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A bstract
This thesis details a longitudinal study on factors that influence intro­

ductory programming success and on the development of machine learn­

ing models to predict incoming student performance. Although numerous 

studies have developed models to predict programming success, the models 

struggled to achieve high accuracy in predicting the likely performance of 

incoming students. Our approach overcomes this by providing a machine 

learning technique, using a set of three significant factors, that can predict 

whether students will be ‘weak’ or ‘strong’ programmers with approximately 

80% accuracy after only three weeks of programming experience.

This thesis makes three fundamental contributions. The first contribu­

tion is a longitudinal study identifying factors that influence introductory 

programming success, investigating 25 factors at four different institutions. 

Evidence of the importance of mathematics, comfort-level and computer 

game-playing as predictors of programming performance is provided. A 

number of new instruments were developed by the author and a program­

ming self-esteem measure was shown to out-perform other previous compa­

rable comfort-level measures in predicting programming performance.

The second contribution of the thesis is an analysis of the use of machine 

learning (ML) algorithms to predict performance and is a first attempt to 

investigate the effectiveness of a variety of ML algorithms to predict intro­

ductory programming performance. The ML models built as part of this 

research are the most effective models so far developed. The models are 

effective even when students have just commenced a programming module. 

Consequently, timely interventions can be put in place to prevent struggling 

students from failing.

The third contribution of the thesis is the recommendation of an al­

gorithm, based on detailed statistical analysis that should be used by the 

computer science education community to predict the likely performance of



incoming students. Optimisations were carried out to investigate if predic­

tion accuracy could be further increased and an ensemble algorithm, Stack- 

ingC, was shown to improve prediction performance.

The factors identified in this thesis and the associated machine learning 

models provide a means to predict accurately programming performance 

when students have only completed preliminary programming concepts. 

This has not previously been possible.

xiv



Chapter 1

Introduction

1.1 Background

S tu d e n t retention on third level Computer Science (CS) and Information Tech­

nology (IT) courses is a significant problem. Students find computer programming 

difficult and struggle to master the core concepts. Identifying struggling students is 

difficult as introductory programming modules tend to have a very high student-to- 

lecturer ratio (100:1 or greater) and often lecturers do not know how well students 

are doing until after the first assessment. This assessment may not take place 

until six or eight weeks after the module has commenced and, given the typically 

high number of students, marking the assessments can take a considerable length 

of time. Even if the assessment is indicative of likely overall performance on the 

module, it may be too late for students to withdraw from the course or for in­

structors to intervene to prevent struggling students from failing. This is a cause 

of great concern for computer science educators and has led to a body of research 

in the area.

Although many previous studies of programming predictors have interesting 

results it can be difficult to apply the results to other educational settings with
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Goals and Contributions Introduction

different parameters, for example, the programming language taught and the as­

sessment structure used. Furthermore, previous studies have often been carried 

out when students have completed a considerable part of an introductory pro­

gramming module. The factors examined are often dependent upon the students 

having considerable experience with the module material and consequently it is 

difficult to know how predictive the same factors would be if measured earlier on 

the module.

A model that could predict likely programming performance in the first few 

weeks of a module would considerably help to alleviate this problem. To build such 

a model would require (1) the identification of early predictors of performance on 

an introductory programming module and (2) the appropriate implementation of 

a scientifically sound, robust modelling technique.

This thesis details a model that satisfies the above criteria [BR05c], [BR05b], 

[BR05a], [BR06a], [BR06c], [BR06d], [BR06b]. A study of early identifiable factors 

that influence performance on an introductory programming module is presented 

and numerous prediction models using these factors are developed. A recommen­

dation of the most effective algorithm for predicting future student programming 

performance is provided.

1.2 Goals and Contributions

The goals of this thesis are to:

1. Identify early predictors of performance on an introductory programming 

module.

2. Investigate the effectiveness of different machine learning techniques for pre­

dicting programming performance. The models should predict whether stu­

dents are likely to be ‘weak’ or ‘strong’ programmers.

2
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3. Recommend the use of the most suitable scientifically sound technique that 

should be used to predict future student performance.

Moreover, there are three fundamental contributions to these objectives in this 

thesis, notably, (1) the identification of early predictors of programming perfor­

mance, (2) a first study on the use of a variety of machine learning algorithms to 

predict introductory programming performance and (3) the recommendation of a 

suitable algorithm to predict the likely performance of incoming students. Each 

of these contributions is discussed in the following sections.

Identification o f early predictors o f program m ing perform ance

First, the research outlined in this thesis is based on a longitudinal study identify­

ing factors that influence success on introductory programming modules. Although 

numerous studies have taken place, most studies are carried out when students have 

experienced a considerable part of an introductory programming module and thus 

it is unclear if the identified predictors would be accurate indicators if measured 

at an earlier stage in the course. In this thesis over 25 factors were examined 

at four different institutions. The study provides evidence on the importance of 

mathematics, programming self-esteem and computer game-playing as predictors 

of programming performance. The study also determined numerous factors that 

did not contribute further to the developed prediction models. These factors in­

cluded prior programming experience, number of hours a student spends working 

at a part time job, encouragement from others to study programming, preference 

to work alone or in a group when solving problems and number of hours using ap­

plication software, emailing or surfing the web before and during the early stages 

of the course. Second, a new instrument, (the Programming Self-Esteem Scale), 

developed by the author, was found to out-perform a measure referred to in this 

thesis as the Cantwell-Wilson and Shrock comfort-level measure and a shortened

3
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version of the Computer-Programming Self-Efficacy scale as a measure for pre­

dicting programming performance. Third, an investigation on the usefulness of 

self-regulated learning (SRL) for predicting performance was carried out. While 

SRL was not found to contribute further to the predictiveness of the model, ex­

cept for the self-efficacy measure, the importance of particular aspects of SRL in 

learning to program were identified and as such provides justification for future 

research in the area.

Analysis o f the use o f m achine learning algorithm s to  predict perfor­

m ance

In this thesis, six distinct machine learning (ML) algorithms are described and 

analysed to determine how effective each technique is at predicting programming 

performance. The algorithms examined are naive Bayes, support vector machines, 

logistic regression, k-nearest neighbour, backpropagation networks and a decision 

tree (C4.5). Typically, linear regression is used to predict programming perfor­

mance and while this is a well regarded statistical technique it is restricted by 

underlying assumptions, including normal distribution and linear relationship re­

quirements. When these assumptions are not satisfied, subsequent work-arounds, 

where appropriate, can lead to interpretation problems and other difficulties. ML 

algorithms tend to have less stringent requirements and thus may be used to solve 

problems where linear regression fails. Following a detailed review of the pub­

lished literature, it appears that this thesis is a first attempt to utilise a variety of 

ML algorithms to predict introductory programming performance. While similar 

techniques have been investigated in other academic domains, no comprehensive 

study of the suitability of a range of ML techniques has taken place within this 

domain. This work provides the foundation for future work on the application of 

artificial intelligence techniques to this problem and encourages computer science

4



Goals and Contributions Introduction

educators to consider a broader suite of tools.

Each algorithm was implemented using 10-times 10-fold stratified cross vali­

dation. Although this approach is more computationally intensive than the com­

monly used ‘hold out’ method, all examples in the dataset are used for training 

and testing and thus confidence on the generalisability of the results is increased. 

In addition the stratification process improves the representativeness of each fold 

as the process seeks to represent the same proportion of each class in a fold as is 

in the original full dataset [WE05].

The models developed as part of this thesis are the most effective models devel­

oped to predict programming performance. Comparable results have never been 

achieved before. The models are effective even when students have just commenced 

a programming module. Consequently, timely interventions can be put in place to 

prevent struggling students from failing. The models also identifies strong students 

and thus additional resources or alternative streams could be provided to further 

develop their skills. In addition, the fact that the models are based on three years 

of studies and involve students from multiple institutions enhances the likely gen­

eralisability of the findings. Indeed just recently, Fincher and Petre [FP04], two 

leading researchers in the CSEd field, argued that repetition and generalisation are 

the key drivers for research that can be considered valid, relevant and important.

R ecom m endation o f a suitable algorithm  to  predict th e likely perfor­

m ance o f incom ing students

Inspection of the predictions made by each of the machine learning algorithms 

indicated that naïve Bayes was the most effective algorithm for predicting pro­

gramming performance. To confirm this, detailed statistical analysis was carried 

out to determine if there were any statistically significant differences between the 

prediction accuracy of each of the algorithms and also between the training times

5
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of each algorithm. The analysis confirmed naive Bayes as the most successful 

algorithm for predicting programming performance.

Although the examination of six machine learning techniques and the subse­

quent statistical analysis was a significant contribution to the field, optimisations 

were also carried out to investigate if the results could be further improved. Al­

though several techniques were implemented with varying performance, one par­

ticular ensemble algorithm, StackingC, was shown to improve the results achieved 

by the naïve Bayes model. However, the improvements are not sufficient to justify 

the additional work required to implement StackingC. Therefore, naïve Bayes is 

still recommended for predicting incoming student programming performance.

1.3 Thesis Overview

Chapter two provides a review of previous research on factors that influence pro­

gramming. The studies are summarised and the results are outlined. In addition, 

self-regulated learning, a topic that is currently receiving considerable research 

attention, is introduced and its potential for predicting academic performance is 

discussed. In Chapter three the materials and methods used in this research are 

presented. First, a pilot study carried out in the academic year 2003-2004 is de­

scribed. The results of this study are outlined and discussed and the main study 

is then introduced. A detailed review of the instruments used, the participants 

and data pre-processing is provided. Chapter four provides an overview of the six 

machine learning techniques used to model the data. Each algorithm is described 

and an evaluation of its strengths and weaknesses in relation to our research is 

provided. In addition, an overview of Principal Component Analysis (PCA), a 

dimensionality reduction technique is outlined. Chapter five describes the results 

achieved by each of the techniques. Further optimisations are proposed and imple­

6



Motivation Introduction

mented and the subsequent results are outlined. In Chapter six the overall results 

are discussed and analysed. An epilogue study, which was carried out to verify 

the findings is described and the results are discussed. Chapter seven provides 

conclusions and suggests possible directions for future work.

1.4 Motivation

Computer science courses have a notoriously high attrition rate worldwide and 

Ireland is no exception. In a study carried out in 2001 by the Higher Education 

Authority (HEA) in Ireland [MFK01] the field of computer studies was found to 

have the highest rate of non-completion. Over one-quarter (26.9%) of students who 

commenced in this field failed to complete with a further 14% of students gradu­

ating late. A considerable cause of failure is CS1, typically an introductory pro­

gramming module. A recent multi-institutional, multi-national study [MAD+01] 

found that after completing an introductory programming course students scored 

an average of 21% on a short lab based assessment, which the module lecturers 

anticipated the students would pass. At the Department of Computer Science, 

NUI Maynooth, on average 34% of students failed on their first attempt of the 

first year programming module over the four academic years starting in 2001. In 

addition 21% of students who registered for the module did not complete it but 

typically transferred out of computer science.

