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1. Introduction

Let % : R* — R* be a positive decreasing function such that 9(r) — 0 as r —
00. Such a function will be referred to as an approzimating function. Here and
* throughout, the system ¢, zy; + - - - + G Zm; of n linear forms in m variables will be
written more concisely as qX and |q| denotes the supremum norm of the integer
vector q. Let W(m, n; 1) be the set of X € I™" := [—1, ]™" such that the system
of inequalities ||qX|| := |qX — p| < 9(|q|) holds for infinitely many (p,q) € Z" x
(Z™\{0}). The metric theory is well established for this set, see [3, 5, 6, 16, 20] for
details. The metric theory for the subset '

Wo(m,n;9) := {X € I'™" : |aX| < ¥(|q]) for i.m. q € Z™\{0}},
where “i.m.” means “infinitely many”, of W(m,n;) is established in [17] (the
dimension of this set was obtained in [9]). The purpose of this note is to consider a
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set in which the forms of approximation are mixed. More precisely, let W,,(m,n; )
be the set of points X € I™™ such that

max(|q - xM —py,..., g - x™ = p,f,1q- x|, g - x™]) < ¥(|q])

for infinitely many integer vectors g € Z™\{0} and p € Z*. Here, x(), ... x(™
are the column vectors of X. In this article we will obtain a complete
Khintchine-Groshev theorem for W, (m,n; ) together with the Hausdorff measure
analogues. !

The case u = 0, m = 1 will be omitted as Wy(1,n;9%) = {0}. It can be readily
verified that W, (1,7;9) = W(1,u4;9) x {0} for u < n so that '

dim W, (1,n;9) = dim W (1, u;9).

If Y(r) = r~7, for some 7 > 0, then W,,(m, n;¥) will be denoted by W,.(m,n; 7).
This set was first considered in [12] when the Hausdorff dimension of W) (m, 2; 1) for
m > 1, was obtained. More generally, the set W,,(m, 2; 7) is related to an exceptional
set associated with the linearization of germs of complex analytic diffeomorphisms
of C™ near a fixed point and is the m-dimensional version of Schrider’s functional
equation, see (1, 12, 13] for further details.

In [10], the Hausdorff dimension of the set W4(m,n; ), where A is a subgroup
of Z" of dimension u (p € A), was calculated and the following theorem was proved.

Theorem 1. When m,n > 0 are integers,

0 ' ifu=0, m=1,
m+u

dim Wa(m,n;7) = { .

m+u
(m—-1)n+ T+l if 7>

This theorem does not include the case 0 < 7 < 1‘;“;& — 1 and in fact includes a
mistake. The result above does not hold for the cases m +u < nif 7 < At 1.
The mistake is corrected in the results of this paper and the remaining case is also
dealt with. .

To simplify notation the Vinogradov symbols <« and > will be used to indicate
an inequality with an unspecified positive multiplicative constant depending only
onm,n and u. If a < b and a > b we write @ =< b, and say that the quantities a and
b are comparable. The k-dimensional Lebesgue measure of a set A will be denoted
by |Alx. A dimension function is a function f : R* — R* such that f(r) — 0 as
7 — 0 and such that it is increasing for » € (0, 7() for some fixed rg. Throughout the
paper, H/ denotes the f-dimensional Hausdorff measure which will be fully defined
in Sec. 3.1. Finally, for convenience, for a given approximating function 1, define
the function '

U(r) := @.
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2. Statements

There are two cases and each subsection contains results about the Hausdorff mea-
sure, the Lebesgue measure and the Hausdorff dimension for that case.

2.1. Thecasem+u>n

The following theorem provides the complete measure theoretic description of
Wy (m,n;¢) when m +u > n.

