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Summary 

 

This dissertation considers a range of topics on the use of range-based risk 

estimators for financial markets (with the exception of Chapter 5 discussed below). 

Chapter 1 provides an introduction to the existing literature and the research 

objectives of the dissertation.  

Chapter 2 uses time series of daily high-low ranges of national equity 

market indices to analyse daily volatility dynamics and volatility spillover across 

four European markets. Chapter 2 is based on the joint research with Gregory 

Connor. We develop a dynamic linear model of expected daily range which is a 

variant of Chouôs conditional autoregressive range model. We find significant, but 

not uniform, range-based volatility spillovers. During the crisis period (after July 

2007) we find significant increases in daily range, increases in contemporaneous 

correlation, and increases in the influence of previous-day US market range on the 

conditional expected range of these European markets. A gamma-distribution-based 

model of realized daily range fits more closely than one based upon a Feller 

distribution, but it sacrifices the link to a specific distribution for underlying 

returns. 

In Chapter 3 we use information on the daily opening, close, high, and low 

prices of individual stocks to estimate range-based correlation and to construct a 

new estimator of market betas. We create a measure called ñrange-betaò, which is 

based on the daily range-based volatility and covariance estimators of Rogers and 

Zhou (2008). These range-based betas reflect the current dayôs intra-day price 

movements. They avoid a weakness of return based betas, which typically are based 

on close-to-close returns. Our approach yields competitive estimates compared with 

traditional methodologies, and outperforms other methodologies when analysing 

highly liquid assets.  

Chapter 4 studies the relationship between options-implied and realized-

range-based volatility estimates for Euro area countries. When both implied 

volatility and historical range-based volatility are used to forecast realized range-

based volatility, we find that implied volatility outperforms historical range-based 

volatility. We also find that the stochastic volatility is priced with a negative market 
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price of risk. The volatility implied from option prices is higher than the realized 

range-based volatility under the objective measure due to investor risk aversion. 

Chapter 5 considers financial market risk from a different perspective. 

Chapter 5 analyses the tone and information content of the two external policy 

reports of the Internal Monetary Fund (IMF), the IMF Article IV Staff Reports and 

Executive Board Assessments, for Euro area countries. In particular, we create a 

tone measure denoted WARNING, based on the existing DICTION 5.0 Hardship 

dictionary. We find that in the run-up to the current credit crises, average 

WARNING tone levels of Staff Reports for Slovenia, Luxembourg, Greece, and 

Malta are one standard deviation above the EMU sample mean; and for Spain and 

Belgium, they are one standard deviation below the mean value. Furthermore, on 

average for Staff Reports over the period 2005-2007, there are insignificant 

differences between the EMU sample mean and Staff Reportsô yearly averages. We 

also find the presence of a significantly increased level of WARNING tone in 2006 

for the IMF Article IV Staff Reports. There is also a systematic bias of WARNING 

scores for Executive Board Assessments versus WARNING scores for the Staff 

Reports.  
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Chapter 1: Introduction  

 

1.1  Range-based Volatility 

In finance, volatility is a measure of the price variation of a financial instrument 

over time. Volatility plays an important role in financial economics and is a 

fundamental concept in several subjects including asset allocation, market timing, 

portfolio risk management and the pricing of assets and derivatives.  

Historical volatility is computed as the standard deviation of daily returns 

within a certain period, say two months. One implicitly assumes that the volatility 

is a constant within two months. However, it is unrealistic to assume that the 

volatility of asset return remains constant during a long period. Therefore, the 

volatility estimated with the classical estimator is essentially a measure of the 

average true volatility over the specified period.  

Besides estimating volatility using asset returns, it is also possible to use the 

range based approach as a measure of return volatility. The daily high-low range is 

defined as the log of the ratio of the intradaily high and low prices of the national 

market index.  

In an early application, Mandelbrot (1971) employed the range to test the 

existence of long-term dependence in asset prices. The widespread application of 

the range in the context of financial volatility and in particular to the estimation of 

volatilities started from the early 1980s, e.g., Garman and Klass (1980), Beckers 

(1983), Rogers and Satchell (1991). Parkinson (1980) notes that the log price range 

over an interval potentially gives more information regarding volatility than the log 

difference between two preselected points such as the beginning and end prices. 

This is due to the max ï min operator implicit in its definition (see Equation (2.1) in 

Chapter 2) which embodies information from the full set of realized daily prices. 

For more extensive discussion on the properties of the range see Alizadeh et al. 

(2002). 

Recent studies have shown that the range-based measure of volatility is 

often superior to traditional volatility estimators, e.g., Brunetti and Lildholdt 
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(2002), Andersen et al. (2003b), McAleer and Medeiros (2008). Suppose, as is true 

for many European indices, the econometrician only has data on the daily open, 

close, high and low. The daily return (log difference between todayôs and 

yesterdayôs close) uses information contained in two prices, while the high-low 

range implicitly uses information from all trade prices during the day. Thus, a daily 

return is often less informative about what happened during the day than the range. 

As noted by Chou (2005), Chou et al. (2009), on a turbulent day with intraday 

drops and recoveries, the daily return may be near zero, while the daily price range 

will reflect the high intraday price fluctuations. Shu and Zhang (2003) provide 

relative performance of different range-based volatility estimators and find that 

range estimators perform very well when asset prices follow a continuous 

Brownian motion. Parkinson (1980) observes a theoretical relative efficiency gain 

(ratio of estimation variances) from using sample average daily range to estimate 

return variance (rather than using daily sample return variance) of approximately 5. 

Garman and Klass (1980) report that their range-based variance estimator has a 

relative efficiency of 7:4 compared to daily sample variance. Andersen and 

Bollerslev (1998) find that the daily range has approximately the same information 

content as sampling intradaily returns every four hours. Engle and Gallo (2006) 

have shown that the daily range has good explanatory power in predicting future 

values of realized variance. 

Daily range can be interpreted as the maximum loss, that is, the negative of 

the minimum possible realized log return, on a one unit intradaily trade. If the high 

price occurs before the low price during the day, then the trade is sell-buy rather 

than buy-sell; this is interpreted as the maximum loss on a unit short-sale 

established and closed during the day. Maximum intraday loss is quite important in 

a trading environment, hence daily range has direct relevance for portfolio risk 

management, in addition to its usefulness as an indirect measure of intradaily 

volatility. 

1.2  Volatility Spillover  

Recent developments in financial markets such as for instance the bursting of the IT 

bubble, the US subprime mortgage crisis and Europeôs ongoing sovereign debt 
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crisis have shifted focus on the interdependence level of financial markets, and 

volatility spillovers.  

The empirical literature studying volatility spillover is extensive, typically 

based on daily close-to-close returns, e.g., Yang and Doong (2004), Lee (2006), 

Koulakiotis et al. (2009), Diebold and Yilmaz (2009), McMillan and Speight 

(2010). Koutmos and Booth (1995) examine the spillover effects among the New 

York, Tokyo and London stock markets and show that the transmission of volatility 

is asymmetric and is more pronounced when the news is bad and coming from 

either the US or UK market. Kanas (1998) examines volatility transmission across 

the London, Paris and Frankfurt stock markets and concludes that returns and 

innovations spillovers are higher during the post-crash time. Billio and Pelizzon 

(2003) obtain evidence that volatility spillovers from the world index to European 

equity indices increased after the introduction of European Monetary Union. Baele 

(2005) and Christiansen (2007) investigate volatility spillover from the US and 

aggregate European asset markets into European national asset markets, 

incorporating bond markets into analysis. They find evidence of volatility spillover 

from the aggregate European and US markets to local European markets. 

The research literature studying volatility spillover using the range volatility 

measure is limited. Chou et al. (2010) document that the volatility spillover exists 

between the European markets over the period 2004-2010, whereas the countries 

are independent over the post-subprime period. 

1.3  Return-based, Range-based, and Options-implied Volatility Estimates 

Merton (1980) notes that the variance of the returns on an asset over an extended 

period of time can be estimated with high precision if during that period a sufficient 

number of sub-period returns is available. Because the squared mean return 

converges to zero as the sampling frequency increases, the variance of the returns 

over an extended period can be calculated by summing the squared sub-period 

returns and ignoring the mean return. This is what today is called the concept of 

realized volatility and this term is interchangeably used with realized variance. In 

the context of high frequency data, estimating the realized volatility is complicated 

by the microstructure effects such as the bid-ask bounce which can significantly 
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bias the estimator upward (Alizadeh et al., 2002). Second, we should expect that the 

estimates made will not show much intertemporal stability (in view of the well-

known profile of intraday trading activity). Indeed, the work of Barndorff-Nielsen 

et al. (2009) confirms this, showing estimates of volatility which vary very 

substantially from day to day. Third, we have to handle a huge amount of data; 

while this is not in itself a problem, it is reasonable to ask whether the effort 

(human and computer) is worth the goal and, indeed, whether the additional effort 

will actually help toward the goal. The intradaily range-based volatility measure is 

also considered as a proxy of the realized volatility. As it was suggested by Brandt 

and Diebold (2006) the range is not affected by market microstructure noise. The 

estimator requires the knowledge of prices within a day and therefore, is formally 

high frequency estimator. 

The volatility implied by option prices is the option marketôs forecast of 

future return volatility over the remaining life of this option. Under a rational 

expectations assumption, the market uses all the information available to form its 

expectations about future volatility, and hence the market option price reveals the 

marketôs true volatility estimate. Furthermore, if the market is efficient, the 

marketôs estimate, the implied volatility, is the best possible forecast given the 

currently available information. That is, all information necessary to explain future 

realized volatility generated by all other explanatory variables in the market 

information set should be subsumed in the implied volatility. The hypothesis that 

implied volatility is an efficient forecast of the subsequently realized volatility has 

been the subject of many empirical studies.  

Early papers studying the relative performance of options-implied and the 

future realized volatility find that the volatility inferred from the option markets is a 

biased predictor of stock return volatility. To illustrate, Canina and Figlewski 

(1993) found that the implied volatility from S&P 100 index options is a poor 

forecast for the subsequent realized volatility of the underlying index. In contrast, 

Day and Lewis (1992), Lamoureux and Lastrapes (1993), Jorion (1995) and 

Fleming (1998) report evidence supporting the hypothesis that implied volatility 

has predictive power for future volatility. They also find that implied volatility is a 

biased forecast for future realized volatility.  
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Christensen and Prabhala (1998) and Christensen and Strunk (2002) first 

note that ex-ante implied volatility in fact is an unbiased and efficient forecast of 

ex-post volatility after the 1987 stock market crash, while they point to large bias 

before the 1987 crash. Authors also refuted their results by showing that the 

weakness of the options-implied volatility in future volatility prediction is mainly 

resulted from the methodological issues like overlapping sample and mismatched 

maturities (options with longer expiration are used to predict day/week ahead 

realized volatilities).  

