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A b s t r a c t

This thesis addresses blood pressure regulation from a mathematical modelling 
perspective. Blood pressure is controlled via a number of different negative 
feedback mechanisms. The baroreflex loop is the most dominant of these 
mechanisms for short-term control of blood pressure, and soft-limiting 
nonlinearities inherent in this loop, are thought to give rise to a slow limit cycle 
oscillation in blood pressure at 0.1 Hz in the human. Measurement of the strength 
of this slow oscillation has been proposed as the basis for the development of a 
diagnostic test o f cardiovascular dysfunction or disease. Due to this hypothesis, 
extensive effort has been invested in measuring the strength of this slow 
oscillation in blood pressure in a range of physiological and pathophysiological 
conditions. However, the momentum of this research has continued with little 
consideration given to the fundamental cause o f this oscillation. The means of 
genesis of the slow oscillation in blood pressure is the major focus of this 
research, and a mathematical modelling approach was undertaken to analyse the 
nonlinear mechanisms that give rise to this slow oscillation.

The theory that the slow oscillation in blood pressure results due to the feedback 
nature of the baroreflex loop, and is a limit cycle oscillation established by the 
nonlinear elements in this feedback loop, is initially investigated by the analysis 
of blood pressure data recorded during different physiological conditions in 
which the strength of the slow oscillation in blood pressure was observed to 
change.

Nonlinear time series analysis methods were used to investigate for the existence 
of a limit cycle oscillation in blood pressure, and so that insight may be attained 
into the effects of changes of the nonlinear characteristics on the slow oscillation. 
Following this, changes in the strength of the slow oscillation were investigated, 
again during different physiological conditions, via a model of baroreflex control 
of the vasculature.



Complications to this analysis, due to the difficulty of developing an analytical 
describing function representation of the nonlinear sigmoid characteristic 
inherent to the baroreflex, led to the investigation o f a range o f describing 
function approximation methods for the sigmoid nonlinearity, which permeates 
the cardiovascular literature.

A nonlinear model o f the complete baroreflex, including the cardiac branch, 
which has often been ignored, was developed. The ability of the model to 
replicate the slow oscillation in blood pressure was assessed. A significant role 
for the heart in the development of the oscillation was identified. An analytical 
analysis technique was developed to investigate the significance of the different 
pathways of the baroreflex involved in the genesis of the slow oscillation. This 
analysis resulted in the development of conditions under which a sustained limit 
cycle oscillation can occur. In particular the role o f mean levels of cardiac output 
and vascular resistance, previously thought to be relatively unimportant, in 
establishing and maintaining sustained oscillations, was highlighted.

The ultimate aim o f this research was to develop the understanding o f the 
mechanisms involved in the genesis o f the slow oscillation, and thereby, to assist 
in the development o f a diagnostic test based on non-invasive measurement of 
the slow oscillation in blood pressure.
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Chapter 1

Introduction

1.1 Introduction

Cardiovascular disease is the leading cause of death in many countries, accounting 
for 40% of all deaths in Ireland, as an example (Codd 2001). High blood pressure 
plays a major role in the development of cardiovascular diseases, including stroke 
and coronary heart disease (Chalmers 1999), yet little is known about the cause and 
effect of high blood pressure and of the means by which it is developed.

In order to avoid the onset of cardiovascular disease, good regulation of blood 
pressure is essential. An understanding of the mechanisms of blood pressure control 
is fundamental to the understanding of the causes of cardiovascular disease, and its 
prevention. Blood pressure control involves the integrated action of various 
regulatory mechanisms that operate over time scales of minutes to days, in order to 
maintain blood pressure at nonnal operating levels.

Blood pressure is controlled in the long-term through the regulation of the fluid and 
electrolyte balance (also related to blood volume control). The short-term control of
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blood pressure is specifically the duty of the autonomic neural mechanisms, which 
effect changes in blood pressure on a moment-to-moment basis by causing rapid 
changes in heart rate and in the resistance of the blood vessels. More recent research 
also indicated a possible role for neural mechanisms in the long term control of 
blood pressure (Malpas 2004).

Periodicities in the cardiovascular variables, blood pressure and heart rate, were 
identified almost 300 years ago (Hales 1733). However, it was the suggestion, that 
certain frequencies present in these cardiovascular signals were indicative of 
autonomic nervous function, which stimulated great clinical interest in using 
measures of cardiovascular variability as a diagnostic tool (Akselrod 1981; Parati 
1994; Parati 1995; Parati 1998; Parati 2001). Extensive research has since been 
undertaken to quantify the changes in these periodicities of blood pressure and heart 
rate over a range of physiological and pathophysiological conditions (Inoue 1991; 
Bigger 1992; Teich 2000).

Of particular interest is an oscillation in blood pressure that manifests itself at 0.1 Hz 
in the human, otherwise known as the slow oscillation in blood pressure. 
Measurement of the strength of this oscillation has been proposed as the basis for the 
development of a diagnostic test of cardiovascular dysfunction or disease (Malliani
1991). It is hypothesised that measurement of the strength of this oscillation may 
provide a surrogate, clinical measure of sympathetic nerve activity (SNA) (Pagani 
1986). There is a growing body of evidence that suggests that the over-activity of the 
sympathetic nervous system plays a critical role in the development of hypertension 
(Goldstein 1981; Grassi 1998; Grassi 1998). Therefore, a noninvasive, surrogate 
measure of SNA would be of great value to the clinical assessment of subjects at risk 
of cardiovascular disease, especially considering the ease with which electronic 
measurement of blood pressure (and other physiological variables) is currently 
available.
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The momentum of this clinical research into the slow oscillation in blood pressure 
has, however, continued without due reflection and understanding of the 
fundamental causes of this variability and without reference to the possibility that 
not all changes in cardiovascular variability are indicative of changes in autonomic 
function (Malpas 2002). As a result, the mechanisms that give rise to this slow 
oscillation, and the reasons for its existence, are still strongly disputed. Two main 
theories (De Boer 1987; Cooley 1998) exist that describe the conflicting hypotheses 
that the slow oscillation is generated either (a) by a central nervous oscillator or (b) 
as a result of the closed-loop feedback nature of the baroreflex control mechanism.

The research, described in this thesis, performs a detailed analysis of the slow
oscillation in blood pressure and the mechanisms that are responsible for the
generation of this oscillation. It is proposed that a mathematical modelling approach 
to the analysis of the blood pressure controlling mechanism may enable insight into 
the specific mechanisms responsible for the genesis of this oscillation.

Mathematical models may be useful in determining the relative importance of 
various factors involved in producing cardiovascular variability, in determining the 
nature of their effect, and in allowing predictions be made on the behavior of the 
oscillations under conditions that may be difficult to test experimentally.

Considerable evidence exists to suggest that observed nonlinear relationships
between the variables of cardiovascular control are inherently involved in
developing a limit cycle oscillation -  the slow oscillation in blood pressure. The 
nonlinear control of blood pressure is therefore a central theme of the thesis and 
leads to definitive conclusions regarding the origin, and characterisation of, the slow 
oscillation in blood pressure.
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1 .2  O b je c t i v e s  o f  t h is  r e s e a r c h

The primary goal of this research is the advancement of the present understanding of 
the mechanisms of blood pressure control that give rise to the slow oscillation in 
blood pressure. It is proposed that only attainment of this insight will enable 
conclusions to be drawn regarding the usefulness of this oscillation as a diagnostic 
measure.

• The initial aim of this work was to examine both theories in relation to the 
genesis of the slow oscillation, by examining the physiological evidence 
available in support of both and through the examination of feedback models of 
the baroreflex. The theory that the oscillation is a feedback oscillation around the 
baroreflex feedback loop has received most currency in recent years (De Boer 
1987; Ringwood 2001). However, recent studies that have supported the 
baroreflex feedback hypothesis, have proposed alternative descriptions of the 
feedback mechanism and hence, the means of oscillation genesis differ.

• A second objective looks at resolving the correct structure of the baroreflex 
mechanism. Some authors have proposed that the oscillation results from a linear 
process (Burgess 1997). In this case, the requirement for strict relationships 
between the parameters of the different components of the feedback loop, would 
imply that the slow oscillation is deliberate and may have a functional purpose 
and that the central nervous system would go to great lengths to maintain this 
oscillation. An alternative hypothesis proposes that the oscillation arises as a 
result of the inherent characteristics of the blood pressure control mechanisms 
(Ringwood 2001) and hence is not deliberate. Nonlinear characteristics that are 
well established to exist in blood pressure controlling mechanisms (Iriki 1972; 
Komer 1972) may give rise to a limit cycle oscillation (Ringwood 2001) and this 
hypothesis is investigated in this thesis.
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• A further objective examines the role of the heart in the genesis of a slow 
oscillation via the baroreflex. Many studies (Burgess 1997; Ringwood 2001) of 
the slow oscillation have based their analysis on the baroreflex control of 
vascular resistance only and have ignored baroreflex control of the heart. The 
assumption that the heart is not involved in the genesis of the slow oscillation in 
blood pressure has been pressed by a number of authors (Malpas 2000; Liu
2002). Considering the role of the heart as the principal cardiovascular 
controller, it is proposed that an analysis of the mechanisms of blood pressure 
control excluding the heart is incomplete. A major focus of this study is the 
analysis of the role of the heart in the genesis of the slow oscillation in blood 
pressure.

• Finally, it is also an objective of this thesis to, where possible, enumerate the 
conditions for development of a slow oscillation and to develop algebraic 
measures for oscillation conditions, under both nominal situations and also any 
substantial changes due to experimental intervention or pathologies. The scope 
of this objective is obviously limited by the quantity of experimental data 
accessible to the author either directly, or through experimental results reported 
in the literature,

1.3 Contributions of this thesis

The main contributions of the thesis are as follows:

• A comprehensive review of the physiological literature is undertaken and 
critiqued in Chapter 2, in order to answer the question as to whether the slow 
oscillation is a feedback oscillation or not. In addition, this review documents all 
blood pressure controlling mechanisms, which operate on time scales relevant to 
the slow oscillation in blood pressure.
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• The possible existence of a limit cycle oscillation is analysed using techniques 
derived from chaotic analysis. This investigation is the focus of Chapter 3 and 
the results of this analysis were presented at the IF AC Symposium on Modelling 
and Control of Biomedical Systems (Kinnane 2003).

• The feedback oscillation theory and the limit cycle hypothesis were investigated 
with regard to relative changes in the central nervous system and vasculature, 
which result from various interventions and pathologies. This is unique, since 
previous work has not considered the importance in (particularly gain) variations 
in the vasculature, focusing instead on the controlling mechanism of the CNS. 
This analysis is presented in Chapter 4 and is under revision following
submission to the American Journal of Physiology (Kinnane 2004).

• Inherent to baroreflex control are the sigmoid baroreflex curves, for which
describing functions, facilitating stability analysis, are difficult to develop. 
Describing function approximations for the nonlinear sigmoid characteristic, 
common to physiological systems, were investigated and extended in this 
chapter. This work was presented at the 2004 Irish Signals and Systems 
Conference, in Belfast (Kinnane 2004) (received Best Control Paper award).

• A comprehensive mathematical model that accurately describes the short-term 
control of blood pressure, including the vascular and heart components, is also a 
major contribution of this thesis. Clearly, an accurately parameterized model can 
play an important role is scenario testing and examination of the likely variation 
in, for example, the slow oscillation in blood pressure, under a variety of 
circumstances, including pathologies. This work has been submitted for 
presentation at the 2005 IF AC World Congress in Prague (Ringwood 2005).

• The final major contribution of the thesis is the development of an analytical
technique, which allows quantification of the amplitude and frequency of limit
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cycle oscillations (developed through a combination of heart and vasculature 
paths) in relation to physiological parameters. This is significant, since 
traditional describing function techniques allow only limited (lumped series or 
parallel) combinations of nonlinear characteristics. A description of this analysis 
is to be submitted for future publication.

1.4 Thesis layout

This thesis follows the progression of the research necessary to answer the issues 
posed in Section 1.2. The logical progression of the thesis is as follows.

Chapter 2 (Blood pressure control) provides a detailed description of the 
mechanisms of blood pressure control in the short-, medium- and long-term. The 
components of these mechanisms are examined and the relationships between the 
many cardiovascular and neural variables that might affect the control of blood 
pressure are documented. The multiple periodicities of the cardiovascular signals, 
and the methods of quantification of the ‘variability’ of these signals are reviewed. 
Conclusions drawn from these measures of variability are examined. The different 
theories that have been hypothesised to describe the means of genesis of these 
periodicities are discussed and the experimental evidence in support of these various 
theories is presented. Following this, the mathematical models that have been 
developed to describe the periodicities of cardiovascular variables are documented 
and the physiological accuracy of these models, considering what was introduced in 
the chapter to this point, is assessed.

Following this review, Chapters 3 and 4 contain detailed analysis pertaining to the 
possible development of feedback oscillations through the peripheral resistance 
system. In particular, Chapter 3 (Chaotic analysis of blood pressure signals) 
attempts to gain insight into the nonlinear mechanisms responsible for a limit cycle
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and to confirm, using measures of chaotic behaviour, that the slow oscillation is, 
indeed, a limit cycle. Chapter 4 (Predicting the slow oscillation in blood pressure 
using nonlinear analysis of a model of baroreflex control of peripheral 
resistance), on the other hand, looks at the relative changes which may occur in both 
the central nervous system and the vasculature in mediating oscillations via a limit 
cycle and examines the likelihood of increases/decreases is oscillation amplitude in 
relation to a set of interventions and pathologies. Central to the analysis of Chapter 4 
is the requirement for a describing function for the sigmoidal characteristic typical of 
neural processing mechanisms. Chapter 5 (Developing the describing function 
approximation) documents a number of describing function approximation methods 
that can be used to overcome the difficulty of calculating describing functions for 
the sigmoid nonlinearity, common to cardiovascular control.

Chapters 6 and 7 now expand the consideration to include the heart as a mediating 
influence of slow oscillations. In particular Chapter 6 (Modelling the complete 
baroreflex) develops a comprehensive nonlinear model of the complete baroreflex, 
including both cardiac and peripheral resistance branches. The development of the 
model, based on experimentally derived characteristics of the components of the 
baroreflex, is documented. Chapter 7 (Nonlinear analysis of the complete model) 
then, using the model of Chapter 6 as a basis, develops an analytical technique 
(broadly similar to a traditional describing function analysis), which may be used to 
algebraically determine the amplitude and frequency of limit cycle oscillations. The 
technique of Chapter 7 utilises a slightly simplified model of that developed in 
Chapter 6, in order to provide tractable solutions, but focussing on those components 
most likely to play a significant role in feedback oscillations.

Finally, Chapter 8 (Conclusions) presents the conclusions developed through the 
course of this research. The possible significance and impact of the various 
conclusions is assessed and directions for future work are indicated.
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Blood pressure control

Chapter 2

2.1 Blood pressure and homeostasis

The regulatory mechanisms of the body can be understood in terms of a single, 
shared function: that of maintaining constancy of the internal environment. This 
state of relative constancy of the internal environment is known as homeostasis (Fox
1996). The regulation of blood pressure may be seen as an integral part of 
homeostasis (Guyton 1991).

Blood pressure is the force exerted by blood against any unit area of blood vessel 
wall (Sherwood 1997). Both the heart and resistance of the blood vessels have the 
capacity to facilitate the control of blood pressure, via the ‘Ohm’s law’ relationship:

P h { ( )  =  <l c ( f ) r>p{t ) (2-1)
where,

pb (/) is mean arterial blood pressure, (mmHg) 
qi (/) is cardiac output (ml/min), and
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rt (l) is total peripheral resistance of the vasculature system (mmHg.min/ml) 
and where,

9c(t) = fc { t ) vc{t) (2-2)
where,

f c (t) is the cardiac rate (beats/min), more commonly termed heart rate, and 
vc (t) is the cardiac volume, more commonly termed stroke volume 
(ml/beat)

The control of blood pressure involves the adjustment of these parameters, through 
negative feedback mechanisms, to maintain blood pressure close to a set point value 
(Parati 1995), thereby contributing to the maintenance of homeostasis.

Blood pressure must be constantly high enough to ensure sufficient driving pressure 
so that the brain and tissues of the body receive adequate blood flow. However, it is 
important that blood pressure is closely regulated to guard against sustained 
increases or decreases in blood pressure, both of which are strongly correlated with 
the onset of cardiovascular disease (Fox 1996).

A healthy blood pressure is defined by the World Health Organisation as around 
120/80 mmHg (Chalmers 1999), where the higher value is the blood pressure value 
at the peak of systole (the contraction of the heart) and the lower value is the blood 
pressure value during diastole (the filling of the heart).

However, blood pressure control mechanisms may not always function correctly and 
may be unable to completely compensate for sustained changes in pressure. Blood 
pressure may be above the normal range in the case of hypertension (140/90 mmHg) 
(Chalmers 1999) or below the normal range in the case of hypotension (100/60 
mmHg) (Chalmers 1999). Sustained hypotension results in, amongst other things, 
circulatory shock; inadequate blood delivery to the tissues, whereas sustained
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hypertension can cause an abundance of cardiovascular disease including heart 
failure, stroke or renal failure (Fox 1996).

Blood pressure regulation comprises the complex and sophisticated integr ated action 
of various regulatory mechanisms which operate over a wide time scale range of 
between seconds and days (Guyton 1987). The first line of defence against a sudden 
pressure change is served by the neural mechanisms (Guyton 1987) which have the 
capability to facilitate change of the blood pressure effectors, the heart and 
vasculature (via Equation 2.1), within seconds. Locally acting, and as yet poorly 
understood, paracrine mechanisms also participate in this short-term regulation 
(Persson 1992; Just 1994; Stauss 2000) (see Section 2.2.3.2). Although dependent on 
the class of hormone, a greater latency is generally associated with the humoral 
mechanisms and the full influence of most hormones is experienced over a period of 
minutes to hours (Guyton 1987) (see Section 2.2.3.2). The long-term control of 
blood pressure is specifically the duty of the kidney, which plays the fundamental 
role of maintaining fluid balance and hence, blood volume and blood pressure 
(Guyton 1991) (see Section 2.2.3.3). The effectors of blood pressure and the 
mechanisms by which they are affected are introduced in the subsequent sections, 
with the emphasis placed on the short-term control of blood pressure.

2.1.1 The short-term control of blood pressure and the 
baroreflex

Blood pressure is regulated in the short-term predominantly by negative feedback 
neural mechanisms that control blood pressure, as a primary function in the case of 
the arterial baroreflex mechanism and as what may be considered an ancillary 
function in the case of the cardiopulmonary and chemoreceptor mechanisms. The 
affects of the potent paracrine, nitric oxide, released in response to shear stress along 
the blood vessel walls, are also felt within seconds (Rubanyi 1990). Though these
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effects are primarily experienced locally, there is growing evidence of overlap 
between nitric oxide and the baroreflex mechanism (Malpas 2002).

The structure, significance and components of the arterial baroreflex feedback 
mechanism are well documented in the physiology literature. The cardiopulmonary 
receptor and chemoreceptor mechanisms are less well understood, but because they 
share neural pathways and impact on the same neural centres. A level of cooperation 
with the baroreflex in the short-term regulation of blood pressure has been proposed 
for these mechanisms (Persson 1989; Eckberg 1992; Komer 1995) (see Section 
2.2.4). All of these cardiovascular reflex mechanisms are negative feedback 
mechanisms that are triggered by afferent nerve signals, which transport sensory 
information from blood pressure sensors that originate at different sites in the 
circulatory system. The arterial baroreflex is generally accepted as the most 
influential of these mechanisms (Sherwood 1997) and capable of dominating 
cardiovascular function (Beme 1996).

The arterial baroreflex is a negative feedback mechanism that works to stabilise 
fluctuations in arterial pressure, by changing heart rate and the resistance of the 
vasculature, via the central nervous system (Guyton 1987). The baroreflex feedback 
loop is illustrated in Figure 2.1.
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Central Are

Afferent 
nerve activity Parasympathetic 

.nerva activity
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F ig u r e  2 .1 :  T h e  b a r o r e f l e x  f e e d b a c k  lo o p .

Pressure sensors, known as baroreceptors, constantly monitor mean arterial pressure 
within the circulatory system (Eckberg 1992). A change in pressure will induce a 
change in the firing rate of the afferent nerve travelling to the central nervous system 
(CNS). Here, the afferent signal is processed and efferent nerve signals of varying 
frequency and amplitude are released (Deutsch 1993). The efferent signals are the 
signals of the autonomic nervous system, which innervates the heart, via 
parasympathetic nerve activity and sympathetic nerve activity (SNA), and the blood 
vessels of the vasculature via SNA alone (Sherwood 1997). In response to changing 
efferent nerve signals, heart rate, stroke volume and total peripheral resistance are 
adjusted so as to regulate blood pressure according to Equations 2.1 and 2.2.

It is traditionally thought that the baroreflex is of little or no importance in the long­
term regulation of blood pressure (Guyton 1987), although recent experimental 
studies have challenged this theory (Lohmeier 2001; Thrasher 2002; Barrett 2003; 
Lohmeier 2003; Sleight 2004; Thrasher 2004). However, the importance of the
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baroreflex to the momentary control of blood pressure, so as to keep blood pressure 
close to the normal level and thus constantly maintain homeostasis, is very evident 
when considering the situation when the baroreflex loop has been opened. As is 
shown in Figure 2.2, the fluctuations of blood pressure increase substantially when 
the baroreflex loop is disabled by opening of the loop at the afferent nerves.
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F ig u r e  2 .2 :  A  6 - h o u r  r e c o r d in g  o f  m e a n  a r te r ia l  b l o o d  p r e s s u r e  in  th e  r a t  w i th  a n  in t a c t  b a r o r e f l e x  
lo o p  ( to p )  a n d  w i th  th e  b a r o r e f l e x  lo o p  e l im in a te d  ( b o t to m ) .  A d a p t e d  f r o m  R ic h a r d s o n  et a l

( R ic h a r d s o n  1 9 9 8 ) .

Since the seminal work of Koch (Koch 1931), the standard approach for 
quantification of baroreflex responses has been the development of the so-called 
“baroreflex curves”. The responses of heart period (Eckberg 1980), heart rate 
(Malpas 1997) and SNA (Iriki 1977) describe a nonlinear sigmoidal shaped 
characteristic when plotted against invoked changes in blood pressure, as shown in 
Figure 2.3 for the blood pressure-SNA and blood pressure-heart rate baroreflex
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curves. Baroreflex curves commonly appear in the physiology literature, calculated 
during different experimental situations.
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F ig u r e  2 .3 : T h e  b a r o r e f l e x  c u r v e s  r e la t in g  r e n a l  s y m p a th e t ic  n e r v e  a c t iv i ty  ( n o r m a l iz e d  u n i t s  (n .u .) )  
a n d  h e a r t  r a te  ( b e a ts /m in  ( b p m ) )  to  m e a n  a r te r ia l  b lo o d  p r e s s u r e  o f  t h e  r a b b i t .  S N A  w a s  n o r m a l i s e d  to  

th e  m a x im u m  S N A  v a lu e  e v o k e d  b y  s m o k e  in h a la t io n ,  1 0 0  n .u .
T a k e n  f r o m  B a r r e t t  e t a l  ( B a r r e t t  2 0 0 3 ) .

The static input-output relationship between blood pressure perturbations in the 
vicinity of the baroreceptors (input to the baroreflex) and arterial blood pressure 
(output of the baroreflex) also approximates a sigmoidal curve (Sagawa 1965; 
Allison 1969; Angell-James 1970; Kent 1972; Yamazaki 1989). The nonlinear 
sigmoidal relationship is a commonly observed characteristic in many areas of 
physiology (Coleridge 1981; Sun 1998; Gu 2001) and is otherwise referred to as the 
logistic (Kent 1972) or Hill curve (Abbiw-Jackson 1998).

The discovery of these sigmoidal characteristics, along with other nonlinear 
characteristics, implies that the inherent nonlinear nature of cardiovascular control 
systems is well established by research physiologists (Iriki 1977; Eckberg 1980; 
Head 1987; Seals 1993; Ursino 1998; Rudas 1999). Systems that comprise nonlinear 
elements are capable of a wide range of nonlinear phenomena, such as sustained 
limit cycle oscillation (Slotine 1990). Hence, these static nonlinear baroreflex curves 
have stimulated much interest and have been strongly linked to the nonlinear
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behaviour o f blood pressure signals, particularly the 0.1 Hz oscillation in blood 
pressure (Ringwood 2001), which is the focus o f this thesis.

Knowledge o f both the static and dynamic characteristics o f the baroreflex is 
essential for the understanding of the means o f blood pressure regulation via the 
baroreflex. Hence, the dynamical nature o f the baroreflex is also characterised using 
frequency response plots o f the open-loop baroreflex (Bertram 1998; Liu 2002) {i.e. 
the frequency response o f blood pressure to the stimulation o f the sectioned afferent 
nerves). The dynamic characteristics o f the (almost) full baroreflex loop (central arc 
+ peripheral arc) have been characterised by means o f the frequency response 
analysis o f blood pressure to electrical stimulation o f the afferent nerves emanating 
from a baroreceptor location (Bertram 1998; Liu 2002). Figure 2.4 illustrates the 
dynamic low-pass characteristics of the baroreflex loop o f the rabbit.
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F ig u r e  2 .4 :  T r a n s f e r  c h a r a c te r i s t i c s  o f  th e  b a r o r e f l e x ,  c a l c u la t e d  a s  th e  r e s p o n s e  o f  b l o o d  p r e s s u r e  to  
a f f e r e n t  n e r v e  s t im u la t io n .  A d a p t e d  f r o m  L iu  et al ( L iu  2 0 0 2 ) .

The complete baroreflex may be assumed to combine the properties o f the so-called 
neural arc (from blood pressure to autonomic nervous activity) and peripheral arc 
(from autonomic nervous activity to blood pressure) (Ikeda 1996), which are 
commonly characterised by their transfer functions (Ikeda 1996; Kawada 1997; 
Kawada 2000; Kawada 2001). Other arcs or sections o f the baroreflex loop, which
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may be subsections of these two major half arcs, have also been characterised by 
their transfer function characteristics (e.g. the central arc from afferent nerve activity 
to efferent nerve activity (Kezdi 1968)). These different arcs of the baroreflex loop 
are illustrated in Figure 2.1.

Both the dynamic and static characterisations of the baroreflex are documented and 
analysed in detail in the subsequent sections of this chapter and in Chapter 6. 
Knowledge of these characteristics is essential to the understanding of how the 
baroreflex regulates blood pressure in the short-term and to the understanding of the 
0.1 Hz oscillation in blood pressure.

The reason for, and genesis of, this 0.1 Hz oscillation in the blood pressure of the 
human, is a highly contentious issue (Malpas 2002). However, all theories share a 
common agreement that the neural pathways of the baroreflex are influential in the 
development of the oscillation (De Boer 1987; Cooley 1998; Malpas 2002). The 
baroreflex feedback theory (Section 2.3.3.2), which hypothesises that the oscillation 
occurs as a result of the feedback nature of the baroreflex mechanism, has received 
most currency of late (Malpas 2002). The slow oscillation, evident at 0.1 Hz in the 
human, varies with frequency for animals of different size (Ringwood 2001). 
Significantly, with regard to this research, this oscillation is apparent at 0.3 Hz in the 
rabbit (Janssen 1997). This slow oscillation in blood pressure has a variety of names 
and has been termed, amongst others, the Mayer wave (Mayer 1876), third order 
wave (Penaz 1978), low-frequency oscillation (Ringwood 2004) and the mid- 
frequency oscillation (Janssen 1997) by different research groups. For consistency, 
this oscillation is referred to as the slow oscillation throughout this thesis.

The physiological components involved in the regulation of blood pressure, and 
hence those contained in the mechanisms responsible for the genesis of the slow 
oscillation, are detailed in the subsequent sections of this chapter.
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2.2 The physiological components in blood 
pressure regulation

The description of the components involved in blood pressure regulation commences 
with a description of the sensors where a change in blood pressure, which invokes a 
control action, is sensed.

2.2.1 Blood pressure sensors

Blood pressure is monitored by different groups of sensors, specifically the 
baroreceptors, the chemoreceptors and the cardiopulmonary receptors. The 
baroreceptors form the sensors of the baroreflex feedback mechanism and constantly 
monitor blood pressure, with the responsibility of instigating regulatory manoeuvres 
in the case of blood pressure alterations.

F ig u re  2 .5 :  ( l e f t )  T h e  a n a to m y  o f  b a r o r e c e p to r  a r e a s ,  p u b l i s h e d  b y  A n to n io  S c a r p a  in  1 7 9 4  (S c a r p a  
1 9 7 4 )  a n d  t a k e n  f r o m  E c k b e r g  a n d  S le ig h t  ( E c k b e r g  1 9 9 2 ) .  ( r ig h t)  T h e  lo c a t  io n  a n d  s t r u c t u r e  o f  th e  

b a r o r e c e p to r s  t a k e n  f r o m  G u y to n  ( G u y to n  1 9 8 7 ) .
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The baroreceptors are mechanical stretch receptors, with spray like nerve endings, 
that are located in the walls of major arteries (Eckberg 1992). Baroreceptors are 
located at the aortic arch (aortic arch baroreceptor), through which blood is 
transported to the tissue of the body, and along the carotid sinus (carotid sinus 
baroreceptor), through which blood is transported to the brain. The locations of the 
baroreceptors are shown in Figure 2.5.

Baroreceptors are sensitive to changes in both mean arterial pressure and pulse 
pressure, and continuously generate action potentials in response to the ongoing 
pressure within the arteries (Sherwood 1997). Afferent nerves, shown in Figure 2.5, 
carry this sensory information to the CNS. These signals travel from the aortic arch 
baroreceptors through the vagus aortic depressor nerve (ADN) and from the carotid 
sinus baroreceptors through the carotid sinus nerve (Sherwood 1997) to the nucleus 
tractus solitarius (NTS) of the CNS. However, the neurotransmitter released by the 
afferent nerves at the NTS is not known with certainty (Eckberg 1992) (see Section
2.2.2.1 for a discussion of the nerves and nerve junctions).

Other receptors form the sensors of other reflex pathways that are also capable of 
affecting blood pressure. The most significant of these are the chemoreccptors and 
the cardiopulmonary receptors.

The cardiopulmonary receptors exist in the cardiac chambers and pulmonary 
vasculature and form the sensors of the cardiopulmonary reflex loop (Johnson 1998). 
The function of this reflex, and hence the cardiopulmonary receptors, is poorly 
understood with their best-understood function appearing to be the sensing of total 
blood volume (Richardson 1998). The cardiopulmonary afferent fibers converge on 
the same neural sites in the CNS as the baroreceptors (Persson 1989). Hence, it has 
been proposed that the sensory nerve information emanating from the 
cardiopulmonary receptors interacts with the central nerve centres which process
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information emanating from the baroreceptors and, thereby, the baroreflex 
regulation of blood pressure (Persson 1989).

The chemoreceptors are sensory receptors that monitor the chemical composition of 
blood. The principle function of the chemoreceptors is to incite a change in the rate 
of breathing through the chemoreceptor reflex (Guyton 1987). Chemoreceptors are 
located in close vicinity to the baroreceptors of the carotid sinus and aortic arch. 
Physiological conditions, which result in an altered chemical composition of the 
blood, such as hypoxia (lowered 0 2 availability), acidosis (an increase in H+) or 
hypercapnia (excess C 02), stimulate the chemoreceptors (Tortora 2003). It is 
proposed that the chemoreceptors and baroreceptors interact in response to 
stimulation and that chemoreceptor input has a suppressive effect on the baroreflex 
blood pressure mechanism (Marshall 1981).

2.2.1.1 Models of the baroreceptors

Both the static and dynamic characteristics of the baroreceptors have been 
characterised and presented in the literature.

The dynamic transduction properties of the baroreceptors can be characterised by the 
frequency response characteristics of afferent nerve activity to blood pressure 
perturbations. To attain accurate characteristics of this relationship, experiments 
should be performed in the open-loop situation to avoid the effects of the closed- 
loop feedback regulatory mechanism. However, many studies of the baroreflex via 
the baroreceptors have been performed under closed-loop conditions because the 
isolation of the baroreceptors was considered difficult (Thoren 1977; Brooks 1995).

Other authors evaluated baroreceptor properties under open-loop conditions by 
isolating and recording the activity of the carotid sinus nerve (Franz 1971). 
However, the difficulty of this experimental procedure and the concomitant effects 
of the chemoreceptors may have resulted in erroneous results (Sato 1998). Sato et al
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(Sato 1998) endeavoured to precisely characterise the transduction properties of the 
baroreceptors of the rat by calculating the transfer function from blood pressure to 
ADN (aortic depressor nerve) activity.

The baroreceptor gain and phase plots for the rabbit, evaluated by Sato et al (Sato 
1998), are shown in Figure 2.6.

Frequency (Hz)
F ig u r e  2 .6 :  T h e  g a in ,  n o r m a l iz e d  to  th e  v a lu e  a t  th e  lo w e s t  f r e q u e n c y ,  a n d  p h a s e  p lo t s  a v e r a g e d  

b e tw e e n  b l o o d  p r e s s u r e  p e r tu r b a t io n s  a n d  a f f e r e n t  n e r v e  a c t iv i ty .  T a k e n  f r o m  S a to  e t a l  ( S a to  1 9 9 8 ).

These results indicate that the baroreceptors show high-pass or derivative 
characteristics up to the cut-off frequency of between 3 and 4 Hz and display low- 
pass characteristics at higher frequencies (Sato 1998).

The characteristics of the baroreceptors, characterised by the response of the afferent 
nerves to step changes in blood pressure have been well-documented in the literature
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(Bronk 1932; Landgren 1952; Landgren 1952; Warner 1958; Coleridge 1981; Igler 
1981). The steady-state response of afferent nerve activity to step changes in blood 
pressure inscribes a nonlinear sigmoid characteristic (Landgren 1952; Sato 1998) of 
similar shape to the baroreflex curves (see Sections 2.2.2.2 & 2.2.3.1). The 
sigmoidal relationship between blood pressure and the firing rate of the afferent 
nerve is shown in Figure 2.7. The sigmoidal characteristic described is different for 
rising and falling pressures, exhibiting hysteresis. This characteristic was observed 
for the response of afferent nerves emanating from the carotid sinus (Angell-James 
1970) and from the aortic arch (Coleridge 1981). During periods of hypotension and 
hypertension the response curve was reported to shift, or reset, to the left or right 
respectively (Krieger 1970; Brown 1980; Igler 1981). Figure 2.7 illustrates the 
characteristics of hysteresis (Figure 2.7 (top)) and resetting (Figure 2.7 (bottom)).

The sensory neural activity recorded along the afferent nerve displays a trait termed 
“adaptation” by Taher et al (Taher 1988) which describes the tendency of the 
baroreceptor firing rate to decay with time after a sudden step change in pressure 
(Landgren 1952). The level of afferent nerve activity is also sensitive to both the 
mean level of blood pressure and the rate of change of blood pressure, a 
characteristic included in some models (Warner 1958; Seidel 1998).

Comprehensive models of the baroreceptors, developed using differential equations 
to describe a number of the characteristics described here, were developed by Taher 
et al (Taher 1988) and Ottesen (Ottesen 1997).

2.2.2 The central nervous control of blood pressure

The nervous system may be organised into the central nervous system (CNS), 
consisting of the brain and spinal cord, and the peripheral nervous system (PNS), 
consisting of nerve fibers that carry information between the CNS and other parts of
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the body. The nervous system is a highly complex and integrated ‘wired’ system 
(Sherwood 1997).
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Figure 2.7: The sigmoidal relationship between perturbations o f  blood pressure at the carotid sinus 
and the firing rale of the afferent nerves. Adapted from Coleridge (Coleridge 1981) (top) and Igler

(Igler 1981) (bottom).
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Only lhat part o f  the nervous system involved in the control o f  blood pressure is 
introduced in this section. Other nervous systems (such as the somatic motor system) 
are excluded for brevity and because they do not play a significant role in the 
regulation o f  blood pressure. The afferent division o f  the peripheral nervous system 
and its role as transporter o f  sensory information from the blood pressure sensor 
sites to the central nervous system was described in Section 2.2.1. Figure 2.8 shows 
the divisions and pathways o f  the nervous system specifically involved in the 
regulation o f  blood pressure.

Figure 2.8: Central nervous control o f  blood pressure. 
Adapted from Sherwood el al (Sherwood 1997).
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2.2.1.2 The central nervous system

The central nervous system (CNS), as its name suggests, is central to all neural 
mechanisms and is the central decision-making unit where information received via 
the afferent nerves, is processed and transmitted to the required destinations via the 
efferent nerves. The CNS is responsible for the maintenance of a significant amount 
of functions engaged in homeostasis and is integral to the constant regulation of 
blood pressure.

Many different regions of the CNS are involved in the short-term baroreflex 
regulation of blood pressure. The afferent nerves from the receptor sites (see 
Section 2.2.1) project to the nucleus tractus solitarius (NTS), where much of the 
processing of information is carried out and from where information is sent through 
a complex circuitry network to other areas of the brainstem. The parasympathetic 
and sympathetic outflows are sourced from the nucleus ambiguus and rostral 
ventrolateral medulla (RVLM) respectively (Richardson 1998).

Due to the complexity and poor understanding of the internal systems of the CNS, it 
is often viewed as a black box (Seidel 1997). Hence, models of the CNS are usually 
developed using input and output data. These models either characterise the 
relationship between the afferent and efferent nerve activities, termed the central arc, 
or between a stimulus that activates the afferent nerves (constant blood pressure 
perturbations) and the efferent nerves (these models are documented in Sections
2 .2 .2.3 &  2 .2 .2 .4).

2.2.1.3 The autonomic nervous system

The peripheral nervous system is divided into nerve fibers that cany information to 
the CNS, the afferent nerves, and nerve fibers, which carry information away from 
the CNS, the efferent nerves. Instructions from the CNS are transmitted via the
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efferent division to the effector organs -  those organs that carry out the desired 
effect (Sherwood 1997). The autonomic nervous system is that part of the efferent 
division of the peripheral nervous system that innervates the heart and the smooth 
muscle of the vasculature, which may facilitate changes in blood pressure (Equation 
2.1). The autonomic nervous system may be further subdivided into the 
parasympathetic nervous system and the sympathetic nervous system, which are 
responsible for the activation/deactivation of a range of subsystems. Usually both 
these systems are constantly active, and hence, constantly influence blood pressure. 
This ongoing activity is called sympathetic or parasympathetic tone or tonic activity 
(Sherwood 1997). The activity of these systems is increased or decreased from this 
mean level as is required.

Both the parasympathetic and sympathetic nervous systems are composed of two 
successive groups of fibers, which synapse with each other at the ganglionic junction 
(Sherwood 1997). These fibers are the preganglionic fibers, which originate in the 
CNS, and postganglionic fibers, which innervate the effector organs and may be 
either myelinated (coated in myelin) or unmyelinated. The myelinated fibers allow 
for a faster propagation rate along the nerve (Sherwood 1997). A chemical substance 
known as a neurotransmitter is released at the junctions of the fibers and at the nerve 
endings attached to the effector organs. The two most common neurotransmitters are 
acethylcholine and norepinephrine and the fibers that release them are known as 
cholinergic and adrenergic fibers respectively. Different receptor types are 
responsive to the neurotransmitters at the synaptic junctions of the postganglionic 
fibers and effectors (Sherwood 1997). Both the parasympathetic and sympathetic 
nerves have (different) time-delays associated with them, due to the conduction 
delay along the nerve fibers (Bertram 1998) and due to the delay at the synaptic 
junctions (Seidel 1997). The time taken for a nerve signal to transit along the nerve 
depends on the length of the nerve in question and hence these time-delays vary 
considerably between species of different size (Ringwood 2001).
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S ym path etic  nerve a c tiv ity

The sympathetic nervous system, is a widely distributed nervous system, which 
innervates a wide range of organs (Berne 1996). SNA provides one of the 
fundamental aspects in the control of blood pressure (Malpas 1998). The 
sympathetic nerves function as one of the efferent pathways of the baroreflex loop, 
innervating both the smooth muscle of the blood vessels, the sino-atrial (SA) node 
and the muscles of the heart. The sympathetic nervous system also affects blood 
pressure through its ancillary affects on the endocrine system (Sherwood 1997) (see 
Section 2.2.3.2).

The sympathetic nerves generally consist of short cholinergic preganglionic fibers 
and long adrenergic postganglionic fibers. Preganglionic sympathetic fibers may be 
either myelinated or unmyelinated and as a result may have widely varying 
conduction velocities (Polosa 1967; Coote 1988), calculated as between 3 and 5 m/s 
for renal (McAllen 1990) and muscle outflows in animals (Janig 1985) and humans 
(Wallin 1988). Postganglionic fibers are unmyelinated and therefore, have a slower 
conduction velocity than the preganglionic fibers, calculated as 1 m/s in humans 
(Fagius 1980) and rats (Yamazakik 1990). The principle neurotransmitter for 
sympathetic preganglionic and postganglionic neurons are acetylcholine (Feldberg 
1934) and norepinephrine (otherwise known as noradrenaline) (Dale 1934) 
respectively.

The combination of the short preganglionic, myelinated fibers and long 
postganglionic unmyelinated fibers results in a relatively long time delay along the 
sympathetic nerves. These delays were calculated during experimental studies that 
are discussed in the subsequent sections of this chapter but are given most attention 
in Chapter 6 (Section 6.6.1).

The first recordings of SNA by Bronk et al (Bronk 1936) illustrated the ‘bursty’ 
nature of the SNA signals. That is, that discharges occur in a synchronised fashion,
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with many of the nerves in the bundle being active at approximately the same time. 
The intermittent bursts of SNA vary in amplitude and frequency (Ninomiya 1990; 
Malpas 1992). The bursty SNA signal does not occur with a single periodicity but 
instead contains numerous rhythms at various different frequencies (Cohen 1970; 
Malpas 1998), detailed in the subsequent section.

It is well established that SNA is an inherently periodic signal, with rhythms at a 
number of different frequencies (Cohen 1970; Malpas 1998). These rhythms have 
stimulated much interest, in part, due to the strong relationship between SNA and 
blood pressure and the possibility that certain oscillations in blood pressure, 
particularly the slow oscillation with frequency between 0.1 and 0.4 Hz, may be 
used as surrogate, diagnostic measures of cardiovascular function (Malliani 1991) 
and of neural activity (Akselrod 1988). These ideas are further developed in Section
2.3 of this chapter. Here, the rhythms present in SNA are (briefly) introduced.

There are four major frequency bands of activity: high frequency (-10 Hz), cardiac, 
respiration and slow oscillation.

The origin of the high frequency 10 Hz oscillation remains unknown (Guild 2002). 
However, it has been observed in barodenervated animals and, hence, has been 
proposed to result from a central oscillator, different to that responsible for 
generating the cardiac rhythm in SNA (Malpas 1998).

The early study of Bronk et al (Bronk 1936) illustrated the tendency of sympathetic 
bursts to occur at a certain phase of the cardiac cycle. This rhythm in SNA (2-6 Hz 
in the cat) is not a subharmonic of the 10 Hz rhythm (Malpas 1995) but instead it has 
been proposed that it is inherently generated by the central nervous system and 
entrained by the baroreceptor input to discharge at a certain phase in the cardiac 
cycle (Gebber 1980). The oscillation is not abolished by barodenervation, and still 
retains a large proportion of power in the 2-6 Hz band (Ninomiya 1990), but does 
lose its entrainment to the cardiac cycle (Barman 1980; Zhong 1992).
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Another oscillation occurs in SNA (observed in the rabbit at ~0.9 Hz (Janssen
1997)), which is in phase with the respiratory cycle (Cohen 1970; Koizumi 1971). 
Again, the baroreceptors are not essential for the production of this respiratory 
related rhythm in SNA, although they do maintain the SNA oscillation in phase with 
ventilation (Miyawaki 1995).

