N
ol

NUI MAYNOOTH

Ollscoil na hEireann M4 Nuad

RANGE-BASED RISK ESTIMATION IN EURO AREA COUNTRIES

by

Lena Golubovskaj8.Fin.B. M.Fin.
National University of Ireland Maynooth

A thesis submitted in the fulfilment of the requirements for the degree of
Doctor of Philosophy (Ph.D) in tHeepartment of Economics, Finance and
Accounting, National University of Ireland Maynooth, Maynooth, Co. Kildare

April 2024

Supervised by Gregory Connor, Professor of Finance, Department of Economics,
Finance and Accounting, National University of émedl, Maynooth.



Table of Contents

S o T T S SRR 2
LISt Of TaDIES. ...ttt mnne e 7
010010 4TV 2 PSP 1
ACKNOWIEAGEMENLS......eiiiiiiiiei e e e e e e e e eeee s e e e e e e e e e e e e eeeeaeeeannans 1
Conferences and PUDIICAtIONS............uuuuiiiiiiiiieeniiiiiiiiiieeeeeee e 12
Chapter 1: INtroOdUCHION...........uueiiiiiis e eeeer s e e e e e e e 13
1.1 Rangebased VOIatility..........cccuurrumiiiieiiiieeeiiiiiii e 13
1.2 Volatility SPIIOVEN..........uiiiiiiiiiiiiiee e 14
1.3 Returrbased, Rangbased, and OptioAmplied Volatility Estimates... 15
1.4 Rangérased COVArianCe.........ccccuuuuuuuiiriieeeniiiiiiineeeseee e e e e e eneereeeeeees 18
1.5 RanNgeased Bet@........coouvvieiiiiiiiiiiie e 19
1.6 MacroeConNOMIC RISK...........uuuuiiiuiiiiiireeiiiiirrre e e errn e 21
Chapter 2Rangebased Analysis of Volatility Spillovers in European Financial
Y= T ] £ USRS 23
P20 R |1 0T ¥ Tox 1 o] o SRR 23
2.2 A Rangeébased Volatility Model: Theoretical Framework.................. 24
2.2.1 Range as a Volatility ProxXy...........cooouoeoimmimmmneesiivieiieeeee s 24
2.2.2 A Linear Dynamic Model of Volatility anixpected Range........... 25
2.2.3 Maximum Likelihood under Intradaily Brownian Motion............. 27
2.2.4 Estimation under an Alternative Distributional Assumption on Realized
RANGE ... 28
2.2.5 Spillover and Leverage EffeCtS.......cccccooviiiiiiiiccce 29
2.3 Simulation Evidencen the Rangdased Volatility Estimators............ 30
2.4 Data and Descriptive StatiStiCS.........uvuuiiiiiii e 32
2.4.1 Comparison to Cloge-close and Opeto-close Standard DeviatioB6
2.5 Estimation and Testing Giversamgle Regime...........cccccceeeeeeeivieecnnnns 37
2.5.1 Estimation of the Univariate Models of Dynamic Range............. 37
2.5.2 Analyzing the Distributional Characteristics of Daily Range....... 38
2.5.3 Leverage Effects and Volatility Spillovers Across Markets......... 46
2.6 Testing for a Regime Shift During the Financial Crisis..................... a7
2.7 CONCIUSION.....iiiiiiiiiiiiiiieieeeeee e 0ee A9


file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230287
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230288
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230289
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230290
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230291
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230292
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230293
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230294
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230295
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230296
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230297
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230298
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230299
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230299
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230300
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230301
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230302
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230303
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230304
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230305
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230305
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230306
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230307
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230308
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230309
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230310
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230311
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230312
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230313
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230314
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230315

Chapter 3Measuring Equity Risk Exposures with Rarggsed Correlations. 53

I 0 A [ 011 o T ¥ Tod 1] o PR TPPPRPR 53
3.2 A Single Factor MOEL..............uuuuuiiiiiiiecee e ereee 55
3.2.1 Rangdased Volatility and Correlation................ooooeiieeeeeeeeeennn 56
3.3 Empirical RESUILS.........coooriiiiiiiiceee e 59
3.3. 1 Data DESOLION .......uuiiiiiiiiiiiieiee ettt e e e e e e e e e e e 59
3.3.2Unconditional Correlation EStimates...........cccceevviieeieeeeciiiiinnneennnn 63
3.3.3 Rangemplied vs. Traditional Betas..............ceeveiiiiiiiicemiiiiiiiineen. 67
3.4.4 POrtfolio SOMING.....ccoeeeieeeeeeiiiieieieeeee e eeeeeeeees 70
3.3.5 Mean Squared EIMQr...........ccooiuuiiiiiimemniiiiie e enereeeeeeeees 73
3.3.6 Bias Corrected Ranggased Correlations...........ccccevvvvvvevvieeneeeenn. 83
3.3.7 RODBUSINGSCNECKS. .....uiiiiiiiieee et e 88
G 0 @ o o3 11 0] o =R 93
Chapter 4: Relative Performance of Optiamplied and Rangbased Volatility
Estimates in EUro Area COUNIIES.........uviiiiiiiiiiiei e 94
72 300 R 1 1 0T (3o 1 o o 1SRRI 94
4.2 Identification and EStimatiQn.................uuueiiiicceeeeiiiiiiiine e e 95
4.3 Construction of Volatility INdeXeS.........ccceeviiiiiiiiiiieee e, 97
4.3.1 Old Volatility INdEXES........ccceeeiiiiiiieiiieeee e e 98
4.3.2 New MethodolOgy.........covvvriiiiiiiiiimeeeee e 98
4.4 EMPINCAIRESUILS.........cccoiiiiieeeeeeee e 100
4.4.1 Data DESCIIPLION........cooiieeeeiieiii e erenra s 100
4.4.2 Statistical Properties of the Volatility Indexes........................... 102
4.4.3 The Information Content of Implied Volatility..................ccc....... 111
4.4.4 Volatility Transmission Mechanism from Volatility Measures....121
4.4.5 Variance RiSK Premiliml.........coovviiieiiiiiiiccceeeeeeeeeeeeeeeeeeeeen 128
4.5 CONCIUSIONS. .....uuiiiiiiiiiiiiiiiiiit ettt e e e e e e e e e e e s st e e e e e e e e e e e e e e e e e aaanns 133
Chapter 5: Content Analysis of the IMF Article IV Staff Reports for Euro Area
COUNTIIES .ttt et e e e e e e e et e anaes s s e e e e e e e e aeeeeeeeeesebnnnneeeeeeeees 135
5.1 INtrOUCHION. ....cciiiiiiiiiiiii e e e e e e e e e e 135
5.2 BaCKgrOUNG.........covuiiiiiiiii e e e e e e e e eanes 136
5.2.1 Was the Miracl dciesa....0.Mi.r.a.gk8® ?
5.2.2Case Studies Fiscal Policy and External Imbalance.................. 140


file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230316
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230317
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230318
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230319
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230320
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230321
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230322
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230323
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230324
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230325
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230326
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230327
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230328
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230329
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230329
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230330
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230331
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230332
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230333
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230334
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230335
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230336
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230337
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230338
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230339
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230340
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230341
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230342
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230342
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230343
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230344
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230345
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230346

5.2.3The Role Of the IME........ e 143

5.3 Measuring CommuNICALION...........cceeeeeiieiiiiieeeie e e e ee e e 145
5.3.1 6Anecdu.a.t.al..b..Evi.den.c.e........145
5.3.2 Data and Summary StatiStiCS.........oeeveeiiiiiiiiienen e 146

5.4 Solutionsand Recommendations...............uuvvvreemmicnreeeeeeeeeneninnns 158

I 0] [od [1E] o] o 1RO 160

Concluding REMAIKS ......cciiiiiiieeeeie e 161
] (=] (=T o PRSP 165
APPENUICES. ...ttt e 175


file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230347
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230348
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230349
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230350
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230351
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230352
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230353
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230354
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380230355

List of Figures

Figure 2.1 Empirical and theoretical densities of range innovations using the Feller

di stribution model: Franceééeéeéeédléeécéecéece:
Figure 2.2. Empirical and theoretical densities of range innovations using the Feller

di stribution model: Germanyeééeéeeeedléeééééce
Figure 2.3. Empirical and theoretical densities of range innovations using the Feller

di stribution model: the Netherl andlséééeé
Figure 2.4. Empirical and theoretical densities of rangevations using the Feller

,,,,,,,,,,,,,,

di stribution model: Spainééééeééecéedeéeééee

di stribution model: USAééeéeééeéeéeédxeceéece:
Figure 2.6 Empirical andheoretical distributions of range innovations using the

Gamma distribution model : Franceédxeéeéeéeee
Figure 2.7. Empirical and theoretical distributions of range innovations using the

Gamma distribution model: Germany43¢éééééé
Figure 2.8. Empirical and theoretical distributions of range innovations using the

Gamma distribution model: the Net#B3erl and:
Figure 2.9. Empirical and theoretical distributions of range innovations using the

Gamma di stri buté éoéné éntoédécd & é eSépéaéd enéee .43

Figure 2.10. Empirical and theoretical distributions of range innovations using the
Gamma distribution model: USAééeéeddeeééee
Figure 3. 1. Mar ket I ndex volatili B3y base:
Figure 3.2. Markelndex volatility calculated usingrandea s ed appr6B8aché é é
Figure 3.3. Realized daily average rathgesed and returbased correlation amongst

the individual stocks with the market index,ene@ ar r ol | i ng aVer ageé
Figure 3.4. Average betas@fDl1 DAS Neéeééeééeéecéeéeécéé&de.
Figure 3.5. Average betas of BMWeéeeéxéeéeéeée
Figure 3.6. Average betas of VOLKBWAGEN
Figure 3.7. Average betas of the V9ow bet:

Figure3.8 Average betas of the medi um79%eta p

Figure 3.9. Average betas of the BGO gh bet
Figure 3.10. Average MSE of | ow b8 a por i
Figure 3.11. Average MSE of medi uB0 beta |
Figure 3.12. Average MSE of high Bleta pol
Figure 3.13. Bias correctionéééeéesrxeéeée
Figure 4.1. Implied and realized ranrlgased volatility for the DJ EURO STOXX 50

indexééééeééeéeéeéeéeéeée. . . .103

Figure 4.2. Changes in implied and realized raogged volatility for the DJ EURO
STOXX 50

///////////////////////////

i ndexéééééeééécéeécééeeecececedceeéecee. ééelnd



Figure 4.3. The percentage difference betweaglied and realized rangeased

volatility, Franceéeéeééeéeéeeéeéeéeldleéeécecé
Figure 4.4. The percentage difference between implied and realizedhaser:
volatility, Germanyeéeéeéeéeceéeéeéeldleéeéceé
Figure 4.5. The percentage difference betwiegplied and realized rangemsed
volatility, the Netherl andséééééélédxeeeeéeé
Figure 4.6. The percentage difference between implied and realizedoasep:
volatility, the DJ EURO STOXX 500182 é¢é é ¢ é

Figure 4.7. The percentage dréace between implied and realized rabhgsed

,,,,,,,,,,,,,,,,,,,,,,,,,,

i mplied volatility, Franceeééeééeéeclecceéeéeée
Figure 4.9. Response iralized rangdased volatility due to one unit shock to

i mplied volatility, Germanyeéeéeéééélereéceccecee:
Figure 4.10. Response in realized rabgsed volatility due to one unit shock to

i mplied volatility, the Netherl|l anl@’s ééééeé:
Figure 4.11. Response in realized rabgsed volatility due to one unit shock to

i mplied volatility, USAééeéeééeééeecélereeéeée

Figure 4.12. The time series of excess returns from shorthugB®@ariance swaps

Figure 4.13. The time series of excess returns from shorthugg®@ariance swaps

on the DAX and holding the contral82 to m;
Figure 4.14. The time series of excess returns from shorthtigug@ariance saps

on the AEX and holding the contral2 to m;
Figure 4.15. The time series of excess returns from shorthugg®@ariance swaps

on the DJ EURO STOXX 50 I ndex andi3hol di n
Figure 4.16. The time serie$ excess returns from shorting-8ay variance swaps

on the S&P 500 index and holding 18Bhe coni
Figure 5.1. Averag@VARNINGscores for the euro area: Staff Reports, 2006