However, early research on the information content of options-implied 

volatility focuses on the Black-Scholes implied volatility, and fails to incorporate 

information contained in other options. In addition, tests based on the Black-

Scholes implied volatility are joint tests of market efficiency and the Black-Scholes 

model. The results are thus potentially contaminated with additional measurement 

errors due to model misspecification.  

A strikingly simple method to extract volatilities from options across all 

strike prices, model-free implied volatility was introduced by Demeterfi et al. 

(1999). The model-free implied volatility measure can be derived directly from a 

comprehensive cross-section of European put and call options with strikes spanning 

the full range of possible values for the underlying asset at option expiry. Recent 

research has confirmed that this pricing relationship is robust and remains 

approximately valid for a broad class of relevant return generating processes, 

including jump-diffusive semimartingales models. Unlike the traditional concept, 

the model-free implied volatilities are computed from option prices without the use 

of any particular option-pricing model and it is derived from no-arbitrage 

conditions and the martingale measure (Demeterfi et al., 1999; Jiang and Tian, 

2004; Lynch and Panigirtzoglou, 2003). Informational content of option implied 

volatility in the subsequent research is analysed using the model-free measure. For 

instance, paper by Jiang and Tian (2004).  

From the theoretical point of view, the model-free implied volatility aims to 

measure the expected integrated variance, or, more generally, return variation, over 

the coming month, evaluated under the so-called risk-neutral, or pricing (Q), 

measure. Since volatility is stochastic, the model-free implied volatility is not a 
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pure volatility forecast for the underlying asset but rather bundles this forecast with 

market pricing of the uncertainty surrounding the forecast. This implies that, in 

general, implied volatilities will include premia compensating for the systematic 

risk associated with the exposure to equity-index volatility. In addition, the 

volatility index will rise in response to a perceived increase in future volatility and 

vice versa, all else equal. As a result, the model-free implied volatility index should 

be strongly correlated with future realized volatility.  

1.4  Range-based Covariance 

The covariance of assets is important for the computation of the prices of 

derivatives written on many underlying products. The traditional method of 

estimating the covariance between different assets assumes that the daily log-

returns are i.i.d. multivariate Gaussian variables and produces an unbiased 

estimator of the covariance matrix. Estimating the covariance between different 

assets using the range-based methodology is quite a new concept. For instance, 

Brandt and Diebold (2006), Brunetti and Lildholdt (2002) work with foreign 

exchange data, where the availability of data on the cross rates means that one is 

able to observe highs and lows of linear combinations of the log asset prices, 

allowing one to reduce to existing univariate methodology by polarization. 

However, such an approach would be impossible if assets were equities, since we 

do not have information on the highs and lows of linear combinations of the log 

asset prices (unless full tick data is available).  

In Chapter 3 we develop the range-based covariance measure that can be 

applied to equities. We employ Rogers and Zhou (2008) approach of estimating the 

covariance of linear combination of the two log prices based on the daily opening, 

closing, high, and low prices of each. The daily range-based covariance estimator 

has attractive properties such as the relatively low variance of the range-based 

covariance estimator. Realized covariances are unaffected by bid-ask bounce under 

the assumption that bid and ask transactions occur independently across assets.  
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1.5  Range-based Beta 

The capital asset pricing model (CAPM) due to Sharpe (1964) and Lintner (1965) 

relates the expected return on an asset to its systematic market risk or beta. This 

beta is the sensitivity of the asset return to the return on the market portfolio. It is 

defined as the covariance of an assetôs returns with the marketôs returns, divided by 

the variation of the market returns. Specifically, beta measures the portion of an 

assetôs statistical variance that cannot be mitigated by the diversification of a 

portfolio composed of many risky assets, or the market portfolio. Beta is used by 

financial economists and practitioners to identify mispricings of a stock, to 

calculate the cost of capital and to evaluate the performance of managers.  

A number of empirical studies (e.g., Fama and French, 1992, 1993, 1996; 

Choudhry, 2002, 2004) have suggested that a constant-beta CAPM is unable to 

satisfactory explain the cross-section of average returns on equities and the market 

to capture dynamics in volatility. By constant, it is meant that betas are calculated 

on a set period-by-period basis, as oppose to a continuous evolution. Specifically, 

Adrian and Franzoni (2009) argue that model without time-evolving betas fail to 

capture investor characteristics and may lead to inaccurate estimates of the true 

underlying beta. Following this criticism, multiple time-varying beta models were 

proposed (e.g., Campbell and Voulteenaho, 2004; Andersen et al., 2005; Petkova 

and Zhang, 2005; Lewellen and Nagel, 2006; and Ang and Chen, 2007). Some of 

these studies use a parametric approach proposed by Shanken (1990), in which the 

variation in betas is modelled as a linear function of conditioning variables. Early 

parametric approaches include the multivariate GARCH framework (Bollerslev et 

al., 1988) and the instrumental variables or ñconditioned downò betas (Harvey, 

1989). Recent parametric models suggest treating conditional betas as latent 

variables: Adrian and Franzoni (2009) suggest using the Kalman filter while Ang 

and Chen (2007) apply Markov chain Monte Carlo and Gibbs sampling to obtain 

time varying betas.  

An alternative, non-parametric approach to model risk dynamics was first 

implemented by Fama and MacBeth (1973). The non-parametric approach is based 

on purely data-driven filters, including short-window regressions (e.g., Lewellen 

and Nagel, 2006) and rolling regressions (e.g, Fama and French). 
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The parametric specification is appealing from a theoretical perspective 

because it explicitly links time variation in betas to macroeconomic state variables 

and firm characteristics (e.g., Gomes et al., 2003; Santos and Veronesi, 2004). 

However, the main drawback of this approach is that the true investorôs set of 

conditioning information is unobservable. Ghysels (1998) shows that misspecifying 

beta risk may result in serious pricing errors that might even be larger than those 

produced by an unconditional asset pricing model. In addition, this method can 

produce jumps in betas due to sudden spikes in the macroeconomic variables that 

are often used as instruments. Finally, many parameters need to be estimated when 

a large number of conditioning variables is included, which leads to noisy estimates 

when applied to stocks with a limited number of time series observations. An 

important advantage of non-parametric approaches is that they preclude the need to 

specify conditioning variables, which makes them more robust to misspecification. 

However, the time series of betas produced by a data-driven approach will always 

lag the true variation in beta, because using a window of past returns to estimate the 

beta at a given point in time gives an estimate of the average beta during this time 

period. Although reducing the length of the window results in timelier betas, the 

estimation precision of these betas will also decrease.  

In Chapter 3 we use information extracted from the daily opening, closing, 

high, and low prices of the stocks to improve the estimation of the current betas and 

the predictions of the future betas. We create a new time-varying beta measure 

called ñrange-based betaò, which is based on the daily range-based volatility and 

covariance estimators of Rogers and Zhou (2008) for estimating market beta. 

Within this context, the range-based beta is the ratio of the range-based covariance 

of stock and market to the range-based market variance. We improve the 

specification of betas by combining the parametric and non-parametric approaches 

to modelling time variation in betas. Since the main strengths of each approach are 

the most important weaknesses of the other, we show that a combination of the two 

methods leads to more accurate betas than those obtained from each of the two 

methods separately. 
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1.6  Macroeconomic Risk 

Finally, the evidence suggests that the financial markets volatility is affected by the 

communication of the intergovernmental agencies such as the IMF, the ECB, the 

Federal Reserve, and other. In Chapter 6 we evaluate the effectiveness of the IMF 

external surveillance in the run-up to the current credit crisis. In contrast to previous 

studies, this study is the first to apply content-analysis methodology to analysing 

the IMF Reports.  

Content analysis is defined as the systemic, objective, quantitative analysis 

of message characteristics (Neuendorf, 2002). It is a highly structured and systemic 

way for analysing qualitative text from a researcherôs perspective. It provides a 

well-developed set of procedures to make sense of the multiple sources of 

qualitative data. There is extensive research in accounting, finance, and other social 

science fields that analyses the content of textual documents using computer 

algorithms. Within this literature, there is extensive research on the information 

content of corporate earnings releases (Davis et al., 2006; Rogers et al., 2009), 

accounting policy disclosures (Levine and Smith, 2006), financial news (Core et al., 

2008), Internet stock message board, and multiple sources of financial text (Kothari 

et al., 2008). However, most of the existing studies are closely related to the firm-

level characteristics, and very little are dealing with country-level reports.  

There exist a range of computerized content analysis algorithms that analyse 

the thematic character of the text. For instance, the DICTION 5.0 (Hart, 2001) is a 

dictionary-based program that counts types of words most frequently encountered 

in contemporary American public discourse and is designed to capture the linguistic 

style (i.e. verbal tone) of narratives (Hart, 1984). DICTION 5.0 uses a lexicon of 

10,000 words to divide a text into five semantic features: Activity, Optimism, 

Certainty, Realism and Commonality. These five features are composed of 

combinations of 35 sub-features (Pennebaker et al., 2003). DICTION 5.0 analyses 

texts in 500 word blocks. The resulting DICTION score represents the number of 

times each word (per 500 word text length) from 1 of the 35 sub-features appears in 

the text. These sub-feature scores are then aggregated to form the five major 

thematic categories. The aggregation process is simply the sum of various sets of 
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the sub-features. DICTIONôs Report Files produce both raw scores and 

standardized scores for each of the standard dictionaries.  

There are potential strengths and weaknesses in using DICTION 5.0 

computerized content analysis software. In terms of strengths, DICTION performs 

textual analysis based on pre-existing search rules and algorithms, and is systemic 

and thus free from criticisms of researcher subjectivity and potential bias. 

Moreover, computer-based system can examine multiple phenomena 

simultaneously and can report on combinations of word usages that the researcher 

could hardly conceive of, never mind calculate, without machine assistance. 

Finally, content analysis software facilitates the efficient analysis of a large number 

of texts and a partial correction for the context. The principal weakness of 

DICTION is that it is based on the assumption that higher frequency usages of a 

word or phrase mean the concept is more meaningful or important than infrequently 

utilized words or phrases. In other words, it does not analyse language conditional 

on the context of the particular statement. However, more recent research by Li 

(2009) contrasts the measure of tone calculated using DICTION and a Naἔve 

Bayesian machine learning approach. Li (2009) concludes that the machine 

learning algorithm and the dictionary approach capture the tone of the financial 

documents similarly.  
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Chapter 2: Range-based Analysis of Volatility Spillovers in European 

Financial Markets 

 

2.1  Introduction 

In this paper we study the dynamic linkages among European security markets 

based on the time series of daily high-low ranges of national equity market indices. 

The daily high-low range is defined as the log of the ratio of the intradaily high and 

low prices of the national market index. As is well documented, see Alizadeh et al. 

