_p(D_M) = 2^{-tm_2T^{-1}}.$$
 (7)

It will be said that the polynomial P belongs to the parallelepiped M if there exists $\mathbf{u} \in M$ such that (2) holds; we will denote this by $P(\mathbf{u}) \in M$. Let $P(\mathbf{u}) \in M$ and develop P as a Taylor series on M remembering that $P(\alpha_1) = P(\beta_1) = P(\gamma_1) = 0$ to obtain

$$P(t) = \sum_{j=1}^{n} (j!)^{-1} P^{(t)}(\zeta_1) (x - \zeta_1)^j$$
 (8)

for t = x, z, w and $\zeta_1 = \alpha_1, \beta_1, \gamma_1$ repectively. An upper bound for $|P(\mathbf{u})|$ is found using (7) and Lemma 2. As an example we will show how to estimate |P(z)|. The following inequalities obtained from the definitions of r_j and $l_j T_0^{-1}$ are used:

$$r_j + j l_2 T_0^{-1} = r_j + l_2 T_0^{-1} + (j-1) l_2 T_0^{-1} \geqslant r_j + l_2 T_0^{-1} + (l_2 + \ldots + l_{j-1}) T_0^{-1} = r_1 + l_2 T_0^{-1}.$$

These imply

$$\begin{split} |P'(\beta_1)||z-\beta_1| & \ll \ 2^{t(1-r_1+(n-1)\epsilon_1-l_2T^{-1})} \ll 2^{-t(r_1+l_2T^{-1}-1-(n-1)\epsilon_1)}, \\ |P^{(j)}(\beta_1)||z-\beta_1|^j & \ll \ 2^{t(1-r_j+(n-j)\epsilon_1-jl_2T^{-1})} \ll 2^{-t(r_1+l_2T^{-1}-1-(n-1)\epsilon_1)}, \ 2 < j \leqslant n. \end{split}$$

Clearly these further imply that $|P(z)| \ll 2^{-t(r_1+l_2T^{-1}-1-(n-1)\varepsilon_1)}$. It is not difficult to acquire similar estimates for |P(x)| and $|P(w)|_p$ so that

$$|P(x)| \ll 2^{-t(q_1+k_2T^{-1}-1-(n-1)\varepsilon_1)},$$

$$|P(z)| \ll 2^{-t(r_1+l_2T^{-1}-1-(n-1)\varepsilon_1)},$$

$$|P(w)|_{\mathfrak{p}} \ll 2^{-t(s_1+m_2T^{-1}-(n-1)\varepsilon_1)}.$$
(9)

We now consider the case where at most one polynomial belongs to each parallelepiped M. The number of such polynomials is at most $c(n)2^{t(k_2+2l_2+m_2)T^{-1}}=c(n)2^{td_2}$. Hence, from (6) the total measure of the set of $\mathbf{u} \in M$ satisfying (2) is

$$\leq c(n)2^{-t(n+1-d_1-d_2-4\nu)}$$
.

From (5) it follows that $d_1 + d_2 < n + 1 - 4\nu$ so the series $\sum_{t=1}^{\infty} 2^{-t(n+1-d_1-d_2-4\nu)}$ converges and the proposition follows from the Borel–Cantelli lemma.

Now assume that the parallelepipeds M contain two or more polynomials P. All of these polynomials are irreducible, with degree at most n and height at most 2^{t+1} . For two such polynomials $P_1, P_2 \in M$ the system of inequalities (9) holds. Using Lemma 4, with $\tau_1 = q_1 + k_2 T^{-1} - 1 - (n-1)\epsilon_1, \ \tau_2 = r_1 + l_2 T^{-1} - 1 - (n-1)\epsilon_1, \ \tau_3 = s_1 + m_2 T^{-1} - (n-1)\epsilon_1, \ \eta_1 = k_2 T^{-1}, \ \eta_2 = l_2 T^{-1}, \ \eta_3 = m_2 T^{-1}$, we obtain

$$3q_1+k_2T^{-1}+6r_1+2l_2T^{-1}+3s_1+m_2T^{-1}-12(n-1)\epsilon_1<2n+\delta.$$

Replacing q_1 by k_2T^{-1} , $2r_1$ by $2l_2T^{-1}$ and s_1 by m_2T^{-1} gives

$$2(d_1+d_2)-12(n-1)\varepsilon_1<2n+\delta$$

which for $\delta = \varepsilon_1$ and $\varepsilon > 6n\varepsilon_1$ contradicts the condition in Proposition 1. This completes the proof.

