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Abstract. This paper proposes a new feature selection algorithm. First, the data 
at every attribute are sorted. The continuously distributed data with the same 
class labels are grouped into runs. The runs whose length is greater than a given 
threshold are selected as “valid” runs, which enclose the instances separable 
from the other classes. Second, we count how many runs cover every instance 
and check how the covering number changes once eliminate a feature. Then, we 
delete the feature that has the least impact on the covering cases for all 
instances. We compare our method with ReliefF and a method based on mutual 
information. Evaluation was performed on 3 image databases. Experimental 
results show that the proposed method outperformed the other two. 

1   Introduction 

For pattern recognition problems, the data represented in feature space can be of very 
high dimensionality. However, some features are redundant and do not provide extra 
information over the others. In some worse cases, feature extraction could introduce 
noise, which does not contribute to pattern classification but degrade the classification 
performance. Thus, how to find a compact and effective feature subset is a significant 
issue, to which a great deal of effort has been devoted so far. There are two types of 
methodologies for dimensionality reduction: The unsupervised methods like PCA and 
the supervised methods, for which the class labels of the training samples are prior 
known. In this study, we foucse on the supervised dimensionality recduction, which is 
referred to as feature selection. Feature selection plays an important role in a variety 
of applications, including image classification [9,10]. Some reviews on feature 
selection can be found in [1-3]. According to [4], feature selectors can be sorted into 
two different groups: wrappers and filters. Wrappers employ a given classifier to 
evaluate features such that the feature selection is optimized for the given classifier. 
Filters evaluate features according to some measurements of class separability. In 
general, filters are less computationally complex than wrappers. As for filters, some 
methods measure the power of every independent feature in terms of class 
separability while some other methods measure the power of a subset of features as a 
whole. According to [3], only exhaustive search and the branch and bound methods 
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[12,13] are optimal feature selectors. However, the branch and bound methods are 
based on an assumption that a performance index drops monotonously. In fact, 
investigations on developing new feature selectors have never stopped. Recently, 
mutual information based methods have received much attention [7,14-15]. 

In this study, we propose a new feature selection method, which belongs to the 
filter category. Its implementation is outlined as follows. First, the data at every 
attribute are sorted. The continuously distributed data with the same class labels  
are grouped into runs. The runs whose length is greater than a given threshold are 
selected as “valid” runs, which imply that the instances falling into such runs are 
separable from the other classes because enough instances from an identical class 
occupy spatially close positions. Second, we count how many runs cover every 
instance and check how the covering number changes once eliminate a feature. We 
delete the feature that has the least impact on the covering cases for all instances. 

We compare our method with ReliefF [5], which is member of the Relief family 
[6], and the method based on mutual information [7]. Both methods belong to the 
filter category. We evaluate the 3 methods on 3 image databases provided in UCI 
Machine Learning Repository [16]. Experimental results show that the proposed 
method outperformed the other two. 

2   The Method 

The feature selection method is based on run covering. First, we sort the data values at 
every attribute. After the sorting, the data at every attribute can be divided into some 
segments, where the class labels of the elements in every segment should be identical. 
Such a segment is referred to as a run. If an instance is covered by at least one run 
(One of its attribute is included in the run.) whose length is greater than a given 
threshold, it means that this instance is separable from the other classes. By 
eliminating recursively such attributes that the removal of them will not affect the 
class separability in terms of run covering, a feature subset can then be selected. In the 
following, we first give the definition of runs. Then, we describe the feature selection 
algorithm. Finally, we provide a feature ranking method by which we can identify the 
least important feature and delete it in every loop. 

2.1   Runs 

The runs at every attribute can be extracted via the following procedure: 

(1) Suppose that there are N instances. After sorting the kth attribute, we obtain 
xk1≤xk2≤…≤xkN. Denote the corresponding class labels as [C(xk1),C(xk2),…,C(xkN)]. 
Note that C(xki)∈{1,2,…,L}, i=1,2,…,N, if there are L classes. Also, the indices of the 
corresponding instances are denoted as [I(xk1),I(xk2),…,I(xkN)]. 

(2) If xki=xk,i+1=…=xk,i+U but C(xki)=C(xk,i+1)=…=C(xk,i+U) does not hold at the 
same time, it means that xki,xk,i+1,…,xk,i+U are not separable. To denote that, we let 
C(xki)=C(xk,i+1)=…=C(xk,i+U)=0. Note that only 0∉{1,2,…,L}. Thus, it is not a valid 
class label. 
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(3) If C(xki)=C(xk,i+1)=…=C(xk,i+U)≠0, then, [xki,xk,i+1,…,xk,i+U] forms a run. The 
length of this run is U+1. 