Theorem 2. Let m+u > n and ¥ be an approzimating function. Let f be a dimen-
sion function such that r="™" f(r) is non-increasing and r=("™=1)" f(r) is increasing.
Then,

o0
0 i 3 FUr)W(r)=mImmeel < oo,

H (W (m,n; 9)) = oy
HII™) i 3 f()R(r) "Il = o,

r=]

The requirement that =" f(r) be non-increasing is a natural and not par-
ticularly restrictive condition. If f is such that »=™"f(r) — oo as r — 0 then
H/(I™) = co and if f(r) = ™" then the Hausdorff measure H/ is proportional
to mn-dimensional Lebesgue measure and the result is the natural analogue of the
Khintchine-Groshev theorem for W, (m,n;¢). Indeed if © = n then these well-
known theorems [15, 19] are obtained together with the classical results of Jarnik
originally proved in [18) for m = 1 and [11] for m > 1. These theorems were put
in a more general context in [3]; also in that paper some of the conditions on the
dimension and approximating functions (used in [11, 15, 18, 19]) were shown to be
unnecessary. When u = 0 Theorem 2 reduces to [17, Theorem 1].

Corollary 1. Let m +u > n and ¢ be an approrimating function. Then

= =]
0 if Z '«l?(r)“r"“'"'l < 00,
[Wau(m,n; ¥)|ma = r:l
1 if Z ,I,(f)nrm+u-l = 0.
r=1
From this, it can easily be seen that for 7 > ™% — 1 W, (m,n;7) is a null set.
The following corollary gives the Hausdorff measure and dimension when f(r) = r*,
s > 0. We refer the reader to [2, 11] for more details. For convenience in both this
corollary and Corollary 5 the notation

T = inf{s ‘ i ,I,(r)s—(m—l)nrm-i-u—l < 00} (1)

r=1

will be used.
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Corollary 2. Let m +u > n and v be an approzimating function. Let s be such
that (m — 1)n < s < mn. Then,

0
0 if Z 'P(T)‘_(m_ Dnamtu-1 00,
HE(Wa(m, m;9)) = i~
H.s(Imn) if E ‘I‘(r)l—[m-l}nrm-l-u—l = 0.
r=1

Also, dim W,,(m,n; ) = min{T, mn}.

Proof. All but the last line follows directly from Theorem 2. For the last line note
that if ¢ is such that T > mn then W,,(m,n; ™% — 1) C W, (m,n;¥). The result
then follows from the preceding corollary. (m]

Finally, for completeness, the dimension result for W, (m,n; ) is given for m +
u > n. This follows directly from the two preceding corollaries.

Corollary 3. Form+u > n,

m+u m+u

if >

(m—-1)n+ -1,
. T+1 n
dim W, (m,n;7) =
mn ifr < m:u_l_

Together, these results contain the results from [10] and also give the Hausdorff
measure at the critical exponent.

2.2. The case m+u<n

From now on let d = (m — 1)n + m + u — 1. For m 4+ u < n the conditions on
the dimension function in Theorem 2 change. This change is due to the fact that if
X € Wy(m,n;9) and m + u < n then X is over-determined and lies in a subset of
strictly lower dimension than mn. More notation is needed. For each m x n matrix
X € R™ with column vectors x(!),...,x(") define X to be the m x (n — u) matrix
with column vectors x(*+1) .. x(™) The set ' ¢ R™" is the set of X € R™" such
that the determinant of each m x m minor of X is zero. It will now be proved that
Wy(m,n;9) C I when m 4+ u < n.

Lemma 1. For m + u < n the set W, (m,n; ) is contained in ' and dimT =d <
mn. Thus

dim W, (m,n;¢) < d.

Proof. First the dimension of I is obtained. Assume that m = n (i.e. u = 0). The
dimension of the set of X € R™” such that det X =0is m2—1=d as required.
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Now assume that u > 0 and m + u = n. The number of variables in the first
u columns is mu. Each X € I satisfies det X = 0. As before, the dimension of
the set of X € R™ such that det X = 0 is m? — 1. Thus, the dimension of T is
m? — 1+ mu=d.

Finally, for m + u < n a similar argument is used. The first u columns contain
mu variables. Each m x m minor of X has determinant zero so X has rank at
most m — 1. Take any m — 1 columns which obviously contain (m — 1)m variables.
Then, the set of X such that each m x m minor, containing the chosen columns,
has determinant zero has dimension (m — 1)m + (n — m — u + 1)(m — 1). Clearly,
there are only (]'7") choices for the m — 1 columns. Thus, the dimension of T
sm=-1)m+n-m-u+1l)m-1)+mu=m-1)n+m+u—-1=d as
required.