Proposition 2. If $\sum_{H=1}^{\infty} \Psi(H) < \infty$ then $\mu(L_n(\nu)) = 0$ when the polynomials are restricted to the subclass $\mathcal{P}^t(0,0,0)$ for which $d_1 + d_2 < 4 - \varepsilon$.

Proof. We denote by $L'_n(v)$ the set of solutions (x, z, w) of the system of inequalities

$$\max(|P(x)|, |P(z)|, |P(w)|_p|) < H^{-\frac{n-3}{4} + \nu} \Psi^{\frac{1}{4}}(H),$$

$$H^{0.9-\nu} < \max(|P'(x)|, |P'(z)|) < H^{1-\nu},$$

$$H^{-0.1-\nu} < |P'(w)|_p < H^{-\nu},$$

$$(10)$$

Denote by $L''_n(v)$ the set $L_n(v) \setminus L'_n(v)$. Then for all $(x, z, w) \in L''_n(v)$ we have

$$\max(|P(x)|, |P(z)|, |P(w)|_{p}|) < H^{-\frac{n-3}{4} + \nu} \Psi^{\frac{1}{4}}(H),
\max(|P'(x)|, |P'(z)|) < H^{0.9 - \nu},
|P'(w)|_{p} < H^{-0.1 - \nu}.$$
(11)

We replace $\Psi(H)$ by H^{-1} in (11). Further, we use the method which was introduced by Borbat [8] to get that the new system of inequalities has infinitely many solutions only for a set (x, z, w) of measure zero.

Now we investigate the set $L'_n(\nu)$. By Lemma 1, all solutions (x, z, w) for a fixed $P \in \mathcal{P}^t$ satisfying (1) are contained in the parallelepiped $\sigma_2(P)$ defined by the inequalities

$$|x - \alpha_{1}| \ll 2^{-t(\frac{n-3}{4}-\nu)}\Psi(2^{t})^{1/4}|P'(\alpha_{1})|^{-1},$$

$$|z - \beta_{1}| \ll 2^{-t(\frac{n-3}{4}-\nu)}\Psi(2^{t})^{1/4}|P'(\beta_{1})|^{-1},$$

$$|w - \gamma_{1}|_{p} \ll 2^{-t(\frac{n-3}{4}-\nu)}\Psi(2^{t})^{1/4}|P'(\gamma_{1})|_{p}^{-1}.$$
(12)

Define a second parallelepiped $\sigma_4(P)$ to be the set of points satisfying the inequalities

$$|x - \alpha_{1}| \ll 2^{-t(\frac{1}{2}-\nu)}|P'(\alpha_{1})|^{-1},$$

$$|z - \beta_{1}| \ll 2^{-t(\frac{1}{2}-\nu)}|P'(\beta_{1})|^{-1},$$

$$|w - \gamma_{1}|_{p} \ll 2^{-t(\frac{1}{2}-\nu)}|P'(\gamma_{1})|_{p}^{-1}.$$
(13)

Clearly, $\sigma_2(P) \subset \sigma_4(P)$.

Using the Mean Value Theorem for the polynomial P in $\sigma_4(P)$ we obtain

$$P(x) = P'(\alpha_1)(x - \alpha_1) + 1/2P''(\xi_1)(x - \alpha_1)^2, \ \xi_1 \in (\alpha_1, x).$$

Estimating each term in the last equality individually gives

$$\begin{aligned} |P'(\alpha_1)||x-\alpha_1| &\ll 2^{-t(\frac{1}{2}-\nu)}, \\ |P''(\alpha_1)||x-\alpha_1|^2 &\ll 2^{-t(\frac{9}{5}-4\nu)}. \end{aligned}$$

For $3\nu < 1.3$ we obtain that $|P(x)| \ll 2^{-t(0.5-\nu)}$ for $x \in \sigma_4(P)$. It is easy to do the same for |P(z)| and $|P(w)|_p$ so that for $\nu < 0.1$

$$|P(x)| \ll 2^{-t(\frac{1}{2}-\nu)},$$

$$|P(z)| \ll 2^{-t(\frac{1}{2}-\nu)},$$

$$|P(w)|_{p} \ll 2^{-(\frac{1}{2}-\nu)}.$$
(14)

