Proceedings of the 6™ AGILE
April 24™-26™ 2003 — Lyon, France

THE JPATHFINDER MULTICRITERIA PATH PLANNING TOOLKIT

Peter Mooney and Adam Winstanley

Intelligent Graphical Data Research Group, Department of Computer Science, National
University of Ireland Maynooth, Co. Kildare. Ireland. Telephone : +353 1 708 6099
Email : pmooney@cs.may.ie, Adam.Winstanley@may.ie

1. INTRODUCTION

The design, software development, implementation and end-user methodologies of a
Java driven software toolkit (JPathFinder) for multicriteria path planning is described. This
toolkit may be used to help decision makers (DMs) find the multicriteria paths (the Pareto
Optimal set) that are best suited to a specific multicriteria route (or path) planning problem
they are trying to solve. This paper reports current progress in the research and
development work currently being carried out on JPathFinder. JPathFinder, developed
within the evolutionary computation paradigm, generates a Pareto optimal set of
nondominated paths. DMs have full-parameterised control over optimisation criteria
specification, examination of interesting solutions, and JPathFinder path-search stopping
conditions. Data clustering techniques are incorporated offering DMs greater control over
the size of their output set. JPathFinder delivers platform independence and interoperability.

1.1 Path Planning Computation

Spatial multicriteria decision problems typically involve a set of geographically defined
alternatives (events, paths, objects) from which a choice of one or more alternatives must be
made in respect to a set of evaluation criteria [1]. An explicit geographical component is
included making spatial multicriteria analysis different from conventional MCDM (multicriteria
decision making) procedures. Therefore spatial multicriteria analysis can be seen as a three-
stage hierarchical process of pre-processing, solution design and finally solution
recommendation. Problem and environmental data is acquired in the pre-processing stage.
Problem data may be expressed as a set of equations or constraints and the environmental
data itself is usually contained in flat files or tabular data formats. Solution design involves
formal algorithm and data structures modelling in order to generate a set of candidate
solutions representing feasible spatial decision alternatives. Solution design must provide
path-planning services with three key functions: path computation, path evaluation and
finally path display.

The goal of path computation is to locate a connected sequence of network edges or
links from a current location node to a destination node. Path computation may be based on
a single or multiple criteria. Single criteria path computation is realised with any of the
classical shortest path such as Dijsktra’s or Bellman Ford algorithm (for example). When the
number of criteria involved is greater than one, the problem cannot be solved by these
standard approaches. Many applications form a linear combination of all criteria and
optimise the resultant cumulative value. While such approaches admit solutions in
polynomial time they do not adequately represent the multidimensional nature of the
problem. The linear combination approach can only account for linear relationships among
the criteria. In Horn[2] he states that as a result these aggregation approaches are open to
criticism as it is generally impossible to combine conflicting criteria into a single criterion



284 6" AGILE - Lyon 2003

prior to search. Many users and researchers now chose to first apply search to find a set of
"best alternatives".

Path evaluation finds all of the attributes of a given path between the start and end
nodes. Path evaluation is required for both the optimisation algorithms and to output the
solution set to the DM. The goal of path display is to effectively communicate the set of
optimal paths to the DMs. In this paper, our attention is focused strictly on path computation
and path evaluation. Path display is important to facilitate more insightful decision making
with the assistance of helpful graphical representations of Pareto Optimal subspaces.
Providing appropriate functionality in order to illustrate a set of alternative criteria vectors is
beyond the current scope of JPathFinder. Miettinen [3] provides a summary of a number of
alternative means to illustrate the Pareto Optimal Set using bar-charts, petal diagrams and
scatterplots.

