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INTEGRAL POLYNOMIALS IN THE DIFFERENT
METRICS

Natalia Budarina and Detta Dickinson
Throughout, let
P(f) = anf™+ an 1™ + ...+ arf + ao

be an integer polynomial of degree deg P < n and height H = H(P) = maxi<j<n |qjl.
In this paper we will consider a problem of Diophantine approximation on such
polynomials in the real, complex and p-adic fields simultaneously. That is, we will
study the approximation of zero by the values of [P(x)|, [P(z)| and [P(w)l,, where
xeR zeC,weQ,.

Let ¥ be a monotonically decreasing function. In [9] it is shown that if the
volume sum ) 7, W(r) converges then the set of points (x,z,w) € R x C x Q,, which
satisfy the inequalities [P(x)] < H™V"WM (H), [P(z)] < H™2WY»(H) and [P(w)], <
H™3WA (H), where vi +2v,+v3 =n—3 and Ay +2A> + A3 = 1, for infinitely many
integer polynomials P has measure zero.

A more specialised result is that of V.N. Borbat in [8] who showed that the
system of inequalities

[P(x)] < H ™,
P/(x)] < HV = 0 < v < 1,

for any €’ > 0 has infinitely many solutions P € Z[x] only for a set of measure zero.
Borbat’s result allows us to find a lower bound for the Hausdorff dimension of the
set of real numbers x which are approximated by special algebraic numbers at which
the derivative of the minimal polynomial is relatively small.

In the present paper, we generalize this result to simultaneous approximation on
R x C x Qp and consider some applications.

Before we proceed, some notation is needed. Let pq(A) be the Lebesgue measure
of a measurable set A C R, py(A) the Lebesgue measure of a measurable set A C C
and p3(A) the Haar measure of a measurable set A C Q. Using these definitions,
define the measure pon a set A CR x C x Qp, by pu(A) = wi(A)p2(A)us(A).

Let L,,(v) denote the set of points lying in a parallelepiped T = I x K x D, where
[is an interval in R, K is a disc in C and D is a cylinder in Qp, for which the system
of inequalities

max([P(x)], [P(z)l, [P(w)], H=" ™i (H),

) <
max([P'(x)],[P"(z))) < H'™, (1)
Pw)l, < HT,
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has infinitely many solutions P € Z[x].

Theorem 1. Ifn > 3 and Y}, ¥Y(H) < oo then p(Ln(v)) =0 with 0 < v <
0.027.

For n = 3 this theorem is easily proved. Hereafter, only the case n > 4 will be
considered.

As ¥ is monotonic and the series ) 7, ; W(H) converges it is easy to show that
on average Y(H) < ¢;H™!, where ¢; is independent of H. Therefore, instead of the
first inequality of (1) the weaker inequality

max([P(x)|, IP(z)l, [P(W)lp]) < H™"%*, (2)

may be considered at some stages for simplicity. Here and throughout A < B means
that there exists a constant C > 0 such that A < CB.

In the main, positive constants which depend only on n will be denoted by c(n).
Where necessary these constants will be numbered cx(n), k=1,2,....

It is shown in [1, 7, 10] and [11] that, without loss of generality, it is enough to
prove the theorem for the set of polynomials P satisfying (1) which are irreducible
and also satisfy

H(P) = |an|) |an|'p > P_n- (3)

Let Pn(H) denote this set and define P, = [J}1_; Pn(H).

Let P € Pn(H) have roots o, o3, ..., in C and roots y1,v2,...,yn in Qj,
where @, is the smallest field containing Q, and all algebraic numbers. From (3) it
is shown in [3] and [5] that

ol <2, hyilp<p™, i=1,...,m.