(4) Repeat (3) until all runs at every attribute have been found. 

Some examples regarding the previously defined runs are shown in Fig. 1, 2, and 3, 
where the class labels distributed along a given attribute are illustrated. We can see 
that Fig. 1, 2, and 3 contains 2, 3, and 12 runs, respectively. Clearly, the case shown 
in Fig. 1 promises the best separability between the 2 classes while Fig. 3 corresponds 
with the worst case. The two cases shown in Fig. 1 and 2 are better in that the run 
length is greater. A longer run corresponds with a better case in terms of class 
separability. These examples show that the runs defined as above characterize the 
class separability to some extent. If the maximum run length at an attribute is too 
short as the case shown in Fig. 3, it means that the instances are not separable at this 
attribute. If we set a threshold of 5 and look for such runs whose length is greater this 
threshold, we can find out 2, 1, and 0 runs in Fig. 1, 2, and 3, respectively. 

However, run length is a coarse characterization of class separability. It is known 
that N individually strong attributes are not certainly the best N attributes if combined 
together (N attributes performing well alone could perform unsatisfactorily as a 
team.). In this study, our focus is how to choose the best team, not the best N 
individuals. This can be achieved by using the run covering described in the next 
section. 

1111111112222222222 
 
Fig. 1. Class labels at a given 
attribute 

22222111111111122222 
 
Fig. 2. Class labels at a given 
attribute 

1122112211221122112212 
 
Fig. 3. Class labels at a given 
attribute 

2.2   Eliminate Redundant Attributes Based on Run Covering 

Prior to describing the feature selection algorithm, we give some definitions as 
follows. 

(1) R={Ri}: The run set including all the runs at every attribute. 
(2) ||Ri||: The length of the run Ri∈R. 
(3) A: The attribute set that contains all remainder attributes following the feature 

elimination process described below. Initially, this set contains all the attributes. After 
the feature elimination process stops, the residual attributes are the finally selected 
features. 

(4) /* Comments on pseudo codes */. 

Following is the feature selection (feature elimination) algorithm: 

(1) Assign a score to each attribute to represent the individual power of every 
attribute in terms of its contribution to class separability. Let us denote these scores 
as w(1), w(2), …., and w(K). If w(i)<w(j), it means that the ith attribute is better 
than the jth attribute in terms of class separability. This is also referred to as feature 
ranking. The detailed ranking algorithm is provided in section 2.3. 
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/* P corresponds with the redundant attributes, the elimination of any of which will 
not cause a critical change on the times that each instance has been covered, where 
the critical change means that the covering times for any instance go down from a 
positive value to 0 suddenly after eliminating an attribute. */ 

(5) Find }|)(max{arg Pppwq ∈=  and eliminate q from A. 

/* Delete the least important feature in set P, where the criterion to select the least 
important feature refers to the feature ranking algorithm described in the next 
section */. 

(6) If P=φ, delete }|)(max{arg Appwq ∈=  

/* If no feature satisfying that elimination of it will not change the covering case 
for every instance, then, delete the least important feature ranked by the feature 
ranking algorithm described in the next section. */ 

(7) Let Cl=Cl,-p and Go to (3) until the number of the residual attributes in A is 
equal to the predefined desired number. 

Some discussions about the above algorithm are given below. The central idea of 
this algorithm is: Look for such attributes that the class separability will not be 
affected if eliminating them. The run covering plays an important role in this 
algorithm. First, we select the runs whose length is greater than a given threshold T. 
Every selected run covers the instances that are separable at a given attribute since the 
instances from the same class distribute very closely to each other (They are within a 
run). As every instance has K attributes, it has the chance to be covered by K runs at 
most. If an instance is covered V≤K times by the runs, then, eliminating one attribute 
from the V attributes will not affect the classification of this instance because it is still 
covered by the runs at the other V-1 attributes, which means that this instance is still 
close to the instances from the same class at the V-1 attributes. Taking all the 
instances into account together, we hold the following idea. Suppose that Q≤N 
instances are covered by at least one run. When we eliminate one attribute, if the Q 
covered instances are still covered by at least one run, then, it means that this attribute 
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is redundant and contributes no additional information in contrast to the reminder 
attributes. Eliminating it should have no impact on the classification. In case there 
exist R>1 attributes that the removal of any of them will not chance the covering, we 
eliminate only one attribute among the R attributes and then recompute the covering. 
In such a case, the selection of the attribute to be eliminated is not random. It is based 
on a feature-ranking criterion. That is, we firstly score every attribute according to its 
individual significance in terms of class separability. Then, we always eliminate the 
least important one from the R attributes. The feature-ranking criterion is described in 
detail in the next section. The above procedure can be repeated to eliminate redundant 
attributes recursively.  