We similarly estimate $P'(x) = P'(\alpha_1) + P''(\xi_2)(x - \alpha_1)$, $\xi_2 \in (\alpha_1, x)$ on $\sigma_4(P)$. As before, each term is estimated individually so that

$$\begin{split} |P'(\alpha_1)| & \ll & 2^{-t(\nu-1)}, \\ |P^{('')}(\xi_2)||x-\alpha_1| & \ll & 2^{-t(-1+0.5-\nu+1-\nu-0.1)} \ll 2^{-t(-2\nu+0.4)}. \end{split}$$

Hence, $|P'(x)| \leqslant 2|P'(\alpha_1)| \ll 2^{-t(\nu-1)}$ for $\nu < 0.1$. From this and similar inequalities for P'(x) the following inequalities hold on $\sigma_4(P)$ for $\nu < 0.1$

$$|P'(z)| \ll 2^{-t(\nu-1)},$$

 $|P'(w)|_p \ll 2^{-t\nu}.$ (15)

Fix the vector $d=(\alpha_6,\alpha_7,\ldots,\alpha_n),\ |\alpha_j|\leqslant 2^{t+1}$ and let \mathcal{P}_d^t denote the set of polynomials $P\in\mathcal{P}^t$ with the same vector d. The parallelepiped $\sigma_4(P_1)$ is called essential if for all polynomials $P_2\in\mathcal{P}_d^t$

$$\mu(\sigma_4(P_1)\cap\sigma_4(P_2))<\frac{1}{2}\mu(\sigma_4(P_1)).$$

If, on the other hand, there exists $P_2 \in \mathcal{P}_d^t$ such that

$$\mu(\sigma_4(P_1)\cap\sigma_4(P_2))\geqslant\frac{1}{2}\mu(\sigma_4(P_1)),$$

then the parallelepiped $\sigma_4(P_1)$ is called *inessential*.

First, assume that $\sigma_4(P_1)$ is essential. Then, it follows that

$$\sum_{P_1\in \mathcal{P}_d^t} \mu(\sigma_4(P_1)) \ll \mu(\mathbf{T}).$$

Also, from (12) and (13),

$$\mu(\sigma_2(P_1)) \ll \mu(\sigma_4(P_1))2^{t(-n+5)}\Psi(2^t).$$

Since the number of classes \mathcal{P}_d^t is at most $c(n)2^{t(n-5)}$ from the above two displayed inequalities we have

$$\sum_{d} \sum_{P_1 \in \mathcal{P}_{a}^t} \mu(\sigma_2(P_1)) \ll 2^t \Psi(2^t) \mu(T).$$

By Lemma 5, the series $\sum_{t=1}^{\infty} 2^t \Psi(2^t)$ converges and the proof for the case of essential intervals can be completed using the Borel–Cantelli Lemma.

Now, assume that $\sigma_4(P_1)$ is inessential so that there exists $P_2 \in \mathcal{P}_d^t$ such that

$$\sigma(\mathsf{P}_1,\mathsf{P}_2) = \sigma_4(\mathsf{P}_1) \cap \sigma_4(\mathsf{P}_2), \quad \mu(\sigma(\mathsf{P}_1,\mathsf{P}_2)) \geqslant \frac{1}{2}\mu(\sigma_4(\mathsf{P}_1)).$$

The systems of inequalities (14) and (15) hold simultaneously on $\sigma(P_1, P_2)$ for both P_1 and P_2 . Hence, if $R(f) = P_2(f) - P_1(f) = b_5 f^5 + ... + b_1 f + b_0$ then R satisfies

$$|R(x)| \ll 2^{-t(\frac{1}{2}-\nu)},$$

$$|R(z)| \ll 2^{-t(\frac{1}{2}-\nu)},$$

$$|R(w)|_{p} \ll 2^{-t(\frac{1}{2}-\nu)},$$

$$|R'(x)| \ll 2^{-t(\nu-1)},$$

$$|R'(z)| \ll 2^{-t(\nu-1)},$$

$$|R'(w)|_{p} \ll 2^{-t\nu}.$$

$$(16)$$

If $\theta_1, \ldots, \theta_5$ are the roots of R then

$$R(f) = b_5(f - \theta_1)(f - \theta_2) \dots (f - \theta_5),$$

$$R'(\theta_1) = b_5(\theta_1 - \theta_2) \dots (\theta_1 - \theta_5).$$

From (4) and (16) it follows that there must be another real root close to the real root α . By the same argument, the complex root β has another complex root which is close to it, and similarly, for its conjugate $\bar{\beta}$. Hence, there is a contradiction as R cannot have 6 roots.