(2002), the daily range can provide a surprisingly accurate indirect measure of daily 

volatility (that is, daily return standard deviation). It is also readily available across 

markets with no publicly-available intraday price series. We build a dynamic model 

of daily range, and address a number of empirical questions based upon it. We also 

include the realized daily range of the US S&P500 index as an explanatory 

variable, but our focus is on explaining volatility dynamics and linkages in the 

European markets. 

We use a dynamic linear model of expected daily ranges based on the 

conditional autoregressive range (CARR) model of Chou (2005) and Engle and 

Gallo (2006). We refine the CARR model to make it consistent with a discrete-

interval model of daily return standard deviations in which the vector of daily 

return standard deviations depends linearly upon its lagged values and lagged 

realized ranges, and in which intraday prices follow standard multivariate Brownian 

motion. We estimate both our new version of the CARR model and an earlier 

version of Engle and Gallo (2006) on our dataset and compare their performance. 

We estimate using data over the period January 11, 1991 to May 23, 2013 

and find a number of interesting results. The linear dynamics in daily range appear 

similar whether estimated using the Feller or gamma distribution. The gamma 

distribution better fits the empirical distribution of tail events in daily range, but this 

distributional assumption sacrifices the theoretical link between daily range and 

daily standard deviation provided by the Feller distribution model. There are strong 

asymmetries in daily range dynamics: in all four markets, expected daily range is 
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higher after a day with negative open-to-close return. There are some cross-market 

dynamics among the European markets, but the strongest cross-market dynamic 

influence comes from the US market: daily range in each of the European markets 

tends to be higher on a day after a high realized range in the US market. 

We divide our sample into pre-crisis and crisis periods, using July 17
th
 2007 

as the regime switch date based on the analysis of Cipollini and Gallo (2010). We 

find clear evidence for a regime shift. First, not surprisingly, both average and 

median daily ranges increase sharply in all four European markets. Second, there is 

a sharp increase in the contemporaneous correlations between the daily ranges of 

the markets. Third, the dynamic models of daily range have a notable and 

consistent change, in all four markets the influence of lagged US market daily range 

increases substantially during the crisis period.  

In Section 2.2 we describe our econometric methodology. In Section 2.3 we 

introduce the data and provide some descriptive statistics. Section 2.4 presents the 

empirical analysis for the full sample period. In Section 2.5 we estimate allowing 

for a regime shift in July, 2007, reflecting the ongoing financial crisis. Section 2.6 

presents some concluding remarks. 

2.2  A Range-based Volatility Model: Theoretical Framework 

2.2.1 Range as a Volatility Proxy 

Our model uses two time indices: a discrete index t for days, and a continuous 

index Ű for intraday time. Let pŰ, 0 Ò Ű Ò 1 denote the nïvector of intraday log prices 

on n assets during day t (for notational simplicity the day t is left implicit for 

intraday time). Assume that the nïvector of realized daily ranges is the high minus 

low of day t intraday log prices: 

,,...,for    minmax nipphl Űi
Ű

Űi
Ű

it 1=-=
1¢¢01¢¢0

  (2.1) 

which is strictly positive as long as the price is not constant over the entire interval. 

Also important in our analysis is the nïvector of expected ranges 
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[ ]1-= ttt IhlEɛ ,    (2.2) 

where the expectation is conditional on all information at time tï1 (that is, the 

beginning of day t). Suppose that intraday log prices follow a standard Brownian 

motion during day t with standard deviations ůt. In this case, Parkinson (1980) 

shows that scaled range is an unbiased proxy for return standard deviation, and in 

particular: 

tt ů
ˊ

ɛ
ö
ö

÷

õ

æ
æ

ç

å8
= ,     (2.3) 

so that the expected range and standard deviation differ only by a scale factor. 

Note that our theoretical model ignores the overnight (and weekend) closed 

periods in these markets. The high and low price observations only cover the period 

during which the market is open, so that the comparable volatility in Equation (2.3) 

is daily open-to-close return volatility rather than the more commonly used close-

to-close return volatility. We will discuss this further in our empirical analysis. 

2.2.2 A Linear Dynamic Model of Volatility and Expected Range 

In this subsection we develop a modified variant of Chouôs (2005) conditional 

autoregressive range (CARR) model. We begin with a foundational model of daily 

volatility (that is, return standard deviation), which produces a fully parametric 

specification of expected daily range. Let ůt denotes the nïvector of standard 

deviations of returns for day t, and pŰ denotes the nïvector of log prices at intra-day 

time Ű within day t. We assume that intraday prices follow standard multivariate 

Brownian motion with zero mean vector and time-constant correlation matrix C: 

[ ] ()[ ] ()[ ]( ) ,ȹfor    ȹ,~ȹ 1¢+<¢00- 2

+ ŰŰůDiagCůDiagMVNpp tt

n

ŰŰ (2.4) 

where Diag(ůt) denotes the diagonal matrix with the vector ůt on its diagonal.  

We impose a simple linear dynamic model on the nïvector of daily standard 

deviations, in particular: 
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with all non-negative parameter elements. We assume that the parameter values are 

such that the time-series process for ůt is covariance stationary. The vector of 

estimable parameters in Equation (2.5) (other than those set to zero by assumption) 

will be denoted ẽ. Scaling *

iɤ  and *

, jiŬ  by 
ö
ö

÷

õ

æ
æ

ç

å8

ˊ
 and substituting Equation (2.3) 

into Equation (2.5) gives: 

ää
1=

1-1-
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++=
n

j

tjjitj

n

j

jiiti ɛɓhlŬɤɛ ,,,,, ,   (2.6) 

which is an equivalent expression of the dynamic system in terms of tiɛ,  rather than 

.,tiů  We assume that, conditional upon the fixed daily volatilities (2.5), the 

Brownian motion determining price processes within days is completely 

independent across days. Following Engle and Gallo (2006), the daily range 

innovation is the ratio of the realized range to its conditional expected value: 

ni
ɛ

hl
Ů

it

it
it ,...,  , 1== ,    (2.7) 

and it follows immediately from the assumptions above that this is independently 

and identically distributed through time. We will derive its distribution in the next 

subsection. 

The model, particularly in formulation (2.5), has close parallels with 

GARCH-family models. There are two distinctions between (2.5) and standard 

GARCH. First, the innovation for the dynamic model is the realized daily range 

rather than the squared close-to-close return, and second, the realized daily range 

drives standard deviation (and/or expected range) rather than variance. 
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2.2.3 Maximum Likelihood under Intradaily Brownian Motion 

The model of the previous subsection has a known log likelihood function. As 

Alizadeh et al. (2002) note, extending Feller (1951), the distribution of the range 

under Brownian motion is given by: 

( ) ( ) ,Pr öö
÷

õ
ææ
ç

å
1-8==

2¤

1=

ä
it

y

it

yk

k

it
ů

ke
ű

ů

ek
yhl   (2.8) 

where ()Öű  is the standard normal density. Although the density function (2.8) 

involves an infinite sum, it is straightforward to compute numerically since the low-

order additive terms dominate the sum (the multiplicative component öö
÷

õ
ææ
ç

å

it

y

ů

ke
ű  goes 

to zero at an exponential rate in k); see Alizadeh et al. (2002). Since we assume 

intradaily constant-volatility Brownian motion, this provides the exact distribution 

of realized daily range, conditional upon knowing ůit. Substituting Equation (2.7) 

into Equation (2.8) gives the likelihood function of the realized range innovations 

which are independently and identically distributed through time. 

We assume that the initial value of ůit for t = 0 is known. Given this and our 

other assumptions, the likelihood of the sample equals the product of (2.8) 

evaluated at observed hlit for each t using the linear dynamic model (2.5) to define 

ůit recursively. Recall that ẽ denotes the vector of parameters in the linear dynamic 

model. Stating the log likelihood problem: 

( )( )ä
1=

=
T

t

itit ůŮ,PrlnmaxargŪĔ
Ū

, 

where ůit is given by Equation (2.5) and ( )itit ůŮ,Pr  denotes the function (2.8). Time 

subscript t runs from 1 to T. In large samples these maximum likelihood estimates 

are consistent and asymptotically normal, with the asymptotic covariance matrix 

consistently estimated by the inverse of the inner product of the derivative matrix of 

the log likelihood function with respect to Ū evaluated at ŪĔ. 
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2.2.4 Estimation under an Alternative Distributional Assumption on Realized 

Range 

One weakness of the specification described in the last two subsections is its 

reliance on constant-volatility intraday Brownian motion for log price; this is not 

supported by the evidence since daily equity index returns have positive excess 

kurtosis. Dropping this assumption invalidates Equation (2.8) as the distribution of 

daily range. In this subsection we describe an alternative estimation strategy 

developed by Engle and Gallo (2006). The Engle-Gallo specification does not 

require the assumptions of Brownian motion and intradaily constant volatility. They 

use the same linear dynamic model of expected daily range as above (2.6) but do 

not specify the inter-daily nor intra-daily process for log prices. They assume that 

the realized daily range has a gamma distribution: 
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ɔGammaŮ    (2.9) 

Note that, in this application, the gamma distribution has only one free parameter 

rather than the usual two; this reflects the restriction from Equation (2.7) that tiŮ,  

must have unit expectation since by definition tiɛ,  is the expectation of tihl , . 

The Engle-Gallo approach has two advantages over last two methods. One, 

already mentioned, it drops the assumptions of intraday constant volatility and 

Brownian motion for log prices. Two, it adds an additional parameter to capture the 

high kurtosis evident in realized daily range. In terms of disadvantages, it does not 

provide any specific link between daily range and the time-series properties of log 

price: the gamma distribution is assumed for daily range without specifying how 

this comes about through Equation (2.1) and the process for prices. Related to this, 

it gives a model of expected daily range only, not of daily standard deviation. Engle 

and Gallo (2006) note that another advantage of the gamma distribution in this 

context is that the nonlinear maximum likelihood optimization problem can be 

solved in two separate steps, but in our application we do not find this necessary. 

We compare these two CARR specifications empirically below. 
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2.2.5 Spillover and Leverage Effects 

We use as the base-case model the simplest specification: 

1-1-++= tiitiiiti ɛɓhlŬɤɛ ,,,     (2.10) 

with all nonnegative coefficients and 1<+ ii ɓŬ . tiɛ,  can be interpreted as the 

expectation of the range at time t for the asset i. iɤ is the constant term of the 

equation for tiɛ, ; iŬ is the autoregressive coefficient and iɓ is the moving average 

coefficient. Following Engle and Gallo (2006), we also consider the so-called 

leverage effects, 

( ) ( ) 1-1-1-1-1- +0<+0²+= tiititi

down

ititi

up

iiti ɛɓhlrIndŬhlrIndŬɤɛ ,,,,,, , (2.11) 

where 1-tir ,  is the close-to-close return on the asset on day tï1 and ( )0<1-tirInd ,  is a 

dummy variable which equals one if this return is negative and zero otherwise. up

iŬ  

and down

iŬ  are parameters that capture the asymmetry. All four coefficients are 

restricted to be non-negative. We also consider a slightly different specification to 

capture the same type of leverage effect, 

.,,,, 1-1-1- +++= tiitiitiiiti ɛɓrűhlŬɤɛ    (2.12) 

Note that, by definition of the range, 1-1-² titi rhl ,,  and so as long as ii Ŭű<  and the 

other coefficients are non-negative this model belongs to the multiplicative error 

model class, see Engle (2002). 