An oscillation manifests in SNA and in the cardiovascular variables; heart rate, 
blood pressure and blood flow, at between 0.1 and 0.4 Hz, depending on the species 
in question. This oscillation is of primary interest to this thesis and has been 
introduced in earlier sections (Section 1.1 & Section 2.2.1) and a more in depth 
discussion of the slow oscillation of the cardiovascular variables, their means of 
genesis, their significance and a summary of the experimental studies that have 
investigated them is detailed in Section 2.3 of this chapter.

The origin of this slow oscillation in SNA is an area of particular contention and 
understanding of this topic could prove key to understanding the greater significance 
that has been associated with this oscillation. The slow oscillation in SNA is either 
the product of a central oscillator (Section 2.3.3.1) or caused by the baroreflex 
feedback loop (Section 2.3.3.2). The slow oscillation of the cardiovascular variables 
is of particular interest to researchers as it has been proposed that they may provide a 
possible non-invasivc diagnostic measure of SNA (again see Section 2.3).

Parasympathetic nerve activity

The parasympathetic nervous system innervates the heart at the SA node but unlike 
the sympathetic nervous systems has no effect on the vasculature and only very 
sparsely innervates the cardiac muscles of the heart (Guyton 1996). The 
parasympathetic nerve to the heart is commonly known as the vagus nerve 
(Sheiwood 1997).
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In contrast to the sympathetic nerves, the parasympathetic nerves generally consist 
of short cholinergic preganglionic fibers and long cholinergic postganglionic fibers. 
Acetylcholine is the principle neurotransmitter of both the parasympathetic 
preganglionic and postganglionic neurons.

The time delay along the parasympathetic nerve is much shorter than that along the 
sympathetic nerve as is reviewed in subsequent sections.

2.2.1.4 Modelling the central arc

Attempts to characterise the central nervous system, and thus assess its contribution 
to the regulation of SNA and blood pressure, have involved the development of 
models based on input/output data of the CNS. The central arc of the baroreflex (see 
Figure 2.1) is specifically that part of the loop between afferent nerve activity and 
efferent nerve activity, which have been described in earlier sections. Models of the 
central arc are not very common in the literature. The modelling of the neural arc 
(see Figure 2.1), from blood pressure perturbations to SNA (hence, including the 
baroreceptors), has received more currency (Section 2.2.2.4). Petiot et al (Petiot 
2001) report a nonlinear sigmoidal relationship between ADN stimulation and renal 
SNA but this relationship is not commonly reported.

Similarly, there is a paucity of studies that have analysed the dynamic relationship 
between afferent nerve activity and efferent nerve activity (e.g. ADN activity and 
SNA); only two studies in the anaesthetised rabbit (hnaizumi 1994; Kubo 1996) and 
one in the rat (Petiot 2001).

The experimental techniques used, in the quest for central arc characterisation, have 
differed significantly. Imaizumi et al (hnaizumi 1994) randomly perturbed blood 
pressure by balloon inflation and recorded aortic depressor nerve activity and renal 
SNA. In another study, this same group (Kubo 1996) stimulated the aortic nerve
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with frequencies up to 0.8 Hz. Petiot et al (Petiot 2001) used a similar technique in a 
study on the rat but stimulated the nerve to the much higher frequency of 20 Hz.

These experimental studies have reported conflicting results with regard to the 
transfer function of the central arc. Both studies in the rabbit reported all-pass filter 
characteristics (i.e. constant gain across all frequencies). However, Petiot et al 
(Petiot 2001) suggest a major limitation to these studies; that the frequency range 
investigated did not include frequencies at which baroreceptors are normally 
exposed to blood pressure fluctuations, especially the frequency of the heart rate 
(~3-4 Hz in the rabbit). These authors propose a more complex description of the 
central arc, combining high-pass and low-pass characteristics in different frequency 
ranges (Petiot 2001).

These different filter characteristics can be observed in the frequency response 
models of the central arc of the rabbit (Kubo 1996) and the central arc of the rat 
(Petiot 2001), shown in Figure 2.9.
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r a b b i t .

A flat frequency response characteristic implying an all-pass transfer function is 
evident from the magnitude plot of the central arc of the rabbit. A fixed time delay 
of -440 ms between ADN stimulation and SNA is calculated from the phase plot.

Conversely, the rat model proposed by Petiot et al (Petiot 2001) combines a 
derivative gain with comer frequency -0.15 Hz, a second-order low-pass filter with 
natural frequency o f -1 Hz and a fixed time delay o f -100 ms.

Models of the neural arc, which amalgamate the baroreceptors and the central arc, 
are described in the subsequent section.



2.2.1.5 Modelling the neural arc

The research group of Kawada et al (Ikeda 1996; Kawada 1997; Kawada 1999; 
Kawada 2001; Kawada 2002; Kashihara 2003; Kawada 2003; Sato 2003) advanced 
the term ‘neural arc’ to descxibe that pait of the baroreflex between blood pressure 
and SNA. The neural arc may, therefore, be accepted to include the baroreceptor 
transduction propeities, afferent signal conduction, central processing and efferent 
signal transduction (Kawada 2003). Hence, the neural arc includes all aspects of the 
central arc in addition to the baroreceptor transduction properties.

Models of the relationship between blood pressure and SNA are frequent in the 
physiological literature (Kezdi 1968; Iriki 1977; Ikeda 1996; Malpas 1996). 
Documentation of the static nonlinear (characterised by the baroreflex curve (Iriki 
1977; Malpas 1996; Barrett 2003)), and dynamic linear, (characterised by the 
frequency response plots (Kezdi 1968; Ikeda 1996; Kawada 2001)) relationships 
between blood pressure perturbations and SNA are common.

Baroreflex curves between blood pressure and SNA

The baroreflex curve, which illustrates the steady-state relationship between blood 
pressure and SNA, was introduced in Section 2.2.22. Baroreflex curves are derived 
by slow rises and falls in mean blood pressure induced by drugs that act to increase 
and decreases blood pressure. A decrease in blood pressure is often invoked by the 
administration of sodium nitroprusside. Phenylephrine is often used to increase 
blood pressure (Altimiras 2000).

Blood pressure is recorded at each invoked alteration and the resulting SNA value is 
also recorded. Using a nonlinear least-squares technique (Marquardt 1963) a 
nonlinear function is fitted to the data (see Section 6.4.3 for more detail of this 
technique). Figure 2.10 shows data for an individual rabbit, to which the nonlinear 
function of Equation 2.3 is fitted. This data was obtained from the physiologists of
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the Circulatory Control Laboratory at the University of Auckland, who collaborate 
on this work.

<ZCO

5 0  BO 7 0  BO 9 0  1 0 0  1 1 0  1 2 0  1 3 0
Blood pressure (mmHg)

F ig u r e  2 .1 0 :  S N A  fo r  a n  i n d iv id u a l  r a b b i t  r e c o r d e d  d u r in g  i n v o k e d  c h a n g e s  in  b lo o d  p r e s s u r e .

Documented in Equation 2.3 is one functional representation of the sigmoid 
characteristic. Other representations exist in the literature and these are documented 
in Chapter 4 (Section 4.3.2).

?(*) = I I
1 + \ + ep{x-xA) (2.3)

where,
/ is half of the full range of the curve 
P  is the curvature at the top and bottom of the sigmoid, and

is the midpoint of the curve
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T a k e n  f r o m  M a lp a s  e t a l  ( M a lp a s  1 9 9 6 ) .

The baroreflex curves between blood pressure and SNA are often derived for 
different physiological conditions (Iriki 1977; Burke 1988; Leonard 2000; Head 
2001; Barrett 2003; Ramchandra 2003). Changes in the parameters of the baroreflex 
curves, result when the physiological conditions are changed, and this
is the subject of an investigation documented in Chapter 4. Examples of baroreflex 
curves, taken from the physiological literature, are shown in Figure 2.3. Figure 2.11 
illustrates more baroreflex curves derived during different conditions of hypoxia, 
when the animal receives air of a lower than normal oxygen level.

SNA is not uniform to all organs of the body. The baroreflex differentially 
modulates sympathetic drive to the different organs (Ninomiya 1971; Nishimaru 
1971; Ninomiya 1976). SNA to the lungs, spleen and kidney have been shown to be 
highly sensitive to baroreflex activity (Ninomiya 1971; Shirai 1995). In contrast the 
skin is only weakly sensitive to baroreflex activity (Ninomiya 1976). This 
differential sensitivity may have crucial implications for the analysis of the
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baroreflex controlling mechanism and it is proposed that it is SNA to a few key 
organs that may dominate in the production of the slow oscillation in blood pressure 
(Malpas 2002).

Dynamic models of the neural arc

Dynamic models of the neural arc are also common in the physiology literature. 
Kawada et al have undertaken a number of studies (Dceda 1996; Kawada 1997; 
Kawada 1999; Kawada 2001; Kawada 2002; Kashihara 2003; Kawada 2003; Sato
2003), under open- (Ikeda 1996) and closed-loop (Kawada 1997) conditions, to 
characterise the frequency response of the neural arc. Derivative or high-pass 
characteristics were reported for the transfer function of the rabbit (Ikeda 1996) and 
rat (Sato 2003).

The dynamic characteristics of the neural arc of the rabbit, from blood pressure 
perturbations to cardiac SNA and renal SNA are illustrated in Figure 2.12. Kawada 
et al (Kawada 2001) report different dynamic neural regulation of cardiac and renal 
sympathetic activities. They report that the normalised gain of the high-pass transfer 
characteristic is significantly greater in the neural control of cardiac SNA than in the 
neural control of renal SNA. These results imply differential central processing in 
the CNS. However, the authors do not confirm any physiological significance of this 
differential control in relation to blood pressure (Kawada 2001). The authors report 
the response of the renal sympathetic nerves to be -50 ms slower than the response 
of the cardiac sympathetic nerves to a perturbation of blood pressure. The time-delay 
of the neural arc between blood pressure and cardiac sympathetic activity was 
previously reported as 0.55 s (Ikeda 1996).
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The primary function of the baroreflex is to quickly and sufficiently react to a 
change in blood pressure (Sato 1999), hence the high-pass or derivative nature of the 
neural arc is proposed as key to enabling quick stabilisation of blood pressure (Ikeda
1996). These derivative characteristics of the neural arc have been proposed to 
compensate for the sluggish response of the peripheral arc (see Section 2.2.3), and 
hence play a significant role in accelerating the response of the complete baroreflex 
loop (Ikeda 1996; Sato 2003).

It is evident from this and the previous review sections that both nonlinear static and 
linear dynamical characteristics are present in the central nervous system. These 
characteristics play a significant role in the control of blood pressure (Ikeda 1996) 
and are also key to the slow oscillation in blood pressure (Ringwood 2001). 
Recently, Kawada et al (Kawada 2003) published an investigation of a linear- 
nonlinear model structure to describe the neural arc. This study is reviewed in 
greater detail in a later section (Section 6.3.3).
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2 .2.2 Blood pressure effectors

2.2.2.1 The heart

The contractile activity of the muscular walls of the heart propels blood throughout 
the body, delivering nutrients to and removing wastes from the organs of the body 
(Katz 1992). Considering the function of the heart as the blood pumping mechanism 
its inherent role as a major effector of blood pressure is obvious. The heart and 
specifically the amount of blood output by the heart, the cardiac output, qc (/) , has 
the capacity to facilitate the control of blood pressure, via Equation 2.1. The two 
determinants of cardiac output, heart rate, f c ( /) , and stroke volume, vc (t) 
(Equation 2.2), are both under neural control.

Heart rate

The heart contracts, or beats rhythmically, as a result of action potentials that it 
generates itself. This occurs in the absence of stimulation from the nervous system 
and is known as autorhythmicity. The cells of the heart display pacemaker activity, 
which enables the cyclic beating of the heart and the cells with the fastest potential 
initiation are localised in the SA node (Sherwood 1997). Hence, the SA node is often 
called the pacemaker of the heart as it sets the rate at which the heart beats in the 
absence of any neural or hormonal influences. The SA node is innervated by both 
the sympathetic and parasympathetic branches of the autonomic nervous system, 
which have the ability to increase and decrease the heart rate respectively (Katz
1992). The individual and joint effects of these nervous systems on heart rate are 
reviewed in the subsequent sections.
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The effect o f  SNA on h ea rt ra te

The sympathetic nervous system has the responsibility of controlling heart action 
during emergency or exercise conditions when a greater cardiac output is required to 
supply blood to the tissues in need of a greater blood flow (Sherwood 1997). As well 
as being able to affect stroke volume the sympathetic nervous system has the 
capability of increasing heart rate. Sympathetic stimulation of the SA node results in 
an increased release of norepinephrine which causes the SA node to discharge 
quicker and hence an increase in heart rate results (Richardson 1998).

In an attempt to understand the response of heart rate to sympathetic nerve activity, 
research physiologists have sectioned and electrically stimulated the sympathetic 
nerve and characterised the heart rate response to this electrical stimulation for a 
range of stimulation frequencies (Kawada 1996).

The response of heart rate to sympathetic nerve stimulation is characterised by a 
low-pass filter system and pure time delay (Warner 1962; Warner 1969; Berger 
1989; Saul 1991; Kawada 1996). First (Berger 1989) and second (Kawada 1996; 
Nakahara 1999) order descriptions of these low-pass characteristics have been fitted, 
by different authors, to the frequency response plots attained from the dog (Berger 
1989) and rabbit (Kawada 1996; Nakahara 1999).

The frequency response of heart rate to band-limited Gaussian white noise 
stimulation of the sympathetic nerves of the rabbit is shown in Figure 2.13.

The gain of the transfer characteristic is relatively constant up to 0.02 Hz and 
decreases above this frequency. The response characteristics observed in the rabbit 
(Kawada 1996; Nakahara 1999) are comparable to those observed in the dog (Berger 
1989), although the filter characteristics are of different order (Kawada 1996). In 
contrast, Mokrane and Nadeau (Mokrane 1998) identified two distinct components 
in the heart rate response to SNA. With low-intensities of sympathetic activation, the
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heart rate response was faster than at higher intensities of nerve stimulation. 
However, this difference in the filter behaviour may result from different stimulation 
protocols (Mokrane 1998).

Frequency (Hz)
F ig u r e  2 .1 3 :  T h e  m a g n i tu d e  ( to p )  a n d  p h a s e  r e s p o n s e  ( b o t to m )  o f  t h e  t r a n s f e r  c h a r a c te r i s t i c  b e tw e e n  

e le c t r ic a l  s t im u la t io n  o f  t h e  s y m p a th e t ic  n e r v e s  a n d  th e  h e a r t  r a te  r e s p o n s e .  T a k e n  f r o m  K a w a d a  et a l
( K a w a d a  1 9 9 6 ) .

Following a step change in SNA, the heart rate response of the rabbit is 
characterised by a time delay of -0.5 s followed by a slow increase with a time 
constant of -10 s (Kawada 1996). Also, for similar steady-state conditions, the heart 
rate response of the dog is characterised by a time delay of between 1 and 3 seconds 
plus a time constant of 10 to 20 s (Berger 1989). The delay differences may be 
attributed to the difference in size between the animals.

The frequency response of the heart rate is significantly different, and specifically 
slower, than the frequency response of the vasculature to sympathetic nerve 
stimulation, as is discussed in more detail in the Section 2.2.3.2.
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The effect o f  PSN A on h eart ra te

The parasympathetic nervous system has an inhibitory effect on heart rate, slowing it 
from the intrinsic level set by autorhythmicity (Sherwood 1997). The 
parasympathetic branch of the baroreflex continuously controls heart action, by 
maintaining a constant parasympathetic tone, when the body is relaxed and not 
demanding an enhanced cardiac output (Sherwood 1997; Richardson 1998). 
Withdrawal of this normal parasympathetic tone allows heart rate to increase toward 
the intrinsic heart rate (Richardson 1998).

The heart rate response to parasympathetic nerve stimulation is also characterised by 
a low-pass fdter system (Warner 1962; Warner 1969; Berger 1989; Kawada 1996). 
Using similar method of nerve stimulation as used when stimulating the sympathetic 
nerves Kawada et al (Kawada 1996) calculated the response of heart rate to the 
electrical stimulation of the parasympathetic nerve in the rabbit. The resulting 
frequency response characteristics are shown in Figure 2.14.
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The gain of the magnitude response is relatively constant up to -0.08 Hz and 
decreases above this frequency. The structure of the transfer function and comer 
frequency reported by Kawada et al (Kawada 1996) are supported by the findings of 
Berger et al (Berger 1989). However, in contrast to these, Mokrane et al (Mokrane 
1995) identified two frequency response characteristics of the SA node to 
parasympathetic activity: one associated with low levels of parasympathetic tone and 
having a cut-off frequency of 0.065 Hz and another capable of responding to 
stimulation frequencies up to 0.8 Hz. This phenomenon was also observed by Berger 
et al (Berger 1989).

The interaction of SNA and PSNA

Parasympathetic and sympathetic nervous activities have antagonistic effects on 
heart rate (Sherwood 1997). At any given moment the heart rate will be determined 
mainly by the balance between the inhibitory parasympathetic and excitatory
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sympathetic systems, which interact in a complex fashion at the SA node to change 
heart rate as required.

Various investigators (Glick 1964; James 1966; Levy 1969; Berger 1989) have 
analysed this interaction by the alternative stimulation of the sympathetic and 
parasympathetic nerves and have documented the resulting effects on heart rate. 
These studies have focussed on producing the static characteristic of the heart rate 
response to simultaneous sympathetic and parasympathetic nerve stimulation (Levy 
1969; Levy 1969).

The seminal work of one group of researchers in particular (Levy 1969; Levy 1969; 
Levy 1984) proved that the cardiac response to neural activity in one autonomic 
division depends on the level of activity in the other autonomic branch. Levy et al 
(Levy 1969; Levy 1969; Levy 1984), through the electrical stimulation of the 
parasympathetic and cardiac sympathetic nerves of the dog, investigated the 
interaction of these nerve signals and their concomitant effect on heart rate. The 
resulting experimental recordings were presented as a three-dimensional nonlinear 
curve. Kawada et al (Kawada 1999) developed a similar characteristic curve for the 
rabbit’s heart rate response following several combinations of parasympathetic and 
sympathetic stimulation. The characteristic they reported is illustrated in Figure 
2.15. This data was generously provided to this author by Kawada and colleagues 
from the Department of Cardiovascular Dynamics at the The National 
Cardiovascular Centre Research Institute in Osaka, Japan.
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There is also good evidence to suggest that the parasympathetic and sympathetic 
influences also interact in a dynamical fashion (Kawada 1996; Kawada 1997). In 
particular, sympathetic stimulation combined with tonic parasympathetic nerve 
stimulation increased the gain of the transfer function and by virtue of this 
interaction appears to extend its dynamic range of operation (Kawada 1996; Kawada
1997).

Blood pressure to heart rate baroreflex curves

Similar to the baroreflex curves between blood pressure and SNA, baroreflex curves 
from blood pressure to heart rate, sometimes called the cardiac baroreflex curve 
(Komer 1995), are also common in the literature (Head 1987; Malpas 1996; Malpas
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1997; Barrett 2003). These curves are developed using similar methods as are used 
when developing the baroreflex curves from blood pressure to SNA (Section 2.2.2.6) 
and the response of heart rate to invoked changes in blood pressure describes a 
similar sigmoid characteristic as that which exists between blood pressure and SNA 
(Head 1987; Malpas 1996; Malpas 1997; Barrett 2003).

Examples of this sigmoidal relationship are shown in Figure 2.16 for six different 
rabbits in the control condition (Malpas 1997).

a itenal p ressure IrcimHtp

Figure 2.16: The baroreflex characteristic that exists between blood pressure and heart rate
(M alpas 1997).

Komer (Komer 1995), who studied the relationship between blood pressure and 
heart rate (Komer 1974; Komer 1974; Komer 1975; Komer 1994; Komer 1995), 
asserted that the cardiac branch of the baroreflex is a compound reflex consisting of 
the cardiopulmonary receptor reflex and the arterial baroreflex. Komer proposes that 
70% of the heart rate range described by the baroreflex curve between blood 
pressure and heart rate is due to the baroreflex and 30% to the cardiopulmonary
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receptor reflex. However, there is a paucity of experimental evidence to support this 
proposed division of effect.

The division of effect of the sympathetic and parasympathetic branches of the 
autonomic nervous system on the blood pressure to heart rate baroreflex curve has 
been investigated and is documented in the subsequent section.

Contributions o f cardiac sympathetic and parasympathetic activity to the baroreflex 
curve between blood pressure and heart rate

A number of physiologists have attempted to establish the individual impact of the 
cardiac sympathetic and parasympathetic branches of the autonomic nervous system 
on the blood pressure to heart rate baroreflex curve (Komer 1972; Head 1987; 
Weinstock 1988; Kingwell 1991). These investigations involved the sequential 
blocking of the parasympathetic and sympathetic nervous pathways so as to assess 
the parasympathetic and sympathetic components of the blood pressure to heart rate 
baroreflex. Although different experimental protocols exist by which the 
parasympathetic and sympathetic components of the blood pressure to heart rate 
baroreflex may be identified (Weinstock 1988; Kingwell 1991) the method most 
common to these studies involves the administration of drugs, which selectively 
block the pathways of the autonomic nervous system (Head 1987). Atenolol is 
administered to block the effects of cardiac SNA on heart rate. Hence, the effect on 
heart rate, plotted against blood pressure to form the baroreflex curve, is purely 
parasympathetic. Likewise, methyl atropine is administered to block 
parasympathetic nerve activity.

Figure 2.17 shows the baroreflex curve from blood pressure to heart rate in the rat, 
and the resulting baroreflex curves in the presence of atenolol and methyl atropine 
(Head 1987).
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Figure 2.17: The barorcflex curves between m ean blood pressure and heart rate, in the control case 
(thick line) and in the presence o f methyl atropine and atenolol.

Taken from Head and McCarty (Head 1987).

These curves and other similar curves are analysed in more detail in Section 6.3.2. 

Stroke volume

Along with the heart rate, f c (t) , the pumping ability of the heart and, hence the 
cardiac output, qc ( t ) , is a function of the amount of blood pumped from the heart 
each time it beats, termed the stroke volume, vc (/) (see Equation 2.2). The stroke
volume is regulated by the autonomic nerves but also significantly by mechanisms 
that are intrinsic to the cardiovascular system (Fox 1996). The intrinsic control of 
stroke volume is dependent on the degree to which the cardiac muscle of the 
ventricles is stretched and, as a result, contracts more forcefully at the next 
contraction. This intrinsic relationship between end-diastolic volume and stroke 
volume is described by the Frank-Starling law of the heart (Katz 1992).
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The effect of the baroreflex on the contractility of the heart is much less well known 
than the effect of the baroreflex on the heart rate. The contractility of the cardiac 
muscle increases when blood pressure decreases but, due to the heart rate also 
increasing, the filling time for the heart chambers decreases (Suga 1974; Wesseling
1982). Hence, stroke volume has been generally observed to remain relatively 
constant in the physiological operating range (Allison 1969; Suga 1976).

The effect o f SNA on stroke volume

The autonomic nervous system supplies the neural control of stroke volume. SNA 
originating in the CNS terminates at the sympathetic endings in the cardiac muscle 
of the heart chambers. Sympathetic stimulation enhances the heart’s contractility 
resulting in a more complete ejection of blood from the heart. The exact dynamical 
response of the cardiac muscle to sympathetic stimulation is not documented in the 
literature.

The parasympathetic system has little effect on ventricular contraction due to the 
scarcity of parasympathetic innervation of the ventricles (Sheiwood 1997).

2.2.2.2 The vasculature

The blood pumped by the heart circulates inside a closed circulatory network of 
blood vessels, known as the vasculature or vascular system (Marieb 2003). The 
blood vessels of the circulatory system have constantly a level of resistance, to the 
flow of blood through them, known as vascular tone. The blood vessels are however, 
compliant and hence, this resistance may vary. The resistance of these peripheral 
blood vessels is often termed the peripheral, or vascular, resistance (see Equation 
2 .1).
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Total peripheral resistance

The resistance of the entire circulatory system to blood flow is referred to as total 
peripheral resistance (Guyton 1987) (or the systemic vascular resistance). The 
arterioles and smaller blood vessels offer the majority of this resistance as their walls 
are thickly layered with smooth muscle (Tortora 2003). This smooth muscle is richly 
innervated with sympathetic fibers and hence, the contractility of the muscle is 
controlled by the sympathetic nervous system. The parasympathetic system has no 
effect on the vascular resistance.

Arteriolar radius is also influenced by other intrinsic and extrinsic factors. Certain 
locally acting paracrines, and in particular nitric oxide, have in recent years been 
shown to have a powerful influence over the resistance of the vessels. Hormones 
such as vasopressin and angiotensin II, which play a significant role in the long-term 
control of blood pressure (see Section 2.2.3.3), are also potent effectors of the vessel 
resistance (Sherwood 1997) and further enhance the neural control supplied by SNA.

The effect on the vasculature of SNA and some of the numerous paracrines and 
hormones is introduced in subsequent sections.

Total peripheral resistance and SNA

Stimulation of the smooth muscle walls of the arterioles, via the sympathetic nerves, 
results in the constriction of the vessels of the vasculature, termed vasoconstriction. 
Similar to the case of sympathetic stimulation of the SA node, sympathetic 
stimulation of the smooth muscle results in the release of norepinephrine (Sherwood
1997).

Under resting conditions, the sympathetic nervous system maintains a constant level 
of vasoconstriction, by maintaining a continuous sympathetic tone, which in turn 
preserves a constant vascular tone (Sherwood 1997). It is proposed that a number of
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the faster rhythms in SNA add to the tonic constriction of certain vasculature beds 
(Janssen 1997; Guild 2002). An increase in vasoconstriction is accomplished by an 
increase in sympathetic activity above this tonic activity. Due to the lack of 
parasympathetic control, dilation of the vessels (vasodilation) is not the specific 
function of a particular neural pathway, but rather results when sympathetic tone to 
the smooth muscle is decreased.

The dynamics of the vasculature to stimulation of the sympathetic nerves have been 
characterised by different authors, for a number of different vasculature beds 
(Rosenbaum 1968; Holstein Rathlou 1994; Cupples 1996; Stauss 1996; Stauss 1997; 
Just 1998; Stauss 1998; Malpas 1999; Bertram 2000; Guild 2001).

Response of the renal vasculature to SNA

The dynamics of the vasculature have been most precisely characterised for the renal 
vasculature (Holstein Rathlou 1994; Cupples 1996; Burgess 1997; Just 1998; Malpas 
1999; Guild 2001). The kidney is a key organ in the regulation of blood pressure and 
although its response to SNA does not offer a global definition of the vasculature 
response to SNA, its response is of considerable importance to the dynamic control 
of blood pressure (Malpas 2002).

The kidney receives a rich supply of sympathetic nerves that enter the organ with the 
blood vessels and extend along the arteries to terminate on smooth muscle cells of 
the arterioles within the kidney (Barajas 1992; Luff 1992).

The frequency response of the renal vasculature has been characterised by electrical 
stimulation of the renal sympathetic nerves by either sinusoidal stimulation (Malpas 
2001) or, more recently, a pseudo-random binary sequence (PRBS) signal (Guild 
2001). The renal vasculature has the ability to respond to oscillations up to ~0.6 Hz 
in the rabbit (Malpas 1999) and rat (Grisk 2002). Malpas et al (Malpas 1999) 
originally used a first-order low-pass filter to characterise the response of the renal
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vasculature (Malpas 1999). A more composite frequency response was identified in 
a later series of experiments and a more complex transfer function was used to 
describe these characteristics (Guild 2001) (See Section 6.5). The frequency 
response of the renal blood flow to electrical stimulation with a PRBS signal is 
shown in Figure 2.18 for three individual rabbits, as presented by Guild et al (Guild 
2001).

Figure 2.18: M agnitude (top) and phase (bottom) plots o f the frequency response o f renal blood flow
to PRBS stimulation (Guild 2001).

These dynamical models of the vasculature, as for the heart, have a pure time-delay 
associated with them. The average time-delay, observed by Guild et al (Guild 2001), 
between stimulation of the renal sympathetic nerves and the initiation of the renal 
vasculature response of the rabbit was measured at 0.672 s, similar to the delay 
reported by Burgess et al (Burgess 1997) in the rat (0.4-0.6 s).

Regarding the response of the renal vasculature to changes in mean SNA, the renal 
vasculature of rabbits (Malpas 1996) and rats (Grady 1992) has been shown to be 
sensitive to even moderate changes in mean renal SNA. Changes in mean renal 
blood flow have been shown to occur in coordination with changes in mean SNA, 
during a range of stimuli including, hypoxia, air jet stress and noise (Malpas 1998).
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Changes in cardiovascular and specifically parameters of the vasculature, associated 
with changes in SNA, are reviewed in Chapter 4 and calculation and analysis of 
these changing parameters form a basis for the study presented in that chapter.

Response o f other vasculature beds to SNA

The response of other vasculature beds including the mesenteric, iliac and skin 
vasculature have also been investigated. However, the dynamic characteristics of 
these beds are not nearly as well defined as they are for the kidney.

The transfer function from sympathetic stimulation to hind limb (iliac) vascular 
conductance of the rat was characterised as a second-order low-pass filter combined 
with a fixed time delay of -0.4 s (Bertram 2000). These authors further investigated 
whether norepinehrine neutralisation is the frequency-limiting step of the vascular 
response, as has been suggested for the sympathetic neuroeffector junction in the SA 
node of the rabbit (Nakahara 1999). However, they concluded that this mechanism 
does not play a major role in the dynamic response of the vasculature to sympathetic 
modulation (Bertram 2000).

The dynamical response of the skin was investigated in humans using a novel 
technique which enabled the electrical stimulation of efferent skin fibers and the 
simultaneous recording of skin blood flow (Stauss 1998). The skin blood flow had 
the capability to respond to stimulation at 0.1 Hz but not at 0.5 Hz. The sluggish 
nature of this response in humans was surprisingly similar to the response of the skin 
vasculature in rats (Stauss 1999). The frequency response of skin blood flow of the 
rat to sympathetic activity activity is reported to display a comer frequency of 0.085 
Hz and decrease at 17.1 dB per decade, which approximates a first order low-pass 
filter characteristic (Stauss 1999).

The response of the mesenteric vasculature of the rat to SNA was also investigated 
by Stauss and colleagues (Stauss 1996) and was shown to have a faster frequency
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response that that of the skin (Stauss 1999). These authors did not document the full 
frequency response and hence do not document a transfer function fit to the 
frequency response. However, they report that the mesenteric vasculature of the rat 
was easily able to follow SNA up to a frequency of -0.5 Hz but had negligible 
response beyond 1.0 Hz (Stauss 1996). In their later study, in which they stimulated 
centres of the CNS, these authors showed that the CNS component does not 
introduce a frequency-limiting step of the response (Stauss 1997).

A comparison of the response of heart rate and the vasculature to sympathetic nerve 
stimulation reveals a significant difference between the responses of both blood 
pressure effectors, despite evidence that the pattern of sympathetic outflow to the 
heart and kidney is similar (Ninomiya 1971). The sluggishness of the heart rate 
response in comparison the vasculature response to sympathetic nerve stimulation 
seems to be due to the frequency-limiting step resulting from the removal rate of 
norepinephrine at the neuroeffector junction (Nakahara 1999; Bertram 2000).

Other effectors o f total peripheral resistance

Besides the baroreflex mechanism, which affects peripheral resistance through the 
sympathetic innervation of the smooth muscle of the blood vessels, other locally 
acting paracrines and extensive hoimonal regulatory mechanisms are also intrinsic to 
the greater control of blood pressure.

Nitric oxide is an example of a locally released paracrine, of the endothelial-derived- 
relaxation category, which causes vasodilation. The effects of nitric oxide on blood 
vessel activity have only been discovered in the last quarter century (Furchgott
1980) but this significant vasodilator has stimulated a lot of interest due to its ability 
to rapidly alter blood pressure.

Nitric oxide is released in response to a shear stress, which stimulates the 
endothelium cells that line the lumen of the blood vessels. On the release of nitric
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oxide the neighbouring smooth muscle cells relax causing vasodilation and hence a 
decrease in vascular resistance (Nafz 1986). This mediator of vasodilation has a 
short half-life and has been reported to cause the relaxation of smooth muscle cells 
within seconds (Rubanyi 1990).

Along with its vasodilatory effects, which directly effect vascular tone, nitric oxide 
also inhibits the release of norepinephrine at the sympathetic neuroeffector junction 
(Cohen 1990) and it has also been proposed (Cohen 1999), and investigated (Iida
1999), that neurally released nitric oxide may modulate sympathetic vasoconstriction 
at pre- and postganglionic stages as well as postjunctional levels. Nitric oxide 
synthesis has also been observed to attenuate the actions of the parasympathetic 
system on heart rate (Conlon 1998). Hence, it is a wide-acting and significant 
effector of blood pressure, yet its synthesis, release mechanism and full effects are 
still poorly understood and still the focus of much research.

Other paracrines also have the capability to affect blood pressure. Histamine is one 
such example but this only displays its vasodilatary abilities under certain specific 
conditions when a tissue has been damaged or invaded. Endothelin is a 
vasoconstrictive paracrine that works antagonistically with the vasodilatary 
paracrines to maintain normal blood vessel radius and hence, blood pressure 
(Sherwood 1997).

Blood pressure is controlled over longer-time scales, than those associated with the 
baroreflex and nitric oxide, by hormonal mechanisms. The endocrine glands 
discharge hormones in response to chemical stimuli, nerve stimulation and to 
stimulation by other hormones (Fox 1996). These hormones are then distributed by 
the blood circulatory system to all parts of the body, although their actions may be 
restricted to specific target organs, as only certain organs can respond to particular 
hormones (Fox 1996).
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In the earlier subsection on SNA it was pointed out that along with the direct effects 
of sympathetic stimulation on the blood vessels and heart, sympathetic activity also 
has ancillary effects on endocrine glands (adrenal glands) in the vicinity of the 
kidney; causing the release of epinephrine and norepinephrine into the blood 
(Guyton 1987). Approximately 80% of the hormone output of the adrenal glands is 
norepinephrine (the neurotransmitter of the postganglionic sympathetic neurons) and 
the remaining 20% is epinephrine (Sherwood 1997). The combined release of these 
hormones cause essentially the same effects on blood pressure control as the 
sympathetic system i.e. an increase in heart rate and peripheral resistance. These 
hormones circulate in the blood for between one and three minutes before they are 
eliminated, thus maintaining the effects of the sympathetic system for a prolonged 
excitation period (Guyton 1987).

Figure 2.19: The vasoconstrictive and long-term blood pressure control mechanisms involving 
angiotensin II. Adapted from Richardson et al (R ichardson 1998).
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When arterial blood pressure falls to low levels large quantities of the hormone 
angiotensin II can be found travelling in the blood circulatory system. Angiotensin is 
a potent vasoconstrictor which requires approximately 20 minutes to become fully 
active (Guyton 1987). Hence, it is much slower than the baroreflex control 
mechanisms and than other paracrines and hormonal mechanisms but it has a longer 
duration of action. Angiotensin II is a significant effector of long-term blood 
pressure (see Section 2.2.3.3) and the vasoconstrictive and long-term regulating 
mechanisms involving angiotensin II are illustrated in Figure 2.19.

Another hormone, vasopressin, is also released when blood pressure falls to very 
low values. Similar to angiotensin II, this hormone is a potent vasoconstrictor and 
also plays a role in the long-term control of blood pressure.

The role played by these hormones in the long-term control of blood pressure is 
discussed in Section 2.2.3.3.

Distribution o f cardiac output to the different vasculature beds

As discussed in the earlier sections describing the heart, the heart pumps blood to the 
different vascular beds, as required. The distribution of cardiac output to the 
different vascular beds is well documented in the physiology textbook literature. 
This distribution is significantly varied during such activity as exercise, when blood 
is diverted to certain vasculature beds. Cardiac output is also increased in this 
situation. The apportionment of this distribution, during resting and moderate 
exercise conditions, is illustrated in Figure 2.20.

Cardiac output also undergoes a major redistribution under certain physiological 
conditions such as hypoxia when SNA is profoundly increased to the kidney and the 
gut but decreased to the heart and skin (Iriki 1972; Iriki 1979).
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Figure 2.20: The distribution o f cardiac output to the different parts o f the body, at rest and during 
moderate exercise. Figure from Bergen.org (Bergen 2004).

2.2.2.3 Long term effectors of blood pressure

Until recently, it was generally accepted that the baroreflex regulatory mechanism 
has no influence over the long-term control of blood pressure (Guyton 1987; Guyton 
1991). Recent research has led to a re-think of this view (Lohmeier 2001; Thrasher 
2002; Barrett 2003; Lohmeier 2003; Sleight 2004; Thrasher 2004). However, there 
is no doubt that the most important mechanism for long-term control of blood 
pressure is the renal-body fluid mechanism (Guyton 1987). The regulatory process 
of the renal body fluid mechanism is illustrated in Figure 2.21 and described below.
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Figure 2.21: The renal-body fluid system. Adpated from Guyton (Guyton 1991).

An increase in blood pressure results in an increase in salt and water output from the 
kidney, which in turn causes a decrease in both extracellular fluid volume and blood 
volume. A decrease in blood volume implies a decrease in venous return to the heart. 
Hence, less blood is available during the pumping action of the heart which results 
in a decrease in cardiac output and, hence, blood pressure (via Equation 2.1). The 
converse of this process occurs when a decrease in blood pressure results.

The renal-fluid system, and its long-term regulatory process, is affected by the renin- 
angiotensin mechanism. Angiotensin causes retention of salt and water and promotes 
the secretion of the steroid hormone aldosterone that also affects the salt and water 
balance in the kidneys. Similarly, vasopressin can also cause the retention of water.

In general, the mechanisms involved in the long-term control of blood pressure are 
beyond the scope of this research because the time scales with which these 
mechanisms are associated are much longer than those associated with the 
mechanisms involved in the development of the slow oscillation in blood pressure. 
This postulation is supported by the analysis of the model, of blood pressure 
regulatory mechanisms involved in the genesis of the slow oscillation in blood 
pressure, which is documented in Chapter 7.
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2.2.3 Complete control of blood pressure

As may be understood from the preceding documentation of the mechanisms and 
effectors of blood pressure, the regulation of blood pressure involves the integrated 
action of a number of different mechanisms that operate over different time scales to 
effect a regulation of blood pressure. The mechanisms involved in blood pressure 
regulation are not stand-alone mechanisms but interact in a complex fashion to 
constantly maintain a stable blood pressure.

The mechanisms of blood pressure control may be grouped into short-term, medium- 
term and long-term regulatory mechanisms. Those that act in the short-term are 
principally the baroreflex, and the chemo- and cardiopulmonary reflexes (Marshall 
1994). These reflexes are further affected by the local release of paracrines. The 
short-term regulatory mechanisms are of specific interest to this work as they are 
proposed to be involved in the development of oscillations of cardiovascular 
variables, and specifically the slow oscillation in blood pressure.

Inherent to these feedback mechanisms are the time delays due to the conduction 
time along the nerves. The significance of time delays in feedback systems is 
documented in the control systems literature (Dutton 1997). Significantly, these time 
delays are proposed by some authors to be essential to the generation of the slow 
oscillation in blood pressure (See Section 2.3.3.2) due to the phase effects they 
introduce.

The components of the short- to medium-term blood pressure control mechanisms, 
introduced in previous sections, are illustrated in Figure 2.22.
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Figure 2.22: Schematic diagram o f the mechanisms involved in the short- and medium-term control
o f blood pressure

The oscillations of cardiovascular variables associated with these mechanisms and 
the reason why they have received so much attention are studied in the following 
section (Section 2.3).

2.3 Cardiovascular variability

The complex interaction of hemodynamic, paracrine, humoral and electrophysical 
variables, integrated by sophisticated controlling mechanisms, results in 
cardiovascular signals containing multiple periodicities. These periodicities in 
cardiovascular variables were observed many years before any attempt to probe their 
greater significance was made. As far back as 1733, Hales (Hales 1733) remarked 
upon the oscillatory behaviour of blood in a glass pipe connected to the crural artery

60



of a mare. The variability in blood pressure that he observed occurred at a slower 
rate than that of the beating heart. During subsequent years these oscillations were 
confirmed by Ludwig (Ludwig 1847) with the development of the manometer. Then 
in 1876, Mayer (Mayer 1876) discovered the existence of an oscillation in the blood 
pressure of the dog, at a rate slower than that related to respiration. The slow 
oscillation in blood pressure, which manifests itself at 0.1 Hz in the human and 
which is the focus of this thesis and of much other research work, is often referred to 
as the “Mayer wave”, in recognition of his work. However, closer examination of 
Mayer’s seminal work (Mayer 1876) reveals the discovery of an oscillation, in the 
blood pressure of the rabbit, of amplitude between 15 and 40 mmHg, which is 
greater than the amplitude of the slow oscillation in blood pressure observed by 
other authors (Malpas 2000), and of a frequency of -0.05 Hz which is far slower 
than the slow oscillation in the blood pressure of the rabbit (0.3 Hz) often termed the 
“Mayer wave” (Janssen 1997).

Examples of this inconsistency of terminology are widespread in the loosely defined 
field of cardiovascular variability, because measures of variability have altered as 
the many facets and intricacies of cardiovascular signals were revealed during the 
many years of research. Hence, the “variability” of the cardiovascular variables, 
blood pressure, and heart rate, has been defined using significantly different 
quantifiers (Akselrod 1985; Yip 1995; Zaza 2001). Linear and nonlinear dynamics 
have been observed within the variability of the cardiovascular system. Studies that 
document these dynamics, and the means of their quantification, have been well- 
reviewed in the physiological literature (Electrophysiology 1996; Goldberger 1996; 
Wagner 1996; Mancia 1997; Lombardi 2000; Zaza 2001; Lanfranchi 2002; Malpas 
2002; Stauss 2003), yet still much uncertainty surrounding the field of 
cardiovascular variability remains.

The focus of attention in recent times has been rooted in the pursuit to characterise 
this so called “variability” within specific frequency bands, which are presumed to 
encode clinically pertinent information regarding the competence of neural control
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(Malliani 1991). Two frequency bands in particular have stimulated most interest; 
the slow oscillation, which is the focus of this thesis, and a faster oscillation 
associated with respiration (see Section 2.3.1). It was originally proposed that the 
power of these two individual frequency bands may quantify the control of blood 
pressure by the sympathetic and parasympathetic systems respectively (Akselrod
1981), and that the ratio of the powers in these frequency bands may enable the 
development of an index of “sympathovagal” balance (Pagani 1986; Malliani 1994; 
Montano 1994). The clinical usefulness of such indexes is undoubted and, hence, 
this research has been embraced with great enthusiasm (Brown 1993). However, the 
direct relating of the power in these frequency bands to specific autonomic signals 
may be unwise, considering the integrated action of neural, paracrine and hormonal 
variables in the control of cardiovascular function. The calculation of an index of 
sympathovagal function has also been the subject of strong criticism (Eckberg
1997).

A second method of quantification of cardiovascular variability is also common, 
particularly in earlier studies. Rather than defining this variability at any particular 
frequency, these authors used global indices of variability such as the standard 
deviation of heart rate or blood pressure (Cowley 1973; Littler 1978; Mancia 1983; 
Mancia 1986; McAreavey 1989; Nolan 1992) as the quantifier of variability. A 
strong correlation between increased heart rate variability and increased risk of 
mortality from myocardial infarction has been established (Larovere 1997; Larovere
1998). These studies have also shown consistent relationships between reduced heart 
rate variability and a number of pathophysiological conditions including atrial 
fibrillation, coronary artery disease (Casolo 1995) and heart failure (Coumel 1994).