From among the roots «{ choose a real root &; and a non-real root oc]-’ which will
hereafter be denoted by (3. Order the roots ] according to their distance from oy
or 1 as follows:

lot) — o] < < Jog — oy,
IB1—B2 <...< [B1—Bnls
vi—valp <.oo< Y1 —Valp
with ny +n, = n, and define the sets
Si(a) = {xeR:|x—a]= min |x — oy
(1) {(xeR:| 1l 135111' ilh
S = {zeC: |z— = min |z — P;
2B = (€ C:lz— il = min |- Byl

Sp(Yl) = {we Qp: |W_Y1|p = min |W_Y)'|p}-
1<

\)\
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For example, S,(v1) is the set of those points w € Qp, for which y; is the nearest
root.

Fix ¢ > 0 where ¢ is sufficiently small and suppose that ¢; = eN~' where
N = N(n) > 0 is sufficiently large and let T = [¢;']. For a polynomial P define the
real numbers py;, 1 = 1,2, 3, and the integers k;j, 1;, m; by

log —oyl = H™P 25 <y
IBr—B;l = H™, 2<j<n
yi—vl = H™, 2<j<n,
and
kj—] kj 11—1 ]'j TTL]'—1 TTLJ'
T <p1j<T> ?\p2j<?) T \p3j<T.
Further define the numbers q;, 1, s; by
ki .t kn .
qi = +1+T + , 1<ig<n—1)
L; oo+ 1y .
Ty = +1+T + s (1<1<n2—])
s mi+1+_.r..+mn) l<i<n—1

Each polynomial P € P, (H) is now associated with three integer vectors q =
(k2y..oykn,), r = (lgy..., 1) and s = (my,...,my,) and the number of these
vectors is finite (and depends only on n, p and T). Let P,(H, q,r,s) denote the set
of polynomials P € P,(H) with the same triple of vectors (q,r,s).

Fix &7 > 0. Any complex number z lying in the parallelepiped T with |Im z| < &,
will be excluded. As &7 is arbitrary this can be done without loss of generality. Hence,
from now on we assume that |[Imz| > 8;. Later, there will be inequalities of the kind
lz— B < H(P)™, v > 0; as the RHS tends to zero it will follow that there exists a
root 3 such that [Im | > 161 In this case there is also a conjugate root 3 of P such
that | —p| > &1, and for any real root « of P the inequalities | —o] = |p — | > 61
hold. Collecting this information, we have

Is.. (4)

1 _
|ImB|>261) |IIIlZ| 61) |[5_B|>51) |B_(x|>2

1 Preliminary Results

From now on it will be assumed without loss of generality that x € Sy(o),
z € S3(B1), w € Sp(v1). In many places in the proof of the theorem values of
polynomials will be estimated by means of a Taylor series. To obtain an upper
bound on the terms in the Taylor series (and for other purposes) the following two
lemmas (proved in [4] and [10]) will be used.
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Lemma 1. If P € P,(H) then
u—of < 2YPW)IP' (),
w—v1l < [PW)LP (V1)L

PO
j
: n—j / —1
zrgjgn<z P (w)P(0) gloc—cxkr) ,

N

lu — «f

j j
w—vilp < min <|P(w)|p|P’(v1)|p1H|v1—mp>

2gjs<n
k=2

where W represents X or z and & is &1 or 1 as required.
Lemma 2. Let P € P,(H,q,r,s). Then
PU(x)] < c(m)HTarnba
PUB < c(n)H b,
PUy1)lp < cln)H sHbe,
forT<l<n—1.
The next lemma is proved in [12].
Lemma 3. Let G(v) be the set of points (x,z,W) for which the inequality
PX)IIP(2)P[P(W)l, <H™, n=degP >3, H=H(P),
has infinitely many solutions P € Z[x]. Then, forv>n—2
n(G(v)) =0.

The following lemma is proved in [6]. At several points in the proof of the theorem
there are various cases (of different types of polynomial) to consider; usually the
existence of one case is disproved by finding a contradiction to the final inequality
in the lemma below.