We also estimate the extended specification (2.6) including lagged cross-

country realized ranges to test for spillover effects between markets. Note that in 

this case, as noted by Engle and Gallo (2006), full-information maximum 

likelihood requires that the system of equations (2.6) be estimated simultaneously, 

which also requires that the marginal distributions between the contemporaneous 

range innovations is specified. Instead of this, again following Engle and Gallo 

(2006), we restrict ourselves to limited information maximum likelihood, 
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estimating each equation separately using the univariate likelihood objective 

function described above. 

2.3  Simulation Evidence on the Range-based Volatility Estimators 

To assess the properties of the range-based volatility estimators, we perform 

an extensive simulation analysis. We consider the range implied estimates of the 

standard deviation. Specifically, we use Parkinson (1980) range-based proxy for the 

return standard deviation, and in particular: 
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å
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ˊ
ɛů ii ,    (2.13) 

where iů and iɛ denote the daily standard deviations and the daily range of the log 

price processes for assets 1 and 2, respectively. 

We consider two correlated log asset prices, which follow a bivariate 

random walk with homoskedastic and contemporaneously correlated innovations
1
. 

Subsequent log prices for asset i = 1, 2 are simulated using 

  KktiKktiKkti ŮPP /,/)(,/, loglog +1-++ +=       ,,...,,,, Kki 21=21=  (2.14) 

where K is the number of prices per day. We assume that the shocks KktiŮ /, +  are 

serially uncorrelated and normally distributed with mean zero and variance ,/ Kůi  

where daily standard deviations iů of the log price processes are set equal to 

0.0252 and 0.0149 for assets 1 and 2, respectively. 1ů is calibrated as the average of 

the daily standard deviation of the DAX constituent assets over the period from 

January 2, 2003, to September 30, 2011. 2ů is simply the sample average daily 

standard deviation of the DAX Index. 

For each day, we calculate the high and low log prices for both assets i = 1, 

2. The shocks KktŮ /, +1  and KktŮ /, +2  are contemporaneously correlated with 

                                                      
1
 The random walk process (discrete time version of Brownian motion) for the log-prices follows 

from the assumption that prices follow a geometric Brownian motion. Strictly speaking, this would 

imply that the random walk process contains a drift, but we abstain from this fact here. This drift is 

probably negligible.  
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correlation coefficient ,12ɟ  which we set equal to 0.5. The simulation experiment 

uses { }000150010025Í ,,,,K  observations per day, where price observations are 

equidistant and occur synchronously for the two assets. We simulate the prices for 

10,000 days in all the experiments presented below. Table 2.1 shows that the range-

implied estimates of the standard deviation are downward bias. This result is 

consistent with the facts that the range of a discretely sampled process is strictly 

less than the range of a true underlying process. The range-implied estimates of the 

standard deviation are close to the theoretical values of standard deviation when K 

gets larger.  

Table 2.1. Monte Carlo experiment for the range-implied standard deviation 

  Asset 1  Asset 2 

Theoretical value of st. dev  0.0252  0.0149 

Range-implied estimates of st. dev 

K = 25  0.0217  0.0130 

K = 100  0.0234  0.0138 

K = 500  0.0243  0.0145 

K = 1,000  0.0246  0.0145 

Notes: The Table shows the results of a simulation experiment where 10,000 days of K log prices are 

simulated from a normal distribution with mean zero and variance ůi/K, where daily standard 

deviations ůi of the log price processes are set equal to 0.0252 and 0.0149 for assets 1 and 2, 

respectively. All experiments use 10,000 Monte Carlo Replications. The shocks Ů1,t+k/K and Ů2,t+k/K are 

contemporaneously correlated with correlation coefficient ɟ12, which we set equal to 0.5. For the 

each day, we calculate high and low log prices for both assets i = 1, 2; these prices are then used to 

calculate the range-based estimates of standard deviation. 

For each of the experiments we also calculate the simulated estimation standard 

deviation (Table 2.2). 
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Table 2.2. Simulated estimation standard deviation 

  Asset 1  Asset 2 

K = 25  0.0094  0.0058 

K = 100  0.0122  0.0072 

K = 500  0.0137  0.0082 

K = 1,000  0.0141  0.0083 

Notes: The Table shows the results of a simulation experiment where 10,000 days of K log prices are 

simulated from a normal distribution with mean zero and variance ůi/K, where daily standard 

deviations ůi of the log price processes are set equal to 0.0252 and 0.0149 for assets 1 and 2, 

respectively. All experiments use 10,000 Monte Carlo Replications. The shocks Ů1,t+k/K and Ů2,t+k/K are 

contemporaneously correlated with correlation coefficient ɟ12, which we set equal to 0.5. For each 

day, we calculate the high and low log prices for both assets i = 1, 2. 

2.4  Data and Descriptive Statistics 

Our data set contains four European stock indices, which are the CAC 40 index 

(France), DAX 30 index (Germany), AEX index (the Netherlands), and IBEX 35 

index (Spain), and as an explanatory variable the S&P500 index. All of these series 

are downloaded from the Datastream database. Each series has 5,388 daily 

observations over the sample period from January 11, 1991 to May 23, 2013. When 

price data for a particular trading day in one or more of the five countries are not 

available (for example, due to a national holiday in that country), we delete that 

date entirely from our sample. In total 455 days were deleted from the initial data 

set (8% of the days) to eliminate these missing observations in one or more of the 

markets and create a balanced panel. 

Descriptive statistics are shown in Table 2.3. The table shows that the daily 

range distributions are positively skewed and leptokurtic relative to the normal 

distribution. Autocorrelations of realized range decay slowly, which is consistent 

with the pattern observed for other daily volatility measures such as squared daily 

return.  

Table 2.4 reports the cross-autocorrelation matrices of the vector of the 

daily range series. The cross-autocorrelations indicate a near-symmetry of lead/lag 

relationship between four European markets. So, for example, the correlation 

between the contemporaneous range in Germany and lagged range in Spain (0.532) 
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is nearly identical to the correlation between the contemporaneous range in Spain 

and lagged range in Germany (0.553). Also note that the contemporaneous 

correlations increase during the crisis period compared to the pre-crisis period. The 

only exception is the correlation coefficient between the contemporaneous range in 

Spain and the contemporaneous range in the Netherlands (0.721) and the 

correlation coefficient between the contemporaneous range in Spain and the 

contemporaneous range in the US (0.582), which are the same during the pre-crisis 

and the crisis period. When we take a look at the pairs of the autocorrelations 

containing Spain, we observe the decrease in the autocorrelations during the crisis 

period compared to the pre-crisis period. This finding suggests that Spain tends to 

trigger very little or no contagion among the core countries during the crisis period, 

where contagion is commonly defined as a significant increase in cross-market 

interdependencies after a large shock hits one country or a group of countries. Our 

results are also consistent with Kabaska and Gatwoski (2012) study which analyses 

contagion among several European sovereigns using CDS data and come to the 

same conclusion. 
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Table 2.3. Descriptive statistics of the daily range  

 France Germany Netherlands Spain USA 

Mean 0.026 0.025 0.023 0.026 0.021 

Median 0.022 0.019 0.018 0.022 0.017 

Maximum 0.148 0.178 0.186 0.213 0.174 

Minimum 0.005 0.000 0.000 0.003 0.003 

Standard deviation 0.016 0.020 0.017 0.018 0.016 

Skewness 2.228 2.217 2.541 2.137 3.186 

Kurtosis (excess) 7.784 7.443 10.022 8.550 17.658 

25-%ile 0.016 0.011 0.012 0.014 0.012 

75-%ile 0.031 0.031 0.028 0.033 0.026 

ACF(1) 0.610 0.738 0.691 0.628 0.620 

ACF(5) 0.529 0.687 0.625 0.541 0.582 

ACF(20) 0.411 0.577 0.504 0.412 0.457 

Notes: The table reports the descriptive statistics for the daily high-low price range of stock indices, 

including CAC 40 (France), DAX 30 (Germany), AEX (the Netherland), IBEX 35 (Spain), and 

S&P500 (USA) over the sample period from January 11, 1991 to May 23, 2013. The sample size is 

5,387 observations. 
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Table 2.4. Cross-autocorrelation matrices for five national stock market indices daily range 

Panel A  

Pre-crisis period 

Ɉ0 hlFRA,t hlGER,t hlNETH,t hlSPA,t hlUSA,t 

hlFRA,t 1.000     

hlGER,t 0.764 1.000    

hlNETH,t 0.796 0.826 1.000   

hlSPA,t 0.746 0.692 0.721 1.000  

hlUSA,t 0.576 0.649 0.623 0.582 1.000 

Crisis period 

Ɉ0 hlFRA,t hlGER,t hlNETH,t hlSPA,t hlUSA,t 

hlFRA,t 1.000     

hlGER,t 0.914 1.000    

hlNETH,t 0.923 0.881 1.000   

hlSPA,t 0.821 0.729 0.721 1.000  

hlUSA,t 0.759 0.766 0.780 0.581 1.000 

Panel B 

Pre-crisis period    

Ɉ1 hlFRA,t-1 hlGER,t-1 hlNETH,t-1 hlSPA,t-1 hlUSA,t-1 

hlFRA,t 0.582 0.581 0.577 0.512 0.467 

hlGER,t 0.574 0.755 0.661 0.532 0.534 

hlNETH,t 0.573 0.679 0.698 0.535 0.520 

hlSPA,t 0.527 0.553 0.540 0.604 0.482 

hlUSA,t 0.473 0.531 0.498 0.479 0.513 

Crisis period    

Ɉ1 hlFRA,t-1 hlGER,t-1 hlNETH,t-1 hlSPA,t-1 hlUSA,t-1 

hlFRA,t 0.615 0.605 0.615 0.501 0.617 

hlGER,t 0.628 0.672 0.631 0.484 0.640 

hlNETH,t 0.608 0.608 0.646 0.457 0.650 

hlSPA,t 0.520 0.482 0.482 0.561 0.455 

hlUSA,t 0.600 0.621 0.639 0.444 0.683 

Notes: Autocorrelation matrices of the vector of daily ranges of five national stock market indices, 

Xſ[hlFRA,t, hlGER,t, hlNETH,t, hlSPA,,t, hlUSA,t]. The k-th order autocorrelation matrix is defined by 

Y(k)ſD
-1/2

E[(Xt-k ï ɛ)(Xt ï ɛ)ô]D
-1/2

, where ( )252

1¹ ůůDiagD ,..., . Hence, the (i, j) element of Y(k) 

corresponds to the correlation between hli,t-k and hlj,t. Following Cipollini and Galo (2010), we 

choose July 17, 2007 as the regime break point. Hence, we assume that the pre-crisis period extends 

from January 11, 1991 to July 17, 2007, and the crisis period is from July 18, 2007 to May 23, 2013 
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2.4.1 Comparison to Close-to-close and Open-to-close Standard Deviations 

Table 2.5 shows the sample variances of close-to-close, open-to-close, and close- 

to-open returns for each of the markets. Ignoring the negligible differences in 

sample mean, in the absence of return autocorrelation the close-to-close return 

variance will equal the sum of close-to-open and open-to-close variance, and this is 

approximately the case. It is interesting to note that the close-to-open variance  

variance is higher for the European market indices than for the US index. This is 

not a surprising result; US market moves during the European evening can have a 

big impact on European market opening values the next (European) morning. The 

effect is asymmetrical; the US market opening prices are on average fairly close to 

previous-day closing prices, indicating that they are not as influenced by US-

closed-time activity in Asian and European markets.  