In addition to this periodic oscillatory behaviour of cardiovascular signals, which 
forms the basis of the methods of cardiovascular variability introduced to date, a less 
specific variability occurs with nonperiodic behaviour, often quantified using 
techniques taken from the nonlinear time series analysis; techniques of chaos theory 
and fractal analysis. These methods are subject to greater consideration in the
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ensuing chapter, which focuses on the chaotic characterisation of blood pressure 
signals. Similar to the other quantifiers of variability, the physiological basis for this 
nonperiodic behaviour is still unresolved but variations in the quantifiers have 
displayed a definite consistency when applied to heart rate and blood pressure data 
recorded in subjects with a wide range of pathophysiological symptoms (Wagner 
1995; Yip 1995; Mrowka 1996; Sugiliara 1996).

The development of reliable and clinically relevant indices of any of these 
cardiovascular variabilities would be of great value. A diagnostic index of 
autonomic activity may be of particular value considering that elevated SNA is 
strongly correlated to a range of pathophysiological diseases (McCance 1993; 
Eisenhofer 1996; Julius 1996). This index would enable instantaneous analysis of 
the dynamical interrelations of autonomic signals using a non-invasive method 
(Malliani 1991).

Although the physiological basis of “cardiovascular variability” and the authenticity 
of the present quantifiers introduced in the previous paragraphs are still widely 
debatable, there is no doubt that analysis of cardiovascular variability has proven 
useful in understanding cardiovascular regulation (Malpas 2002) and that diagnostic 
indices are worth striving for. However, the momentum of the research into 
cardiovascular variability has continued without reflection and understanding of the 
fundamental causes of this variability (Malpas 2002). The rhythms that exist in 
cardiovascular signals are introduced in the subsequent sections and it is the aim, in 
the subsequent chapters of this thesis, to add to a more fundamental understanding of 
the causes of certain aspects of the variability of blood pressure.

2.3.1 Cardiovascular rhythms

Cardiovascular signals are rich in rhythms of different frequency and amplitude 
(Parati 1995). These rhythms manifest themselves at the same frequency in heart
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rate and blood pressure. Due to the easy availability of ECG recordings, heart rate 
oscillations are more extensively studied than blood pressure oscillations 
(Karemaker 1999). However, these oscillations may be understood as analogous to 
each other as an oscillation in one variable will produce an oscillation in the other 
(Karemaker 1999).

The cardiac rhythm

The actions of the cardiac cycle, the fdling of the ventricles and their emptying into 
the arteries, sets up the oscillation of the largest amplitude that is observed in the 
blood pressure signal. The average resting heart beats at a rate o f ~70 beats/min in 
humans, hence creating an oscillation in blood pressure at close to 1 Hz (Fox 1996).

The respiratory rhythm

The rhythm slower than the heart rate, that was first observed by the early 
researchers of cardiovascular variability, is the oscillation in heart rate and blood 
pressure that is associated with respiration (Hales 1733; Ludwig 1847) (other 
authors also). Along with the slow oscillation of heart rate and blood pressure, this 
respiratory related oscillation has stimulated much interest amongst researchers as it 
has been proposed that it may form the basis of a diagnostic measure of 
parasympathetic control (Malliani 1999), and form part of a sympathovagal balance 
index (Pagani 1986).

Respiration forces an oscillation in blood pressure at the breathing rate by cyclically 
varying intrathoracic pressure. Venous return to the heart is perturbed by the 
mechanical actions of breathing, which in turn changes cardiac output and hence 
blood pressure (via Equation 2.1). The blood pressure perturbations developed by 
this process are sensed by the baroreceptors, which activate the baroreflex 
mechanism, which causes a change in autonomic activity to the heart and, hence, 
adjusts heart rate.
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The frequency response of heart rate to stimulation of the parasympathetic nerves 
displays the characteristics of a low-pass filter with a relatively high cut off 
frequency (Berger 1989; Saul 1991; Kawada 1996) (see Section 2.2.3.1). In contrast, 
the frequency response of heart rate to stimulation of the sympathetic nerves has a 
much lower cut off frequency, which demonstrates the limited ability of the SA node 
to respond to sympathetic influences at frequencies as high as the respiration rate. 
Hence, it is thought that the oscillation, in the cardiovascular variables, associated 
with respiration, is mediated by the parasympathetic nervous system. In support of 
this, experimental studies showed that the inhibition of the parasympathetic activity 
resulted in an abolition of the respiratory related oscillation in heart rate (Kalona 
1975; Eckberg 1983; Fouad 1984; Saul 1991; Triedman 1995).

If the low frequency oscillation is a function of the baroreflex, then the oscillation in 
heart rate at the respiratory rate may only be present as a result of the same 
oscillation in blood pressure. However, a number of researchers have presented 
strong evidence to support central coupling of a central respiratory oscillator and the 
parasympathetic neural centres (Pilowsky 1995; Hayano 1996). Changes in heart 
rate at the frequency of respiration have been observed in the absence of respiratory 
movements (Davies 1967; Valentinuzzi 1974). Also, abolition of the respiratory 
related oscillation with parasympathetic blockade results in a reduction in the 
oscillation in blood pressure of -50% (Taylor 1998) and the sino-aortic denervation 
of the cat, which significantly impairs parasympathetic activity, markedly reduces 
the power in the frequency band of the respiratory oscillation of heart rate with only 
a minor reduction in the power of the same frequency band in blood pressure (Di 
Rienzo 1991).

Malpas (Malpas 2002) challenges the hypothesis that the respiratory related 
oscillation in heart rate may be used as an index of parasympathetic activity on a 
number of points.
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1. If the changes in parasympathetic activity are induced by baroreceptor 
sensing of respiratory disturbances of blood pressure, any measurement of 
the amplitude/power of the oscillation at this frequency must be indicative of 
all branches of the baroreflex and not just the parasympathetic branch alone.

2. Other nonncural factors, such as reduced respiratory capacity (Saul 1991) 
and body position (Taylor 1996), that alter the amplitude of the respiratory 
related oscillation in blood pressure, in turn alter the amplitude of the 
oscillation in heart rate (via the parasympathetic pathways). Hence, with 
regard to developing a generic diagnostic tool, problems will ensue when 
attempts are made to compare across different patient groups, as different 
patients will have different levels of respiratory capacity (Malpas 2002).

The slow oscillation

The next oscillation that can be observed at the next lowest frequency in the 
frequency spectrum of the cardiovascular variables is the slow oscillation that 
manifests itself at 0.1 Hz in the human. Due to its importance to this research, this 
oscillation is discussed in detail, and in isolation in the subsequent section (Section
2.3.2).

The very low frequency rhythm

Spontaneous fluctuations of cardiovascular parameters have also been observed at 
still lower frequencies (-0.03 Hz in rats (Leyssac 1983)). These oscillations have 
been observed in blood pressure (Barcroft 1932; Nisimaru 1984) and blood flow 
(Janssen 1995). Although the mechanisms of this oscillation are contentious, they 
have been related to fluctuations in the vasomotor tone due to the autorhythmic 
nature of blood vessels (Fuji 1990; Ursino 1992) and influenced by 
thermoregulatory, autoregulatory or hormonal mechanisms. Holstein-Rathlou and 
colleagues (Holstein-Rathlou 1993; Holstein Rathlou 1994; Holstein-Rathlou 1994;
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Holstein Rathlou 1995; Holstein-Rathlou 1998) have investigated the autoregulatory 
mechanisms of the kidney and also fluctuations in this frequency range.

The circadian rhythm

The slowest oscillation observed in blood pressure, is that which is governed by the 
light-dark cycle, known as the circadian rhythm (Berne 1996). For a human 
following a regular daily pattern, the peak in blood pressure occurs at mid-morning, 
followed by a progressive fall during the day, and the lowest value of the cycle is 
reached at ~3 a.m. (Millar 1978).

2.3.2 The slow oscillation in blood pressure

A slow oscillation exists in blood pressure at 0.1 Hz. This oscillation is referred to in 
this thesis as the slow oscillation in blood pressure, but is often termed the Mayer 
wave, amongst other things (see Section 2.1). This oscillation exists at different 
frequencies in different animal species and has been observed at 0.1 Hz in humans 
(Malliani 1991; Sleight 1995), 0.14 Hz in the dog (Akselrod 1985; Bemtson 1997),
0.3 Hz in the rabbit (Janssen 1997; Malpas 2000), and 0.4 Hz in the rat (Brown 
1994) and mouse (Janssen 2000). This variance of frequency is accounted for by the 
difference in species size resulting in longer efferent and afferent delays, due to 
longer conduction times, in larger species (Ringwood 2001) (see Section 2.2.2.2).

This slow oscillation in blood pressure is of particular interest to researchers. The 
“strength” of this oscillation, usually quantified by the power in the frequency band 
of this oscillation, has been proposed to provide a non-invasive surrogate measure of 
efferent SNA (for a review, see (Persson 1997)). SNA is well established to be 
elevated in heart failure (Eisenhofer 1996; Esler 1997) and coronary artery disease 
(McCance 1993) and may be associated with hypertension (Julius 1996; Julius 1996; 
Grassi 1998). Hence, a diagnostic measure of sympathetic tone, based on the easily
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measured slow oscillation of the cardiovascular variables, could be of immense 
value.

The slow oscillation in the blood pressure is well established to exist at ~0.3 Hz in 
the rabbit. However, this oscillation is not always obvious. A number of authors 
have been unable to consistently identify a peak in the frequency spectrum of blood 
pressure for all rabbits studied (Janssen 1997; Leonard 2000; Ringwood 2001). 
When a peak is evident at the frequency of the slow oscillation (~0.3 Hz), it often 
manifests as a broad peak, as shown in Figure 2.23.
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Figure 2.23: The frequency spectrum o f  the raw 500 Hz sampled blood pressure signal from an 
individual rabbit plotted against frequency.

The slow oscillation is sometimes more obvious in humans and rodents than in 
rabbits. A distinct peak, at the frequency of the slow oscillation, is evident in the 
spectrum of the blood pressure photoelectric pi ephysmograph (PPG) of the human.
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This data was obtained from the Biomedical-Optics Research Group at NUI 
Maynooth.

Figure 2.24: The frequency spectrum o f the raw 100 Hz sampled PPG signal from an individual
human plotted against frequency.

The slow oscillation in blood pressure is probably the most contentious aspect with 
respect to cardiovascular variability (Malpas 2000). As was already introduced, the 
information that can be inferred from measurements of this slow oscillation is a 
definite aspect of contention. Similarly, different theories exist as to the mechanisms 
involved in the genesis of the oscillation. Two theories dominate, the so-called 
central oscillator and baroreflex feedback theories, which are described in the 
subsequent section.
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2.3.3 The origin of the slow oscillation in blood pressure

With regard to the origin of the slow oscillation, both camps of theorists have 
mounted convincing arguments and have presented experimental evidence to 
support their theories. It is accepted by both sides that there is a role for the 
autonomic nervous system in the genesis of the slow oscillation. The action of the 
sympathetic nervous system on the vasculature has been particularly promoted by 
both sides, and experimental studies, which report an abolition of the oscillation 
during ganglionic blockade, support a significant role for this branch of the 
baroreflex (Cerutti 1994). The opposing schools of thought undergo a significant 
divergence with regard to the role of the baroreceptors and whether they are 
involved, as part of the feedback loop, in the genesis of the slow oscillation.

2.3.3.1 The central oscillator theory

Considering the inherently periodic nature of SNA and particularly the presence of a 
slow oscillation in SNA between 0.1 and 0.4 Hz, depending on the species in 
question, some researchers have proposed a central oscillator to account for the slow 
oscillation in blood pressure (Preiss 1974; Malliani 1991; Vandebome 1997; Cooley 
1998; Montano 1998). It is proposed that the neurons in the CNS that generate the 
faster rhythms in SNA also have the capability to generate the slow oscillation in 
SNA and it is further postulated that this slow oscillation in SNA is directly 
transmitted to blood pressure. Hence, resulting in a slow oscillation in blood 
pressure at the same frequency as the slow oscillation in SNA.

Researchers who advance this theory of the central oscillator, to account for the slow 
oscillation in blood pressure, have presented an abundance of experimental evidence 
to support their theory. This evidence is comprehensively appraised in the recent 
review paper by Malpas (Malpas 2002). Examples of this evidence and the salient 
points of the review are reproduced here.
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Preiss and Polosa (Preiss 1974) observed slow oscillations of preganglionic SNA in 
the absence of related changes in blood pressure and in both baroreceptor and 
chemoreceptor denervated cats. The oscillation reported by these authors is 
somewhat induced using repeated haemorrhage or carotid artery occlusion. This 
experimental practice is somewhat dubious for the purposes of analysing the 
mechanisms of the slow oscillation as haemorrhage has been shown to result in 
oscillations in blood pressure that do not rely on SNA but reflexly affect SNA 
through the baroreflex feedback mechanism (Malpas 2000). Although this does not 
explain the existence of an oscillation in SNA in the barodenervated case, the 
oscillation observed is at a much slower frequency than that associated with the slow 
oscillation in the blood pressure of an animal of similar size to the cat (Ringwood
2001) (e.g. the rabbit (Janssen 1997)).

A similar criticism holds for more recent studies that also purport to reveal evidence 
supporting the central oscillator theory. Grasso et al (Grasso 1995) reported blood 
flow to exhibit a self-sustained oscillation when the carotid sinus pressure was held 
constant. However, the frequency of the oscillation these authors report is 0.05 Hz 
(Grasso 1995). Similarly, another group of central oscillator theorists report activity, 
in central neurons associated with sympathetic activity, at 0.12 Hz, which is again a 
slightly slower frequency than the frequency of the slow oscillation (Ringwood
2001).

While the existence of these oscillations is not challenged, it is more likely that these 
oscillations are an inherent feature of the vasculature (Malpas 2002). The 
physiological evidence relating the slow oscillation in blood pressure is dubious and 
hence, the central oscillator theory, which is championed by a relatively small 
number of research groups (Preiss 1974; Malliani 1991; Vandebome 1997; Cooley 
1998; Montano 1998), does not receive much currency.
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2.3.3.2 The baroreflex feedback theory

The more dominant theory is the so-called baroreflex feedback theory, which is 
endorsed by a wider range of physiology groups (Guyton 1951; Hyndman 1974; De 
Boer 1987; Burgess 1997; Ringwood 2001; Malpas 2002; Stauss 2002) and 
supported by various models of the baroreflex (De Boer 1987; Burgess 1997; 
Ringwood 2001; Seydnejad 2001). In this hypothesis, a disturbance, which causes a 
change in blood pressure, activates the baroreflex feedback mechanism, i.e. is sensed 
by the baroreceptors, from where, sensory information, reporting the change in 
blood pressure, is transmitted to the CNS. Subsequently, the CNS adjusts the 
parasympathetic and sympathetic signals, which in turn change heart rate and 
vascular resistance. Inherent to this process are the time delays due to the conduction 
times of the nerves and the processing time of the CNS, and the slow dynamical time 
constants of the vascular and cardiac muscle response to SNA, and SA node 
response to sympathetic and parasympathetic stimulation (see Sections 2.2.3.1 &
2.2.3.2). These time delays and time constants introduce phase effects, which 
increases the chances of oscillatory behaviour as the total phase shift of the complete 
negative feedback loop nears 360° (Dutton 1997) (see Chapter 7).

The nonlinear nature of the baroreflex feedback loop is also well established (see 
Sections 2.2.1.1 & 2.2.2.5) and nonlinear systems are easily capable of sustained 
oscillation (Atherton 1982). A nonlinear system is capable of maintaining a stable 
oscillation for a wide variety of situations, a situation that is not possible for a linear 
model based on a stringent set of parameters (see Section 2.3 for a discussion of 
nonlinear models).

The baroreflex feedback theory is strongly supported by a number of physiological 
experimental investigations which showed that removal of different sections of the 
baroreflex loop significantly reduced the amplitude or power in the spectral band of 
the slow oscillation (Malpas 2002).
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Studies in which the baroreceptors were deafferented confirm the considerable 
contribution of the baroreflex in the genesis of the slow oscillation. These studies 
showed a consistent reduction in the spectral power at the frequency of the slow 
oscillation in blood pressure and heart rate (Di Rienzo 1991; Cerutti 1994; Ceratti 
1995; Jacob 1995). However, this practice may not fully abolish the slow oscillation 
as a residual variability, in the frequency band of the slow oscillation, is still 
observed after baroreceptor deal'ferentation. The considerable contribution of the 
sympathetic nervous system was also demonstrated by removal of the sympathetic 
nervous system, which also decreased the spectral power at the slow oscillation in 
the rat (Cerutti 1991).

These studies, in which certain elements of the baroreflex are removed, may not be 
sufficient in establishing the significance of the baroreflex alone as such actions may 
cause interventions and are likely to cause compensation in other control 
mechanisms (Malpas 2002). As an alternative means of investigation of the role of 
the baroreflex in the genesis of the slow oscillation, other authors found that 
fluctuations could also be produced at the frequency of the slow oscillation by 
stimulation of the baroreceptors of rats (Bertram 1998) and of the carotid blood 
pressure of humans (Bemardi 1994).

The slow oscillation that manifests itself in heart rate appears to be driven via the 
baroreflex, since the heart rate oscillation disappears in the absence of the slow 
oscillation in blood pressure (Cevese 2001) and has been related to cardiac 
sympathetic modulation resulting from the baroreflex response to the slow 
oscillation in blood pressure (Sleight 1995). However, other authors have shown that 
the slow oscillation in heart rate is eliminated by parasympathetic blockade (Taylor
1998).

Nitric oxide, due to its short half-life (~6 s), may have a crucial role to play in the 
short-term regulation of blood pressure. This may interact with the baroreflex 
feedback loop and may dampen the slow oscillation in blood pressure (Malpas
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2002). It is proposed that blood pressure oscillations may result in alterations in the 
shear stress along the blood vessel walls and hence stimulate the endothelial cells 
responsible for the release of nitric oxide. Blockade of nitric oxide in both rats and 
dogs has resulted in a significant increase in blood pressure variability in the same 
frequency range in which the effects of SNA are evident (Nafz 1986; Nafz 1997; 
Stauss 1999). Although doubts remain as to whether nitric oxide displays its 
dampening effects at the exact frequency of the slow oscillation, it is possible that its 
effects on the vasculature plays a role in the development of the slow oscillation.

There is a generous amount of physiological evidence to support a hypothesis, which 
proposes the feedback loop, including the baroreceptors, as integral to the genesis of 
the slow oscillation. This hypothesis is further supported by a number of models of 
the baroreflex loop that have reported a corresponding oscillation at the frequency of 
the slow oscillation and these models are reviewed in Section 2.4 of this chapter. 
However, many of the recent investigative studies, both experimental (Malpas 2000) 
and modelling (Burgess 1997; Ringwood 2001), have focused specifically on the 
sympathetic pathway to the vasculature and dismissed the role of other pathways in 
the genesis of the slow oscillation. These studies and this hypothesis are reviewed in 
the subsequent section.

2.3.3.3 Roles of the vasculature and the heart in the genesis of the

slow oscillation in blood pressure

The experimental physiological studies commented on in the above sections, along 
with others, have led to conclusions been drawn regarding the role of the different 
neural pathways, and the different effectors (heart or vasculature) of the baroreflex, 
involved in the genesis of the slow oscillation in blood pressure.

The presumption in recent times has been that the slow oscillation represents 
sympathetic effects on the blood pressure effectors (Pagani 1986). The specific focus 
has been on the effect of the sympathetic system on the vasculature, particularly the
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renal vasculature (Grady 1992; Janssen 1997; Leonard 2000; Malpas 2000). Hence, 
any role for the heart, in the genesis of the slow oscillation, has generally been 
down-played with the accepted view being that the slow oscillation exclusively 
involves the role of the sympathetic nervous system on the vasculature (Liu 2002).

The majority of evidence in support of this hypothesis has stemmed from 
experimental studies that have removed the effects of the parasympathetic and 
sympathetic pathways to the heart (Liu 2002) or from studies that have reported a 
decrease in the spectral power at the frequency of the slow oscillation when the 
sympathetic nervous system (Cerutti 1991) is removed or the baroreceptors are 
denervated (Di Rienzo 1991; Cerutti 1994; Cerutti 1995; Jacob 1995). Although 
many of these ‘removal’ studies do support a significant role for the sympathetic 
control of the vasculature in the generation of the slow oscillation, these studies 
alone should not be accepted to preclude a role for the heart in the genesis of the 
slow oscillation in blood pressure as all pathways and even other mechanisms may 
be involved in this process. The possibility for enhanced compensatory activity of 
other mechanisms, once one mechanism has been removed, is also ignored (Malpas
2002).

A possible role for the heart in the generation of the slow oscillation in blood 
pressure is discussed in more detail in Chapter 6. Models of the short-term blood 
pressure control mechanisms, that both include and exclude the heart, are introduced 
in the subsequent section.

2.4 Modelling review

Concerning the mathematical investigation of the variability of cardiovascular 
signals using spectral analysis techniques, standard indices of variability and chaos 
and fractal theory were briefly described in the previous section (Section 2.3). These
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analysis techniques have proven to be powerful tools in the investigation of causal 
relationships between rhythms present in cardiovascular signals. However, these 
methods provide no information regarding the mechanisms underlying these 
oscillations present in cardiovascular signals and the genesis and changes observed 
in these oscillations. As has been discussed, understanding of these issues will prove 
key to the possible future use of these oscillations, and in particular the slow 
oscillation, as a diagnostic test.

Mathematical modelling enables a greater level of understanding of the fundamental 
processes involved in the regulation of blood pressure and specifically in developing 
the observed oscillatory characteristics.

Mathematical modelling studies have followed two main approaches. One approach 
is inherently founded on experimental data recordings of cardiovascular and neural 
variables. System identification (Chon 1997; Mullen 1997), linear time series 
analysis (Di Virgilio 1997; Nakata 1998) and artificial neural networks (Allen 1999) 
are used to study the relationships between these cardiovascular and neural 
variables. These methods have advanced the understanding of the relationships 
between different cardiovascular and neural variables. For example, Nakata et al 
(Nakata 1998) analysed the relationship between heart rate, systolic pressure and 
SNA at the frequency of the slow oscillation and suggested that sympathetic 
oscillations predict -70% of the power of the slow oscillation in blood pressure, a 
result supported by experimental investigations (See Section 2.3.3.2). However, 
these modelling techniques are limited to a small number of parameters and hence, 
only the relationship between certain variables can be analysed.

The second approach involves the development of physical linear and nonlinear 
models of the regulatory mechanisms of the cardiovascular system. These models 
are based on physical principles that have been experimentally derived and 
described by linear or nonlinear equations. These models are of importance for 
analysing the role and relative significance of various factors involved in the
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different aspects of baroreflex control including the development of oscillations. 
Mathematical models also enable predictions to be made regarding cardiovascular 
control and the behaviour of the oscillations under conditions that are difficult to test 
experimentally (Malpas 2002). Many physical models of the cardiovascular 
mechanisms involved in the development of the slow oscillation have been 
developed to date (Hyndman 1971; Kitney 1979; De Boer 1987; Cavalcanti 1996; 
Burgess 1997; Cavalcanti 2000; Seydnejad 2001; Ursino 2003). These models have 
enabled useful insight into the mechanisms involved in the genesis of the slow 
oscillation. However, many of these models are either physiologically unrealistic 
and inaccurate or based on a simplified description of cardiovascular control.

The development of a comprehensive physiologically realistic, physical model of the 
short-term blood pressure control mechanisms, which is capable of accurately 
describing the mechanisms involved in the development of the slow oscillation in 
blood pressure, is the primary aim of this research

2.4.1 Models of baroreflex control of peripheral 
resistance

Due to the substantial school of thought which dismisses the role of the heart in the 
genesis of the slow oscillation in blood pressure, an abundance of models, which 
describe baroreflex control of the peripheral resistance excluding the baroreflex 
control of the heart, are presented in the literature (Hyndman 1971; Kitney 1979; 
Burgess 1997; Ringwood 2001; Chapuis 2004).

The first models of baroreflex control of peripheral resistance were developed 
during the 1970s (Hyndman 1971; Kitney 1979). These seminal studies explained 
the 0.1 Hz oscillations in blood pressure as a limit cycle oscillation present, in part, 
as a result of the nonlinearity in the feedback loop. Figure 2.26 illustrates the model, 
which was developed to simulate the limit cycle oscillation in blood pressure.

77



Figure 2.25: The nonlinear feedback model that represents baroreflex control o f  peripheral resistance.

where,

j(* )  =
K ,0 < t< T/ 2 
- K ,T/ 2 < t< T

where,

and,

where,

K is the saturation limit of the hard saturating nonlinearity.

(1 + 12 s)
~  (1 + 92j )(1 + 2j )

GJ(s) = e-'-‘

t  is the efferent delay in the forward path of the baroreflex.

(2.4)

(2.5)

(2 .6)

Equation 2.5 describes the unity gain representation of the frequency response of the 
vasculature bed as calculated by Scher and Young (Scher 1963). No delay or 
dynamics are included in the feedback path by Kitney (Kitney 1979) and, 
hence, H d (s) = 1.

The nonlinearity included in the forward path of the model s (x) is a hard nonlinear 
characteristic used to approximate the sigmoidal baroreflex curve present in the
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central nervous system (Section 2.2.2.4), which were experimentally identified 
around the same period (Komer 1972; Komer 1973; Iriki 1977). Although, this hard 
nonlinearity is physiologically unrealistic, these early models proved a sound 
foundation for explaining the genesis of the slow oscillation in blood pressure via a 
limit cycle.

More recently, Burgess et al (Burgess 1997) proposed a linear feedback model to 
account for the slow oscillation in blood pressure. They included a linear 
proportional-derivative (PD) controller to represent the central nervous control. This 
structure ignores the nonlinear relationship that is well established to exist in the 
CNS and also requires a very strict relationship between the vasculature and 
controller parameters in order to maintain sustained oscillation.

Subsequent to this, Ringwood and Malpas (Ringwood 2001) reintroduced the idea of 
a limit cycle oscillation, this time replacing the hard nonlinearity included in the 
earlier nonlinear models (Hyndman 1971; Kitney 1979) with the more 
physiologically realistic sigmoid-shaped amplitude-limiting nonlinearity. This 
nonlinear characteristic is well established to exist in the baroreflex (Sections 2.2.3.1 
& 2.2.3.2) and is described by Equation 2.3 of Section 2.2.3.2.

Also included in the model are delay terms to account for conduction delays along 
the nerves (Gd (s),H d (.v)j and a linear transfer function to represent the dynamics
of the vasculature (Gv (.v)) . As illustrated in Figure 2.25, G(s) is the amalgamation 
of Gv (.s) and Gd (.v). Hence, the model takes the same structure as that illustrated in 
Figure 2.25, where in this case,

0 . ( 9  = ^  (2.7)
where,

K  is the gain of the transfer function, and
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t v is th e  v ascu la tu re  lag .

Gd (.s’) is as given in Equation (2.6), where in this case the delay is specified for the 
rabbit at 0.6 s (Ringwood 2001). Also the feedback path is specified as:

H„{s) = e ^  (2.8)

where, za is the afferent delay (0.2 s) (Ringwood 2001).

This nonlinear model, unlike the previously published linear model of Burgess et al 
(Burgess 1997), allows for the slow oscillation in blood pressure under a mild set of 
assumptions and unlike the previously published nonlinear models, is a 
physiologically realistic representation of the baroreflex control of peripheral 
resistance, that is proposed to generate the oscillation (Malpas 2002). This model 
serves as the basis for the study documented in Chapter 4, in which the model is 
parameterised and analysed for different physiological conditions.

2.4.2 Models of the complete baroreflex

Mathematical models for the heart and other effectors of short-term control of blood 
pressure are also presented in the literature. Possibly, the most cited model in the 
literature is the model that was proposed by de Boer et al (Dc Boer 1987). This 
model is developed using a set of difference equations, which describe baroreflex 
control of the interbeat interval and peripheral resistance, mechanical effects of 
respiration on blood pressure, the contractile properties of the myocardium and the 
input impedance of the systemic arterial tree. Simulation of this model produces an 
oscillation in heart rate at the frequency of the slow oscillation, which the authors 
ascribe to a resonance in the baroreflex due to the time delay in the sympathetic 
path. However, this model represents quite a simplified description of the
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cardiovascular regulatory mechanisms and has only been examined in its linearised 
form. Other researchers have re-parameterised (Whittam 2000) and modified de 
Boer’s model to enable investigation of the nonlinear dynamics of the model (Eyal 
2000).

In contrast to the model of de Boer et al (De Boer 1987) most other physical models 
of the baroreflex consist of differential equations (Grodins 1963; Guy ion 1972; 
Wesseling 1982; Cavalcanti 1996; Ottesen 1997). The model of Cavalcanti and 
Belardinelli (Cavalcanti 1996), which simply describes the baroreflex control of 
heart rate and stroke volume, also replicates the slow oscillation in heart rate. The 
emphasis of this study is on the analysis of the influence of the time delays in this 
simplified description of the baroreflex. These authors show how an increase in the 
time delay may drive the system to complex behaviour and in particular, to oscillate 
chaotically, as is also demonstrated by the model of Seidel and Herzel (Seidel 1998). 
However, neither Cavalcanti and Belardinelli (Cavalcanti 1996) nor Seidel and 
Herzel (Seidel 1998) associate any physiological reality with this changing delay 
(Cavalcanti 1996; Seidel 1998) and it is generally accepted that the delays of the 
baroreflex system due to conduction delay along the nerves are constant.

The cardiac output of the model of Cavalcanti and Belardinelli (Cavalcanti 1996) 
utilises a Windkessel description of the circulatory system, which is common in a 
number of developed models (Kanoh 1984; De Boer 1987; Madwed 1989; 
Cavalcanti 1996; Abbiw-Jackson 1998; Seidel 1998; Ottesen 2000). A wide variety 
of Windkessel representations of the arterial tree exist (Westerhof 1971; Burrattini 
1982; Campbell 1984). The basic electrical analogue models of the Windkessel 
model generally include resistors to represent the resistance of the vascular beds and 
capacitors to represent the compliance of blood vessels. Abbiw-Jackson and 
Langford (Abbiw-Jackson 1998) altered the Windkessel model by incorporating two 
pumps, one for each side of the heart, and incorporated the baroreflex via a nonlinear 
transfer characteristic from blood pressure to heart rate (Abbiw-Jackson 1998). This 
model simulated a slow oscillation in blood pressure, which the authors proposed
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was due principlely to baroreflex gain and not primarily influenced by the delays of 
the baroreflex.

Cavalcanti followed his earlier study (Cavalcanti 1996) with a second, somewhat 
more complex, model which included different parasympathetic and sympathetic 
pathways of the heart. The static characteristics included in the baroreflex pathways 
of the heart were obtained from the study of Head and McCarty (Head 1987), who 
document sigmoidal relationships between blood pressure and heart rate, separately 
influenced by each branch of the autonomic nervous system (see Section 2.3.3.1).

Seidel undertook a comprehensive investigation of the mechanisms of short-term 
blood pressure control (Seidel 1995; Seidel 1997; Seidel 1997; Seidel 1998). This 
model includes complex nonlinear descriptions of the heart, vasculature, 
baroreceptors and branches of the autonomic nerve activity, and models the 
mechanical and central effects of respiration and the control of stroke volume. Much 
emphasis is given to the modelling of the phase dependency of the SA node on the 
moment of parasympathetic stimulation during the cardiac cycle (Seidel 1997), 
which has been experimentally derived (Yang 1984).

In recent years, comprehensive models have also been published by Seydnejad and 
Kitney (Seydnejad 2001) and Ursino and Magosso (Ursino 2003). The model of 
Seydnejad and Kitney (Seydnejad 2001) consists of many aspects of the baroreflex 
including parasympathetic and sympathetic control of heart rate, sympathetic control 
of the vasculature, a respiration oscillation and a centrogenic oscillator. However, 
instead of maintaining a purely physical representation of the baroreflex mechanism, 
the dependence of blood pressure on heart rate, respiration and peripheral resistance 
is identified empirically through a Volterra expansion (Seydnejad 2001).The authors 
also include a piecewise nonlinearity in the forward path as “a nonlinearity seems to 
be essential to satisfactorily explain the observed fluctuations in variability signals”. 
Although the authors report oscillations at the frequency of respiration and of slow 
oscillation in blood pressure this result is hardly surprising considering the inclusion
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of two signal generators, one at each of these frequencies and the poorly justified 
inclusion of a nonlinear element which enables oscillations between its limits of 
threshold and saturation.

Possibly the most comprehensive physical model of the short-term control 
mechanisms involved in the development of cardiovascular variability, is that which 
was presented by Ursino and Magosso (Ursino 2003). These authors report simulant 
oscillations in heart rate at the frequency of the slow oscillation and the frequency of 
respiration of the human. Their model incorporates descriptions of systemic and 
pulmonary circulation, sympathetic control of peripheral resistance, heart period, 
unstressed volume and heart contractility, parasympathetic control of heart period, 
the mechanical effect of respiration on venous return and a very low-frequency 
vasomotor term. Although this model is especially inclusive of the mechanisms of 
short-term cardiovascular control, a number of criticisms of the model remain, 
specifically related to the contentious parameter choices made by the authors. Due to 
the inability to do invasive experiments in humans, there is a paucity of parameters 
available for a model derived for humans. Hence, the model incorporates parameters 
derived from humans and dogs and although the authors claim otherwise, reference 
to the physiological literature, from where the model parameters were obtained, is 
sparse. The locations and parameters of the gain and nonlinear elements are also 
contentious (see Section 6.3) and the justification of the choice of the physical 
structure of the model is tentative. This model and the parameter choices are again 
analysed in Chapter 6 and are compared to the choices made for the model of the 
complete baroreflex, documented in that chapter

Olufsen developed models (Olufsen 1999; Olufsen 2000) based on sets of 
hydrodynamic equations. These models are used to predict fluid and pressure 
waveforms in the arterial tree rather than directly examine the oscillations of 
cardiovascular variables. Nevertheless, these models offer useful insight into the 
workings of the cardiovascular system and in support of their model these authors 
validate their simulated results by comparing them with MRI flow data.
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The models reviewed in this section are all distinctly different and attribute the slow 
oscillation to quite different aspects of the short-term blood pressure control 
mechanisms. Although many of these models enable insightful investigation and 
analysis o f the possible mechanisms leading to cardiovascular oscillations, many 
tend to be either physiologically unrealistic or based on a simplified description of 
cardiovascular control. Considering these facts, a new model of the short-term 
controlling mechanisms involved in the genesis of the slow oscillation in blood 
pressure is presented in this thesis. The case for a new model is further justified in 
Chapter 6 where the model and its development are documented.
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Chapter 3

Analysis of chaos in blood pressure signals

3.1 Introduction

A nonperiodic “variability” exists in cardiovascular signals (see Section 2.3). 
This nonperiodic variability has attracted much research interest in recent years 
and quantification of this variability has been enthusiastically embraced. 
However, similar to the other measures o f variability introduced (see Section 2.3) 
this research has continued with little understanding of what causes this 
variability.

The techniques for analysis of this nonperiodic variability are derived from 
“chaos theory”. Chaos is the term used to describe the apparently complex 
behavior o f what are accepted to be simple, well-behaved systems (Hilbom 
2001). Chaos can only occur in deterministic nonlinear, dynamical systems, but 
when initially observed appears erratic and random (Williams 1997).

Researchers have claimed to have found chaos in all types of diverse and 
incomparable fields, including everything from lasers (Flepp 1991) and 
electronic circuits (Chen 1988) to oil market prices (Panas 2000) and even in the 
cries of the newly bom (Mende 1990). To this extent, chaotic behavior seems to 
be regularly occurring and universal.
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The search for chaos in medical and biological systems is a research area that has 
attracted much attention from specialists of nonlinear dynamics and chaotic 
behavior, in the last twenty years (Babloyantz 1988; Goldberger 1996; Lombardi 
2000). Nonlinear dynamical behaviour has been observed in a number of 
physiological variables, including arterial blood pressure (Wagner 1995; Wagner 
1996; Lovell 1997), heart rate (Hagerman 1996; Casaleggio 1997; Pavlov 2000), 
blood flow (Holstein-Rathlou 1993; Yip 1995) and sympathetic nerve discharge 
(Zhang 1994; Zhang 1998).

When analysing and quantifying the chaotic nature of a system, time-series data 
of variables of the system are the key basics. It is proposed that the sampled 
values of one continuous variable are sufficient to describe the dynamics of the 
underlying system (Hilbom 2001). Hence, the quantification of the chaotic 
behavior o f a system is generally achieved by researchers, through the analysis of 
sampled time-series recordings of variables of the system, often using a 
quantifier known as the largest Lyapunov exponent.

Due to the complex fluctuations in time of physiological systems (see Section 
2.3), time-series recordings of physiological variables are popular with 
researchers wishing to analyse systems for chaos. Heart rate time-series data has 
been the subject of much investigation and the possible presence of chaos has 
been studied in heart rate signals taken from subjects with symptoms ranging 
from depression (Yeragani 2002) and panic disorder (Rao 2001) to those 
suffering from diabetes (Claesen 1994) and cardiac vascular disease (Pavlov
2000). The study of chaos in cardiovascular signals is reviewed in Section 3.1.2 
and the association of different states o f health to the varying levels of chaos is 
examined.

However, rather than add to this growing research, the primary intension of the 
investigation documented in this chapter was to probe for information regarding 
the nonlinear nature of the short-term blood pressure control mechanisms.
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3.1.1 Rationale for analysis o f blood pressure time series for 
chaos

The broader focus of this research project is rooted in the modelling of the 
mechanisms that control blood pressure in the short-term. As was reviewed in 
Chapter 2, the mechanisms that control blood pressure are inherently nonlinear 
(Malpas 1996; Rudas 1999). Of specific interest to this research is the slow (limit 
cycle) oscillation in blood pressure that is proposed to result from the nonlinear 
elements present in the blood pressure controlling mechanism. Other nonlinear 
phenomena have also been reported (Michaels 1987; Rudas 1999). Analysis of 
these phenomena, the nonlinearities and mechanisms that are responsible for 
both the genesis of this slow, limit cycle, oscillation and other nonlinear 
phenomena is key to the future development of a diagnostic test based on 
cardiovascular variability.

One well-documented nonlinearity that exists in the blood pressure regulatory 
mechanisms is the nonlinear relationship that occurs between blood pressure and 
sympathetic nerve activity, described by the baroreflex curves (see Section 
2.2.2.4). The characteristics of this nonlinearity have been observed to change 
during different physiological conditions (Malpas 1996; Barrett 2003). Examples 
of these changing characteristics have been illustrated in Figure 2.3 and 2.11 
already and form a large part of the focus of the study documented in Chapter 4 
of this thesis. Ringwood and Malpas (Ringwood 2001) demonstrated, in their 
modeling study, that this nonlinearity is key to the development of a limit cycle 
oscillation in blood pressure. Changes in the parameters that describe the 
baroreflex curve have been related to changes in the strength of the slow 
oscillation in blood pressure, with the oscillation reported to disappear during 
certain physiological conditions (see Section 4.3). Such changes in the baroreflex 
curve have been observed during the inhibition and enhancement of certain 
hormones and paracrines including, for example, angiotensin II (Barrett 2003) 
and nitric oxide (Ramchandra 2003).
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Considering that chaos can only develop in nonlinear systems, the chaotic 
analysis of blood pressure signals during physiological conditions where the 
integral nonlinearities are seen to change is an obvious extension of this research. 
The methods o f nonlinear time series analysis, used in this study to analyse blood 
pressure signals, enable identification of a number of characteristics o f the blood 
pressure system including the system dimension, levels of complexity, 
nonlinearity and chaos. This analysis, in theory at least, enables insight into those 
nonlinear elements in the blood pressure controlling mechanisms that are 
responsible for nonlinear behavior, and in particular, chaos in blood pressure.

3.1.2 Chao s and health

A few different measures of cardiovascular variability have been proposed as the 
basis for possible future diagnostic tests. It has recently become common to 
assess the state of health by analysis o f the nonperiodic, chaotic nature of 
cardiovascular signals (Yeragani 1993; Goldberger 1996).

It was originally proposed that chaotic behaviour resulted only during 
pathophysiological situations such as hypertension (Yip 1991). In contrast to this 
early observation, more recent studies have consistently reported that healthy 
systems are those characterised by high levels of chaos, and that reduced health 
may be associated with reduced levels of chaos (Wagner 1995; Guzzetti 1996; 
Hagerman 1996; Patzak 1996; Sugihara 1996).

It is not the main objective of this research to relate the level of chaos observed 
in the physiological situations under analysis to a state of health. As previously 
stated, the focus of this investigation is primarily on the identification of aspects 
of cardiovascular control involved in the mechanisms responsible for the 
development of the slow oscillation.



3.1.2.1 Chaos in cardiovascular signals
Due to the easy availability of ECG recordings, heart rate signals are more 
regularly analysed than blood pressure, blood flow and SNA signals. Hence, 
studies that report the presence of chaos in blood pressure are not as common as 
their equivalent in heart rate.

Chaos has been reported in heart rate variability in patients with a range of 
pathophysiological conditions including hypertension (Signorini 1994), heart 
failure (Signorini 1994), epilepsy (Faustmann 1994), diabetes (Claesen 1994), 
panic disorder (Rao 2001), depression (Yeragani 2002), multiple sclerosis (Ganz 
1994) and heart transplant patients (Signorini 1994), amongst others. The level of 
chaos is decreased from the control level in the majority of these conditions. 
Other authors have assessed the level of chaos following intervention, including 
vagal (Ganz 1993; Hagerman 1996; Zweiner 1996) and sympathetic (Ganz 1993) 
blockade. Many of these authors report a decrease in the largest Lyapunov 
exponent following these interventions, although Ganz et al (Ganz 1993) report 
no significant change in the level of chaos during these blockades.

Chaos has been reported in the blood pressure o f the dog (Wagner 1995; Lovell 
1997) and the rat (Mrowka 1995). Wagner et al (Wagner 1995) reported a 
significant decrease in the level of chaos in the barodenervated dog.

The level of chaos in blood flow has been assessed and was reported to be 
decreased in hypertensive rats (Yip 1991; Yip 1995). SNA signals have also been 
assessed during similar conditions (Zhang 1994; Zhang 1998).
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3.2 Analysis of Blood Pressure Data

3.2.1 Description of available data

Blood pressure signals were recorded in conscious New Zealand white rabbits. 
The University of Auckland, Animal Ethics Committee, approved all 
experiments. All signals were continuously recorded and sampled at 500 Hz 
using an analog-to-digital data acquisition card (National Instruments). 
Calibrated signals were continuously displayed on screen and saved using a 
program written in the Lab VIEW graphical programming language (National 
Instruments).

Data was recorded during seven different physiological conditions:

Physiological recordings

1. Control rabbits (Leonard 2000; Ramchandra 2003); Blood pressure was 
measured via an implantable telemetry device inserted in a central ear 
artery of 10 resting and conscious rabbits.

2. Blood volume expansion (Leonard 2000); In 5 rabbits a polygeline- 
electrolyte solution was used to increase plasma volume. This solution 
was administered at 1.5 ml/min/kg for 15 minutes.

3. Control after blood volume expansion (Leonard 2000); Blood pressure 
was recorded for a further 7 minutes after completion of volume 
expansion.