If a matrix X € R™ satisfies |qX | < #¥(lg|) for infinitely many vectors q €
Z™ then det X = 0. This can easily be seen by assuming the contrary: i.e. that
det X = ¢ # 0. Then, solving the equations q.x{") = ¢; for i = 1,...,n where
& < ¥(|ql) gives |q| < ¥(|q]) which is clearly impossible for |q| sufficiently large. If
X € Wy (m,n;9) then |qX| < %(|q|) for infinitely many q € Z™. Thus, if m+u < n,
each m x m minor of X has determinant zero and X € I. 0

The main results for this section are now stated.

Theorem 3. Let m + u < n and v be an approzimating function. Let f
and r=(=m=wtDm=1) f(r) be dimension functions. Assume that r=4f(r) is non-
increasing and v~ (M= f(r) is increasing. Then

H/ (Wo(m,n;9)) =0 of if(l[}(r));p(r)—{m—llnrm+u—l < 0.

r=1

On the other hand, if

S F(R) D)t o,

r=1

then

o ifrif(r) =00 asr—0,

S . =
R (Wa(m, ni ¥)) {K ifr~lf(r) > C asr—0,

for some constant 0 < C < oo. If C > 0, then 0 < K < 0o and if C = 0, then
K =0.

Note that if f satisfies r=¢f(r) — C > 0 as r — 0 then the Hausdorff measure
H/ is comparable to d-dimensional Lebesgue measure. Also, if f (r) = ¢, then the
following analogue of the Khintchine-Groshev theorem is obtained.
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Corollary 4. Letm+u <n, 9 be an appmm‘vﬁata‘ng function and assume that the
conditions of Theorem 3 hold for the dimension function f(r) = r%. Then

0 i YWl <o,
Wa(m, n; $)la = o
K i 3 (™! = oo,

r=]
where 0 < K < oo.
Similarly, the m +u < n analogue of Corollary 2 holds; for the last line the same

argument, with appropriate changes, as in Corollary 2 is used. For convenience the
notation

S = Z ,l,(r)s—(m—l)nrm+u-1

r=1

is used.

Corollary 5. Let m +u < n and ¥ be an approzimating function. Let s be such
that (m = 1)n < s < d. Then, '
0 if S < oo,
H:(Wy(m,n;9)) = ¢ H () if S=0c0 and s < d,
K if S =00 and s =d,

where 0 < K < oo0.
Also, dim Wy, (m, n; ) = min{T,d}. (Note that T is defined in (1).)

The above corollary gives the Hausdorff dimension of W,,(m,n; ) when m+u <
n and also the Hausdorff measure at the critical exponent. Finally, the analogue of
Corollary 3 is given. This contains some of the results from [10] and corrects a
mistake in that paper.

Corollary 6. Form+u <n,

m+u m+u
-1 —_— =1,
. (m = 1jn + T+1 - ‘fr>m+u—1
dim W, (m,n;7) = ' +
m+u
ofr € —m8 — — 1.
d t‘“'m+‘u—_1 !

3. Basic Definitions and Auxiliary Results

In this section the definitions of some fundamental concepts are given together with
some of the auxiliary results needed in the proofs of Theorems 2 and 3.
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3.1. Hﬁusdorﬁ measure and dimension

Below is a brief introduction to Hausdorff f-measure and dimension. For further
details see [7, 14]. Let F C R™. For any p > 0 a countable collection {B;} of balls
in R" with diameters diam(B;) < p such that F C |J, B; is called a p-cover of F.
Define

HI(F) = inf 3" f(diam(B,)),

where the infimum is taken over all possible p-covers of F. The Hausdorff f-measure
of Fis '

HI(F) = ;ii%u;f(p).