Numerous studies over the past 30 years have attempted to examine factors 

that influence programming performance while no computer science education con­

ference is complete without at least one session dedicated to issues in learning how 

to program. However identifying struggling students is still a difficult task. Often 

the first programming assessment does not take place until after the first six weeks 

of the module and when a large number of students take the course, correction can

7
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take a considerable amount of time. Even when early assessments are indicative of 

overall performance, it may be too late for students to withdraw from the course or 

for instructors to intervene to prevent struggling students from failing. An early 

measure of how a student is likely to perform on an introductory programming 

module is required. Previous studies have considered a wide range of factors that 

could influence performance. These factors include: previous academic and com­

puting experience, various cognitive and behavioural factors and level of comfort 

felt on an introductory programming module. However, it is difficult to know how 

to apply the findings of these studies or to feel confident that the findings would 

hold true in a further study as typically, the studies are one-off and little if any 

attempt has been made to replicate the findings.

Two important longitudinal studies (PhD theses) in the area were carried out 

by Cantwell-Wilson in 2000 [CW00] and Ventura in 2003 [Ven03]. Cantwell-Wilson 

examined 12 factors and a multiple regression model was able to account for 44% of 

the variance in midterm results. Similarly, Ventura’s PhD thesis (2003) developed 

several multiple regression models for predicting performance on an objects-first 

programming module. The most significant regression model developed that did 

not include variables directly related to the module, for example, the number of 

continuous assessment exams taken and the percentage of lab assignments submit­

ted, was able to account for 53% of the variance in course results [Ven03]. Although 

multiple regression analysis is a well respected technique, it makes a number of 

assumptions including a normal distribution of the residuals and linearity of rela­

tions among the variables. This can be problematic if these assumptions are not 

satisfied. Other techniques exist, such as Artificial Neural Networks (ANNs), that 

do not require normal distributions and can handle non-linearly related data, often 

produce results superior to those of multiple linear regression models. However, 

no studies to date have used machine learning techniques to predict introductory
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programming performance. While predictions of reasonably accurate student re­

sults could be useful, in terms of retention it is of less importance than knowing 

whether students are likely to struggle with the material or not. As such, being 

able to classify students as ‘weak’ or ‘strong’ programmers would be a significant 

contribution to the field.

Over the past six years the author has been involved in running the intro­

ductory programming module within the Department of Computer Science, NUI 

Maynooth. During this time it was observed that many students struggle to learn 

how to program and the author has been directly involved in the development of 

several initiatives to assist them. These initiatives have included the introduction 

of Problem-Based Learning (PBL) workshops, the development of an intranet ap­

plication to provide a centralised repository of first year information, the develop­

ment of an intranet-based programming assessment system, weekly programming 

clinics and tutorials. Although it is too early to say definitively, initial evidence 

suggests that these initiatives have been beneficial [OBG+04], However, such ini­

tiatives are limited if it is not known early on which students need extra resources 

or material in order to help them to learn how to program. Thus, the research 

addressed in this thesis is of great importance to the author in terms of both its 

research value and its application to her work on improving retention.

1.5 Publications

Part of the work in this thesis has been presented in the publications listed in this 

section.

1. Bergin. S, Reilly. R. “Using Machine Learning Techniques to Predict Intro­

ductory Programming Performance” , Applied Artificial Intelligence, submit­

ted May 2006.

9



Publications Introduction
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mitted January 2006.
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Chapter 2

Literature R eview

.P redictors of performance on introductory programming can broadly be clas- 

sified into the following categories: previous academic and computer experience, 

cognitive factors and psychological factors with emphasis on perceived comfort- 

level on the course. An overview of studies within each of these categories is 

provided and further supplementary information is presented in Table 2.1.

2.1 Previous Academic and Computing Experi­

ence

Previous academic experience and programming experience have often been cited 

as predictors of programming success. Numerous studies have found that both 

mathematical ability and exposure to mathematics courses is related to perfor­

mance on introductory computer science modules. Similarly, performance in and 

experience of other academic subjects have been shown to be important. Fi­

nally, several studies have ascertained that prior programming experience and 

non-programming computer experience are useful predictors of programming per­

formance.

12
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2.1.1 P revious A cadem ic E xperience

Numerous studies have investigated the role of mathematics in learning to pro­

gram. Leeper and Silver [LS82] developed a regression model that included the 

number of high school mathematics units completed and SAT mathematics score 

that could account for 26% of the variance of overall results on an introductory 

programming course. SAT mathematics was found to have one of the strongest 

correlations with performance, r  =  0.37. Similarly, Byrnes and Lyon [BL01] in 

a recent Irish study, found a significant correlation between Leaving Certificate 

mathematics, r  =  0.353, p < 0.01, and the overall results students achieved on 

a first year programming and logical methods module taught using BASIC. In a 

study by Evans and Simkins [ES89] the number of high school mathematics courses 

a student had taken prior to the course was found to be a significant predictor of 

homework assignment performance. However, multiple regression models devel­

oped using this variable and others accounted for at most 23% of the variance. 

In a study of 12 factors that influence performance on an introductory computer 

science course, Cantwell-Wilson and Shrock [CWS01] found mathematics back­

ground to be the second most important predictor. Hostetler [Hos83] also found a 

student’s mathematics background to be a significant predictor of performance. A 

regression model was able to classify 61 of 79 students (77.2%) into high and low 

aptitude groups based on the overall grade a student achieves on an ‘Introduction 

to Computers and Their Application to Business’ course using Fortran. Honour- 

Werth [HW86] found a significant correlation between the number of high school 

mathematics courses taken, r  =  0.252, p < 0.05 and student performance on an 

introductory computer science course. Similarly, Konvalina [KWS83] found that 

students who completed a first technical computer science course had significantly 

more mathematical background before taking the course than students who with­

drew from the course. Stein [Ste02] in a study of 160 students on a programming
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course through Java found that students who studied calculus do at least as well 

as students who studied discrete mathematics. Thus, he concluded that having 

some form of mathematical maturity is more important for programming than ex­

perience with specific mathematical topics and this conclusion appears to be well 

supported by the findings of the studies presented here.

Ability in and experience of academic subjects other than mathematics has 

also been previously investigated. Leeper and Silver [LS82] developed a regression 

model using units of high school English, mathematics, science, a foreign language, 

SAT verbal score, SAT mathematics score and high school rank that accounted for 

26% of the variance of results on an introductory programming course. Byrnes and 

Lyon [BL01] found a significant correlation between Leaving Certificate science 

scores (r =  0.572, p < .01) with the overall results students achieved on a first 

year programming and logical methods module through BASIC. However, neither 

Leaving Certificate English nor performance in a foreign language were found to 

be good predictors of performance.

2.1.2 Prior C om puting E xperience

Evans and Simkins [ES89] found that prior BASIC experience was a predictor 

of performance in an entry level business computer class while Cantwell-Wilson 

and Shrock [CWS01], similarly found that a previous formal class in programming 

had a positive relationship with performance on a introductory computer science 

course using C++. Konvalina [KWS83] in a study of 382 students found that stu­

dents who withdrew from an introduction to computer science course (n =  154) 

had significantly lower computer science experience than students who completed 

the course (n =  228). In a study of 75 students on an introductory programming 

course, Hagan [HM00] found that students with previous programming experience 

had a significantly higher mean score than students with no previous experience
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on all assessments except the final examination. In addition, the study found 

that the more programming languages a student knows prior to taking the course, 

the higher their performance. Holden [HW04] found that prior experience (inde­

pendent of the programming language) is an advantage in the first course on an 

‘Introduction to Programming’ sequence but not in later courses. It appears that 

while prior experience is initially an advantage, as an introductory programming 

course progresses it loses its importance. In Ireland, programming is not an ex­

amination subject on the second level curriculum and consequently few students 

commence introductory programming modules in third level with any formal train­

ing. As the studies presented in this section all took place in the United States of 

America, it is difficult to know how relevant their findings are to an Irish study of 

programming factors. Byrnes and Lyon [BL01] attempted to examine the role of 

prior programming performance in an Irish study but found that so few students 

in their study had previous programming experience it was not possible to draw 

any conclusions.

2.2 Cognitive Factors

The role of various cognitive factors in learning to program has also been re­

searched. Previous studies have investigated various cognitive factors, including 

cognitive style and abstract reasoning ability, and provide useful insights into the 

role of cognition in learning to program.

Hostetler [Hos83] investigated the performance of 79 students studying an ‘In­

troduction to Computers and Their Application to Business’ class using Fortran. 

The study found that diagramming (analysing a problem and ordering the solution 

into a logical sequence) and reasoning (translating ideas and operations from text 

based problems into mathematical notations) tests on the Computer Programmer
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Aptitude Battery (CPAB) along with a students’ grade point average (GPA) were 

the most important predictors of success. A multiple regression model, using these 

three variables with mathematics background and a personality factor (a measure 

of how carefree an individual perceives themselves to be), correctly classified 61 of 

79 students (77.2%) into high- and low-aptitude groups based on the overall grade 

a student achieves.

Kurtz [Kur80] designed and carried out a test on the formal reasoning abilities 

of 23 students on an introductory programming course using Fortran. Based on 

performance, students were classified at three intellectual development levels: late 

concrete, early formal and late formal. The levels of late concrete and late formal 

were found to be strong predictors of low and high performance respectively. A re­

gression model using the formal reasoning levels accounted for 63% of the variance 

in grades. Honour-Werth [HW86] used Kurtz’s measure of intellectual development 

[Kur80] and found significant correlations between the measure and performance 

on an introductory programming course using Pascal, r = 0.232, p < .05. They also 

found a correlation between performance and cognitive style r  =  0.317, p < .01. 

Barker and Unger [BU83] implemented a shortened version of Kurtz’s test [Kur80], 

reducing the time required to take the test from 80 to 40 minutes and the number 

of questions from 15 to 11. The test was administered to 353 students. ANOVA 

testing indicated that there was a significant difference between the mean score 

of the late concrete group and the means of the early and late formal groups. 

A regression model using level of intellectual development accounted for 12% of 

the variance in the final course grade. Gibbs [GibOO] measured the relationship 

between cognitive style (field dependent and field independent) and programming 

performance. In a study of 50 students on a first programming course using a con­

structivist learning environment, no significant correlations were found between 

cognitive style and programming achievement. Mayer [MDV86] investigated the
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relationship between learning to program and ‘learning to think’. Eight think­

ing skills were assessed and three measures, word-problem translation (translating 

word problems into equations), word-problem solution (giving the correct numeri­

cal answer to word problems) and following directions, were found to be significant 

predictors of performance accounting for 50% of the variance in results. Although 

this result is considerable, the study only involved a small sample (n =  50) and 

has not been validated through further studies. Austin [Aus87] found that quan­

titative and algorithmic reasoning abilities and iconic pattern recognition abilities 

were important indicators of programming success. The latter was found to be 

important for both program reading and writing while the former was only found 

to be important for program reading.