Table 2.5. Sample variances of close-to-close, open to close, and close-to-open returns 

 France Germany Netherlands Spain USA 

Variance (close-to-close) 0.00022 0.00023 0.00020 0.00022 0.00014 

Variance (open-to-close) 0.00008 0.00005 0.00008 0.00007 0.00001 

Variance (close-to-open) 0.00014 0.00016 0.00013 0.00016 0.00013 

Variance ratio: open-to-

close/close-to-close 

0.6607 0.7063 0.6433 0.7236 0.9284 

St. dev. (open-to-close) 0.0119 0.0126 0.0114 0.0126 0.0116 

Range-implied open-to-close 

st.dev. 

0.0162 0.0155 0.0143 0.0164 0.0134 

Notes: The sample period is from January 11, 1991 to May 23, 2013. In the absence of return 

autocorrelation the close-to-close return variance will equal the sum of close-to-open and open-to-

close variance. We use the mean daily range to compute implied standard deviation; range-implied 

standard deviation under the Feller/normal congruent distributions: 
8

p
ms t=t

.  

If prices follow zero-mean, fixed-volatility Brownian motion then 
8

ˊ
 

times the mean daily range is equal to daily return standard deviation. We use the 

mean daily range statistics from Table 2.3 to compute implied standard deviations 

in this way, and compare them to the sample standard deviations of the open-to-
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close returns. In all cases, the range-based standard deviation exceeds the sample-

return-based standard deviation. 

2.5  Estimation and Testing Given a Single Regime 

2.5.1 Estimation of the Univariate Models of Dynamic Range 

We begin with the estimation of the base-case model (2.10). Note that there are two 

variants of the base case model depending upon whether we use the Feller 

distribution or the gamma distribution for the realized range innovations; using the 

gamma distribution adds an extra estimated parameter. Table 2.6 shows the model 

with a Feller distribution in Panel A and with a gamma distribution model in Panel 

B. The shared parameter estimates are quite similar in the two models; the main 

difference comes from the extra parameter of the gamma distribution model. We 

now make a more detailed evaluation of these two models by comparing their one-

step-ahead risk forecasts. 
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Table 2.6. Maximum likelihood estimation of a univariate dynamic model of daily range 

Panel A: Estimation using a Feller distribution 

 France Germany Netherlands Spain 

ɤ 0.00014  

(42.239) 

0.00005   

(46.682) 

0.00009 

(36.024) 

0.00016 

(137.344) 

ɓ 0.822  

(2,051.313) 

0.808  

(4,383.096) 

0.813  

(2,145.931) 

0.771  

(4,377.313) 

Ŭ 0.105   

(400.556) 

0.118   

(935.667) 

0.112   

(456.852) 

0.134  

(1,039.930) 

Panel B: Estimation using a Gamma distribution 

 France Germany Netherlands Spain 

ɤ 0.00046  

(7.094) 

0.00018  

(5.829) 

0.00033 

(6.725) 

0.00051     

(8.816) 

ɓ 0.807    

(105.895) 

0.806     

(110.406) 

0.785     

(96.362) 

0.763     

(88.609) 

Ŭ 0.1756   

(26.640) 

0.1871  

(26.802) 

0.201     

(27.006) 

0.217     

(27.575) 

ɔ 

6.889  

(52.044) 

6.275 

(56.658) 

6.406     

(54.539) 

5.989     

(73.360) 

Notes: The Table shows the maximum likelihood estimates of univariate dynamic models of daily 

range. See equation (2.10) for the definitions of the coefficients. The model in Panel A uses: 

tititiit ŮŮɛhl ,,, ,=  follows a Feller distribution. The model in Panel B uses: 
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,

,,, ,~, .  The numbers in the parentheses are t-statistics. Sample period is 

from January 11, 1991 to May 23, 2013.  

2.5.2 Analyzing the Distributional Characteristics of Daily Range 

Recall that realized daily range equals expected daily range conditional upon 

yesterdayôs information times a unit mean i.i.d. innovation: 

ititit Ůɛhl = ,     (2.15) 

where itŮ follows a Feller distribution under our initial specification, or a gamma 

distribution with parameter ɔ under the Engle and Gallo (2006) specification. We 

use Equation (2.15) to examine the one-day-ahead value-at-risk hit rates of our two 

dynamic models from the last subsection. For each time period, we find the upper 
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limit cit such that the probability (under the given prediction model) that the 

realized range equals or exceeds it equals Ŭ (for 100501= . and .,.Ŭ ) 

( ) .Pr  s.t.  Ŭɛchlc itititit =²  

In common parlance, cit for 100501= . and .,.Ŭ  is the value-at-risk for the specified 

trading strategy at confidence level 99%; 95%; and 90%. Since we are using 

realized daily range, this is the value-at-risk for the daily loss on the worst potential 

intraday trade, not the value-at-risk of daily buy-and-hold return. 

If the forecasting model is correctly specified, then the dummy variable 

which equals one if hlit Ó cit and zero otherwise has an i.i.d. binomial distribution 

with an expected value of Ŭ: This is called the hit rate for the value-at-risk forecast. 

Table 2.7 shows the results. Across all countries, both models have too-high hit 

rates, particularly for 01=.Ŭ . In most cases (with exceptions only for the 90% 

value-at-risk using the Gamma distribution) we can reject with 95% confidence that 

the value-at-risk is correctly given by the model. The performance of the Feller-

distribution-based model is notably worse than that of the gamma-distribution-

based model in terms of the excessive proportion of hits, but both models are 

clearly rejected in most cases. Note, as shown above, the shared parameters of the 

two models are quite similar in their estimated values. The difference between the 

performance of the two models in Table 2.7 comes from the slightly better ability 

of the gamma distribution to capture the fairly thick tails of the distribution of 

realized range. 
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Table 2.7. Hit rates for VaR events at 90%, 95%, and 99% confidence for two forecasting 

models of daily range 

Model For 1% For 5% For 10% 

France 

Gamma 2.230 

(9.075) 

6.403 

(4.725) 

10.709 

(1.735) 

Feller 3.211 

(16.311) 

8.593 

(12.101) 

13.103 

(7.592) 

Germany 

Gamma 1.967 

(7.134) 

6.329 

(4.476) 

10.542 

(1.326) 

Feller 3.805 

(20.693) 

9.744 

(15.978) 

14.514 

(11.045) 

Netherlands 

Gamma 1.707 

(5.216) 

6.125 

(3.789) 

11.154 

(2.824) 

Feller 3.415 

(17.816) 

9.725 

(15.914) 

14.681 

(11.453) 

Spain 

Gamma 1.890 

(6.566) 

5.698 

(2.351) 

10.319 

(0.781) 

Feller 3.712 

(20.007) 

9.577 

(15.415) 

15.052 

(12.361) 

USA 

Gamma 1.745 

(5.496) 

5.234 

(0.788) 

10.171 

(0.418) 

Feller 4.306 

(24.389) 

10.783 

(19.477) 

16.314 

(15.449) 

Note: The Table examines the one-day-ahead value-at-risk hit rates of Feller-distribution-based 

model and Gamma-distribution-based model. For each time period, we find the upper limit cit such 

that the probability that realized range equals or exceeds it equals Ŭ (for Ŭ=.01,.05, and .10), 

( ) .Prs.t. Ŭɛchlc itititit =²  If the forecasting model is correctly specified, then the dummy variable 

which equals one if hlitÓcit and zero otherwise has an i.i.d. binomial distribution with an expected 

value of Ŭ. Sample period is from January 11, 1991 to May 23, 2013. 

Figures 2.1 through 2.10 show the same finding graphically. They show the 

sample densities of realized range innovations (2.7) and compare them to the 

theoretical density; in the case of the gamma distribution this differs across 

countries, dependent upon the estimated ɔĔ, whereas for the Feller distribution it is 

the same for all countries. The better fit of the gamma distribution to the upper tail 

of realized range seems evident from the graphs. 
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Figure 2.1. Empirical and theoretical densities of range innovations using the Feller 

distribution model: France 

 

Figure 2.2. Empirical and theoretical densities of range innovations using the Feller 

distribution model: Germany 

 

Figure 2.3. Empirical and theoretical densities of range innovations using the Feller 

distribution model: the Netherlands 
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Figure 2.4. Empirical and theoretical densities of range innovations using the Feller 

distribution model: Spain 

 

Figure 2.5. Empirical and theoretical densities of range innovations using the Feller 

distribution model: USA 

 

Figure 2.6. Empirical and theoretical distributions of range innovations using the Gamma 

distribution model: France 
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Figure 2.7. Empirical and theoretical distributions of range innovations using the Gamma 

distribution model: Germany 

 

Figure 2.8. Empirical and theoretical distributions of range innovations using the Gamma 

distribution model: the Netherlands 

 

Figure 2.9. Empirical and theoretical distributions of range innovations using the Gamma 

distribution model: Spain 
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Figure 2.10. Empirical and theoretical distributions of range innovations using the Gamma 

distributi on model: USA 
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Table 2.8. Maximum likelihood estimation of a univariate dynamic model of daily range with additional return-based explanatory variables 

 France Germany Netherlands  Spain 

ɤ 0.00050 

(8.656) 

0.00053 

(9.623) 

0.00022 

(7.511) 

0.00025 

(8.391) 

0.0038 

(8.661) 

0.00039 

(8.848) 

 0.00054 

(10.340) 

0.00054 

(10.235) 

ɓ 0.826 

(127.893) 

0.834 

(130.764) 

0.821 

(109.935) 

0.818 

(112.296) 

0.807 

(101.446) 

0.808  

(103.026) 

 0.788 

(96.264) 

0.787 

(97.160) 

Ŭ 0.120  

(20.159) 

0.146 

(26.076) 

0.142 

(17.245) 

0.173 

(24.579) 

0.142 

(17.163) 

0.175  

(24.114) 

 0.157 

(18.543) 

0.193 

(25.736) 

 ű(close-to-close return)  -0.086  

(-17.058) 

 -0.044  

(-10.293) 

 -0.067 

(-14.037) 

  -0.071 

(-13.110) 

Ŭ
down 

 0.067 

(13.454) 

 0.055 

(10.258) 

 0.065 

(12.888) 

  0.069 

(12.402) 

 

ɔ 7.057 

(52.524) 

7.147    

(52.564) 

6.366 

(57.075) 

6.354   

(57.247) 

6.539 

(54.834) 

6.376  

(53.647) 

 6.115 

(73.743) 

6.118  

(75.150) 

          

Notes: The Table shows the maximum likelihood estimates of a univariate dynamic model of daily range with additional return-based explanatory variable. See 

equations (2.11) and (2.12) for the definitions of the coefficients. The model uses: 
ö
ö

÷

õ

æ
æ

ç

å
=

ti

i
itititiit
ɛ

ɔ
ɔGammaŮŮɛhl

,

,,, ,~, . The numbers in the parentheses are t-

statistics. Sample period is from January 11, 1991 to May 23, 2013. 