Proposition 3. If $\sum_{H=1}^{\infty} \Psi(H) < \infty$ then $\mu(L_n(\nu)) = 0$ when the polynomials are restricted to the subclass $\mathcal{P}^t(0,0,0)$ for which

$$4 - \varepsilon \leqslant d_1 + d_2 \leqslant n + \varepsilon. \tag{17}$$

Proof. Instead of system (1) we use system (2). Exactly as in (7) the parallelepiped T is divided into parallelepipeds M. Let $P \in M$ and develop P as a Taylor series to obtain (9). For some $\theta > 0$ consider only parallelepipeds which contain at most $c(n)2^{t\theta}$ polynomials. Then, by Lemma 1, the measure of the set of points $\mathbf{u} \in T$ which satisfy (2) is at most the measure of the parallelepiped $\sigma(P)$ (defined in (6)) multiplied by the number of parallelepipeds M and $c(n)2^{t\theta}$, that is

$$c(n)2^{-t(n+1-d_1-d_2-\theta-4\nu)}$$
.

If $\theta < n+1-d_1-d_2-4\nu$ then the series $\sum_{t=1}^{\infty} 2^{-t(n+1-d_1-d_2-\theta-4\nu)}$ converges and the Borel–Cantelli Lemma can be used to complete the proof. Thus, from now on, we assume that $\theta \geqslant u = n+1-d_1-d_2-4\nu$. From (17), $1-4\nu-\epsilon \leqslant u \leqslant n-3-4\nu+\epsilon$. Let $u_1 = u-d$ where d=0.14. Writing u_1 as a sum of integer and fractional parts $[u_1]+\{u_1\}$ calculate

$$p = n - [u_1] = d_1 + d_2 - 1 + \{u_1\} + d + 4v.$$
 (18)

According to the Dirichlet box principle, there are at least $k=c(n)2^{t(d+fu_1g)}$ polynomials P_1,\ldots,P_k among these $c(n)2^{tu}$ polynomials whose first $[u_1]$ highest coefficients are the same. Consider the k-1 polynomials $R_j(f)=P_j(f)-P_1(f)$ for $2\leqslant j\leqslant k$. It can be readily verified that

$$|R_{j}(x)| \ll 2^{t(1-q_{1}-k_{2}T^{-1}+(n-1)\varepsilon_{1})},$$

$$|R_{j}(z)| \ll 2^{t(1-r_{1}-l_{2}T^{-1}+(n-1)\varepsilon_{1})},$$

$$|R_{j}(w)|_{p} \ll 2^{t(-s_{1}-m_{2}T^{-1}+(n-1)\varepsilon_{1})},$$
(19)

with $2 \leqslant j \leqslant k$, $\deg R_j \leqslant n - [u_1]$ and $H(R) \leqslant 2^{t+2}$. The polynomials $R_j(f) = b_{n-[u_1]}f^{n-[u_1]} + \cdots + b_1f + b_0$ are now divided into sets. In each set the values of the coefficients $b_{n-[u_1]}, \ldots, b_1$ lie in an interval of length $2^{t(1-h_1)}$ where $h_1 = \{u_1\}(n-[u_1])^{-1}$. Again apply Dirichlet's box principle to obtain that there are at least $L = c(n)2^{td}$ polynomials R_j in one such set. These will be renumbered R_1, \ldots, R_L . Develop the $R_j'(f)$ as a Taylor series on M and consider the polynomials $S_i(f) = R_i(f) - R_1(f)$, which satisfy