4. Barodenervated rabbits (Le Fevre 2003); The afferent nerves sensing 
blood pressure were cut in a group of 6 rabbits. Recordings were taken 
from rabbits at least 10 days after surgery and with the animals living in 
their home cages and on a 12 hr light/dark cycle.
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5. Barodenervated rabbits with infused angiotensin II (Le Fevre 2003); 
Following barodenervation, the animals were infused with angiotensin II 
(50 mg/kg/min).

6. Angiotensin II infused rabbits with intact baroreflex (Barrett 2003). These 
baroreflex animals were infused with angiotensin II (50 mg/kg/min).

7. Nitric oxide blocked rabbits with intact baroreflex (Ramchandra 2003). In 
a group of 4 rabbits, nitric oxide blocker L-NAME was induced by oral 
administration and the daily intake was 50 ±4 mg/kg/day.

Statistical analysis

ANalysis Of VAriance statistical techniques (ANOVA) were used to assess the 
effects of the various interventions on the chaotic nature of blood pressure. P 
values below 0.05 were considered significant.

All values, including mean blood pressure, correlation dimension and largest 
Lyapunov exponents, are presented as mean ± standard deviation (S.D.).

3.2.2 Data preprocessing

The existence of noise is inherent in experimentally recorded physiological 
signals. When dealing with experimentally recorded time series data, the 
existence of both measurement and dynamical noise may be assumed (Kantz 
1997).

Measurement noise refers to the corruption of observations by errors which are 
independent o f the dynamics (Kantz 1997). The dynamics satisfy,

X M = F ( X i )  C3 - 1 )
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However, what are measured are scalars of the form:

S ,= S (x ,)  + 77, (3.2)
where,

S (x) is a smooth function which maps points on the attractor to real
numbers and, 

rii are random numbers or measurement noise.

Measurement noise exists in experimental time series recordings due to the non­
ideal characteristics o f the A-D converter, specifically the introduction of a 
quantisation error, and to the existence of regular electrical noise associated with 
the electronic measurement equipment. In contrast, the dynamical noise refers to 
the actual noise on the system ‘states’:

*,-+i = F {xl +rfl) (3.3)

Dynamical noise may be the result of a number of factors including movement 
artifacts and varying emotions of the live subject during recordings. Dynamical 
noise is generally unidentifiable from the time series as it may be 
indistinguishable from the normal dynamics of the system, and attempts to 
remove it may be perilous. In order to remove this dynamical noise from the 
signals, models must be chosen for the dynamics and these models must be fitted 
to the data in the regions o f interest o f the attractor (Kostelich 1993).

The presence of a large noise component in the data limits the possibility of 
reliably extracting quantitative information for time series data (Kostelich 1990). 
Noise may completely obscure the underlying fractal structure unless the data are 
preprocessed to reduce it (Grassberger 1991). Considering that noise usually 
manifests itself at higher frequencies, a common technique amongst researchers, 
when attempting to minimise the level of noise in an experimentally recorded 
signal, is to use linear low-pass filtering techniques. However, a defining feature 
of chaotic signals is that they will generally have a broad spectrum, with
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frequency components at all frequencies across the spectrum (Signorini 2001) 
and therefore share spectral properties generally attributed to random noise 
(Kantz 1997). Hence, any attempt to reduce noise by using a linear filter will 
have a detrimental effect on the signal resulting in correlations and nonlinear 
signal distortion (Kostelich 1993; Yip 1995).

Alternatively, a number of nonlinear noise reduction algorithms exist, which 
avoid the distortion o f the signal due to linear filtering (Kostelich 1988; 
Kostelich 1990; Schreiber 1991; Cawley 1992; Sauer 1992). The objective of this 
noise reduction process was to reduce the effects of measurement noise due to 
quantisation without affecting the dynamics of the system. Hence, the algorithm 
chosen for this study is that proposed by Schreiber (Schreiber 1993). This 
method replaces each data point, Xi, by the average value of this coordinate over 
points in a suitably chosen neighbourhood as is described by Equation (3.12). 
However, the data is first set up for analysis, by reconstruction of the phase 
space. The methods of this are documented in the subsequent section and the 
noise reduction method is introduced subsequent to this.

Reconstruction of the phase space

The first step in any analysis of chaotic data is to reconstruct the attractor in 
phase-space (Kostelich 1993). The most popular method of reconstruction of the 
phase space is the time-delay embedding method (Packard 1980; Takens 1981). 
This technique is developed around the idea that, even for a multidimensional 
system, the time series record of a single variable is often sufficient to determine 
many of the properties of the full dynamics of the system (Hilbom 2001). For a 
properly generated phase space, the behaviour of trajectories in this phase space 
will have the same geometric and dynamical properties that characterise the 
actual trajectories in the full multidimensional state space for the system (Hilbom
2001). The time-delay embedding method is well documented in the nonlinear 
time series analysis literature and may be outlined as follows.
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For an N-point time series, x{i)=  {x,,x2,...... ,xN] , each time-delay vector in
phase space is formed as:

X ,= [x ( i) ,x ( i  + z ) ,  ,x (/ + ( m - l ) r ) ]  (3.4)

where,
i - \ , 2 , . . . , N - { m - \ ) z ,
z is the time delay, and 
m is the minimum embedding dimension.

These vectors, X., form the rows of the matrix X, which describes the 
reconstructed phase-space:

X=[x„x„ x j  (3.5)

where, M = N  -  (m - 1) z .

Hence, the problem of reconstructing the phase space reduces to the calculation 
of the time delay, z , and the embedding dimension, m . It is important that 
appropriate values of m and z  are chose so that the optimal embedding space is 
developed (Radojicic 2001).

The time delay, z  , is chosen to result in vectors o f points that are not correlated 
to previously generated points (Chen 1999). Hence, each component of the 
vector z is providing new information about the signal source at a given time 
(Abarbanel 1998). If z  is chosen too small, each component of the vector X. 
will not add significant new information about the dynamics (Abarbanel 1998).
Just as too small a choice for z  is inappropriate, so also is too large a choice of 
z , as the components of Xt become independent o f each other and cannot 
properly describe the dynamics of the system (Abarbanel 1998).
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A number of different methods of time-delay calculation are available (Fraser 
1986; Albano 1988; Liebert 1991; Buzug 1992). In general, these methods are 
based on the use of a correlation function to calculate the dependence of the 
sample points on each other. The time at which this correlation function reaches 
its first minimum is generally chosen as the time lag, r .

The two most common methods for calculation o f the time delay are the 
autocorrelation method and the mutual information method. Both these methods 
were used in this study but more concentration is given to the mutual information 
method as this method offers a measure of general dependence (Fraser 1986), 
whereas the autocorrelation function returns a measure o f linear dependence 
(Rosenstein 1994).

The embedding dimension, m , may also be calculated using a number of 
different algorithms (Grassberger 1983; Broomhead 1986; King 1987; Mees 
1987; Theiler 1987; Kennel 1992). Many of these require a large number of data 
points to work correctly and, hence, are computationally very intensive. The 
method proposed by Cao (Cao 1997) is robust to these difficulties (Radhakrishna 
2000).

The method proposed by Cao (Cao 1997), for calculating the minimum 
embedding dimension, uses the time delay vectors to build the function:

(3.6)
X ,(m) - X nn( , ) 0 )

where,
X] (m + 1) is the ith reconstructed vector in dimension m+1.
X m(i) (m) 's ^ e  nearest neighbour of X, {m) in the mth dimension phase 
space, and, IWI is the Euclidean norm.
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Starting from a low value of m and increasing toward the optimal value, the 
number of false neighbours or neighbours of a point that are projected into a 
space that is of too small a dimension should decrease to zero, or equivalently 
a(i,m) should reach a constant value. A quantity, E(m ) , which is the mean
value of all the a(i,m ) is computed as:

and in order to investigate the variation from m to m +1, El is defined as:

, . E(m + 1)El(m )=  \  / ■ iV J E(m)

If the time series has a finite dimensional attractor, E\{m) should stop changing 
when m is increased above the correct value of the embedding dimension. For the 
case of real data, it may be difficult to distinguish whether E\{m) has attained a
constant value or is slowly increasing. In this case, it is recommended to compute 
the function:

N - m (3.7)

(3.9)

where,
(3.10)

where,
nnii) is as in Equation (3.6), and 
x is now an independent random variable.

For random data, E2{m) is always very close to 1, whereas for deterministic 
signals there exists some m , such that E2{m )* \ .



The choice of embedding dimension, m , may also be calculated using the

Procaccia (Grassberger 1983). This method is also used in this study as a check 
for the embedding dimension calculated using the method proposed by Cao (Cao 
1997). The correlation dimension is the slope o f the plot o f the correlation sum 
verses the radius o f the neighbourhood chosen, e . The correlation sum is:

The double summation in (3.11) counts the pairs y X ^ X ^ j  where the 
separation between Xt and its neighbouring point, X n̂ , is smaller than s. The
slope of successive plots of the log of the correlation sum verses the log of the 
radius of neighbourhoods for increasing embedding dimension will stop 
changing as the optimum value of the embedding dimension is reached.

The correlation dimension is, in itself, a very popular quantifier o f chaos, as it 
yields an approximate estimation of the fractal dimension. Although the term 
fractal dimension is sometimes used rather indiscriminately, it is often seen as a 
measure of the number of degrees o f freedom which comprise the dynamics of a 
system (Holstein-Rathlou 1994).

Nonlinear noise reduction

Following the reconstruction of the phase space, the nonlinear noise reduction 
may now be implemented. For each data point, x( , the set, U- , of all neighbours,

method of calculation of the correlation dimension proposed by Grassberger and

(3.11)

where G is the Heaviside function:
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Xj, in the neighbourhood of radius e is found. The original recorded data point, 
xi , is simply replaced by its mean value, xi , in U- :

Following this, the root mean squared value of the corrected error is taken as a 
new value of e and the procedure may be repeatedly iterated, until no neighbours 
are found and the signal may be assumed as corrected. The initial choice of s and 
the parameters of the time-delay vectors {r,m) are dealt with in the results 
section.

An estimate of the level of noise reduction is possible on the basis o f the 
correlation integral (Kantz 1997).

3.3 Determining chaos from a one-variable time 
series

It is possible to identify chaos in a system, using nonlinear time series analysis 
methods, from the time series of one variable o f the system (Hilbom 2001). 
Chaos can be determined from time series data using methods based on 
correlation dimension (Grassberger 1983), Kolmogorov entropy (Grassberger
1983), numerical titration techniques (Poon 2001) and Lyapunov exponents 
(Eckmann 1985; Wolf 1985; Farmer 1987).

The method of phase space reconstruction, which is inherent to the chaotic 
analysis of time series, was introduced in the previous section for the noise 
reduction process. All of the nonlinear time series methods introduced in the 
subsequent sections are based on the use o f phase space reconstructed data.
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Prior to attempting an investigation for the presence of chaos in the blood 
pressure time series, nonlinearity is tested for using the method of surrogate data 
analysis. This method is introduced in Section 3.3.1 and the results of this 
analysis are presented in Section 3.4.2.

3.3.1 Surrogate data analysis

Surrogate data is used to test for nonlinear deterministic structure. Surrogate data 
is artificially generated data that mimics certain linear features (e.g. 
autocorrelation function, spectral power density) o f the specified time series but 
that is otherwise stochastic. The experimentally recorded time series and this 
surrogate data are then used to test a specific hypothesis. In this case, a null 
hypothesis is chosen, which is best described as the default conclusion in the lack 
of contrary evidence (Theiler 1996). The null hypothesis, in this case, is that the 
data arose from a linear random process.

In order to test the null hypothesis, a discriminating statistic is chosen. A 
significant difference between the discriminating statistic calculated for the 
original experimentally recorded data and for the surrogate data sets indicates the 
existence of nonlinear structure in the original data. In principle, any nonlinear 
statistic that assigns a real number to a time series can be chosen as the 
discriminating statistic (Kantz 1997). The measures chosen for this study are a 
nonlinear prediction error, calculated using a simple nonlinear prediction 
algorithm (Kantz 1997) and the largest Lyapunov exponent (Rosenstein 1993). 
The prediction error was chosen as nonlinear predictability provides a direct test 
for the presence of determinism in the data set (Sugihara 1990) and the largest 
Lyapunov exponent, because it is the (chaos) quantifier o f primary interest to this 
study.

The technique used to create the surrogates is that proposed by Theiler et al 
(Theiler 1992). Using this technique, surrogate data is generated by randomising 
the phases of the Fourier transform of the time series.
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The results of the surrogate data tests are documented in Section 3.4.3.

3.3.2 Lyapunov exponents

The most striking feature of chaos is the unpredictability of the future despite a 
deterministic time evolution (Kantz 1997). The slightest change in a variable’s 
starting value or of a system’s state at any given time leads ultimately to vast 
differences in the output. Chaologists refer to such a trait as “the sensitive 
dependence on initial conditions” (Williams 1997). Such a characteristic is 
quantified by the analysis o f the divergence of trajectories, where a trajectory is 
the time path of the sequence of successive iterates in phase space.

Therefore, a phase-space trajectory reflects the evolution of a dynamical system 
and the Lyapunov exponents (/I,) enumerate the average rate of convergence or 
divergence of two neighbouring trajectories in phase space.

Lyapunov spectrum

The number of possible directions for deviation of the two trajectories is equal to 
the number of degrees of freedom in the phase space (Kaneko 1996), hence the 
number of Lyapunov exponents equals the number of phase space dimensions 
(Williams 1997).

The different rates of divergence or convergence of the trajectories within the 
different dimensions are termed the Lyapunov exponents o f the attractor, and 
when considered as a group are known as the Lyapunov spectrum:

The Lyapunov exponents may be positive, negative or zero. Positive and 
negative exponents respectively signify exponential divergence (unstable) and 
convergence (stable) of neighbouring trajectories. If the motion settles down onto
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a stable limit cycle, two trajectories can only separate at the same rate. In this 
case, the maximum Lyapunov exponent is zero and the motion is marginally 
stable.

The method of calculation of the Lyapunov spectrum, used in this study, was 
first suggested by Eckmann and Ruelle (Eckmann 1985) and applied to data by 
Sano and Sawada (Sano 1985). However, the available methods of calculation of 
the Lyapunov spectrum contain a number of fundamental problems and are 
strongly dependent on the quality of the data (Kantz 1997).

The reconstructed phase space is often of a larger dimensionality than the ‘true’ 
dimensionality of the chaotic attractor (Takens 1981). Therefore, among the m 
Lyapunov exponents, there may be some that are not defined in the true state 
space and, hence, are referred to as spurious exponents (Kantz 1997). Although a 
method of distinguishing between spurious and nonspurious Lyapunov exponents 
has been suggested (Parlitz 1992), the presence o f spurious components and the 
inherent sensitivities of the algorithms of Lyapunov spectrum calculation make it 
difficult to conclude on the validity of various exponent values.

The largest Lyapunov exponent

The presence of one positive Lyaponov exponent is enough to denote chaos 
(Williams 1997). A positive exponent implies the divergence of two trajectories, 
and therefore, the value of the positive exponent quantifies the sensitivity of the 
system to initial conditions.

The algorithm begins by searching for the nearest neighbour, X nn̂ ,  of each
reconstructed phase point Xn where, i = 1,.... ,A - ( w - 1 ) .  The minimum
distance is:

d0 ( 0  = min Xi - X nn(i) (3.13)
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The nearest neighbours diverge, approximately at a rate given by the largest 
Lyapunov Exponent (T,) .

d,(i) = d„ O V '" “ ’ (3-14)
where,

d0 is the initial separation, and
dn is the distance between the neighbouring points after iterating to n .

Taking the logarithm of both sides produces:

ln(d„ (?)) = lni/0 {f) + \  (nAt) (3.15)

This represents a set of i approximately straight lines. The largest Lyapunov 
exponent is calculated as the least-squares fit to the average of these i lines, 
which is defined as:

4  “  W L toW ' l ) )  (3.16)

where (....) donates the average over i lines.

Other measures of chaos

Other measures of chaos were also investigated. Along with the correlation 
dimension, introduced in Section 3.2, a novel method for the detection of chaos, 
based on what is termed “numerical titration”, has been developed (Poon 2001).
This technique involves using additive white noise as a titrant for chaos. The 
method simply involves adding white noise, o f increasing standard deviation, to 
the data until the nonlinearity in the data goes undetected by a certain chosen 
nonlinear indicator. The proposed candidates for this nonlinear indicator are a 
time-reversibility measure (Diks 1995) and the Volterra-Wiener nonlinear 
identification method.
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3.4 Results
3.4.1 Reconstruction of the phase space

The phase-space is reconstructed using the time delay embedding method, with a 
time delay of 40 samples and an embedding dimension of 10. The time delay is 
calculated as the first minimum of the automutual information function and the 
embedding dimension as the approximate point o f saturation of the E\ function 
of the method of Cao (Cao 1997). Figures 3.1 and 3.2 show examples of plots, 
derived for blood pressure data of individual rabbits, from which these values 
were calculated. For comparison purposes, the embedding parameters are 
maintained at these values across all animals and physiological conditions.

Figure 3.1: Calculation o f  the time delay using the autom utual inform ation function.

60 80 
samples
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Figure 3.2: Calculation o f  the m inim um  em bedding dim ension.

The plot o f the correlation sum verses the radius supports 10 as a good choice of 
embedding dimension, as the slopes of the consecutive plots become constant at 
approximately this value of embedding dimension. An example o f such a plot is 
illustrated in Figure 3.3.
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Figure 3.3: P lo t o f  the correlation sum  verses m easuring radius for b lood pressure data o f  a single
animal.

3.4.2 Noise reduction

The phase-space is reconstructed for the implementation of the nonlinear noise 
reduction algorithm. However, rather than reconstruct the phase space using the 
values of z  and m calculated using the methods introduced in Section 3.2.2, it is 
recommended that a larger than usual value of m. is chosen, so as to get rid of 
dubious neighbours (Kantz 1997; Signorini 2001). A unity time delay value is 
also recommended. Hence, the phase space is reconstructed, for the noise 
reduction procedure, using unity time delay and an embedding dimension, m, of 
25. These parameter values provided the optimum results for the algorithm 
chosen.

It is proposed that a good choice of the size o f the neighbourhood, U f , is given
by 2-3 times the noise amplitude (Kantz 1997). The data recordings are to one 
decimal place, therefore, it may be assumed that the discretisation error is
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distributed in the range [-0.05, 0.05]. The radius was chosen to at least include 
this range of error, and was decreased exponentially during 3-5 iterations of the 
procedure. Delay maps of a sample blood pressure time series before and after 
noise reduction are presented in Figure 3.4.

i» ---

Figure 3.4:

3.4.3 Nonlinearity o f blood pressure signals

Twenty surrogate data sets were created for each time series. Both the largest 
Lyapunov exponent (A,) and the nonlinear prediction error were used as
discriminating statistics. The null hypothesis stated that the time series originates 
from a linear process. This null hypothesis is rejected, as both the discriminating 
statistics are significantly different from the original time series to all surrogate 
datasets (P<0.05).

The prediction error was calculated for 1 to 100 time steps ahead for each time 
series and the forecasting error in the experimental time series was less than 80% 
that for the surrogate data sets at each prediction (P<0.05).

The values of the largest Lyapunov exponent calculated for the surrogate data 
sets, although significantly decreased from the largest Lyapunov exponent 
(P<0.05) for the original time series, were still positive (T, = 0.6). This is an

ry> vo 4* »¿t *¿1’ **  *» i h  iu

x(/+40 samples) x(/+40 samples)
D elay maps o f  10,000 sample points o f  a blood pressure tim e series before (left) and 

after (right) noise reduction.
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unexpected result, although a positive largest Lyapunov exponent was previously 
reported for purely stochastic data (Damming 1993).

3.4.4 Chaos in the blood pressure system

The spectrum of Lyapunov exponents was calculated for the control subjects. 
The aim of this investigation was to identify a zero Lyapunov exponent, which 
was expected due to the periodicities and proposed limit cycles that exist in 
blood pressure signals. However, following careful calculation, no zero 
Lyapunov exponent was observed.

The largest Lyapunov exponent for the control subjects was significantly higher 
than all but one of the other experimental conditions (P O .O l). The exceptional
case is for the rabbits in the nitric oxide blocked experimental condition. The 
average values o f the largest Lyapunov exponent, along with the average 
correlation dimension, calculated for each experimental condition, are 
documented in Table 3.1. All values are presented as mean ± standard deviation 
(S.D).

E xperim ental Condition 
(Num ber of animals)

M ean BP C orrelation
Dimension

Largest Lyapunov 
exponent (LLE)

C ontrol subjects (10) 75 + 9 2.7 ± 0 .3 1.70 + 0.10
B aroreceptor denervated subjects (5) 87 + 4 2.4 ± 0 .2 1.14 + 0.11

Baroreceptor denervated & angiotensin II 108 + 3 2.6 ± 0 .1 1.23 + 0.11
infused (5)

N itric oxide blocked subjects (5) 84 + 3 2.4 ± 0 .5 1 .6 1+ 0 .0 5
Blood volum e expansion (5) 59 + 7 3 ± 1 1.48 + 0.09

Control after blood volum e expansion (5) 75 ± 15 3.9 ± 0 .4 1.24 + 0.22
A ngiotensin II infused (3) 104 + 8 2.7 ± 0 .3 1.33 + 0.06

Table 3.1: A veraged values o f the largest Lyapunov exponent calculated for the seven different
physiological conditions.

The correlation dimension varied greatly across animals, hence, the average 
values of the correlation dimension calculated for the different experimental 
conditions are generally not statistically different (P>0.05) from one another, 
making it impossible to draw clear conclusions.
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The largest Lyapunov exponent calculated for the control subjects was 
significantly higher than the largest Lyapunov exponent calculated for all o f the 
experimental conditions (P<0.01), except for the exceptional case of the rabbits 
in the nitric oxide blocked experimental condition. Although the largest 
Lyapunov exponent also decreases for this physiological condition there is not a 
statistically significant difference between the largest Lyapunov exponent 
calculated for control and that calculated for the nitric oxide blocked condition.
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3 .5  D is c u s s io n

The main aim of this study was to test how the short-term dynamics of blood pressure 
control are affected when short- to medium-term effectors of blood pressure are either 
removed or enhanced. This was done in an effort to provide some insight into the 
mechanisms that are responsible for controlling blood pressure in the short-term and 
specifically to provide insight into the nonlinear nature of these mechanisms.

Of specific interest to this research is the slow oscillation in blood pressure, which is 
proposed to be a limit, cycle oscillation resulting from the feedback pathways o f the 
baroreflex. Nonlinear elements are well established to exist in the baroreflex feedback 
loop (Iriki 1977; Coleridge 1981; Igler 1981; Malpas 1996; Malpas 1997), and these 
nonlinearities are proposed to be inherently involved in the genesis of this slow 
oscillation in blood pressure (Ringwood 2001; Ringwood 2004). Changes in these 
nonlinear characteristics have been associated with the changing strength o f the slow 
oscillation in blood pressure (Leonard 2000), which in turn has been associated with 
the state of autonomic function in health and disease (Akselrod 1981; Malik 1990; 
Yeragani 1995).

The results o f the surrogate data tests demonstrate that the underlying controlling 
mechanisms of blood pressure are nonlinear (Theiler 1992). The largest positive 
Lyapunov exponents of all the animal groups, by definition, indicate that these 
nonlinear mechanisms exhibit chaotic behaviour (Williams 1997). Preliminary results 
achieved by this author, using the numerical titration technique, proposed by Poon 
and Barahona (Poon 2001), also support the findings of the presence o f chaos in blood 
pressure signals.

The spectrum of Lyapunov exponents was calculated for blood pressure signals 
recorded in the rabbits during the control condition, some of which contained a slow 
oscillation. The presence of a zero exponent was expected due and a proposed 
presence of a limit cycle amongst the multiple periodicities in the blood pressure
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signals (see Section 2.3). However, none is reported. This result is most likely 
explained by the fact that the methods of calculating the Lyapunov spectrum are very 
sensitive to contamination artifacts of real-world data (Kantz 1997). Many authors 
desist from drawing definite conclusions from the spectrum of exponents calculated 
for noisy real-world data, due to the presence of noise, finite size of the data files and 
the occurrence of spurious exponents (Kantz 1997).

Although the presence of a zero Lyapunov exponent was not observed, a positive 
largest Lyapunov exponent was consistently observed.

Chaos during different physiological conditions

The values of the largest Lyapunov exponent calculated during each of the eight 
physiological conditions examined are positive (see Table 3.1). Neither disruption of 
the baroreflex nor tampering with relevant hormonal (angiotensin II) and paracrine 
(nitric oxide) concentrations eliminates the evidence o f chaos in the mechanisms that 
regulate blood pressure. However, the values of the largest Lyapunov exponent 
change considerably from condition to condition, leading to the conclusion that 
certain effectors o f blood pressure play more of a role than others in the establishment 
of chaos in blood pressure.

Changes in the largest Lyapunov exponent have been related to changes in peripheral 
vascular mechanisms due to alterations in the sympathetic drive (Rao 2000). Rao et al 
(Rao 2000) reported an increase in the largest Lyapunov exponent, calculated for 
heart rate variability, from the supine to the standing position. An increase in SNA 
during such a movement is well documented (Munakata 1999). An increase in 
sympathetic drive to the vasculature will result in an increase in vascular tone (see 
Section 2.2.3.2). An increase in power, in the frequency range o f the slow oscillation, 
has also been observed during such a movement (Munakata 1999; Rao 2000) and 
these authors report a positive correlation between the largest Lyapunov exponent and 
the power in the region of the slow oscillation (Rao 2000).

The correlation between the increased levels of SNA and an increase in the largest 
Lyapunov exponent is consistently reported for the conditions analysed in this study.
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The value of the largest Lyapunov exponent drops by over 30% from the control 
subjects to the barodenervated animals, i.e. from 1.7 to 1.14 (P O .O l). A similar
result was previously documented by Wagner et al (Wagner 1995), in the dog. When 
the animals are barodenervated, the signal becomes less chaotic and more predictable. 
This may be explained by the fact that after the removal of the baroreflex, the ability 
to control blood pressure in the short-term is considerably repressed. Wagner, et al 
(Wagner 1996) proposed that other effectors of blood pressure will compensate this 
loss of control (Brand 1988), hence, perturbing the dynamics of the regulating system 
in a way that is simpler and less complex.

hi keeping with the conclusions of Rao et al (Rao 2000), sympathetic control of the 
vasculature is considerably limited following barodenervation, as the baroreflex 
feedback mechanism is abolished. Rao et al (Rao 2000) report an increase in the 
largest Lyapunov exponent when SNA to the vasculature is increased, and a 
significant decrease in the largest Lyapunov exponent is reported in this study when 
SNA to the vasculature is decreased {i.e. following barodenervation).

Infusion of angiotensin II in baroreflex intact animals leads to an increase in the mean 
level of blood pressure (from 75 ± 9 to 104 ± 3 mmHg) and a decrease in the largest 
Lyapunov exponent (from 1.7 to 1.33 (P<0.05)). Angiotensin II is a potent 
vasoconstrictive hormone that acts over much longer time scales than the baroreflex 
(Guyton 1991) (see Section 2.2.3.2).

Interestingly, SNA to the kidney is significantly decreased in the days following 
angiotensin II infusion (Barrett 2003). Although, in this case, vascular constriction is 
compensated by angiotensin II infusion, the ability of sympathetic activity to cause 
significant and quick alterations in vascular resistance, via the baroreflex, is inhibited, 
due to the increased constrictive state of the blood vessels. Unfortunately, as the 
mechanisms of blood pressure control responsible for the chaotic nature of the blood 
pressure signals are unknown, the effect of a decrease in SNA and its association with 
the largest Lyapunov exponent can only be postulated. Therefore, it is proposed that
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the increase in the predictability of the blood pressure signal and the decrease in chaos 
may be due to the decreased level of SNA.

The largest Lyapunov exponent calculated for the nitric oxide blocked group of 
animals did not show a significant decrease from the control subjects. This result is 
surprising, as nitric oxide is known to play a prominent role in the short-term control 
of blood pressure (Rees 1989), and hence might be expected to affect the largest 
Lyapunov exponent. Again compensatory effects may come into play, which in this 
case maintain the level of chaos close to that o f the control values. Yuasa, et al (Yuasa
2000) documented results that suggest an increase in SNA after nitric oxide 
inhibition. This increased sympathetic drive may help to maintain the level of chaos in 
blood pressure after nitric oxide inhibition.

Studies documenting the variation in the largest Lyapunov exponent of heart rate 
signals abound in the physiology literature. A large percentage of these studies 
document the decrease in the largest Lyapunov exponent from the healthy to the 
unhealthy condition such as depression (Yeragani 2002), multiple sclerosis (Ganz 
1993) and epilepsy (Faustmann 1994) (see Section 3.1.2). This broad assertion is 
reflected in the results of this study, in which the largest Lyapunov exponent 
decreases from the control situation to all other situations, during which the control 
mechanisms of blood pressure are tampered with. These situations include the 
unhealthy conditions of a damaged baroreflex control mechanism and elevated blood 
pressure, amongst others.

In this study we showed that perturbation of the overall blood pressure controlling 
mechanism, by removal or enhancement of some of the effectors of blood pressure 
resulted in a decreased level of chaos in the recorded blood pressure signals.

Limitations

The choice of the embedding parameters for the reconstruction o f the phase-space was 
one that had to be made with care, due to the considerable sensitivity o f the largest 
Lyapunov exponent to variations in these values (Abarbanel 1998). This choice is 
always going to be approximate and subjective, however, care was taken when
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calculating these values and, so as to enable accurate comparison, both the time delay 
and embedding dimension were consistent for all data sets and physiological 
conditions. It may be argued that the structure of the system may change during 
barodenervation or hormone and paracrine blockade or enhancement, however, there 
is not sufficient clarity in the data to suggest that this is the case and the tests for these 
embedding parameters did not present any obvious results to demonstrate this to be 
the case. Hence, it is assumed that the structure of the system remains the same but 
that the parameters of the system change.

With experimentally recorded data, problems and limitations are always to be 
expected due to errors during the recording, the limited resolution of each data point 
and the masking o f the data by noise. Though use of nonlinear noise reduction 
minimises the problems created by the measurement noise, the restriction of the 
resolution of the data points is a limitation posed by the finite number of bits of the 
A/D converter. There is no ideal solution to this problem, however, the effects of the 
bias due to truncating quantisation on the calculated values of the largest Lyapunov 
exponent are diminished by averaging over a large number o f data points.

3.6 Conclusions
Using nonlinear time series analysis, the mechanisms that control blood pressure are 
shown to be nonlinear and are capable o f displaying chaotic characteristics and, 
therefore, may be termed chaotic. The different mechanisms and effectors of blood 
pressure control, including the baroreflex feedback loop, the different hormones and 
paracrines that effect blood pressure control over different time scales, all play a role 
in making the blood pressure system chaotic.

However, a lack o f understanding o f the mechanisms, that give rise to the chaotic 
nature of the blood pressure system, make it difficult to conclude definitively from the 
results of changing levels of chaos, as measured by the largest Lyapunov exponent.
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Also, because the methods used are very sensitive to disturbances in real data, insight 
into the slow oscillation based on the spectrum of Lyapunov exponents is limited.

However, although the original aims of this study may not have been met, the results 
of this study are otherwise very interesting.

In summary, what can be specifically concluded is that, the blood pressure control 
mechanisms are inherently nonlinear and chaotic. The level o f chaos decreases from a 
high level during control to a lower level during all physiological situations in which 
the short- to medium-term blood pressure control mechanism are in some way 
tampered with. Therefore, it is proposed that the results of this study, although failing 
to add insight to the mechanisms responsible for either the periodic or the nonperiodic 
variability in blood pressure, may add to the momentum of research into the use of 
nonperiodic variability as a diagnostic measure.
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Chapter 4

Predicting the slow oscillation in blood 
pressure using nonlinear analysis o f  a model 
o f baroreflex control o f the peripheral 
resistance

4.1 Introduction
The idea that the slow oscillation in blood pressure may be used as a basis for a 
non-invasive, surrogate measure o f autonomic function has resulted in the slow 
oscillation been enthusiastically researched (see Section 2.3). This research has 
generally used spectral analysis techniques to quantify the power in the 
frequency band of the slow oscillation in the cardiovascular signals, including 
heart rate and blood pressure. The strength of the slow oscillation has been 
reported to vary during different physiological conditions, including a range of 
pathophysiological conditions (Inoue 1991; Bigger 1992; Bigger 1992; Koh 
1994; Teich 2000), during age and gender changes (Murata 1992; Ryan 1994; 
Taylor 1998; Barnett 1999), and during experimental interventions (Janssen 
1997; Leonard 2000; Malpas 2000). These observed changes in the strength of 
the oscillation have stimulated much interest as quantification of these changes 
may offer vital information regarding the competence of neural control of
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cardiovascular function in disease and other conditions. Variations in the strength 
of the slow oscillation are documented in Section 4.3.1.

Although the research into the changing strength of the slow oscillation has 
enabled much insight into cardiovascular function, the fundamental causes and 
effectors of the slow oscillation in blood pressure are still highly contentious (see 
Section 2.3.3). Of the theories that explain the origin of the slow oscillation in 
blood pressure, the baroreflex feedback theory has received most currency (see 
Section 2.3.3.2), and particularly the baroreflex control, via sympathetic 
pathways. This has led to a deluge of studies that have investigated the slow 
oscillation in blood pressure, by solely analysing sympathetic control of the 
vasculature and thereby ignoring the role of the heart in the development o f the 
slow oscillation (see Section 2.3.3.3). As was introduced in Section 2.4, 
Ringwood and Malpas (Ringwood 2001) presented a nonlinear model to describe 
baroreflex control of the peripheral resistance, which produced a limit cycle 
oscillation at the frequency of the slow oscillation in blood pressure. The study 
documented in this chapter assumes this description of the baroreflex for the 
purpose of the forthcoming analysis. It is the aim of this work to explain how 
observed changes in the slow oscillation in blood pressure might result from 
changes in physiological conditions, which, in turn, cause variation in the 
modelled components of the baroreflex.

Changes in the strength of the slow oscillation have previously been proposed to 
reflect changes in the mean level of SNA and/or baroreflex gain. A number of 
studies have explored how the strength of the oscillation changes under different 
stimuli for which the mean level of SNA is observed to increase or decrease 
(Arai 1989; Houle 1999). However, a causal relationship between changes in 
mean SNA and changes in the strength of the slow oscillation has not been 
consistently reported. Results have also proven inconclusive for those who have 
attempted to explain changes in the strength of the slow oscillation by calculating 
the gain for specific sections of the baroreflex loop (Bertram 1998; Leonard
2000). These studies, and the associations made by the authors of these studies 
are reviewed in Section 4.3 of this chapter.
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These studies have commonly attempted to relate the strength of the slow 
oscillation to individual aspects of the blood pressure control system. However, 
because of the closed-loop nature of the baroreflex, all components in the loop 
could (in theory) influence the strength o f the oscillation. Specifically with 
reference to that part of the baroreflex under examination in this study, a change 
of gain either within the neural arc (i.e. a change in the gain of the baroreflex 
curve) or peripheral arc (i.e. vasculature) could influence the size of the 
oscillation (arc illustrated in Figure 2.1). Unfortunately, due to the nature of the 
SNA recordings, where the value of SNA is dependent on the number o f fibers 
recruited (and hence, all SNA recordings are normalised), realistic absolute 
parameterisation of the model is not possible. Therefore, emphasis is put on the 
relative changes in the gains of the different elements of the feedback loop in an 
attempt to explain changes in the strength of the slow oscillation in blood 
pressure.

The main aim of this study is to quantify the impact of the different sections of 
the feedback loop proposed to be involved in the generation of the slow 
oscillation. The effect of a change in the curvature or the range o f the baroreflex 
curve, and/or a change in the characteristics o f the vasculature on the amplitude 
of the oscillation is examined. It is also pertinent to examine how a change in the 
mean level of SNA and/or blood pressure will cause a change in the amplitude of 
the oscillation due to a shift in the operating point away from the middle region 
of high slope of the baroreflex curve towards the saturation regions at the top and 
bottom of the curve, as has been previously observed (Barrett 2003). 
Specifically, it is proposed that it is the relative relationship between the 
changing characteristics of the baroreflex curve and the vasculature gain that is 
of importance when analysing the role of the peripheral resistance branch of the 
baroreflex loop, in the genesis and maintenance of the slow oscillation in blood 
pressure.

The baroreflex model, used for analysis of this hypothesis, is presented in 
Section 4.2.1 and the analysis approach is introduced in Section 4.2.2.
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4.2 Modelling the baroreflex
The nonlinear feedback model proposed by Ringwood and Malpas (Ringwood
2001) was reviewed in Section 2.4.1. The model structure is illustrated in Figure
4.1. This model represents a reduced model o f the baroreflex mechanism, as it 
includes only the sympathetic control of the vasculature and ignores the 
baroreflex control of the heart. Also, the model, as presented here, represents a 
uniform description of the sympathetic effects on the resistance o f the 
vasculature and, as such, cannot represent different changes in resistance through 
different organs.

4.2.1 The nonlinear model

The reduced baroreflex model, shown in Figure 4.1, contains an amplitude- 
limiting nonlinear function describing the sigmoidal baroreflex curve ,v(x), a 
first-order transfer function describing the dynamical nature of the vasculature 
Gv (.v), and delay terms both in the forward, Gd (.v), and feedback, Hd (.v), 
pathways that account for the conduction delay along the nerves (Figure 4.1).

Figure 4.1: Com ponents o f the nonlinear feedback m odel proposed by R ingw ood and M alpas
(R ingw ood 2001).
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p sbel is the blood pressure set point,
x ( t ) is the input to the nonlinearity (x (t)  = p f  -  pb ( /) ) , and 
n( t ) represents the SNA signal.

¿■(x), Gv(s ) and H ^ s )  are described by Equations (2.3), (2.6), (2.7)
and (2.8) respectively and are further investigated in Section 4.2.2 and 4.2.3. The 
values of efferent and afferent delay are those chosen by Ringwood and Malpas
(Ringwood 2001) (ye = 0.7s, za = 0.2.v) and are supported by the physiological 
literature (Burgess 1997; Guild 2001).

4.2.2 Analysis approach

The model illustrated in Figure 4.1 is used in this study to analyse the relative 
gain changes of the different sections of the baroreflex feedback loop. The slow 
oscillation in blood pressure is proposed to be a limit cycle oscillation, arising 
due to the presence of the nonlinear, sigmoid baroreflex curve, in the neural arc 
of the model. The frequency and amplitude of the oscillation can be calculated 
using Nyquist diagrams, when the ‘gain’ of the nonlinear element is represented 
by a linear, amplitude dependent ‘gain’ approximation, known as the describing 
function.

Hence, for the purposes of analysis of the limit cycle developed by the model of 
Figure 4.1, calculation of the describing function for the sigmoid nonlinearity 
and the gain of the linear dynamical part of the model at the frequency of 
oscillation is necessary.

However, the normalised nature o f SNA introduces an impediment to the aims of 
this analysis, because absolute parameterisation of the model is not possible.

w h e r e ,
p b i s  b l o o d  p r e s s u r e ,
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Therefore, only relative changes of the gain of the describing function and the 
linear dynamical parts can be analysed. Due to the fact that only relative 
movements of the gains can be assessed, the gain of the vasculature may be 
calculated at its steady state value, as long as relative movements o f the steady 
state gain and the gain at the frequency of the oscillation are consistent. 
Knowledge of the vasculature gain, and the describing function ‘gain’, enable 
conclusions regarding the likelihood of the oscillation increasing or decreasing 
be drawn.
Descriptions and respective methods o f gain calculation o f the nonlinear 
baroreflex curves and the linear vascular dynamics are described in the 
subsequent sections.

baroreflex presented in Figure 4.1 (page 118), describes the steady-state 
baroreflex curve that results when SNA is plotted for step changes in blood 
pressure (see Equation 2.3). Examples of the nonlinear baroreflex curves, 
between blood pressure and SNA, are shown in Figure 2.3 and Figure 2.11 for 
different physiological conditions and also in Figure 2.10, when the sigmoid 
function of Equation (2.3) is fitted (Marquardt 1963) to the curve. This function 
(Equation (2.3)) is used to represent the sigmoid by some authors (Ringwood 
2001; Kinnane 2004). However, a modification of this representation is common 
in many physiological studies (Kent 1972; Dorward 1985; Head 1987; 
Weinstock 1988; Kingwell 1991), that have derived baroreflex curves. This 
description is given in Equation (4.1), and is usually written in terms of 
parameters that specify the upper and lower saturation values. Here, the equation 
is expressed in terms of the range, / , curvature, [5, horizontal, x , and vertical, 
y  , offset parameters depicted in Figure 2.10.

4.2.3 The sigmoidal baroreflex curve

The nonlinear function, .v(x), in the forward path of the reduced model o f the

(4.1)
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The sigmoid may also be described using a hyperbolic tangent function (Seidel 
1998; Eyal 2000). This representation o f the sigmoid is described in Equation
(4.2) for the parameters and y  .

(x) = / ̂ tanh (/? (x -  x*) ) j + y (4.2)

This hyperbolic tangent representation may also be described in exponential form
as:

The fact that the hyperbolic tangent function, described by Equation (4.2), may 
be described in terms of exponential functions, is illustrated here, as this creates 
difficulties for developing an analytical describing function for this nonlinearity, 
as discussed in Section 4.2.3.2. The hyperbolic tangent function o f Equation (4.2) 
is plotted in Figure 4.2, for a range o f curvature (/?) values and for the same
range (/) and centre point (x’,y*) as function Equation (2.3).

(4.3)
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Figure 4.2: The hyperbolic tan description o f  the sigm oid given in Equation (4.2) (dashed lines) 
and the sigm oid function o f Equation (2.3) (heavy line), plotted for different values o f  /?.

The sigmoid description of Equation (2.3) enables a more accurate description of 
the baroreflex curves documented in the physiology literature than Equation (4.2) 
does, since the baroreflex curves documented in the literature are shown to 
saturate quickly at low and high blood pressures (see Figure 2.3 & 2.11), a 
characteristic difficult to capture by Equation (4.2).

The representations of the sigmoid given in Equations (2.3), (4.1), (4.2) and (4.3) 
assume a symmetry of the baroreflex curve. However, experimentally derived 
baroreflex curves are often asymmetrical (Malpas 1996; Barrett 2003). The 
original description o f this asymmetry involved fitting two hyperbolas to the data 
of the baroreflex curve, thus enabling differential descriptions of the upper and 
lower curvature (Korner 1972).

In more recent years, Ricketts and Head (Ricketts 1999) investigated the 
suitability of a five-parameter function, that was formally fitted to the data of the 
baroreflex curves (Malpas 1996). This function includes a fifth parameter, so that 
the curvature at the top and bottom of the curves can be differently defined, so
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that the asymmetrical nature of the baroreflex curve may be captured. This five- 
parameter function is:

s4(x) = ( / + / )  +----------------------- r-r̂ r
\ - \ - f e 3 — f  *

( 4 . 4 )

where,
^  Ptop Pbottom

| Ptop +  P ibottom

where,
P  describes the curvature of the sigmoid at the top o f the curve, and 
Pbottom t îe curvature at the bottom of the curve.

However, this five-parameter curve only offers small improvements o f fit over 
the four-parameter description of functions (2.3) and (4.1) (Ricketts 1999). This 
description of the sigmoid may be more suited to the blood pressure -  heart rate 
baroreflex curve where dual neural pathways contribute to the shape o f the curve 
at different ranges of the curve (see Figure 2.17).