Lemma 4. Let P; and P, be two integer polynomials of degree at most n
with no common roots and max(H(Pq),H(P2)) < H. Let 6 > 0 and ny > 0 for
i=1,2,3. Let I C R be an interval, K C C be a disk and D C Q,, be a cylinder with
wi(I) = H™ diam K = H™ and p,(D) = H™. If there exist T1 > —1, 1, > —1
and t3 > 0 such that for all (x,z,w) € I x K x D

max((Py(x)], P200)) < H,
max([P1 (2]}, [P2(2)]) < H™2,
max([Py(w)lp, Pa(w)lp) < H™,
then
T1+271+713+3+2 max(t;+1-—m1, 0)+4 max(1t,+1-13,0)+2 max(t3—m3, 0) < 2Zn+3.
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Finally, we state two classical results. The first is proved in |2] and is an adap-
tation of Cauchy’s Condensation Test. The second is the convergence half of the
Borel-Cantelli Lemma which will be used throughout the proof of the theorem.

Lemma 5. Let Y(H), H = 1,2,..., be a monotonically decreasing sequence
of positive numbers. If the series Y 7, W(H) converges, then for any number ¢ > 0
the series Y i o 2XW(c2¥) converges respectively.

Lemma 6 (Borel-Cantelli). Let (Q, ) be a measure space with w(Q) finite
and let Ay, 1 € N be a family of measurable sets. Let

A={w e Q:w e A; for infinitely many i € N}
and suppose the sum Y oo, w(Ai) < oo. Then u(A) =0.

2 Proof of the Theorem

Since o] < 2, lyilp < p™for 1 <1< nand wl, <1 it follows from Lemma 1
(using j = n and H < Hy) that the set of points (x,z, w), for which (1) is satisfied,
is a subset of the set T = I x K x D, where I = [-3,3], K = {z : |z|] < 3},
D={w: w1}

The proof of the theorem will consist of a series of propositions. As a reminder,
it is only necessary to consider irreducible polynomials P over the rational numbers.

Let

Pt = Pt(“) q,1,8) = U Pn(H,q,r,s)
2tCH<2tH!
and suppose that the polynomials P € Pt are irreducible and satisfy (3). In much

of what follows system (2) will be used rather than (1). A polynomial is called
(i1,12,13)-linear if for i; =0, j = 1,2, 3, the system of inequalities

+2

C[]‘i‘sz_1 < 7T14 -V,
+2

T1+12T_1 < nT—\% (5)
-2

S]'i-TllzTi1 < nT—V,

holds, and for i; = 1,j =1, 2, 3, the inequality signs in (5) are reversed. For example,
(0,1, 1)-linearity means that in (5) the first inequality has < and the second and
third have >. Denote by P*(i1,i2,13) € P' ., i; = 0,1, j = 1,2,3, the class of
(11,12, 13)linear polynomials. As there are only 8 kinds of linearity we shall consider
them in turn.

We will use the constants

di=q1+2r1+s;, dy= (k2+212+m2)T71
heavily for the rest of the proof with different ranges of d;+d, considered separately.
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Proposition 1. If Y 71 ;¥Y(H) < oo then w(Ln(v)) = 0 when the polynomials
are restricted to the subclass P*(0,0,0) for which d; +d; >n+«.

Proof. By Lemma 1, all u = (x,z,w) € S(a1) x S(P1) x S(y1) satisfying (2)
belong to the parallelepiped o(P) defined as the set of points u satisfying

X — o < zft(“T“*qﬁ\)))
n+2
z—B1l < 27T (6)

n—2
4

w—yily < 270,

The initial parallelepiped T is divided into smaller parallelepipeds M = Iy x Ky X
D such that

wilp) =277 diam (Kp) =277 p(Dy)=2""T" (7)

It will be said that the polynomial P belongs to the parallelepiped M if there
exists u € M such that (2) holds; we will denote this by P(u) € M. Let P(u) € M
and develop P as a Taylor series on M remembering that P(o;) = P(f1) = P(yq1) =0
to obtain

