
MOBILE ROUTING SERVICES FOR SMALL TOWNS USING CLOUDMADE API AND
OPENSTREETMAP

Jianghua Zheng a, Xiaoyu Chen a, Błazej Ciepłuch a, Adam C. Winstanley a , Peter Mooney a, b and Ricky Jacob a

a Department of Computer Science, National University of Ireland Maynooth, Co. Kildare. Ireland
jianghua.zheng@nuim.ie

b Environmental Research Centre, Environmental Protection Agency, Richview, Clonskeagh, Dublin 14. Ireland

Commission VI, WG VI/4

KEY WORDS: routing, navigation, CloudMade API, OpenStreetMap, Location Based Services, OSM

ABSTRACT:

This research presents a practical solution for mobile routing services for small towns using open sources. Free mapping application
program interfaces (API) provided by web map services, including routing services, are available to create customised map based
web services combining their cartographic base data with the users own data. However, most applications focus on big cities.
Location based services in small towns are generally few as many people believe there is a little demand in such areas. However, the
demand of LBS applications in some small towns can be as strong as big cities, for example university towns and tourist resorts.
Better location based services, especially routing services, can help strangers get familiar with the environment in a short time and
lead them to places of interest. However, there are two problems to overcome for such systems. One is cost both in terms of data
costs and development time. Open source data and mash-up technology could provide an answer. The other problem is the
availability of suitable data of the required accuracy and detail. This is more serious as most free map services, such as Google Maps
and Microsoft Bing Maps (Virtual Earth), don’t provide sufficient detailed and accurate data for routing services. One feasible and
economical way is to create the map ourselves and have it updated by the public. OpenStreetMap (OSM) is a free, open and fast
developing map of the world. Detailed data was collected using a GPS logging device and uploaded to OpenStreetMap. The
CloudMade API was used to provide multi-mode routing services together with turn-by-turn descriptions for car users, bicycle
riders, and pedestrians. This solution is relatively easy and fast to deploy. Maynooth, a small university town in County Kildare
Ireland, was used as a test bed. A prototype navigation system was developed for mobile users using the Windows Mobile platform.
The system demonstrates that a solution to detailed navigational services for pedestrians, cyclists and drivers can be economical and
feasible for small towns.

1. INTRODUCTION

Routing is one of the most important services provided by
Location Based Systems (LBS). Mobile routing services
encompass way-finding applications for vehicle drivers,
pedestrians and cyclists, delivered using mobile terminals.
Much research has been carried out on mobile routing
algorithms because of the complexity of application
environments and variety of user requirements (Huang et al.,
2007; Huang and Wu, 2008). Like POI (Point of Interests)
query services, mobile routing services have become more and
more popular in the real world, especially those applications for
vehicle drivers, TomTom car navigation systems are typical
examples. NAVITIME (Japan) (Arikawa et al., 2007; Zheng et
al., 2006) and Nokia Maps 2.0 (Dominique, 2008) are two
typical examples for pedestrians (Zheng et al., 2009). Some free
map platforms, such as Google Maps, Yahoo Maps and
Microsoft Bing Maps, include direction modules which provide
turn-by-turn routing services. Google also plans to allow
Android 2.0 phones to give users real-time turn-by-turn walking
directions (Adhikari, 2009). However, most current mobile
routing services are provided mainly with detailed content only
in relatively big cities or for major streets in rural areas.
Location based services for small towns are generally ignored
as many people and most companies believe there is little
demand in such areas and there is no need to invest in detailed
data collection for such places.

However, the demand of LBS applications in some small towns
may be as strong as that in big cities. University towns and
some tourist resorts are typical examples of small towns where
there are many visitors potentially requiring access to LBS.
They do not have much time to get familiar with the places.
Better local location-based services, especially routing services,
can help strangers get familiar with a strange environment in a
short time. The aim of this work is to provide an effective,
efficient and low cost solution to providing LBS, especially
routing services, for small towns and tourist resorts. The
research question contains three constraints: effectiveness (
containing useful data and services); lowest cost; and efficiency
(fast system development and easy maintenance). A solution
using CloudMade API and OpenStreetMap (OSM) is described.
The work takes Maynooth, the only University Town in Ireland,
as an example and we put forward a mobile routing services
prototype to demonstrate the solution.

The rest of the paper is organized in four sections. Section 2
discusses why OpenStreetMap is used as a data source. The
CloudMade API is described in the following section. In section
4, we provide a detailed discussion of the development and
implementation of the prototype for the LBS for small towns.
Finally, the paper closes with a discussion of conclusions from
the work and puts forwards some suggestions for future work.
The work is part of the eCampus project, which is constructing
a major testbed for StratAG, the Strategic Research Cluster in
Advanced Geotechnologies (www.stratag.ie) centred at

National University of Ireland Maynooth. It focuses on
constructing a campus information system including diverse
location-based services.