In summary, a wide variety of cognitive factors have been investigated including 

logical ability, reasoning ability, arithmetic ability, intellectual development, and 

cognitive style. It appears that certain cognitive factors play a role in learning to 

program but typically the strength of this relationship is not particularly strong 

and in general accounts for very little of the variance in student performance.

2.3 Psychological Factors

Recently researchers have examined the relationship between students’ expec­

tations of an introductory computing module and their actual experience of it. 

Cantwell-Wilson and Shrock [CWS01] in a recent longitudinal study found that 

the most important predictor of students’ performance on an introductory com­

puter science course was comfort-level measured by the degree of anxiety a student 

felt about the course. The measure includes level of comfort asking and answering 

questions in class, labs and during office hours; designing programs without help, 

understanding programming concepts, completing lab assignments and perceived
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understanding of material compared to classmates. A multiple regression model, 

F (12 ,92) =  6.13,p =  0.0001, with three significant variables: comfort-level, math­

ematics background and attribution of success or failure to luck resulted in an 

adjusted R square of 44%. Ventura [Ven02] examined predictors of a graphical 

design-centric objects-first Java course and found that student effort (as mea­

sured by the number of hours spent using the labs) and comfort-level were the 

strongest predictors of success. A stepwise regression model using these two pre­

dictors and SAT mathematics score accounted for 52.9% of the variance in course 

grade. Holden [HW04] measured the comfort-level of students using computers 

at the start of a programming course. No relationship between this measure and 

performance were found. It is important to note that the measure was specific 

to computer usage and not a measure of programming comfort-level. Newsted 

[New75] in a study of 131 introductory Fortran students found that two of the 

most important predictors of performance were perceived ability and time spent 

working on the course and working with other students. While perceived abil­

ity was found to be positively related to performance, the number of hours spent 

working on the course was negatively related to performance. This latter finding is 

interesting when compared to Ventura’s [Ven02] finding on the positive relationship 

between the number of hours the students spent using the labs and programming 

performance and requires further investigation. Hagan [HM00] found a significant 

difference between the confidence levels felt by students, with and without previ­

ous programming experience, that they would pass an introductory programming 

course, F  — 4.558, p <  0.05. In addition, Rountree et al. [RRR02] in a study of 472 

students found that the grade a student expected to achieve in an introductory 

module was the most important indicator of performance. Goold and Rimmer 

[GR00] identified that ‘dislike of programming’ is related to performance on an 

introductory programming course. A multiple regression model composed of (in
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order) dislike for programming, gender, average on other modules and a measure 

referred to as ‘raw secondary score’ which incorporated student performance in 

English and their best (other) three subjects taken for final examination in sec­

ondary school accounted for 43% of the variance in student results. The authors 

did not find expected grade or mathematics to be predictors of performance.

The relationship between students’ mental models of and self-efficacy in pro­

gramming (an individuals’ judgements of their capabilities to perform various 

programming tasks) and their performance has also been investigated [RLW04] 

[Wie05]. Recently Ramalingham et al. [RLW04] investigated the effects of stu­

dents’ self-efficacy for programming and their mental models of programming and 

found that self-efficacy is influenced by a students’ mental model of programming 

and also by previous computer and programming experience. Significant differ­

ences were found in the pre- and post-self-efficacy measures. A path analysis 

model with pre- and post-programming self-efficacy, programming mental model 

and previous experience as predictor variables accounted for 30% of the variance 

in the final course grade. Similarly, in a study by Wiedenbeck [Wie05] measures of 

pre- and post-self-efficacy of programming were shown to be important predictors 

of performance. A measure of previous computer and programming experience 

was found to be a strong positive predictor of pre-self-efficacy. However, pre-self- 

efficacy was found to have a negative relationship with performance and the author 

suggests that perhaps some students are over confident at the start of the course. 

Knowledge organisation was measured using a program recall task and found to 

have a positive relationship with performance. A regression model composed of 

previous experience, pre- and post-self-efficacy and knowledge organisation was 

able to account for 30% of the variance in final grade.

It appears that how students feel before and during an introductory program­

ming course (‘comfort-level’) is a very important predictor of performance on an
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introductory programming course. Research in this area has been very fruitful and 

further studies on this topic would be well justified.

2.4 M iscellaneous Factors

The previous sections have outlined the main body of research on factors that 

influence introductory programming success. Other factors have also been consid­

ered, albeit often in once-off studies that do not fall into the previous categories. 

In particular two factors have been investigated in several studies and have been 

found to relate to programming performance. The factors are (1) the number 

of hours a student spends playing computer games and (2) the number of hours 

spent working at a part-time job. Cantwell-Wilson and Shrock [CWS01] found 

that the number of hours students played computer games was negatively related 

to performance on an introductory computer science course. Similarly, Evans and 

Simkins, [ES89] found the number of hours students spent playing electronic games 

(video and computer games were studied) to have a negative relationship with per­

formance on an introductory Basic course. They also found that the number of 

hours a student spent working at a part-time job negatively relates to performance. 

Honour-Werth [HW86] found a significant correlation between hours working at 

a part-time job r =  0.203, p < .1 and performance on an introductory computer 

science course using Pascal.
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R esearch ers L angu age n R eferen ce  C riter ion  S ign ifican t P re d ic to r s

[Aus87] Pascal

[BU83] C + +  and C

[BL01] BASIC

[CWS01] C + +

76 Composite score based on 

program  reading, program  

w riting and lab perfor­

mance.

353 Final grade of students in

15 class sections learning 

two different program m ing 

languages.

110 Overall result on ‘P ro­

gramm ing and Logical 

M ethods’ for first year 

Hum anities students (70% 

w ritten  exam ination and 

30% weekly assignments).

105 M idterm  course grade on

‘CS202 In troduction  to  

C om puter Science’ for 

introductory com puter 

program m ing students.

A m odel composed of high school 

composite achievement, quantitative 

and algorithm ic reasoning abilities, 

vocabulary and general information 

abilities, self-assessed m athem atics 

ability and m easures of an intro­

verted /ana ly tic  style and extroverted 

level was able to  account for 64% of 

the variance in results.

Intellectual development (ID) test 

successfully predicted advanced stu­

dents. A regression m odel based on 

ID level accounted for 12% of th e  vari­

ance in final course grade.

Significant correlations found for: 

Leaving Certificate (LC) m athem atics 

result (r =  0.353, p  <  .01), LC science 

result (r =  0.572, p <  .01) w ith pro­

gramm ing performance.

+’(12,92) =  6 .13,p =  0.0001, ad­

justed  R square =  44%, three signif­

icant variables: comfort-level, m ath­

ematics background and attribu tion  

of success/failure to  luck. Secondary 

analysis indicated th a t  th e  num ber of 

hours playing computer-gam es prior 

to  th e  course had a  negative effect on 

grade while experience of a  prior for­

mal program m ing class had a  positive 

effect.

continued on next page
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continued from previous page
R esearch ers L anguage R eferen ce  C riter ion Sign ifican t P re d ic to r s

[ES89] BASIC

[GibOO] BASIC

[GROO]

[HMOO] Java

117 Six outcome variables on 

an entry level business 

com puter class (homework 

score, 2 BASIC exams, 2 

m idterm  exams and a  final 

exam ination).

50 Two achievement tests on 

a first program m ing course 

of com puter science s tu ­

dents. The first tes t was 

on designing and th e  sec­

ond test was on coding.

39 R esult on an introductory

program m ing concepts 

course for students enrolled 

in a com puter-related de­

gree (60% exam ination 

and 40% assignments).

97 Five outcom e variables on

a first program m ing course 

in an undergraduate com­

puting degree (2 tes ts 30%, 

2 assignments 30% and ex­

am ination 40%).

Various predictors dependent upon 

outcom e variable found (for exam­

ple, num ber of high school m athe­

m atics courses, prior BASIC experi­

ence, hours playing video or com puter 

games). M ultiple linear regression 

modelling accounted for a t m ost 23% 

of th e  variance on each outcome vari­

able.

W ith in  a  constructivist learning en­

vironm ent, cognitive style (field de­

pendent and field independent) was 

not found to  influence program m ing 

achievement (on either tests).

A m ultiple regression model, com­

posed of (in order) dislike for pro­

gramm ing, gender, average on o ther 

m odules and raw secondary score ac­

counted for 43% of th e  variance in 

scores.

Significant difference between th e  per­

form ance of students w ith and w ith­

out prior program m ing experience on 

all assessments except the  final ex­

am ination. Further analysis indicated 

th a t  th e  more program m ing languages 

a studen t knew prior to  taking the 

course, the  higher the  performance. 

They also found a  significant differ­

ence between the  confidence level of 

studen ts w ith and w ithout prior ex­

perience on their expectation to  pass 

the  class (F  =  4.558, p  <  0.05).

continued on next page
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continued from previous page
R esearch ers L anguage R eferen ce  C riter ion S ign ifican t P red ic to rs

[HW04] Java

[HW86] Pascal

[Hos83] Fortran

[KWS83] Basic

[Kur80] Fortran

159 Three in-class exam s on

the first course of an ‘Intro­

duction to  Program m ing’ 

sequence.

58 Student grade on ‘Com­

p u ter Science I ’ (First 

class in the  ACM Cur­

riculum ). Grade included 

scores on homework assign­

m ents 30%, exam inations 

40%, quizzes 10% and a 

program m ing project 20%.

79 Overall grade on an ‘In tro­

duction to  Com puters and 

Their Application to Busi­

ness’. The grade consists 

of scores on programming 

assignments, two one-hour 

exam inations and a three- 

hour final examination.

382 Final exam ination on an 

‘Introduction  to  Com puter 

Science’ course based on 

CS1 in Curriculum  ’78.

23 Final grade on an ’In tro­

duction to  Program m ing’ 

course for com puter science 

m ajors and non-majors. 

Grade composed of scores 

on programs 55%, quizzes 

10%, m idterm  11.7% and 

final exam ination 23.3%.

Prior experience (independent of lan­

guage) is an advantage in the first 

course in the sequence bu t not in later 

courses.

Significant correlations found for: 

high school m athem atics ( r  =  

0.252, p  <  .05), hours working at a 

part-tim e job (r  =  0.203, p <  .1) 

, P iagetian intellectual development 

( r  =  0.232, p  <  .05) and cognitive 

style (r =  0.317, p  <  .01) with per­

formance.