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr



List of Tables

Table 2.1 Monte Carlo experiment for the rangeplied standard deviation......31

Table 2.2. Simulated estimation standdrd vi at i onééeée éeé é e .32 éc¢é.
Table 2.3. Descriptive statisééé&ééd&3df the
Table 2.4. Crosautocorrelation matrices for five national stock market indices daily
rangeeééceceéeee@eéceeceéeecéeéeeée. .. 35

Table 2.5. Sanlp variances of clost-close, open to close, and cleseopen
returnsécécééee@ééeecééeeéeecééeecéeéeecéeée 36

Table 2.6. Maximum likelihood estimation of a univariate dynamic model of daily

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

forecasting models of daily rangedleéceéééeé:q
Table 2.8. Maximum likelihood estimation of a univariate dynamic model of daily

range with additionalretuth as ed expl anatory vaeiddbl eséé
Table 2.9. Singlequation maximum likelihood estimation of multivariate models of
daily rangeééeééeéécécécécééeéeéeébéécéddrececé

Table 2.10. Prerisis and crisis period descriptive statistics of the daily ranges

Table 2.11. Extended model estimat{smgle-equation ML) using a Gamma

di stributionéeéééééceéeéeéeéeéeécecétbleececéce
Table 2.12. Extended model estimation (sirggation ML) using a Gamma

distribution overthepre r i si s peri od and overé.bhe cri:
Table 3.1. Summary dtatics of therangp ased vol ati |l i t.y6lmeasur
Table 3.2. Summary statistics of the retbased (clos¢o-open) volatility

rrrrrrrrrrrrrrrrrrrrrrrrrrr

//////

Table 3.3. Rangbased andretuthas ed correl ati on®é@éeeéeeéecéecé

Table3. 4. Average beta estimateséécéérééeééceceéecé
Table 3.5. The mean expected betas and the realized returns for tkerbexda
portfolioséééeééeééeéeéeéeéecéeécéceégxrecée
Table 3. 6. MSE and MAE of DAX con34titueni
Table3.7.Lowbea portfoli oééééééécéceecécéecécéméecec
Table 3.8. Medium beta portfoli cdé@&7eeéeééeéé
Table 3.9. High beta portfolioééédBeéeeéeéeéé
Table 3.10. Turnover sorted portéf.81 i oséé

Table 3.11. Monte Carlo experiment foetrangeb a s ed bet aé &é81é é é
Table 3.12. Monte Carlo experiment fortherabga s ed cor r e léa8i ons é é

,,,,,,

Table 3.13. Bias correctedrangea s ed corr el ati ons &éeg&yééécecee
Table 3.14. The mean expected betas and the realized returnstietabkerted

portfolios, 60 day rolling windoéwB8%ééeeédé:
Table 3.15. Low beta portfolioée&e@leéeééeeée

rrrrr

Table 3.16. Medium beta portfoli ®@60ééécéeeé

rrrrr

Table 3.17. High beta portfolioeéBlééeééecée



,,,,,,

Table 3.18. Turnoer sorted portfoliosééeééc®ééecéée
Table 4.1. Descriptive statisticsforhe v ol at il ity i ndedf6esééeéé

//////

Table 4.2. Descriptive statistics fortherafiga s ed v ol at i | iétlG7ré é é é é é
Table 4.3. Volatility correlation®xeéeééceeée
Table 4.4. Volatilitycrosg or r el ati onséééeéeeéeéeeeerie eccee
Table 4.5. Forecast regression éc&flla mpl i e
Table 4.6. Forecast regression of historical rdmges e d v ol at i€l1LlT y é é é é ¢
Table 4.7. Forecast regressionmpiied and historical rangeased volatilitg . 118

Table 4.8. Forecast regression ®&f120 og i m
Table 4.9. Forecast regression of historical ramges ed v ol até 12120y (i n
Table 4.10. Forecast regression of imphked historical rangbased volatility (in

Table 4.11. First order VARéeéeééecgledeeééee
Table 4.12. The average variance.l180 sk pr
Table 4.13. The sample average of the reakzeaxss returns and the annualized

i nformation ratioéééeeééecééeceéceeél8leécécececé
Table 5.1. Real GDP growth in eurl87 areacée:
Table 5.2. General government debt (general government gross debt, % of

Table 5.3. Concerns/risk factor®.ld6dent i f i
Table 5.4. Significance MVARNINGfor U.S. relative to the population meanl48

Table 5.5. Executive Board Assessment and Staff Report tone measures sample mean
comparisontest eur o areaéééééeceeceeecéeeeeé.drde

Table 5.6 WARNINGmeasure for EMU: Staff Reports and Executive Board

Table 5.7. DidWARNINGscore change over time for EMU?.............c.e. e 153

Table 5.8. Significance MARNINGfor Spain relative to the euro area

//////////////////////////

rrrrrrrrrrrrrrrrrrrrrrrrrr

Table 5.10. The relationship betweARNINGs c or es and countri es:¢

rrrrrrrrrrrrrrrrrrrrrrrr

conditionséééééeécééecéeéecéecéceececéeeeeeeeelexecé


file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380234488
file:///C:/Users/Lenucka/Documents/Maynooth/Dissertation/Final/INTRO_chapter_FINALPRINT_CORRECTED6.docx%23_Toc380234488

Summary

This dissertation considers a range of topics on the use of-basgd risk
estimators for financial markets (with the exception of Chapter 5 discussed below).
Chapter 1 provides an introduction to the existing literature and the research
objectives of tk dissertation.

Chapter 2 uses time series of daily higiv ranges of national equity
market indices to analyse daily volatility dynamics and volatility spillover across
four European markets. Chapter 2 is based on the joint research with Gregory
Connor.We develop a dynamic linear model of expected daily range which is a
variant of Choubés conditional autoregres
not uniform, rangdased volatility spillovers. During the crisis period (after July
2007) we find sigificant increases in daily range, increases in contemporaneous
correlation, and increases in the influence of prevatays US market range on the
conditional expected range of these European markets. A galistributionbased
model of realized daily rangéts more closely than one based upon a Feller
distribution, but it sacrifices the link to a specific distribution for underlying
returns.

In Chapter 3 we use information on the daily opening, close, high, and low
prices of individual stocks to estimatangebased correlation and to construct a
new estimator of market bet#&setaWe wheéeate
based on the daily rangmsed volatility and covariance estimators of Rogers and
Zhou (2008). These randgmsed betas reflect thercwm e n t d-day prce i nt r a
movements. They avoid a weakness of return based betas, which typically are based
on closeto-close returns. Our approach yields competitive estimates compared with
traditional methodologies, and outperforms other methodologie=n analysing
highly liquid assets.

Chapter 4 studies the relationship between optimpdied and realized
rangebased volatility estimates for Euro area countries. When both implied
volatility and historical rangbased volatility are used to forecast realized range
based volatility, we fid that implied volatility outperforms historical rangased

volatility. We also find that the stochastic volatility is priced with a negative market



price of risk. The volatility implied from option prices is higher than the realized
rangebased volatily under the objective measure due to investor risk aversion.
Chapter 5 considers financial market risk from a different perspective.
Chapter 5 analyses the tone and information content of the two external policy
reports of the Internal Monetary Fund (IMf)e IMF Article IV Staff Reports and
Executive Board Assessments, for Euro area countries. In particular, we create a
tone measure denotdfARNING based on the existing DICTION 5.0 Hardship
dictionary. We find that in the ruup to the current credit ises, average
WARNINGtone levels of Staff Reports for Slovenia, Luxembourg, Greece, and
Malta are one standard deviation above the EMU sample mean; and for Spain and
Belgium, they are one standard deviation below the mean value. Furthermore, on
average fo Staff Reports over the period 202607, there are insignificant
di fferences between the EMU sampl e mean
also find the presence of a significantly increased lev8/ARNINGtone in 2006
for the IMF Article IV StaffReports. There is also a systematic bia8VéfRNING
scores for Executive Board Assessments vel84RNINGscores for the Staff

Reports.
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Chapter 1: Introduction

1.1 Rangebased Volatility

In finance, volatility is a measure of the price variation of a financial instrument
over time. Volatility plays an important role in financial economics and is a
fundamental concept in several sulgemmcluding asset allocation, market timing,
portfolio risk management and the pricing of assets and derivatives.

Historical volatility is computed as the standard deviation of daily returns
within a certain period, say two months. One implicitly assuthasthe volatility
IS a constant within two months. However, it is unrealistic to assume that the
volatility of asset return remains constant during a long period. Therefore, the
volatility estimated with the classical estimator is essentially a meadutiee
average true volatility over the specified period.

Besides estimating volatility using asset returns, it is also possible to use the
range based approach as a measure of return volatility. The daifohighnge is
defined as the log of the ratad the intradaily high and low prices of the national
market index.

In an early application, Mandelbrot (1971) employed the range to test the
existence of longerm dependence in asset prices. The widespread application of
the range in the context of fincial volatility and in particular to the estimation of
volatilities started from the early 1980s, e.g., Garman and Klass (1980), Beckers
(1983), Rogers and Satchell (1991). Parkinson (1980) notes that the log price range
over an interval potentially gigemore information regarding volatility than the log
difference between two preselected points such as the beginning and end prices.
This is due to the maxmin operator implicit in its definition (see Equation (2.1) in
Chapter 2) which embodies informati from the full set of realized daily prices.

For more extensive discussion on the properties of the range see Alizadeh et al.
(2002).
Recent studies have shown that the ramgged measure of volatility is

often superior to traditional volatility estinmas, e.g., Brunetti and Lildholdt
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(2002), Andersen et al. (2003b), McAleer and Medeiros (2008). Suppose, as is true

for many European indices, the econometrician only has data on the daily open,
close, high and low. The daily return (log difference betwéen d ay 0 s and
yesterdayobés <cl ose) uses informatlewon <cont
range implicitly uses information from all trade prices during the day. Thus, a daily

return is often less informative about what happened during the day theamgee

As noted by Chou (2005), Chou et al. (2009), on a turbulent day with intraday
drops and recoveries, the daily return may be near zero, while the daily price range

will reflect the high intraday price fluctuations. Shu and Zhang (2003) provide
relative performance of different rangpased volatility estimators and find that

range estimators perform very well when asset prices follow a continuous
Brownian motion. Parkinson (1980) observes a theoretical relative efficiency gain

(ratio of estimation vaances) from using sample average daily range to estimate

return variance (rather than using daily sample return variance) of approximately 5.
Garman and Klass (1980) report that their rabggsed variance estimator has a

relative efficiency of 7:4 comparetb daily sample variance. Andersen and
Bollerslev (1998) find that the daily range has approximately the same information
content as sampling intradaily returns every four hours. Engle and Gallo (2006)

have shown that the daily range has good explang@mwmer in predicting future

values of realized variance.

Daily range can be interpreted as the maximum loss, that is, the negative of
the minimum possible realized log return, on a one unit intradaily trade. If the high
price occurs before the low price thg the day, then the trade is seily rather
than buysell; this is interpreted as the maximum loss on a unit Sadet
established and closed during the day. Maximum intraday loss is quite important in
a trading environment, hence daily range has tirelevance for portfolio risk
management, in addition to its usefulness as an indirect measure of intradaily

volatility.

1.2 Volatility Spillover

Recent developments in financial markets such as for instance the bursting of the IT

bubble, the US subprem mort gage <crisis and Europeod:
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crisis have shifted focus on the interdependence level of financial markets, and
volatility spillovers.