An alternative five-parameter function, which does not explain asymmetry as a 
function of curvature, rather as an amplification of the response nonlinearly 
dependent on blood pressure, and an even more complex seven-parameter curve, 
which would require very high quality data and a large amount o f data points are 
also reviewed by Ricketts and Head (Ricketts 1999).

A different representation, not based on exponential functions, was used by 
Abbiw-Jackson and Langford (Abbiw-Jackson 1998) to describe the sigmoidal 
baroreflex curve (the Hill function), of the form:

and may be adjusted to include the range, / ,  and vertical, y  , and horizontal, x , 
offsets:
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s, (x) = l ( x - x *  ) \

( a - x ) ' + ( x - x ) " + y  (4-6)

where,
n controls the slope of the function
a is a constant midpoint term

The Hill function of Equation (4.6) is plotted in Figure 4.3 for increasing values 
of n . The sigmoid function of Equation (2.3) is also illustrated on this plot for 
comparison purposes. The Hill function is obviously asymmetrical for low values 
of n and only begins to resemble a symmetrical sigmoidal function for the 
higher values of n that are plotted. The Hill function therefore describes a 
discrete set of curves. Clearly, this description of the sigmoid does not allow for 
as much freedom of fit to the baroreflex curve data as the representation of 
Equation (2.3) does.

-0 5

-1.5
-0.5 0 0.5 1 1.5 2 2.5

X

Figure 4.3: The H ill function description o f the sigm oid given in Equation (4.6) (light lines) and 
the sigm oid function o f  Equation (2.3) (heavy line), plotted for different values o f n.

The function description of the sigmoid described by Equation (2.3) is chosen for 
use in this study as it allows for accurate description of the sigmoid for any given
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parameters and because it is simpler to deal with than the unnecessarily complex 
five-parameter function o f Equation (4.4).

4.2.3.1 The describing function

Frequency domain analysis is a powerful tool in the analysis of linear control 
systems. Frequency domain analysis cannot, however, be directly applied to 
nonlinear systems because frequency response functions cannot be defined for 
nonlinear systems. The describing function method enables the extension of 
linear frequency response analysis to the nonlinear case, by enabling an 
approximate gain and phase description of the nonlinearity. The method of 
describing function calculation is described in this section, followed by 
documentation of the development of the describing function for the sigmoid, in 
the subsequent sections.

The sinusoidal input describing function is the fundam ental approximation that 
enables this analysis. Considering the system as illustrated in Figure 4.1, a 
nonlinear component, ,s’( x ) , is included in the forward path and the other blocks
of the loop are described using the linear models, Gv(s) ,Gd (s)  and Hd (,y)
(described by Equations (2.6), (2.7) and (2.8) respectively). It is assumed that if  
the system can exhibit a limit cycle, then the signal at x during limit cycle 
operation will approximate a sinusoid, given by Equation (4.7).

The output of the nonlinearity is a periodic function that may be described using 
a Fourier series.

x (t) = M  sin (cot) (4.7)

whose period, T , is defined as T =

(4 .8 )
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(4.10)

(4.9)

n ( t ) = - ^ - + N x + 9^j + N 2 sin (2cot + &2) + (4.11)

where, N x is the amplitude of the fundamental, N 2 is the amplitude of the
second harmonic and so on. 0X,02, and so on are the phase shifts at the various
frequencies. N () is the amplitude o f the bias component, which is zero if
attention is restricted to nonlinear elements whose characteristics exhibit odd 
symmetry about the origin.

Using only the fundamental component, n(t)  is written as,

The describing function is defined as the ratio of the fundamental component of 
the output o f the nonlinear element to the sinusoidal input to the nonlinear 
element, as given in phasor representation by Equation 4.14.

(4.12)
or in terms of its Fourier components as,

n [t)« Ax cos (cot) + Bx sin (cot) (4.13)

(4.14)
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w h e r e ,

w, = ^ + 4 2) (4.15)

and,

0, =  tan' (4.16)

Justification for assuming a sinusoid at x and for disregarding the higher 
harmonics of n(t) is based on anticipated conditions that will occur when the 
system is in steady state or limit cycle operation. The composition o f the lineal- 
dynamical function G and Hd will display lowpass characteristics and, hence, 
all higher-order harmonics than the fundamental are assumed to be filtered out.

4.2.3.2 Calculating the describing function for the sigmoid
Inherent to the method of describing function calculation documented in the 
previous section is the calculation of the integrals of Equations (4.9) and (4.10). 
When the input to the nonlinearity, ¿'(x) (described by Equation (2.3)), is
Msin(iyf) the output is s^Msin(&rf)j. This can is expanded in a Fourier series
expansion. For the sigmoid description of Equation (2.3) and assuming a 
sinusoidal input signal, the integrals of Equations (4.9) and (4.10) become:

= - l 1 T 1+e
/co s (x )

-P{m  sin(jc)-
/ cos(x)

l + e ‘ ■y dx (4.17)

/ s in (x )  /  s in (x )  »
,  /? (M s  i n ( j r ) - / )  .  ^ dx (4.18)

The symmetrical sigmoid of Equation (2.3) introduces no phase to the signal. In 
the case where the output signal from the nonlinearity is in phase with the input 
signal, d, = 0  in Equation (4.17) as there will only be sine terms (Dutton 1997).
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Hence, the integral o f Equation (4.18) remains to be calculated. However, no 
closed-form expression exists for this integral of (Holohan 2000).

Numerical integration methods (e.g. the trapezoidal method) may be used to 
compute the integral given in Equation (4.18), however, an analytical description 
of the describing function offers advantages over the numerical integration 
method of calculation. The describing function of the nonlinearity is inevitably 
dependent on the parameters of the original function. An analytical expression 
reveals the effect o f varying these parameters, and hence, provides useful insight 
which numerical integration does not. In the context of this research, an 
analytical expression for the describing function is required to allow insight into 
how changes in the parameters of the nonlinearities of the system will effect 
changes in the strength of the slow (limit cycle) oscillation in blood pressure.

Holohan (Holohan 2000) introduced a method of describing function 
approximation developed for the example of the sigmoid. This method of 
approximation enables the calculation of an analytical representation o f the 
describing function, which is accurate for very low amplitude values of the 
oscillation and enables accurate prediction of the limit cycle oscillation.

4.2.3.3 An approximation to the describing function for the 
sigmoid

The method of approximation developed by Holohan (Holohan 2000) is based on 
the Taylor series expansion of the sigmoid function.

The proposed method involves expanding .y(x) in a Taylor series expansion 
about x = x0 for a finite number of terms. Truncation of the Taylor series results 
in a finite polynomial approximation to .v(x), called sTS (x ), where,

3ts (x) = t ^ r ^ ( x ~ xo)
k = 1

(4.19)
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n is the number o f terms of the Taylor series expansion, and, 
x0 is the point around which the sigmoid is centered.

w h e r e ,

The approximation was centered on a number of points x(), away from the
midpoint o f the sigmoid, so as to approximate the sigmoid at different sections of 
its full range. This enabled analysis o f how a shift in the operating point affects 
the role of the sigmoid nonlinearity in the development of a limit cycle 
oscillation.

In order to develop a describing function approximation for the sigmoid, the 
Taylor series expansion is developed for the sinusoidal input of Equation (4.7), 
by replacing x in Equation (4.19) by Msm(cot).  When the input to the
nonlinearity s(x) is Msm(cot) , the output is s ( M sin(ntf)). What results, for a
finite number of terms of the Taylor series expansion, is an approximation to the 
Fourier series expansion of s ( M sin(<yt)), s [ M sin(iyt)).

Use of the trigonometric identities,

allows the expansion to be written in terms of sin(¿of) and its higher harmonics 
sin(fciof) and cos(kcot). Hence, what results is a trigonometric series 
representation of the output signal o f the nonlinearity, n(t) ,  that resembles the 
Fourier trigonometric series (Holohan 2000).

As documented previously, describing function theory assumes that all 
harmonics are filtered out by the low-pass dynamics of the system. Similar to

(4.20)
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what is described in Equation (4.14) the describing function developed using the 
Taylor series expansion, NTS(M),  is then the coefficient of the fundamental
divided by the amplitude of the input signal, M  .

4.2.4 The vascular dynamics

The frequency response dynamics of the different vascular beds are documented 
in Chapter 2. The dynamics of the different vasculature beds are most commonly 
characterised as the blood flow response to sympathetic stimulation (Stauss 
1998; Stauss 1999; Bertram 2000; Guild 2001). The frequency response 
characteristics of renal, mesenteric and skin blood flow are also described in 
Chapter 2. The dynamical element in the model depicted in Figure 4.1 represents 
the dynamical response of blood pressure to SNA, rather than the response of 
blood flow to SNA. The section of the baroreflex between SNA and blood 
pressure has been termed the ‘peripheral arc’ of the baroreflex (Ikeda 1996; 
Kawada 1997). This relationship was described by Burgess et al (Burgess 1997) 
using a first-order differential equation. Petiot et al (Petiot 2001) recorded renal 
SNA and arterial blood pressure, and first and second order transfer functions 
have been fitted to this data (Chapuis 2004). Other authors have characterised the 
peripheral arc, between blood pressure and cardiac SNA, using a second-order 
low-pass filter (Ikeda 1996; Kawada 1997).

These frequency response characteristics are usually derived during normal 
control conditions and are generally not derived during periods of different 
physiological conditions and stresses. O f interest in this study is the change in the 
baroreflex loop gain at the frequency o f the slow oscillation (i.e. in the region 0.3 
Hz), during different physiological situations. Hence, system identification 
techniques are used to calculate the gain of the vasculature based on blood 
pressure and SNA data recorded during physiological conditions in which the 
strength of the slow oscillation has been observed to change (see Section 4.3.1). 
These system identification techniques are documented in the following section.
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4.2.4.1 ARX modelling of the vascular dynamics

The gain of the vasculature is calculated using system identification techniques.
The vasculature is modelled using blood pressure and SNA data. The simplest 
multivariate model structure, based on the output data y { k )  and on an
exogenous variable time series u(k) ,  is the AutoRegressive with exogenous
variable (ARX) model (Ljung 1999) described by the following difference 
equation, in the delay operator q , as:

^ ( q ) y { k )  = B ( q ) u { k - n k ) +  z {k )  (4.21)
where,

A(q) = \ + a{q~l + ..........+ an q~"",
B(q) = b0+blq~l + ..........+ bnbq~"t ,
s [ k )  is a residual, which is to be minimized by the identification process 
nk is the number of steps delay between w( ) and y  ( ) .

The transfer function is then:

F (q )  = q - * ~ . (4.22)A W

which may be represented in the z-domain as:

Y (z ) F ( z )  A+V '1+•••• +V""*
U [ z ) 1 + alz~x +.... + an z~n" (4.23)

Before the system identification method may be implemented, the time series 
plots of u(k)  and y (k )  must be examined, to identify the characteristics of the
data and to check for the presence of outliers, which may introduce erroneous 
results.
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The identification of a model structure involves the selection of model order 
terms, na and nb, and time-delay term nk. Two different approaches are
available for the calculation of these parameters, which define the model 
structure. One approach was developed by Box and Jenkins (Box 1976) based on 
auto- and cross- correlation function methods to calculate the parameters of the 
model and estimate its accuracy. The second approach involves the estimation of 
model quality for a number of different model structures ( na,nh and nk) and
suitable quality criteria include Akaike’s Information Theoretic Criterion (AIC) 
(Akaike 1973) or Rissanen’s Minimum Description Length (MDL) criterion 
(Rissanen 1978).

However, in keeping with the low-order representations o f the peripheral arc 
presented in the literature, a first-order model structure is chosen. It is also 
desirable that the model identified is parsimonious i.e. that it is developed with 
the smallest number of parameters required for an adequate representation of the 
time series. Also, only trends of gain changes are of interest in this study, hence 
high order choices for na and nb which would enable more accurate fits to the
data, are unnecessary and would unduly complicate this work. Hence, na is set 
equal to 1, and nb to 0. Therefore, only the time delay nk remains to be 
calculated.

The second approach to model structure estimation described above, involving a 
criterion function, is used to establish the delay, nk. The data set is separated into 
two parts, one part to estimate nk and the second part used to compute the 
criterion function. A loss function, which is a raw measure o f model quality, may 
be defined as:

(4.24)

where,
s
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y ( k )  i s  t h e  a p p r o x i m a t e d  s i g n a l
N  i s  t h e  n u m b e r  o f  s a m p l e s  u s e d  i n  t h e  c a l c u l a t i o n  o f  t h e  l o s s  f u n c t i o n .

The model structure, which results in the minimum value of the loss function, is 
selected, as it is the most accurate model structure. The loss function is also 
incorporated in other criterion functions, which also penalise model complexity. 
The AIC criterion (Akaike 1973) and the MDL criterion are described by 
Equations (4.25) and (4.26) respectively and are used in this study to estimate the 
time delay nk for the ARX models.

where,
V is the loss function,
N  is the number o f samples used in the calculation o f the loss function 
and,
d  is the number o f parameters estimated in the model.

As described in Section 4.4, sampled data is available for the different 
physiological conditions analysed in this study. Hence, nk is different for the 
different data sets but each accords well with the time delays documented in the 
literature (Burgess 1997; Guild 2001).

Following the choice of a suitable model structure, the parameters of the model 
i.e. the coefficients of the polynomial operators, {ax,....,an̂ ) and
must be estimated. The method of ordinary least squares is used to estimate these 
parameters.

AIC = l o g ( V ) + ( ? f
\  IV  J

(4.25)

MDL = V l + log(A ) —v N J (4.26)
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The first-order ARX model, defining the relationship between blood pressure 
pb (z) and sympathetic activity rc(z), has the form:

F ( z ) = i ^ l  = — z-»* (4 .27)« (z) l + a,z

The frequency response between the input and output data was calculated. 
Trends between the gain in the region o f 0.3 Hz (the frequency of the slow 
oscillation) and the steady-state gain (gain at 0 frequency) varied consistently 
from the control situation to after intervention. Hence, for simplicity, steady-state 
gain values were calculated (by setting z = 1 ) and were used for comparison 
purposes.

4.3 The slow oscillation, mean SNA and
baroreflex gain

Changes in the strength of the slow oscillation in blood pressure have been 
associated with changes in baroreflex gain (De Boer 1987; Bemardi 1994) and 
the mean level of SNA (Malpas 1998; Leonard 2000). The physiological 
conditions during which the strength of the slow oscillation in blood pressure, the 
baroreflex gain and the mean level of SNA are altered are discussed in the 
subsequent sections.

4.3.1 Changes in the strength o f the low-frequency 
oscillation during different physiological
conditions

Changes in the strength of the slow oscillation in blood pressure were briefly 
introduced in Chapter 2. The ‘strength’ of the slow oscillation is usually 
characterised by the power in the frequency band of the slow oscillation or by the
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amplitude of the slow oscillation. The power at the frequency of the slow 
oscillation has been used to classify congestive heart failure patients (Teich 
2000) and to predict death after heart attack (Bigger 1992; Bigger 1992). The 
slow oscillation has been both, observed in (Koh 1994), and reported to 
disappear (Inoue 1991) in spinal cord injury patients.

A range of intervention studies have been undertaken specifically to alter the 
strength of the slow oscillation and changes in the strength of the slow 
oscillation, both in blood pressure and heart rate, have been observed during a 
range of these conditions. Increases in the strength o f the slow oscillation in 
blood pressure are reported during air jet stress (Malpas 1998), haemorrhage 
(Malpas 2000) and hypoxia (Janssen 1997) in rabbits. In contrast the slow 
oscillation disappeared following blood volume expansion in rabbits (Leonard
2000) and remained unchanged during hypertension in rats (Stauss 1995). The 
strength of the slow oscillation increases with standing (Munakata 1999), during 
head up tilt (Taylor 1996) and during lower body negative pressure (Hamner
2001). A decrease in the strength of the slow oscillation in blood pressure was 
observed during exercise in the human (Arai 1989) and in the dog with healed 
myocardial infarctions (Houle 1999).

Gender related differences in the strength of the slow oscillation in blood 
pressure have also been reported. The slow oscillation in blood pressure and in 
SNA is reported to be lower in women than in men (Ryan 1994; Taylor 1998; 
Barnett 1999), although no change in the slow oscillation in heart rate is 
observed at this frequency (Murata 1992). The strength o f the slow oscillation in 
blood pressure declines with age (Taylor 1998).

4.3.2 Mean changes in SNA and the slow oscillation

Changes in the strength of the slow oscillation in blood pressure have often been 
associated with changes in the mean level of SNA. A number of authors have
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explored how the strength of the slow oscillation changes under different stimuli, 
which increase or decrease the mean level of SNA.

Increases in the strength of the slow oscillation have been observed during 
certain stimuli that increase the mean level of SNA such as air jet stress, hypoxia 
and haemorrhage (Janssen 1997; Malpas 2000). However, more studies have 
reported a decrease in the strength of the slow oscillation when the mean level of 
SNA increases. The mean level of SNA is dramatically increased during 
exercise, however, the strength of the slow oscillation is decreased (Arai 1989; 
Houle 1999). In addition to these studies, other authors have reported 
experimental results which have weakened the hypothesis that the strength of the 
slow oscillation in blood pressure is indicative o f the mean level of SNA (Saul 
1990; Sleight 1995; Stauss 1995; Taylor 1998).

The point on the baroreflex curve, where the mean level o f blood pressure and 
mean level of SNA intersect, may be termed the operating point, as variations in 
blood pressure and SNA will occur around this point. The effect of shifts in the 
operating point, due in part to shifts in SNA, are analysed in more detail in later 
sections of this chapter.

4.3.3 Changes in the characteristics o f the baroreflex 
curves during different physiological conditions

The strength of the slow oscillation in blood pressure has also been proposed to 
be indicative of ‘baroreflex gain’ (De Boer 1987; Bemardi 1994). The baroreflex 
is often characterised by the baroreflex curve, and attempts have been 
(unsuccessfully) made to relate changes in the strength of the slow oscillation to 
changes in the gain of the baroreflex curve (Leonard 2000).

As was reviewed in Chapter 2, baroreflex curves, derived during a range of 
different physiological conditions, are available in the literature and a number of 
these have been documented in this thesis to date. However, baroreflex curves
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are not documented for the majority of situations when the strength o f the slow 
oscillation is altered, as invasive recordings of SNA are not always possible. 
These curves are generally only derived in animal subjects and, to date, only for 
a small range of physiological conditions.

Changes in the baroreflex curves observed during angiotensin II infusion and 
hypoxia were illustrated in Figures 2.3 and 2.11 respectively. Baroreflex curves 
have also been documented during blood volume expansion (Leonard 2000) and 
during nitric oxide blockade (Ramchandra 2003). Baroreflex curves are generally 
not documented during haemorrhage as it is not a steady-state condition and only 
one previous study (Burke 1988) has documented baroreflex curves for this 
condition, and this for a small number of rabbits (n= 3).

The parameters of the baroreflex curves, used for analysis in this study, are 
documented in Table 4.2 in the subsequent section.

4.4 Available data
The analysis of the model of baroreflex control of peripheral resistance is 
restricted to those conditions for which knowledge o f the strength o f the slow 
oscillation in blood pressure, knowledge of the changing baroreflex curve 
characteristics and availability of data for to calculate the changing gain of the 
vasculature component exist. Considering this, only the conditions of hypoxia, 
blood volume expansion and haemorrhage meet these criteria. Hence, the model 
is analysed for these three conditions.

Blood pressure and sympathetic nerve signals were recorded in New Zealand 
white rabbits by the physiologists of the Circulatory Control Laboratory at the 
Department o f Physiology, University of Auckland, New Zealand. The 
University of Auckland, Animal Ethics Committee, previously approved all 
experiments
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The model as presented in Figure 4.1 represents a uniform description of the 
sympathetic effects on the resistance of the vasculature and, as such, cannot 
represent different changes in resistance through different organs (Ninomiya 
1971; Ninomiya 1976). It is proposed that SNA to a few key organs, including 
the kidney, may dominate in the development of the slow oscillation (Malpas
2002), and it has been shown that changes in the strength o f the oscillation are 
heavily reliant on the sympathetic pathways to the kidney (Malpas 2000). Hence, 
considering this proposed significance o f the renal vasculature, over other 
vasculature beds, it is apt that the sympathetic activity is recorded at the renal 
nerve, and hence, that it is the renal vascular dynamics that are modelled. The 
raw SNA signal was amplified 10,000 -  100,000 times, filtered between 50 -  
5,000 Hz, full wave rectified, and integrated with a time constant of 20 ms. This 
integrated SNA signal is digitised at 500 Hz and this signal is used for analysis. 
SNA is presented in Table 4.2 and 4.3 in normalised units (n.u.). The maximum 
value of SNA during control is given the value of 100 n.u. Blood pressure was 
measured from a catheter inserted in a central ear artery. The blood pressure 
signal is also digitised at 500 Hz. A statistical analysis of the data is undertaken 
for each of the conditions analysed.

Statistical analysis

The values of mean blood pressure, mean heart rate and mean SNA are 
documented in Table 4.1. Data is presented as mean ± standard error. The 
significance of the difference between groups was assessed from the variance 
ratio:

F = (between groups mean square error) / (within groups mean square error).

This significance ratio was calculated between 10% 0 2 hypoxia and normoxia 
(FI), between 10% 0 2 + 3% C 0 2 hypoxia and normoxia (F2), between blood 
volume expansion and control (F3), and between haemorrhage and control (F4).

These blood pressure and SNA signals were recorded during the three different 
physiological conditions, of hypoxia, haemorrhage and blood volume expansion.
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Detailed descriptions o f the animal preparation and conditions for each stimuli 
have been provided in previous publications (Malpas 1996; Leonard 2000; 
Malpas 2000). Summarised details are listed in the subsequent section.

Physiological recordings

(1) Hypoxia (Malpas 1996); Data was collected before and during 10% O2 
hypoxia. Prior to hypoxia the box containing the rabbit was ventilated with 
normal air at a rate of 10 L.min'1 for a 20-minute period. The perfused gas 
was then switched to 10% O2 at the same rate for another 20-min period.

(2) Blood volume expansion (Leonard 2000); Data was collected before, during 
and after blood volume expansion. A polygeline-electrolyte solution was 
then used to increase plasma volume (administered at body temperature at 
1.5 ml.min'1 kg'1 for 15 minute).

(3) Haemorrhage (Malpas 2000); after a control period blood was withdrawn 
using a constant withdrawal pump at a rate o f 1.35 ml.kg"1.min'1 for 20 
minutes.

The values of mean blood pressure and SNA and the results of the statistical 
analysis of this data are presented in Table 4.1.
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Physiological
condition

Mean blood 
pressure (mmHg)

Heart rate (bpm) SNA (n.u.)

Normoxia 84 ± 2 286 ± 8 38 + 3
10% 0 2 Hypoxia 82 + 3 258 + 11 55 + 6
FI * *
Normoxia 84 + 2 286 + 8 38 + 3
10% 0 2 + 3% 
C 0 2 Hypoxia

81 ± 3 242 + 9 69 + 7

F2 * *
Control before 
BVE

71 ± 5 258 +21 45 + 5

BVE 73 ± 4 262+  15 33 + 5
F3 *
Control before 
haemorrhage

80 ± 2 270 ± 14 3 5 + 5

Haemorrhage 
(15th—20Ul min)

57 ± 5 320 + 20 6 8 + 1 5

F4 * * *

Table 4.1: Mean values o f blood pressure and SNA before and during hypoxia, before and after 
blood volume expansion (BVE) and before and during haemorrhage.

The averaged parameters of the baroreflex curves documented in the literature 
for the control condition before blood volume expansion (BVE) and hypoxia and 
dming the two different conditions of hypoxia and after blood volume expansion 
are documented in Table 4.2. These baroreflex curves are used for analysis in 
this study.

Control 
before BVE

After BVE Normoxia 10% 0 2 
Hypoxia

10% 0 2 +
3% C02
Hypoxia

Lower plateau (y -1) 32 + 6 3 5 + 6 1 1 + 6 6 + 4 16 + 6
Upper plateau (y  +1) 100 + 0 116 + 0 99 + 0 151 ± 15 190 + 0
Full range (21) 68 + 6 8 1 + 6 88 + 6 157 + 6 177 + 6
BP50 67 + 7 67 + 7 85 + 7 83 + 7 80 + 7
Upper curvature (J3lop) -017 + 0.03 -014 + 0.03 -0.13+0.03 -0.22+0.03 -017 + 0.04
Lower curvature
(pbottom )

-0.15 + 0.06 -0.09 ± 0.06 -0.22 ± 0.06 -0.12 + 0.06 -0.14 + 0.02

Gain -2.3 ±0.5 -2.5 ±0 .5 -3.3 ± 1 -5 + 1 -5.5 ±0 .9

Table 4.2: Baroreflex parameters describing blood pressure to renal SNA curves in rabbits before 
and after blood volume expansion (BVE) and before and during hypoxia.

140



Data preprocessing

The digitised 500 Hz blood pressure and SNA data was available for the 
normoxia and 10% O2 hypoxia conditions and for before and after blood volume 
expansion. The 500 Hz data contained a large portion of high frequency 
information, which was outside the range of interest. Furthermore, processes 
using this 500 Hz data were computationally very intensive. Therefore, the data 
was low-passed filtered and resampled to discard the unwanted high frequency 
information and to reduce the computer workload, respectively.

The data was resampled to 50 Hz to decrease the number of sample points. Then, 
following an investigation of filter types, orders and ripple parameters, an 8 th- 
order Chebychev filter, with ripple parameter s  = 0.07, was chosen to low-pass 
filter the data. These filter parameters were chosen so as to maintain the ripple 
effect within 0.05 dB and to minimise the numerical problems that may result 
when high-order filters are used (Little 1992).

The data for the haemorrhage condition was available as a time series of blood 
pressure values that were previously averaged over the period of each cardiac 
cycle. The period o f the cardiac cycle varies from beat to beat. Hence, the blood 
pressure values are averaged over unequally spaced time periods. Prior to the use 
of discrete time system identification tools, this data is interpolated to produce a 
time series of blood pressure and SNA data points that are equally spaced in 
time.

Cubic Spline Interpolation

The data is interpolated using cubic spline interpolation methods.

Consider the data set xt = {xv x2,....,xn} . The cubic spline method of 
interpolation uses a piecewise function of the form:
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f  (x ) i f  xx< x < x 2
/(X) = J2W i f  X2< x < x ^ (4.14)

f n - X  (*) i f  \ - X  ^ X ^ X n

where, f.  is a third degree polynomial defined by:
f i (x) = ai ( x - x if  +bi ( x - x i)2 + c (( x - x i) + di (4-15)

for i = l,2 ,....,w -l

The piecewise function / (x) will interpolate between all of the data points x; .
Equally spaced data points are calculated from this function fit to the data.
Hence, what results are equally spaced data point sets, of blood pressure and 
SNA values.

The data, described in this section, is used to calculate the describing function 
and vascular gains, so that predictions may be made regarding the presence or 
absence o f a limit cycle oscillation in blood pressure.

Nonlinearity in a system may enable the system to exhibit a sustained, repetitive 
oscillation known as a limit cycle. It is proposed that the slow oscillation in 
blood pressure is a limit cycle that results from the inflective nature o f the 
baroreflex curve contained in the model presented in Figure 4.1 (see Section
2.4.1). Variations in the characteristics of the nonlinearity and the gain o f the 
vasculature can account for growth and decay o f the slow oscillation and 
situations where the oscillation can disappear altogether. An analysis o f the 
nonlinear model is presented in the subsequent section.

4.5 Prediction of limit cycle oscillations
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A practical approach to the analysis of nonlinear systems is to include the effects 
of the nonlinearity as accurately as is feasible in a linear systems analysis of the 
model. The describing function method, introduced in the subsequent sections, is 
one such method often used to analyse nonlinearities.

Referring to the block diagram of Figure 4.1, and replacing the nonlinear 
function by its describing function representation, N (M ,a>) the stability of the
nonlinear closed-loop system depicted in Figure 4.1 can be analysed using 
Nyquist’s criterion applied to the associated linear system shown in Figure 4.4 
(Zak 2001).

Figure 4.4: The associated linear system of Figure 4.1. 

A linear systems approach produces the characteristic equation

l +  N ( M ,a > ) G H d(jco) =  0
or,

GHd(ja>) y N{M(o)

Pb

(4.27)

(4.28)

If the nonlinearity is odd (as is the case for the sigmoids of Equations (2.3), (4.1) 
& (4.2)) the describing function is real and independent of the input frequency, 
co, in which case N(M,co) is reduced to N { M ) (Slotine 1990).

When considering specific values o f input amplitude, M  , the Nyquist stability 
criterion is easily adapted to the nonlinear system analysis situation by
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However, when considering all oscillation amplitudes (0 < M < c o ) , the 
representation of generates a locus in the GHd {jco) plane. If  the

GHd (ja>) contour in the complex plane intersects the locus, the

intersection satisfies the condition for a sustained limit cycle oscillation. The 
amplitude and frequency of the limit cycle oscillation can be calculated at the 
intersection of the ~ l o c u s  and the GHd ( jo)) curve, evident in the

Nyquist diagram example in Figure 4.5.

c o n s i d e r i n g  e n c i r c l e m e n t s  o f  t h e  p o i n t  -  i n  t h e  G H d ( ja>)  p l a n e .

h n [ G / / ,  (yco )]

R e[GHd {jco)\

Figure 4.5: The -  contour in the GHd (y'ffl) -plane of the Nyquist diagram.

The describing function approximation, based on the Taylor series expansion, is 
used in this study to predict the presence or absence of a limit cycle oscillation 
during different physiological conditions. As is described in Section 5.1.1, the 
describing function developed using the Taylor series expansion is only accurate 
for small values of limit cycle amplitude. However, for the purpose of this study
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where prediction of the possible existence o f the slow (limit cycle) oscillation 
this method of approximation suffices.

Therefore, the Q point, or point on the -  Xr(M) *ocus at w^ich M  = 0

(illustrated in Figure 4.5) may be calculated for the baroreflex parameters 
documented in Table 4.2.

4.6 Results
As indicated in the previous section, three stimuli (hypoxia, blood volume 
expansion and haemorrhage) were analysed to assess the validity of the model 
and hypothesis presented in this chapter. The results are presented for each of 
these conditions individually. Due to the fact that the analysis presented in this 
chapter is inherently based on the analysis of SNA and because SNA is available 
in normalised, integrated, and rectified values (Malpas 1996), as explained 
earlier, all results are presented in terms of relative changes, rather than absolute 
gain changes (see Limitations, Section 4.7).

Hypoxia
Although the slow oscillation in blood pressure has been reported in the rabbit, 
during the resting, control condition, by a number of authors (Leonard 2000; 
Malpas 2000), Janssen et al (Janssen 1997) present a spectrum of blood pressure 
during control with no distinct peak in the region of 0.3 Hz. Again, no distinct 
slow oscillation in blood pressure was reported during 10% O2 hypoxia (Janssen 
1997). The slow oscillation, however, became evident during 10% O2 + 3% CO2 
hypoxia (Janssen 1997).

A significant increase in the gain of the baroreflex curve (51% ± 25%) occurred 
from control to 10% O2 hypoxia (Table 4.2). A further increase in the gain of the
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baroreflex curve (66 ± 25% increase from control) was observed during 10% O2 
+ 3% CO2 hypoxia.

With regard to the baroreflex model of peripheral resistance, and the resulting 
describing function analysis, these increases in the gain of the baroreflex curve 
cause the Q point (initially Q" in Figure 4.6) to shift to Q and to Q . These shifts 
in the Q point will increase the likelihood of a limit cycle oscillation occurring as 
the likelihood of an intersection between the GHd ( jco) , and the ~ c u r v e

is increased. An example of such a shift in the Q point (Q —>Q —>Q) is 
illustrated in Figure 4.6, for the changes documented in Table 4.3. For illustrative 
purposes, the GHd ĵa>) curve is maintained constant in Figure 4.6.

I P Q
20 0.22 -0.45 (Q”)
30 0.22 -0.3 (Q ')
44 0.22 -0.2 (Q)
20 0.5 -0.2

Table 4.3: Changing values of the Q point, for changing values of the range, 1 , (rows 1-3) and
curvature, J3, (row 4).

For the values presented in Table 4.3, the ~ l o c u s  begins at Q for the

range and curvature values documented in the first line o f Table 4.3. Q is to the 
left o f the GHd [jco) curve and hence no limit cycle oscillation results. An 
oscillation results for the I -  30 and / = 40 conditions o f Table 4.3 as the Q and 
Q points are on and inside the GHd {jco) curve respectively.
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Figure 4.6: Illustration of the effects o f a shift in the Q point on the Nyquist plot.

Steady-state vasculature gain decreased in all rabbits (n=6) during 10% O2
hypoxia. An average 40% (± 30%) decrease in vasculature gain was calculated 
during 10% O2 hypoxia. If this change in gain is consistent at all frequencies, the
GHd ( jo.)) curve to reduce to GHd ( joj) . The gains as calculated using the
system identification techniques are documented in Table 4.4.

Rabbit 1 2 3 4 5 6
Gain (Control) 1.06 0.31 0.93 0.914 1.5 0.81
Gain (hypoxia) 0.73 0.16 0.4 0.45 1.02 0.6
% gain decrease 31% 48% 57% 51% 32% 26%

Table 4.4: Gains of the vasculature as calculated using ARX model.

This reduction in the GHd (ja>) curve is illustrated in Figure 4.7. For illustrative 
purposes, the -  locus is maintained constant in Figure 4.7.
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Re[G H d (jco)]

Im \G Hd ( jm ) \

/

Figure 4.7: Illustration of the effects of a shift in the GHd (ja>) curve to GHd ( jco) , on the
Nyquist plot.

When such a contraction of the GHd(jco) curve occurs, no limit cycle
_ /  \  * . . .  oscillation will occur as the GHd ( jco) curve will be inside the Q* point (for the

condition of 10% O2 hypoxia) and, hence not intersect the -  curve.

During both conditions of hypoxia the mean value o f renal SNA increased 
causing the operating point to shift to a more central region of the baroreflex 
curve (see Table 4.1). This shift in the operating point is particularly evident 
during 10% 02 + 3% CO2 hypoxia when the operating point lies in the region of 
high gain of the baroreflex curve. Movement of the operating point to the central 
inflection region of high gain significantly increases the likelihood of an 
oscillation occurring (see Section 2.4.1).

Table 4.5 documents how shifts in the, xQ coordinate of the, operating point 
(x0, y 0) , away from the midpoint (x* ,y* j of the baroreflex curve will shift the Q
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point to a more negative value and thereby decrease the likelihood of the system 
limit cycling.

X * x0 Q
85 95 -0.29
85 90 -0.25
85 85 -0.22

Table 4.5: Changing values of the blood pressure operating point verses the centre point for the
baroreflex curve.

The effects of shifts in the operating point on the likelihood of an oscillation 
occurring are diagrammatically shown in Figure 4.8 for those shifts documented 
in Table 4.5. However, it needs to be emphasised that a shift in the operating 
point away from the central inflection region results in a lack of symmetry. 
Hence, the describing function will no longer be purely real and will instead 
contain an imaginary component. When illustrated on the Nyquist plot, the 
imaginary part will cause the ~ l o c u s  to shift off the real axis and cause a

consequent change in the frequency of the oscillation, as the -  y/N M̂) curve will

then intersect the GHd ( jco) contour at a different point above or below the real 
axis. For simplicity the -  curve is illustrated on the real axis in Figure

4.8. Also, the GHu(jco) curve is maintained constant in this example.

Im [G H j( jto )] Im [GH,, (jco)] im [GHd (jco)]

Re

Figure 4.8: Illustration of the effects of a shift in the operating point away from the central 
inflection region of the baroreflex curve, on the Nyquist plot.
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Blood volume expansion
In the control condition, prior to blood volume expansion, a distinct peak was 
observed in most animals (4 of 5 rabbits) at 0.3 ± 0.02 Hz (Leonard 2000). This 
peak was decreased significantly in rabbits that underwent blood volume 
expansion (Leonard 2000). After the rabbits had undergone blood volume 
expansion a slight increase in the gain of the baroreflex curve was observed (8 ± 
2%). However, most significant was that in the 5-min period following the end of 
blood volume expansion, renal SNA was 75 ± 5 % of renal SNA at the control 
level, whereas mean blood pressure remained constant. This resulted in a 
downward shift in the operating point to a region of lower gain and away from 
the central inflection region of the baroreflex curve. This downward shift in the 
operating point will decrease the likelihood of a limit cycle oscillation occurring 
as the operating region is now in a region of lower gain away from the operating 
point, and significantly out of the inflection region of the curve. The result of 
such a shift in the operating point can be seen on the Nyquist plot of Figure 4.8. 
The values of vasculature gain calculated for blood volume expansion were 
inconclusive; a significant decrease in vasculature gain was reported in 3 out of 5 
rabbits. No change in vasculature gain is reported in one rabbit and the 
vasculature gain increases for the fifth rabbit.

Haemorrhage
Baroreflex curves are not reported during haemorrhage, as it is not a steady-state 
condition (see Section 4.3.2.). The steady-state vasculature gain remains constant 
from control to the early stages of haemorrhage. However, a dramatic decrease in 
the vasculature gain from the early stages of haemorrhage to the later stages of 
haemorrhage is observed (>80% decrease). This decreases the likelihood of the 
limit cycle oscillation occurring. It is reported that the power in the 0.25-0.45 Hz 
range decreased during the later stages of haemorrhage (-23%  decrease) (Malpas 
1998; Malpas 2000).
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4.7 Discussion
The main aim of this study was to use a model of baroreflex control of the 
peripheral resistance to analyse changes in the strength o f the slow oscillation in 
blood pressure and to quantify the impact of the different sections of the 
feedback loop that may be responsible for these alterations in the slow 
oscillation.

It is to the detriment of this study that, of all the situations in which changes in 
the strength o f the slow oscillation have been observed (see Section 4.3.1), SNA 
was recorded during only a few of these conditions. Hence, baroreflex curves and 
vascular dynamics are not documented during these physiological conditions, 
when alterations of the slow oscillation are observed. As such the analysis 
presented here in this chapter cannot be applied to these situations.

Also, because the open-loop vasculature dynamics are not documented in the 
literature for conditions other than the normal control condition, the gain 
characteristics o f the vasculature were calculated only for those physiological 
conditions for which SNA and blood pressure data was available.

Considering these limitations the model was analysed only for three 
physiological conditions, hypoxia, haemorrhage and blood volume expansion. 
Baroreflex curve characteristics were documented in the physiology literature for 
the control situation and during hypoxia and blood volume expansion (see Table 
4.2). System identification techniques were used to calculate the steady state gain 
of the vasculature, both in the control situation and post intervention. Hence, 
knowing the changes in the gain of the baroreflex curves and of the vasculature, 
it was possible to predict the likelihood of changes in the strength of the 
oscillation occurring. Unfortunately, due to the nature of the SNA signals, where 
the amplitude of the signal recorded is dependent on the number of fibers 
recruited and the contact between the nerve and the electrode, absolute values of
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SNA cannot be consistently recorded. Therefore, the investigation is restricted to 
the analysis of trends of gain changes. However, knowing the relative changes in 
gains between the control and intervention cases, the likelihood of a change in 
the presence or strength of the oscillation can be predicted.

The importance of this relative relationship between the gain of the static 
nonlinear baroreflex curve and the steady-state gain of the vasculature is 
supported when the results of the studies by Malpas et al (Malpas 1996) and 
Janssen et al (Janssen 1997) are compared. Malpas et al (Malpas 1996) reported 
dramatic increases in the gain of the baroreflex curve during 10% 0 2 hypoxia. 
However, Janssen et al (Janssen 1997) do not report an increase in the strength of 
the slow oscillation during this hypoxic condition, as might be expected 
considering the large increase in baroreflex gain. This disparity can be explained 
by the 50% decrease in vasculature gain, as calculated in this study. Hence, the 
increase in baroreflex gain is offset by a decrease in the vasculature gain thus, 
explaining the lack of an oscillation at 0.3 Hz during 10% 0 2 hypoxia.

Janssen et al (Janssen 1997) do report a distinct peak at 0.3 Hz during the more 
severe hypoxic condition of 10% 0 2 & 3% C 0 2. Unfortunately, data was not 
available for this hypoxic condition. However, we hypothesize that the increase 
in the strength of the oscillation at 0.3 Hz is due to the further increase in the gain 
of the baroreflex curve and to the shift of the operating point into the inflection 
region of the sigmoid curve. Also, it is predicted that there may be a smaller 
decrease in the vasculature gain, during this hypoxic condition due to an increase 
in tonic sympathetic activity, whereas blood pressure remains relatively constant 
(see Table 4.1). An increase in tonic SNA will cause an increase in vascular tone 
and hence, the gain may be lower for sympathetic stimulus.

Also it should be noted that variations in the levels o f 0 2 and C 0 2 within the 
blood will activate the chemoreceptors (Malpas 1996). The chemoreceptors 
trigger the chemoreflex, which has ancillary effects on blood pressure and can 
modulate baroreflex function (see Sections 2.2.1 & 2.2.4). Malpas et al (Malpas 
1996) proposed that the increase in SNA with the addition of C 0 2 to the inspired 
gas may be responsible for producing a greater activation o f the chemoreceptors.
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Hence, analysis of the baroreflex control loop in isolation, during the hypoxic 
conditions, may not enable full analysis of the reflex mechanisms involved in the 
development (and abolition) of the slow oscillation in blood pressure.

Blood volume expansion is reported to cause a disappearance of the slow 
oscillation in blood pressure (Leonard 2000). After the rabbits have undergone 
blood volume expansion, renal SNA was reported to be decreased by 25% from 
the control level, whereas mean arterial pressure remained at the control level. 
This change caused a vertical downward shift in the operating point, to the region 
of lower gain, as reported by Leonard et al (Leonard 2000). Such a shift in the 
operating point out o f the inflection region coupled with a decrease in gain in the 
region of operation will result in a decrease in the strength of the slow 
oscillation. However, following the hypothesis presented in this study, the full 
picture of the likelihood of an oscillation occurring can only be formed if 
vasculature gain changes are examined in tandem with changes in the baroreflex 
gain. Changes in the vasculature gain were not consistent, although, of the 5 
rabbits analysed in this study, 3 recorded a dramatic decrease in vasculature gain. 
No slow oscillation is observed in any of the rabbits following blood volume 
expansion. Leonard et al (Leonard 2000) could not explain this result by analysis 
of the baroreflex curve alone. Hence, rather than using changes in one 
component of the loop as a marker of changes in the strength o f the oscillation, 
an analysis of the gains of the relative components offers a more accurate means 
of prediction of the change in the strength of the oscillation.

Similar to the case for the hypoxic condition where the chemoreflex is activated 
depending on the level of CO2 administered, the cardiopulmonary reflex may be 
activated following blood volume expansion (Leonard 2000). If activated, this 
reflex will modulate the baroreflex mechanism and, may affect the slow 
oscillation in blood pressure, and it has been proposed that it may even cause its 
abolition (Malpas 2002).

Of the intervention studies that have been used in this analysis, changes in the 
strength of the slow oscillation in blood pressure are probably most evident 
during haemorrhage (Malpas 2000). However, baroreflex curves are not
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developed for the haemorrhage condition (see Section 4.3.3). The steady-state 
vasculature gain remains constant from control to the early stages of 
haemorrhage. However, during the later stages of haemorrhage, a dramatic 
decrease in vasculature gain is observed. Hence, the likelihood of the limit cycle 
oscillation occurring is decreased. In support of this, studies which have 
quantified the power in different frequency bands during haemorrhage reported 
(Malpas 1998; Malpas 2000) a decrease in power in the 0.2 to 0.4 Hz range 
during the later stages of haemorrhage, following an obvious increase during the 
first 10 minutes.