A multiple-regression model, using di­

agram ming and reasoning score on 

the C om puter Program m er A ptitude 

B atte ry  (CPAB), GPA, m athem at­

ics background and a  personality fac­

to r (sober or happy-go-lucky tra it) , 

correctly classified 61 of 79 students 

(77.2%) into high and low aptitude 

groups.

Found significant differences between 

the m athem atics background of stu ­

dents who w ithdraw  from the  course 

and studen ts who complete the 

course, in th a t  studen ts who com­

pleted the course had significantly 

more m athem atical background be­

fore taking the  course.

Level of formal reasoning is a strong 

predictor of perform ance (specifically 

poor and outstanding performance), 

accounted for 63% of th e  variance in 

grades.

continued on next page
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continued from previous page
R esearch ers L anguage R eferen ce  C riter ion Sign ifican t P re d ic to r s

[LS82] Not specified

[MDV86] Basic

[New75] Fortran

[RLW04] C + +

92

57

131

75

Grade on an In troductory  

Program m ing Course.

Basic exam ination score.

Grade on an  In troductory  

Program m ing Course.

Final grade on an introduc­

to ry  program m ing course 

for CS m ajors and non- 

majors.

Regression model accounted for 26% 

of th e  variance using num ber of high 

school english, m athem atics, science 

and foreign language units completed, 

SAT verbal and SAT m athem atics 

score and high school rank. Strongest 

correlations found for SAT verbal and 

SAT m athem atics score.

Regression model accounted for 50% 

of th e  variance using two prob­

lem transla tion  skills: word problem 

transla tion  and word problem  solution 

and a  procedure comprehension skill: 

following directions.

Regression m odel using perceived 

ability, college GPA and tim e spent 

working on the  course accounted for 

41% of the  variance. T he first two 

variables were found to  be positively 

related to  perform ance b u t tim e spent 

working on the  course was found to  be 

negatively related.

Used p a th  analysis to  determ ine th a t 

m ental models affect success directly 

and streng then  self-efficacy. Self- 

efficacy is influenced by previous per­

formance. M ental model, self-efficacy 

and previous program m ing and com­

puter experience accounts for 30% of 

the variance in final course grade.

continued on next page
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continued from previous page
R esearch ers L anguage R eferen ce  C riter ion Sign ifican t P re d ic to r s

[RRR02] Java

[Ste02] Java

[Ven02] Java

[Wie05] C + +

472 Final m ark on a  first

year program m ing course. 

T he m ark was composed 

of 30% bi-weekly program ­

m ing assignments, 20% 

m id-sem ester exam ination 

and 50% final exam ination.

160 Perform ance on CSII, a

program m ing course.

499 Course grade on a graphi­

cal design-centric objects- 

first course. Grade based 

on weighted average of 

homework and quizzes 

(10%), lab average (40%) 

and exam (50%).

120 Final grade of non-m ajors 

on an in troductory  pro­

gramm ing course.

T he strongest indicator of success was 

the  grade a  studen t expected to  get on 

the  course.

Students who study  Calculus do at 

least as well as studen ts who study  

discrete m athem atics. Thus, some 

form of m athem atical m aturity  is im­

portan t for program m ing.

A stepwise regression model using a 

log of percent lab usage, comfort- 

level and SAT m athem atics score ac­

counted for 52.9% of th e  variance in 

course averages.

A m easure of previous com puter 

and program m ing experience along 

w ith pre and post measures of self- 

efficacy and knowledge organisation 

accounted for 30% of the  variance in 

final grade. Previous experience is a 

strong predictor of pre-self-efficacy.

Table 2.1: Previous research on factors that influence programming performance

2.5 Self-Regulated Learning

Although numerous studies of factors that influence programming performance 

have been carried out, a comprehensive understanding of the factors has yet to be 

realised and thus further predictors are required. Recently, self-regulated learning 

(SRL) has become an important topic in education and psychology. Zimmer-
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man [Zim86] defines SRL as the degree to which learners are meta-cognitively 

(the control of cognition through planning, monitoring and regulating [Pin89]), 

motivationally and behaviorally active participants in their own academic learn­

ing. Furthermore, Pintrich and DeGroot [PD90] propose that a complete model of 

self-regulated learning should incorporate cognitive and meta-cognitive strategies, 

referred to as a skill component, and motivational components, referred to as will 

components.

A well recognised model of self-regulated learning was developed by Pintrich 

and his colleagues [PSGM91] and includes skill and will components of self-regulated 

learning. The skill component includes cognitive strategies, meta-cognitive strate­

gies and resource management strategies. The will component is composed of 

various motivations, including intrinsic goal orientation and task value [Pin99],

Cognitive strategies include rehearsal, elaboration and organisational strate­

gies. Rehearsal strategies include the recitation of information to be learned and 

mnemonic techniques for memory tasks. These strategies are assumed to help 

learners to attend to and select important information from lists or texts, but may 

not reflect a very deep level of processing. Elaboration strategies involve paraphras­

ing, summarising, creating analogies and generative note taking. These strategies 

help learners to integrate and connect new information with prior knowledge. Or­

ganisational strategies include clustering, outlining and selecting the main ideas 

from texts. These strategies help learners to select appropriate information and to 

develop connections between different pieces of information [Pin99], [PSGM91].

Meta-cognitive strategies include planning, monitoring and regulating cogni­

tion. Planning includes setting goals, skimming a text before reading and analysing 

tasks. These activities help to activate relevant aspects of prior knowledge, mak­

ing the comprehension of the material easier. Monitoring includes tracking one’s 

attention when reading or listening and self-testing using questions. Regulation
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concerns the continuous modification of one’s cognitive activities. For example, a 

student monitors her attention while reading an article to make certain that she 

understands its content. When she realises through her monitoring activities that 

she has not comprehended a portion of the text, she will go back and reread the 

difficult part of the article. This rereading of text is a regulation strategy [Pin99], 

[PSGM91]. Finally, resource management strategies refer to strategies students use 

to manage their time, their effort, their environment and other people, including 

their interaction with other students and teachers to seek help.

A considerable number of studies [PBVOO], [PB90], [PD90], [ZMP90] have con­

sistently found a significant positive correlation between academic achievement 

and self-regulated learning among elementary, high school, and college students. 

In addition, numerous studies [PRP99], [PG91], [Pin89], [PB90], have found that 

intrinsic goal orientation and high task value in a topic (beliefs about the impor­

tance of, interest in and utility value of the task) are strongly positively correlated 

with the use of cognitive and meta-cognitive strategies and also with academic 

performance.

While numerous studies have been carried out to determine factors that relate 

to programming success the findings are largely inconclusive and suggest that 

perhaps more evidence of potential factors needs to be gathered. It appears that 

computer science education researchers have yet to examine, in detail, the role of 

SRL in learning to program and, more specifically, if SRL is a useful predictor 

for programming performance. Given the significant findings on the role of self­

regulated learning in other academic domains it would appear well justified to 

examine its role in learning to program.
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2.6 Summary

Over the past 30 years numerous studies have investigated predictors of program­

ming success. Ability in and exposure to mathematics has been confirmed as a 

factor by several studies. A science background also appears to have a positive 

relationship with introductory programming performance, however the role of lan­

guages including english and foreign languages is less clear. Prior programming 

experience has also been found to be a predictor, however, previous studies have 

taken place in countries where students can study programming for examination 

at national level. This is not the case in Ireland and therefore it is difficult to know 

how to apply the findings to such a setting.

Several researchers have focused on the role of cognitive factors in learning 

to program. Numerous factors including arithmetic ability, logical ability and 

reasoning ability have been found to relate to success in programming. However, 

the strength of the relationship appears to be weak. Psychological factors have also 

been examined and research on the role of students experience on and expectations 

of an introductory programming course has proved very fruitful. Numerous studies 

have found that perceived comfort-level on the module is the best overall predictor 

of programming performance. It would appear that further work in this area would 

be well-justified.

Finally, although numerous studies on factors that influence programming per­

formance have been carried out the smallest set of predictors that can account for 

the most significant amount of variance in results has yet to be established. A con­

siderable number of studies have found a significant positive correlation between 

academic achievement and Self-Regulated Learning (SRL) among elementary, high 

school, and college students. Computer science educational researchers have yet 

to examine, in detail, the role of SRL in learning to program but such research 

would appear to be well justified.
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Chapter 3

M ethodology: Subjects, 

Instrum ents, Institutions and 

Studies

I n  this chapter the methods employed to gather data for this research are outlined. 

First, a pilot study undertaken in the academic year 2003-2004 is described. The 

predictor variables investigated, the methodology used, the analytical techniques 

and the main findings are discussed. The research methodology employed for 

a subsequent detailed study carried out in the academic year 2004-2005 is then 

presented. An overview of the participants involved, the instruments used and 

data pre-processing is provided.

3.1 P ilot Study

During the academic year 2003-2004 a pilot study was carried out, at the De­

partment of Computer Science NUI Maynooth, to investigate factors that could 

influence success on an introductory programming module. The introductory pro­
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gramming module at the university is composed of a one-and-a-half hour Problem- 

Based Learning (PBL) workshop, a one-and-a-half hour laboratory session and 

three one-hour lectures per week over two semesters [OBG+04], Students in Ire­

land do not study programming for national examination in secondary school and 

the majority of students taking this module have recently completed second level 

education.

The selection of factors for this study were based on the findings of the litera­

ture review, as outlined in Chapter 2. However, factor selection was constrained 

for a number of reasons, including availability of participants, length of completion 

time needed for each instrument and the stage in the academic year. Given these 

restrictions the relationship between 15 factors and performance on the introduc­

tory module was investigated. The factors fall into four broad categories:

1. Previous academic and computer experience: as measured by performance in 

the Irish Leaving Certificate (LC) examinations in mathematics and science 

subjects and self-reported computer experience.

2. Specific cognitive skills: as measured by an in-house cognitive test.

3. Personal information: gender, age, work-style preference (preference to work 

alone or as part of a group), encouragement from others and the number of 

hours per week spent working at a part-time job.

4. Experience on the module: students perception of how well they are doing 

and how comfortable they feel with the module material.

Performance on this module is based on continuous assessment (30% of the 

overall mark) and a final examination (70% of the overall mark). The measure of 

performance reported upon in this study is the overall module mark.
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3.1.1 Instrum ents

Two instruments were used to collect data: a questionnaire and a custom-made 

cognitive test. The questionnaire collected data on the following items: (1) LC 

mathematics grade, (2) LC physics grade, (3) LC biology grade, (4) LC chem­

istry grade, (5) highest LC science grade, (6) comfort level on the module (likert- 

scale questions based on a questionnaire previously used by Cantwell-Wilson and 

Shrock [CWOO] that measured a student’s perceived understanding of program­

ming concepts, difficulty designing programs without help, difficulty in completing 

lab assignments, and their ease at asking and answering programming questions), 

(7) perceived understanding of the module material (based on a single likert-scale 

question again based on a questionnaire by Cantwell-Wilson and Shrock [CWOO]: 

‘How do you rate your level of understanding of the programming module?’), (8) 

prior programming experience, (9) prior non-programming computer experience, 

(10) work-style preference, (11) encouragement from others to study computer sci­

ence, (12) number of hours per week working at a (part-time) job. The cognitive 

test was developed within the Department of Computer Science at NUI Maynooth 

1 and comprised items involving numerical and letter sequencing, arithmetic rea­

soning, procedural ability and problem translation skills. In addition, information 

on gender, age and overall module results was available for all students taking the 

module. Both instruments were completed in the second semester of the module 

and data collection for both was paper-based.