In the above algorithm, T is the only parameter (See step 2), which determines how 
many runs are valid in counting the covering number. We let the threshold T=0.1×N, 
where N denotes the number of all instances. We have tested a couple of different 
values for T and found that T=0.1×N is a satisfactory one in this study, which not only 
leads to a satisfactory overall classification performance but also promises a stable 
classification performance when T∈[0.1×N-Δ,0.1×N+Δ], where Δ is a relative small 
positive value. Note that T can be scaled to adapt to problmes from different domains. 

The above algorithm can be easily extended to multi-class classification. We only 
need to decompose the multi-classification into multiple two-class classifications 
(pairwise classification). Then, we look for such attributes the elimination of which 
do not affect the covering for every two-class classification. For example, if there are 
L classes, then, we decompose the L-class separability computation into L(L-1)/2 
parallel two-class separability computations. Here, step (1)~(3) and step (7) are 
implemented as L(L-1)/2 parallel processes. In step (4), the intersection of the  
L(L-1)/2 solutions forms P. The other steps are the same as described prevoiusly. 

× × × × × × × + × + + + + + + 
 
Fig. 4. Distribution of two classes along a 
given attribute 

× × × × × × + + × × + + + + + 
 
Fig. 5. Distribution of two classes along a 
given attribute 

2.3   Feature Ranking 

Suppose that there are M and N samples in class X and Y and the kth attribute of the 
two classes are {xk1,xk2,…,xkM} and {yk1,yk2,…,ykN}, respectively. 

We define the relationship between xki and ykj as 
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The above definition means that if xki lies in the left side of ykj, then, H(xki,ykj)=1. Else, 
H(xki,ykj)=0. 

Based on the relationship between two instances, we define the overall relationship 
between the two classes in terms of the kth attribute as 
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It summarizes the relationship between every class X sample and every class Y 
sample. Also, it reveals the separability between the two classes and can be 
understood as a distance measure between the two classes. This is explained via the 
following two examples. 

See the example shown in Fig. 4, where the samples in the overlapping region are 
underlined. Suppose that, in the from left to right order, the “×” marks represent one-
dimensional class X samples x1,x2,…,x8 and the “+” marks represent one-dimensional 
class Y samples y1,y2,…,y7, respectively. The underlined “×” corresponds with x8 and 
the underlined “+” corresponds with y1. With regard to x1, all the 7 samples of the 
other class lie in the right side of it. So, we obtain ∑jH(x1,yj)=7. With regard to x8, 
only 6 samples of the other class lie in the right side of it. Thus, we hold ∑jH(x8,yj)=6. 
In fact, ∑jH(xi,yj) figures out how many samples in class Y locate in the right side of 
xi. In contrast, ∑jH(yj,xi) reveals how many samples in class Y locate in the left side of 
xi. Therefore, ∑i∑jH(xi,yj) is a measure of the degree that class X locates in the left 
side of class Y and ∑i∑jH(yj,xi) characterizes the degree that class X locates in the 
right side of class Y. Obviously, max{∑i∑jH(xi,yj), ∑i∑jH(yj,xi)} reveals the relative 
relationship between the two classes of interest. For the above example, 
∑i∑jH(xi,yj)=55 and ∑i∑jH(yj,xi)=1. This means that most samples of class X locate in 
the left side of class Y. In accordance with Eq. (1), the separability measure between 
the two classes is 55. Now, consider another example shown in Fig. 5, where the 
overlapping region is larger than the case shown in Fig. 4. Correspondingly, the 
separability measure between the two class computed via Eq. (1) is 52. Taking into 
account the two examples, it is easy to see that a smaller separability measure 
corresponds with a more severe overlap between the two classes of interest, namely, a 
worse case in terms of separability. On the contrary, a greater separability measure, 
which corresponds with a smaller overlapping degree, means a better case in terms of 
separability. 

Suppose that there are L classes and class j contains N(j) samples, j=1,2,…,L. Let 
)( j

kix  denote the kth attribute of the ith sample of class j. We further assume that every 

sample has K attributes. The feature-ranking algorithm is described below. Suppose 

that the input is { )( j
kix | j=1,2,…,L; i=1,2,…,N(j); k=1,2,…,K}. With regard to the kth 

attribute, compute the separability between every pair of classes via Eq. (1) and  

Eq. (2), that is, { ),( vu
kd |u=1,…,L-1; v=u+1,…,L}. Then, let ∑

vu

vu
kd

,

),(  be the overall 

discrimination power of the kth attribute, according to which all attributes can be 
ranked. 