The empirical literature studying volatility spillover is extensive, typically
based on daily cketo-close returns, e.g., Yang and Doong (2004), Lee (2006),
Koulakiotis et al. (2009), Diebold and Yilmaz (2009), McMillan and Speight
(2010). Koutmos and Booth (1995) examine the spillover effects among the New
York, Tokyo and London stock markets ammbw that the transmission of volatility
is asymmetric and is more pronounced when the news is bad and coming from
either the US or UK market. Kanas (1998) examines volatility transmission across
the London, Paris and Frankfurt stock markets and concludesreéturns and
innovations spillovers are higher during the pastsh time. Billio and Pelizzon
(2003) obtain evidence that volatility spillovers from the world index to European
equity indices increased after the introduction of European Monetary Baete
(2005) and Christiansen (2007) investigate volatility spillover from the US and
aggregate European asset markets into European national asset markets,
incorporating bond markets into analysis. They find evidence of volatility spillover
from the aggegate European and US markets to local European markets.

The research literature studying volatility spillover using the range volatility
measure is limited. Chou et al. (2010) document that the volatility spillover exists
between the European markets otlex period 2002010, whereas the countries

are independent over the pastbprime period.

1.3 Returnbased, Rang®éased, and Optionsnplied Volatility Estimates

Merton (1980) notes that the variance of the returns on an asset over an extended
period oftime can be estimated with high precision if during that period a sufficient
number of sufperiod returns is available. Because the squared mean return
converges to zero as the sampling frequency increases, the variance of the returns
over an extended ped can be calculated by summing the squaredpsuniod

returns and ignoring the mean return. This is what today is called the concept of
realized volatility and this term is interchangeably used with realized variance. In
the context of high frequency @atestimating the realized volatility is complicated

by the microstructure effects such as the-ds# bounce which can significantly
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bias the estimator upward (Alizadeh et al., 2002). Second, we should expect that the
estimates made will not show mucheartemporal stability (in view of the well
known profile of intraday trading activity). Indeed, the work of Barndbliflsen

et al. (2009) confirms this, showing estimates of volatility which vary very
substantially from day to day. Third, we have to hanalhuge amount of data,
while this is not in itself a problem, it is reasonable to ask whether the effort
(human and computer) is worth the goal and, indeed, whether the additional effort
will actually help toward the goalhe intradaily rangéased voltlity measure is

also considered as a proxy of the realized volatility. As it was suggested by Brandt
and Diebold (2006) the range is not affected by market microstructure noise. The
estimator requires the knowledge of prices within a day and thereddi@mally

high frequency estimator.

The volatility implied by option pric
future return volatility over the remaining life of this option. Under a rational
expectations assumption, the market uses all the informataifalale to form its
expectations about future volatility, and hence the market option price reveals the
mar ket 0s true vol at | if the yarket gst affimentthe . Furt
mar k et 0 s theeimplied malatiligy is the best possibléorecast given the
currently available informatiarThat is all information necessary to explain future
realized volatility generated by all other explanatory variables in the market
information set should be subsumed in the implied volatilitye hypotlesis that
implied volatility is an efficient forecast of the subsequently realized volatility has
been the subject of many empirical studies.

Early papers studying the relative performance of optiondied and the
future realized volatility find that #hvolatility inferred from the option markets is a
biased predictor of stock return volatility. To illustrate, Canina and Figlewski
(1993) found that the implied volatility from S&P 100 index options is a poor
forecast for the subsequent realized volatitif the underlying index. In contrast,
Day and Lewis (1992), Lamoureux and Lastrapes (1993), Jorion (1995) and
Fleming (1998) report evidence supporting the hypothesis that implied volatility
has predictive power for future volatility. They also find timaplied volatility is a

biased forecast for future realized volatility.

16



Christensen and Prabhala (1998) and Christensen and Strunk (2002) first
note that exante implied volatility in fact is an unbiased and efficient forecast of
ex-post volatility afterthe 1987 stock market crash, while they point to large bias
before the 1987 crash. Authors also refuted their results by showing that the
weakness of the optionsiplied volatility in future volatility prediction is mainly
resulted from the methodologicaisues like overlapping sample and mismatched
maturities (options with longer expiration are used to predict day/week ahead
realized volatilities).

However, early research on the information content of opiopsed
volatility focuses on the BlaeBcholes implied volatility, and fails to incorporate
information contained in other options. In addition, tests based on the-Black
Scholes implied volattly are joint tests of market efficiency and the Bl&dholes
model. The results are thus potentially contaminated with additional measurement
errors due to model misspecification.

A strikingly simple method to extract volatilities from options across al
strike prices, moddree implied volatility was introduced by Demeterfi et al.
(1999). The modeiree implied volatility measure can be derived directly from a
comprehensive crossection of European put and call options with strikes spanning
the full range of possible values for the underlying asset at option expiry. Recent
research has confirmed that this pricing relationship is robust and remains
approximately valid for a broad class of relevant return generating processes,
including jumpdiffusive senimartingales models. Unlike the traditional concept,
the modelfree implied volatilities are computed from option prices without the use
of any particular optiopricing model and it is derived from savbitrage
conditions and the martingale measure (Denfieet al., 1999 Jiang and Tian,
2004; Lynch and Panigirtzoglou, 2003nformational content of option implied
volatility in the subsequent research is analysed using the firedaineasure. For
instance, paper by Jiang and Tian (2004).

From the theaatical point of view, the moddtee implied volatility aims to
measure the expected integrated variance, or, more generally, return variation, over
the coming month, evaluated under thecatled riskneutral, or pricing @),

measure. Since volatility istochastic, the moddéiee implied volatility is not a
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pure volatility forecast for the underlying asset but rather bundles this forecast with
market pricing of the uncertainty surrounding the forecast. This implies that, in
general, implied volatilities W include premia compensating for the systematic
risk associated with the exposure to equigex volatility. In addition, the
volatility index will rise in response to a perceived increase in future volatility and
vice versa, all else equal. As a rastiie modelree implied volatility index should

be strongly correlated with future realized volatility.

1.4 Rangebased Covariance

The covariance of assets is important for the computation of the prices of
derivatives written on many underlying prodsictThe traditional method of
estimating the covariance between different assets assumes that the daily log
returns are i.i.d. multivariate Gaussian variables and produces an unbiased
estimator of the covariance matrix. Estimating the covariance betweenenif
assets using the rangased methodology is quite a new concept. For instance,
Brandt and Diebold (2006), Brunetti and Lildholdt (2002) work with foreign
exchange data, where the availability of data on the cross rates means that one is
able to obseve highs and lows of linear combinations of the log asset prices,
allowing one to reduce to existing univariate methodology by polarization.
However, such an approach would be impossible if assets were equities, since we
do not have information on the hig and lows of linear combinations of the log
asset prices (unless full tick data is available).

In Chapter 3 we develop the raAgased covariance measure that can be
applied to equities. We employ Rogers and Zhou (2008) approach of estimating the
covariance of linear combination of the two log prices based on the daily opening,
closing, high, and low prices of each. The daily rabgsed covariance estimator
has attractive properties such as the relatively low variance of the-bangd
covariance estiator. Realized covariances are unaffected byaklidbounce under

the assumption that bid and ask transactions occur independently across assets.
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1.5 Rangebased Beta

The capital asset pricing model (CAPM) due to Sharpe (1964) and L{i9e5)
relatesthe expected return on an asset to its systematic market risitaor This
beta is the sensitivity of the asset return to the returth@market portfolio. It is
defined as the covariance of an assetos
the variation of the market returns. Specifically, beta measures the portion of an
assetods statistical v ar i a& niceesificatibnaof a c ann o
portfolio composed of many risky assets, or the market portfolio. Beta is used by
financial economists and practitioners to identify mispricings of a stock, to
calculate the cost of capital and to evaluate the performance of managers

A number of empirical studies (e.g., Fama and French, 1992, 1993, 1996;
Choudhry, 2002, 2004) have suggested that a corstamtCAPM is unable to
satisfactory explain the crosgction of average returns on equities and the market
to capture dynamics volatility. By constant, it is meant that betas are calculated
on a set periothy-period basis, as oppose to a continuous evolution. Specifically,
Adrian and Franzoni (2009) argue that model without #8welving betas fail to
capture investor characigtics and may lead to inaccurate estimates of the true
underlying beta. Following this criticism, multiple timrarying beta models were
proposed (e.g., Campbell and Voulteenaho, 2004; Andersen et al., 2005; Petkova
and Zhang, 2005; Lewellen and Nagelp@0and Ang and Chen, 2007). Some of
these studies use a parametric approach proposed by Shanken (1990), in which the
variation in betas is modelled as a linear function of conditioning variables. Early
parametric approaches include the multivariate GARf@rhework (Bollerslev et
al ., 1988) and the instrument al variabl
1989). Recent parametric models suggest treating conditional betas as latent
variables: Adrian and Franzoni (2009) suggest using the Kalman filter whge
and Chen (2007) apply Markov chain Monte Carlo and Gibbs sampling to obtain
time varying betas.

An alternative, nosparametric approach to model risk dynamics was first
implemented by Fama and MacBeth (1973). The-parametric approach is based
on purely datadriven filters, including shonvindow regressions (e.g., Lewellen

and Nagel, 2006) and rolling regressions (e.g, Fama and French).
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The parametric specification is appealing from a theoretical perspective
because it explicitly links time variat in betas to macroeconomic state variables
and firm characteristics (e.g., Gomes et al.,, 2003; Santos and Veronesi, 2004).
However, the main drawback of this appr
conditioning information is unobservable. Ghyse898) shows that misspecifying
beta risk may result in serious pricing errors that might even be larger than those
produced by an unconditional asset pricing model. In addition, this method can
produce jumps in betas due to sudden spikes in the macroecovanables that
are often used as instruments. Finally, many parameters need to be estimated when
a large number of conditioning variables is included, which leads to noisy estimates
when applied to stocks with a limited number of time series observa#ons
important advantage of ngrarametric approaches is that they preclude the need to
specify conditioning variables, which makes them more robust to misspecification.
However, the time series of betas produced by adlatan approach will always
lag the true variation in beta, because using a window of past returns to estimate the
beta at a given point in time gives an estimate of the average beta during this time
period. Although reducing the length of the window results in timelier betas, the
estimaion precision of these betas will also decrease.

In Chapter 3 we use information extracted from the daily opening, closing,
high, and low prices of the stocks to improve the estimation of the current betas and
the predictions of the future betas. We aeeatnew timevarying beta measure
call edbalgeathgleet ao, whi c h tbasedbvalaileaydandon t h e
covariance estimators of Rogers and Zhou (2008) for estimating market beta.
Within this context, the rangeased beta is the ratio of thenggbased covariance
of stock and market to the ranbgased market variance. We improve the
specification of betas by combining the parametric andpawametric approaches
to modelling time variation in betas. Since the main strengths of each approach are
the most important weaknesses of the other, we show that a combination of the two
methods leads to more accurate betas than those obtained from each of the two

methods separately.
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1.6 Macroeconomic Risk

Finally, the evidence suggests that the financiatkets volatility is affected by the
communication of the intergovernmental agencies such as the IMF, the ECB, the
Federal Reserve, and other. In Chapter 6 we evaluate the effectiveness of the IMF
external surveillance in the rwp to the current creditisis. In contrast to previous
studies, this study is the first to apply contantlysis methodology to analysing

the IMF Reports.

Content analysis is defined as the systemic, objective, quantitative analysis
of message characteristics (Neuendorf, 20@23.a highly structured and systemic
way for analysing qualitative text from
well-developed set of procedures to make sense of the multiple sources of
gualitative data. There is extensive research in accoufitiagce, and other social
science fields that analyses the content of textual documents using computer
algorithms. Within this literature, there is extensive research on the information
content of corporate earnings releases (Davis et al., 2006; Rogats 2009),
accounting policy disclosures (Levine and Smith, 2006), financial news (Core et al.,
2008), Internet stock message board, and multiple sources of financial text (Kothari
et al., 2008). However, most of the existing studies are closely retatbd firm
level characteristics, and very little are dealing with coul@vel reports.