3.1.2 Participants

Students enrolled in the first year ‘Introduction to Programming’ module volun­

tarily participated in the pilot study. For each of the studies outlined in this thesis, 

1Developed by Jacqueline McQuillan, Department of Computer Science, NUI Maynooth.
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students were provided with an information sheet about the research and signed a 

consent form agreeing to participate. Permission for the research activities docu­

mented in this thesis was also granted by the Ethics Committee at NUI Maynooth. 

Ninety-six students completed the module in the academic year 2003-2004. In to­

tal 80 students (49 male, 31 female) completed the cognitive test and 30 (19 male, 

11 female) students completed the survey.

3.1.3 In itia l A nalysis

A review of the literature, as documented in Chapter 2, indicated that scientific 

analysis in this area is typically based on statistical techniques such as correla­

tion and regression. To maintain consistency with previous studies and to allow 

findings to be directly compared, initial analysis in this thesis used the same tech­

niques. However, subsequent analysis employed techniques tailored to our research 

requirements, that is, techniques that are suited to predicting weak and strong pro­

gramming students.

S tatistical Techniques

Initial analysis of the data employed Pearson correlation coefficients, multiple lin­

ear regression and t-tests for independent samples. In order to satisfy some of 

the underlying assumptions of these techniques equality of variance and normality 

tests were also performed. Each of these techniques are briefly described in this 

section.

Pearson’s P rodu ct M om ent Correlation Coefficient measures the strength 

of the linear relationship between two variables (X and Y). It is based on the 

assumption that both variables are interval or ratio based and are sampled from 

populations that follow a normal (Gaussian) distribution. This type of correlation
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is usually signified by r and can take on values from —1.0 to 1.0, where —1.0 is 

a perfect negative correlation, 0.0 is no correlation, and 1.0 is a perfect positive 

correlation [Hin95]. The formula for calculating r is given by Equation 3.1 where 

N  is the sample size.

y ^ X Y  -
rXy = , k  N —  (3.1)

^ ( E X 2 - E f f i ) ( E y 2 - i £ p ? ;

M ultiple regression is used to assess the relationship between a continuous de­

pendent variable and several linear combinations of independent variables. It can 

also be used to establish the relative predictive importance of the independent 

variables. Regression requires that a number of underlying assumptions are satis­

fied, including, the absence of outliers (very high or very low independent variable 

values), a linear relationship between the predicted dependent variable and each 

of the independent variables exists (although transformations can be applied to 

satisfy this assumption), equality of variance and that the errors of prediction 

are normally distributed around each and every predicted dependent value score 

[TF01]. The regression equation is given by:

Y  = A  +  B i X i  +  B2X 2 + . . .  +  BkX k (3.2)

where Y  is the predicted value on the dependent variable, the X  values represent 

the independent variables, the B  values are the regression coefficients, representing 

the amount the dependent variable Y  changes when the corresponding independent 

variable changes one unit; A  is the intercept with the y-axis, representing the value 

of Y  when all the independent variables are 0.

The most common method for fitting a regression line is the least-squares 

method. This method calculates the best-fitting line by minimising the difference 

between the sum of the squares of actual values Y  and the predicted values Y ,
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that is £ ( y  -  Ÿ f  [Hin95].

Equality of variance tests  check if the variability in scores on a continuous 

variable is approximately the same at all values of another continuous variable. 

Levene’s test [Lev60] can be used to measure equality of variance and is more 

robust than other similar tests as it is not as sensitive to departures from nor­

mality [TF01]. Levene’s test can consider the distances of the observations from 

their sample median rather than their sample mean making the test more robust 

for smaller samples. Given a variable X  with a sample size of N , divided into g 

subgroups, where n* is the sample size of the ith subgroup, the test statistic is 

given by:
rEi

Fl = „  (3.3)
1 E i ( " i - i )  J

where z{. =  J2j > z- — J2i 12 j  zij =  \x ij ~  ®*l and ^  is the median of the

¿th subgroup.

The Independent Sam ples T -test compares the mean scores of two groups 

on a given variable. It is based on the assumptions that the dependent variable is 

normally distributed and that the two groups have approximately equal variance 

on the dependent variable. Once satisfied the t-test can be calculated using:

where Xi and x-i are the values of the given variable for the first and second group 

and ni and n2 are their respective sample sizes [Hin95].

t  = (xx -  x2) (3.4)

The Shapiro-W ilks te st o f norm ality (W) tests the null hypothesis that a sam­

ple x 1,. . . ,x n comes from a normally distributed population and is recommended
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for small or medium sized samples [TF01]. The test is given by:

(S

'nyxi-xy
where n is the number of observations, X  is the original data, X '  is the ordered 

data and X  is the sample mean of the data. The constants Wi are given by:

w1,...,w n = M V ~ l [{M 'V -l ){ V - l M )]-^  (3.6)

where M  denotes the expected values of standard normal order statistics for the 

sample and V  is the corresponding covariance matrix. If W =  1 the given data 

is perfectly normally distributed. When W is significantly smaller than 1, the 

assumption of normality is not met.

R esults

As the students who participated in the study were self-selected and the number 

of students who completed the survey was low, n  =  30, it was important to deter­

mine if the sample was representative of the class. To this end a priori analysis 

was carried out to verify that no statistically significant difference existed between 

the mean overall module results of the class and the sample. Test assumptions 

on normality (Shapiro-Wilks test) and the equality of variance (Levine test) were 

performed and a t-test on the overall results, (f(94) =  1.093,p = 0.277), found 

no statistically significant differences between the mean scores of the class and 

the sample. Only one factor was found to have outlying values (that is instances 

with standardised (z) scores ±3.29, p < 0.01, as measured by a two-tailed test 

[TF01]). The factor measured the number of hours per week students spend play­

ing computer games while studying on the module, referred to in this study as 

WHILEGAMES. This factor was initially measured on a scale of 0 to 5, however, 

only two students were found to have a value greater than or equal to 3 and as
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Factor r n

LC mathematics 0.46** 30

LC physics 0.59* 18

LC biology 0.75* 10

LC highest Science 0.48** 28

Comfort-level 0.55** 30

Perceived Understanding 0.76** 30

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed).

Table 3.1: Factors identified as having a significant relationship with performance 

using Pearson Correlations

such were detected as outlying values. Where the number of outlying values is 

small, a common solution is to change the outlying value so that it is still extreme 

but sufficiently reduces the value so it is no longer detected as an outlier [TF01]. 

Accordingly, the values for the two outliers on the WHILEGAMES factor were 

subsequently changed from 3 to 2 and were no longer detected as outliers.

In the remainder of this section the findings on the relationship between each 

of the factors and programming performance is presented, followed by an analysis 

of the combination of factors that best predict performance.

Factors significantly related to program m ing perform ance

A summary of the main significant relationships identified by Pearson Corre­

lations are illustrated in Table 3.1. To establish the relationship between previous 

academic experience in mathematics and science, the achievable grades for each 

subject were ranked, with the highest rank given to the highest possible grade and 

the lowest rank given to the lowest possible grade. LC mathematics, LC physics
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Factor Values

Gender Male, Female

Age Under 23, 23+

Work style preference Individual, Group

Encouragement Yes, No

Part-time employment Yes, No

Table 3.2: Dichotomous values for personal factors

and LC biology were found to have a statistically significant relationship with 

performance. Highest science result, which includes other less commonly studied 

science subjects, was also found to be statistically significant. Comfort-level, a 

likert-response measure, was also found to be a statistically significant indicator of 

performance and a strong significant relationship between perceived understanding 

(likert-scale question) and performance was found.

Factors where no relationship w ith  program m ing perform ance was iden­

tified

Contrary to the positive relationship identified between LC physics, LC biol­

ogy, and highest science result with programming performance no relationship was 

found between LC chemistry and performance. This is a surprising finding and 

may suggest that some science subjects are more important than others or that 

some underlying phenomena is affecting the results. Previous computer experience 

was measured by prior programming experience and previous non-programming 

computer experience. In both cases student responses were separated into those 

with previous experience and those without previous experience. T-tests for inde­

pendent samples were used to examine the differences between the overall module 

results of each group. Before each t-test was carried out assumptions of normality
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and equality of variance were confirmed. No significant differences were found be­

tween students with or without previous programming experience or between stu­

dents with or without non-programming computer experience with performance 

on the module. In addition, a weak correlation of r =  0.31, p  < 0.01 was found 

between performance on the cognitive test and performance on the module.

Gender, age, work-style preference, encouragement by others and part-time 

employment were treated as dichotomous variables for analysis purposes and the 

possible values of each factor are given in Table 3.2. Students were grouped accord­

ing to the responses they provided for each of the factors. T-tests for independent 

samples were used to examine if differences existed between the overall module 

results on each of the factor values, for example, the mean overall module result 

for male students was compared to the mean overall module result for female stu­

dents. Assumptions of normality and equality of variance were again confirmed. 

In each instance, the t-tests revealed no statistically significant differences.

R egression m odelling

To investigate whether the various factors studied were predictive of performance 

on the module a number of regression analyses were conducted. Two significant 

models emerged. The first was designed to determine the earliest indicators of 

programming performance. Consideration was given to gender, previous academic 

experience, cognitive test score, previous programming and non-programming com­

puter performance, encouragement from others, work-style preference and hours 

working at a part-time job. Using a stepwise regression method a significant model 

emerged with F (2 ,27) =  7.113, p  < 0.01 with an adjusted R square =  30%. Sig­

nificant values were found for: LC mathematics (/3 = 0.390, p  =  0.021) and gender 

(/? =  -0.368, p = 0.028).
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A second model included the predictors from the first model in addition to 

a students’ comfort-level with the module and perceived understanding of how 

they are doing. Using stepwise regression, a significant model emerged with 

F (4,23) =  26.03, p < 0.001, adjusted R square =  79%. Significant regression 

weights were found for: perceived understanding (/? =  0.505, p = 0.000), gender 

(P =  —0.494, p = 0.000), comfort-level (f3 = 0.301, p =  0.022), and LC mathemat­

ics (P =  0.197, p = 0.047).