$$\begin{split} |S_{i}(x)| &\ll 2^{t(1-q_{1}-k_{2}T^{-1}+(n-1)\varepsilon_{1})}, \quad |S'_{i}(x)| \ll 2^{t(1-q_{1}+(n-1)\varepsilon_{1})} \\ |S_{i}(z)| &\ll 2^{t(1-r_{1}-l_{2}T^{-1}+(n-1)\varepsilon_{1})}, \quad |S'_{i}(z)| \ll 2^{t(1-r_{1}+(n-1)\varepsilon_{1})} \\ |S_{i}(w)|_{p} &\ll 2^{t(-s_{1}-m_{2}T^{-1}+(n-1)\varepsilon_{1})}, \quad |S_{i}(w)|_{p} \ll 2^{t(-s_{1}+(n-1)\varepsilon_{1})}, \end{split}$$
(20)

with $2 \leqslant i \leqslant L$, $\deg S_i \leqslant n-[\mathfrak{u}_1]$, and $H(S_i) \ll 2^{t(1-h_1)}$. Note that $\min(\mathfrak{q}_1, r_1, s_1) \geqslant \nu$ in this case.

There are three possibilities to consider. First assume that all the polynomials S_i have the form i_1S, i_2S, \ldots, i_LS for some fixed polynomial S. Then $i' = \max_{1 \le j \le L} |i_j| \ge c(n)2^{td}$ and (20) holds for $i'S_0$ with $H(S_0) \ll 2^{t(1-h_1-d)}$. By (20),

$$|S_0(x)||S_0(z)|^2|S_0(w)|_{\mathfrak{p}} \ll 2^{t(3-d_1-d_2-3d+4(n-1)\varepsilon_1)}. \tag{21}$$

Then we apply for the system (20) the strengthening of the Lemma 3 which we can get by using the induction method in the Sprindzuk's theory of essential and inessental domains [11]. The proof will be complete if it can be shown that

$$|S_0(x)||S_0(z)|^2|S_0(w)|_{\mathfrak{p}} < \mathsf{H}(S_0)^{2-\deg S_0 + 4\nu - \epsilon_2}. \tag{22}$$

By passing to the height of the polynomial S in (21),

$$d_1 + d_2 - 3 + 3d - 4(n - 1)\varepsilon_1 > (n - [u_1] - 2 - 4v + \varepsilon_2)(1 - h_1 - d),$$

 $pd - 4vd - 2\{u_1\}/p - 4v\{u_1\}/p - 4(n - 1)\varepsilon_1 - \varepsilon_2(1 - \{u_1\}/p - d) > 0,$

This is true for d = 0.14, $v \leq 0.027$, $p \geq 4$ and ϵ_1 , ϵ_2 sufficiently small.

For the second case, assume that one of the polynomials S_i , $1 \le i \le L$ (say, S_0), is reducible, i.e. $S_0 = S_0^{(1)} S_0^{(2)}$. Then, for one of these, for example $S_0^{(1)}(f)$ the system (20) holds and $\deg S_0^{(1)}(f) \le n - [u_1] - 1$. In this case Lemma 3 can be applied if it can be proved that the inequalities

$$d_1 + d_2 - 3 - 4(n-1)\varepsilon_1 > (d_1 + d_2 - 4 + \{u_1\} + d)(1 - h_1), 1 - 4\nu - d - 4(n-1)\varepsilon_1 - 3\{u_1\}/p > 0$$
 (23)

hold. It is not difficult to show that this is true for $d=0.14,\,\nu\leqslant0.027,\,p\geqslant4$ and ϵ_1 sufficiently small.

Finally assume that among the S_i there are at least two polynomials (say S_1 and S_2) which have no common roots. Pass to the height of the polynomials S_i in (20) and apply Lemma 4 with $h = 1 - h_1$. Then,

$$\begin{split} \tau_1 &= (q_1 + k_2 T^{-1} - 1 - (n-1)\epsilon_1)h^{-1}, & \eta_1 = k_2 T^{-1}h^{-1}, \\ \tau_2 &= (r_1 + l_2 T^{-1} - 1 - (n-1)\epsilon_1)h^{-1}, & \eta_2 = l_2 T^{-1}h^{-1}, \\ \tau_3 &= (s_1 + m_2 T^{-1} - (n-1)\epsilon_1)h^{-1}, & \eta_3 = m_2 T^{-1}h^{-1}, \\ & \deg S \leqslant n - [\mathfrak{u}_1], \end{split}$$