1.2 Multicriteria Path Optimisation

Multicriteria path optimisation addresses path planning problems with several, often
conflicting, cost criteria. For example, multicriteria path planning may involve optimising
criteria including, for example, overall path distance, minimising the number of turns in a
path and travel costs. For many years, researchers have been actively investigating
methods to generate satisfactory computationally efficient solutions to these types of path
planning problems. In contradiction to traditional optimisation methods combining all
objectives into a linear, weighted, sum parallel optimisation, methods such as Evolutionary
Algorithms (from Evolutionary Computation) allow direct convergence to the set of
nondominated solutions. In fact, evolutionary algorithms are readily modified to deal with
multiple criteria by incorporating the concept of Pareto Optimality. A standard introduction to
the theory of Pareto Optimality is provided in Zitzler [4]. This allows DMs to choose a
posteriori from a set of Pareto-optimal solutions evolved after a series of evolutions (or
iterations) of the Evolutionary Algorithm. Several types of evolutionary strategies have been
developed to solve multicriteria problems in many different application domains (outlined in
Horn [2]), for example, industrial engineering applications [5], environmental management
[6], and route generation in aircraft routing [7].

Evolutionary computation encompasses a host of methodologies inspired by natural
evolution that are used to solve hard problems. As evolutionary algorithms possess several
characteristics that make them well suited to these types of problems, evolution-based
methods have been used for multicriteria optimisation for more than a decade. Evolutionary
multicriteria optimisation has become established as a separate sub-discipline combining
the fields of evolutionary computation and classical multiple criteria optimisation. The
evolutionary approach implemented in JPathFinder is a cross fertilisation of methodologies
derived from algorithms described in Horn and Zitzler [2,3] and Costelloe [8]. The overall
system component outline of JPathFinder is illustrated in Figure 1.

2. DEALING WITH MULTIPLE CRITERIA

As outlined above there are several ways one can deal with multiple criteria when
designing a solution to a given multicriteria path-planning problem. Morris [9] highlights the
requirement, in some problems, for the DM to explicitly express their preferences by
assigning weights to the selection criteria. He identified this as one of the major drawbacks
of existing GIS/IMCDM systems. This is difficult, if not impossible, for a DM to do, especially
as the number of criteria increases. Feasible "real-world" solutions are compromise
solutions, resulting from trade-offs between various conflicting criteria. Thus they do not
maximise single criteria, but rather find an efficient and acceptable balance between the
requirements of the problem solvers and the resources available to them.

284



Mini-session 1.3 Location based Services 2 285

The traditional methods used to deal with de-facto multiple criteria problems are based
on the idea of converting a multicriteria problem into a single criteria problem by summing up
weighted criteria. Two serious drawbacks of this approach are that it does not allow user-
controlled examination of interesting (driven by personal preference) Pareto optimal
solutions and consequently weights can be counter-intuitive making it difficult to facilitate the
generation of solutions having those properties. After this, DMs require an interactive tool to
run until they find a solution best meeting their expectations.

The network data structure (G) used in the implementation is the classical G = (V,E),
where V is the set of all nodes in the network and E the set of all edges connecting pairs of
nodes in the set V. Multiple costs or criteria in the network are stored (with order maintained)
using Vector objects for each edge in E. We say that the network G has a dimension C if
every Vector on every edge has a size = C. If C = 1 then the problem reduces to the
classical one-dimensional case solvable with, for example, Dijkstra’s Algorithm or A*. A
basic programmatic requirement when dealing with multiple criteria is considering how those
criteria are represented. The criteria must be represented by a well-defined data structure
that can be efficiently manipulated by all components of JPathFinder. All criteria are
represented as Long integer numbers. Float or Double number types can be easily
facilitated. The criteria on every edge are then stored in a vector data structure. We use
the term path-description vector (as used in Costelloe [8]) for the vector of criteria stored on
every edge. With this vectoral representation there is no predefined limit on the number of
criteria the graph data structure can model.