In the particular case when f(r} = r* with s > 0, we write H* for H/ and the
measure is referred to as s-dimensional Hausdorff measure. The Hausdorff dimension
of F is denoted by dim F and is defined as

dim F := inf{s € R* : H*(F) = 0}.

Before the structure of W,(m,n;%) is described we introduce a function w
needed in the proof of Theorem 2 for technical reasons.

3.2. The function w _

Let w be a positive real increasing function such that w(t) — oo as t — co and such
that there exists C > 1 so that for ¢ sufficiently large w(2t) < Cw(t). This function
is chosen in such a way that the sum

oo . ’
Y FOU(r))u(r)~tmm sy () =n ()
r=]
will converge (respectively, diverge) if and only if the sum
. .
FUr))R(r)~(mDmpmtust (3)
r=1
converges (respectively, diverges). This is always possible; see [8] for the example
below. Clearly if the sum in (2) diverges then so does the sum in (3). On the other
hand, suppose that the sum in (3) diverges. Then there exists a strictly increasing
sequence of positive integers {r; };en such that

Y F(R(r)P(r) i Dngmiusl
ri—1Sr<ry '

and r; > 2r;_;. Define w to be the step function w(r) = in for i1 €7 <r;and w
satisfies the required properties.
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3.3. The structure of Wy (m,n; )
Forqe Z™, p = (p1,...,pu) € Z* the resonant set Ry, q is the set

Rp,q
={Xer:jaxV-pl=-=la-x"-pu =g x| = .. = |q-x(V|=0).

These sets are hyperplanes of dimension (m —1)n and are contained in W, (m,n; )
for all functions 1. Let R = {Rp q : q € Z™\{0}, p € Z*}. Given an approximating
function ¥ and a resonant set Ry, o, define the ¥-neighborhood of Ry q as

A(Rp q, %(la])) = {X € I'™™ : dist(X, Rp,q) < ¥(la)}

where dist(X, Rp q) := inf{|X — Y| : Y € R, q}. Notice that if m = 1 then the
resonant sets are points and the sets A(Rp.q, ¥(|q|)) are balls centered at these
points.

Let

A(m,n; ¥) = (X € I™ : X € A(Rpq, ¥(|q|)) for i.m. (p,q) € Z* x (Z™\{0})}

and for any t € N, define

A= {J U ARpq ¥al) (4)

where
J(t) = {q € Z™\{0} : t% <lal < 2*} .

Then, A(m,n; ¥) can be written as a lim sup set so that

A(m,n; ¥) = ﬁ G AW, t). (5)

N=lt=N

It can be readily verified that

A (m, n; %ﬂl) C Wy(m,n;9) C A(m,n; ).

In the next lemma the convergence half of both theorems is proved. For con-
vergence no conditions on the dimension function are needed and the proof is a
straightforward covering and counting argument.

Lemma 2. Let be an approzimating function and let f be a dimension function. If

3 FU)) ()t o,
ra=l
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H!(Wu(mt n;¢9)) =0.

Proof. The natural cover of W,,(m,n; ) given by (4) and (5) is used. From this it
follows that for each Q € N

W (m,n;9) C U U U A(Rp,q, ¥(|al)).

r>Q|q|=r peZ"
Ipl<lal
For each resonant set Ry, q, the set A(Rp q, ¥(|q|)) can be covered by a collection
of mn-dimensional closed hypercubes with disjoint interior and sidelength ¥(|q|).
It can be readily verified that the number N of such hypercubes satisfies N <
¥(lq|)~™=1". Thus,

H (Wulmyni9)) < 30 5 7 w(la)~™ " £(¥(|q])

r>Q |q|=r peZ"
Ipl<lal
< 3R ()T — 0
r>Q .

as Q — co. Thus H/ (W, (m,n;¥)) = 0, as required. O

4. Proof of Theorem 2: The Divergence Case
4.1. Ubiquitous systems

For the divergence part of Theorem 2 the idea of a locally ubiquitous system is used.
We present a simplified version of a more abstract framework developed in [3, 5]
from the original definition in [12]. In our case the required measure and intersection
conditions in [3] are trivially satisfied. '