There exist a range of computerized content analysis algorithms that analyse
the thematic character of the text. For instance, the DICTION 5.0 (Hart, 2001) is a
dictionary-based program that counts types of words most frequently encountered
in contemporary American public discourse and is designed to capture the linguistic
style (i.e. verbal tone) of narratives (Hart, 1984). DICTION 5.0 uses a lexicon of
10,000 wordsto divide a text into five semantic features: Activity, Optimism,
Certainty, Realism and Commonality. These five features are composed of
combinations of 35 sufeatures (Pennebaker et al., 2003). DICTION 5.0 analyses
texts in 500 word blocks. The resalji DICTION score represents the number of
times each word (per 500 word text length) from 1 of the 35eatinres appears in
the text. These suleature scores are then aggregated to form the five major

thematic categories. The aggregation process islgithp sum of various sets of
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the subf eat ur es. DI CTI ONOG s Report Files
standardized scores for each of the standard dictionaries.

There are potential strengths and weaknesses in using DICTION 5.0
computerized content analysigftsvare. In terms of strengths, DICTION performs
textual analysis based on geristing search rules and algorithms, and is systemic
and thus free from criticisms of researcher subjectivity and potential bias.
Moreover, computebased system can examine Itiple phenomena
simultaneously and can report on combinations of word usages that the researcher
could hardly conceive of, never mind calculate, without machine assistance.
Finally, content analysis software facilitates the efficient analysis of a largber
of texts and a partial correction for the context. The principal weakness of
DICTION is that it is based on the assumption that higher frequency usages of a
word or phrase mean the concept is more meaningful or important than infrequently
utilized wads or phrases. In other words, it does not analyse language conditional
on the context of the particular statement. However, more recent research by Li
(2009) contrasts the measure of tone
Bayesian machine learning appch. Li (2009) concludes that the machine
learning algorithm and the dictionary approach capture the tone of the financial

documents similarly.
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Chapter 2: Rangebased Analysis of Volatility Spillovers in European
Financial Markets

2.1 Introduction

In this paper we study the dynamic linkages among European security markets
based on the time series of daily higlv ranges of national equity market indices.
The daily highlow range is defined as the log of the ratio of the intradaily high and
low prices of the national market index. As is well documented, see Alizadeh et al.
(2002), the daily range can provide a surprisingly accurate indirect measure of daily
volatility (that is, daily return standard deviation). It is also readily available across
markets with no publiclyavailable intraday price series. We build a dynamic model

of daily range, and address a humber of empirical questions based upon it. We also
include the realized daily range of the US S&P500 index as an explanatory
variable, but ourdcus is on explaining volatility dynamics and linkages in the
European markets.

We use a dynamic linear model of expected daily ranges based on the
conditional autoregressive range (CARR) model of Chou (2005) and Engle and
Gallo (2006). We refine the CARRodel to make it consistent with a discrete
interval model of daily return standard deviations in which the vector of daily
return standard deviations depends linearly upon its lagged values and lagged
realized ranges, and in which intraday prices folltandard multivariate Brownian
motion. We estimate both our new version of the CARR model and an earlier
version of Engle and Gallo (2006) on our dataset and compare their performance.

We estimate using data over the period January 11, 1991 to May 23, 2013
and find a number of interesting results. The linear dynamics in daily range appear
similar whether estimated using the Feller or gamma distribution. The gamma
distribution better fits the empirical distribution of tail events in daily range, but this
distributional assumption sacrifices the theoretical link between daily range and
daily standard deviation provided by the Feller distribution model. There are strong

asymmetries in daily range dynamics: in all four markets, expected daily range is
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higher afte a day with negative opetio-close return. There are some crasgrket
dynamics among the European markets, but the strongestncaokst dynamic
influence comes from the US market: daily range in each of the European markets
tends to be higher on a dafter a high realized range in the US market.

We divide our sample into p&isis and crisis periods, using July™Z007
as the regime switch date based on the analysis of Cipollini and Gallo (2010). We
find clear evidence for a regime shift. First, mftrprisingly, both average and
median daily ranges increase sharply in all four European markets. Second, there is
a sharp increase in the contemporaneous correlations between the daily ranges of
the markets. Third, the dynamic models of daily range haveotable and
consistent change, in all four markets the influence of lagged US market daily range
increases substantially during the crisis period.

In Section 2.2 we describe our econometric methodology. In Section 2.3 we
introduce the data and providense descriptive statistics. Section 2.4 presents the
empirical analysis for the full sample period. In Section 2.5 we estimate allowing
for a regime shift in July, 2007, reflecting the ongoing financial crisis. Section 2.6

presents some concluding remarks.

2.2 A Rangebased Volatility Model: Theoretical Framework

2.2.1 Range as a Volatility Proxy

Our model uses two time indices: a discrete intdéar days, and a continuous
index Ufor intraday time. Lep, @O O1 d e nivetter of intnaday log prices
on n assets during day (for notational simplicity the day is left implicit for
intraday time). Assume that tmévector of realized daily ranges is the high minus

low of dayt intraday log prices:

hl, = rgggi( Pig - mﬂ py for i =1...,n, (2.1)

which is strictly positive as long as the price is not constant over the entire interval.

Also important in our analysis is timévector of expected ranges
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e, =E[hil,], (2.2)

where the expectation is conditional on all information mietti 1 (that is, the
beginning of dayt). Suppose that intraday log prices follanstandard Brownian
motion during dayt with standard deviation&. In this case, Parkinson (1980)

shows that scaled range is an unbiased proxy for return staheldedion, and in

afsa
€, :‘?;?chﬁp (2.3)
Q -—

particular:

so that the expected range and standard deviation differ only by a scale factor.
Note that our theoretical model ignores the overnight (and weekend) closed
periods in these markets. The haid low price observations only cover the period
during which the market is open, so that the comparable volatility in Equation (2.3)
is daily openrto-close return volatility rather than the more commonly used close

to-close return volatility. We will diagss this further in our empirical analysis.

2.2.2 A Linear Dynamic Model of Volatility and Expected Range

I n this subsection we develop a modifie
autoregressive range (CARR) model. We begin with a foundational modallypf

volatility (that is, return standard deviation), which produces a fully parametric
specification of expected daily range. L&t denotes thenivector of standard

deviations of returns for day andp;denotes thai vector of log prices at intrday

time Uwithin dayt. We assume that intraday prices follow standard multivariate

Brownian motion with zero mean vector and tioonstant correlation matri:
[Py P~ MVN(0", g3[Diag({, )Ic[Diag (@, )]) for 0¢ U< G+ qpe 1, (2.4)

whereDiag((k) denotes the diagohaatrix with the vectot} on its diagonal.
We impose a simple linear dynamic model onrtheector of daily standard

deviations, in particular:
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Gi,t :Yi* +a q,jhlj,t-l""a bi,jljj,t-l (2.5)

with all nonnegative parameter elements. We assume that the parameter values are
such that the timseries process foi is covariance stationary. The vector of

estimable parameters in Equation (2.5) (other than those set to zero by assumption)
: . v al/8d L :
wilbede not ed é&x, arfd t‘.[pby %{;gg and substituting Equation (2.3)
Q -

into Equation (2.5) gives:

€=, +a qjhlj,t-1+é bi,jsj,t—11 (2.6)
21 j=1

j
which is an equivalent expression of the dynamic system in terras céther than

;.. We assume that, conditional upon the fixed daily volatilities (2.5), the
Brownian motion determining price processes within days is completely
independent across days. Following Engle and Gallo (200@ daily range

innovation is the ratio of the realized range to its conditional expected value:

§=—t, i=1..n, (2.7)

o _ hl,
Sit

and it follows immediately from the assumptions above that this is independently

and identically distributed through tim@/e will derive its distribution in the next

subsection.

The model, particularly in formulation (2.5), has close parallels with
GARCH-family models. There are two distinctions between (2.5) and standard
GARCH. First, the innovation for the dynamic modelhg realized daily range
rather than the squared claseclose return, and second, the realized daily range

drives standard deviation (and/or expected range) rather than variance.
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2.2.3 Maximum Likelihood under Intradaily Brownian Motion

The model ofthe previous subsection has a known log likelihood function. As
Alizadeh et al. (2002) note, extending Feller (1951), the distribution of the range

under Brownian motion is given by:

QOO

o k2
b, =y)=84 (-1)

(e}
k=1 u

%(jél (2.8)
¢ Yit -

it

where u(@ is the standar normal density. Although the density function (2.8)

involves an infinite sum, it is straightforward to compute numerically since the low

iy . o Q
order additive terms dominate the sum (the multiplicative compan%%g goes

_ak
¢ =it
to zero at an expongal rate ink); see Alizadeh et al. (2002). Since we assume
intradaily constantolatility Brownian motion, this provides the exact distribution
of realized daily range, conditional upon knowiitg Substituting Equation (2.7)
into Equation (2.8) givethe likelihood function of the realized range innovations
which are independently and identically distributed through time.
We assume that the initial value @ffor t = 0 is known. Given this and our
other assumptions, the likelihood of the sample equbhe product of (2.8)
evaluated at observdd; for eacht using the linear dynamic model (2.5) to define
Grr ecur sivel y. Recal l t hat € denotes the

model. Stating the log likelihood problem:

o T
&=argmaxg In(P({, &),
U t=1
where is given by Equation (2.5) ant{(], &, ) denotes the function (2.8). Time

subscriptt runs from 1 toT. In large samples these maximum likelihood estimates
are consistent and asymptotically normal, with the asymptotic covariance matrix

consistently estimated by the inverse of the inner product of the derivative matrix of

the log likelihood function with ispect toU evaluated at.
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2.2.4 Estimation under an Alternative Distributional Assumption on Realized
Range

One weakness of the specification described in the last two subsections is its
reliance on constavolatlity intraday Brownian motion for log price; this is not
supported by the evidence since daily equity index returns have positive excess
kurtosis. Dropping this assumption invalidates Equation (2.8) as the distribution of
daily range. In this subsectionewdescribe an alternative estimation strategy
developed by Engle and Gallo (2006). The Er@#lo specification does not
require the assumptions of Brownian motion and intradaily constant volatility. They
use the same linear dynamic model of expected dailge as above (2.6) but do

not specify the intedaily nor intradaily process for log prices. They assume that

the realized daily range has a gamma distribution:

(2.9)

a g
Gamm@,—
¢ 3

I QOO

Note that, in this application, the gamma distribution has only one free parameter

rather than the usual two; this reflects the restriction from Equation (2.7)f)}hat
must have unit expectation since by definitign is the expectation ofil; , .

The EngleGallo approach has two advantages over lastm&thods One,
already mentioned, it drops the assumptions of intraday constant volatility and
Brownian motion for log prices. Two, it adds an addisiloparameter to capture the
high kurtosis evident in realized daily range. In terms of disadvantages, it does not
provide any specific link between daily range and the-Serges properties of log
price: the gamma distribution is assumed for daily rangleowt specifying how
this comes about through Equation (2.1) and the process for prices. Related to this,
it gives a model of expected daily range only, not of daily standard deviation. Engle
and Gallo (2006) note that another advantage of the gammiébuwtisin in this
context is that the nonlinear maximum likelihood optimization problem can be
solved in two separate steps, but in our application we do not find this necessary.

We compare these two CARR specifications empirically below.
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2.2.5 Spillover andleverage Effects

We use as the basase model the simplest specification:
g, =¥ + thi,t-l +bhe,, (2.10)

with all nonnegative coefficients ant + b <1. g, can be interpreted as the
expectation of the range at tinhdor the asset. ¥, is the constant term of the
equation fore,; U is the autoregressive coefficient afdis the moving average

coefficient. Following Engle and Gallo (2006), we also consider thealed

leverage effects,
g =%, +0°Ind(5,, 2 Ol + o Indl(r,, <Ok, + By, (2.12)

wherer, ., is the closeo-close return on the asset on diay and Ind(rivt_1 < O) is a
dummy variable which equals one if this return is negative and zero othelflise.

and U™ are parameters that capture the asymmetry. All four coefficients are

restricted to be nenegative. We also consider a slightly different specification to

capture the same type of leverage effect,

€=, +qh|i,t-l+(jiri,t-1+ D&, (2.12)

Note that, by definition fothe range/hl, ., 2 |r, | and so as long 4§ |< U and the

other coefficients are nemegative this model belongs to the multiplicative error
model class, see Engle (2002).