3.1.4 Subsequent A nalysis

Initial analysis of the data using statistical techniques commonly employed by 

computer science educators to predict programming performance provided valu­

able insights into the nature of the relationships between the independent factors 

and performance on the module. However, this research study is concerned with 

determining whether students can be regarded as ‘weak’ or ‘strong’ programming 

students and as such requires the application of suitable classification techniques. 

It was decided, therefore, to classify students who receive a mark below 55.5% 

as weak programmers and students with a result above this threshold as strong 

programmers. Although it would have been possible to use the actual pass mark 

as the threshold (~  40%), this was not suitable as institutions can adjust student 

marks to attain this threshold using discretionary institutional policies. Addition­

ally, students who pass the module but fail to achieve a mark considerably higher 

than the pass rate (for example 10% to 15% higher) should typically not be re­

garded as strong students. An analysis of the student cohort marks indicated that 

a threshold of ~  55.5% provided a more appropriate separation of strong and weak 

programmers.
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Logistic Regression

Logistic regression is a statistical technique to predict a discrete outcome, such 

as group membership from a set of variables2. The variety and complexity of 

data sets that can be analysed is considerable. It makes no assumptions about 

the distributions of predictor variables, that is, the predictors do not need to be 

normally distributed, linearly related or have equal variance within each group and 

can be a mix of continuous, discrete and dichotomous variables. It is a particularly 

useful technique when the distribution of responses on the dependent variable is 

expected to have a non-linear relationship with one or more of the independent 

variables. The model produced by logistic regression is non-linear and is denoted 

by:

g b o + b iX i

P i  =  1 _|_ e b o + b iX i  ■ ( 3 -7 )

Like most statistical techniques, logistic regression makes a number of assump­

tions which must be satisfied. (1) The outcome variable must be discrete but a 

continuous variable can be converted to a discrete one. (2) Overfitting can occur 

when there are too few cases relative to the number of predictor variables. The 

models generated in this study attempt to keep the ratio of input variables to stu­

dents low to avoid this problem. (3) Outliers can significantly affect results, how­

ever, as noted in Section 3.1.3 outliers were detected and appropriately handled. 

(4) Logistic regression assumes the absence of multicollinearity. Multicollinearity 

exists when the independent variables (predictors) are highly correlated (r >  0.9 

and above) [Pal05]. Generation of correlation coefficients between the independent 

variables indicated that this assumption was satisfied in our study. (5) It also as­

sumes that each response comes from a different, unrelated case (student). This 

assumption is satisfied by the nature of this study.

2 L og istic  reg ression  is co n sid e red  fu r th e r  in  C h a p te r  4
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R esults

Logistic Regression analysis resulted in three significant models. A model (Model 

1) incorporating LC mathematics and gender was able to classify 70% of students 

correctly. A second model (Model 2) which also incorporated perceived under­

standing correctly classified 90% of students. A third model (Model 3) which also 

considered the total score on comfort-level accurately classified 93% of students. 

Interestingly, when gender is omitted from the models and the number of hours 

students spend playing computer games is incorporated instead, 73% of students 

are classified correctly (Model 4). The number of hours playing games does not 

improve prediction accuracy when gender is also included and this suggests that 

playing games is related to gender. Subsequent analysis using a t-test confirmed 

that there is a statistically significant difference between the game playing of male 

and female students, with male students associated with playing more games. In­

terestingly, game playing is negatively associated with performance, that is, the 

more hours spent playing games the lower the performance. This suggests that 

in the absence of gender information the number of hours playing games can be 

used, albeit, with poorer results. Table 3.3 provides information on the overall 

accuracy of the models, the percentage of students correctly identified as weak 

and the percentage of students correctly identified as strong.

3.1.5 D iscussion

The findings on the relationship between experience in mathematics and science 

subjects, and programming performance is in line with previous research findings. 

The strength of the correlations between LC physics scores, LC biology scores 

and programming performance is interesting, and would suggest that science in 

general has a significant influence on performance. However, the lack of corre-
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Model % Weak Students 

Correctly Classi­

fied

% Strong Stu­

dents Correctly 

Classified

% Overall Correctly 

Classified

Model 1 79% 55% 70%

Model 2 95% 82% 90%

Model 3 100% 82% 93%

Model 4 90% 46% 73%

Table 3.3: Percentage of students correctly classified as weak or strong as well as 

overall classification accuracy achieved by the logistic regression models (n = 30)

lation with LC chemistry appears contradictory and given the small sample size 

further research is required. Like the Cantwell-Wilson and Shrock study [CWS01], 

comfort-level was found to be highly correlated with programming performance. 

The most significant finding however, is the very strong correlation between stu­

dents’ perception of their understanding of the programming module and their 

programming performance. As this study was carried out in the second semester, 

further research to identify the point in time that perception of module understand­

ing becomes such a reliable indicator is important. If a similarly high correlation 

can be found early on in the module then it would be very powerful in diagnosing 

and subsequently assisting struggling students. Although previous research has 

found previous programming experience and non-programming computing expe­

rience to be indicators of success, no such relationship was found here. This may 

be partially accounted for by the fact that students cannot study programming or 

application software for national examination in secondary schools in Ireland. The 

relationship between performance on the cognitive test and performance on the 

module was found to be weak, however, subsequent analysis found that a num­

ber of items in the test were highly correlated with programming performance. A
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redesign of the test could result in more significant findings in the future.

Although only some factors were found to have a relationship with program­

ming performance, given the limited sample size in the pilot study it would be 

hasty to exclude any of the factors from the main study. Therefore, it was decided 

that all factors would be re-tested in the main study with the exception of the cog­

nitive test. Given the weak correlation found between performance on the module 

and the cognitive test as well as the existence of several previous studies with find­

ings of a similar weak relationship and the large amount of work that would be 

necessary to re-design the test it was decided to omit the test from future studies. 

However, it was decided that given the positive findings on self-regulated learning 

(SRL) in other academic domains, as outlined in Section 2.5, that the main study 

should include an instrument to measure SRL.

3.2 M ain study

Based on the results of the pilot study and on the literature review outlined in 

Chapter 2 a detailed study on factors that could influence programming perfor­

mance was carried out in the academic year 2004-2005. This study is referred to 

as the ‘main study’ in this thesis. In this section the methodology employed in the 

main study is documented. Multiple institutions were involved and a description 

of the participants and the introductory programming modules they were taking 

is provided. The instruments developed and employed in this study are described 

and the section concludes with a description of the a priori procedures carried out 

to prepare the gathered data for analysis.
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3.2.1 P articipants

The study was carried out at four third-level institutions (post high-school) in 

the Republic of Ireland in the academic year 2004-2005. A-hundred and twenty- 

three students enrolled in a first year introductory programming module at the 

facilitating institutions voluntarily participated in this study. The institutions 

involved are referred to in this thesis as Institute A, Institute B, Institute C and 

Institute D and the actual institute names are provided in Table 3.4. The institutes 

were quite different in that one was a university, two were institutes of technology 

and one was a college of further education. The overall aim of each module was to 

provide students with introductory programming skills and the contents of each 

module were highly similar. An overview of each of the modules is given in Table 

3.5. The measure of performance used in this study was the overall module mark. 

As with the pilot study, students were provided with an information sheet about 

the research and signed a consent form agreeing to participate. Permission to carry 

out the research was also granted by each of the participating institutions.

In stitu te  ref. In stitu te  nam e

Institute A National University of Ireland Maynooth

Institute B Institute of Technology Blanchardstown

Institute C Institute of Technology Carlow

Institute D Whitehall College of Further Education

Table 3.4: Participating Institutes

3.2.2 Instrum ents

Five instruments were used to collect data: a background questionnaire, the 

Cantwell-Wilson and Shrock comfort-level measure, a programming self-esteem
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Institu te Language Concepts covered* A ssessm ent

structure

Institute A Java Variable types, selection 

statements, iteration, recur­

sion, arrays, methods, sort­

ing, searching, classes and 

objects.

30% continuous 

assessment, 70% 

final examina­

tion.

Institute B Java Variable types, selection 

statements, iteration, meth­

ods, classes and objects, in­

troduction to applets .

50% continuous 

assessment, 50% 

final examina­

tion.

Institute C Pascal Variable types, selection 

statements, iteration, ar­

rays, searching, sorting, 

linked lists and pointers.

40% continuous 

assessment, 20% 

practical exami­

nation, 40% final 

examination.

Institute D VB Variable types, selection, it­

eration, arrays, methods, 

classes and objects.

100% project.

Institute D Java Variable types, selection, it­

eration, arrays, methods, 

classes and objects.

2 x 30% as­

signments, 

40%theory 

examination.

* Not in order

Table 3.5: Module Overview
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questionnaire, a self-efficacy questionnaire and a motivation and learning strategies 

questionnaire. Copies of each of these instruments are provided in the Appendices.

The background questionnaire collected data on a number of items including 

previous academic information, for example, Leaving Certificate (LC) mathemat­

ics grade, highest LC science grade; prior programming and non-programming 

computer experience, and various miscellaneous items, including, number of hours 

playing games before and during the module, number of hours per week working 

at a part-time job.

A questionnaire on comfort-level based on a larger set of questions used in a 

study by Cantwell-Wilson and Shrock [CWOO] was also employed. The modified 

questionnaire focussed on the same issues as the original questionnaire but was 

re-structured so that it could be completed in a shorter length of time. The 

questionnaire is referred to as the ‘Cantwell-Wilson and Shrock [CWOO] comfort- 

level measure’ in this thesis and was composed of nine questions that examined 

a student’s perception of their level of understanding compared to the rest of the 

class (one question), their ease at asking and answering programming questions 

(five questions), their general understanding of programming concepts, their ability 

to design the logic of a program without help and complete assignments (three 

questions).

The Rosenberg Self-Esteem (RSE) questionnaire ([Ros65]) was adapted to ap­

ply to programming self-esteem. The RSE scale is perhaps the most widely used 

self-esteem measure in social science research. The scale consists of 10 questions 

and has been shown to have generally high inter-item and test-retest reliability. 

Each of the questions were modified to relate to programming self-esteem and 

not to self-esteem directly, for example the first question was changed from ‘On 

the whole, I am satisfied with myself’ to ‘On the whole, I am satisfied with my 

programming progress’.
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The Computer Programming Self-Efficacy Scale [RW98] consists of 33 items 

that ask students to judge their capabilities in a wide range of programming tasks 

and situations. As this instrument was administered when students had very 

limited experience of the programming module, a shortened version of this scale 

using only seven questions about simple programming tasks was used.