Definition 1. Let p : R* — R* be a function such that p(r) — 0 as 7 — oo. Let
B be an arbitrary ball with center in I™" and radius at most r,(m,n,u). Suppose
there exist a function p and an absolute constant x > 0 such that

[BNA(p,t)|lmn > &|Blmn for t > t,(B)

where A(p,t) is defined in (4). Then R is said to be a locally ubiquitous system
relative to p. '

Loosely speaking the definition of local ubiquity says that the set A(p, t) locally
approximates the underlying space I™" in terms of the Lebesgue measure. The
function p will be referred to as the ubiguity function. The actual value of k in
the above definition is irrelevant, only its existence is important. In practice local
ubiquity is usually established using standard results such as Dirichlet’s theorem
or Minkowski's Convex Body Theorem, regarding the distribution of the resonant
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sets, from which the function p arises naturally. Clearly if |A(p,t)|mn — 1 as t — o0
then R is locally ubiquitous.
The following theorem is a simplified version of [5, Theorem 1].

Theorem 4. Assume that there ezists 0 < A < 1 such that the fun};tion p satisfies
p(2t+1) < Ap(2*) for all t € N. Suppose that R is locally ubiquitous relative to p and
Y is an approzimating function. Let f be a dimension function such that r=™" f(r)
is non-increasing. Furthermore suppose that r~(™~1" f(r) is increasing. Then

)E(2t)~(mn

M (Wo(m,msp)) =1/ (1) if Y e p(2)"
n=ll

To establish ubiquity we need two technical lemmas, the first of which is proved

in [10] and is the analogue of Dirichlet’s theorem.

Lemma 3. For all t > to(m,n,u) and for each X € I"™" there exist q € Z™\{0}
and p € Z* with |q|, |p| < 2* such that

i : - _miu
max{|q - x¥ —pil, |q- xP|} < (m +2)2" (2)~ "+
fori=1,...,uandj=u+1,...,n

In the above lemma the p which has been shown to exist obviously satisfies
Ipl < 3lai+1 as otherwise |gX —p| > 1. The following lemma is a slight modification
of a result from [10]. The only difference is that instead of log the function w is used.

Lemma 4. The family R is locally ubiquitous with respect to the function p: N —
R* where

plt) = (m +2)27 (24) =™ u(t).

The divergence of
Zf(![,(zt)),I,(2t)—(m—l}n(2t)m+uw(2t)-n
t=1

is not difficult to establish from the divergence of
(= =]
> (W) B(r) i pm )=
r=1

by using the same argument as in the proof of [3, Corollary 3] (similar to that of
Cauchy’s Condensation Test). The monotonicity conditions in the statement of the
theorem and the condition on the ubiquity function are both needed.

This completes the proof of Theorem 2.
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5. Proof of Theorem 3: The Divergence Case

First, we consider in more detail the structure of W, (m, n; ) by following an argu-
ment from [10]. For each X € W, (m,n; %) let X = (x(*+1) . x(")). From the proof
of Lemma 1 the rank of X is at most m — 1. Now, we restrict ourselves to those
X € W,(m,n;9) for which X has rank m — 1. It can be readily verified that the
set of X for which X has lower rank is of strictly lower dimension. Define a subset
Wa(m,n;9) of Wy (m,n;¥) so that the column vectors x(+1) . x(m+u=1) 51¢
linearly independent. Let I'¥ C T be the set of points X € I such that X has rank
m -1 and x(*+1) _ x(m+u=1) gre the linearly independent vectors.
Let G be the set of points of the form

m—1 m=-1
x, L xmu=l) §™ gmtyurd) L §T gl (et
=1 j=1

where

(xM, ... x(m+u-1) ¢ W.,(m,m +u—1;9)

and a_{;] € (—ﬁ, ﬁ] for m +u < i < n. Note that

m-1 ) m-1 _ m=1 . . )
q ) Z a;‘]x(u‘l'?) = Z ag—l}q ..x(“+3) S Z |a§‘)||q . x(“"'.’ll
i=1 i=1 j=1
m=—1 )
< 3 1af71 }wlal) < ¥(lal)
i=1

for m +u < i < n. It follows that G C W, (m,n; ).
Now define the function

. 1 1 (n=m=-u+1)(m-1)
n:Wu(m,m+u~—l;w)x_(-m+_—],m) -G
by
KD, D G apeme, gt

m4u=1 m4u=1
= | xV, .. xmte-1 Z agm"'"}x(’),.‘., Z aj'""“*lxm
=1 j=1

It is shown in [10] that 7 is a bijection and satisfies a bi-Lipschitz condition.
The following lemma follows directly from (14, Corollary 2.4].