and the inequality

$$3q_1+k_2T^{-1}+6r_1+2l_2T^{-1}+3s_1+m_2T^{-1}-12(n-1)\epsilon_1-9h_1<2(n-[u_1])h+\delta$$

must hold. Reduce the LHS by replacing q_1 with k_2T^{-1} , $2r_1$ with $2l_2T^{-1}$ and s_1 with m_2T^{-1} . This gives that

$$\delta > 2 - 2d - 8\nu - \frac{9\{u_1\}}{p} - 12(n-1)\epsilon_1.$$

If $n - [u_1] \ge 6$ then the above inequality is a contradiction for d = 0.14, $v \le 0.027$ and sufficiently small δ and ϵ_1 . Hence, the set of (x, z, w) for which the inequalities hold for infinitely many polynomials like S_i of which two have no common roots is empty.

The proof when $n - [u_1] = 4$ and $n - [u_1] = 5$ can be done exactly as in [9]. The proof of the proposition is complete.

Now we consider the case when each coordinate is equal to 1 in the vector (i_1, i_2, i_3) of the definition of linearity. So the system

$$q_1 + k_2 T^{-1} \ge \frac{n+2}{4} - \nu,$$
 $r_1 + l_2 T^{-1} \ge \frac{n+2}{4} - \nu,$
 $s_1 + m_2 T^{-1} \ge \frac{n-2}{4} - \nu,$
(24)

holds together with system (2).

Proposition 4. If $\sum_{H=1}^{\infty} \Psi(H) < \infty$ then $\mu(L_n(\nu)) = 0$ when the polynomials are restricted to the subclass $\mathcal{P}^t(1,1,1)$.

Proof. Using (2) and Lemma 1 we obtain

$$|x - \alpha_{1}| \ll 2^{-t \frac{\frac{n+2}{4} - q_{2} - \nu}{2}} = 2^{-t\mu_{1}},$$

$$|z - \beta_{1}| \ll 2^{-t \frac{\frac{n+2}{4} - r_{2} - \nu}{2}} = 2^{-t\mu_{2}},$$

$$|w - \gamma_{1}|_{p} \ll 2^{-t \frac{\frac{n-2}{4} - s_{2} - \nu}{2}} = 2^{-t\mu_{3}}.$$
(25)

Let $\sigma_5(P)$ be the parallelepiped defined by these inequalities. Divide the parallelepiped T into smaller parallelepipeds M with sidelengths $2^{-t(\mu_1-\gamma)}$, $2^{-t(\mu_2-\gamma)}$ and $2^{-t(\mu_3-\gamma)}$ where $\gamma=\frac{1}{10n}$. Let $P\in M$ and develop it as a Taylor series on M. As before, obtain an upper bound for all the terms in the series. The estimates for the real coordinate are presented below.

$$\begin{split} |P'(\alpha_1)||x-\alpha_1| & \ll & 2^{t\gamma}|P'(\alpha_1)2^{-t\mu_1}| \ll 2^{t(1-q_1+\gamma+(n-1)\epsilon_1+\nu/2+q_2/2-(n+2)/8)} \\ & \ll & 2^{t(\nu+2\gamma+(2-n)/4+(n-1)\epsilon_1)}, \\ |P^{''}(\xi_1)||x-\alpha_1|^{(2)} & \ll & 2^{2t\gamma}|P^{''}(\alpha_1)2^{-2t\mu_1}| \ll 2^{t(\nu+2\gamma+(2-n)/4+(n-1)\epsilon_1)}. \end{split}$$

Obtain similar estimates for |P(z)| and $|P(w)|_p$ so that the inequalities

$$|P(x)| \ll 2^{t(\nu+2\gamma+(2-n)/4+(n-1)\epsilon_1)}, |P(z)| \ll 2^{t(\nu+2\gamma+(2-n)/4+(n-1)\epsilon_1)}, |P(w)|_{p} \ll 2^{t(\nu+2\gamma+(2-n)/4+(n-1)\epsilon_1)}$$
(26)

hold. Two cases are now considered. First, assume that at most one polynomial P belongs to each parallelepiped M. The number of these parallelepipeds is $c(n)2^{t(\mu_1+2\mu_2+\mu_3-4\gamma)}$ so the measure of the set of $\mathbf{u} \in M$ satisfying (2) and (24) (using (25)) is

$$c(n)2^{-t(\mu_1+2\mu_2+\mu_3-\mu_1-2\mu_2-\mu_3+4\gamma)}=c(n)2^{-4t\gamma}.$$

Clearly the series $\sum_{t=0}^{\infty} c(n) 2^{-4t\gamma}$ is convergent which is enough to complete the proof in this case.