Shifts in the operating point are reported in a number of different studies, which 
documented baroreflex curves during various stimuli. Barrett et al (Barrett 2003), 
in a recent study that measured baroreflex curves for animals undergoing 
angiotensin II infusion, report a shift in the operating point from the region of 
high gain in the middle of the curve to a region of low gain at the bottom of the 
curve. Spectral analysis of the blood pressure signals, before and after 
angiotensin II infusion, results in no evidence of an oscillation in the later 
situation, as would be expected from the nonlinear analysis proposed in this 
study. However, no consistent peak was observed in the spectrum of blood 
pressure recorded during the control case, prior to angiotensin II infusion.

Most models of the baroreflex control of blood pressure assume operation in the 
central region of the sigmoid curve (Ursino 2003). However, many physiological 
studies report the presence of the operating point outside of the central region of 
the sigmoid (Malpas 1996; Barrett 2003). The results of this study show that 
knowledge of the operating point position is vital to the prediction of the strength 
of the slow oscillation in blood pressure, and specifically that shifts in the 
operating point away from the inflection region will decrease the likelihood of 
the slow oscillation in blood pressure occurring.

An increase in the available physiological results regarding changes in the 
strength of the slow oscillation along with an increase in the documented 
characteristics of the components of the baroreflex loop during different stimuli
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would allow further exploitation and development o f the analysis presented in 
this study.

Limitations

The limitations presented by the nature of the SNA recordings are commented on 
throughout the text of this chapter. However, these difficulties are inherent to 
physiological experimental studies, where the level o f recorded SNA is 
dependent on the number of nerve fibers recruited, and also to the methods of 
quantification of nerve activity.

The baroreflex control of the heart rate was not analyzed in this study. Although, 
as reviewed in Section 2.3.3.3, evidence exists to suggest that the heart is not 
involved in the generation of the slow oscillation in blood pressure (Liu 2002), it 
at least plays a role in maintaining gain (Liu 2002). The role of the heart in the 
genesis of the slow oscillation in blood pressure is analysed in greater detail in 
Chapters 6 and 7 of this thesis.

The model used for investigation in this study does not enable analysis of the 
compound influences of the different reflex mechanisms involved in the short­
term control of blood pressure such as the chemoreflex and cardiopulmonary 
reflex. As discussed, these reflex mechanisms may be o f particular importance 
during the physiological conditions under analysis in this study.

The investigation of the three physiological conditions was further limited by the 
lack of data (particularly for the 10% 0 2 + 3% C 0 2 hypoxic condition), the 
limited number of rabbits (for the blood volume expansion condition) and the 
lack of definitive baroreflex curve characteristics (for the hemorrhage condition). 
A larger compilation of these would enable more in-depth analysis of the 
hypothesis presented in this study and even enable the employment of this 
hypothesis for the analysis to the individual subject.
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4.8 Conclusions
In summary, it is concluded that the strength o f the slow oscillation in blood 
pressure can be related to changes in the baroreflex curve and to changes in the 
vasculature characteristics. However, it is also accepted that such a simple model 
and analysis of the baroreflex system may not enable definitive conclusions be 
drawn regarding aspects of cardiovascular function specifically responsible for 
the slow oscillation in blood pressure, as other mechanisms and effectors of 
blood pressure control are not described by this model.

The point that is emphasized, following analysis o f this model, is that it is the 
relative relationship between the gains around the baroreflex loop that is of 
importance when analysing the conditions necessary for the existence or 
maintenance of the slow oscillation in blood pressure. However, there is a 
paucity o f documented characteristics available in the literature and a paucity of 
data available with which the analysis based on this relative relationship may be 
investigated.

It is proposed that this method of analysis enables a somewhat crude prediction 
o f the strength of the slow oscillation in blood pressure and does offer insight 
into the components of the baroreflex system that are responsible for the genesis 
and alteration of the slow oscillation in blood pressure. For these reasons, it is 
proposed that this analysis furthers the quest for a diagnostic test based on 
cardiovascular variability.
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Chapter 5

Developing the describing function 
approximation

5.1 Introduction
A method of describing function approximation (Holohan 2000) was introduced 
in the previous chapter (Section 4.2.3.1). An approximation is required so that a 
closed-form analytical expression for the describing function may be developed. 
As discussed in Chapter 4 (Section 4.2.3.2), this analytical expression allows 
greater insight into how changes in the parameters o f the nonlinearity affect the 
describing function of the nonlinearity.

However, the method of describing function approximation, introduced in the 
previous chapter, has a number of shortcomings. In this chapter, a new method of 
describing function approximation is introduced, which overcomes a number of 
these deficiencies.
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5.1.1 The case for a new describing function approximation

The describing function approximation method introduced in the previous 
chapter was used, with success, to predict the possible occurrence of a limit cycle 
oscillation. It was specifically used to predict a limit cycle oscillation in blood 
pressure during different physiological conditions during which the oscillation is 
present (Janssen 1997) and during which the oscillation disappears (Leonard 
2000).

However, although the presence or absence of the oscillation may be predicted 
using this method of describing function approximation, accurate prediction of 
the amplitude o f the limit cycle oscillation is unachievable, as the approximation 
is only accurate for very small values o f oscillation amplitude. Although, the 
amplitude of the oscillation is small for the rabbit (~ 10 mmHg) (Malpas 2000),
the amplitude increases during different physiological conditions (see Section
4.3.1), and hence may be greater than the range of approximation of the sigmoid. 
Also the operating point has been reported to exist in different sections of the 
baroreflex curve during different physiological conditions (see Section 4.3.2). 
Knowledge of the position of the operating point would, therefore be necessary, 
so that the sigmoid may be approximated at different points on the sigmoid. An 
approximation capable of describing the full range of the sigmoid would 
overcome this problem.

The Taylor series approximation of the sigmoid (sTS (*)), for 6 terms of the
Taylor series is illustrated in Figure 5.1. As is evident from the plot, the 
approximation of the sigmoid, developed using the Taylor series, is unable to 
accurately approximate the sigmoid over its full range.
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L ,
Figure 5.1: The sigmoid (thin line) and the approximation o f the sigmoid for 6 terms of the

Taylor series expansion (thick line).

The inaccuracy of the sigmoid approximation affects the accuracy of the 
describing function approximation calculated using the Taylor series expansion. 
The describing function gain calculated using this approximation method 
(Nrs (M )) is compared with the precise describing function approximation to
the sigmoid calculated using numerical integration methods [NN! (M )) in Figure
5.2.

Figure 5.2: The describing function gains calculated using the Taylor series approximation 
method, N rs (M ) ,  and using numerical integration, N m (M ) , calculated for the parameters of

Figure 5.1

1 5 9



The describing function approximation, NTS ( M ) , accurately approximates the 
exact describing function, Nn1 (M ) , only for very small values o f oscillation 
amplitude (M ) but quickly loses accuracy as the limit cycle amplitude increases.
This inaccuracy is also evident when the describing function is incorporated with 
the Nyquist stability diagram.

As was described in Section 4.5, when considering all possible limit cycle 
oscillation amplitudes (0 < M  < co'j, the representation o f j generates a

locus in the G H d (jco)  plane of the Nyquist diagram. If  the G H d ( jco) contour 
in the complex plane intersects the ~ locus, the intersection satisfies the

condition for a sustained limit cycle oscillation and the intersection point defines 
values of frequency (from G H d (jco)  ) and amplitude (from ~ f°r  this

limit cycle oscillation (Lewis 1997).

However, using the describing function approximation based on the Taylor series 
expansion of the sigmoid the - curve produces erroneous results

outside the range of accuracy of the sigmoid approximation. Outside this range 
the ~ c u r v e  doubles back and increases in the opposite direction for

increasing values of the limit cycle amplitude, M  , as shown in Figure 5.3.

Hence, this approximation only enables prediction of a limit cycle and accurate 
calculation of the amplitude and frequency of this limit cycle for a very small 
range o f oscillation amplitudes (M < 0 .1 6 ). Considering this, alternative 
methods of describing function approximation were considered.
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Figure 5.3: Nyquist plot showing the GHd ( jco) curve given by Equation 4.1 and the 

-  locus developed using the Taylor series expansion method.

5.2 A new approximation to the describing 
function

A number of different techniques for the development of the describing function 
approximation were investigated. The suitability of wavelets for the development 
of a describing function approximation was examined. However, the 
approximation procedure results in complicated integrals, for which a closed- 
form expression camiot be calculated, similar to the case for the Fourier integrals 
(see Section 4.2.3.2).

The suitability of cubic spline functions, for the development of the describing 
function approximation of the sigmoid, was examined. Cubic spline functions are
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generally used to fit a cubic equation to a data set. However, the aim of this study 
was to develop an analytical approximation to the sigmoid in terms of the

relationship to these parameters. Hence, the transparency o f the parameters of the 
sigmoid is not preserved and insight into the effect o f variation of these 
parameters on the describing function is lost.

Considering the limitations of these methods, for the aim of this study, the use of 
orthogonal polynomials (Szego 1975; Axler 1997) as a basis set for a polynomial 
approximation of the sigmoid was investigated.

5.2.1 Orthogonal polynomial approximation methods

Various types of orthogonal polynomials exist, including the Legendre, Laguerre 
and Chebychev polynomials of first and second kind. The development of a 
polynomial that approximates the sigmoid, and hence enables the development of 
an analytical describing function, was developed using these polynomial sets. 
The method of polynomial approximation is first described.

Let the weight function, w ,  be a positive function on [<3,/b] c  M .
Let

parameters of the sigmoid {l,/3,x , y  ) ,  but the cubic spline fit bears no direct

(5.1)

L2 w j  is an inner product space (Axler 1997) with inner product
b

(5 .2 )
a
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Let je„ ]b e  an orthonormal basis for 1} {^a, bJ , wj , and let UN be the finite 

dimensional subspace of I? {^a, ¿> J , wj spanned by j e j en j .

Then, given a function f  E 1} |  a, , w j the element /  e  Un, such that
b, 2
J / W - / W  w[x)dx is minimised, is the orthogonal projection
a

PUNf  =  f  =  Y j ( f \ e n ) e n °f / 0nt0 U N-n=1

The polynomial approximation of the sigmoid is developed for the Legendre, and 
Chebychev polynomials of the first and second kind. The Laguerre polynomials 
are defined over the range [ 0 ,o o ] ,  and therefore are not suited to the example of
the symmetrical sigmoid (defined in the range [-1,1] in this example).

Let U6 be the finite dimensional subspace of Z?[—1,1] spanned by the first 6 
orthonormal polynomials. The first six Legendre polynomials are:

e°{x)~ j 2  
ei(x) = -J%x
e2
e3(x) = J % ( j X i - j x

(5.3)

e5(X> f % { j X - 3{ X' + f X5

The orthonormal Legendre polynomials, that span the subspace L [—1,1], are 
shown in Figure 5.4.
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Figure 5.4: The first 6 Legendre polynomials defined over the range [-1,1].

The Chebychev polynomials of the first kind (/„ (x)) are defined over llie range

[-1,1] and are weighted by the function w(x) = ( l—x 2) /2 (Kreyszig 1999). The 
first six Chebychev polynomials, of the first kind, are:

'0 (*) = 1 
/, (x) = x 
12 (x) = 2x2 -1  

(x) = 4x2 -3 x  
tA (x) = 8x4 -  8x2 +1 
/5 (x) = 16x5 -  20x2 + 5x

'I'he Chebychev polynomials of the second kind (un (x)) are defined over the

range [-1,1] and are weighted by the function w(x) = V 1 - x 2 (Kieyszig 1999). 
The first six Chebychev polynomials, of the second kind, are:
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u0 ( x ) =1 
u{ ( x )  =  2x 
u2 (x )  = 4x2 -1 (
«3 (x) = 8x3 -  4x 
u4 (x) = 16x'' -1 2 x 2 +1 
w5 (x) = 32x5 -  32x3 4- 6x

The first 6 Chebychev polynomials of the first and second kinds are illustrated in 
Figure 5.5.

u„(x) t„(x)

Figure 5.5: The first six Chebychev polynomials (left) o f the first kind (right) of the second kind.

The weighting functions for the polynomials are shown in Figure 5.6: 

w(x) w(x)

\ 21.75
1.5

1.25
----1- —--------

0.75
0.5

0.25
-0 .5 0.5 1

Figure 5,6: The weighting functions of the (left) first kind and (right) second kind of Chebychev
polynomials.
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The sigmoid, s(x) e  L2[—1,1], described by Equation (2.3), is approximated by

Pus = Y j(s \e„)en Gl^ (5.6)

with minimal / ? [ —1,1] error, i.e.
b 2 6n 2
j]s(x) -  / ] , s ( a-)|~ dx = m in  j]s(x) -  ̂ ( x )  ~ dx

The sigmoid ¿'(x) and the approximation of the sigmoid, using the first 6 
Legendre polynomials Slr ( x ) , which have a weighting function, w(x) = l ,  are 
shown in Figure 5.7.

/ = 1
P = 5
(**>•)'*) = (o ,o )  1

0 . 5

/ .............................................................
- 1  - 0 . 5 0 . 5  1

/
- 0 . 5

/
- 1

Figure 5.7: The sigmoid (dashed line) and the approximation of the sigmoid for 6 terms of the 
Legendre polynomial expansion (full line).

The sigmoid and the residual error between the sigmoid and the sigmoid 
approximation, su, (x ) , are shown in Figure 5.8.
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/

-0 .5

-1

Figure 5.8: The sigmoid (dashed line) and the residual error of the sigmoid and the Legendre
polynomial expansion (full line)

The sigmoid s ( x ) and the approximation of the sigmoid, using the first 6 
Chebychev polynomials of the first sCT (x ) and second s(V (x ) kind are shown 
in Figure 5.9.

Figure 5.9: The approximations to the sigmoid as approximated by the Chebychev polynomials 
(left) of the first kind and (right) o f the second kind.

The inaccuracies in the shape of the approximations are related to the weighting 
functions fundamental to the Chebychev polynomial approximations. Around the
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origin where the weighting functions have a value of 1, the approximation is at 
its most accurate. Due to the inaccuracy o f the sigmoid approximation using the 
Chebychev polynomials, the approximation of the sigmoid based on the 
Legendre polynomials (sLP (x)) is used to calculate the describing function
using the same method as already documented for the Taylor series expansion 
method (See Section 4.2.3.3).

Using the method o f describing function approximation based on the Legendre 
polynomials, the ~  locus is generated for a range of oscillation

amplitudes equivalent to the full range (2/) of the sigmoid approximation. This 
is shown in Figure 5.10.

Re [GHd (jco)\

Figure 5.10: Nyquist plot showing the GHd (ja>) curve and the — ̂

utilising the Legendre polynomials.
N lp ( M  ) locus developed

Using this method of describing function approximation reliable values of 
amplitude and frequency for a range o f input amplitude values, set by the range 
of approximation of the sigmoid, can be calculated from the intersection of the

-  1/G H d (ja>) curve and the ~ curve.

168



In the above description an approximation is developed for the sigmoid function 
defined in the range [-1,1]. The sigmoid may be approximated over different 
intervals through dilation and normalisation of the orthonormal basis.

5.3 Comparison of the describing function 
approximations

The gains of the describing function approximations developed using the Taylor 
series expansion, N TS ( M ) , and the Legendre polynomials, Nu, ( M ) , are plotted
in Figure 5.11 for the sigmoid parameters given. In this figure these 
approximations are compared with the true value of the describing function 
calculated using numerical integration methods N ni (AT), for a range of limit 
cycle amplitude values.

N(M)

M

F i g u r e  5 .1 1 :  T h e  d e s c r i b i n g  f u n c t io n  g a in s  c a l c u l a t e d  u s i n g  t h e  T a y l o r  s e r ie s  a p p r o x i m a t i o n  
m e t h o d ,  N rs ( M ) , t h e  L e g e n d r e  p o l y n o m i a l  a p p r o x im a t i o n  m e t h o d ,  N LP ( A / ) , a n d  u s i n g

n u m e r i c a l  i n t e g r a t i o n  N m  ( M )
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Values o f the describing function based on the Taylor series expansion are more 
accurate for very low values of oscillation amplitude. However, this 
approximation quickly loses accuracy as the values o f oscillation amplitude 
increase. The describing function based on the Legendre polynomial 
approximation of the sigmoid is less accurate for very low values o f oscillation 
amplitude. However, it more closely resembles the precise describing function,
N ni ( M ) , for a larger range of oscillation amplitude values.

These results are also evident in Figure 5.12, where the difference ( J )  between
the describing function approximation methods and the describing function 
calculated using numerical integration are compared. The difference between the 
describing function approximation calculated using numerical integration and the 
describing function approximation calculated using the Taylor series 
approximation method is:

y „ = |jv M (A f)-w ,s ( « ) |  (5.7)

and, the difference between the describing function approximation calculated 
using numerical integration and the describing function approximation calculated 
using the Legendre polynomial approximation method is:

I <5-8>
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M

F i g u r e  5 .1 2 :  T l ie  d i f f e r e n c e ,  J, b e tw e e n  th e  d e s c r i b i n g  f u n c t io n  c a l c u l a t e d  u s i n g  n u m e r ic a l  
i n te g r a t i o n  a n d  th e  d e s c r i b i n g  f u n c t io n  a p p r o x i m a t i o n  m e t h o d s .

Of the 2 describing function approximation methods, the method of 
approximation based on the Taylor series expansion is more accurate for limit 
cycle peak-to-peak amplitude values of 16% o f the full range of the sigmoid.

The methods of describing function approximation may also be analysed by 
comparing the predicted amplitude of the limit cycle with that of a simulated 
example in a limit cycle condition. A model with the structure o f that shown in 
Figure 4.1 was used with results documented in Table 5.1. The gain of the
dynamic transfer function, |C/(y'iy)j, of Equation (2.7) was varied so as to alter 
the amplitude of the limit cycle.
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HH M
Simulated

Predicted
M(TS)

Predicted 
M  (LP)

1.2 0 0 0
1.3 0.08 0.03 0
1.4 0.238 0 0
1.5 0.33 0 0.27
1.6 0.41 0 0.395
1.7 0.48 0 0.47
2 0.65 0 0.658
2.2 0.76 0 0.75
2.5 0.915 0 0.88
3 1.15 0 0

T a b l e  5 .1 :  S i m u la te d  r e s u l t s  o f  l im i t  c y c l e  o s c i l l a t i o n  a m p l i tu d e ,  M , c a l c u l a t e d  f o r  i n c r e a s i n g  

v a lu e s  o f  |G (  jc o ) | a n d  p r e d i c t e d  v a lu e s  o f  t h i s  a m p l i tu d e  u s i n g  t h e  2  a p p r o x i m a t i o n  m e th o d s .

Again it is evident from this simulated example that the Taylor series expansion 
method allows better prediction of the amplitude of the limit cycle oscillation for 
small amplitude values and that the Legendre polynomial method o f describing 
function approximation allows for better prediction of the limit cycle oscillation 
amplitude for a larger range of amplitude values.

5.4 Discussion

Two methods of describing function approximation are presented in this thesis. 
The first describing function approximation introduced in Section 4.2.3.3 is 
based on the Taylor series expansion o f the sigmoid (Holohan 2000). The second 
describing function approximation introduced in Section 5.2.1 was developed 
utilising the Legendre orthogonal polynomial approximation of the sigmoid.

The describing function utilising the Taylor series expansion offers a better 
approximation of the sigmoid around the inflection region for an equivalent 
number of terms of both expansion methods. The inflection of the curve is key to 
the genesis of a limit cycle oscillation (Ringwood 2001). The accurate
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approximation of the central inflection region enables better detection of the 
presence or absence of the oscillation for small oscillation amplitude values, 
(M  -> 0).

However, outside the inflection region, the approximation method based on the 
Legendre orthogonal polynomials, unlike the approximation based on the Taylor 
series expansion, is capable of approximating the sigmoid nonlinearity. Hence, 
using this new method o f describing function calculation, the describing function 
may be accurately calculated for a larger range of oscillation amplitude values, 
enabling the limit cycle amplitude to be accurately approximated for a range of 
oscillation amplitude values within the full range of the sigmoid. This is of 
advantage when the amplitude of the slow oscillation in blood pressure increases 
beyond the range of approximation of the Taylor series approximation to the 
sigmoid.

The use o f an additional weighting function to improve the accuracy of the 
Legendre polynomial approximation of the sigmoid in the central inflection 
region of the curve, while still retaining accuracy at the extremities of the curve, 
was investigated. However, the introduction of an additional weighting function 
would result in a set of polynomials that would not form an orthonormal basis set 
for the space defined. Hence, the orthogonal projection theory (Section 5.2.1) 
could not be used to develop a finite series, which would accurately approximate 
the sigmoid.
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5.5 Conclusions

In this chapter approximations to the sigmoid nonlinearity, that is common in 
physiological systems, are presented. This approximation enables calculation of a 
closed-form expression for the describing function. Unlike the previous 
approximation method, utilising the Taylor series, the method of approximation 
presented in this chapter allows for accurate calculation of the describing 
function for a large range of oscillation amplitudes. This enables accurate 
calculation of the amplitude of the limit cycle oscillation.

Of the two methods of approximation used in this study, the method based on the 
Taylor series expansion is better for the detection of a limit cycle, while the 
method of approximation based on the Legendre orthogonal polynomials permits 
accurate calculation of the amplitude of the oscillation.

These results are significant when applied to the field o f biomedical engineering 
and particularly the area of cardiovascular control where the strength of the 0.1 
Hz oscillation in the blood pressure o f the human is proposed as a future 
diagnostic test (Section 2.3). The development of an accurate closed-form 
expression for the describing function o f the sigmoid allows greater insight into 
how changes in the parameters of the experimentally observed nonlinearities 
(Head 1987; Malpas 1996) will affect the amplitude of this limit cycle oscillation 
in blood pressure.
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Chapter 6

Modelling the complete baroreflex

6.1 Introduction
A main aim of this thesis is the development of an accurate model of the short-term 
control of blood pressure. This model should be capable of describing the 
mechanisms of short-term blood pressure control and, hence, enable investigation of 
the mechanisms responsible for the genesis of the slow oscillation in blood pressure. 
The modelling analysis of the slow oscillation in blood pressure, documented so far 
in this thesis has concentrated on the investigation of baroreflex control of peripheral 
resistance (see Chapter 4). That model (Ringwood 2001), and other models of 
baroreflex control of peripheral resistance (Kitney 1979; Burgess 1997), are capable 
of giving rise to an oscillation at the frequency of the slow oscillation. However, this 
fact alone does not preclude the heart from also playing a role in the genesis of the 
slow oscillation. The models of baroreflex control of peripheral resistance provide a 
sound foundation for explaining the theoretical perception as to how the slow 
oscillation in blood pressure is produced (i.e. as a limit cycle). However, similarly 
describable neural pathways to those that travel to the vasculature exist to the heart. 
Due to the presence of nonlinearities in these cardiac pathways (Iriki 1977), limit 
cycle oscillations may also be generated through these pathways.
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The significance of the heart in relation to the genesis of the slow oscillation in 
blood pressure has been questioned and, in many cases, dismissed by a number of 
authors (O'Leary 1996; Janssen 2000; Liu 2002). The studies of these authors, and 
the evidence in support of their conclusions, are reviewed in Section 2.3.3.3. 
However, the role of the heart as the principal cardiovascular controller, and its 
inherent ability to generate oscillations, makes a model description of the control of 
blood pressure, excluding the heart, incomplete.

A model of the complete baroreflex, including the baroreflex pathways to the heart, 
is presented in this study. Documented in this chapter are the components and 
parameters used in the model of the baroreflex. Using this model, the role of the 
heart, and other components, which contribute to the development of the slow 
oscillation, are analysed.

6.2 Modelling approach

This model was developed using experimentally derived characteristics and 
parameters exclusive to the rabbit so as to investigate the slow oscillation in blood 
pressure that exists at about 0.3 Hz in the rabbit (Leonard 2000). As was already 
discussed (Section 2.3.2), this oscillation is analogous to the 0.1 Hz oscillation in the 
human (Ringwood 2001), which is the frequency of oscillation produced by the 
majority of models available in the literature (De Boer 1987; Cavalcanti 2000; 
Seydnejad 2001; Ursino 2003). However, due to the fact that rabbits are more 
commonly used as the subjects of physiological experiments, there are many more 
studies available that characterise components of the baroreflex of the rabbit than 
there are of the human. Hence, accurate representation of short-term blood pressure 
control of the model is more easily achieved when the model is developed using 
rabbit data and components derived for the rabbit. The development of the model for 
the rabbit also benefits the consistency of parameterisation of the model, as the need
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to mix or transpose parameters and characteristics obtained from different species is 
avoided. Also, the rabbit is used as the subject for all experiments performed by the 
physiologists at the Circulatory Control Laboratory at the University of Auckland, 
New Zealand, who collaborate on this research. Therefore, data is available to model 
the various characteristics of the rabbit’s baroreflex, where required.

Characteristics have been derived in other animals subjects also, such as the rat (Sato 
2003), dog (Berger 1989) or cat (Seller 1991), which are more closely akin, at least 
in size, to the rabbit than the human is. These characteristics are also available in the 
literature, and these may be compared to those derived for the rabbit.

6.3 Modelling the neural arc

Central nervous control of blood pressure is discussed in Chapter 2, where the 
experimentally derived static and dynamic characteristics are documented. Due to 
the complexity of the central nervous system and central processing mechanisms, the 
CNS is most often viewed as a black box, and is therefore modelled using input and 
output data of the CNS. The CNS is most precisely characterised by the relationship 
between afferent nerve activity and SNA (models of the central arc) and these 
characteristics are documented in 2.2.2.3. However, the more common models are of 
the neural arc, which lumps the characteristics of the baroreceptors with the central 
arc (see Section 2.2.2.4). These arcs of the baroreflex are illustrated in Figure 2.1.

As was discussed in Section 2.2.2.4, the neural arc includes the baroreceptor 
transduction properties, afferent signal conduction, central processing and efferent 
signal transduction. The characteristics of the baroreceptors are well described, in 
the literature, by the relationship between blood pressure and afferent nerve activity. 
Static nonlinear and linear dynamic characteristics have been reported and these are 
reviewed in Section 2.2.1.1.

177



Although models of the baroreceptors, central and neural arcs are all available in the 
literature, they are rarely included in more complete models of the baroreflex 
system. Some authors have investigated complicated descriptions of the CNS and 
the baroreceptors (Seidel 1995; Seidel 1997). However, the majority of models of 
the baroreflex either exclude any kind of description of the CNS (Ursino 2003) or 
include a very simple description (Ottesen 2000; Seydnejad 2001). Similarly, the 
characteristics of the baroreceptors are rarely included in these models and the 
emphasis is instead on the descriptions of the effectors of blood pressure (Seydnejad 
2001; Ursino 2003).

The significance of the dynamical characteristics contained within the neural arc was 
emphasised by Ikeda et al (Ikeda 1996), who proposed that the derivative nature of 
these characteristics may be key to enabling quick stabilisation of blood pressure. A 
significant role for the nonlinear characteristic of the neural arc in the genesis of the 
slow oscillation in blood pressure was reported by Ringwood and Malpas 
(Ringwood 2001) and it was shown, in Chapter 4 of this thesis, that changes in the 
characteristics of the neural arc component of the baroreflex model can be related to 
changes in the strength of the slow oscillation. Hence, it is proposed that an accurate 
description of the neural arc is crucial for a realistic description of the baroreflex.

The different linear and nonlinear characteristics that exist in the neural arc, due to 
the baroreceptors and the CNS, are detailed in Section 2.2.2.4 and the suitability of 
these, for inclusion in the model of the baroreflex, is discussed in the following 
sections.
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6.3.1 Dynamical characteristics in the neural arc

The dynamic transfer function models of the baroreceptors, central and neural arc 
were reviewed in Section 2.2.2.1, 2.2.2.3 and 2.2.2.4. Derivative characteristics have 
been consistently reported by the physiologists who have investigated the 
characteristics of the neural arc (Kawada 1997; Kawada 2002). The gain of the 
frequency response plots of the neural arc increases as the frequency increases, up to 
a given frequency, but decreases for higher frequencies. Importantly with respect to 
this model, the filter characteristics are high-pass in the frequency range of the slow 
oscillation (see Figures 2.6, 2.9, 2.12).

Although the derivative characteristics are well established to exist between blood 
pressure and SNA, there is some argument as to whether the baroreceptors or the 
CNS are responsible for the high-pass characteristics observed in the neural arc. 
Transfer functions for both the baroreceptors and the central arc have been reviewed 
in earlier sections (Sections 2.2.1.1 and 2.2.23). However, the published 
observations of the different authors do not conform.

Sato et al (Sato 1998) identified the dynamic transduction properties of the 
baroreceptors of the rabbit, and reported the gain of the transfer function between 
blood pressure and afferent nerve activity to increase up to ~2 Hz and decrease at 
higher frequencies. Kubo et al (Kubo 1996) report the transfer function of the central 
arc to exhibit a flat, all-pass characteristic. Hence, it might be assumed that the high- 
pass characteristics to the neural arc are attributable solely to the dynamic 
transduction properties of the baroreceptors, as has been proposed (Sugimachi 1990; 
Kubo 1996), and that the central component does not affect the dynamic properties 
of the baroreflex. However, Petiot el al (Petiot 2001) challenged the experimental 
procedure used by Kubo et al (Kubo 1996) and, following an experimental 
investigation of the central arc of the rat, reported high-pass characteristics within 
the central arc. Kawada et al (Kawada 2001) also revealed different frequency
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response characteristics of the neural arc, when SNA to different organs was 
recorded. This result implies differential central processing (Kawada 2001).

Considering these studies, high-pass characteristics cannot be attributed solely to the 
baroreceptors, and may exist in both the baroreceptors and central arc. The 
characteristics chosen for inclusion in the model are discussed in Section 6.3.3.

6.3.2 Nonlinearity in the neural arc

The presence of nonlinearity in the neural arc is well established. The nonlinear 
baroreflex curves, between blood pressure and SNA, are well documented in the 
physiological literature, and were introduced in Section 2.2.2.4. Nonlinear 
characteristics were reported in both the baroreceptors (see Section 2.2.1.1) and the 
central arc (see Section 2.2.2.3). The nonlinearity in the neural arc was shown to 
constitute the primary nonlinear element in baroreflex control of peripheral 
resistance (Ringwood 2001) (a result supported by Sato et al (Sato 1999)) and the 
inflection of this curve, has been demonstrated as sufficient to induce oscillations.

6.3.3 A dynamical linear-static nonlinear neural arc model

Ideally, distinct descriptions of the baroreceptors and the central arc of the 
baroreflex would be included in the baroreflex model, so that the influence of each 
individual component on baroreflex function and on the slow oscillation in blood 
pressure may be assessed. However, the problems introduced by the nature of neural 
recordings, as documented in Chapter 4, reoccur. Hence, absolute parameterisation 
of the model components is difficult to achieve.

Correct descriptions of both the baroreceptors and central arc should include 
(dynamic) linear and (static) nonlinear components. However, the structure of the
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models of both the baroreceptors and the central arc are largely unknown, yet are 
significant to model operation. These models may either be of the class of Wiener 
models (linear part first followed by nonlinear part), or of the class of Hammerstein 
models (nonlinear part first followed by linear part). The linear and nonlinear blocks 
of these two model types do not commute and hence, an incorrect structure choice 
may result in a misrepresentation of the section of the baroreflex in question.

Documentation of the dynamics and nonlinearities of the central arc is relatively 
scarce (see Section 2.2.2.3). In contrast the dynamics and nonlinearities of the neural 
arc are well described and the structure of the neural arc model has been investigated 
(Kawada 2003; Kawada 2004). These authors have demonstrated, by simulation of 
both model structures, that a cascade model consisting of the linear dynamical part 
followed by the nonlinear sigmoid baroreflex curve (Wiener model) is the more 
likely representation of the neural arc transfer characteristics (Kawada 2003). For 
these reasons, instead of including different descriptions of the baroreceptors and 
central arc, a description of the neural arc is included in the model.

Hammerstein-Wiener model identification methods are available in the literature 
(Zhu 1999; Bai 2002; Dempsey 2004). Unfortunately, data was not available with 
which to identify the correct model representation of the neural arc using more 
involved methods than those used by Kawada et al (Kawada 2003). However, the 
nonlinear-linear model structure proposed by these authors offers a good first 
approximation but, because the linear and nonlinear components of the neural arc 
model lump the characteristics of the baroreceptors and CNS, no specific anatomical 
counterparts may be assumed for these components. The model structure of the 
neural arc is illustrated in Figure 6.1.
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Figure 6.1: The model of the neural arc.

The dynam ical transfer function o f  the neural arc is described by Equation (6.1) 
(Ikeda 1996).

(6 . 1)s + I

where,
.y(.v) is as described by Equation (2.3), and the param eterisation o f  this
function is discussed in the subsequent sections,
p f  is the blood pressure set point,
pb ( /)  is the blood pressure signal,

ro is the processing delay in the CN S, and
x is the input signal to the nonlinearity.

The m agnitude characteristic o f  Equation (6.1) is illustrated in Figure 6.2.
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i o '  ig *~ id  :cr w
Frequency (rad/sec)

F ig u r e  6 .2 :  M a g n i tu d e  p l o t  f o r  th e  t r a n s f e r  f u n c t io n  o f  E q u a t io n  ( 6 .1 ) .

Although the transfer characteristics of the baroreceptors are lumped with the 
transfer characteristics of the central arc in the neural arc characteristics a distinct 
time delay, from the delay in the neural arc, due to the baroreceptor transduction and 
afferent delays is included in the feedback path. The sigmoid nonlinear element 
contained in the neural arc is introduced in the subsequent sections.

6.3.4 Nonlinearities in the central nervous control of the heart

The heart is controlled by both the sympathetic and parasympathetic systems. 
Baroreflex curves have been developed to describe the relationship between blood 
pressure perturbations and cardiac SNA (Iriki 1977). However, a similar baroreflex 
curve, between blood pressure perturbations and parasympathetic nerve activity, is 
not documented due to the difficulty of recording parasympathetic activity from the 
vagal nerve.

For this reason, and because of the normalised nature of SNA and the restrictions 
due to model structure already documented, alternative methods of quantification of 
the nonlinear elements of the CNS were investigated. Although baroreflex curves do
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not exist for both branches of the autonomic nervous system, baroreflex curves 
between blood pressure perturbations and heart rate are well documented (Head 
1987; Malpas 1996; Malpas 1997), and these curves have been derived when only 
individual autonomic pathways can influence heart rate.

Sigmoid nonlinear characteristics are well established to exist in baroreflex control 
of heart rate. Similar to the case of the sympathetic pathway to the vasculature, the 
sympathetic pathway to the heart contains a sigmoid nonlinear characteristic in the 
neural arc (Iriki 1977). Other nonlinear characteristics have also been observed at 
the SA node. However, these are generally poorly characterised (Eckberg 1980), 
although hysteresis (Pickering 1972; Rudas 1999) and the nonlinear interaction of 
the different branches of the autonomic nervous system (Levy 1971; Levy 1984) are 
examples of nonlinear relationships that have been characterised. Blood pressure to 
heart rate baroreflex curves are common in the physiological literature (see Section 
2.2.3.1), and this characteristic lumps the nonlinearities that exist in the neural arc 
and at the SA node.

The blood pressure to heart rate baroreflex curves, derived for the rat, in the control 
case and in the presence of autonomic nerve activity blockers were illustrated in 
Figure 2.17.

Other authors (Komer 1972; Weinstock 1988; Kingwell 1991) have investigated the 
role of the different branches of the autonomic nervous system on the blood pressure 
to heart rate baroreflex curve, in the rabbit. Kingwell et al (Kingwell 1991) 
document the gain of the blood pressure — heart rate baroreflex curve for the rabbit 
but only during brachycardia and tachycardia, and only when the autonomic neural 
pathways to the heart are normally active. Weinstock et al (Weinstock 1988) use two 
genetically related strains of rabbits as subjects in their study. One of these groups 
responded with more pronounced bradycardia than the other. Both these groups of 
authors investigated different experimental methods of baroreflex curve 
development, namely the cuff and drug methods (see Table 6.1). Komer et al
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(Komer 1972) documented changes in the baroreflex curve when the 
parasympathetic control of the heart is blocked (using atropine) or denervated, but 
only after other experimental interventions (thalamic, pontine and sham operated 
rabbits), and never in the purely control condition. The contributions of the 
parasympathetic and sympathetic nerves to the overall blood pressure -  heart rate 
baroreflex curve are documented in Table 6.1.

S t u d y S u b j e c t R a n g e G a i n
%  V a g a l %  S y m %  V a g a l %  S y m

H e a d  a n d  M c C a r ty ,  1 9 8 7 R a ts 6 2 3 8 5 4 4 6
W e in s to c k  et al. 1 9 8 8 R a b b i t s  ( G r o u p  1) C u f f :  7 4  

D ru g :  6 8
C u f f :  2 6  
D ru g :  3 2

C u f f :  93  
D ru g :  8 0

C u ff :  7 
D ru g :  2 0

W e in s to c k  e t al. 1 9 8 8 R a b b i t s  ( G r o u p  2 ) C u f f :  7 8  
D ru g :  7 7

C u f f :  2 2  
D ru g :  2 3

C u f f :  85  
D ru g :  7 6

C u f f :  15 
D ru g : 2 4

K in g w e l l  et al. 1991 R a b b i t s C u f f :  82  
D ru g :  73

C u ff :  18 
D r u g :  2 7

C u ff :
D ru g :

C u ff :
D ru g :

K in g w e l l  et al. 19 91 H u m a n s 82 18 8 6 14

T a b le  6 .1 :  T h e  c o n t r ib u t io n  o f  th e  v a g u s  a n d  t h e  s y m p a th e t ic  t o  th e  o v e r a l l  b l o o d  p r e s s u r e  -  h e a r t  r a te
b a r o r e f l e x  c h a r a c te r is t ic .

Considering the different grouping of rabbits in the studies of Weinstock et al 
(Weinstock 1988) and Kingwell et al (Kingwell 1991), and the complex surgery 
undergone by the rabbits in the study of Komer et al (Komer 1972), the generic 
contributions of the cardiac sympathetic and parasympathetic pathways is difficult to 
conclude on, for the rabbit. The results of the study of Head and McCarty (Head 
1987), although attained from the rat, are the least convoluted of these studies of the 
influence of the different autonomic branches on heart rate. Based on the analysis of 
Komer et al (Komer 1972), Head and McCarty propose that the rabbit has a lesser 
contribution from the sympathetic system, than the rat has, and this contribution 
accounts for about 40% of the range of the curve and 15% of the gain (Head 1987).
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The heart rate ranges of the baroreflex curves calculated by Weinstock et al 
(Weinstock 1988) and Kingwell et al (Kingwell 1991) vary considerably. Therefore, 
the proportions of the heart rate range associated with the different autonomic 
nervous pathways are related to the range of a recently documented blood pressure -  
heart rate baroreflex curve (Barrett 2003). Barrett et al (Barrett 2003) report a full 
range of 219 bpm and a gain of 4.87 bpm/mmHg. The range and gain are 
proportioned as recommended by Head and McCarty (Head 1987) and the values of 
curvature are calculated from these parameter values according to the equation of 
gain given in Equation (6.2).

- • - 2Plgain = ——— (6.2)4.56

Descriptions of the sigmoid curve are documented in Section 4.2.3 and the 
symmetrical sigmoid representation of the curve is described by Equation (2.3). The 
baroreflex curve parameters are given in Table 6.2.

P a r a m e te r I P ‘gain'
C o n t r o l 1 0 9 .5  b p m 0 .1 0 5  ( a v e r a g e ) - 4 .8 7  b p m / m m H g

S y m p a th e t ic  o n ly ,  ssc ( ) 4 3 .8  b p m - 0 . 0 4 -0 .7 3  b p m / m m H g

P a r a s y m p a th e t i c  o n ly ,  s (  ) 6 5 .7  b p m - 0 . 1 4 -4 .1 4  b p m / m m H g

T a b l e  6 .2 :  P a r a m e te r s  o f  t h e  n o n l i n e a r  s ig m o id  c h a r a c te r i s t i c s  i n  t h e  n e u r a l  a rc .

The baroreflex curves, calculated for the parameters of Table 6.2, are shown in 
Figure 6.3.
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F ig u r e  6 .3 :  T h e  b lo o d  p r e s s u r e  t o  h e a r t  r a te  b a r o r e f l e x  c u r v e s  i l l u s t r a te d  a s  o r i e n ta te d  in  t h e  m o d e l.

The alternative orientation of the blood pressure -  heart rate baroreflex curve 
compared to that normally documented in the physiology literature (see Figures 2.3,
2.10 and 2.11) is due to the effects of negative feedback of the loop. Due to the fact 
that the parasympathetic effect has an opposite effect to the sympathetic system (on 
heart rate), the baroreflex curve, based on parasympathetic control of heart rate, is 
reversed. The sigmoid curves are centered at zero on the x -axis. No bias is 
introduced as the signal input to the sigmoid nonlinearity has a mean of zero.

6.3.5 Nonlinearities in central nervous control of the 
vasculature

As discussed, it has been established that the nonlinear element in the CNS is the 
significant nonlinearity in baroreflex control of peripheral resistance (Ringwood
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2001). The remaining portion of this loop mechanism was shown to be only 
minimally nonlinear and, significantly, with respect to the slow oscillation in blood 
pressure, devoid of an inflection (Ringwood 2001). Therefore, the nonlinear element 
in the sympathetic pathway to the vasculature is confined to the CNS.

The baroreflex curve from blood pressure to cardiac SNA has been shown to be 
equivalent to the baroreflex curve from blood pressure to renal SNA (Iriki 1977; 
Kawada 2001). Therefore, the gain due to the nonlinear element in both sympathetic 
pathways is equivalent, and the inflections of the curves are equivalent. Considering 
this, the nonlinear sigmoid curve included in the neural arc of the sympathetic 
pathway to the vasculature is parameterised in an identical way to the sigmoid curve 
in the neural arc of the sympathetic pathway to the heart (see Table 6.2). A 
conversion gain term, kAi , is included in this baroreflex pathway to scale the values 
of the output signal of the nonlinear curve to peripheral resistance values.

The nonlinear elements in the sympathetic pathways to the different vascular beds 
are described by sk ( ) ,  s ( ), sm ( ) and ss ( ) , for the nonlinearity in the
sympathetic pathways to the kidney, gut, muscle and skin respectively. Considering 
that the available evidence shows that the blood pressure -  SNA baroreflex curves, 
derived for renal and cardiac SNA, are equivalent (Iriki 1977), the nonlinear 
elements to the different vasculature elements are also assumed equivalent, and the 
parameters of the curves, sk ( ) , sg ( ), sm ( ) and sx ( ) are commonly described
by sr ( ) , with the parameters for this curve are documented in Table 6.3..

P a r a m e te r I P , c , k A r

V a lu e 4 3 .8 0 .0 4 1 0 2 0 .0 0 1 1

T a b l e  6 .3 :  T h e  p a r a m e te r s  o f  t h e  s ig m o id  c u r v e s  in  th e  s y m p a th e t ic  p a th w a y s  t o  th e  v a s c u la r  b e d s .



No definite measure of peripheral resistance exists in the literature, and different 
authors have used different units to quantify peripheral resistance. The unit used in 
this study, mmHg.min/ml, is given by Equation (2.1), when cardiac output is in 
terms of ml/min and blood pressure is in terms of mmHg. The offset value of the 
sigmoid curves, Cr , is set to 102, so that the range of the possible peripheral
resistance values, maintain blood pressure within the physiological range of blood 
pressure, for the given range of cardiac output values, given by Equation (2.1).