P(t) =) (N "PYC)x—G) (8)
j=1

for t = x,z,w and (3 = &1, B1,7V1 repectively. An upper bound for |P(u)| is found
using (7) and Lemma 2. As an example we will show how to estimate |P(z)|. The
following inequalities obtained from the definitions of rj and Ty ! are used:

r+HiLT =+ LT (- DLT ! =+ LT + (Lt + )Ty =+ LT
These imply
P'(B1)llz— Bl < =T +Mm—T)er —1, T 1) < zft(nJrlzT_]f]f(nst]))
PO(B)lz— Bl < 2tT-m+ndea LT 1) o -t T- ! —1-(n-Ter) ) <j<n.

Clearly these further imply that |P(z)| < 27t 2T =1==Te1) Tt is not difficult to
acquire similar estimates for [P(x)| and [P(w)l, so that

_ 1 1
|P(X)| < 2 t(qr+ko T T—(n—1)&g ),
_ 11—
|P(Z)| < 2 t(ri+L T T—(n—1)&; ), (9)
|P(W)|p < 7—tls: +mo T T —(n—1)g ).
We now consider the case where at most one polynomial belongs to each parallelepi-

ped M. The number of such polynomials is at most ¢(n)2t(e+2L+m2)T" — ¢ ()2t
Hence, from (6) the total measure of the set of u € M satisfying (2) is

< c (n)z—t(n+1 —d;—d; —4v) .
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From (5) it follows that d; +d, < n 4+ 1—4v so the series ) >, 2 tn+1-di—d2=4v)
converges and the proposition follows from the Borel Cantelli lemma.

Now assume that the parallelepipeds M contain two or more polynomials P.
All of these polynomials are irreducible, with degree at most n and height at most
241 For two such polynomials P1, P, € M the system of inequalities (9) holds. Using
Lemma 4, with T = (1 -|-k2T71 —1— (TL—”81, T2 =T +12T71 —1— (TL—])£1, T3 =
S1+ sz_] — (T‘L— ])81, N = sz_], N2 = lzT_], N3 = sz_], we obtain

31+ KT 461 +2L,T 4+ 35 +m,T ' —12(n—1)gq < 2n 4+ 6.
Replacing q7 by k2T, 2ry by 21,T~" and s; by m,T ! gives
2(dy+dy) —12(n—1)ey < 2n + 5,

which for 8 = &7 and ¢ > 6ne; contradicts the condition in Proposition 1. This
completes the proof.

Proposition 2. If > 71 ;Y(H) < oo then u(Ln(v)) = 0 when the polynomials
are restricted to the subclass P*(0,0,0) for which d; +d; <4 —e.

Proof. We denote by L/ (v) the set of solutions (x,z,w) of the system of ine-
qualities

max([P(x)], [P(z)], [P(W)l,]) < H="" Wi (H),
HO?~ < max(|P/(x)],|P’(z)]) < H'™, (10)
HT™Y < [P/(w)], <H™,

Denote by L”(v) the set L,,(v) \ L/, (v). Then for all (x,z,w) € L/(v) we have

max(|P(x)], [P(2)], [P(w)],]) < H™"% #"Wa (H),
max(|P’(x)], [P’(2)]) < HO, (11)
|P/(W)|p < HfO.lfv.

We replace W(H) by H™! in (11). Further, we use the method which was introduced
by Borbat [8] to get that the new system of inequalities has infinitely many solutions
only for a set (x,z,w) of measure zero.