Now assume that the parallelepipeds M contain two or more polynomials P_1 and P_2 (remember that we may assume P_1 and P_2 are irreducible). For such polynomials the system of inequalities (26) holds and they do not have common roots. Use Lemma 4, with

$$\begin{split} \tau_1 &= \tau_2 = \tau_3 = -\nu - 2\gamma - \frac{2-n}{4} - (n-1)\epsilon_1, \\ \eta_1 &= -\frac{1}{2}(\nu + q_2 + \frac{-n-2}{4}) - \gamma, \\ \eta_2 &= -\frac{1}{2}(\nu + r_2 + \frac{-n-2}{4}) - \gamma, \\ \eta_1 &= -\frac{1}{2}(\nu + s_2 + \frac{2-n}{4}) - \gamma, \end{split}$$

to obtain

$$2 + 2n - 8v - 16\gamma - 12(n-1)\varepsilon_1 + (q_2 + 2r_2 + s_2) < 2n + \delta$$

so that

$$\delta > 2 - 8\nu - 16\gamma - 12(n-1)\varepsilon_1 + (q_2 + 2r_2 + s_2).$$

If $16\gamma + 12(n-1)\epsilon_1 < 0.5$ then $\delta > 1.5 - 8\nu$. Hence, for $\delta = 0.1$ and $\nu < 0.175$ this is a contradiction. Thus, there do no exist parallelepipeds M containing two or more irreducible polynomials and Proposition 4 is proved.

In the cases when one or two coordinates are equal to 1 in the linearity vector (i_1, i_2, i_3) we must combine the calculation for the subclass $\mathcal{P}^t(0, 0, 0)$ and $\mathcal{P}^t(1, 1, 1)$. Putting all the propositions together completes the proof of the theorem (more details are in [9]).

We indicate the following important applications of Theorem 1.

First, we adapt Theorem 1 to the problem for polynomials with small discrimi-

nant. The discriminant of the polynomial can be written as the determinant

or as the product of squares of root differences

$$D(P) = a_n^{2n-2} \prod_{1 \le j < i \le n} (\alpha_i - \alpha_j)^2.$$
 (28)

From (28)it follows that D(P) = 0 if and only if the polynomial P has multiple roots. By (27), we obtain that if $D(P) \neq 0$ then $D(P) \geq 1$.

If the first coefficient a_n of the polynomial P(f) is a sufficiently large integer and the inequality $\min_{1 \le j < i \le n} |\alpha_i - \alpha_j| > \delta > 0$ holds for the roots of P(f), then

$$|D(P)| > c(\delta)\alpha_n^{2n-2}$$
.

Further, let Q be a sufficiently large number with

$$H(P) \leqslant Q. \tag{29}$$

Denote by \mathbf{P}_n the set of polynomials satisfying (29). From (27) – (29) it can be seen that all the values of D(P) belong to the interval

$$[-c(n)Q^{2n-2}, c(n)Q^{2n-2}].$$
 (30)

By (29), we also note that the set \mathbf{P}_n contains exactly $(2Q+1)^{n+1}$ polynomials (including the zero polynomial).

For some prime number q, positive integer l and $\rho>0$ denote by $\mathbf{P}_n(Q,q,l,\rho)$ the subset of polynomials $P\in\mathbf{P}_n$, for which

$$D(P) \leqslant Q^{2n-2-2\rho},\tag{31}$$

$$q^1 \parallel D(P). \tag{32}$$

Here $q^1 \parallel D(P)$ means that $q^1 \mid D(P)$ and $q^{1+1} \not/ D(P)$. The question of how many polynomials satisfy (31) or (32) or both together is a natural problem in the theories of Diophantine approximation and the theory of Diophantine equations.