2. OPENSTREETMAP

2.1 Experimental Area and Data Collection Methods

Maynooth is a university town located in north County Kildare,
Ireland. It is about 25km west of Dublin city centre. Accurate
and sufficient data of the area is the basis for local mobile
routing services together with POI queries. There are four major
ways to obtain local spatial data and associated attribute data:

• From current data available for LBS
• From professional survey companies or agencies
• From free map providers
• Collect the data by yourself or by crowd sourcing

In most cases, the former two are not suitable, especially the
second one which might cost a lot of money or have low cost
performance. The third one is the most convenient. However, if
we check Maynooth town, like most other small towns and
tourist resorts, there is poor representation on the most popular
commercial free map platforms, such as Google Maps, Yahoo
Maps and Microsoft Bing Maps. Navteq and TeleAtlas, the two
biggest map data companies in the world, are the map providers
of those platforms and their data just focuses on the
requirements of vehicle navigation. Figure 1(a) shows the map
of Maynooth on Google Maps and Figure 1(b) the content on
Microsoft Bing Maps.

(a) Maynooth town on Google Maps (Nov. 2009)

(b) Maynooth town in Microsoft Bing Maps (Nov. 2009)

Figure 1 Maynooth town on web map services

The rectangles in Figure 1 show the approximate area of
National University of Ireland Maynooth. Only the main streets
and a few POIs of the town can be obtained from Google Maps
and Microsoft Bing Maps. This poor spatial data coverage is not
sufficient for establishing effective LBS routing services for
this area. As purchasing commercial data is expensive, we have
to collect the data ourselves. OpenStreetMap provides an

outstanding example of a spatial data source for this area to
which we can contribute. The next section describes the

enStreetMap project.

2.2 OpenStreetMap

as JOSM
d OSM2Go. All these tools are free and easy to use.

Op

OpenStreetMap (OSM) is a free map of the entire world. It
allows you to view, edit and use geographical data in a
collaborative way from and for anywhere on Earth. It uses a
crowd sourcing model to provide user-generated street maps.
There have been various geo-wiki applications that utilise user-
generated content for maps (Jacob et al., 2009). However, OSM
is probably the most extensive and effective project currently
under development (Haklay and Weber, 2008). OSM
development is geographically unbalanced. In general, it is
more complete in Europe. Unlike other web map services, OSM
provides a set of tools to create a free editable map of the world.
The maps are created using data from portable GPS devices,
aerial photography, other free sources or simply from local
knowledge (http://en.wikipedia.org/wiki/OpenStreetMap). It
integrates some useful tools for importing, editing, exporting
and generating geometry from GPS trails which encourages
users to be not only users but also data generators. For this
purpose, there are also some offline editing tools, such
an

Figure 2 Interface of JOSM editor

r data collection and

OSM tools and APIs

me area from the OSM dataset

ts two major components, Mapnik and

For example, the OSM data of Ireland is updated weekly.

gement system, making it easy to create new
pplications.

More and more organizations and individuals provide APIs
using OSM data, such as for map rendering and routing such as
the CloudMade Routing API. The reasons for selecting
OpenStreetMap as a platform fo
representation can be summarised as:
• Totally free. All data are generated by the public with little

usage restrictions and no cost. The
are powerful but also are also free.

• Multiple outputs. It is possible to render various popular
formats of data of the sa
giving flexibility of use.

• More vivid map data with various attributes. OSM provide
the public a set of powerful tools to render your own style
OSM data for your personal map based applications. This
attributes to i
Osmarender.

• More current data. OSM data is being updated constantly.
OSM also has a mechanism for users to update local data.

OSM data can be stored and managed easily and efficiently
using PostgreSQL/PostGIS, a powerful open-source spatial
database mana
a

http://en.wikipedia.org/wiki/OpenStreetMap

2.3 Data Creation

ogger. Much of the roads and paths were
ollected by bicycle.

The OSM data collection of Maynooth town was done by
members of our research group and student and volunteer
helpers, mainly using GPS logger devices, such as GlobalSat®
DG-100 GPS Data L
c

(a) Maynooth on OpenStreetMap in Dec. 2008

(

Figure 3. Data Creation of Maynooth town

 bicycle lanes, and even data inside offices of
ome buildings.

3. THE CLOUDMADE ROUTING API

3.1 Developing Modes for Routing

are development strategies to
res:

ecessary to build more parameterised routing
ules.