Now we investigate the set L/ (v). By Lemma 1, all solutions (x,z,w) for a
fixed P € P! satisfying (1) are contained in the parallelepiped o2(P) defined by the
inequalities

X — o] < 27T YWY VAP (o)
z— Bl < 27T WY AP, (12)
n;3 1

w—yilp <« 27T WY AP ()
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Define a second parallelepiped o4(P) to be the set of points satisfying the ine-
qualities

x— o] < 27U VP (),

z—Bil < 27'@VIP(By)T (13)

w—vilp < 27Vl

N\—‘ N\

N\

Clearly, 02(P) C 04(P).
Using the Mean Value Theorem for the polynomial P in 04(P) we obtain

P(x) = P'(ar)(x — &1) +1/2P"(&1) (x — x1)?, &7 € (&1, %).
Estimating each term in the last equality individually gives

P/(oq)[lx — o] < 27° ’_v>
[P” (o) [[x — og|? < 2745 =),

For 3v < 1.3 we obtain that [P(x)| < 2705V for x € o4(P). It is easy to do the
same for [P(z)| and [P(w)], so that for v < 0.1

P(x) < 2° %*V,
P(z)] < 271G (14)
Pw)l, <« 2°G™.

We similarly estimate P'(x) = P'(a;) + P"(&2)(x — 1), &2 € (o¢1,%x) on 04(P). As
before, each term is estimated individually so that

P(ar)] < 27t
IP(”)(éz)llx—oql < 2—t(—1+0.5—v+1—v—0.1)<<2—t(—2v+0.4).

Hence, [P/(x)] < 2|P/(x1)] < 2771 for v < 0.1. From this and similar inequalities
for P’(x) the following inequalities hold on o4(P) for v < 0.1

P'(z)] < 27071
P'(w)l, < 27™. (15)

Fix the vector d = (ag, az,...,an), lgj < 2" and let P! denote the set of
polynomials P € P' with the same vector d. The parallelepiped 04(P;) is called
essential if for all polynomials P, € P}

1

w(oa(P1) Noy(P2)) < EH(CM(P]))-
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If, on the other hand, there exists P, € P§ such that

w(o4(P1) No4(P2)) = ;M(M(Pﬂ))

then the parallelepiped o4(Pq) is called inessential.
First, assume that o4(P) is essential. Then, it follows that

Z w(oa(Py)) < w(T).
PP}
Also, from (12) and (13),
k(02(P1)) < p(oa(Py))2 20y (2Y).

Since the number of classes Pj is at most c(n)2t™=5 from the above two displayed
inequalities we have

D ) u(oa(Ph) < 2W(2Yu(T).

d P E’P;

By Lemma 5, the series >_°; 2"W(2%) converges and the proof for the case of essential
intervals can be completed using the Borel-Cantelli Lemma.
Now, assume that o4(P7) is inessential so that there exists P, € 73:1‘ such that

o(Py,P2) = 04(P1) N04(P2), u(o(Pq,P2)) = ;H((M(Pﬂ)-

The systems of inequalities (14) and (15) hold simultaneously on o(P;, P2) for both
P; and P,. Hence, if R(f) = P,(f) — P;(f) = bsf> + ...+ byf + by then R satisfies

R(x)| < 27tz

R(z)] <« 271G,

Rw)l, < 274 (16)
R'(x)| < 27t

R'(z)] <« 2701,
R'(w)l, < 27%,

If 84,...,05 are the roots of R then

R(f) = bs(f—07)(f—02)...(f—05),
R'(61) = bs5(67—0,)...(67—05).

From (4) and (16) it follows that there must be another real root close to the real
root . By the same argument, the complex root 3 has another complex root which
is close to it, and similarly, for its conjugate B. Hence, there is a contradiction as R
cannot have 6 roots.
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Proposition 3. If Y [ ;¥Y(H) < oo then w(Ln(v)) = 0 when the polynomials
are restricted to the subclass P*(0,0,0) for which

d—e<di+dry<n+e. (17)

Proof. Instead of system (1) we use system (2). Exactly as in (7) the paralle-
lepiped T is divided into parallelepipeds M. Let P € M and develop P as a Taylor
series to obtain (9). For some 6 > 0 consider only parallelepipeds which contain
at most ¢(n)2'*® polynomials. Then, by Lemma 1, the measure of the set of points
u € T which satisfy (2) is at most the measure of the parallelepiped o(P) (defined
in (6)) multiplied by the number of parallelepipeds M and c¢(n)2%, that is

c (n)zft(nJH —d;—d;—0—4v) .