Path Criteria Extraction

Path Evalutation
Component
A
Pareto
. ; Optimal Set
Algorithm of Paths
Path Computation
Component

Pareto Set of Paths
with full path
descriptions

Pre-processing

Path Digplay Component

Fig. 1 The components of JPathFinder

2.1 Criteria Selection



286 6" AGILE - Lyon 2003

JPathFinder is designed to deal with any number of path criteria. However DMs usually
consider a smaller subset of criteria when dealing with multicriteria path problems. For
example DM1 may consider {path distance, travel time and number of turns in the path} as
their subset of criteria while DM2 may consider only {travel time and number of turns in the
path}. With JPathFinder, DMs can choose to simultaneously optimise all criteria available or
choose their subset of criteria thereby ignoring all others. Distance is by default an
optimisation criterion. A literature search yielded other default criteria for inclusion. Timpf's
[10] surveys of citizens in Zurich found people chose, in no particular order, minimal path
time, minimal journey distance, least expensive paths, minimising the number of nodes
passed through and finally the least complex path in terms minimising the number of
transportation changes required (in the case of public transportation). Makaness [11],
performing the same for Edinburgh, uses a route filtering mechanism to reduce the number
of candidate paths for display by eliminating those with significantly high numbers of stops
(stopping nodes). Their survey found that people prefer longer routes with fewer changes.
From this the default minimisation criteria available in JPathFinder were derived as follows:

e overall path distance;

e overall path traversal time (if available);

e cumulative path expense (financial, fuel, other);

e total number of nodes.

JPathFinder generates a large number of non-dominated (Pareto Optimal) paths
between pre-specified start and end nodes. A high number of solutions may be present in
many path-finding problems. Data Clustering (as described in Zitzler [3]) may optionally be
used to help DMs discover the nature of their trade-off solutions and be more informed when
exploring the alternative paths presented to them. Clustering reduces the number of Pareto
Optimal Solutions presented without destroying the characteristics of the Pareto Tradeoff
Front. Thus only solution paths sufficiently distinct from one another are accounted for as
output path solutions.

3. CLUSTERING THE PARETO OPTIMAL SOLUTION SET

The Pareto Optimal Set in problems such as multicriteria path planning can become
extremely large and contain more solutions than a DM can actually evaluate in a
straightforward and efficient manner. A key principal of Pareto optimality is that given a set
of Pareto Optimal solutions no solution exists which could decrease one criteria without
causing a simultaneous increase in at least one other criterion. This could be restated as
that in the Pareto Optimal Set no solution is better than another — all members of the set are
equally valid for implementation by the DM. The process of reducing the set is not just a
simple case of dropping certain members of the set or randomly selecting a subset and
discarding the remainder.

286



Mini-session 1.3 Location based Services 2 287

Reduction from 11 Pareto Optimal Solutions to 5 solutions by Clustering

[
(24
Q

[543
(=]
(=}

N
o
Q

)
(=]
=]
®

-
wn
Q

Z Criteria Value

-
=]
=]
&

[5)]
(=]
O

[&]
(=]
[=Rw]

100

s 0 o
Y Criteria Value X Criteria Value

Fig. 2 11 Pareto Optimal Solutions with 5 Clusters Chosen

Most DMs want to simply arrive at a final solution to their problem and are not
interested in exploring the entire Pareto Optimal Criteria space. From this viewpoint, being
presented with all Pareto optimal solutions computed is of little use, especially when the
cardinality of the Pareto Optimal Set is large. It would be useful for the DM to outline what
they deem as a reasonable bound on the cardinality of the Pareto Optimal Set that they are
presented with. However there is no way before the evolutionary algorithm starts of
estimating how the Pareto Optimal Set will be distributed in criteria space. Figure 4 shows 9
Pareto Optimal Solutions in 2-D criteria space. The Pareto Front is clearly recognisable. If
there is poor distribution among candidates in the set then many similar solutions are
included in the set. For example the vectors p1 {40,50} and p2 {42,52} may be deemed
similar due to their close proximity in criteria space. The final goal for the optimisation
component after computing the Pareto Optimal Set is to only prune the given Pareto Optimal
Set into one of manageable size. This pruned set should be a representative subset
maintaining the important characteristics of the original Pareto Optimal Set. In order to
perform this pruning, Cluster Analysis is performed.