3.2 Why use CloudMade Routing API?

 they
lfil the specific routing requirements of the application.

API makes routing
rvices easily and economically realized.

4. PROTOTYPE OVERVIEW

e terminal. PHP is used to develop the
rver-side program.

4.1 System Architecture

b) Maynooth on OpenStreetMap in Oct. 2009

Figure 3(a) shows there was little information of Maynooth on
OSM platform in December 2008. However, now following the
upload and editing of the logged data, there is abundant
information of Maynooth town, including various POIs,
buildings, streets,
s

There are two typical softw
construct routing procedu

• Third party APIs
• Implementing original routing algorithms.

The first is convenient and fast for the developer to deploy
applications. However, if there are special requirements, for
example if people have preferences such as passing through
buildings as much as possible because it is raining heavily, it
becomes n
mod

Routing algorithms are easy to realize on a well-formed link-
node network (Zhan, 1997). However, the network data
obtained from OSM is not suitable for direct optimal path
computing. This is because the network data is generated from

public submissions that may not result in a well prepared link-
node network. A road will not usually be captured in segments
though it might have several intersections with other roads.
Rather than having to manually edit the road network, the
PostgreSQL/PostGIS spatial database provides powerful and
helpful standard functions to generate intersections and build
the link-node network. Third-party routing APIs allow
developers the possibility of quick development provided
fu

There are several third-party routing APIs, which could be used
with OSM data, such as the CloudMade Routing API
(http://cloudmade.com/, 2009) and pgRouting. Both of them are
open source. The main objective of pgRouting is to provide
routing functionality for PostgreSQL/PostGIS
(http://pgrouting.postlbs.org/, 2009). It includes several routing
algorithms such as traditional Dijkstra, A*, Shooting Star and
Travelling Sales Person (TSP). Since OSM data is stored and
managed in PostgreSQL/PostGIS, we can add and use
pgRouting as standard functions of PostGIS. The CloudMade
Routing API is currently the most used with OSM data. It
provides car, foot and bicycle modes for users. It also provides
turn-by-turn direction descriptions with multi-lingual templates,
including Chinese. Another advantage of CloudMade is it
generally serves requests more quickly than a local server does.
As a whole, using CloudMade Routing
se

We could build the prototype with B/S or C/S architecture. The
trend is B/S architecture. However, we have selected C/S
architecture in our prototype for fast design and easy testing.
The application is designed to run on a smart phone (HTC
3470), running Windows Mobile OS. C# is the development
language for the mobil
se

Figure 4 System Architecture of the prototype

API provides powerful routing algorithm for both web and

Figure 4 shows the architecture of the prototype. The basic
spatial data is on an OpenStreetMap database server and it
provides map services through the OSM API. The CloudMade

http://cloudmade.com/
http://pgrouting.postlbs.org/

mobile applications based on OSM data. We provide three
travel modes: car, walking and bicycle.

4.2 Slippy Map for Mobile Terminals

Fast and continuous map presentation on the mobile terminal is
a basic requirement of this application. Slippy map mechanisms
are widely used in map-based applications. For example,
Google Maps and Microsoft Bing Maps have their own slippy
map system based on commercial map databases (Haklay,
2008). There are also third party web services which provide
the slippy map interface for developers, which can be used to
render various map resources. Mapnik and OpenLayers are
mainly used for such proposes. Unfortunately, how to
implement the slippy map on a mobile device is hardly seen for
developers to reference. We have implemented our own module
for this.

Map Downloader

Map Arrangement

Map Display

OSM

Figure 5. Main software architecture for slippy map

Figure 5 shows the software architecture for slippy map
implementation. The core of the map downloader class is OSM
API calls wrapped within a C# http request. OSM provides a
structured URL to obtain the map tiles. The URL is a
combination of zoom level, X and Y coordinates, as in the
example in figure 6.

Figure 6. Map as rendered on mobile terminal

Figure 6 displays the map representation on a mobile terminal
after the slippy map processing. C# code segment for
downloading a OSM map tile is as figure 7.

public static void GenerateImages(String[] urls,String[] names)
{

int i = 0;
foreach (string uri in urls)
{

Image result = null;
Stream stream=null;
HttpWebResponse response = null;
{
HttpWebRequest request =

(HttpWebRequest)WebRequest.Create(new Uri(uri));
request.Method = "GET";
response = (HttpWebResponse)request.GetResponse();
stream = response.GetResponseStream();
result = new Bitmap(stream);
result.Save(Path.Combine(filepath, names[i]),

ImageFormat.Png);
stream.Dispose();
result.Dispose();
response.Close();
}
i++;

}
}

Figure 7. C# code segment for downloading OSM map tile

Map re-arrangement is triggered when certain events are
detected, for instance a map container going out of valid region,
or relocation of the map centre. Four map tiles are used to fully
cover the screen of the device. If an empty space occurs during
map operation, the tile positions will be rearranged accordingly.
Figure 8 shows examples of scrolling resulting in the retrieval
and addition of new map tiles.