We also estimate the extended specification (2.6) inetuthgged cross
country realized ranges to test for spillover effects between markets. Note that in
this case, as noted by Engle and Gallo (2006),-ififtirmation maximum
likelihood requires that the system of equations (2.6) be estimated simultaneously,
which also requires that the marginal distributions between the contemporaneous
range innovations is specified. Instead of this, again following Engle and Gallo

(2006), we restrict ourselves to limited information maximum likelihood,
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estimating each equah separately using the univariate likelihood objective
function described above.

2.3 Simulation Evidence on the Randmsed Volatility Estimators

To assess the properties of the rahgsed volatility estimators, we perform
an extensive simulation analysWe consider the range implied estimates of the
standard deviation. Specifically, we use Parkinson (1980) #aaged proxy for the

return standard deviation, and in particular:

o ~

. al o
U :‘Siaegg, (2.13)
cio=

where (i, and ¢, denote the daily standard deviations and the daily range of the log

price processes for assets 1 and 2, respectively.
We consider two correlated log asset prices, which follow a bivariate
random walk with homoskedastic and contempeoasly correlated innovatiohs

Subsequent log prices for assetl, 2 are simulated using
logR,.,« =log P ek +Q,t+k/K i=1 2 k=1 2...K, (2.14)

whereK is the number of prices per day. We assume that the S“@Ql@ are
serially uncorrelated and normally distributed with mean zero and variarid€,
where daily standard deviation§ of the log price processes are set equal to

0.0252 and 0.0149 for assets 1 and 2, respectiuglig. calibrated as the average of
the daily standard deviation of the DAX constituent assets over the period from
January 2, 2003, to September 30, 20d].is simply the sample average daily
standard deviation of the DAX Index.

For each day, we calculate the high and low log prices for both asséts

2. The shocksU,,,« and U, are contemporaneously correlated with

! The random walk process (discrete time version of Brownian motion) for theritoes follows

from the assumption that prices follow a geometric Brownian motion. Strictly speaking, this would
imply that the random walk process contains a drift, but weasb8om this fact here. This drift is
probably negligible.
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comelation coefficienty,,, which we set equal to 0.5. The simulation experiment
usesK i {2 51 0,6 0 Q0 O} observations per day, where price observations are

equidistant and occur synchronously for the two assets. We simulate the prices for
10,000 days in all the experiments presented below. Table 2.1 shows that the range
implied estimates of the standard deion are downward bias. This result is
consistent with the facts that the range of a discretely sampled process is strictly
less than the range of a true underlying process. The-rapdjed estimates of the
standard deviation are close to the theorktialues of standard deviation whi&n

gets larger.

Table 2.1. Monte Carlo experiment for the rangeimplied standard deviation

Asset 1 Asset 2
Theoretical value of st. dev 0.0252 0.0149
Rangeimplied estimates of st. dev
K=25 0.0217 0.0130
K =100 0.0234 0.0138
K =500 0.0243 0.0145
K=1,000 0.0246 0.0145

Notes The Table shows the results of a simulation experiment where 10,000 daisgyafrices are
simulated from a normal distribution with mean zero and variante where daily standard
deviationsy; of the log price processes are set equal to 0.0252 and 0.0149 for assets 1 and 2,
respectively. All experiments use 10,000 Monte Carlo Replications. The slﬁ@.g}gand L}HWK are
contemporaneously correlated witbrrelation coefficient ;,, which we set equal to 0.5. For the
each day, we calculate high and low log prices for both assets 2; these prices are then used to
calculate the rangbased estimates of standard deviation.

For each of the experimentsevalso calculate the simulated estimation standard
deviation (Table 2.2).
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Table 2.2. Simulated estimation standard deviation

Asset 1 Asset 2
K=25 0.0094 0.0058
K =100 0.0122 0.0072
K =500 0.0137 0.0082
K=1,000 0.0141 0.0083

Notes The Table shows the results of a simulation experiment where 10,000 d&isggfrices are
simulated from a normal distribution with mean zero and variaiée where daily standard
deviations(; of the log price processes are set equal to 0.G2fP 0.0149 for assets 1 and 2,
respectively. All experiments use 10,000 Monte Carlo Replications. The sHagksand (..« are
contemporaneously correlated with correlation coefficjeat which we set equal to 0.5. For each
day, we calculate the high and low log prices for both assels 2.

2.4 Data and Descriptive Statistics

Our data set contains four European stock indices, which are the CAC 40 index
(France), DAX 30 index (GermapyAEX index (the Netherlands), and IBEX 35
index (Spain), and as an explanatory variable the S&P500 index. All of these series
are downloaded from the Datastream database. Each series has 5,388 daily
observations over the sample period from January M1, @®May 23, 2013. When

price data for a particular trading day in one or more of the five countries are not
available (for example, due to a national holiday in that country), we delete that
date entirely from our sample. In total 455 days were deleted the initial data

set (8% of the days) to eliminate these missing observations in one or more of the
markets and create a balanced panel.

Descriptive statistics are shown in Table 2.3. The table shows that the daily
range distributions are positively esked and leptokurtic relative to the normal
distribution. Autocorrelations of realized range decay slowly, which is consistent
with the pattern observed for other daily volatility measures such as squared daily
return.

Table 2.4 reports the creasitocorelation matrices of the vector of the
daily range series. The creastocorrelations indicate a nesymmetry of lead/lag
relationship between four European markets. So, for example, the correlation

between the contemporaneous range in Germany and lagugselin Spain (0.532)
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is nearly identical to the correlation between the contemporaneous range in Spain
and lagged range in Germany (0.553). Also note that the contemporaneous
correlations increase during the crisis period compared to theripie period The

only exception is the correlation coefficient between the contemporaneous range in
Spain and the contemporaneous range in the Netherlands (0.721) and the
correlation coefficient between the contemporaneous range in Spain and the
contemporaneous rangethe US (0.582), which are the same during thecpses

and the crisis period. When we take a look at the pairs of the autocorrelations
containing Spain, we observe the decrease in the autocorrelations during the crisis
period compared to the poeisis period. This finding suggests that Spain tends to
trigger very little or no contagion among the core countries during the crisis period,
where contagion is commonly defined as a significant increase in-roaret
interdependencies after a large shbik one country or a group of countries. Our
results are also consistent with Kabaska and Gatwoski (2012) study which analyses
contagion among several European sovereigns using CDS data and come to the

same conclusion.
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Table 2.3. Descriptive statistics ofthe daily range

France Germany Netherlands Spain USA
Mean 0.026 0.025 0.023 0.026 0.021
Median 0.022 0.019 0.018 0.022 0.017
Maximum 0.148 0.178 0.186 0.213 0.174
Minimum 0.005 0.000 0.000 0.003 0.003
Standard deviation 0.016 0.020 0.017 0.018 0.016
Skewness 2.228 2.217 2.541 2.137 3.186
Kurtosis (excess) 7.784 7.443 10.022 8.550 17.658
25-%ile 0.016 0.011 0.012 0.014 0.012
75%ile 0.031 0.031 0.028 0.033 0.026
ACF(1) 0.610 0.738 0.691 0.628 0.620
ACF(5) 0.529 0.687 0.625 0.541 0.582
ACF(20) 0.411 0.577 0.504 0.412 0.457

Notes:The table reports the descriptive statistics for the daily-lughprice range of stock indices,
including CAC 40 (France), DAX 30 (Germany), AEX (the Netherland), IBEX 35 (Spain), and
S&P500 (USA) over the sample period from January 11, 1991 to May 23, 2013. The sample size is
5,387 observations.
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Table 2.4. Crossautocorrelation matrices for five national stock market indices daily range

Panel A
Precrisis period
o hlerat hlcer.t hineT hlspa hlysat
hlerat 1.000
hlger 0.764 1.000
hineTH t 0.796 0.826 1.000
hlspa 0.746 0.692 0.721 1.000
hlysat 0.576 0.649 0.623 0.582 1.000
Crisis period
3 0 hIFRA,t hIGER,t hINETH,t hlSPA,t hIUSA,t
hleract 1.000
hlgert 0.914 1.000
hineTH 0.923 0.881 1.000
hlspa 0.821 0.729 0.721 1.000
hlysat 0.759 0.766 0.780 0.581 1.000
Panel B
Precrisis period
\} 1 hIFRA,t—l hIGER,t—l hINETH,t—l hISPA,tl hIUSA,tl
Nlerat 0.582 0.581 0.577 0.512 0.467
hlger,t 0.574 0.755 0.661 0.532 0.534
hineTH 0.573 0.679 0.698 0.535 0.520
hlspa 0.527 0.553 0.540 0.604 0.482
hlysat 0.473 0.531 0.498 0.479 0.513
Crisis period
\} 1 hIFRA,t—l hIGER,tl hlNETH,t—l hISPA,tl hIUSA,tl
Nlerat 0.615 0.605 0.615 0.501 0.617
hlger ¢ 0.628 0.672 0.631 0.484 0.640
hlngTh, 0.608 0.608 0.646 0.457 0.650
hlspat 0.520 0.482 0.482 0.561 0.455
hlysat 0.600 0.621 0.639 0.444 0.683

Notes Autocorrelation matrices of the vector of daily ranges of five national stock market indices,
X[ Bleras hlgers hineths hlspats hlusal. The k-th order autocorrelation matrix is defined by
Y ( KDYEE[(Xu T €)(X T £)dD % where D Diag((i?,...,ii2). Hence, thei( j) element of Y(K)

corresponds to the correlation betwedp. and hl;;.. Following Cipollini and Galo (2010), we
choose July 17, 2007 as the regime break point. Hence, we assume thatctimspperiod extends
from Januaryi 1, 1991 to July 17, 2007, and the crisis period is from July 18, 2007 to May 23, 2013
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2.4.1 Comparison to Clogde-close and Opeto-close Standard Deviations

Table 2.5 shows the sample variances of etos#ose, operio-close, and close
to-open retuns for each of the markets. Ignoring the negligible differences in
sample mean, in the absence of return autocorrelation thetolokese return
variance will equal the sum of cles®open and opeto-close variance, and this is
approximately the cas#.is interesting to note that the cleseopen variance

variance is higher for the European market indices than for the US index. This is
not a surprising result; US market moves during the European evening can have a
big impact on European market opsgivalues the next (European) morning. The
effect is asymmetrical; the US market opening prices are on average fairly close to
previousday closing prices, indicating that they are not as influenced by US

closedtime activity in Asian and European markets.

Table 2.5. Sample variances of cloge-close, open to close, and close-open returns

France Germany  Netherlands Spain USA

Variance (closéo-close) 0.00022 0.00023 0.00020 0.00022 0.00014
Variance (opefio-close) 0.00008 0.00005 0.00008 0.00007 0.00001
Variance (closéo-open) 0.00014 0.00016 0.00013 0.00016 0.00013
Variance ratio: opeto- 0.6607 0.7063 0.6433 0.7236 0.9284
close/closeo-close

St. dev. (opeitto-close) 0.0119 0.0126 0.0114 0.0126 0.0116
Rangeimplied openrto-close  0.0162 0.0155 0.0143 0.0164 0.0134

st.dev.

Notes: The sample period is from January 11, 1991 to May 23, 2013. In the absence of return
autocorrelation the clog®-close return variance will equal the sum of ckts®pen and opeto-
close variance. We use the mean daily range to compute implied standatibdevangemplied

standard deviation under the Feller/normal congruent distributLon;;n\/E.
t
8
If prices follow zeremean, fixeevolatility Brownian motion then\/%

times the mean daily range is equal to daily return standard deviation. We use the
mean daily range statistics from Table 2.3 to compute implied standard deviations

in this way, and compare them to the sample standard deviations of th&-open
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close retuns. In all cases, the ranased standard deviation exceeds the sample
returnbased standard deviation.