3.1 JPathFinder’s Clustering Technique

Cluster Analysis partitions a collection of n objects into k groups or partitions of
relatively homogeneous elements (k < n). There are a large number of clustering algorithms
reported in the literature [12]. Generally speaking, clustering algorithms can be classified
into four groups: partitioning methods, hierarchical methods, density-based methods and
grid-based methods. For JpathFinder, hierarchical clustering was chosen. Initially in
hierarchical clustering (as outlined in Zitzler [4]) the whole Pareto Optimal set forms a basic
cluster. Then iteratively two clusters are chosen to partition each larger one until the given
number of clusters (k) (as chosen by the DM in advance) is reached. The clusters are



288 6" AGILE - Lyon 2003

chosen by the nearest neighbour criterion where distance between clusters is given by the
average distance between pairs of Pareto Optimal solutions across the two clusters.
Selecting a representative individual for each cluster forms the reduced Pareto set.

Candidate Solutions (26) marked with 4 Clustered Individuals

500
! ; i ; ; O Before

400 |, : : % Clusters
g
= 300 :
g Y
© @
B B
= 200
&) &

8
0 e By ©

500
500

200 300

100 200

Y Criteria Value 0 o X Criteria Value

Fig. 3 Pareto Optimal Set with Cardinality 26 and 4 clusters

An illustration of this clustering technique is outlined in Figures 2 and 3 where the
whole Pareto Optimal Set is plotted in criteria space with the chosen clustered individuals
also marked. In the case of Figure 2, a cluster size of 5 was chosen and in Figure 3 a cluster
size of 4 was chosen. The representative solution chosen in each case is the centroid — that
is the point with minimum average distance to all other points in the cluster. The centroid
solutions are clearly evident in Figure 2. In both cases the Cluster centroids are heavily
shaded.

288



Mini-session 1.3 Location based Services 2 289

Centroid Cluster Along the Pareto Front in 2 Dimensions

600 T T T T T T T T T T
550 4 Centroids i
o]
500 - B
450 &
400 =
&
Sas0f -
G
>
23001 .
2
O
>~ 250 - -
@]
200 -
150 -
@]
100 =]
50 ¥
L & |
Q ® o
0 1 L L L L 1 L 1 L L
0 50 100 150 200 250 300 350 400 450 500 550

X Criteria Value

Fig. 4 Pareto Solutions and Cluster Centroids on 2-D Criteria Space

4. IMPLEMENTATION ISSUES

Java was chosen as the implementation language for JPathFinder (the ‘J’ being
derived from Java). Moreira [13] comments that until recently there were few areas of Java
so blatant performance deficient as that of numerical computing. Initial experiences of many
developers of high performance numerical applications have seen them reject Java out-of-
hand as a platform for their applications. Once it is accepted that performance is only an
artefact of particular implementations of Java, there are no technical barriers to Java
achieving excellent numerical performance. Using the Object Oriented paradigm of Java, the
principal data structure components of JPathFinder are objects. Through this highly object-
oriented approach to the development of this path planning toolkit, the task of re-
implementation in another high level programming language (such as C++) should be
straightforward for experienced programmers. This solves any interoperability problems as
encountered with some other path planning software packages written in other 3
generation programming languages.