Figure 8. Four situations trigger map arrangement event

Map Tile 0

X‐1, Y‐1

…/31565/21230.png

Map Tile 2

X‐1, Y

…/31565/21231.png

Map Tile 1

X, Y‐1

…/31566/21230.png

Map Tile 3

X, Y

…/31566/21231.png

Figure 9. Positional relationship of tiles in OSM

Figure 9 illustrates the determination of which tiles to download
during scrolling. Map tile 3 is assigned to be the reference tile
on right-lower corner of the map container and from this the
URL references of surrounding tiles can be calculated. OSM
provides a formula to derivate X-Y coordinates of maps from
latitude and longitude values. The formula can also work in
reverse.

OSM Formula to derivate X Y Coordination
n = 2 ^ zoom
xtile = ((lon_deg + 180) / 360) * n
ytile = (1 - (log(tan(lat_rad) + sec(lat_rad)) / π)) / 2 * n

C# Implementation of OSM Tile Name Derivation Formula

public PointF WorldToTilePos(double lon, double lat, int zoom)
{

PointF p = new Point();
p.X = (float)((lon + 180.0) / 360.0 * (1 << zoom));
p.Y = (float)((1.0 - Math.Log(Math.Tan(lat * Math.PI / 180.0) +

1.0 / Math.Cos(lat * Math.PI / 180.0)) / Math.PI) /
2.0 * (1 << zoom))

return p;
}
public PointF TileToWorldPos(double tile_x, double tile_y, int zoom)
{

PointF p = new Point();
double n = Math.PI - ((2.0 * Math.PI * tile_y) / Math.Pow(2.0,

zoom));
p.X = (float)((tile_x / Math.Pow(2.0, zoom) * 360.0) - 180.0);

p.Y = (float)(180.0 / Math.PI * Math.Atan(0.5 * (Math.Exp(n) –
Math.Exp(-n))));

return p;
}

Figure 10. OSM derivation formula

The two C# functions in figure 10 can be used to construct the
URL for a map tile. For example, test data (latitude=
53.381646, longitude= -6.582667, zoom= 16) here is chosen to
input into C# function WorldToTilePos(). Point (31569, 21232)
is returned after execution. From this the URL for this map tile
is http://tile.openstreetmap.org/16/31569/21232.png . If this tile
is the reference tile in slippy map system, URLs for rest of tiles
are as in Figure 11.

Map Tile 0
http://tile.openstreetmap.org/16/31568
/21231.png

Map Tile 1
http://tile.openstreetmap.org/16/31569/
21231.png

Map Tile 2
http://tile.openstreetmap.org/16/31568
/21232.png

Map Tile 3
http://tile.openstreetmap.org/16/31569/
21232.png

Figure 11. URLs of four tiles in Slippy Map System

Displaying the map is the final and simplest of the three
components of slippy map. The image in the control area is
changed according to the required arrangement of the map tiles.
After the required tiles are downloaded, an image merging
function is used to join them together in memory in order to fit
into map container and then render the data to the screen. The
advantage of doing this is to create a clean and easy drawing
environment for other map functions, like route planning and
image icon display.

4.3 Routing using CloudMade API

The CloudMade Routing uses an http protocol. The structure of
the URL is similar to the OSM tile querying URL, but instead
of returning a PNG image, a GPX or JS format file is returned.

http://routes.cloudmade.com/YOUR-API-KEY-GOES-
HERE/api/0.3/start_point,[transit_point1,...,transit_poi
ntN],end_point/route_type[/route_type_modifier].outp
ut_format [?lang=(en|de)][&units=(km|miles)]

Figure 12. CloudMade Routing planning URL structure

Figure 12 shows the CloudMade route planning URL structure.
The general parameters in the structure are “start_point”,
“end_point”, “route_type” and “output_format”. Other
parameters are optional.

Figure 13. Drawing route on map of mobile phone

Figure 13 displays the main steps to draw a route on the map
displayed on the mobile terminal.

4.4 User interfaces of the prototype

Figure 14 shows examples of the map and textual routing
interfaces on both the API simulator and as actually rendered on
the mobile terminal.

