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1. Introduction  
The aim of this paper is to propose a generalised framework for semiparametric 
geographically weighted regression (S-GWR) by combining several theoretical aspects of 
geographically weighted regression (GWR). In this framework, we can implement model 
selection in order to judge which explanatory effects on the response variable are globally 
fixed or geographically varying in generalised linear modelling (GLM). This framework 
is implemented in a new version of the GWR software (GWR 4.0) which is soon to be 
released and which will be described.  

To date, numerous theoretical and applied studies of GWR have been reported after the 
first seminal papers of GWR appeared (Fotheringham et al., 1996; Brunsdon et al, 1996). 
Here, we focus on two important extensions of GWR; geographically weighted 
generalised linear modelling (GWGLM) and semiparametric extension of GWR. While 
the original GWR assumes that the response is a continuous variable and the error term 
follows a Gaussian (normal) distribution, GWGLM enables us to fit generalised linear 
models with geographically local coefficients to accommodate commonly encountered 
types of response including count and binomial variables with likelihood functions of 
non-normal errors.  

Although Fotheringham et al. (2002) described a geographically local scoring 
algorithm to estimate geographically local coefficients of GWGLM, issues of inference 
about estimated coefficients were generally ignored. Nakaya et al. (2005) derived 
standard errors of coefficients and degrees-of-freedom for model selection indicators by 
focusing on geographically weighted Poisson regression (GWPR) and its semiparametric 
extension. Here, we generalize semiparametric GWPR to S-GWR and associate it with 
model diagnostics to assess the geographical variability of coefficients. The new software, 
GWR 4.0, provides a user-friendly platform to calibrate S-GWR models allowing the 
user to experiment with which coefficients are spatially varying and which are fixed. 



 

2. S-GWR models  
Geographically varying coefficient models are defined in the generalized linear model 
(GLM) framework. Suppose we define a linear predictor with geographically varying 
coefficients as, 
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where ikx , and  kβ is the kth explanatory (independent) variable and its coefficient, 
respectively. In this model, the coefficients vary depending on the geographical 
coordinate of the location, ),( , iii vu=u . The expected value of response of the ith 
observation, ][ iyE , is related to the linear predictor via a link function, g; 
  iiyEg η=])[(  
The log-likelihood of the observation is defined by a distributional function of the 
exponential family with the canonical, iη , and dispersion parameters, iϕ  as well as three 
functional components of exponential family, a, b and c;  
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This framework covers commonly used regression models including Gaussian, Poisson 
and logistic variants of GWR. 
 

GWR (Gaussian):  [ ]2,~ σηii Ny
 

GWPR (Poisson):
  

[ ])exp(Poisson~ iiy η  
GWLR (Logistic): [ ])(logisticBernoulli~ iiy η  

 
GWGLM is a method to estimate a vector of local coefficients focusing on the ith 
regression point by solving the following maximisation problem of the geographically 
weighted log-likelihood of the model, 
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where the hat symbol means prediction;  

( )( )
ˆˆ ( )i j j iη η= β u , ( )( )

ˆˆ ( )i j j iϕ ϕ= β u  . 

These two working variables are fitted canonical and dispersion parameters for the 
prediction of the response at the jth location with coefficients at the ith regression point. 
The geographical weight of the jth observation at the ith regression point, wij, is 
introduced here as a non-negative and monotonously decreasing function of the distance 
between the regression point i and the jth observation location, such as a Gaussian kernel 
function: 
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where the parameter G (called the bandwidth) regulates the kernel size.  



 
S-GWR as semiparametric GWGLM includes partially linear terms of explanatory effects 
on the response in the canonical parameter; 
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where ilz , is lth explanatory variable and lγ is its coefficient that is constant over space. 
Combining geographically local scoring and back-fitting algorithms, we can compute the 
estimates of coefficients and indicators for model diagnostics including standard errors of 
coefficients, degree-of-freedom and information criterion such as AICc (corrected AIC) 
to decide an optimal bandwidth size and model comparisons (cf. Nakaya et al., 2005).  
 

3. Model selection of S-GWR  

3.1 Assessment of geographical variability of coefficient 
An advantage of S-GWR is that we can incorporate a fixed effect of a subset of 
explanatory variables on the response variable due to prior knowledge. However, it is not 
always obvious which coefficients should be assumed to be fixed or varying. A natural 
way to overcome this difficulty is to conduct empirical model comparisons of different 
semiparametric models having different combinations of fixed and varying coefficients. 
Mei et al. (2004; 2006) proposed F test schemes for this kind of model selection. 
However, considering the situation that an optimal bandwidth size of a geographical 
kernel for fitting GWR is normally carried out by a model selection indicator, it would be 
more appropriate to conduct such model comparisons for assessing geographical 
variability of coefficients of GWR by using a model selection indicator. 

To assess the variability of the kth coefficient, we can compare two models; a fitted 
GWGLM model (pivot model) and a model in which only the kth coefficient is switched 
to be constant while the other coefficients vary spatially. If the pivot model is better than 
the model with the kth coefficient fixed, as judged by a model comparison criterion such 
as AICc, we can claim that the kth coefficient varies spatially. The test routine in GWR 
4.0 repeats this comparison for each relationship in the model. 

3.2 GtoF / FtoG automated variable selection 
GWR 4.0 contains two separate fitting techniques for automated variable selection of S-
GWR models. One is the GtoF (from geographically varying to fixed) variable selection 
routine which executes a series of model comparisons to search for an optimal 
combination of varying and fixed term given explanatory and response variables. The 
concept is similar to that of step-wise variable selection. Firstly, a model comparison is 
repeated between the originally fitted GWR model and a model in which only one 
coefficient is switched to be constant while the others remain spatially varying. The 
optimal model is now selected from the original GWR model and a set of models in 
which one parameter is fixed. If this optimal model is the full GWR model, the process 
stops. If the optimal model contains a fixed effect, a new set of model comparisons is 
then made by making each of the remaining spatially varying coefficients constant in turn 
and repeating this procedure until no further improvement in model fit can be obtained by 
making a coefficient constant instead of spatially varying.    



An alternative model selection procedure also implemented in GWR 4.0 is FtoG (from 
fixed to geographically varying) which is the reverse procedure to that described above. 
In this case, the default model is the global one and the first round of model comparisons 
is made by allowing each parameter in turn to be spatially varying. Model selection is 
made in the same manner by selecting an optimal model based on AICc and then 
allowing a second round of parameters to be spatially varying etc until no model 
improvement is possible.  
 

4. GWR 4.0  
GWR 4.0 is a new release of the current GWR 3.0 software. Compared to the previous 
version, the user interface is largely rebuilt to use tabbed sub-windows so that a 
modelling session intuitively proceeds in a step-by-step manner (Figure 1). Also, a wider 
range of options related to GWGLM including geographically variability assessment and 
automated variable selection routines explained above are available. It is executable 
under a MS-Windows environment with .Net Framework 3.5.  The software will be 
demonstrated in this presentation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Screenshots of GWR4.0 interface. 

 



5. Conclusion  
In this paper, we describe GLM-based semiparametric geographically weighted 
regression (S-GWR) which allow mixing geographically varying and fixed coefficients in 
a generalised linear model. It is also possible to explore which explanatory terms should 
be varying or fixed, through model comparisons between possible different S-GWR 
models. GWR 4.0 has been developed as a platform for the practical implementation of 
S-GWR modelling with new methods of geographical variability assessments for 
estimated coefficients and automated model selection to search for an optimal 
combination of fixed and varying explanatory terms in a model.  
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