2.5 Estimation and Testing Given a Single Regime

2.5.1 Estimation of the Univariate Models of Dynamic Range

We begin with the estimation of the basese model (2.10). Note that there are two
variants of the base case model depending upon whether we use the Feller
distribution or the gamma distribution for the realized range innovations; using the
gamma distribution adds an extra estimated parametble P&6 shows the model

with a Feller distribution in Panel A and with a gamma distribution model in Panel
B. The shared parameter estimates are quite similar in the two models; the main
difference comes from the extra parameter of the gamma distributdelmVe

now make a more detailed evaluation of these two models by comparing their one
stepahead risk forecasts.
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Table 2.6. Maximum likelihood estimation of a univariate dynamic model of daily range

Panel A: Estimation using a Feller distribution

France Germany Netherlands Spain
¥ 0.00014 0.00005 0.00009 0.00016
(42.239) (46.682) (36.024) (137.344)
b 0.822 0.808 0.813 0.771
(2,051.313) (4,383.096) (2,145.931) (4,377.313)
U 0.105 0.118 0.112 0.134
(400.556) (935.667) (456.852) (1,039.930)
Panel B: Estimation using a Gamma distribution
France Germany Netherlands Spain
¥ 0.00046 0.00018 0.00033 0.00051
(7.094) (5.829) (6.725) (8.816)
b 0.807 0.806 0.785 0.763
(105.895) (110.406) (96.362) (88.609)
U 0.1756 0.1871 0.201 0.217
(26.640) (26.802) (27.006) (27.575)
6.889 6.275 6.406 5.989
) (52.044) (56.658) (54.539) (73.360)

Notes: The Table shows the maximum likelihood estimates of univariate dynamic models of daily
range. See equation (2.10) for the definitions of the coefficients. The model in Panel A uses:
hi, =¢ 0, §, follows a Feller distribution. The model in Panel B uses:

The numbers in the parenthesestaatistics. Sample period is

Feletel

O o, é q
hl, =& Y, Y, ~ Gamm%!?
¢ St

from January 11, 1991 to May 23, 2013.

2.5.2 Analyzing the Distributional Characteristics of Daily Range

Recall that realized daily range equals expected daily range conditional upon

yesterdayo6és information times a unit meal
hl, =&,, (2.15)
where (] follows a Feller distribution under our initial specification, or a gamma

distribution with parametep under the Engle and Gallo (2006) specification. We

use Equation (2.15) to examine the -alagrahead valuat-risk hit rates of outwo

dynamic models from the last subsection. For each time period, we find the upper
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limit ¢; such that the probability (under the given prediction model) that the
realized range equals or exceeds it equaffor U=.0 1.0 Bnd.1 )

Ci S't'Pr(hIit 2 C|t|8it): u

In common parlanceg; for U=.0 1.0 @nd.1 (is the valueat-risk for the specified

trading strategy at confidence level 99%; 95%; and 90%. Since we are using
realized daily range, this is the valaerisk for the daily loss on the worst potential
intraday trade, not the vahkatrisk of daily buyandhold return.

If the forecasting model is correctly specified, then the dummy variable
which equals one ifl; Oc; and zero otherwise has an i.i.d. binomial distribution
with an expected value &f: This is called the hit rate fahe valueat-risk forecast.

Table 2.7 shows the results. Across all countries, both models havégltobit

rates, particularly forU=.0 . In most cases (with exceptions only for the 90%
valueatrisk using the Gamma distribution) wencaeject with 95% confidence that

the valueatrisk is correctly given by the model. The performance of the Feller
distributionbased model is notably worse than that of the gaiistaibution

based model in terms of the excessive proportion of hits, bilt imodels are

clearly rejected in most cases. Note, as shown above, the shared parameters of the
two models are quite similar in their estimated values. The difference between the
performance of the two models in Table 2.7 comes from the slightly bbitiéy a

of the gamma distribution to capture the fairly thick tails of the distribution of

realized range.
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Table 2.7. Hit rates for VaR events at 90%, 95%, and 99% confidence for two forecasting
models of daily range

Model For 1% For 5% For 10%
France

Gamma 2.230 6.403 10.709
(9.075) (4.725) (1.735)

Feller 3.211 8.593 13.103
(16.311) (12.101) (7.592)

Germany

Gamma 1.967 6.329 10.542
(7.134) (4.476) (1.326)

Feller 3.805 9.744 14.514
(20.693) (15.978) (11.045)

Netherlands

Gamma 1.707 6.125 11.154
(5.216) (3.789) (2.824)

Feller 3.415 9.725 14.681
(17.816) (15.914) (11.453)

Spain

Gamma 1.890 5.698 10.319
(6.566) (2.351) (0.781)

Feller 3.712 9.577 15.052
(20.007) (15.415) (12.361)

USA

Gamma. 1.745 5.234 10.171
(5.496) (0.788) (0.418)

Feller 4,306 10.783 16.314
(24.389) (19.477) (15.449)

Note The Table examines the cdayahead valuatrisk hit rates of Felledistributionbased
model and Gammdistributionbased model. For each time period, we find the upper &irgtich
that the probability that realized range equals or exceeds it egudts U=.01,.05, and .10),
c, sit. pr(h|i[ 2 Cn‘gn): U If the forecasting model is correctly specified, then the dummy variable

which equals one ifl,O g and zero otherwise has an i.i.d. binomial distribution with an expected
value ofU Sample period is from January 11, 1991 to May 23, 2013.

Figures 2.1 through 2.10 show the same finding graphically. They show the
sample densities of realized range innaws (2.7) and compare them to the
theoretical density; in the case of the gamma distribution this differs across
countries, dependent upon the estimakedvhereas for the Feller distribution it is
the same for all countries. Tlhetter fit of the gamma distribution to the upper tail

of realized range seems evident from the graphs.
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Figure 2.1. Empirical and theoretical densities of range innovations using the Feller
distribution model: France
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Figure 2.2. Empirical and theoretical densities of range innovations using the Feller
distribution model: Germany
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Figure 2.3. Empirical and theoretical densities of range innovations using the Feller
distribution model: the Netherlands
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Figure 24. Empirical and theoretical densities of range innovations using the Feller
distribution model: Spain
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Figure 25. Empirical and theoretical densities of rangénnovations using the Feller
distribution model: USA
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Figure 2.6. Empirical and theoretical distributions of range innovations using the Gamma
distribution model: France
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Figure 2.7. Empirical and theoretical distributions of range innovations using the Gamma
distribution model: Germany
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Figure 2.8. Empirical and theoretical distributions of range innovations using the Gamma
distribution model: the Netherlands
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Figure 2.9. Empirical and theoretical distributions of range innovations using the Gamma
distribution model: Spain
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Figure 2.10. Empirical and theoretical distributions of range innovations using the Gamma
distributi on model: USA
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Table 2.8. Maximum likelihood estimation of a univariate dynamic model of daily range with additional returabasedexplanatory variables

France Germany Netherlands Spain
¥ 0.00050 0.00053 0.00022 0.00025 0.0038 0.00039 0.00054 0.00054
(8.656) (9.623) (7.511) (8.391) (8.661) (8.848) (10.340) (10.235)
b 0.826 0.834 0.821 0.818 0.807 0.808 0.788 0.787
(127.893) (130.764) (109.935) (112.296) (101.446) (103.026) (96.264) (97.160)
U 0.120 0.146 0.142 0.173 0.142 0.175 0.157 0.193
(20.159) (26.076) (17.245) (24.579) (17.163) (24.114) (18.543) (25.736)
(-17.058) (-10.293) (-14.037) (-13.110)
lown 0.067 0.055 0.065 0.069
(13.454) (10.258) (12.888) (12.402)
2 7.057 7.147 6.366 6.354 6.539 6.376 6.115 6.118
(52.524) (52.564) (57.075) (57.247) (54.834) (53.647) (73.743) (75.150)

Notes:The Table shows the maximum likelihood estimates of a univariate dynamic model of daily range with additiorlbhsetiexplanatory variable. See

. The numbers in the parenthesestare

(ele}e]

equations (2.11) and (2.12) for the definitions of the coefficients. The modelysesg (), (), ~ Gamm%,i
LR, e
(; it

statistics. Sample period is from January 11, 1991 to May 23, 2013.
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2.5.3 Leverage Effects and Volatility Spillovers Across Markets

In this section we estimate using the gamuiisdribution for the realized range
innovations. Table 2.8 shows estimates for the two models, Equations (2.11) and
(2.12), with | everage effects. I n the fi
reali zed range on todagwyé8seerdpgbtedar arge
negati ve. I n the second specification, t
to yesterdayods market return. These two
since realized range tends to be strongly collinear with absolute value of
realized return. Using either leverage specification, we find significant evidence
for substantial leverage effects in the dynamics of daily range.

We next show estimates of the models (Table 2.9) including-onaegset
lagged range asn explanatory variable, to test for volatility spillovers. The
influence of lagged crogwarket range tends to be much smaller than the
influence of lagged owmarket range. We find positive statistically significant
rangebased volatility spillover effgs coming from Spain. This result is
consistent with the paper by Alter and Beyer (20t shows that the core
countries are highly sensitive to shocks from periphery countries such as Spain,
Portugal, and Italy. We also find statistically significgmegative coefficient for
the realized range on yesterdayds Frenct
equity market is the net receiver of potential spillovers. This result is also
consistent with the finding of Alter and Beyer (201B8at finds a negate total
net spillover effect. The lagged US market range has the most reliable influence,
both in terms of uniform statistical significance across the European countries,
and in terms of the magnitude of the estimated coefficients. Note that, due to time
zone differences, the realized range on
moves during trading time after the cl oscs

before the current dayo6és mar ket open.
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Table 2.9. Singleequation maximum likelihood estimation of multivariate models of daily
range

France Germany Netherlands Spain
¥ 0.00050 0.00017 0.00029 0.00029
(6.496) (2.999) (4.139) (3.730)
b 0.784 0.802 0.755 0.744
(88.414) (101.556) (77.275) (78.005)
U 0.155 0.186 0.179 0.206
(20.864) (23.358) (20.303) (22.696)
FRA.1 -0.010 -0.009 0.021
(-2.953) (-2.120) (5.567)
GER 0.002 0.020 0.008
(0.443) (4.475) (1.485)
NETH.; 0.004 0.003 -0.002
(0.577) (0.684) (-0.227)
SPA; 0.017 0.006 0.012
(4.229) (1.982) (3.387)
USA; 0.024 0.008 0.030 0.016
(4.676) (2.159) (6.148) (2.720)
2 6.952 6.288 6.485 6.029
(51.677) (56.500) (53.498) (58.686)

Notes:The Table shows the maximum likelihood estimates of multivariate models of daily range,

i e e a o -
based on equation (2.6). The model uggs== .U, 0, ~Gamm%’8i8' The numbers in the
(o4 it =+

parentheses atestats. Sample period is from January 11, 1991 to May 23, 2013.

2.6 Testing for a Regime Shift During the Financial Crisis

The latter part of our sample is characterized by unusual market turbulence
associated with the global financial crisis. Wesstimate with an assumed regime
break differentiating the prerisis and crisis periods. Following Cipollini and
Gallo (2010), we choose July 17, 2007 as the regime break point. This date
corresponds to the announcement by Bear Stearns of the collapse of two hedge
funds, and was followed by suspension of payments by BNFod2arand
increased support facilities by the ECB and Fed in early August 2007. We also

applied the Chow stability test to the chosen-gebods. The results rejected the
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hypothesis of no break for all European markets at hand. Hence, we assume that
the crsis period extends from July 18, 2007 to the end of our sample on May 23,
2013.

Table 2.10 gives the descriptive statistics in the-goigs and crisis
periods. Not surprisingly, both the mean and median of daily range increases
sharply in all four markis. Table 2.4 shows both contemporaneous and lagged
autccorrelations and crosrrelations. There is a notable increase in
contemporaneous correlations between the markets. Autocorrelations do not show
a pattern: some increase and some decreaseoFdestcrosscorrelations show a

pattern similar to contemporaneous correlations, that is, increasing in most cases.