In this study we employed the model of self regulated learning developed by 

Pintrich and his colleagues, as outlined in [PG91]. This model stresses the learner’s 

use of cognitive strategies and self-regulatory strategies, self-efficacy beliefs (indi­

viduals’ judgements of their capabilities to perform a task), task value beliefs (the 

importance of, interest in and value associated with a task) and goal orientation 

(intrinsic goal orientation and extrinsic goal orientation) [Pin99]. The Motivated 

Strategies for Learning Questionnaire (MSLQ), a self-report instrument designed 

by Pintrich et al. to measure students’ motivation and self-regulated learning in 

classroom contexts, was used to measure SRL [PSGM91]. To examine the compo­

nents of SRL the following scales were employed:

• Intrinsic and extrinsic goal orientation scales,

• Task value scale (a student’s perceptions of the course material in terms of 

interest, importance and utility),

• Cognitive strategy usage as measured by a rehearsal strategies scale, elabo­

ration strategies scale and organization strategies scale,

• Meta-cognitive strategy usage as measured by a planning, monitoring and 

regulating strategies scale

• Self-efficacy for learning and performance scale (incorporates two aspects of 

expectancy: expectancy for success and self-efficacy).
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Data was collected in two study administrations. In the first administration 

all surveys (background questionnaire, Cantwell-Wilson and Shrock comfort-level 

measure, programming self-esteem questionnaire, and the Computer Programming 

Self-Efficacy scale), except the MSLQ, were administered. The first administra­

tion was carried out early in the programming module (when the students had 

completed very early programming concepts - typically variable types, selection 

statements and sometimes iteration) while the second administration was com­

pleted when they were on average one third of the way through the material. It 

was the intention that both administrations would be completed closer together 

but this was not possible due to timetabling and other constraints.

3.2.3 D ata  P re-P rocessing

A number of a priori  procedures were put in place to prepare the gathered data for 

analysis. The procedures included (1) data screening, (2) testing the representa­

tiveness of the sample, (3) missing data analysis and (4) tests of unidimensionality.

Data screening required the examination of encoded data to ensure that it was 

free of coding errors. Maximum and minimum frequency values were inspected 

to check that no out-of bounds entries existed. As a more rigorous measure each 

encoded item was inspected along with totals, by an independent witness and the 

author, to ensure that all data had been satisfactorily entered and computed.

An a priori analysis was carried out to verify no significant differences existed 

between the mean overall module results of the samples and the total student (in­

troductory programming) population. A t-test confirmed that no significant dif­

ferences existed between the mean results of students who participated in the first 

administration of the study and the relevant student population at each institute. 

However, statistical differences were found between the students who participated 

in the motivation section (¿(67) =  6.451, p =  0.001) and the learning strategies
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section (t(56) = 7.1, p = 0.001) of the MSLQ at institute A and this will have to 

be taken into account in the analysis. The cause of this statistical difference was 

a considerably reduced sample size on the second administration at institute A.

Statistical analysis was carried out to determine whether data was missing 

completely at random (MCAR) or missing at random (MAR) [TF01]. Missing 

data in both of these instances is generally regarded as ignorable. Independent 

t-tests indicated that there was no significant difference between the mean module 

result on any of the first administration factors between students with no miss­

ing values and students with missing values except for programming self-esteem, 

(t(121) =  3.088, p = 0.008). However, further analysis confirmed that for 7 of the 

8 students with missing data, a reason could be found to explain why the data 

was missing: 3 students were never given the programming self-esteem scale to 

complete, 3 students failed to complete one of the ten items on the scale and was 

thus omitted, and 1 student selected the same value for each item on the scale, 

even for reversed items and their response was deemed invalid. Therefore, only one 

student’s failure to respond is unknown. Given that so few cases were missing, it 

was reasonable to drop the cases from analysis rather than inferring values which 

could result in distortions of association and correlation. One question on the 

background survey concerning the likely number of hours a student would spend 

studying for the module was omitted from the questionnaire administered at in­

stitute C and institute D and therefore 85 students completed the question. A 

t-test revealed that there was no significant difference between the mean results of 

students with missing values and without missing values. Only 77 students com­

pleted the MSLQ motivation scales. There are two main reasons for this reduced 

sample size. First, at institute A only 55% of students who completed the first part 

completed this section. At this institute students had to collect the survey and 

return it upon completion. The effort involved appeared to deter them. Second,
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due to timetabling constraints it was not possible to administer the motivation 

scales at institute C. Similarly, only 82 students completed the MSLQ learning 

strategy scales. This again was caused by the reduced participation at institute 

A and although the MSLQ learning strategy scales were administered at institute 

C only 52% of the original number of participants completed this section. The 

latter was caused by absenteeism on the day of administration. A t-test found 

that statistically significant differences existed between the mean results of stu­

dents who completed the motivation scales and students who did not at institute 

A, (¿(54) =  —4.93, p  =  0.001). Similar differences were found on the learning 

strategy scales at both institute A (¿(54) =  —5.541, p  = 0.001) and institute C 

(¿ (1 7 ) =  —2.828, p  = 0.012). The findings here are more problematic especially 

given the earlier results on the representativeness of the sample at institute A 

for these two parts. A number of options are available to deal with the missing 

data, including dropping cases from analysis or substituting a value for the missing 

cases. The approach taken was to perform two separate investigations, the first 

using data gathered in the first administration and the second on the data gath­

ered in both administrations. Interpretation of the second investigation will need 

to take into account the reduced sample size and the lack of representativeness.

Where multiple indicator variables were used to measure a construct, tests of 

unidimensionality were performed. Cronbach’s alphas for each of the MSLQ sub­

scales and the subsequent values calculated in this study are given in Table 3.6. 

In each instance, the alpha values were found to be high. Test of reliability for the 

Cantwell-Wilson and Shrock comfort-level measure was 0.80 and for the shortened 

Computer Programming Self-Efficacy Scale was 0.949. Typically, Cronbach’s alpha 

for the Rosenberg Self-Esteem scale are in the range of 0.82 to 0.88, ([Ros65]) and 

for this study the alpha value was 0.91.
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Scale [PSGM91] Study values

Intrinsic goal orientation scale .74 .75

E xtrinsic goal orientation scale .62 .56

Task value scale .90 .85

Self-Efficacy for learning and per­ .93 .95

formance

Rehearsal scale .69 .73

Elaboration scale .76 .58

Organization scale .64 .63

Planning, m onitoring and regulat­ .79 .83

ing scale

Table 3.6: Reliability analysis using Cronbach alpha measure for MSLQ scales as 

given by Pintrich et al and as found in this study.

3.3 Summary

In the academic year 2003-2004 a pilot study was carried out at the Department 

of Computer Science, NUI Maynooth, to determine factors that influenced success 

on an introductory programming module. An initial examination of the data fol­

lowed the norm of previous studies and used correlation and linear regression to 

analyse the data. The results indicated that gender, LC mathematics, perceived 

understanding and comfort-level were important indicators of programming suc­

cess. Subsequent analysis using logistic regression, which allows our research ques­

tion to be directly examined resulted in three significant models. The first model 

incorporated LC mathematics and gender and correctly classified 70% of students 

as ‘weak’ or ‘strong’. The second model incorporated perceived understanding as 

well and classified 90% of students correctly. A third model which also considered 

the total score on comfort-level accurately classified 93% of students. In addition,
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a relationship was found between gender and the number of hours spent playing 

computer games. Omitting gender from the third model and including the num­

ber of hours students spend playing computer games instead resulted in 73% of 

students correctly classified.

A detailed description of the research methods employed in the main study, 

carried out in the academic year 2004-2005, was also presented. The students 

participating in the study were described and descriptions of the introductory 

programming modules investigated were outlined. The instruments used to gather 

data were documented and finally, the procedures used to prepare the data for 

analysis were outlined including data screening, testing the representativeness of 

the sample, missing data analysis and tests of unidimensionality.
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Chapter 4 

M achine Learning Techniques

In itia l linear regression modelling, as outlined in Chapter 3, was valuable in iden- 

tifying factors that can be used to classify students as weak or strong programmers. 

Learning to classify accurately is a common problem in machine learning and data 

analysis. Many machine learning algorithms have been proposed for classification 

and in this chapter, six different types of algorithms are evaluated and reviewed. 

The algorithms evaluated are k-nearest neighbour, C4.5, naive Bayes, logistic re­

gression, support vector machines and backpropagation networks.

4.1 N earest Neighbour Learning

Nearest neighbour is a supervised (learning from examples) non-parametric method. 

Non-parametric modelling is different to parametric modelling in that the model 

structure is not specified a priori, but is instead determined from the data. To 

classify an unknown pattern, the class of the pattern nearest the unknown pattern 

is selected using a distance metric where all instances are assumed to correspond 

to points in the n-dimensional space 9in. With this approach, learning is directly 

based on the training examples and generalisation is only performed when a new
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instance must be classified. As no learning takes place until the classification stage 

this type of learning is often regarded as ‘lazy’ learning. Typically, nearest neigh­

bours are determined using standard Euclidean distance, as given in Equation 4.1 

[Mit97], where one instance has attribute values a ^ \ a ^ \  . . . ,  (where n is the 

number of attributes) and the other instance has values a ^ \ a f  \  . . . ,  d$ .

yRa{^ -  a i2)) +  (a ^  -  a +  . . .  +  (a ^  -  a ^ )  . (4.1)

If the Euclidean distance formula is used directly on attributes that are mea­

sured on different scales, the effects of some attributes might be completely over­

shadowed by other attributes with larger scales of measurement. Consequently it 

is usual to normalise all attribute values to lie between 0 and 1. One such approach 

to normalise attribute values is given by:

Vi — m in(vj) .
1 max(vi) — min(vi)

where u* is the actual value of attribute i and the maximum and minimum values 

are calculated over all instances in the training set [WE05].

An extension to this approach is to choose the majority class of k nearest 

neighbours (K-NN) as illustrated in Figure 4.1.

4.1.1 Evaluation o f N earest N eighbour Learning

K-NN has many advantages as a classifier. For example, it is relatively straight­

forward to implement and requires no training time once the training set is stored 

[WE05], [RP03]. However, there are a number of drawbacks to this method. As 

each training example is considered for classification K-NN can be slow and has 

high storage costs. This can be improved by eliminating redundant samples in 

stable regions of attribute space. To reduce the computation and time required 

to classify a new example, techniques such as kd-tree can be implemented for
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Figure 4.1: k-nearest neighbour example: In the figure positive training examples 

are illustrated using +  and negative training examples are shown by —. The choice 

of k is critical, in that, the query instance x q will be classified as positive using a 

k value of 1 but as negative using a k value of 5

indexing the stored training examples [WE05] [Mit97]. The value selected for k 

is very important. If the neighbourhood is too small it won’t contain any data 

points but if it is too large it may contain all the data points. For fixed k, the size 

of the neighbourhood varies - where data are sparse, the neighbourhood is large 

but where data are dense the neighbourhood is small [RP03]. K-NN is sensitive 

to high dimensionality amongst the attributes. In high dimensional spaces with 

many irrelevant attributes for classification, instances that are similar on the rel­

evant attributes may be distant from each other in the large dimensional space, 

however previous studies have found that selecting k > 3 helps to eliminate this 

[RP03]. A refinement of K-NN is to weight the contribution of each of the nearest 

neighbours according to their distance to the new example, giving greater weight 

to the closer neighbours. Such an approach tends to be more robust to noise but 

with the trade-off that the classifier will run more slowly [Mit97].
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4.2 Decision Tree Learning

Decision trees are one of the most widely used learning methods and have been 

successfully applied to a wide range of tasks [Mit97]. New instances are classified 

by sorting them down the tree from the root node according to the values of 

the attributes tested in successive nodes. Each branch descending from a node 

corresponds to one of the possible values for this attribute. The process continues 

until a leaf node is reached which provides the classification of the instance [RP03], 

[Mit97], [WE05]. A sample decision tree is given in Figure 4.2.