From (28) we obtain that (31) holds if the distance between two roots of the polynomial $P_n(f)$ decreases as Q increases. In particular, it will hold if for some j, $1 \leqslant j \leqslant n$, the derivative

$$|P'(\alpha_j)| = |\alpha_n(\alpha_j - \alpha_1) \cdots (\alpha_j - \alpha_{j-1})(\alpha_j - \alpha_{j+1}) \cdots (\alpha_j - \alpha_n)|$$

tends to 0 as $Q \to \infty$. If (32) holds then the p-adic norm $|P'(\alpha_i)|_p$ is small for some $i, 1 \le i \le n$.

From Theorem 1 we can obtain the lower bounds for the derivatives of the polynomial P in $\mathbb{R} \times \mathbb{C} \times \mathbb{Q}_p$ for the set of the point $\mathbf{u}_1 = (\mathbf{x}, \mathbf{z}, \mathbf{w}) \in \mathbf{T}_1$, $\mathbf{T}_1 \subset \mathbf{T}$, for which $\mu(\mathbf{T}_1) > \frac{\mu(\mathbf{T})}{2}$. By Lemma 1, for every point $\mathbf{u}_1 \in \mathbf{T}_1$ there exists a point with three algebraic coordinates. The value of the derivative of the polynomial P_1 in the algebraic coordinate for every metric will satisfy the system of inequalities (1) if < is replaced by \ll . This gives that the inequalities (31) and (32) hold for the parameters ρ and ℓ . These parameters depend on ℓ because the discriminant contains the derivative of the polynomial at the roots. Then, we can choose a point $\mathbf{u}_2 \in \mathbf{T}_1$ for which there exists a polynomial $P_2 \not\equiv P_1$. Such a point \mathbf{u}_2 exists because $\mu(\mathbf{T}_1) > \frac{\mu(\mathbf{T})}{2}$. This procedure allows us to construct a large number of polynomials satisfying conditions (31) and (32).

As a second application of a Theorem 1, we would like to investigate the more general question when the first inequality in (1) is

$$\max(|P(x)|,|P(z)|,|P(w)|_p|) < H^{-\frac{n}{4}+t+\nu}\Psi^{1-t}(H), \ 0 < t < 1.$$

Acknowledgements. This work was supported by the Science Foundation Ireland Grant RFP06/MAT0015.

REFERENCES

- [1] A. Baker, On a theorem of Sprindzuk, Proc. Roy. Soc., London Ser. A **292** (1966), 92–104.
- [2] V. Beresnevich, On approximation of real numbers by real algebraic numbers, Acta Arith. **90** (1999), 97–112.
- [3] V. Beresnevich, V. Bernik, E. Kovalevskaya, On approximation of p-adic numbers by p-adic algebraic numbers, Journal of Number Theory, **111** (2005), 33–56.
- [4] V. Bernik, The metric theorem on the simultaneous approximation of zero by values of integral polynomials, Izv. Akad. Nauk SSSR, Ser. Mat. 44 (1980), 24–45.
- [5] V. Bernik, On the exact order of approximation of zero by values of integral polynomials, Acta Arith. **53**(1989), 17–28.
- [6] V. Bernik, N. Kalosha, Approximation of zero by values of integral polynomials in space $\mathbb{R} \times \mathbb{C} \times \mathbb{Q}_p$, Vesti NAN of Belarus. Ser. fiz-mat nauk, 1 (2004), 121–123.
- [7] V. Bernik, D. Vasilyev, A Khinchin-type theorem for integral-valued polynomials of a complex variable, Proc. IM NAN Belarus, 3 (1999), 10–20.

- [8] V. Borbat, A joint zero approximation by values of polynomials and their derivatives, Vests. Byelorus. Acad. Navuk, 1 (1995), 9–16.
- [9] N. Budarina, D. Dickinson, V. Bernik, Simultaneous Diophantine approximation in the real, complex and p-adic fields, (submitted).
- [10] E. Kovalevskaya, On the exact order of approximation to zero by values of integral polynomials in Q_p, Preprint Institute Math. National Academy Sciences Belarus 8 (547), Minsk, 1998.
- [11] V. Sprindzuk, Mahler's problem in the Metric Theory of Numbers, Transl. Math.Monographs 25, Amer. Math. Soc., Providence, R.I., 1969.
- [12] F. Želudevich, Simultine diophantishe Approximationen abhangiger Grössen in mehreren Metriken, Acta Arith. 46 (1986), 285–296.

Received 21.09.2008.