6.4 Modelling baroreflex control of the heart

The baroreflex control of the heart is well documented in the literature. Many 
dynamic and static models are reviewed in Section 2.2.3.1. The emphasis of the 
model review is on models developed for rabbit data and the characteristics suitable 
for inclusion in the model are documented in the subsequent sections.

The models of sympathetic and parasympathetic control of heart rate described in 
the subsequent sections describe the linear dynamics of heart rate control and the 
nonlinear interaction of these signals, but the significant amplitude limiting 
nonlinearity is included in the CNS.

6.4.1 Sympathetic control of heart rate

Studies that have documented the heart rate response to sympathetic nerve 
stimulation were reviewed in Section 2.2.3.1. This transfer function is characterised 
by a low-pass filter. The calculated transfer function between sympathetic 
stimulation and the heart rate response of the rabbit, calculated by Kawada et al 
(Kawada 1996), is shown in Figure 2.13. This transfer function is described by a
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second-order system with time-delay, as given in Equation (6.3) (Kawada 1996). 
The main aim of the study of Kawada et al (Kawada 1996) was to investigate how 
simultaneous activation of both the parasympathetic and sympathetic nervous 
systems affect heart rate. Kawada et al (Kawada 1996) document the parameters of 
three different transfer functions, from dynamic sympathetic stimulation to heart 
rate, for three different frequencies of simultaneous tonic parasympathetic 
stimulation (0Hz, 5Hz & 10Hz). The parameters calculated for the frequency 
response of heart rate to sympathetic stimulation are averaged for these three 
conditions.

G M  = e-ir"  --------- (6.3)’ 1.3s2 + 3 .8s + 1

The magnitude response of the transfer function of Equation (6.3) is shown in Figure
6.4.

Frequency (rad/sec)

F ig u r e  6 .4 :  M a g n i tu d e  p lo t  f o r  t h e  t r a n s f e r  f u n c t io n  o f  E q u a t i o n  (6 .3 ) .

The nonlinearities in the central nervous control of heart rate are parameterised to 
heart rate values, for reasons described in Section 6.3.4. Therefore, the gains of the 
transfer functions are normalised to unity (for convenience) so as to maintain the 
output within the physiological range of heart rate values.
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6.4.2 Parasympathetic control of heart rate

The heart rate response to parasympathetic stimulation also displays low-pass 
characteristics (see Section 2.2.3.1). These low-pass characteristics have been 
described using a first order differential equation (Berger 1989; Kawada 1996; 
Kawada 1997). The first order transfer function characteristics of the 
parasympathetic control of heart rate is expressed mathematically as:

Gbc ( j)  = e~sr‘x     (6.4)'  1.225 + 1

Similar to the case of the heart rate response to sympathetic nerve stimulation, the 
parasympathetic nerve stimulation to heart rate transfer function is documented by 
Kawada et al (Kawada 1996) for three different frequencies of tonic sympathetic 
stimulation. These parameters are averaged and the transfer function of Equation 
(6.4) is calculated for these averaged parameters.

The magnitude response of the transfer function is shown in Figure 6.5.

Frequency (rad/sec)

F ig u r e  6 .5 :  M a g n i tu d e  p l o t  f o r  t h e  t r a n s f e r  f u n c t io n  o f  E q u a t io n  ( 6 .4 ) .
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6.4.3 Parasympathetic-sympathetic control of heart rate

The heart rate response to simultaneous parasympathetic and sympathetic activation 
was discussed in Section 2.2.3.1, where the studies of Levy et al (Levy 1969; Levy 
1969; Levy 1984) and Kawada et al (Kawada 1999) were introduced. The static 
heart rate response of the rabbit to combined sympathetic (uKC) and parasympathetic
nerve stimulation [upc^, for a range of stimulation frequencies, is displayed in 
Figure 2.15.

Seidel et al (Seidel 1997) fitted a nonlinear function to the data of Levy et al (Levy 
1969; Levy 1969; Levy 1984). This dual-input nonlinear function is described as:

f c  (0 = («1 tanh (ft«« (0)) * { l  " tanh [ Y 2 U Pc (0)) ~ { a 2 tanh [ n U p c (0)) + f c  (6-5)

where,
f c (t) represents the heart rate of the rabbit,
f °  is the constant heart rate in beats/min regardless of nervous control, and 
a l,a 2, / 1,y2,y3 are constant terms.

For the purpose of this model, the same nonlinear function was fitted to the data of 
Kawada et al (Kawada 1999), as this model is parameterised using experimentally 
derived parameters from studies of the rabbit.

The parameters of this equation are calculated using a least squares nonlinear fit to 
the data of the trained neural network of Kawada et al (Kawada 1999). Both the 
Gauss-Newton and Levenberg-Marquardt (Marquardt 1963) gradient methods were 
investigated. The parameter values calculated using these least squares methods 
differed by little. The parameters calculated using the Levenberg-Marquardt 
(Marquardt 1963) method are documented in Table 6.4.
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P a r a m e te r a, «2 r, 7l 73 fc°
V a lu e 181 1 5 6 .1 0 .0 4 0 .0 3 5 0 .0 7 2 4 5 .8

T a b le  6 .4 :  P a r a m e te r s  o f  t h e  s y m p a th e t ic - p a r a s y m p a th e t i c  i n te r a c t io n  c u r v e  ( E q u a t i o n  ( 6 .5 ) ) .

The baroreflex curves included in the neural arc of the model are parameterised for 
heart rate values, for reasons described in Section 6.3.2. The range of heart rate 
values are taken from the study of Barrett et al (Barrett 2003), who calculated a 
maximum heart rate of 335 bpm, which is outside the range of heart rate values 
observed by Kawada et al (Kawada 1999), following stimulation of the 
parasympathetic and sympathetic nerves for a range of frequencies. This disparity 
between values is rectified by calculation of the values of sympathetic stimulation up 
to 15 Hz, using Equation (6.5).

The input units of the characteristic illustrated in Figure 2.15 are in terms of 
stimulation frequency. This introduces a discrepancy to the proposed model 
specification, as the modelled signal is assumed to be amplitude coded. However, 
the response characteristics of blood flow to stimulation of the renal nerves at 
varying frequency values was similar to the response characteristic of blood flow to 
the stimulation of the renal nerves for varying amplitude values (Navakatikyan 
2000).

Conversion gain terms are introduced to convert the range of output of the 
baroreflex curves to the range of stimulation frequencies of the sympathetic and 
parasympathetic nerves.

Figure 6.6 represents the full model of the forward path of the baroreflex control of 
heart rate.
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F ig u r e  6 .6 :  B a r o r e f l e x  c o n t r o l  o f  h e a r t  r a te .

6.4.4 Control of stroke volume

Baroreflex control of cardiac muscle contractility, and hence stroke volume, is not as 
well documented as baroreflex control of heart rate (see Section 2.2.3.1). Studies of 
baroreflex control of the heart have shown the stroke volume to remain nearly 
constant when the mean blood pressure is within the normal physiological range 
(Allison 1969; Suga 1976). Data was available with which to test this hypothesis and 
the stroke volume remained constant ( -2 .5  ml/min) for the range of blood pressure
values available (60 -  120 mmHg). When blood pressure falls below normal 
physiological levels, stroke volume rapidly decreases (Cavalcanti 1996). 
Considering that the model is designed to operate in a normal physiological 
operating region, the stroke volume was assumed to remain constant, at, 
vc = 2.5 ml/min .

6.5 Modelling baroreflex control of the vasculature

The vasculature comprises a number of different vascular beds. These vascular beds 
receive significantly different amounts of blood flow during the resting state as 
described in Section 2.2.3.2. Hence, the resistance of different vascular beds is 
weighted relative to the amount of blood flow each one receives.
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Similarly, the different vascular beds are weighted according to their baroreflex 
sensitivities (see Section 2.2.3.2). SNA to the lungs, kidney and spleen are highly 
baroreceptor sensitive (Ninomiya 1971; Shirai 1995), whereas the skin is only 
weakly regulated by baroreceptor activity (Ninomiya 1976).

The weighting terms that quantify the amount of cardiac output received by, and 
baroreflex sensitivity of, the different vascular beds at rest are documented in Table
6.5.

Vascular bed Cardiac output distribution Baroreflex sensitivity
Kidney (k ) CNOII V  =  0 .9

Gut (g ) k,ig = 0 .2 7 * * = 0 . 2 5

Muscle (m ) Klm = 0 . 1 5 r** II o ro

Skin (s ) a?¥
* II p O SO ii ©

T a b le  6 .5 :  C a r d ia c  o u tp u t  d i s t r ib u t io n  a n d  b a r o r e f l e x  s e n s i t iv i ty  w e ig h ts .

The cardiac output distribution to the different vascular beds changes significantly 
during different conditions (Fox 1996). Similarly, the baroreflex sensitivity would be 
expected to change during different physiological conditions, including periods of 
stress and exercise, as blood is diverted away from certain vascular beds to others. 
The values documented in Table 6.5 are the parameters for the resting condition.

The contractile state of the smooth muscle of the blood vessels of the vasculature is 
affected by SNA, as well as by a range of hormones and paracrines. The response 
characteristics of the blood vessels to the hormones and paracrines are not well 
defined (see Section 2.2.3.2). However, the response characteristics of the blood 
vessels to sympathetic stimulation have been investigated and these characteristics 
are introduced in the subsequent section.

195



However, a number of vascular beds, such as the brain and bone, are not under 
baroreflex control, but do receive a significant amount of blood flow. The resistance 
due to these vascular beds is included as a constant resistance term, r* (see Table 
6 .6).

P a r a m e te r rP K kfyc K c
V a lu e 0 .1 2 1 0.0011 0 .1 4 0 .1 8

T a b l e  6 .6 :  C o n s ta n t  r e s i s t a n c e  a n d  c o n v e r s io n  g a in  p a r a m e te r s .

6.5.1 Response characteristics of the vasculature beds

The response characteristics of the different vascular beds to SNA are described by 
the frequency response characteristic of blood flow to stimulation of the sympathetic 
nerves. As was reviewed in Section 2.2.3.2, the dynamical transfer characteristics 
are only well defined for the vasculature of the kidney. Guild et al (Guild 2001) 
documented the response of renal blood flow to the PRBS stimulation of the renal 
sympathetic nerves and the corresponding frequency response plots are illustrated in 
Figure 2.18. These authors fitted a 2-zero/4-pole function to the gain response. The 
dynamics of the kidney vasculature, Gk (5 ) , with the d.c. gains normalised to unity, 
are described as:

„ / x IN 2 +6.64s + 1 , .Gk {s)~ e  -------   ï------- 0------------ (6.6)’ A .lls  +21s + 36s +22^ + 1

The gain plot for this transfer function is illustrated in Figure 6.7.
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Frequency (iad/sec)

F ig u r e  6 .7 :  M a g n i tu d e  p lo t  f o r  th e  t r a n s f e r  fu n c t io n  o f  E q u a t i o n  ( 6 .6 ) .

These characteristics are used in the model of the complete baroreflex to describe 
the dynamics in the sympathetic pathway to the kidney. Also, due to the paucity of 
documented dynamic characteristics of other vascular beds, the transfer function of 
Equation (6.6) is also used to describe the dynamics of the gut, GK (5 ), and muscle,

a .W  ■

The frequency response of skin blood flow to sympathetic activity may be 
approximated by a first order transfer function (Stauss 1999), as:

G ( s )  = e~ST- -----— - (6.7)’ 1.875 + 1

This transfer function is included in the sympathetic pathway to the skin vasculature 
in the model. The gain plot for the skin transfer function is illustrated in Figure 6.8.
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F ig u r e  6 .8 :  M a g n i tu d e  p l o t  f o r  t h e  t r a n s f e r  f u n c t io n  o f  E q u a t i o n  ( 6 .7 ) .

Other models of the baroreflex generally only include a global description of 
sympathetic control of the combined vascular beds (Burgess 1997; Ringwood 2001; 
Seydnejad 2001; Ursino 2003). Figure 6.9, on the other hand, illustrates the 
baroreflex control of the different vascular beds.

F ig u re  6 .9 :  B a r o r e f l e x  c o n t ro l  o f  v a s c u la tu r e .

where,
s.*( ) = sk( ) = sA  )=*»,{ ) = s, (  )>
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Kik’Kig’Km and kds are as given in Table 6.5, 
K k A s g ’ K m  a n d  K s s  are as given in Table 6.5.

6.6 Delay terms in the model

The short-term blood pressure control mechanisms, specifically the baroreflex, 
contain several notable time delays. A time delay exists in the CNS due to the finite 
(non-zero) time taken for information processing. Transmission delays exist 
corresponding to the nerve signals to conduct along the afferent and efferent nerves. 
These delays vary considerably depending on the nervous system in question (i.e. 
sympathetic or parasympathetic) and on the composition of the nerve fibers (i.e. 
whether they are myelinated or unmyelinated) (see Section 2.2.2.2).

These delay terms have been calculated during a range of physiological experiments, 
and delay teims for the different sections of the baroreflex are documented by a 
number of authors (Borst 1983; Seller 1991; Burgess 1997; Guild 2001). The types, 
structure and characteristics of the different nerve fibers are described in Section 
2.2.22 and the different, experimentally calculated, delay teims are commented on 
in the various sections of Chapter 2.

It has been proposed by a number of authors that the delays are of major importance 
to the development of the slow oscillation via the baroreflex (Bertram 1998; Malpas 
2000; Guild 2002). In general terms the time delay will have a destabilising effect on 
a system due to the negative phase contribution which increases linearly with 
increasing frequency (Dutton 1997). With regard to the model illustrated in Figure
4.1, the delay terms add sufficient phase to create an overall phase lag of 180°, 
which coupled with the phase shift of -180°, due to inversion, provides a total of 
360° phase shift, corresponding to positive feedback. The time delay is the most
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significant element in the determination of the limit cycle oscillation frequency 
(Bertram 1998; Ringwood 2001). The influence of the delays on baroreflex function 
have been the focus of a number of studies, and changes in the delay have been 
shown to lead to changes in nonlinear phenomena and chaotic behaviour (Cavalcanti
2000). Considering these facts, it is important that the delay terms of the model are 
chosen with care, if the model is to give a true approximation of the underlying 
mechanism of the slow oscillation. Delay terms can be easily tuned to give rise to an 
oscillation at the required frequency. However, care needs to be taken in such an 
exercise, since a number of different parameters could be tuned to produce a specific 
desired response at a certain operating point, but a concerted model tuning exercise, 
at a variety of operating points, would be needed to correctly isolate erroneous 
parameters.

A number of models, that are capable of developing an oscillation at the frequency 
of the slow oscillation have, however, been created with little care or justification of 
the delay terms chosen for inclusion in the model. This is not a direct criticism of 
these modelling studies, however, as there is also a paucity of delay values 
documented in the literature and delays that are documented, for sections of the 
baroreflex, are often inconsistent. Much of this inconsistency is due to the 
inconsistency of definition terms (Eckberg 1976; Borst 1983) and the differing 
experimental techniques used to determine these delays (Borst 1983) (see Seidel 
(Seidel 1997) for review). Delay values have become more regularly documented in 
experimental physiological studies of recent years. Authors have documented delays 
during the investigation of the dynamical characteristics of the different components 
of the baroreflex. However, these delays are often calculated in studies where the 
nerve is sectioned and stimulated at some point along the nerve fiber and hence, the 
time delay does not represent the delay due to the conduction time along the fu ll 
length of the nerve.
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For these reasons, some degree of deduction and extrapolation is inevitable when 
choosing the delay terms included in the model of the short-term blood pressure 
control mechanisms.

A number of delay values for many different sections and arcs of the baroreflex have 
been reported by different authors (Warner 1969; Borst 1983; Rideout 1991). Borst 
and Karemaker (Borst 1983) published a comprehensive review of the delays 
calculated in many of these studies. The experimentally calculated delay values, 
used for calculation of the delay parameters for the model of the baroreflex, and 
commented on in this text, are documented in Table 6.7.

Delay Ref Subject Section of baroreflex & experimental procedure Delay
value

1 ( I k e d a
1 9 9 6 )

R a b b i t F u l l  b a r o r e f le x :  p b to  p b 1 .5 5  s

2 ( I k e d a
1 9 9 6 )

R a b b i t N e u r a l  a rc :  p b to  S N A  m e a s u r e m e n t 0 .5 5  s

3 ( I k e d a
1 9 9 6 )

R a b b it P e r ip h e r a l  a rc :  S N A  m e a s u r e m e n t  to  p b 1 s

4 (L iu
2 0 0 2 )

R a b b i t C e n t r a l  +  p e r ip h e r a l  a rc s :  a f f e r e n t  n e r v e  s t im . to  p b 1 .01  s

5 ( B e r t r a m
1 9 9 8 )

R a t C e n t r a l  +  p e r ip h e r a l  a rc s :  a f f e r e n t  n e r v e  s t im .  to  p h 0 .8 2 - 0 .8 6
s

6 (G r e e n
1 9 6 8 )

C a t C e n t r a l  a rc 0 .2  s

7 (K e z d i
1 9 6 8 )

D o g C e n t r a l  a rc 0 .2 6  s

9 (K u b o
1 9 9 6 )

R a b b i t C e n t r a l  a rc 0 .4 3

10 (T e ru i
1 9 8 7 )

R a b b i t C e n t r a l  a rc 0 . 1 5 - 3 s

11 ( P e t io t
2 0 0 1 )

R a t C e n t r a l  a rc 0 .1  s

12 ( G u ild
2 0 0 1 )

R a b b i t R e n a l  n e r v e  s t im u la t io n  to  b lo o d  f lo w 0 .6 7 2  s

13 ( K a w a d a
1 9 9 6 )

R a b b i t P e r ip h e r a l  a rc :  s y m p a th e t ic  n e r v e  s t im .  to  p b 0 .4 7  s

14 ( K a w a d a
1 9 9 6 )

R a b b i t P e r ip h e r a l  a rc :  p a r a s y m p a th e t i c  n e r v e  s t im .  t o p b 0 .0 8 7  s

15 ( B e r g e r
1 9 8 9 )

D o g P e r ip h e r a l  a rc :  p a r a s y m p a th e t i c  n e r v e  s t im .  to  p b 0 .6  s

T a b l e  6 .7 :  D e la y  v a lu e s ,  f r o m  th e  l i t e r a tu r e  c a l c u la t e d  fo r  s e c t io n s  o f  t h e  b a r o r e f l e x  f e e d b a c k  lo o p .
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The delay of the overall baroreflex, for the rabbit, was estimated by Ikeda et al 
(Ikeda 1996). This delay combined the delay in the neural arc with the delay in the 
peripheral arc. The delay they report is 1.55 s, divided into 0.55 s for the neural arc 
and 1 s for the peripheral arc (see Figure 2.1). Eckberg (Eckberg 1980) reported a 
delay of 2.5 s for the human baroreflex using a neck suction procedure to perturb 
blood pressure at the baroreceptor locations.

Liu et al (Liu 2002) investigated the dynamical response of the rabbit’s blood 
pressure to afferent nerve stimulation and calculated the pure time delay along this 
pathway as 1.01 s (Delay 4, in Table 6.7). The section of the baroreflex loop under 
analysis in this study may be assumed to be the complete baroreflex loop, excluding 
the baroreceptor transduction properties or, in other words, the central and peripheral 
arcs of the baroreflex. Bertram et al (Bertram 1998) calculated the delay for the 
same section of the baroreflex, except for the rat. They report a delay of 0.82 - 0.86 
s, which they conclude accords well with summed delays due to the latency of 
conduction along the nervous pathways and the delay at the neuroeffector junction 
(Delay 5 in Table 6.7). Delays in individual components are now documented in the 
following subsections.

Delay in the feedback path

The delay in the feedback path of the model consists of what may be termed the 
baroreceptor transduction delay plus a delay due to the conduction along the afferent 
nerve. The baroreceptor transduction delay is the time taken for the baroreceptors to 
sense a change in blood pressure, while the afferent delay is the time it takes for the 
sensory information to be sent from the baroreceptors to the CNS.

Comparison of the delays calculated by Ikeda et al (Ikeda 1996) for the complete 
baroreflex (Delay 1 in Table 6.7) and those calculated by Liu et al (Liu 2002) (Delay 
4 in Table 6.7) and Bertram et al (Bertram 1998) (Delay 5 in Table 6.7) between 
afferent nerve stimulation and blood pressure, proposes a relatively long afferent
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and/or baroreceptor transduction delay. However, some authors have proposed that 
the transduction delay of the arterial baroreceptors is negligible (Charlton 1982).

Little information exists in the literature regarding correct values of afferent delay. 
Some authors (Burgess 1997) choose the delay between afferent nerve stimulation 
and efferent nerve activity as the afferent delay but this delay will include the 
latency due to central processing and will not include the full delay due to 
conduction time along the afferent nerves, since the afferent nerve is sectioned. The 
afferent delay and baroreceptor transduction properties may be roughly 
approximated as the delay in the neural arc minus the delay in the central arc. This 
delay is approximately 150 - 200 ms (Delay 2 -  Delay 6 in Table 6.7).

Processing delay

The processing delay is specifically the time that it takes to process the input afferent 
material in the brain and output the efferent nerve signals. Seller (Seller 1991) 
proposed that most of the time delay within the central nervous system originates 
from the very slow conduction velocity (0.15m/s) between the second-order neurons, 
in the processing sections of the brain.

The CNS is usually characterised by the dynamics of the neural or central arc (see 
Figure 2.1). The delay in the central arc has been calculated during experiments in a 
number of different animals (Green 1968; Kubo 1996; Petiot 2001). The delay was 
estimated to be of the order of 250 -  350 ms in the human (Borst 1983), 260 ms in 
dogs (Kezdi 1968), 200 ms in cats (Green 1968) and ~100 ms in the rat (Petiot
2001). More recent studies, in the rabbit (Terui 1987; Kubo 1996), reported the 
latency between aortic nerve stimulation and renal SNA to be between 0.15 -  0.3 s 
(Terui 1987) or 0.43 s (Kubo 1996), depending on the study. A delay of 0.4 s is 
deduced for use in the model (deduced from Delays 1, 4 and 9 in Table 6.7).
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Considering the structure of the model chosen, the delay due to the feedback path is 
in series with the delay of the CNS. Hence, emphasis is instead placed on the fact 
that the sum of these delays should correctly characterise the delay of the neural arc, 
and hence that the individual values of the delays are not as significant to model 
integrity.

Delay in the sympathetic innervation o f the vasculature

The delay in the sympathetic pathway is the time it takes for the sympathetic signal, 
which originates in the CNS, to conduct down the nerve and reach the effector 
organs. The time delays for the various sympathetic signals to reach the different 
vasculature beds are not documented for all these different vasculature beds. Delay 
values, for the conduction time of the sympathetic signal to reach the gut or liver, are 
generally not documented and because the skin is distributed over the whole body, 
the choice of a unique time delay may be inappropriate. The kidney is commonly the 
organ of interest during experimental studies (Burgess 1997; Guild 2001), since it 
commands such an important position in the neural control of blood pressure. Guild 
et al (Guild 2001) calculated a delay of 672ms between renal nerve stimulation and 
renal blood flow response, for the rabbit. Burgess et al (Burgess 1997) report that a 
change in blood pressure, in the rat, occurred after 0.4 to 0.6 s, following electrical 
stimulation of the renal sympathetic nerve. However, these delays may only be the 
delay time for a small portion of the nerve (and for the onset of vascular response 
(Bertram 1998)) and, hence, the conduction delay between the CNS and the 
peripheral vasculature is expected to be greater than this.

The delay value included in the sympathetic pathways to the different vascular beds 
is chosen as 0.85 s. This delay is deduced from Delays 3,4 and 9, in Table 6.7 
documented in Table 6.7. The delay to the skin is also approximated by this single 
delay value. This should have no significant influence on model operation, since the 
skin is only weakly weighted, it being a minor recipient of cardiac output and having 
a weak baroreflex sensitivity (see Table 6.7).
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Delay in the cardiac sympathetic branch

The cardiac sympathetic delay is the time it takes for the sympathetic signal, which 
originates in the CNS, to conduct down the nerve and reach the effector organ, in 
this case the heart. Kawada et al (Kawada 1996) recorded values of the delay 
between stimulation of the sympathetic nerves (at a point along the nerve) and the 
heart (Delay 11 Table 6.7). However, the full efferent delay for this pathway is 
going to be greater than this value due to the extra nerve fiber between the site of 
stimulation and the CNS.

Kawada et al (Kawada 2001) report a of 50ms between stimulation of the response 
of the renal vasculature and the response of the heart following sympathetic nerve 
stimulation. Hence, due to this result, the delay of the sympathetic signal to the heart 
is taken to be 50ms less than the delay time to the vasculature.

Delay in the parasympathetic branch

There is a paucity of investigative studies of the exact delay along the 
parasympathetic nerve. Rather, a common assumption is that heart rate control by 
the parasympathetic system is achievable on a beat-to-beat basis (Cavalcanti 2000). 
This assertion is supported by the few studies that do document the parasympathetic 
delay. Kawada et al (Kawada 1996) recorded a delay between stimulation of the 
parasympathetic nerves and the heart during tonic stimulation at three different 
frequencies. This delay averages to 0.087 s. These delay values are less than the 
minimum heart period of the rabbit. However, because the parasympathetic nerve is 
stimulated at the neck, this delay may only be the delay time for a small portion of 
the nerve and, the true delay may be longer than these documented values. In a 
similar study to that of Kawada et al (Kawada 1996), Berger et al (Berger 1989) 
reported a delay of ~0.6s, which is less than the heart period of the dog (Berger 
1989).
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Different values of the pure time delay of the parasympathetic branch of the 
baroreflex have been used in modelling studies. Some authors use a delay of within 
two or three cardiac beats (Ursino 2003), within one cardiac beat (Cavalcanti 2000) 
or in some cases the delay was viewed as too small to warrant inclusion in the model 
(Ottesen 1997; Seydnejad 2001).

However, on review of the literature, the viewpoint that holds most currency is that 
the parasympathetic system responds to blood pressure changes by affecting a 
change of heart rate within one cardiac cycle. Therefore, for the purpose of this 
study, the delay of the parasympathetic component is assumed to be approximately 
the time period of one cardiac cycle at rest -0.27 (Barrett 2003).

The chosen delays for the model are documented in Table 6.8 below.

Delay Meaning Value Units
T« A f f e r e n t  d e la y 0 .2 s e c o n d s  ( s )

XCNS C N S  p r o c e s s in g  d e la y 0 .4 s e c o n d s  ( s )

^pc E f f e r e n t  p a r a s y m p a th e t i c  d e la y 0 .3 s e c o n d s  ( s )

*sc E f f e r e n t  c a r d ia c  s y m p a th e t ic  d e la y 0 .8 s e c o n d s  ( s )
E f f e r e n t  s y m p a th e t ic  d e la y  to  k id n e y 0 .8 5 s e c o n d s  ( s )

h E f f e r e n t  s y m p a th e t ic  d e la y  to  g u t 0 .8 5 s e c o n d s  ( s )

r« E f f e r e n t  s y m p a th e t ic  d e la y  to  m u s c le 0 .8 5 s e c o n d s  ( s )

r , E f f e r e n t  s y m p a th e t ic  d e la y  to  sk in 0 .8 5 s e c o n d s  ( s )

T a b le  6 .8 :  T h e  d e la y s  d e d u c e d  f r o m  th e  d e la y s  d o c u m e n te d  in  th e  l i t e r a tu r e  a n d  c h o s e n  f o r  u s e  in  th e
c o m p le te  m o d e l  o f  t h e  b a r o r e f l e x .
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6.7 Model of the complete baroreflex

Documented in the previous sections of this chapter are the different components of 
the baroreflex, to be used in the model of the complete baroreflex. These 
components are now combined to form the complete model of the baroreflex. The 
model includes descriptions of sympathetic and parasympathetic control of heart rate 
and separate distinctions of the sympathetic control of the different vasculature beds. 
In contrast to other models of the baroreflex, this model combines the effect of 
cardiac output and peripheral resistance on blood pressure using the simple ‘Ohm’s 
law’ relationship described by Equation (2.1). The model, as presented in Figure
6.10 does not account for the differential dynamics of neural control of SNA 
travelling to the different organs. Although this differential dynamical control was 
observed by Kawada et al (Kawada 2001), no parameterisation of the transfer 
characteristics is available. Also, the small increase in the derivative gain that was 
observed will not significantly effect the slow oscillation. The block diagram of the 
complete model of the baroreflex is illustrated in Figure 6.10.
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Neural arc

F ig u r e  6 .1 0 :  T h e  c o m p le t e  m o d e l  o f  t h e  b a r o r e f le x .

The parameters of the model, illustrated in Figure 6.10, are documented in Tables
6.2, 6.4 and 6.5. All of the parameters are obtained from the rabbit and the choice of 
these parameters is justified in the previous sections of this chapter.
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6.8 Model simulation results

When the model, parameterised for the rabbit as documented, is simulated in its 
closed loop form, a slow oscillation results at the output of the model. The power 
spectral density of the output signal of the model is shown in Figure 6.11.

The oscillation represents the slow oscillation in blood pressure that occurs at about
0.3 Hz in the rabbits (Malpas 2000), with the actual frequency from the simulation 
measured as 0.34 Hz.

frequency, f  (Hz)

F ig u r e  6 .1 1  : S p e c t r u m  o f  s im u la te d  b l o o d  p r e s s u r e  s ig n a l .

To assess the roles of the parasympathetic, cardiac and vascular sympathetic 
branches of the baroreflex mechanism in the development of the slow oscillation a
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simple numerical sensitivity analysis of the gains and delays of the neural branches 
was undertaken.

The frequency and amplitude of the blood pressure oscillation calculated for the 
chosen parameter terms (Table 6.9, Value set 1) and for variations in the delay 
terms, are described in Table 6.9. The delay and curvature of the nonlinearities 
contained within the sympathetic paths to the multiple vascular beds are described 
by the universal delay, zr , and curvature, /?,., respectively.

P a r a m e te r
s e t

O s c i l la t io n
f r e q u e n c y

O s c i l l a t io n
a m p l i tu d e

T P C T s c

1 0 .3 4 5 9 .1 7 6 0 0 .3 0 .8 0 .8 5
2 0 .3 1 8 1 2 .5 6 8 6 0 .4 0 .8 0 .8 5

3 0 .2 7 6 1 7 .4 7 7 3 0 .6 0 .8 0 .8 5

4 0 .3 8 2 8 3 .4 4 1 8 0 .2 0 .8 0 .8 5

5 0 0 0 .1 8 0 .8 0 .8 5

6 0 .3 5 2 5 7 .5 3 5 9 0 .3 0 .1 5 0 .8 5

7 0 .3 4 8 7 1 0 .4 4 5 3 0 .3 0 0 .8 5

9 0 .3 6 3 8 1 0 .8 5 3 0 .3 0 .1 5 0

10 0 .3 5 6 3 4 .7 3 3 1 0 .3 0 .1 5 1 .7

11 0 .3 4 8 7 6 .4 4 2 9 0 .3 0 .1 5 10

T a b le  6 .9 :  V a lu e s  f o r  o s c i l la t io n  f r e q u e n c y  a n d  a m p l i tu d e  f o l lo w in g  th e  v a r ia t io n  o f  d e la y s .

To assess the roles of the parasympathetic, cardiac and vascular sympathetic 
branches of the baroreflex mechanism in the development of the slow oscillation a 
sensitivity analysis of the gains of the sigmoid curves, in the neural arc of the 
parasympathetic and sympathetic branches, was undertaken. The gain of the sigmoid 
curves was varied by changing the curvature, /?, of the curves.

With regard to the sensitivity to sigmoidal curve ‘gains1, the frequency and 
amplitude of the simulant blood pressure oscillation are described in Table 6.10.
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P a r a m e te r
s e t

O s c i l la t io n
f r e q u e n c y

O s c i l la t io n
a m p l i tu d e

P p c f i s c fir

1 0 .3 4 5 9 .1 7 6 0 0 .1 4 0 .0 4 0 .0 4
2 0 0 0.1 0 .0 4 0 .0 4

3 0 .3 4 8 6 1 4 .2 2 3 8 0 .2 0 .0 4 0 .0 4
4 0 .3 5 2 5 9 .0 8 0 2 0 .1 4 0 0 .0 4

5 0 .3 2 9 7 1 0 .1 1 4 8 0 .1 4 0 .2 0 .0 4
6 0 0 0 .1 4 0 .0 4 0
7 0 0 0 .1 4 0 .0 4 0 .2

T a b le  6 .1 0 :  V a lu e s  f o r  o s c i l la t io n  f r e q u e n c y  a n d  a m p l i tu d e  f o l lo w in g  th e  v a r i a t io n  o f  t h e  g a in s  o f  th e
s ig m o id  c u rv e s .

6.9 Discussion

This chapter documents the steps taken in the development of the model of the 
complete baroreflex, including the neural pathways to the heart. This model is 
illustrated in Figure 6.10 and the role of this model of the baroreflex in the genesis 
of the slow oscillation in blood pressure is investigated by simulation.

To date, a number of models of the mechanisms of short-term blood pressure control 
have been developed (see Section 2.4). However, the model presented here in this 
chapter overcomes a number of shortcomings of these other models. Previously 
developed models were introduced in Section 2.4, where aspects of the models were 
appraised. In general, although each of these models enables significant insight into 
the mechanisms of blood pressure control and the means of genesis of blood 
pressure variability, many are based on a simplified description of baroreflex 
function or are physiologically inaccurate or unrealistic.
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The model presented here includes both the cardiac and peripheral resistance 
branches of the baroreflex, different descriptions of the different vasculature beds 
and a term to include the vascular resistance due to the vascular beds not under 
neural control. The model is stringently parameterised for the rabbit using data and 
characteristics obtained only from the rabbit, from a wide appraisal of the literature 
and experimental results. The slow oscillation ultimately results as a consequential 
property, when all the components of the baroreflex are combined, and the model is 
simulated.

The primary result of this study is that the slow oscillation in blood pressure is a 
feedback oscillation due to the closed-loop, feedback nature of the baroreflex 
mechanism. It is also a limit cycle oscillation, due to the nonlinear elements in the 
neural components of the baroreflex mechanism.

The slow oscillation in blood pressure is dependent on the sympathetic nervous 
system and removal of the sympathetic pathway to the vasculature results in the 
abolition of the slow oscillation in blood pressure, a result observed during a number 
of physiological studies (see Section 2.3.3.2). Although other authors have reported 
the existence of a level of variability at the frequency of the slow oscillation, 
following removal of the sympathetic pathways to the vasculature, this is probably 
due to compensatory effects that come into play following the removal of the 
sympathetic neural control of peripheral resistance, which is not reproduced by the 
model in its present form.

Although the simulant slow oscillation is dependent on the sympathetic control of 
the peripheral resistance, it is also very much dependent on the baroreflex pathways 
to the heart. Removal of these pathways also results in the abolition of the slow 
oscillation.

In fact, the heart plays a very significant role in the genesis of the slow oscillation in 
blood pressure. This is in contrast to the generally accepted view, held by
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physiologists, that the heart plays no role in the development of the slow oscillation 
(see Section 2.3.3.3).

Results of the sensitivity analysis show that the strength of the slow oscillation in 
blood pressure is very sensitive to changes in the ‘gain’ and delay terms, particularly 
the ‘gain’ and delay of the parasympathetic pathway (see Tables 6.9 and 6.10). 
Alteration in both the gain and delay in the different pathways results in changes in 
the amplitude and frequency of the slow oscillation, and in the case of the 
parasympathetic pathway, which has the largest ‘gain’ of all pathways due to the 
steeper slope of the baroreflex characteristic, variations in gain, and delay, result in 
the abolition of the oscillation (Parameters sets 5 and 2 of Tables 6.9 and 6.10 
respectively).

However, changes in the ‘gain’ and delay of the cardiac sympathetic pathway have 
little influence on the frequency and amplitude of the slow oscillation. Although the 
cardiac sympathetic pathway increases heart rate and hence, plays a significant role 
in maintaining the mean level of cardiac output (and hence, the gain (see Figure 
6.12)). However, the results of this study show that the slow oscillation in blood 
pressure is not dependent on the gain and delay parameters of the cardiac 
sympathetic pathway.

Physiological studies that dismiss the role of the heart, in the genesis of the slow 
oscillation, are generally based on the removal of the effects of the heart, via 
blockade of the neural pathways to the heart (Liu 2002). One such study was 
recently documented by Liu et al (Liu 2002) who documented the dynamical 
response of blood pressure to renal SNA during afferent nerve stimulation when the 
parasympathetic and sympathetic neural control of the heart was blocked.

The main conclusion of the study of Liu et al (Liu 2002), is easily explained by the 
model of the complete baroreflex, with an alternative conclusion. In the experiments 
of Liu et al (Liu 2002), mean heart rate was found to drop from 265 bpm to 206 bpm
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which gives an effective mean reduction in cardiac output of 3dB, which is almost 
exactly the mean gain reduction in the renal frequency response (51 —>48.8 dB).

However, this result gives little information regarding the ability of the cardiac loop 
to sustain oscillations itself. The influence of the mean level of cardiac output is 
illustrated using the simple example of Figure 6.12. The significance of the mean 
levels of heart rate and peripheral resistance are accentuated due to the multiplier 
block at the output.

F ig u r e  6 .1 2 :  T h e  e f f e c t  o f  t h e  m u l t ip l i e r .

A simple analysis of this part of the model illustrates the gain effect of the mean 
levels of cardiac output and peripheral resistance. The blood pressure signal may be 
described by:

Pb (0 =  ( g 9J c + 4 c ) ( g i J ,  +TP)  (6 -8)

= gq g £ A  +qSp +gq Zcrp +grJ ,.qc (6.9)

The mean level of resistance, 7p, multiplies the signal and the mean level qc 
multiplies the £,r signal. Hence, the mean level in one path is essentially, the gain of 
the path. This illustrates how the mean levels are inherently involved in maintaining
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gain, and therefore mediating the oscillation. Hence, the conclusion that the heart 
plays no significant role in the maintenance of the slow oscillation, as its removal 
results in a decrease in the gain of the frequency response may be misinterpreted, 
considering the decrease in the mean heart rate level and the described inter 
dependence of gain and mean levels.

A large amount of research has also focused on the association between the mean 
level of SNA and the slow oscillation in blood pressure. This research focused on 
the possible causal relationship between the strength of the slow oscillation and the 
mean levels of blood pressure (see Section 4.3.3). The mean levels of heart rate and 
peripheral resistance are influenced by the mean levels of SNA and parasympathetic 
activity. Hence, it is proposed that the mean levels of SNA are indeed of significance 
in mediating the slow oscillation.

The lack of a role for the heart in the genesis of the slow oscillation of blood 
pressure has also been proposed by authors of modelling studies of baroreflex 
function (Burgess 1997). These authors suggested that other pathways of the 
baroreflex, other than sympathetic pathways to the vasculature, are not necessary for 
the generation of the slow oscillation in blood pressure. Most interestingly, they 
propose that given the faster responses of the vagus that, if the changes in heart rate 
were important in producing the oscillation in blood pressure, then heart rate 
changes would buffer out the slow oscillation. This proposal is rebuffed by the 
results of this study. The baroreflex is a closed loop system and the oscillation 
around the closed loop exists at a unique frequency. The oscillation in the 
parasympathetic pathway is at the same frequency as the oscillation in blood 
pressure and hence, the oscillation in blood pressure, is in part, maintained via the 
parasympathetic pathway.

The influence of the different parameters of the baroreflex in mediating the slow 
oscillation become even more obvious following an analytical analysis of the limit 
cycle oscillation, which is the focus of the subsequent chapter.

215



Limitations

The model developed describes only baroreflex control of blood pressure, via the 
heart and the vasculature. However, other mechanisms, including the chemoreflex 
and cardiopulmonary reflex, have been proposed to modulate baroreflex activity and 
effect blood pressure in the short-term are not described by this model. There is a 
paucity of information available regarding the working of these mechanisms and 
because their affect on blood pressure is an ancillary effect these mechanism will 
show varying influences on blood pressure depending on the conditions under 
analysis. These mechanisms may modulate the slow oscillation in blood pressure, 
however, the model of the complete baroreflex shows that the baroreflex feedback 
loop is capable of creating and sustaining the slow oscillation in blood pressure 
alone.

Similarly, this model cannot explain longer-term variations in blood pressure as 
these variations are developed by other blood pressure controllers that act over 
longer time scales, such as hormonal and renal-fluid balance systems.

Malpas et al (Malpas 2003) commented on the difficulty in determining what each 
level of stimulation of the nerve relates to in terms of changes in endogenous SNA. 
Hence, as is the case for all such experimental studies, the documented 
characteristics may not perfectly resemble the true physiological case but are the 
best means available to analyse this relationship in the open-loop situation.
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6.10 Conclusions

It is concluded, from the results of the combined heart-resistance model, that the 
heart plays a significant role in mediating the slow oscillation. This is in contrast to 
the generally accepted view.

Removal of any of the branches of the baroreflex, in the model, results in the 
abolition of the slow oscillation. The slow oscillation is dependent on the 
sympathetic nervous control of vascular resistance but is also, and to a greater 
extent, dependent on the cardiac loop, particularly the parasympathetic pathway. The 
influence of the parasympathetic pathway to the heart was demonstrated by the 
significant variation in the strength and frequency of the oscillation, when the delay, 
and gain, along these pathways are altered. In contrast the oscillation frequency and 
amplitude are relatively insensitive to changes in the delay, and gain, of the cardiac 
sympathetic pathway. Hence, it is proposed that the cardiac sympathetic loop plays a 
passive role in mediating the slow oscillation, and its role, in sustaining the slow 
oscillation in blood pressure, is limited to its ability to increase mean heart rate.

In conclusion, it is proposed that the model enables better understanding of the 
mechanisms of the baroreflex and the influence of the different components and 
sections of the baroreflex involved in the genesis of the slow oscillation in blood 
pressure.
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Chapter 7

Nonlinear analysis of the complete model

7.1 Introduction

The model of the complete baroreflex, parameterised for the rabbit, produces an 
oscillation at -0.3 Hz, the frequency of the slow oscillation in the blood pressure of 
the rabbit. However, simulation of the model alone does not allow for full insight 
into the features of the model responsible for the genesis and maintenance of the 
slow oscillation.

Other modelling studies of the baroreflex, that have been undertaken, have generally 
only documented simulation results and in some cases a simulated sensitivity 
analysis of the influence of the different gains of the model (Seydnejad 2001; Ursino 
2003). The influence of time delays and the different gain terms in baroreflex 
models has been investigated and the mathematical route to chaos via alterations of 
the time delays and gain values has been analysed (Abbiw-Jackson 1998; Seidel 
1998; Cavalcanti 2000). However, although the blood pressure system has been 
shown to exhibit chaotic characteristics (see Chapter 3) the physiological reality of 
changing time delays or gains are generally not justified (Abbiw-Jackson 1998; 
Seidel 1998; Cavalcanti 2000).
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Due to the fact that the published models of the baroreflex are generally complex, 
and contain multiple, coupled pathways, analytical analysis of these models is 
generally avoided. The analytical analysis of baroreflex function is generally 
confined to the analysis of simplified models of the baroreflex (Ringwood 2001). In 
this chapter, analytical analysis of the model of the complete baroreflex, described in 
Chapter 6, is documented.

An analytical analysis of the model is undertaken so that:
1. The frequency and amplitude of the slow oscillation may be calculated 

analytically from the model description of the baroreflex controlling 
mechanism.

2. The significance of the different components and parameters involved in the 
development of the slow oscillation in blood pressure can be identified.