If 0 < n+1—d;—d,—4v then the series ) 2t —di =2 =0=4) opyerges and the
Borel-Cantelli Lemma can be used to complete the proof. Thus, from now on, we
assume that 6 > u=n+1—-dy—d,—4v. From (17), 1—4v—e <u <n—3—4v+e.
Let u; =u—d where d = 0.14. Writing u; as a sum of integer and fractional parts
[uq] +{u4} calculate

p=n—[wl=d+d—1+{w}+d+4v. (18)

According to the Dirichlet box principle, there are at least k = c(n)2td+weg)
polynomials Pq,..., P, among these c(n)2"™ polynomials whose first [u;] highest
coefficients are the same. Consider the k — T polynomials R;(f) = P;(f) — Py(f) for
2 <j < k. It can be readily verified that

IR;(x)] < Jt—a1—k T ' +(n—1)e; ),
Ri(z)] < 2t0-n—LT D) (19)
Rj(w), < 2t —ma T e ),

with 2 < j < k, degR; < n— [uy] and H(R) < 2*"2 The polynomials R;j(f) =
bn,[u]]f“’[”‘] 4+ .-+ + bif + by are now divided into sets. In each set the values
of the coefficients by py,},...,b7 lie in an interval of length 2t(~M) where hy =
{wi}(n — [uy])~". Again apply Dirichlet’s box principle to obtain that there are
at least L = c(n)2' polynomials R; in one such set. These will be renumbered

Riy...,Re. Develop the Ri(f) as a Taylor series on M and consider the polynomials
Si(f) = Ri(f) — Ry(f), which satisfy

Si(x)| < zt(l—q1—sz*]‘+(n—1)61)’ ISI(x)| < 2t(0—qi+n—Ter)
1Si(2)| < 21— =1, T +](n—1)£1)) |S{(Z)| < Qt-Tri+(n=Ter) (20)
|Si(W)|p < Qtsi—m T (n=T)e )) |Si(W)|p < Qt=siHn—T)e )’

with 2 <1< L, degS; < n—[wy], and H(S;) < 2t(~M), Note that min(q,71,81) = v
in this case.
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There are three possibilities to consider. First assume that all the polynomials S;
have the form 1,5, 1,S, ..., 1.S for some fixed polynomial S. Then i’ = maxi¢j<r [ij| >
c(n)2' and (20) holds for i’Sy with H(S,) < 2t0-M =4l By (20),

1Sa(x) IS0 (2)PISo(w)|,, < 213~ A1~ 3dain—ler ), (21)

Then we apply for the system (20) the strengthening of the Lemma 3 which we
can get by using the induction method in the Sprindzuk’s theory of essential and
inessental domains [11]. The proof will be complete if it can be shown that

1So()lISo(2)[P1So(W), < H(Sp)? deeSo+dvez, (22)
By passing to the height of the polynomial S in (21),

di+d,—343d—4n—1)er>n—[w] —2—4v+e€2)(1 —hy—4d),
pd —4vd — 2{w1}/p —4v{w}/p —4(n — ey — e2(1 —{w}/p—d) > 0,

This is true for d = 0.14, v < 0.027, p > 4 and €4, €; sufficiently small.
For the second case, assume that one of the polynomials Si, 1 <1 < L (say, So),

is reducible, i.e. S = SS)S(()Z). Then, for one of these, for example Sé”(f) the system

(20) holds and deg Sg)(f) <n— [u) — 1. In this case Lemma 3 can be applied if it
can be proved that the inequalities

di+d;—3—4n—1)e; > (d1+d2—4+{u}+d)(1 —hy),

1—dv—d—4(n—1)e; —3{w)/p > 0 (23)

hold. Tt is not difficult to show that this is true for d = 0.14, v < 0.027, p > 4 and
€1 sufficiently small.