The principal configuration and search set-up parameters in JPathFinder are as

follows:

e Input files are in the standard graph-network format DIMACS Implementation
Challenge network files (see Goldberg [14] where this format was first introduced).
DIMACS facilitates a standard file format for graph input files that is flexible for
many types of graph and network problems;

e There are many ways to internally represent path solution individuals (binary
strings, real numbers, parse trees) -JPathFinder uses String;



290

6" AGILE - Lyon 2003

(1

(2]

(3]

(4]

(3]

(6]

(7]

(8]

9]

[10]

(1]

[12]

[13]

[14]

A configuration file is used to store all user options and parameters, before
JPathFinder starts the evolutionary algorithm, as a means of reference afterwards;
e An archive of all paths considered Pareto Optimal at any stage of evolution is

maintained and is available if requested by users;
e Users must supply the following parameters:
e Start and End nodes of their target path;
¢ Number of generations allowed for the evolutionary algorithm (Defaults to 10);
e The rate of crossover () and mutation () of the evolutionary algorithm
(Default values are included provided);
e The number of candidate paths generated on every generation (Defaults to 20).
¢ With the incorporation of data clustering users may specify the number of Pareto
Optimal Paths (hence specifying the number of clusters) they wish to be presented
with in the final output set when JPathFinder has stopped.
e The system can be started in default mode — where the user only inputs the start
and end nodes of their path.

REFERENCES

Malczewski, F. A GIS-based Approach to Multiple Criteria Group Decision Making. International
Journal of Geographical Information Systems. Vol 10. Issue 8. 955 — 972. 1996

Horn, J. Multicriteria Decision Making and Evolutionary Computation. The Handbook of
Evolutionary Computation. July 1996.

Miettinen, K. Nonlinear Multiobjective Optimisation. Kluwer Academic Publishers, Boston, USA.
1999.

Zitzler, E. and Thiele, L. Multiobjective Evolutionary Algorithms : A Comparative Case Study and
the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation. vol 3. Issue 4.
257 —271. 1999

Triantaphyllou, E. and Evans, G. Multi-criteria Decision Making in Industrial Engineering,
Computers And Industrial Engineering. vol. 37. number 3. 505 — 506. 1999.

Beinat, E.,Multi-criteria analysis for environmental management. Journal of Multi-Criteria Decision
Analysis. vol 10. number 2. 2001

Oussedik, S., Delahaye, D. and Schoenauer, M. Flights Alternative Route Generator by Genetic
Algorithms. Proceedings of the 2000 Congress on Evolutionary Computation. IEEE Service Center,
Piscataway, New Jersey. 896 — 901. 2000.

Costelloe, D., Mooney, P. and Winstanley, A. An Evolutionary Spatial Decision Support System. In
Proceedings of GISRUK 2002, University of Sheffield, UK. 91 - 94. 2002

Morris, A. and Jankowski, P. Combining Fuzzy Sets and Databases in Multiple Criteria Spatial
Decision Making. Flexible Query-Answering Systems. 103-116.

Timpf, S. and Heye, C. Complexity of Routes in Multi-modal Wayfinding. Proceedings of the 2™
International Conference on Geographic Information Science. Boulder, Colorado, USA. 2002.

Rainsford, D. and Mackaness, W. Mobile Journey Planning for Bus Passengers. Proceedings of
the 2™ International Conference on Geographic Information Science. Boulder, Colorado, USA.
2002.

McQueen, J. Some methods for classification and analysis of multivariate observations. In Proc.
5th Berkley Symposium on Mathematics, Statistics and Probability. 1967.

Moreira, J.E., Midkiff, S.P., Gupta, M., Artifas, P.V., Wu, P. and Almasi, G. The NINJA Project :
Making Java work for High Peformance Computing. Communications of the ACM. Volume 44.
Issue 10. 102 — 109. 2001.

Goldberg, A.V. Scaling Algorithms for the Shortest Path Problem. Proceedings of the Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms. Austin, Texas. 222 — 231. 1993.

290



Mini-session 1.3 Location based Services 2 291

[15] Zitzler, E. and Thiele, L. (1998b). An evolutionary algorithm for multiobjective optimization: The
strength Pareto approach. (Technical Report No. 43). Zurich: Computer Engineering and Networks

Laboratory, Swiss Federal Institute of Technology.