46 

 

2.5.3 Leverage Effects and Volatility Spillovers Across Markets 

In this section we estimate using the gamma distribution for the realized range 

innovations. Table 2.8 shows estimates for the two models, Equations (2.11) and 

(2.12), with leverage effects. In the first specification, the impact of yesterdayôs 

realized range on todayôs expected range is higher if yesterdayôs market return is 

negative. In the second specification, todayôs expected range is negatively related 

to yesterdayôs market return. These two specifications are quite similar in practice, 

since realized range tends to be strongly collinear with the absolute value of 

realized return. Using either leverage specification, we find significant evidence 

for substantial leverage effects in the dynamics of daily range. 

We next show estimates of the models (Table 2.9) including cross-market 

lagged range as an explanatory variable, to test for volatility spillovers. The 

influence of lagged cross-market range tends to be much smaller than the 

influence of lagged own-market range. We find positive statistically significant 

range-based volatility spillover effects coming from Spain. This result is 

consistent with the paper by Alter and Beyer (2013) that shows that the core 

countries are highly sensitive to shocks from periphery countries such as Spain, 

Portugal, and Italy. We also find statistically significantly negative coefficient for 

the realized range on yesterdayôs French market which implies that the French 

equity market is the net receiver of potential spillovers. This result is also 

consistent with the finding of Alter and Beyer (2013) that finds a negative total 

net spillover effect. The lagged US market range has the most reliable influence, 

both in terms of uniform statistical significance across the European countries, 

and in terms of the magnitude of the estimated coefficients. Note that, due to time 

zone differences, the realized range on yesterdayôs US market includes price 

moves during trading time after the close of yesterdayôs European markets, but 

before the current dayôs market open. 
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Table 2.9. Single-equation maximum likelihood estimation of multivariate models of daily 

range 

 France Germany Netherlands Spain 

ɤ 0.00050 

(6.496) 

0.00017 

(2.999) 

0.00029 

(4.139) 

0.00029 

(3.730) 

ɓ 0.784 

(88.414) 

0.802 

(101.556) 

0.755 

(77.275) 

0.744 

(78.005) 

Ŭ 0.155 

(20.864) 

0.186      

(23.358) 

0.179      

(20.303) 

0.206 

(22.696) 

FRAt-1  -0.010 

(-2.953) 

-0.009 

(-2.120) 

0.021 

(5.567) 

GERt-1 0.002       

(0.443) 

 0.020       

(4.475) 

0.008   

(1.485) 

NETHt-1 0.004 

(0.577) 

0.003 

(0.684) 

 -0.002   

(-0.227) 

SPAt-1 0.017 

(4.229) 

0.006 

(1.982) 

0.012 

(3.387) 

 

USAt-1 0.024 

(4.676) 

0.008       

(2.159) 

0.030 

(6.148) 

0.016 

(2.720) 

ɔ 6.952 

(51.677) 

6.288 

(56.500) 

6.485 

(53.498) 

6.029 

(58.686) 

Notes: The Table shows the maximum likelihood estimates of multivariate models of daily range, 

based on equation (2.6). The model uses: 
ö
ö

÷

õ

æ
æ

ç

å
=

ti

i
itititiit
ɛ

ɔ
ɔGammaŮŮɛhl

,

,,, ,~, . The numbers in the 

parentheses are t-stats. Sample period is from January 11, 1991 to May 23, 2013.  

2.6  Testing for a Regime Shift During the Financial Crisis 

The latter part of our sample is characterized by unusual market turbulence 

associated with the global financial crisis. We re-estimate with an assumed regime 

break differentiating the pre-crisis and crisis periods. Following Cipollini and 

Gallo (2010), we choose July 17, 2007 as the regime break point. This date 

corresponds to the announcement by Bear Stearns of the collapse of two hedge 

funds, and was followed by suspension of payments by BNP Paribas and 

increased support facilities by the ECB and Fed in early August 2007. We also 

applied the Chow stability test to the chosen sub-periods. The results rejected the 
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hypothesis of no break for all European markets at hand. Hence, we assume that 

the crisis period extends from July 18, 2007 to the end of our sample on May 23, 

2013.  

Table 2.10 gives the descriptive statistics in the pre-crisis and crisis 

periods. Not surprisingly, both the mean and median of daily range increases 

sharply in all four markets. Table 2.4 shows both contemporaneous and lagged 

auto-correlations and cross-correlations. There is a notable increase in 

contemporaneous correlations between the markets. Autocorrelations do not show 

a pattern: some increase and some decrease. First-order cross-correlations show a 

pattern similar to contemporaneous correlations, that is, increasing in most cases. 

Table 2.10. Pre-crisis and crisis period descriptive statistics of the daily ranges 

 France Germany Netherlands Spain USA 

Pre-crisis period (January 11, 1991 to July 17, 2007) 

Mean 0.0240 0.0226 0.0209 0.0229 0.0194 

Median 0.0203 0.0166 0.0162 0.0188 0.0162 

Maximum 0.1404 0.1735 0.1860 0.1823 0.1353 

Minimum 0.0047 0.0004 0.0009 0.0026 0.0028 

Standard deviation 0.0142 0.0189 0.0160 0.0154 0.0124 

Crisis period (July 18, 2007 to May 23, 2013) 

Mean 0.0309 0.0306 0.0278 0.0352 0.0211 

Median 0.0263 0.0252 0.0230 0.0304 0.0209 

Maximum 0.1478 0.1778 0.1489 0.2130 0.1740 

Minimum 0.0052 0.0037 0.0000 0.0083 0.0045 

Standard deviation 0.0186 0.0205 0.0184 0.0196 0.0211 

Notes: The table reports the descriptive statistics for the daily high-low price range of stock 

indices, including CAC 40 (France), DAX 30 (Germany), AEX (the Netherland), IBEX 35 

(Spain), and S&P500 (USA). Following Cipollini and Galo (2010), we choose July 17, 2007 as the 

regime break point. Hence, we assume that the pre-crisis period extends from January 11, 1991 to 

July 17, 2007, and the crisis period is from July 18, 2007 to May 23, 2013. 
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Table 2.11 shows the model with cross-country linkages (2.6) estimated 

for the full sample with the inclusion of a multiplicative dummy variable DCt for 

each cross-country coefficient. The dummy variable is one in the crisis period and 

zero in the pre-crisis period; the associated coefficients capture the change in the 

coefficient in the crisis period. There is no sign of an increase in the cross-market 

dynamic linkages across the European markets, in fact, several dummy 

coefficients indicate a significant decrease. Particularly notable is the increased 

influence of yesterdayôs realized US range on todayôs expected European range ï 

this is significantly positive for all four European countries. So the influence of 

the lagged US market increased during the crisis period, but the cross-market 

influences among these European countries did not. Table 2.12 shows the full 

model estimated separately on the crisis period and pre-crisis period. The results 

mirror those in Table 2.11. The only notable change between the pre-crisis and 

crisis period is that the influence of the lagged US market range increased in all 

markets. 

2.7  Conclusion 

This chapter examines the daily risk dynamics and inter-market linkages of four 

European stock markets using daily range data. Daily range can provide an 

accurate indirect measure of daily volatility and is readily available across markets 

with no publicly-available intraday price series. We compare the conditional 

autoregressive range model of Engle and Gallo (2006) in which the realized range 

has a gamma distribution to a new formulation in which intraday returns are 

normally distributed and realized range has a Feller distribution. The two models 

give similar estimates for the autoregressive range dynamics, but the gamma-

distribution-based model better captures the leptokurtotic feature observed in 

daily range data. 

In addition to strong autoregressive dynamics, the expected range varies 

inversely with the previous dayôs return. There are also some spillover effects, so 

that the previous dayôs realized range in other European market positively 

influences the next dayôs expected range. These spillover effects are not uniform 

across the markets; the strongest spillover comes from the previous dayôs realized 
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range of the US market index. We find statistically significantly negative 

coefficient for the realized range on yesterdayôs French market which implies that 

the French equity market is the net receiver of potential spillovers. This result is 

also consistent with the finding of Alter and Beyer (2013) who also find a 

negative total net spillover effect. We also compare the pre-crisis (January 11, 

1991 to July 17, 2007) and European financial crisis (July 18, 2007 to May 23, 

2013) sub-periods of our sample. In all four markets, average daily range 

increased sharply during the crisis period, and the contemporaneous correlations 

between the markets increased in most cases. Spillover effects between European 

markets did not seem to change, but the influence of yesterdayôs US market range 

on realized range in European markets increased. 
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Table 2.11. Extended model estimation (single-equation ML) using a Gamma distribution 

 France Germany Netherlands Spain 

ɤ 0.00054 

(6.095) 

0.00019 

(2.892) 

0.00033 

(4.029) 

0.00028  

(2.945) 

ɓ 0.777 

(82.842) 

0.798 

(96.873) 

0.749 

(73.559) 

0.723 

(68.934) 

Ŭ 0.163 

(20.031) 

0.191 

(22.835) 

0.186 

(20.119) 

0.197 

(20.083) 

FRAt-1  -0.007 

(-2.068) 

-0.008 

(-1.747) 

0.035 

(8.238) 

GERt-1 0.004 

(0.811) 

 0.021 

(4.558) 

0.009 

(1.531) 

NETHt-1 0.004 

(0.522) 

0.006 

(1.190) 

 0.007 

(0.842) 

SPAt-1 0.022 

(3.527) 