Finally assume that among the S; there are at least two polynomials (say S; and
S2) which have no common roots. Pass to the height of the polynomials S; in (20)
and apply Lemma 4 with h =1 — hy. Then,

T]Z(Ch-i-sz_]—]—(TL 1)e
L=Mm+LT"=1—m—-1e)h™", n=LTTh
1)e

and the inequality
314+ kT T4+ 6m +2LT T+ 351 +moT ' —12(n—1)e; — 9hy < 2(n— [y])h 46

must hold. Reduce the LHS by replacing q; with k2T, 2ry with 21T~ and s; with
m,T~". This gives that

ol

0>2—-2d—8v— —12(n—1)e;.
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If n — [u;] > 6 then the above inequality is a contradiction for d = 0.14, v < 0.027
and sufficiently small & and €7. Hence, the set of (x,z,w) for which the inequalities
hold for infinitely many polynomials like S; of which two have no common roots is
empty.

The proof when n—[uy] =4 and n—[u;] =5 can be done exactly as in [9]. The
proof of the proposition is complete.

Now we consider the case when each coordinate is equal to 1 in the vector
(i1,12,13) of the definition of linearity. So the system

_ n+2
q] +kZT ! 2 4 — Vy
2
LT > n: -V, (24)
—2
S] —|—sz71 2 nT —V,

holds together with system (2).

Proposition 4. If Y 77 ;¥(H) < co then u(L,(v)) = 0 when the polynomials
are restricted to the subclass P*(1,1,1).

Proof. Using (2) and Lemma 1 we obtain

= n+2

¢ T4 4927V
x —o| < 2 : =27
- T
z—Bi < 2 7 =y (25)
O - )
4 nrlosy—v
w—vilp, < 2 ’ =2,

Let o5(P) be the parallelepiped defined by these inequalities. Divide the paralle-
lepiped T into smaller parallelepipeds M with sidelengths 27t =) 2=th2=Y) 44
27t Y) where y = ﬁ. Let P € M and develop it as a Taylor series on M. As
before, obtain an upper bound for all the terms in the series. The estimates for the

real coordinate are presented below.
|P/(OC1 )||X . OC]l < 2ty|P/((x] )Z—tm | < 2t(1—q1 +yv+(n—1)e; +v/2+q2 /2—(n+2)/8)
2v+(2—n)/4+(n—1
< 2t2y+H(2m)/4+(n—T)e )’

P (E)lx — oq|@ < 220Y[P" ()22t |  2tvH2yHZ /At (nT)er)

Obtain similar estimates for [P(z)| and |P(w)|, so that the inequalities

)

|P(X)’ < 2t(v+2y+(27n)/4+(n71 ey)
(Z)| < 2t(v+2y+(2—n)/4+(n—1 )eq )) (26)

|P
Pw)l, < 2tv+2y+(2-m)/A+(n—1)er)
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hold. Two cases are now considered. First, assume that at most one polynomial P
belongs to each parallelepiped M. The number of these parallelepipeds is
c(n)2tm+2mF1-4Y) g5 the measure of the set of u € M satisifying (2) and (24)
(using (25)) is

c (n)z—t(m +2pp s — g —2p —p3 +H4y) c(n)2_4ty.

Clearly the series > {°,c(n)2~" is convergent which is enough to complete the
proof in this case.

Now assume that the parallelepipeds M contain two or more polynomials P; and
P, (remember that we may assume P; and P, are irreducible). For such polynomials

the system of inequalities (26) holds and they do not have common roots. Use Lemma
4, with

T]—Tz—’fg——\)—z —zzn—(n—”h,
__1( + +—T‘L—2)_
—1(v+r +—n—2)_

N2 = P 2 4 Yy

m = 7 2 4 Yy

to obtain

242n—8v—16y —12(n— ey + (q2 + 212+ 52) < 2n + 8,

so that

§>2—-8v—16y—12(n—1)e; + (q2 + 212+ 52).