Table 2.10. Precrisis and crisis period descriptive statistics of the daily ranges

France Germany Netherlands Spain USA

Precrisis periodJanuary 11, 1991 to July 17, 2007)

Mean 0.0240 0.0226 0.0209 0.0229 0.0194
Median 0.0203 0.0166 0.0162 0.0188 0.0162
Maximum 0.1404 0.1735 0.1860 0.1823 0.1353
Minimum 0.0047 0.0004 0.0009 0.0026 0.0028
Standard deviation 0.0142 0.0189 0.0160 0.0154 0.0124

Crisis period (July 18, 2007 to May 23, 2013)

Mean 0.0309 0.0306 0.0278 0.0352 0.0211
Median 0.0263 0.0252 0.0230 0.0304 0.0209
Maximum 0.1478 0.1778 0.1489 0.2130 0.1740
Minimum 0.0052 0.0037 0.0000 0.0083 0.0045
Standard deviation 0.0186 0.0205 0.0184 0.0196 0.0211

Notes The table reports the descriptive statistics for the daily-luighprice range of stock
indices, including CAC 40 (France), DAX 30 (Germany), AEX (the Netherland), IBEX 35
(Spain), and S&P500 (USA). Following Cipolliand Galo (2010), we choose July 17, 2007 as the
regime break point. Hence, we assume that thepses period extends from January 11, 1991 to
July 17, 2007, and the crisis period is from July 18, 2007 to May 23, 2013.
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Table 2.11 shows the model with ssxountry linkages (2.6) estimated
for the full sample with the inclusion of a multiplicative dummy varidb@ for
each crosgsountry coefficient. The dummy variable is one in the crisis period and
zero in the prerisis period; the associated coeffiti® capture the change in the
coefficient in the crisis period. There is no sign of an increase in theroarkst
dynamic linkages across the European markets, in fact, several dummy
coefficients indicate a significant decrease. Particularly notableeisntreased
influence of yesterdayodés realized US ran
this is significantly positive for all four European countries. So the influence of
the lagged US market increased during the crisis period, but thenceokst
influences among these European countries did not. Table 2.12 shows the full
model estimated separately on the crisis period andrigmie period. The results
mirror those in Table 2.11. The only notable change between tharigise and
crisis period ishat the influence of the lagged US market range increased in all

markets.

2.7 Conclusion

This chapter examines the daily risk dynamics and-minket linkages of four
European stock markets using daily range data. Daily range can provide an
accurate inglect measure of daily volatility and is readily available across markets
with no publiclyavailable intraday price series. We compare the conditional
autoregressive range model of Engle and Gallo (2006) in which the realized range
has a gamma distributioto a new formulation in which intraday returns are
normally distributed and realized range has a Feller distribution. The two models
give similar estimates for the autoregressive range dynamics, but the gamma
distributionbased model better captures tleptbkurtotic feature observed in
daily range data.

In addition to strong autoregressive dynamics, the expected range varies
inversely with the previous dayodéds return
t hat t he previous dayo6s reali zed range
i nf |l uenc e ss exgeaed ramge. fThesk apjlldver effects are not uniform

across the markets; the strongest spillo
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range of the US market index. We find statistically significantly negative
coefficient for the realized rangeonsy¢ er dayos French mar ket
the French equity market is the net receiver of potential spillovers. This result is
also consistent with the finding of Alter and Beyer (2013) who also find a
negative total net spillover effect. We also compide precrisis (January 11,

1991 to July 17, 2007) and European financial crisis (July 18, 2007 to May 23,
2013) sukperiods of our sample. In all four markets, average daily range
increased sharply during the crisis period, and the contemporaneousticmsela

between the markets increased in most cases. Spillover effects between European

mar kets did not seem to change, but the

on realized range in European markets increased.
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Table 2.11. Extended model estimatiors{ngle-equation ML) using a Gamma distribution

France Germany Netherlands Spain
¥ 0.00054 0.00019 0.00033 0.00028
(6.095) (2.892) (4.029) (2.945)
b 0.777 0.798 0.749 0.723
(82.842) (96.873) (73.559) (68.934)
U 0.163 0.191 0.186 0.197
(20.031) (22.835) (20.119) (20.083)
FRA -0.007 -0.008 0.035
(-2.068) (-1.747) (8.238)
GER, 0.004 0.021 0.009
(0.811) (4.558) (1.531)
NETH.; 0.004 0.006 0.007
(0.522) (1.190) (0.842)
SPA; 0.022 0.004 0.016
(3.527) (1.085) (3.188)
USA; 0.012 0.002 0.019 0.020
(1.946) (0.520) (3.515) (2.965)
DCi 0.0003 0.0003 0.0004 0.0010
(1.828) (2.032) (1.879) (4.214)
FRA.1 DC4 -0.082 -0.010 -0.007 -0.056
(-2.842) (-0.393) (-0.255) (-1.199)
GER.; DC, 0.016 -0.032 0.0002 -0.004
(0.891) (-1.863) (0.013) (-0.1331)
NETH.; DCy, -0.004 -0.019 -0.056 -0.039
(-0.154) (-0.865) (-2.348) (-1.090)
SPA;DC:; 0.004 0.003 -0.011 0.033
(0.405) (0.295) (-1.139) (1.836)
USA.,DC:4 0.063 0.053 0.068 0.034
(4.460) (4.156) (4.937) (1.730)
2 76.984 6.318 6.517 6.084
(51.363) (56.240) (53.137) (57.309)

Notes:The Table shows the maximum likelihood estimates of extended models of daily range. The
model is the same as in Table 2.9 with the addition of multiplicative dummies foratassy
coefficients during the crisis period. The numbers in the parenthesestatistics. Sample period

is from January 11, 1991 to May 23, 2013.
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Table 2.12. Extended model estimation (singlequation ML) using a Gamma distribution over the precrisis period and over the crisis period

France Germany Netherlands Spain

Precrisis Crisis Precrisis Crisis Precrisis Crisis Precrisis Crisis
¥ 0.00040 0.00174 0.00016 0.00100 0.00029 0.00098 0.00027 0.00193
(5.138) (5.555) (2.571) (4.085) (3.580) (4.252) (2.688) (5.680)

b 0.812 0.669 0.818 0.719 0.767 0.700 0.725 0.692
(89.226) (26.515) (93.984) (33.624) (68.654) (31.374) (59.278) (34.561)

U 0.144 0.097 0.172 0.218 0.176 0.152 0.196 0.246
(19.339) (2.530) (19.818) (7.898) (18.354) (5.293) (17.795) (11.145)

FRA.; -0.006 -0.030 -0.007 -0.023 0.0344 -0.019
(-1.914) (-0.912) (-1.599) (-0.786) (7.720) (-0.428)

GER; 0.002 0.039 0.019 0.032 0.009 0.012
(0.542) (1.583) (4.128) (1.587) (1.422) (0.461)

NETH.; 0.003 0.008 0.005 -0.015 0.007 -0.042
(0.405) (0.236) (2.150) (-0.549) (0.821) (-1.277)

SPA; 0.017 0.033 0.004 0.007 0.014 0.003
(3.101) (2.613) (2.092) (0.637) (2.932) (0.322)

USA; 0.010 0.109 0.001 0.076 0.017 0.104 0.020 0.060
(1.896) (5.842) (0.343) (4.816) (3.287) (7.083) (2.840) (3.330)

2 7.128 6.649 6.313 6.329 6.393 6.876 5.827 6.869
(44.335) (26.231) (49.713) (26.377) (46.067) (26.346) (49.944) (25.874)

Notes: The models are the same as in Table 2.7 but estimated separately ondtisigpend crisis periods. The numbers in the parenthesesstatgstics.
Following Cipollini and Galo (2010), we choose July 17, 2007 as the regime break point. Hence, we assume thaisisgopreod extends from January 11,
1991 to July 17, 2007, and the crisis period is from Jujy2087 to May 23, 2011.
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Chapter 3: Measuring Equity Risk Exposures with Rangebased Correlations

3.1 Introduction

Our objective in this paper is to use information extracted from the daily opening,
closing, high, and low prices of the stocks to imprtheestimation of the current
betas and the predictions of the future betas. We create a newatiyiveg beta
measur e c ablalseedd fbreatnagoe, whi ch | shasedased
volatility and covariance estimators of Rogers and Zhou (2008) fonastg

market beta. Within this context, the radgpsed beta is the ratio of the range
based covariance of stock and market to the risaged market variance. In light

of the success of the ranbased volatility estimator, it is natural to inquire
whether the realized range beta is more efficient than the rbased beta
Rogers and Zhou (2008) construct an unbiased correlation estimator which is a
quadratic function of the high, low, and closing-fmgce of the two assets, and
which has the smallesflean Squared Error (MSE) in the class of quadratic
estimators. In addition, we improve the specification of betas by combining the
parametric and neparametric approaches to modelling time variation in betas.
Since the main strengths of each approachhaenost important weaknesses of

the other, we show that a combination of the two methods leads to more accurate
betas than those obtained from each of the two methods separately. MSE is used
as a measure of accuracy for the beta estimation. We estiathteur new range

based beta measure and betas extracted using traditional methodologies and
compare their performance. Specifically, we compare our raaged betas with

betas extracted from the conditional CAPM with tiregying betas. This
technique dsmates beta based on traditional (co)variance estimates from
historical stock returns and takes this estimate as a forecast for the future. We also
consider the commonly used historical rolling window beta method. In contrast to
the historical returibasel methodology that is subject to the critical assumption
that betas are stable over time, the information in rlveges allows us to
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construct ex ante beta predictors assuming only the beta is stable during each day.
These rangdased betas reflect curten day 6s mar ket i nf ormat i
avoid the weakness of historical betas, which are not as responsive to changing
market conditions.

We analyse the constituents of the DAX index for the period -2003.

We find that the rangbased beta measure yislestimates of firaevel betas

competitive with historical betas. The use of intraday high and low prices for beta
measurement is complicated by infrequent trading. Trading does not occur
continuously, that is, in practice we observe transactions @ulendy spaced

points in time (Engle, 2000). For the rargesed estimators, ndrading

introduces a bias as the observed intraday high and low prices are likely to be

bel ow and above their Otr ueé6baseddetams. The
becboser to the o6trued6 beta for highly 1
three portfolios according to their turnover measure. We find that the-basgel

beta approach vyields betas competitive with historical betas for the portfolios

sorted accordingp their turnover measure.

The rangebased beta is appealing for the ease of its estimation. The
construction of the ranggased beta requires only the
closing, and opening prices. In addition, this paper is first to develomtige
based covariance and correlation measures that can be applied for equities.

We proceed with the following steps. First, we propose a new way to
model rangébased correlations, which are based on the rhaged covariance
and variance estimators &ogers and Zhou (2008). Second, we estimate the
rangebased covariance and correlation measures and compare them with the
closeto-close returrbased measures. Third, we compare the rldaged betas
with the betas generated by the rolling window model lapdhe conditional
CAPM with timevarying coefficients. Fifth, we perform cressctional analysis.

Concluding remarks and directions for future research are presented in the final

section.
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3.2 A Single Factor Model

In this section we present the urigierg stock market model a linear factor
modeli and its asset pricing implications and discuss the importance as well as
ways to estimate factor betas. Our economy contditraded asset$,= 1,...,N.
Suppose that there is a single market factor émaers linearly in the pricing
equation such as in the Shaigatner version of CAPM model. Under this

model, the specification for the return of asgstat timet:
r.=a,+bry,+e t=1.T, (3.1)

where a, = (11 B)ro andro is a riskfree rate,r,, denotes the common factor
market return.e, i s t h-ey ditheomati co0 ri sk component.

structure assumes constant betas, idiosyncrasies uncorrelated with the factor(s)

and idiosyncrasies uncorrelated with each other:

E(hw.&)=0, i, (3.2)
Ele,.e )=0, "i. (3.3)

The beta coefficientb, can be represented through the Security Characteristic
Line (SCL). For the ease of exposition, it will be assumed that markets are
efficient and the expected value of the returns in excess of the compensation for
the risk is zero for all portfolios. It islso assumed that the effective fiske rate

does not change significantly and hence will be assumed to be zero. The resulting

equation of the SCL is
e = Biry + Loil (3.4)

Now, the SCL represents the relationship between the returnieém gsset at
time t with the return of the market,, and a sensitivity measure of beba Beta

i's a sensitivity measure that describes

reference to the return of a finaakcmarket or index. Beta is defined as

_ COV(rit , th)
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Specifically, beta measures the statistical variance or systemic risk of an asset that
cannot be mitigated through diversification.