0.004 

(1.085) 

0.016 

(3.188) 

 

USAt-1 0.012 

(1.946) 

0.002 

(0.520) 

0.019 

(3.515) 

0.020 

(2.965) 

DCt-1 0.0003  

(1.828) 

0.0003 

(2.032) 

0.0004 

(1.879) 

0.0010 

(4.214) 

FRAt-1 DCt-1 -0.082 

(-2.842) 

-0.010 

(-0.393) 

-0.007 

(-0.255) 

-0.056 

(-1.199) 

GERt-1 DCt-1 0.016 

(0.891) 

-0.032 

(-1.863) 

0.0002 

(0.013) 

-0.004 

(-0.1331) 

NETHt-1 DCt-1 -0.004 

(-0.154) 

-0.019 

(-0.865) 

-0.056 

(-2.348) 

-0.039 

(-1.090) 

SPAt-1 DCt-1 0.004 

(0.405) 

0.003 

(0.295) 

-0.011 

(-1.139) 

0.033 

(1.836) 

USAt-1 DCt-1 0.063 

(4.460) 

0.053 

(4.156) 

0.068 

(4.937) 

0.034 

(1.730) 

ɔ 76.984 

(51.363) 

6.318 

(56.240) 

6.517 

(53.137) 

6.084 

(57.309) 

Notes: The Table shows the maximum likelihood estimates of extended models of daily range. The 

model is the same as in Table 2.9 with the addition of multiplicative dummies for cross-country 

coefficients during the crisis period. The numbers in the parentheses are t-statistics. Sample period 

is from January 11, 1991 to May 23, 2013. 
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Table 2.12. Extended model estimation (single-equation ML) using a Gamma distribution over the pre-crisis period and over the crisis period 

 France Germany Netherlands Spain 

 Pre-crisis Crisis Pre-crisis Crisis Pre-crisis Crisis Pre-crisis Crisis 

ɤ 0.00040 

(5.138) 

0.00174 

(5.555) 

0.00016 

(2.571) 

 0.00100   

(4.085) 

0.00029 

(3.580) 

0.00098 

(4.252) 

0.00027 

(2.688) 

0.00193 

(5.680) 

ɓ 0.812 

(89.226 ) 

0.669 

(26.515) 

0.818 

(93.984) 

0.719 

(33.624) 

0.767 

(68.654) 

0.700 

(31.374) 

0.725 

(59.278) 

0.692 

(34.561) 

Ŭ 0.144 

(19.339 ) 

0.097 

(2.530) 

0.172 

(19.818) 

0.218 

(7.898) 

0.176 

(18.354) 

0.152 

(5.293) 

0.196 

(17.795) 

0.246 

(11.145) 

FRAt-1   -0.006 

(-1.914) 

-0.030 

(-0.912) 

-0.007 

(-1.599) 

-0.023 

(-0.786) 

0.0344   

(7.720) 

-0.019 

(-0.428) 

GERt-1 0.002 

(0.542) 

0.039 

(1.583) 

  0.019 

(4.128) 

0.032 

(1.587) 

0.009 

(1.422) 

0.012 

(0.461) 

NETHt-1 0.003 

(0.405) 

0.008 

(0.236) 

0.005 

(1.150) 

-0.015 

(-0.549) 

  0.007 

(0.821) 

-0.042 

(-1.277) 

SPAt-1 0.017 

(3.101) 

0.033 

(2.613) 

0.004 

(1.092) 

0.007 

(0.637) 

0.014 

(2.932) 

0.003 

(0.322) 

  

USAt-1 0.010 

(1.896 ) 

0.109 

(5.842) 

0.001 

(0.343) 

0.076 

(4.816) 

0.017 

(3.287) 

0.104 

(7.083) 

0.020 

(2.840) 

0.060  

(3.330) 

ɔ 7.128 

(44.335) 

6.649 

(26.231) 

6.313 

(49.713) 

6.329 

(26.377) 

6.393 

(46.067) 

6.876 

(26.346 ) 

5.827 

(49.944) 

6.869 

(25.874) 

Notes: The models are the same as in Table 2.7 but estimated separately on the pre-crisis and crisis periods. The numbers in the parentheses are t-statistics. 

Following Cipollini and Galo (2010), we choose July 17, 2007 as the regime break point. Hence, we assume that the pre-crisis period extends from January 11, 

1991 to July 17, 2007, and the crisis period is from July 18, 2007 to May 23, 2011.
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Chapter 3: Measuring Equity Risk Exposures with Range-based Correlations 

 

3.1   Introduction 

Our objective in this paper is to use information extracted from the daily opening, 

closing, high, and low prices of the stocks to improve the estimation of the current 

betas and the predictions of the future betas. We create a new time-varying beta 

measure called ñrange-based betaò, which is based on the daily range-based 

volatility and covariance estimators of Rogers and Zhou (2008) for estimating 

market beta. Within this context, the range-based beta is the ratio of the range-

based covariance of stock and market to the range-based market variance. In light 

of the success of the range-based volatility estimator, it is natural to inquire 

whether the realized range beta is more efficient than the return-based beta. 

Rogers and Zhou (2008) construct an unbiased correlation estimator which is a 

quadratic function of the high, low, and closing log-price of the two assets, and 

which has the smallest Mean Squared Error (MSE) in the class of quadratic 

estimators. In addition, we improve the specification of betas by combining the 

parametric and non-parametric approaches to modelling time variation in betas. 

Since the main strengths of each approach are the most important weaknesses of 

the other, we show that a combination of the two methods leads to more accurate 

betas than those obtained from each of the two methods separately. MSE is used 

as a measure of accuracy for the beta estimation. We estimate both our new range-

based beta measure and betas extracted using traditional methodologies and 

compare their performance. Specifically, we compare our range-based betas with 

betas extracted from the conditional CAPM with time-varying betas. This 

technique estimates beta based on traditional (co)variance estimates from 

historical stock returns and takes this estimate as a forecast for the future. We also 

consider the commonly used historical rolling window beta method. In contrast to 

the historical return-based methodology that is subject to the critical assumption 

that betas are stable over time, the information in range-betas allows us to 
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construct ex ante beta predictors assuming only the beta is stable during each day. 

These range-based betas reflect current dayôs market information, and, hence, 

avoid the weakness of historical betas, which are not as responsive to changing 

market conditions. 

We analyse the constituents of the DAX index for the period 2003-2011. 

We find that the range-based beta measure yields estimates of firm-level betas 

competitive with historical betas. The use of intraday high and low prices for beta 

measurement is complicated by infrequent trading. Trading does not occur 

continuously, that is, in practice we observe transactions at irregularly spaced 

points in time (Engle, 2000). For the range-based estimators, non-trading 

introduces a bias as the observed intraday high and low prices are likely to be 

below and above their ótrueô values. Therefore, we expect the range-based beta to 

be closer to the ótrueô beta for highly liquid assets. Hence, we sort stocks into 

three portfolios according to their turnover measure. We find that the range-based 

beta approach yields betas competitive with historical betas for the portfolios 

sorted according to their turnover measure. 

 The range-based beta is appealing for the ease of its estimation. The 

construction of the range-based beta requires only the currentôs day high, low, 

closing, and opening prices. In addition, this paper is first to develop the range-

based covariance and correlation measures that can be applied for equities.  

We proceed with the following steps. First, we propose a new way to 

model range-based correlations, which are based on the range-based covariance 

and variance estimators of Rogers and Zhou (2008). Second, we estimate the 

range-based covariance and correlation measures and compare them with the 

close-to-close return-based measures. Third, we compare the range-based betas 

with the betas generated by the rolling window model and by the conditional 

CAPM with time-varying coefficients. Fifth, we perform cross-sectional analysis. 

Concluding remarks and directions for future research are presented in the final 

section.  
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3.2   A Single Factor Model 

In this section we present the underlying stock market model ï a linear factor 

model ï and its asset pricing implications and discuss the importance as well as 

ways to estimate factor betas. Our economy contains N traded assets, i = 1,..., N. 

Suppose that there is a single market factor that enters linearly in the pricing 

equation such as in the Sharpe-Lintner version of CAPM model. Under this 

model, the specification for the return of asset i is at time t: 

,itMtiitit rr eba ++=  ,,...1 Tt=    (3.1) 

where ita = (1 ï ɓi)r0 and r0 is a risk-free rate, Mtr  denotes the common factor 

market return. ite is the ñnon-systematicò risk component. The standard APT 

structure assumes constant betas, idiosyncrasies uncorrelated with the factor(s) 

and idiosyncrasies uncorrelated with each other: 

( ) ,0, =itMtrE e        ,i"    (3.2) 

         ( ) ,0, =itjtE ee        .ji ¸"    (3.3) 

The beta coefficient iɓ can be represented through the Security Characteristic 

Line (SCL). For the ease of exposition, it will be assumed that markets are 

efficient and the expected value of the returns in excess of the compensation for 

the risk is zero for all portfolios. It is also assumed that the effective risk-free rate 

does not change significantly and hence will be assumed to be zero. The resulting 

equation of the SCL is 

    itMtiit Ůrɓr += .    (3.4) 

Now, the SCL represents the relationship between the return of a given asset i at 

time t with the return of the market Mtr  and a sensitivity measure of beta iɓ. Beta 

is a sensitivity measure that describes the relationship of an assetôs return in 

reference to the return of a financial market or index. Beta is defined as 

( )
( )Mt

Mtit
i

rVar

rrCov ,
=b .    (3.5) 
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Specifically, beta measures the statistical variance or systemic risk of an asset that 

cannot be mitigated through diversification.  

3.2.1 Range-based Volatility and Correlation 

In this section we show how one can use information extracted from the daily 

opening, closing, high and low prices of the stocks to obtain range-based 

volatilities and correlations, and then use these predictors in the computations of 

beta.  

Formally, we consider two assets, where the log of the asset prices follows 

a bivariate zero drift Brownian motion, and we allow for the possibility that the 

asset returns are correlated 

  dWůdP Pt= ,    (3.6) 

  dZůdM Mt= ,    (3.7) 
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 PMtMtPtPMt ɟůůů ÖÖ= , (3.9) 

where W  and Z are zero drift Brownian Motions.
1
 P and M denote log-prices of 

assets ñPò and ñMò, respectively. Hence we can interpret dP and dM as the 

continuously compounded returns. Equations (3.6)-(3.7) describe the evolution of 

log-price processes within a time interval, 0¢¢0 TŰ . We think of this interval as 

one trading day, but it could be defined over any interval. Our model also uses a 

discrete index t for days. The parameters Ptů , Mtů , and PMtɟ  stay constant during 

the trading day t, but may vary from day to day.  