If 16y +12(n—1)e; < 0.5 then 6 > 1.5 — 8v. Hence, for 6 = 0.1 and v < 0.175
this is a contradiction. Thus, there do no exist parallelepipeds M containing two or
more irreducible polynomials and Proposition 4 is proved.

In the cases when one or two coordinates are equal to 1 in the linearity vector
(11,12, 13) we must combine the calculation for the subclass P*(0,0,0) and P*(1,1,1).
Putting all the propositions together completes the proof of the theorem (more
details are in [9]).

We indicate the following important applications of Theorem 1.

First, we adapt Theorem 1 to the problem for polynomials with small discrimi-
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nant. The discriminant of the polynomial can be written as the determinant

] an—1 e ar aq ap PN O
0 an an_1 ce ar aj A 0
i nn—1) 0 e 0 an An_1 an_2 ce- o
DP=(-1) = n (mn—T1an 2a;  aq 0 e 0
0 nan m—1Yan_1 -+ 2a2 aj e 0
0 0 0 nan (mM—TNan -+ a1
(27)
or as the product of squares of root differences
DP)=ai? ] (ai—o)™ (28)
1<<i<n

From (28)it follows that D(P) = 0 if and only if the polynomial P has multiple roots.

By (27), we obtain that if D(P) # 0 then D(P) > 1.
If the first coefficient a,, of the polynomial P(f) is a sufficiently large integer and
the inequality minigj<icnlog — ] > & > 0 holds for the roots of P(f), then

ID(P)| > c(8)aZ™ 2.

n

Further, let Q be a sufficiently large number with
H(P) < Q. (29)

Denote by Py, the set of polynomials satisfying (29). From (27) — (29) it can be seen
that all the values of D(P) belong to the interval

[—c(n)Q*™ 2, ¢(n)Q™ . (30)

By (29), we also note that the set P, contains exactly (2Q + 1)™" polynomials
(including the zero polynomial).

For some prime number q, positive integer 1 and p > 0 denote by P,(Q, q,1, p)
the subset of polynomials P € P,,, for which

D(P) < Q*"27%, (31)

q'ID(P). (32)

Here q'||D(P) means that q'|D(P) and q**' /D(P). The question of how many
polynomials satisfy (31) or (32) or both together is a natural problem in the theories
of Diophantine approximation and the theory of Diophantine equations.

From (28) we obtain that (31) holds if the distance between two roots of the
polynomial P, (f) decreases as Q increases. In particular, it will hold if for some j,
1 <j < n, the derivative

IP/(o)] = lan(og — or) - -+ (o — o5-1) (0 — &j1) - - - (05 — o)
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tends to 0 as Q — oo. If (32) holds then the p-adic norm [P’(ot)l, is small for some
1,1 <i<n

From Theorem 1 we can obtain the lower bounds for the derivatives of the
polynomial P in R x C x Q,, for the set of the point u; = (x,z,w) € T;, T C T,
for which p(T,) > @ By Lemma 1, for every point u; € Ty there exists a point
with three algebraic coordinates. The value of the derivative of the polynomial Py
in the algebraic coordinate for every metric will satisfy the system of inequalities
(1) if < is replaced by <. This gives that the inequalities (31) and (32) hold for
the parameters p and l. These parameters depend on v because the discriminant
contains the derivative of the polynomial at the roots. Then, we can choose a point
u; € T, for which there exists a polynomial P, Z P;. Such a point u; exists because
w(Ty) > @ This procedure allows us to construct a large number of polynomials
satisfying conditions (31) and (32).

As a second application of a Theorem 1, we would like to investigate the more
general question when the first inequality in (1) is

max([P(x), [P(2)], [P(W)],]) < HT#HHYIHH), 0 <t < 1,
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