2.4   Computational Complexity 

Suppose every class contains N samples. Let L denote the class number, K the feature 
number, and M the dimension of set A. The complexity of step 1, step 2, and the loop 
from step 3 to step 7 is roughly O(K×L×(L-1)×N2), O(L×(L+1)×K×N), and 
O(M×(M+1)×L×(L+1)×N), respectively. The overall complexity is basically the sum 
of the three parts. 
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3   Experimental Results 

We tested the proposed algorithm with UCI machine learning databases [16]. The 
performance evaluation was conducted with the letter recognition database, the 
satellite image classification database, and the image segmentation database. The data 
properties of the 3 databases are summarized in Table 1. We also compare our method 
with 2 other methods: ReliefF [5] and the method based on mutual information [7]. In 
classifying every data set, we use 3 classifiers: 1-nearest neighbor (1-NN), decision 
tree, and support vector machine (SVM). Here, we use the weka software to 
implement Relief and the decision tree as well as the SVM classifier [17]. We apply 
10-fold cross validation for performance evaluation [8].  

The classification accuracy against the feature number for the image segmentation 
data is illustrated in Fig 6, 7, and 8, where 1-NN, decision-tree, and SVM classifiers 
are applied, respectively. Obviously, the proposed method outperforms the other two 
methods. For the 1-NN classification based on the proposed feature selector, when  
the feature number is equal to 3, the classification accuracy reaches 97.23%. Then, the 
classification accuracy changes very little, between 96.49% and 97.58%. The 
classification accuracy using the full attributes is 96.62%, which is less than that using 
only 3 features selected by the proposed algorithm. See Fig. 6, the other two methods 
perform much worse than the proposed method. See Fig. 7 and Fig. 8, the same case 
takes place when comparing the 3 methods based on decision tree and SVM 
classification. 

The classification accuracy against the feature number for the satellite image data 
is shown in Fig 9, 10, and 11, where 1-NN, decision-tree, and SVM classifiers are 
applied, respectively. It can be seen that the proposed method outperforms the other 
two methods given any feature number. 

The classification accuracy against the feature number for the letter recognition 
data is exhibited in Fig 12, 13, and 14, where 1-NN, decision-tree, and SVM 
classifiers are applied, respectively. The proposed method promises comparable 
performance to ReliefF while both methods outperform the method based on mutual 
information. 

In the above 3 benchmarks, we can see that different classifier leads to different 
classification performance but the comparison among different feature selection 
methods never changes with the choice of classifiers. According to Fig. 9~11, the 
proposed method approaches the best performance or a satisfactory perofrmance very 
quickly but the other two methods do not. The above comparisons show that the 
proposed method performs well in selecting useful features for image classification. 

Table 1. Data properties 

Data #Attributes #Instances #Classes 
Image 19 2310 7 
SatImage 36 6435 6 
Letter 16 20000 26 

 



 Feature Selection Based on Run Covering 215 

 

 

Fig. 6. Classification accuracy against feature 
number using 1-NN: image segmentation 

Fig. 7. Classification accuracy against feature 
number using decision tree: Image segmen-
tation 

 

Fig. 8. Classification accuracy against feature 
number using SVM: Image segmentation 

Fig. 9. Classification accuracy against feature 
number using 1-NN: Satellite image 

 

Fig. 10. Classification accuracy against feature 
number using decision tree: Satellite image 

Fig. 11. Classification accuracy against feature 
number using SVM: Satellite image 
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Fig. 12. Classification accuracy against feature 
number using 1-NN: Letter 

Fig. 13. Classification accuracy against feature 
number using decision tree: Letter 

 

Fig. 14. Classification accuracy against feature number using SVM: Letter 

4   Concluding Remarks 

In this study, we propose a new feature selection method. It is based on run covering. 
The heart of this algorithm is to check whether the removal of a given attribute will 
change the covering of every instance. If not, it can be decided that this attribute is 
redundant. The run length plays an important role in judging whether an instance is 
separable from the other classes at a given attribute. The experiments confirmed the 
effectiveness of this method in terms of selecting useful features for image 
classification. Note that the run-length based method works with not only the linear 
separable attributes but also the attributes that are not linearly separable. 

Another important issue is the stopping criterion, that is, what feature number is 
satisfactory to stop the feature elimination procedure.  For the limited space of this 
paper, we did not present the criterion and the related performance evaluation. One 
stopping criterion can be: If the covering case for any instance changes after 
eliminating a feature, then, stop the feature selection. It is easy to implement. We just 
need to modify step (6) of the algorithm to be: If P=φ, the desired feature number has 
been approached. 
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