The most popular methods for analytical analysis of systems are based on the theory 
of linear systems (Brilliant 1958). The techniques of analysis of linear systems are, 
at this stage, well developed, and these are used for analysis of both linear and 
nonlinear (in linearised form) systems (Brilliant 1958). However, sometimes, as is 
the case for the system under analysis in this study, the nonlinearity is essential to 
the operation of the model, hence, a method of nonlinear analysis of the model is 
required.

Nonlinear analysis methods have already been introduced in this thesis, in Chapter 3, 
where, a nonlinear, time series analysis of blood pressure data was documented. The 
model of baroreflex control of peripheral resistance (Figure 4.1) was analysed in 
Chapter 4 using describing function analysis techniques. The method of nonlinear 
model analysis using describing functions is well documented in the control 
literature (Mees 1975; Woon 1977; Atherton 1982) and this analysis method is 
described in Section 4.5.1. This traditional describing function approach is pertinent 
to the analysis of the classic single loop system of Figure 4.1. The expansion of this 
fundamental analysis to more complex nonlinear systems, including systems with
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series and parallel combinations of linear and nonlinear elements, is also 
documented by a number of authors (Jud 1964; Gran 1965; Bhargava 1970; Davison 
1971; Atherton 1982). However, these methods are generally constrained to deal 
with nonlinear systems of specific configurations.

The model of the complete baroreflex contains multiple interconnected pathways 
(Figure 6.10). However, the complexity of the baroreflex system is not limited to its 
multiple path structure, but is further enhanced by complicated nonlinear functions 
(Equation 6.5), and the multiplier at the system output. Methods of analysis of 
models containing multipliers are not commonly documented in the control 
literature.

The analysis approaches of the model of the complete baroreflex, investigated in this 
work, are based on classic describing function theory. The analysis is developed in 
the subsequent sections of this chapter.

7.2 Model simplification

Models with multiple nonlinear pathways are generally difficult to analyse, as a 
good deal of the simplicity of the analysis of the simple feedback loop is lost when 
more than one nonlinear element is contained in the model, unless the nonlinearities 
are directly in series or parallel (Davison 1971). The model of the complete 
baroreflex, with its many nonlinear branches is, in general, too cumbersome to 
examine in terms of limit cycle oscillation. This model, illustrated in Figure 6.15, 
has common components in some of its multiple branches, and hence, the number of 
nonlinear pathways may effectively, be reduced. Also, the model contains some 
complex characteristics that may be simplified. For these reasons, the simplified 
model of Figure 7.1 is proposed.
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F ig u r e  7 .1 :  T h e  s im p l i f ie d  m o d e l  o f  t h e  b a r o r e f l e x  i n c lu d in g  h e a r t  a n d  p e r ip h e r a l  r e s i s t a n c e  p a th s .

Simplifications of the model illustrated in Figure 6.15 to that illustrated in Figure 7.1 
are documented in the subsequent section.

Reduction in the number o f  vascular beds

The simplified model still retains the individuality of cardiac sympathetic, cardiac 
parasympathetic and peripheral resistance branches, but the multiple sympathetic 
pathways that control the resistance of the different vascular beds are reduced to one 
single uniform representation of peripheral resistance control. In this simplified 
representation, the dynamics of the renal vasculature are chosen as the uniform 
representation of sympathetic control of the vasculature, since the dynamics of the 
vasculature are best described for the kidney (see Section 2.2.3.2) and because the 
kidney also has dominant effects on blood pressure (see Section 2.2.3.3) and 
receives a large proportion of cardiac output (Dworkin 2000) and is highly 
innervated (Guild 2002). For these reasons, the kidney may be the key organ of the 
vasculature involved in the genesis of the slow oscillation (see Section 4.4) (Malpas
2002). Hence, Gr(s ) is as given in Equation (6.7). The cardiac output distribution 
weights for the individual innervated resistance pathways are averaged to give, kd .
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Similarly, kbs is determined as the average of the baroreflex sensitivities for the 
individual pathways.

Linearisation o f the parasympathetic-sympathetic interaction function

The nonlinear function of Equation (6.5), which describes the static relationship 
between parasympathetic (upc j and sympathetic (usc) nerve stimulation frequency
and heart rate, is a nonlinear, dual-input, function. A complicated describing 
function would be required to describe this nonlinearity, and such a describing 
function may not allow for the level of transparency of the parameters that would 
enable insightful analysis of baroreflex function. Also, the complicated nonlinear 
function of Equation (6.5) is not expected to be involved in the genesis of the limit 
cycle oscillation as it does not contain an inflection, which could give rise to a 
sustained limit cycle oscillation. When fitted to the data of the rabbit, s =-8.11
and ssc = 4.87 . Therefore, Equation (6.5) is linearised to the affine linear function:

f c  (0 = s p o u p c (0 + s„uK (t) +  f °  (7.1)
where,

spc and ssc are the ‘gains’ related to the paasympathetic and sympathetic 
nerve activity respectively, and

f °  is the autorhythmic heart rate value.

Describing function approximation o f the sigmoid nonlinearities

The describing function was introduced in Section 4.5.1 and describing function 
approximations, for the sigmoid nonlinearity, are introduced in Chapter 5. Using the 
approximation method proposed in Chapter 5, analytical descriptions for the sigmoid 
nonlinearities of the model are developed.
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The sigmoids in the model, s ( ) , ssc ( ) and sr ( ), may be described by their 
describing functions N  * (M,co) , Nsc(M,co) and N r (M,co) respectively. As is
the case for the sigmoid in the model illustrated in Figure 4.1, these nonlinearities 
are all odd and, hence the describing function is real and independent of the input
frequency, ft> . Therefore, N  * (M ,co), N sc(M,a>) and N r (M,co) may be reduced
to N pJ (M ) , N „ (M )  and N f (M )  (Slotine 1990).

The describing function analysis method begins with the assumption of a sinusoidal 
input at x , in Figure 7.1:

x (t)  = M  sin (cot) (7.2)

This assumption is common to describing function analysis of nonlinear systems 
(Atherton 1982). It is also assumed during the course of this analysis that, during 
steady-state or limit cycle operation, the harmonics arising in the sigmoidal 
nonlinearities described by s ( ) , ssc ( ) and sr ( ) (described by Equations (2.3), 
and parameterised according to Table 6.2 and 6.3) are of negligible influence due to 
the low-pass nature of Gpr, Gsc and Gr respectively (described by Equations (6.12),
(6.13) and (6.14) respectively).

In addition, the multiplier at the output of the nonlinearity introduces double 
frequency components to the signal. These double frequency components may be 
ignored as they are also filtered out by Gpc, Gsc and Gr when the signal traverses
the loop again. These assumptions are supported by examination of the spectrum of 
x (t)  (A (<»)) attained during simulated limit cycle operation, as shown in Figure
7.2.
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Frequency, f (Hz)

F ig u r e  7 .2 :  S p e c t r u m  o f  x ( t )  d u r in g  l im i t  c y c le  o p e r a t io n .

7.3 Preliminary analytical approaches

A number of different analysis approaches were investigated. The analysis of 
nonlinear systems based on the use of Poincare maps is a well researched field 
(Jordan 1987) and may be applicable to the analysis of this model. However, one of 
the main aims of this study is to investigate which parameters are notably involved 
in the development of the slow oscillation. Analysis methods such as the Poincare 
map may not enable this level of insight into system operation. Considering the need 
for clear insight of baroreflex function and hence, the need for a large level of 
transparency from response to the model parameters, the describing function 
technique is proposed as the fundamental basis for the analysis presented in this
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chapter. Nonlinear analysis involving describing function techniques allows for the 
representation of both linear and nonlinear model components by enabling the 
extension of linear frequency response analysis to the nonlinear case (Lewis 1997). 
Analytical approximations of the describing functions of the sigmoid nonlinearities 
have already been introduced (see Chapter 5) and this development enables a purely 
analytical analysis of models containing the sigmoid (Kinnane 2004).

Three different analysis approaches, all based on the describing function, are 
introduced in this chapter. These methods are referred to in this text as:

1. Frequency domain analysis, based on the convolution of time domain signals
2. Frequency domain analysis, based on input-output Laplace function
3. Time domain analysis -  the development of the conditions for sustained 

oscillation

A benefit of the frequency domain analysis methods is that graphical representations 
can be used to facilitate analysis of the system. As an example, the Nyquist diagram 
may be used in the analysis and determination of a system’s stability (see Section
4.5.1 and Figure 4.5). However, emphasis is put on the time domain analysis 
approach. Although it doesn’t enable exploitation of the graphical benefits of the 
frequency domain analysis methods, it is possible, in theory at least, to develop a set 
of oscillation conditions which depend directly on the model parameters.

The frequency domain analysis approaches are first introduced (Sections 7.3.1 and 
7.3.2), beginning with the frequency domain analysis technique, based on the 
convolution of the time domain signals at the multiplier at the output of the model 
This is followed by the time domain analysis of the model in Section 7.3.3.

225



7.3.1 Frequency domain analysis based on the convolution of 
the time domain signals

The sine wave of Equation (7.2), is described in the Laplace domain as:

X (s )  = M '  CO N 
s2+ 0 )2s (7.3)

For specific values of amplitude, M , the describing function gains may be dealt 
with as amplitude dependent linear gain terms. Given this, the nonlinear model of 
Figure 7.1 may be represented by the associated linearised model illustrated in 
Figure 7.3.

F ig u r e  7 .3 :  T h e  a s s o c ia t e d  l in e a r  m o d e l  s t r u c tu r e  f o r  f r e q u e n c y  d o m a in  a n a ly s i s .
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The stroke volume term, vc, which multiplies heart rate (Equation 2.2) is 
incorporated in the associated linear transfer functions of G*pc (.v) and G*c (.s’) . 
Similarly, the gains of the affine linear function described in Equation (7.1), spc and 
ssc> are incorporated in the associated linear transfer functions. Then the resting 
cardiac output, q°c = f c°vc.

Now, the associated linear transfer functions of the parasympathetic, cardiac 
sympathetic and vascular sympathetic pathways, G*c (.v), G*c (.s') and G* (s) are 
described by:

G ' M = NA M ) GM k^ s^  P -4)
where,

k ^ c is the conversion gain in the parasympathetic path (see Section 6.5), and 
G (.v) is as given in Equation (6.4)

also,
<5.; (») = A J, (M)GM W .  (7.5)

where,
k ^c is the conversion gain in the sympathetic path (see Section 6.4.1), and 
Gsc (5 ) is as given in Equation (6.3)

Finally,
G; ( j)  = N,(M)k„kbf i ,  ( s ) K  + (7.6)

where,
kr! is the sum of cardiac distribution to the vascular beds (see Section 6.5), 
kfr is the conversion gain in the peripheral resistance branch (Section 6.5), 
kbs is the sum of baroreflex sensitivities of the different vascular beds, and 
G (s) is as given in Equation (6.3).
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G* (.y) is then calculated as:

g ;  (* )= c ;  ( .v )+ o ; ( , ) + , . ;  (7 .7 )

The presence of a constant, mean term in Equations (7.6) and (7.7) prevents the 
development of the transfer functions G* (.v) and G'v ( i ) . If, conceptually at least,
transfer functions can be written, the Laplace representation of the cardiac output 
signal is then given by:

a w -rw  a«)

and the Laplace representation of the total peripheral resistance signal is given by:

* , ( . )  = $ ( » ) * ( » )  (7.9)

Equation (2.1 ) may be represented in the Laplace domain as:

n i « )

This may be expanded in the convolution integral (Bronstein 1995) as:

J Q.{pK('~p)dP (7.U)

where,

.T j

2 7ti ,t, - 1«

p  is a variable of integration, and
a-, is chosen such that p  is in the region of convergence of L and such

that s -  p  is in the region of convergence of L {rp | (Bronstein 1995).
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Equation (7.11) represents a complicated integral but may be calculated, for 
example, using the residue theorem (Kreyszig 1999). Following calculation of 
Pb ( s ) , an input-output relationship, between X  (.v) and Pb (.s') may then be 
calculated. This is given by:

Considering the complexity of the transfer functions, Gpc (.s') , Gsc[s)  and Gr (.s'),

= (7.12)

Calculation of the characteristic equation for the system enables the separation of the 
describing function part (iV*(M)) and the linear function (5 (.v )). Hence, when

calculated for a range of M  values the locus of ~ ̂ /^ ¡ ' ^  j  ma7’ in theory, be

plotted on the Nyquist plot and the point of intersection of and the

linear dynamical plots may be calculated.

This approach was preliminary investigated for a step input. The complex integral 
(Equation (7.11)) that results for a sinusoidal input significantly increases the 
complexity of this analysis approach. This analysis approach was not pursued as it 
appears that it may not provide as much insight into system operation as other 
analysis methods and because it also involves lengthy and involved calculations. 
However, if this analysis approach were to enable analytical calculation of the 
frequency and amplitude of the limit cycle oscillation, then such an exercise would 
be worthwhile. This analysis method is left as an area for future research.
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7.3.2 Frequency domain approach based on the Laplace 
transform

An alternative analysis approach to the frequency domain approach, based on the 
convolution of the time domain signals, is the development of an input-output

model. The signal at the output of the model, p b ( l) , may be derived using a time

approach of the model, is documented in Section 7.3.3. Then, it is proposed that 
B (s ) , in the associated linear model of Figure 7.3, may be calculated as:

where, pb (/) is the blood pressure signal, and 
X  (s) is as given in Equation (7.3).

This analysis may be developed in the same way as the other frequency domain 
analysis method, and may allow for the use of Nyquist stability diagrams to analyse 
the model and solve for the frequency and amplitude of the oscillation. Again, such 
an approach is left for future research.

An alternative, more tractable and more insightful approach was instead investigated 
to analyse the complete baroreflex model. This approach is documented in the 
subsequent section.

Laplace function between the sinusoidal input and the signal at the output of the

domain analysis approach of the model of Figure 7.1. A time domain analysis

(7.13)
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7.3.3 D evelopm ent o f  the conditions for sustained oscillation

This approach is based on the time domain analysis o f the traversing signal o f the 

model. Using this approach, conditions for the maintenance o f a sustained lim it 

cycle oscillation are developed. It is proposed that these conditions describe the 

requirements necessessery for the slow oscillation in  blood pressure to exist. Since 

these conditions are based on the parameters o f the model, they w ill enable a level o f 

transparency o f the parameters o f the model. This w ill allow new insight into aspects 

o f the model involved in  the genesis o f the slow oscillation.

Referring to the model illustrated in Figure 7.1, the analysis o f the model in  the time 

domain is developed as follows. The sine wave signal o f Equation (7.2) is input to 

the nonlinearities described by spc ( ) , ssc ( ) and sr ( ) .  The describing functions

for these nonlinearities are N p * (M ) ,  Nxc (M )  and N r (AT) respectively.

As is evident in  Figures 6.3, these nonlinearities are not centered at the origin but are 

offset in  the vertical direction (i.e. offsets) by Cpc, Csc and Cr .

The output signals o f the nonlinearities are periodic functions that may be described 

using a Fourier series, however, as discussed these harmonics are assumed to 

disappear.Therefore, the output signals o f spc ( ) , ssc ( ) and sr ( ) are:

nPc (0 = c Pc + N Pc (M ) sin [a t + 0Pc ) (7-14)
n,c (0 = Csc + Nsc (M ) sin (a t + (f>xc ) (7.15)

nr (t) = Cr + N r(M)sm(a>t + <j>r) (7-16)

Note that /? is negative (denoted by N*pc in Equation 7.2) so it  is convenient to 

define:
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npe ( 0  = Cpc + N Pc (M )  sin (cot+ (/>pc+7t) (7.17)

The nonlinearities o f the sympathetic branches to the heart, sxc ( ) ,  and the vascular, 

sr ( ) ,  do not cause a delay to the response o f the input. Therefore, they have no 

influence on the phase o f the signal.

Therefore all three signals may be described as:

n P c  (0 = C p c  + N P c  (M ) sin (*# + *■) (7-18)

(t) = Csc+Nsc (M )sm (a)t) (7.19)

nr (t) = C ,+ N r (M )sm (a*)  (7.20)

This signal is m ultiplied by the baroreflex sensitivity gain (kbs) and by the cardiac 

output distribution weighting (kd) (see Section 7.2).

The linear dynamical blocks G (.v), Gsc ( s ) and Gr (.v) introduce gain 

(|g ^ ( 7 " ) | ,  | ^ ( > ) | ,  \Gr (ja>)\ respectively) and phase

^ZGpc(jco), ZGxc (jco), ZG r (jco) respectively) to the dynamical signals (Sections

6.4.1, 6.4.2 &  6.5.1). However, these dynamics are o f unity d.c. gain (Section 6.4.1,

6.4.2 &  6.5.1) and, hence have no effect on the constant offset values

( C p c >  Csc, and Cr).

The output signals from the dynamical blocks may be described as:

g „  (>) =  \G„  C H K  (M )sm (w t + X + Z.Grc ( ja ) )  + Cf , (7.21)
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8« (0 = |G,c ( j a )I (M) sin (a t + ZG SC ( j a ) )  + C„ (7.22)

8 r  ( 0  =  \G r U ® ) |  K K N r  ( M )  S in  ( * *  +  Z G r 0 ® ) )  +  * A C r  ( 7 -2 3 )

The signals gpc (?) and gsc (?) represent the innervations o f the heart by the

parasympathetic and cardiac sympathetic nerve pathways. These nerve signals have 

opposite effects on heart rate and interact in  a complex fashion to adjust heart rate 

(Levy 1984) (Sections 2.2.3.1 and 6.4.3). Levy et al (Levy 1984) developed this 

relationship by electrically stimulating the nerves for a range o f voltages. Hence, as 

described in  Section 6.3.4 and 6.3.5, gain temis are required to transform the range 

o f g  (?) and gsc (?) (which are in terms o f heart rate (bpm)) to the range o f 

parasympathetic and cardiac sympathetic nerve stimulation frequencies. These gain 

values are tenned k. and kAsc.

Therefore, the signals impacting on the nonlinear function describing the 

parasympathetic- sympathetic interaction are:

u Pc (0 =  k Ape | G Po ( j a ) | N Pc (M )sm  (cot + x  + ZG pc ( j a ) )  +  k ^ cCpc ( 7 . 2 4 )

«« (0 = K c \G*c (Ja)\ N k (M ) sin (a t  + ZG SC ( ja ) )  +  k^cCsc ( 7 . 2 5 )

The dual-input nonlinear function describing the parasympathetic-sympathetic 

interaction is linearised to the affine function described by Equation (7.1). Using, 

(7.24) and (7.25) this equation may be expanded to:

fc (0 = s„cKc |Gpc (7®)| N Pc (M)sin (at + n  + ZGpc ( ja )) +
sscKc |u,c ( ja )  | N„ (M) sin (at + ZGSC ( ja )) + f e

(7.26)
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where,

f c  -  f e  +  Sp tk &,,cC pc + Ssck 6scC sc

Then the cardiac output, q c ( t ) ,  is as given in Equation 2.2:

*cM=/c('h(0

A constant stroke volume, vt , is assumed (see Section 6.4.4). Hence,

<lc ( 0  =  vcs , J ^  |<v ( > ) I ( A / ) s i n  ( c o t+ K  +  ZG pi. ( jc o ))  +  
vcs, ' K c  p K 0*01 K  (-W)sin (c01 +  Z G „ ( jc o ) )  +  qc

where, qc, the mean cardiac output is:

= v J c

The signal described by Equation (7.30) may be reduced to the form:

<7,0) = K ,c sin + i t ) + K ,,  sin ( mi +  (t>lK) + qc
where,

0 „ = x  +  ̂ G ik U°>)
K  =  U m )
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(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)

(7.34)

(7.35)



Equation 7.31 may be further reduced to

where,

qc (t) = Kcs\n(cot + <f>c) + ifc 

K  = J K 2"  + K l - 2 K ^ K XC c o s ( / r - ^ , + « i )

&  =  tan v^cos(^,) + ̂ .cos(^.)

(7.36)

(7.37)

(7.38)

Finally, blood pressure p h (t) is given as:

A(')-*.('hW (7-39>
where,

^ ( 0 = ^  (0+,£ (7-4°)
and /c^ is a gain term introduced to scale the range o f  the output values o f the

nonlinearity, sr ( ) ,  to blood vessel resistance values(see Section 6.5). rp is the

mean peripheral resistance not under neural control (see Section 6.5).

The peripheral resistance signal described by Equation (7.39) may be written as:

rp (l) = K r sin (< y /+ $ .)+ r

where,

K  = K\G,(j'4KK,N,(M)

*. = ¿ G , M
r — r +ktlkblk&rCr

(7.41)

(7.42)

(7.43)

(7.44)

Using 7.36 and 7.41, Equation 7.39 now becomes:
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Pb (0 = r(lo + K rK c sin(a>t + <f>r)sm(o)t  + <f>c) +
rKc s in(a>t + <j>r) + qcK r s in ( cot + <j)Q)

(7.45)

but,

KrKc sin (cot + <j)r) sin [cot + <j>c) =
(7.46)y 2 ( ^  cos (2cot + <t>c + </>r ) + K rK c cos ('<f>c -  <f>r ))

= >  P b  ( 0  =  X ( K ' K * c o s ( 2 c o t  +  &  +</> r ) )  +  X ( K ' K c  C 0 S ^ ) )  + (7.47)
rKc sin (cot Jr<j>r) + qcKr s in (cot +  <j>c) + rqc

As already discussed at the start o f this analysis the double frequency component, 

X  KrKc cos (2cot + <j)c +  <j>r) ,  w ill be filtered out by the low-pass dynamics when the

signal traverses the loop again, therefore, it  may be disregarded at this point as it 

does not influence the lim it cycle oscillation.

Equation (7.36) may be reduced to:

Phase C,a is introduced by the afferent delay in  the feedback path. Therefore the 

feedback signal o f the baroreflex model, f br ( / ) ,  is:

(7.48)

where,

(7.49)

KPa = \l(rKc f  + (KrPb)1 -  2PbKrrKc cos (n  -  -  </>r )

. -tan-'i FKcsin(0 c ) - P bK r M 0 r ) '
Pb (  rKc cos (</>c ) + p hKr cos (</>r ) J

(7.50)

(7.51)

fbr (0 = K Pb Sin ( 0)1+ K  + C ) + Pb (7.52)
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The blood pressure reference signal, p sbel ( i ) , is a constant blood pressure 

reference, p sbel. Therefore, the signal, ebr ( t ) , that is input to the high-pass dynamical 

block, Gcns (,v), that represent the dynamics o f the neural arc (see Equation (6.1)) is:

« * ( ')  = p?  - A ( ' )  <7-53)

or

eb r ( t )  =  P T  ~ K p„ sin (ffli +  ̂ A + Ç a )  +  P b (7-54)

The high-pass dynamics o f the neural arc introduces gain (|Gcms. (®)|) and phase

(ZGCNS (ty)) to the signal. The processing delay introduces phase Çproc. Hence, after 

traversing the system, the signal at the input to the nonlinearities is given by:

Xrel ( 0  = l^CNS ( û,)| Pb ~  |̂ OWS (®)| ̂ p b S*n (!p h ^~^CNS ( iy) Co +  Cproc ) ^

+ \GCNS{co)\p?

The system w ill display a sustained oscillation if:

x re,(t )  = x ( t )  ( 7 -5 6 )

which, from Equations 7.2 and 7.55 gives the three conditions o f Equations 7.57,

7.58 and 7.59. The first o f these conditions for sustained oscillation is:

|Gc« ( » K  (7-57)

where, M  is the amplitude o f the sinusoid o f Equation 7.2.
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The negative sign in front o f the sinusoid is equivalent to a phase shift o f n  rads. 

Therefore, the condition for sustained oscillation based on the phase o f the system 

may be written as,

(7.58)

and in  this case where, the blood pressure reference, p sbel ^  0 . Hence,

(7.59)

Equations 7.57, 7.58 and 7.59 are the conditions for sustained lim it cycle oscillation.

So as to test the theory developed in the previous section, the conditions necessary 

for sustained oscillation are tested for a simulated example o f the baroreflex model 

o f Figure 6.10. Simulation o f the model, for the parameters given in  Tables 6.2, 6.3 

and 6.5, reveals a 0.34 Hz (-2.136 rads) oscillation in blood pressure w ith  amplitude 

o f 11.66 mmHg, which is typical o f experimental measurements (Malpas 2000).

The parameterisation o f the model, and justification for the parameters chosen, is 

documented in Chapter 6. The parameters for the complete baroreflex model 

presented in  Figure 6.7 are documented in Table 6.2, 63 and 6.5.

The ‘gain’ o f the nonlinearities, calculable using the describing function, for the 

parameters listed in Table 6.5 are:

7.3.4 N um erical exam ple

N pc (M )  = 4.36728 (7.60)
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N.k {M ) -  Nr (M ) = 0.8465 (7.61)

The magnitudes o f the linear transfer functions G/K.(s ) ,  Gsc(s ) , Gr (.v) and 

Gcns{‘s) given in Equations (6.3), (6.4), (6.6) and (6.1) are calculated at the 

frequency o f oscillation, œ -  2.135 rads.

G (s) =  Î  (7.62)' 1+1.22s

Then the magnitude factor is given by:

/Î7
I g , ( > ) l s  / (7.63)1 ,V Vl2 +1.22 V

The phase for the dynamical response o f the parasympathetic nervous system is 

calculated as:

ZG^(j<z>) = tan"1 (0)-tan"1 + tan-1 (0.3ûj) = -0.6436 rads (7.64)
\ 1 )

The phase and gains due to the other transfer functions are documented in Table 7.2.
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Transfer
characteristic

Gain Phase due to the 
dynamics

Phase due to the 
delay

Gpc{S) 0.3757 -1.2056 -0.6409

GM 0.1088 0.8919 -1.709

Gk ( s ) 0.382 -1.2091 -1.8158

Gg ( s ) 0.382 -1.2091 -1.8158

GA s ) 0.382 -1.2091 -1.8158

GA A 0.2422 -1.3255 -1.8158

H A A 1 0 -0.4273

Gcns ( j ) 1.27 0.098 -0.8545

Table 7.2: The dynamical gains and phases o f the different transfer functions.

The condition equations describing the conditions for lim it cycling (Equations 

(7.57)-(7.59)) are evaluated for the intermediate values listed in  Table 7.3.

Parameter | Gcns (i^0)! M K GCNS ( j ®) p T Pb 4”prue

Value 0.0985 9.17 11.65 -1.35 0.098 -0.4273 80 80.2 -0.8545

Table 7.3: The parameters o f  the condition equations.

The calculation o f these equations is documented in  Equations (7.66) -  (7.68)

| < W » K = 1 1 - 6 4 * M  (7.65)

K  + ¿G cns H - C  - Cpmc - K  = -5.676 *  - I n  (7.66)

|Gc® ( H |  p T  -  |Gc® C H | P b = -1 * 0  (7.67)



In Equation (7.68), -1 ~ 0 relative to the values o f p b' and p b. The close equality o f 

these equations confirms the va lid ity o f the adoption o f the reduced model o f Figure

7.1.

7.4 Discussion

Three different approaches to the analysis o f the nonlinear model o f the complete 

baroreflex mechanism were introduced in this Chapter. These methods were based in 

the time and frequency domain analysis o f the model.

The time domain method o f analysis was found to be the most tractable o f analysis 

approaches proposed for a system o f  the complexity o f that illustrated in  Figure 7.1. 

This analysis involves the tracking o f the traversing signal around the baroreflex 

feedback loop. The time domain analysis o f the model resulted in  3 equations, 

(Equations (7.57), (7.58) and (7.59)) which describe the conditions for sustained 

oscillation.

Some comments on the condition equations o f Equations (7.57), (7.58) and (7.59) 

are appropriate:

•  Equation (7.59) describes the condition for the mean levels o f the model 

parameters. This condition merely establishes a d.c. equilibrium around the 

system depicted in  Figure 7.1. The condition contains a frequency dependent 

term, pb, described in Equation (7.49).

•  The gain and phase conditions, given by Equations (7.57) and (7.58), are a 

pan o f nonlinear coupled equations in both frequency, Q) , and amplitude, 

M  . Although the gain condition described by Equation (7.57) appears to just 

contain magnitude terms, K  contains phase terms, as evident in Equation
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(7.49). Similarly, the phase condition described by Equation (7.58) is 

dependent on magnitude terms, via the describing functions gains contained 

in the description o f <f>Pb.
• The negative feedback pathway introduces a phase o f n . The presence o f n  

in Equation (7.58) is interesting because it  can be offset by an arbitrary 

addition or subtraction o f n  from <bn .T P b

An aim o f this investigation is to attain analytical solutions to co and M . This 

would enable determination o f the relationships between the different physiological 

parameters o f the system and the presence, absence and change in strength o f the 

slow oscillation. Unfortunately clear analytical solutions to co and M  are difficult, 

using the time domain analysis, for a number o f reasons.

Firstly, due to the fact that the equations are nonlinear, unique solutions may not be 

attainable. Secondly, the condition equations describe complex, nonlinear 

relationships between the model parameters and the frequency and amplitude o f the 

slow oscillation. This complexity is introduced at an early stage in the analytical 

progression through the system. Thirdly, the complexity o f the equations is further 

enhanced by the need for an analytical approximation for the describing function o f 

the sigmoid. Methods o f describing function approximation, which enable an 

analytical description o f the describing function o f the sigmoid, are described in 

Chapter 5. Various approximations were developed but these all involve complex, 

series expansions, which are unwieldy and which add major complexity to the 

condition equations.

Numerical solutions to the coupled condition equations, which would enable 

calculation o f the frequency ( o j )  and amplitude (M )  o f the slow oscillation, are 

possible and w ill be the target o f future research.
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However, rather than dwell on calculating analytical solutions for co and M  , the 

emphasis o f this analysis was instead focused on the investigation o f the traversing 

signal, through the baroreflex loop. It is proposed that this analysis approach is 

sensible as the tracking o f the traversing signal, and the effect on the signal o f the 

different components and parameters o f the baroreflex as the signal progresses 

tlrrough the system, enables insight into the operation o f the short-term blood 

pressure control mechanisms and the effects o f the different sections o f the 

baroreflex responsible for the genesis o f the slow oscillation. Advancement o f the 

understanding o f the mechanisms involved in the genesis o f the slow oscillation is 

the ultimate goal o f this research.

It is clear from the time domain analysis that both the cardiac and the peripheral 

resistance sides o f the baroreflex have important roles to play in  mediating the slow 

oscillation in blood pressure. The derivation o f complex and coupled equations 

which describe the blood pressure signal, alone displays the integrated and 

sophisticated nature o f blood pressure control. The intricate m ix  o f terms involving 

both cardiac and vascular components displays the collective importance o f both 

sides o f the baroreflex in sustaining the slow oscillation. The amplitude and phase o f 

the blood pressure signal are dependent on the phase and amplitude o f both the heart 

rate and total peripheral resistance signals (Equations (7.57) and (7.58)). It is 

proposed that an intricate balance between the gain, phase and offset parameters o f 

the different pathways o f the baroreflex are responsible for the development and 

maintenance o f the slow oscillation. Disturbance o f this balance results in the 

disappearance o f the slow oscillation. The slow oscillation is often not observed, 

particularly in the rabbit, in the control case and it  is possible that this is due to 

variation in the parameters, which result in the conditions o f equations (7.57) to

(7.59) not being met.

The time domain analysis o f the model also clearly shows that the mean levels o f 

neural activity, heart rate and peripheral resistance, play an important role in
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maintaining gain and in  setting the amplitude o f the slow oscillation. This supports 

the proposed significance o f mean SNA, discussed in the previous Chapter.

Analysis o f the model via simulation o f the parameterised model is also documented 

in  this chapter. This enabled clear identification o f the parameters that are significant 

to the development and maintenance o f the slow oscillation. The significant 

difference in  the value o f describing function gains along the parasympathetic 

pathway and the sympathetic pathways is evident from  Equations (7.61) and (7.62). 

The simulation study o f the parameterised model confirm that the amplitude o f  the 

oscillation in blood pressure is due, to a large extent, to the amplitude o f the 

oscillation via the parasympathetic pathway to the heart (see Equation (7.36) and 

Equation (7.49)).

Hence, it is proposed that the heart, and in particular the parasympathetic nervous 

control o f the heart, plays a large role in  maintaining gain and in  mediating the slow 

oscillation. These conclusions are in contrast to those that have been previously 

made.
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7 .5  C o n c lu s io n s

The conclusions o f this chapter generally support those o f  the previous chapter. In 

the previous chapter conclusions were made fo llow ing simulation o f the complete 

model o f the baroreflex. In this chapter a t im e domain analysis that analytically 

describes the working o f the model is given. This analysis enables far more insight 

into the mechanisms o f the complete baroreflex then just the simulation o f the model 

would.

Contrary to previous conclusions, this study proposes an important role for the heart 

in  maintaining gain and mediating the slow oscillation in  blood pressure. The 

intricate m ix o f terms involving both cardiac and peripheral resistance components 

shows the collective importance o f both sides in  sustaining oscillations.

In contrast to the generally accepted view that the parasympathetic system is not 

involved in  the genesis o f the slow oscillation in blood pressure, a significant role 

for the parasympathetic pathway in the genesis o f the slow oscillation is proposed in 

this study. Interestingly the gain in the parasympathetic pathway is greater than in 

the sympathetic pathways to the heart and vasculature. Therefore, it  is concluded 

that the parasypathetic control o f the heart plays a significant role in  the genesis o f 

the slow oscillation in  blood pressure.

Similarly the importance o f the mean level o f SNA in  the genesis o f the slow 

oscillation in  blood pressure has at times been down played. This study illustrates 

that mean SNA is important in  maintaining vascular tone, which via the m ultiplier 

block plays a significant role in  mediating the slow oscillation.

In conclusion, the results o f this study might go some way to revising the thinking 

that the slow oscillation in blood pressure is solely due to the sympathetic control o f
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the vasculature. This viewpoint is thought to be a shortsighted one considering the 

sim ilarly describable neural pathways to the heart.
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Chapter 8

Conclusions

8.1 Conclusions
The studies documented in this thesis explore the short-term control mechanisms 

o f  blood pressure. The focus o f this research is specifically on the nonlinear 

nature o f the blood pressure control mechanisms, and the nonlinear phenomena 

that they give rise to. O f particular focus is the slow oscillation in  blood pressure 

that exists at 0.1 Hz in  the human and at 0.3 Hz in the rabbit, which is proposed 

to exist as a lim it cycle oscillation, developed by nonlinear elements in  the 

baroreflex feedback loop. The means o f  genesis o f  this slow oscillation is the 

major focus o f  this work and a mathematical modelling approach was undertaken 

to analyse the nonlinear mechanisms involved.

The results and conclusions o f the studies, that form  this thesis, are discussed, 

w ith  respect to the current literature, in  the respective chapters o f  this thesis. In 

this fina l chapter, the significance o f  these research findings is articulated.

It is the opinion o f this author, fo llow ing the comprehensive review o f  the 

literature and mechanisms o f blood pressure control in  Chapter 2 and the detailed 

analysis which follows o f  feedback oscillations (particularly in  Chapters 4, 6 and 

7), that the slow oscillations in  blood pressure is prim arily  the result o f  a 

feedback oscillation.
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Although, definite conclusions are unfeasible fo llow ing the analysis o f  the model 

o f the baroreflex control o f  peripheral resistance (see Chapter 4), due to the 

paucity o f available relevant information in the literature w ith  which to test the 

model, changes in  the gain characteristics, during different physiological 

conditions, can be associated w ith  changes in the strength o f  the slow oscillation.

However, the baroreflex neural feedback paths include both the peripheral 

resistance and heart sides, as described by the complete baroreflex model in 

Chapter 6. Results documented in  this thesis, h igh light the significance o f  the 

feedback loops to the heart, which have been previously dismissed by other 

authors. Hence, though the evidence o f feedback oscillation seems very strong 

(oscillation frequency is w ith in  the bound o f parameter accuracy, etc), it  is 

possibly premature to define the strength o f  the slow oscillation in  blood pressure 

as an index o f purely sympathetic activ ity to the vasculature, as other neural 

pathways o f the baroreflex have the capability o f  establishing a slow oscillation, 

and are, at least, un like ly not to affect the mechanisms o f  the slow oscillation in  

blood pressure.

Interestingly, a small body o f literature also suggests that the slow oscillation is 

not completely eliminated fo llow ing barodenervation. Indeed, such a conflict can 

have two possible explanations:

a) There are many conflicting theories in  the physiological literature, all o f 

which are supported (to a greater or lesser extent) by a body o f 

experimental evidence. This is indicative o f the d ifficu lty  o f  making 

absolute conclusions w ith a system as complex as human physiological 

systems, where it is generally impossible to isolate individual components 

for analysis and the norm is to provide some evidence o f  a phenomenon 

to support a certain theory, though a number o f  clear counterexamples 

exist. This allows the science to move forward in  an evidential manner, 

but makes defin itive conclusions d ifficu lt. I t  is therefore possible that, at 

some stage in  the future, the presence o f  slow oscillations in the absence 

o f  intact baroreceptor nerves may be explained as a measurement artifact. 

However, until such conclusive tests are possible, one must go w ith  the 

overwhelming weight o f statistical evidence.
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b) It is also possible that the observed oscillation, in  the barodenervated 

case, is the result o f secondary or compensatory effects, which relate 

indirectly to the neural mechanisms o f the baroreflex. For example, it  is 

known that neurally controlled actuators (e.g. smooth muscle) are further 

enhanced and inhibited by hormones and paracrines in the system (e.g. 
angiotensin I I  and nitric oxide). Therefore there is a possibility that these 

other, non-neural, feedback mechanisms modulate, or compensate, the 

actions o f  the baroreflex.

Finally, one could also surmise that, even i f  the oscillation in blood pressure does 

come from a ‘ central oscillator’ in the CNS, local feedback mechanisms w ith in 

the CNS may be responsible for this. However, the weight o f  evidence does not 

support the ‘central oscillator’ theory (see Section 2.3.3.1). It is somewhat 

unfortunate that the rabbit, though probably the best documented species in  terms 

o f  physiological parameters and characteristics, does not appear to exhibit slow 

oscillations in  blood pressure w ith  the same consistency as other species 

(Chapter 4). There is no doubt that this has, in  part at least, contributed to some 

o f  the d ifficu lty  in  making firm  conclusions regarding the mechanisms involved 

in  the genesis o f  the slow oscillation.

This author believes, however, that it  is safe to conclude that any feedback 

oscillations around the slow oscillation frequency are the result o f a nonlinear 

lim it cycle, rather than the result o f  an unlike ly set o f  physiological conditions 

which would need to be present in  order to provide a stable oscillation using 

linear components. This has important implications for the role o f the slow 

oscillation. The assumption o f  a nonlinear feedback oscillation, or lim it cycle, is 

supported using a very m ild  set o f assumptions and does not require any be lie f 

that the CNS continually adapts in order to maintain the stability o f the 

oscillation. Although the slow oscillation resulted as a consequence o f the 

characteristics o f  the baroreflex loop, it  cannot be categorically asserted that the 

presence o f the slow oscillation is not deliberate, since one m ight wonder why 

physiological systems exhibit this phenomenon in  the first place. Whatever, the 

reason (and perhaps the oscillation is only the result o f  many conflicting design

249



requirements), the nonlinear avenue is more attractive in  not requiring a much 

bigger issue to be addressed (in the absence o f any supporting evidence o f a 

reason for deliberately maintaining the slow oscillation) and is clearly justifiable 

from a physiological point o f  view, as soft-lim iting characteristics pervade the 

physiology literature.

A  major contribution o f this thesis is the insight provided by the comprehensive 

model o f  Chapter 6 (and the associated stability analysis in Chapter 7) into the 

contributions o f the various pathways to the slow oscillation. In  this author’s 

view, this provides incontrovertible evidence that the heart plays an important 

role in the genesis o f slow oscillations, h i the nominal (resting) case, it  was seen 

that oscillations disappear when the cardiac neural pathways are blocked (in the 

model). This, o f  course, must be considered w ith in  the available accuracy o f  the 

physiological parameters, but does indicate a strong role for the cardiac 

pathways, particularly the parasympathetic pathway. Furthermore, the model o f 

Chapter 6 clearly articulates the important role for mean levels o f  both cardiac 

output and peripheral resistance in  mediating slow oscillations. In the past, 

researchers have looked at gain as being the sole issue o f  importance (De Boer 

1987), but due to the explicit relationship between the mean levels and ‘gain’ in 

the opposite pathway (obvious from Figure 6.12) it  is clear that mean cardiac 

output and mean peripheral resistance do have indirect ‘gain’ effects. However, 

in  view o f the results o f  this study, this has been misinterpreted in  the past (L iu  

2002).

8.2 Recommendations for future research
In  an area noted for its d ifficu lty  in  making conclusive experimental 

measurements and where the body o f  knowledge advances at an incremental rate, 

there is much scope for future work related to the research described in  this 

thesis. In particular, the fo llow ing areas are recommended:

•  The model o f Chapter 6 was assembled from a range o f  unconnected 

physiological experiments, which were, in many cases, undertaken for a
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variety o f  purposes other than those, which are the focus o f this thesis. It is 

therefore like ly  that there are a number o f inter-dependencies, which have not 

been correctly quantified in  the model, due to the (broad) assumption o f the 

theorem o f  superposition, which clearly does not hold for nonlinear systems. 

W hile it is believed that the general structure o f  the model is correct, there 

are like ly  to be some parametric (and possibly some small structural) errors 

in  the model, which can only be eliminated by a concerted experimental 

validation o f  the model. This is like ly  to be an onerous task, given the 

d ifficu lty  o f  making many physiological measurements (especially neural 

measurements). However, it  is believed that a fu lly  validated model o f  the 

fu ll baroreflex system would be o f  immense value as an ‘experimental’ test­

bed for a range o f  studies.

•  The models documented in Chapters 4 and 6 do not include any effectors o f 

blood pressure other than direct neural mechanisms. The importance o f other 

indirect mechanisms, such as hormones and paracrines (e.g. angiotensin II 

and n itric  oxide) has been articulated both in  this thesis (though outside the 

scope o f the current work) and elsewhere (Nafz 1997; Barrett 2003). These 

effects need to be quantified in an extended model, since they affect both the 

magnitude o f  the neural effects (through enhancement or opposition) and the 

timescale on which these effects have influence (since these ‘secondary’ 

effects normally fo llow  the direct neural response).

•  W hile a set o f  conditions for oscillation o f  the combined heart-resistance 

model o f Chapter 6 was developed in Chapter 7, the u tility  o f  this result is 

currently somewhat limited. To increase the usefulness o f  this result, two 

extensions o f the work are proposed:

(a) Since there is currently a very complex relationship between the 

conditions and the raw physiological parameters, some possible 

simplifications, which preserve the essence o f the result (while improving 

its transparency) need to be considered. A ny sim plification would, o f 

course, need to be validated against the original result and it  should be

251



bome in  m ind that the current set o f  conditions are already based on a 

s im plified system model (as in  Figure 7.1).

(b) Currently, i t  is d ifficu lt to see how the equations o f  (7.57) to (7.59) permit 

an analytical solution fo r the amplitude and frequency o f  the slow 

oscillation. Further to the w ork recommended in  (a), a form  o f  analytical 

solution may be possible but, in  any case, this set o f  equations w ill 

always permit a numerical solution, using one o f  the many numerical 

solvers available (e.g. the S O L V E () routine in  the M A T  LA B ™  software 

suite). There is also a possibility, fo llow ing numerical solution o f  the 

equations for a w ide variety o f  physiological parameters, that relatively 

simple relationships between the oscillation parameters (amplitude, 

frequency) and the physiological parameters may be extracted, either 

through observation or parametric fitting.
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