(a) Routing results on simulator

(b) Routing on HTC 3470 model

Figure 14. Routing interfaces

5. CONCLUSION AND FUTURE WORK

The demand of LBS applications in some small towns might be
as strong as big cities; university towns and some tourist resorts
as examples of such small towns where there are many tourists
and people potentially requiring access to LBS. This paper
describes an effective, low cost and efficient solution of mobile
routing services for such small towns. The core parts of the
solution are a spatial database platform (OpenStreetMap and
PostgreSQL/PostGIS) and a routing module (CloudMade
Routing API). These are all open source products. The work
also discussed a successful method to display slippy maps on
mobile terminals. By demonstrating a prototype of a mobile

http://tile.openstreetmap.org/16/31569/21232.png

routing service for Maynooth town, we have showed how this
could benefit more small towns.

The interfaces and response speed should be optimized in the
future. During the routing process, landmarks are helpful for
pedestrian users to make certain that he is walking in the right
direction (Millonig and Schechtner, 2007; Hile et al., 2009).
We plan to carry out some landmark based applications, such as
using geotagged photography, as the extension of the solution
described in this paper.

ACKNOWLEDGEMENTS

Research presented in this paper was funded by a Strategic
Research Cluster grant (07/SRC/I1168) by Science Foundation
Ireland under the National Development Plan. The authors
gratefully acknowledge this support.

REFERENCES

Adhikari R., 2009. Android 2.0 Phones Get New Google Nav
App, http://www.technewsworld.com/story/Android-20-
Phones-Get-New-Google-Nav-App-68496.html
(accessed 30th Oct. 2009)

Arikawa M., et al., 2007. NAVITIME: Supporting Pedestrian
Navigation in the Real World. Pervasive Computing, 6(3), pp.
21-29

Bonte D., 2008. The Mobile World Congress 2008: Pedestrian
Navigation at Last. 11 Feb. 2008, Barcelona, Spain.
http://www.abiresearch.com/Blog/Telematics_Blog/474
(accessed 28 Oct. 2009)

Jacob R., 2009. Campus Guidance System for International
Conferences Based on OpenStreetMap. In: LNCS: Web and
Wireless Geographical Information Systems, Springer, Berlin /
Heidelberg, German, Volume 5886/2009, pp. 187-198

Haklay M. and Weber P., 2008. OpenStreetMap: User-
generated street maps. Pervasive Computing, 7(4), pp.12-18

Hile, H., et al., 2009. Landmark-Based Pedestrian Navigation
with Enhanced Spatial Reasoning. In: LNSC: Pervasive
Computing, Springer, Berlin/Heidelberg, Volume 5538/2009,
pp. 59-76

Huang, B., Wu, Q., and Zhan, F. B., 2007. A shortest path
algorithm with novel heuristics for dynamic transportation
networks. International Journal of Geographic Information
Science, 21(6), pp. 625-644.

Huang, B. and Wu, Q., 2008. Dynamic Accessibility Analysis
for Location Based Service Using an Increment Parallel
Algorithm. Environment and Planning B, 35(5), pp. 831–846.

Millonig A. and Schechtner K., 2007. Developing Landmark-
Based Pedestrian-Navigation Systems. IEEE Transactions on
Intelligent Transportation Systems, 8(1), pp. 43-49

Zhan F B., 1997. Three Fastest Shortest Path Algorithms on
Real Road Networks. Journal of Geographic Information and
Decision Analysis, 1 (1), pp. 69-82

Zheng J.H., et al., 2006. Study on Data Organization of
Personal Navigation Services, Computer Engineering, 32(24),
pp. 41-47

Zheng J.H., et al., 2009. Spatial characteristics of walking areas
for pedestrian navigation. In: Proceedings of the 2009 Third
International Conference on Multimedia and Ubiquitous
Engineering, IEEE, Piscataway, NJ, USA, pp.452-458

http://www.technewsworld.com/story/Android-20-Phones-Get-New-Google-Nav-App-68496.html
http://www.technewsworld.com/story/Android-20-Phones-Get-New-Google-Nav-App-68496.html
http://www.abiresearch.com/Blog/Telematics_Blog/474

	1. INTRODUCTION
	2. OPENSTREETMAP
	2.1 Experimental Area and Data Collection Methods
	2.2 OpenStreetMap
	2.3 Data Creation

	3. THE CLOUDMADE ROUTING API
	3.1 Developing Modes for Routing
	3.2 Why use CloudMade Routing API?

	4. PROTOTYPE OVERVIEW
	4.1 System Architecture
	Figure 4 System Architecture of the prototype
	4.2 Slippy Map for Mobile Terminals
	4.3 Routing using CloudMade API
	4.4 User interfaces of the prototype

	5. CONCLUSION AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