For simplicity we further assume that P and M are standard Brownian 

motions, that is 1== MtPt ůů . In this case, PMtPMt ůɟ =  during the day t. We next 

                                                      
1
 This assumption, used by various authors, is quite innocent if the data is being sampled intra 

daily, as the growth rate is negligible in comparison with fluctuations. 
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apply Theorem 1 of Rogers and Zhou (2008) where the correlation over a fixed 

time interval [0,1] PMtɟ  is defined as follows: 

( )
( )( )MtMtMtPtPtPtMtPtPMt SLHSLH

b
SSɟ -+-+

-
+=

212

1

2

1
, (3.10) 

where the constant b is equal to 386294.012log2 @- . Ű
t

Pt PH
1¢¢0

¹max  and 

Ű
Ű

Mt MH
1¢¢0

¹max  denote the high log-prices of assets P and M, Ű
t

Pt PL
1¢¢0

¹min  and 

)(min ŰML
Ű

M
1¢¢0

¹  denote the low log-prices of assets P and M, )1(PSP =  and 

)(1=MSMt  denote the close log-prices of assets P and M. Rogers and Zhou 

(2008) construct an unbiased range-based correlation estimator which is a 

quadratic function of the high, low, and closing (log-)price of the two assets, and 

which has smallest MSE. Rogers and Zhou (2008) construct various moments for 

correlation, subject to the constraint that the estimator has no bias if 101-= ,,ɟ . 

This produces a new estimator whose variance is half that of the obvious 

estimator based solely on closing prices. They also present simulation evidences 

that this advantage appears to be preserved for other values of ɟ and is partly 

robust to departures from Gaussian returns. The form of the estimator is, 

moreover, insensitive to errors produced by discrete sampling of the underlying 

Brownian motions, a problem encountered with some other range-based 

estimators. Also note that if we are trying to produce an estimate of the covariance 

matrix of more than two Brownian motions, estimating each entry by means of 

Equation (3.10), then the matrix will be of rank 2 and nonnegative definite. 

Another problem identified in the earlier literature with estimators based on high 

and low values occurs when we observe the Brownian motions discretely, at N 

equally spaced times, say we observe ( ){ }NiNiXH N ,...,:/sup)( 0=¹  and 

( ){ }NiNiXL N ,...,:/inf)( 0=¹ , and these substantially underestimate the 

supremum and overestimate the infimum. A correction is known to deal with this 

(see Broadie et al., 1997), but we see that as we only ever need to calculate 

,LH+  the discretization errors cancel out on average because of the observation 

that )(NHH-  and LL N -)(  have the same distribution, by symmetry.  
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Rogers and Zhou (2008) Theorem 1 and the proof of the Theorem 1 are 

described in Appendix A.  

We relax the assumption that the time starts at day 0, which implies that 

opening prices are not equal to 0. We also relax the standardization that P and M 

are standard Brownian motions, that is 1== MtPt ůů  during the day, the 

covariance estimator PMtů  from (3.10)  is then given by: 

( )( )
( )

( )( ),
212

1

2

1
MtMtMtMtPtPtPtPtPtMtPtPtPMt OSLHOSLH

b
OSOSů --+--+

-
+--=

          (3.11) 

where PtO  and MtO  denote opening log-prices for assets P and M, respectively. 

All other variables are defined as before.  

Based on the covariance estimator in (3.11), the variance estimator for the 

asset P is simply 

( )
( )

( )2
2

212

1

2

1
PtPtPtPtPtPt

RZ

Pt OSLH
b

OShl --+
-

+-= .  (3.12) 

Note that this estimator is a linear combination of Garman and Klass (1980) 

volatility estimator, which utilizes the open, close, high, and low prices. The 

Garman-Klass estimator GK

Pthl  is defined as 

    ( ) ( )( ) 22
383.02019.0511.0 PtPtPtPtPtPtPtPt

GK

Pt SLHLHSLHhl -----= . (3.13) 

A close-to-close volatility estimator has by definition an efficiency gain (ratio of 

estimated variance) equal to 1. Garman-Klass volatility estimator is theoretically 

7.4 times more efficient than simple close-to-close volatility estimator (see 

Appendix B for the deviation). 

Thus far, we have said little about the theoretical properties of the range-

based volatility and correlation estimators introduced by Rogers and Zhou (2008). 

One obvious point is that our variance estimator is unbiased under the same 

conditions that deliver unbiasedness of the Garman-Klass variance estimator (see 

Appendix B for the unbiasedness properties of the Garman-Klass estimator), 

because the Rogers and Zhou (2008) and the Garman-Klass variance estimators 
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are linear combinations. Namely, for the Wiener process defined by Equation 

(3.6)-(3.9), the Garman-Klass variance estimator is unbiased only if the drift is 

equal to zero. In general, [ ] 2ůhlE PMt ¸  if 0̧m . This is a shortcoming of the 

Garman-Klass variance estimator. Conversion to correlation, however, will 

introduce bias due to the nonlinearity of the transformation. A similarly related 

point is that the estimated variance-covariance matrix SĔ, in general, is not 

guaranteed to be positive definite. However, as Brandt and Diebold (2006) point 

out, positive definiteness is rarely violated in practice. However, we are not 

interested in the theoretical properties of the range-based volatility and correlation 

estimates under abstract conditions surely violated in practice, but rather on their 

performance in realistic situations involving small samples, discrete sampling, and 

market microstructure noise. As we argued previously, we have reasons to suspect 

the good performance of the range-based approach, because of both its high 

efficiency due to the use of the information in the intraday sample path and its 

robustness to microstructure noise.  

Finally, from (3.9) we can express the correlation PMtɟ  and plugging the 

value for PMtů  (3.11) and RZ

Pthl  (3.12), the range-based correlation is defined as 

( )( )
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          (3.14) 

where 386294.012log2 @-=b  and the rest of the variables is in the usual 

notation.  

3.3   Empirical Results 

3.3.1 Data Description 

We consider 21 individual stocks in the DAX index (constituents in October 

2011) obtained from Datastream, where the data consists of high, low, opening 

and closing transaction prices sampled at the daily frequency. For all the stocks 
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the sample period runs from January 2, 2003, to September 30, 2011. Table 3.1 

reports some sample statistics on the distribution of the 21 ranges of individual 

stocks and the DAX index based on daily frequency, in addition to the close-to-

open squared return (Table 3.2). The range data exhibit significant departure from 

the normal distribution for most cases. Interestingly, this departure is smaller 

compared with return data. The most volatile stocks in the sample are 

BEIERSDORF and VOLKSWAGEN VZ, whereas the least volatile are E.ON N 

and ADIDAS N. 
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Table 3.1. Summary statistics of the range-based volatility measure  

Name Mean Skewness Kurtosis Std. Dev. Max 

Components for DAX      

ADIDAS N 0.00029 5.924 52.948 0.00055 0.0078 

BAYER N 0.00044 16.201 350.263 0.00174 0.0484 

BEIERSDORF 0.00040 46.514 2,183.465 0.00608 0.2858 

BMW 0.00042 10.411 159.845 0.00105 0.0217 

COMMERZBANK 0.00078 9.483 139.557 0.00207 0.0443 

DAIMLER N 0.00047 21.180 643.881 0.00148 0.0506 

DEUTSCHE BANK N 0.00051 7.021 73.009 0.00125 0.0192 

E.ON N 0.00030 7.157 72.151 0.00064 0.0085 

FRESENIUS MED CARE 0.00026 26.284 941.423 0.00081 0.0309 

FRESENIUS 0.00043 4.385 30.007 0.00070 0.0079 

HEIDELBERGCEMENT 0.00070 6.802 76.858 0.00148 0.0268 

HENKEL VZ 0.00028 22.071 671.881 0.00085 0.0294 

LINDE 0.00030 19.817 592.187 0.00082 0.0276 

MAN 0.00055 8.335 108.563 0.00126 0.0247 

MERCK 0.00036 13.029 295.675 0.00078 0.0219 

MUNICHRE 0.00036 11.570 231.751 0.00100 0.0263 

RWE 0.00028 14.838 321.166 0.00078 0.0212 

K+S N 0.00057 7.570 91.902 0.00131 0.0244 

SIEMENS N 0.00038 38.298 1,660.2 0.00212 0.0931 

THYSSENKRUPP 0.00049 5.1367 40.553 0.00091 0.0108 

VOLKSWAGEN VZ 0.00070 19.085 523.684 0.00250 0.0803 

DAX Index  0.000018 10.264 171.632 0.000436 0.01018 

Notes: The Table reports the summary statistics for the range data for the sample January 2003 to 

September 2011, including altogether 2,228 observations. We report the sample mean, skewness, 

kurtosis, standard deviation, minimum, and maximum for the range-based volatility. The range-

based volatility estimator is defined in Equation (3.12).  
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Table 3.2. Summary statistics of the return-based (close-to-open) volatility measure 

Name Mean Skewness Kurtosis Std. Dev. Max 

Components for DAX      

ADIDAS N 0.0011 27.798 1,100.853 0.034 1.363 

BAYER N 0.0004 1.169 33.900 0.022 0.337 

BEIERSDORF 0.0006 27.159 1068.206 0.028 1.092 

BMW 0.0003 0.084 7.656 0.021 0.138 

COMMERZBANK -0.0006 -0.480 12.796 0.032 0.206 

DAIMLER N 0.0001 0.221 10.973 0.023 0.194 

DEUTSCHE BANK N -0.0002 0.215 13.168 0.027 0.212 

E.ON N 0.0005 0.604 46.286 0.022 0.312 

FRESENIUS MED CARE 0.0012 27.612 1090.267 0.027 1.083 

FRESENIUS 0.0014 22.483 828.939 0.030 1.110 

HEIDELBERGCEMENT -0.0001 -0.031 14.256 0.028 0.188 

HENKEL VZ 0.0009 25.341 971.319 0.029 1.104 

LINDE 0.0005 0.298 8.859 0.019 0.155 

MAN 0.0007 0.245 44.681 0.028 0.421 

MERCK 0.0005 -0.390 9.133 0.019 0.101 

MUNICHRE 0.0000 0.004 10.369 0.020 0.135 

RWE 0.0002 0.152 12.012 0.018 0.155 

K+S N 0.0013 -0.145 7.887 0.026 0.150 

SIEMENS N 0.0002 -0.327 16.076 0.022 0.216 

THYSSENKRUPP 0.0004 -0.174 82.440 0.029 0.489 

VOLKSWAGEN VZ 0.0007 -0.546 12.504 0.026 0.180 

DAX Index  0.0003 0.0004 9.045 0.015 0.108 

Notes: The Table reports the summary statistics for the log close-to-open returns for the sample 

January 2003 to September 2011, including altogether 2,228 observations. We report the sample 

mean, skewness, kurtosis, standard deviation, minimum, and maximum for the log close-to-close 

returns.  

In Figures 3.1 and 3.2, we first provide a time-series plot of the daily 

realized market variance calculated using the return-based (close-to-open) and the 
