3.2.1 Rangéased Volatility and Correlation

In this section we show how one can use information extracted from the daily
opening, closing, high and low prices of the stocks to obtain +haged
volatilities and correlations, and then use these predictdieicomputationsof
beta.

Formally, we onsider two assets, where the log of the asset prices follows
a bivariate zero drift Brownian motion, and we allow for the possibility that the

asset returns are correlated

dP = {i,,dW, (3.6)
dM =8,,dZ, (3.7)
aedWel  &0g
Bag 47087 U (38)
cedsu= &l

Eélé(olw)2 dzdwed_e d0  4,,d0b

?&dez (@Zf {0 &medd a0 §

= &Pt CﬁlMt Q PMt ’ (3-9)

whereW andZ are zero drift Brownian MotionsP andM denote logprices of
assédbsaid, Airespectively. dPamnddd asvire c an
continuously compounded returns. Equations (86j) describe the evolution of
log-price processes within a time interval¢ U¢ T,. We think of this interval as
one trading day, but it could be defined over any interval. Our nadseluses a
discrete index for days. The parametefs,, U,,, and},,, Stay constant during
the trading day, but may vary from day to day.

For simplicity we further assume thRtand M are standard Brownian

motions, that isl,, =0,, =1. In this case} ., = U, during the day. We next

! This assumption, used by various authors, is quite innocent if the data is being sitnaled
daily, as the growth rate is negligible in comparison with fluctuations.
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apply Theorem 1of Rogers and Zhou (2008) where the correlation over a fixed

time interval [0,1]} . IS definedas follows:

1

2(1- 2b)(

1
¥ pmt ZESPISMI + HPt + LPt - SPt)(H Mt +LMt - SMI)' (3-10)

where the constanb is equal to 2log2-1@0.38629<¢ H,, ' maxP; and

octel

Hu * [)ral%i(Mo denote the high logrices of asset® andM, L, * mig P, and

L,, * minM(Q denote the low logrices of asset® and M, S, =P(1) and

ocurl

Su =M (@ denote the close legrices of asset® and M. Rogers and Zhou

(2008) construct an unbiased rafmesed correlation estimator which is a
quadratic function of the high, low, and closing ¢)pgice of the two assets, and
which has smallest MSE. Rogers and Zhou (2008) construct various moments for

comelation, subject to the constraint that the estimator has no hjas 4ifl, 0, 1.

This produces a new estimator whose variance is half that of the obvious
estimator based solely on closing prices. They also present simulation evidences
that ths advantage appears to be preserved for other valugsanfd is partly
robust to departures from Gaussian returns. The form of the estimator is,
moreover, insensitive to errors produced by discrete sampling of the underlying
Brownian motions, a problem encountered with some other Fraaged
estimators. Also note that if we are trying to produce an estimate of the covariance
matrix of more than two Brownian motions, estimating each entry by means of
Equation (3.10), then the matrix Wwibe of rank 2 and nonnegative definite.
Another problem identified in the earlier literature with estimators based on high

and low values occurs when we observe the Brownian motions discretdly, at
equally spaced times, say we obsert&™ t sudX(i/N):i=0,.,N} and
L™ 2 inf{X(i/N):i =0,...,N}, and these substantially underestimate the

supremum and overestimate the infimum. A correction is known to deal with this
(see Broadie et al., 1997), but we see that as we only ever need to calculate

H + L, the discretization errors cancel out on average because of the observation

that H- H®™ and L™Y) - L have the same distribution, by symmetry.
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Rogers and Zhou (2008) Theorem 1 and the proof of the Theorem 1 are
described in Appetix A.

We relax the assumption that the time starts at day 0, which implies that
opening prices are not equal to 0. We also relax the standardizatidhahdiv

are standard Brownian motions, that &, =0,, =1 during the day, the

covariance estimatdi,,, from (3.10) is then given by:

o 1
Uppe =§(SPI - OPt)(SMt - OPt)+ 2(1_ 2b)(HPt + LPt - SP[ - OPt)(HMt + LMt - SMt - OMt)’

(3.11)

where O,, and O,,, denote opening legrices for asset® and M, respectively.

All other variables are defined as before.
Based on the covariance estimator in (3.11), the variance estimator for the

asseP is simply

1

thFftzza(SPt_OPt)z-'- ! )(HPt"'LPt' SPt_OPt)z' (3.12)

2(1- 2b
Note that this estimator is a linear combination of Garman and Klass (1980)

volatility estimator, which utilizes the open, close, high, and low prices. The

GarmanKlass estimatohl 3" is defined as
hiS =0510H,, - Ly )’ - 0.019S, (Hp - Ly )- 2Hp Ly )- 038332 . (3.13)

A closeto-close volatility estimator has by definition an efficiency gain (ratio of
estimated variance) equal to 1. Garrkdass volatility estimator is theoretically
7.4 times more efficient than simple cleseclose volatility estimator (see
Appendix B forthe deviation).

Thus far, we have said little about the theoretical properties of the-range
based volatility and correlation estimators introduced by Rogers and Zhou (2008).
One obvious point is that our variance estimator is unbiased under the same
conditons that deliver unbiasedness of the Ganikass variance estimator (see
Appendix B for the unbiasedness properties of the Gaiftass estimator),
because the Rogers and Zhou (2008) and the Gahass variance estimators
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are linear combinations. Nanyelfor the Wiener process defined by Equation
(3.6)(3.9), the GarmaiKlass variance estimator is unbiased only if the drift is

equal to zero. In generaE[hIPMtJ, G® if m, 0. This is a shortcoming of the

GarmanKlass varianceestimator. Conversion to correlation, however, will

introduce bias due to the nonlinearity of the transformation. A similarly related

point is that the estimated variarocevariance matrixg, in general, is not
guaranteed to be positive definite. However, as Brandt and Diebold (2006) point
out, positive definiteness is rarely violated in practice. However, we are not
interested in the theoretical properties of the remaged volatility andarrelation
estimates under abstract conditions surely violated in practice, but rather on their
performance in realistic situations involving small samples, discrete sampling, and
market microstructure noise. As we argued previously, we have reasonpdotsus
the good performance of the radggsed approach, because of both its high
efficiency due to the use of the information in the intraday sample path and its
robustness to microstructure noise.

Finally, from (3.9) we can express the correlatipy, and plugging the

value for G, (3.11) andhlf?

(3.12), the rang®ased correlation is defined as

1

(S - 0n)Su - O )=

2(1- 2b

)(HPt +LPI - SPI - OPI)(HMI +LMt - SMI - OMI)

2 1

> (1 2
\/(SPt - OPt) +M(HPt +LPt - SPt - OPt) \/Z(Srvn - OMI) +

(H me T LMt - SMI - OMI)2

(3.14)

2(1- 20)

where b=2log2- 1@0.38629< and the rest of the variables is in the usual

notation.

3.3 Empirical Results

3.3.1 Data Description

We consider 21 individual stocks in the DAX index (constituents in October
2011) obtained from Datastream, where the data consists of high, low, opening
and closing transaction prices sampled at the daily frequency. For all the stocks
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the sample period runs from January 2, 2003, to September 30, 2011. Table 3.1
reports some sample statistics on the distribution of the 21 ranges of individual
stocks and th DAX index based on daily frequency, in addition to the etose

open squared return (Table 3.2). The range data exhibit significant departure from
the normal distribution for most cases. Interestingly, this departure is smaller
compared with return dataThe most volatile stocks in the sample are
BEIERSDORF and VOLKSWAGEN VZ, whereas the least volatile are E.ON N
and ADIDAS N.
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Table 3.1. Summary statistics of the rangdased volatility measure

Name Mean Skewness  Kurtosis Std.Dev. Max

Components for DAX

ADIDAS N 0.00029 5.924 52.948 0.00055 0.0078
BAYER N 0.00044 16.201 350.263 0.00174 0.0484
BEIERSDORF 0.00040 46.514 2,183.465 0.00608 0.2858
BMW 0.00042 10.411 159.845 0.00105 0.0217
COMMERZBANK 0.00078 9.483 139.557 0.00207 0.0443
DAIMLER N 0.00047 21.180 643.881 0.00148 0.0506
DEUTSCHE BANK N 0.00051 7.021 73.009 0.00125 0.0192
E.ONN 0.00030 7.157 72.151 0.00064 0.0085

FRESENIUS MED CARE 0.00026 26.284 941.423 0.00081 0.0309

FRESENIUS 0.00043 4.385 30.007 0.00070 0.0079
HEIDELBERGCEMENT 0.00070 6.802 76.858 0.00148 0.0268
HENKEL VZ 0.00028 22.071 671.881 0.00085 0.0294
LINDE 0.00030 19.817 592.187 0.00082 0.0276
MAN 0.00055 8.335 108.563 0.00126 0.0247
MERCK 0.00036 13.029 295.675 0.00078 0.0219
MUNICHRE 0.00036 11.570 231.751 0.00100 0.0263
RWE 0.00028 14.838 321.166 0.00078 0.0212
K+S N 0.00057 7.570 91.902 0.00131 0.0244
SIEMENS N 0.00038 38.298 1,660.2 0.00212 0.0931
THYSSENKRUPP 0.00049 5.1367 40.553 0.00091 0.0108
VOLKSWAGEN VZ 0.00070 19.085 523.684 0.00250 0.0803
DAX Index 0.000018 10.264 171.632  0.000436 0.01018

Notes The Table reports the summary statistics for the range data for the sample January 2003 to
September 2011, including altogether 2,228 observations. We repadrtipde mean, skewness,
kurtosis, standard deviation, minimum, and maximum for the rhaged volatility. The range

based volatility estimator is defined in Equation (3.12).
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Table 3.2. Summary statistics of the returrbased (closeo-open) volatility measure

Name Mean Skewness Kurtosis Std. Dev. Max

Components for DAX

ADIDAS N 0.0011 27.798 1,100.853 0.034 1.363
BAYER N 0.0004 1.169 33.900 0.022 0.337
BEIERSDORF 0.0006 27.159 1068.206 0.028 1.092
BMW 0.0003 0.084 7.656 0.021 0.138
COMMERZBANK -0.0006 -0.480 12.796 0.032 0.206
DAIMLER N 0.0001 0.221 10.973 0.023 0.194
DEUTSCHE BANK N -0.0002 0.215 13.168 0.027 0.212
E.ONN 0.0005 0.604 46.286 0.022 0.312
FRESENIUS MED CARE 0.0012 27.612 1090.267 0.027 1.083
FRESENIUS 0.0014 22.483 828.939 0.030 1.110
HEIDELBERGCEMENT -0.0001 -0.031 14.256 0.028 0.188
HENKEL VZ 0.0009 25.341 971.319 0.029 1.104
LINDE 0.0005 0.298 8.859 0.019 0.155
MAN 0.0007 0.245 44.681 0.028 0.421
MERCK 0.0005 -0.390 9.133 0.019 0.101
MUNICHRE 0.0000 0.004 10.369 0.020 0.135
RWE 0.0002 0.152 12.012 0.018 0.155
K+S N 0.0013 -0.145 7.887 0.026 0.150
SIEMENS N 0.0002 -0.327 16.076 0.022 0.216
THYSSENKRUPP 0.0004 -0.174 82.440 0.029 0.489
VOLKSWAGEN VZ 0.0007 -0.546 12.504 0.026 0.180
DAX Index 0.0003 0.0004 9.045 0.015 0.108

Notes The Table reports the summary statistics for the log dme@en returns for the sample
January 2003 to September 2011, including altogether 2,228 observations. We report the sample
mean, skewness, kurtosis, standard deviation, minimum, and maximuhe flag closeo-close

returns.

In Figures 3.1 and 3.2, we first provide a tisexies plot of the daily

realized market variance calculated using the rebased (clos¢o-open) and the
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