Lemma 5. Let f be a dimension function. Suppose that L C R', M C R* and 7 :
L — M is a bijection satisfying a bi-Lipschitz condition. Then H/(L) =< H/(n(L)).
Thus n preserves a zero-full law.
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To prove divergence the technique of “slicing” introduced in [4] will be used. It
is first necessary to introduce a little notation. Suppose that V is a linear subspace
of R¥, V- will be used to denote the linear subspace of R* orthogonal to V. Further
V+a:={v+a:veV}forae V: The following lemma was proved in [4].

Lemma 6. Let [,k € N be such that ! < k and let f and g : v — ' f(r) be
dimension functions. Let B C I* be a Borel set and let V be a (k — l)-dimensional
linear subspace of RX. If, for a subset S of V* of positive H' measure,

HIBN(V +b)=c0 forallbe S,
then H/(B) = oo. '

This will be used to prove the infinite measure case of the theorem; i.e. the next
lemma. '

Lemma 7. Let m +u < n. Let ¥ be an approzimating function and let f and
g : 7 — p-(=lntu=1)m=1) £(1) e dimension functions with r—4f(r) — oo as
r — 0. Further, let r=™(™**=Dg(r) be non-increasing and r—(m-Nm+u=1l)g(r) pe
increasing. If '

- .

D F(¥(r)¥(r)~ Uil 2 oo,

r=1 '

then '
H(G) = .

Proof. Let .

B = ‘-W:‘(m,m +u — 1;4) x [ {mu-1))(m-1) ¢ yd

As 7 is bi-Lipschitz, from Lemma 5

| H/(G) = H/(n(B)) < H/(B).

Since Wu(m,m +u —1;9) is 2 limsup set, B is a Borel set. Let V be the space
Im(m+u—l} x {0}(m—l)(n—(m+u—1)) and let § = {0}m(m+u—1] X I(n—(m+u—l]}(m—l).

Clearly S is a subset of V-, and further it has positive H{*~(m+u=1)(m-1)_measure,
For eachbe S

HI(BN(V + b)) = HY((Wu(m,m+u—1;9) x {0} (r—(m+u=1))(m=1}y 4 p)
= HI(Wa(m,m +u — 1;9) x {0} (mu=-1)(m-1))
— Hg(rm(m-i-u-—l)) '
=00
using Theorem 2, the definition of g and the fact that
> FEE) ()l = o,

r=]

Thus, from Lemma 6, H/(G) = oo as required. : o
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Clearly, since G C W, (m,n; ), this implies that H/ (W, (m,n;v)) = oo and

completes the proof of the theorem.

5.1.

Finite measure case

We now deal with the case where r~%f(r) — C as r — 0 and C > 0 is finite. In
this case H/ is comparable to d-dimensional Lebesgue measure and

D S~ gt = 3 g,
r=1

r=1

From Lemma 5,
Iﬁu(m,m +u—L9) x (=1/(m—1),1/(m = 1))~ mre=Dim=D|, < |G|,
From Corollary 2, |Wﬂ(m m+u = 1;9)|immsu-1) = 1. The set of X € W, (m,

m+u—1; ¥) for which X has rank k at most m — 2 has strictly smaller dimension
than W.,(m m+u—1;9). Thus [W (m,m +u — 1;9)|;n(m4u-1) = 1. Hence the
d-dimensional Lebesgue measure of G is positive which further implies that the d-
dimensional Lebesgue measure of W,,(m, n; %) is also positive and finite as required.
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