Sunny Overcast Rain

rréi

[W 1

Figure 4.2: Sample decision tree: ovals represent attribute nodes, branches corre­

spond to one of the possible attribute values and squares represent classification 

values. In this example the target is to decide to play tennis or not based on the 

weather.

To construct a decision tree, an attribute is selected to place at the root node 

and a branch for each possible value of the attribute is created. This divides the 

example set into subsets, one for every value of the attribute. The process can be 

repeated recursively for each branch using only those instances that actually reach 

the branch. If at any time all instances at a node have the same classification, no 

further development of that part of the tree is required [WE05].
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Fundamental to the development of any decision tree is the selection of an 

optimal way to split the data, that is, selecting the attribute that is most useful for 

classifying examples. C4.5 is a commonly used decision tree generating algorithm, 

based upon ID3 [WE05]. It recursively visits each decision node, selecting the 

optimal split, until no further splits are possible. C4.5 uses the concept of entropy 

reduction (information gain) to determine the optimal split. Entropy reduction 

measures how well a given attribute separates the training examples according to 

their target classification and is based on the concept of entropy, a measure from 

Information Theory that describes how much information is carried by a signal 

[RP03]. In a binary classification problem, the entropy of a set X ,  is calculated 

by:

H (X )  =  - Pplog2(pp) -  pnlog2{Vn) (4.3)

where pp is the proportion of positive examples in X  and pn is the proportion of 

negative examples in X .  C4.5 uses entropy as follows: given that a possible split, 

S, exists, which partitions the training data set T into several subsets, T\, T?, ...T}., 

the entropy of S  can be calculated as the weighted sum of the entropies for the 

individual subsets as follows:

k
HS(T) = Y J PiHs{Ti) (4.4)

i=i

where Pi represents the proportion of records in subset i. Information Gain mea­

sures the expected reduction in entropy caused by partitioning the training data 

T  according to this candidate split S  and is denoted by gain(S) =  H (T) — HS(T). 

At each decision node, C4.5 chooses the split with the greatest information gain 

[Lar05].
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4.2.1 Evaluation of D ecision  Tree Learning

Decision tree learning is suited to problems where instances are represented by 

attribute-value pairs and the target function has discrete output values [Mit97]. 

Decision trees are relatively simple to understand and interpret, and data prepa­

ration is straightforward. The presence of correlated attributes generally does not 

affect the accuracy of a decision tree. Generally once an attribute has been chosen, 

the correlated attribute will not be selected as there would be no information gain 

in doing so. They have also been shown to have fast performance even on large 

datasets [WE05].

Decision Trees can suffer from overfitting, but a number of approaches exist to 

avoid this. These include: (1) stop growing the tree before it reaches the point 

where it perfectly classifies the training data, and (2) allow the tree to overfit the 

data then post-prune the tree. The second approach has been found to be more 

successful as it can be difficult to decide when to stop growing the tree [WE05].

C4.5 is not restricted to binary splits like other decision tree algorithms such 

as CART [Lar05], and can thus produce a tree of variable shape. It includes 

several improvements over its predecessor ID3, including methods for dealing with 

continuous attribute values, missing values, noisy data and generating rules from 

trees. If the attribute is numeric, the test at a node usually determines whether 

its value is greater or less than a predetermined constant, giving a two-way split. 

Alternative splits can also be used. A numeric attribute is often tested several 

different times in any given path down the tree from root to leaf, each test involving 

a different constant [WE05] [Lar05].
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4.3 N aïve Bayes

Bayes’ theorem provides a way to calculate the probability of a hypothesis based 

on its prior probability. Assume a hypothesis space H  and some observed training 

data D  exist. Then P(h) is the probability that hypothesis h is true, that is, it is 

the prior probability of h. P (D ) is the prior probability of the training data D. 

P (D \h ) is the probability of observing data D  given that the hypothesis h holds. 

Bayes’ theorem provides a way to calculate the posterior probability (conditional 

probability) P(h\D) from prior probability P{h), together with P (D ) and P(D\h) 

and is given by:

( « )

To determine the most probable hypothesis given the observed training data 

D, the maximum a posteriori (MAP) hypothesis is selected. MAP is determined 

by using Bayes’ theorem to calculate the posterior probability of each hypothesis 

and given by:

h M A P  =  argm axheH P{h\D),
P (D \h)P(h)

= argmax h€H  ----- ,

=  argmax hen P (D \h)P(h). (4-6)

In the final step above P ( D ) is dropped as it is a constant independent of h 

[Mit97],

Naïve Bayes is a non-parametric probabilistic model based on Bayes’ theorem 

[MST94]. It makes the assumption that the effect of a variable value on a given 

class is independent of the values of other variables. This assumption is referred to 

as conditional independence among variable attributes. The assumption of inde­

pendence makes it much easier to estimate these probabilities since each attribute 

can be treated separately, resulting in Equation 4.7.
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vnb = argmaxVj€VP(vj)  n  <4 7 )
i = \ . . k

The number of P(üi\vj) terms that must be estimated from the training data 

is equal to the number of attribute values multiplied by the number of target 

values which is a considerably smaller number than if the assumption of conditional 

independence was not made [MST94]. Although this assumption is often violated, 

naive Bayes classifiers have been shown to work surprisingly well and in some cases 

out perform more sophisticated methods.

4.3.1 Evaluation o f N aive Bayes

As a classifier, naive Bayes has many advantages. Unlike many other machine 

learning techniques, it can handle unknown or missing values [MST94], It is par­

ticularly well suited when the dimensionality of the inputs is high and can handle 

both continuous or categorical data. It has often been shown that naive Bayes out­

performs more sophisticated algorithms [WE05] particularly when the attributes 

are in fact conditionally independent given the class [MST94],

A number of difficulties exist in implementing a naive Bayes classifier. A sig­

nificant computational cost can be incurred to determine the Bayes optimal hy­

pothesis (linear in the number of possible hypotheses) [Mit97], As all attributes 

are treated as equally important and independent of one another, given the class, 

naive Bayes can suffer from redundant attributes. For example, if two attributes 

represent the same underlying phenomena then the probability of this attribute 

would be squared, giving it a great deal of influence in the final decision [WE05]. 

This can be reduced by using a careful selection of the most suitable attributes, 

for example, by using the regression techniques described in the previous chapter.
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4.4 Logistic Regression

Logistic regression is a statistical technique that builds a linear model based on

a transformed target value [WE05]. It is typically used to predict a dichotomous 

outcome but can also be used to predict multi-class outcomes. The independent 

variables can be continuous, discrete, dichotomous, or a mix of any of these [TF01].

Representing a dichotomous predictor variable as 0 or 1 can be advantageous 

as the mean of such a distribution is equal to the proportion of cases with a value 

of 1 in the distribution and can be interpreted as a probability. Intuitively, one 

might consider using multiple linear regression with a binary outcome but this 

approach has a number of problems. Probabilities have a maximum value of 1 and 

a minimum value of 0. But a linear regression line can extend upwards towards 

+oo and downwards towards — oo as the value of an independent variable increases 

or decreases. Thus the model could give probability values less than 0 or greater 

than 1 [PamOO]. In addition, assumptions of linear regression are violated in that 

the error residuals cannot be normally distributed or have equal variances if there 

are only two outcome variables [MenOl].

An alternative technique favoured for modelling the problem due to its inherent 

simplicity is to use the logistic or logit transformation. The logit transformation 

involves two steps given a probability Pt of experiencing an event and a probability 

1 — Pi of not experiencing an event with two possible outcomes. First the odds of 

experiencing an event are calculated using:

Subsequently the natural log of the odds (logged odds) is calculated, as follows:

(4.8)

(4.9)

A linear relationship between the independent variables and the logit transforma­
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tion can then be computed:

\ n [ - ^ - ) = b 0 +  biX i . (4.10)

Expressing the probability rather than the logit gives:

Pi =  eho '■hiXi. (4.11)
1 -  Pi K ’

After some mathematical manipulation the standard representation for logistic 

regression is produced [PamOO]:

p b o + b iX i

Pi =  1 +  e b o + b iX i  ■ (4'12)

Maximum Likelihood Estimation (MLE) is used to determine the best coeffi­

cient values. The goal of MLE is to determine parameters that most likely give rise 

to the pattern of observed examples [MenOl] and uses the log likelihood function:

In L F  = J 2  \Yi * In Pi\ +  [(1 -  Tj) * ln(l -  Pi)] (4.13)

Typically the procedure employed is to iterate through sets of coefficients seek­

ing larger log likelihoods that better fit the observed data. The process stops when 

the increase in the log likelihood function from new coefficients is so small that 

little benefit comes from continuing further [PamOO].

4.4.1 E valuation o f Logistic R egression

Unlike discriminant function analysis, a closely related statistical technique, with 

logistic regression the predictor variables do not need to be normally distributed, 

linearly related or have equal variance within each class, ft has the capacity to 

analyse different predictor types, including continuous, categorical and discrete 

variables, and can handle highly complex data sets. However, logistic regression
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has a number of weaknesses that must be handled accordingly. For example, it 

is sensitive to outliers and to multicollinearity amongst the independent variables 

[WE05], [TF01],

4.5 Support Vector M achines

Support Vector Machines (SVMs) were first introduced in the late 1970’s and have 

received significant attention over the past 15 years. SVMs have been shown to 

have either equivalent or significantly better generalisation performance than other 

competing methods on a wide range of classification problems [Bur98]. SVM’s are 

capable of classifying both linearly separable and non-linearly separable data and 

the techniques involved are outlined in this section.

4.5.1 Linear C lassification

Given a training dataset { (x i,y i) ,  (x2,y 2), •••, (xm,y m)} where Xj G and y* G 

{ ± 1}, a hyperplane which can successfully separate positive examples from nega­

tive examples is desired. The SVM base algorithm will find the optimal hypcrplane. 

This is achieved by re-scaling the hyperplane H  \ y = w  • x  +  b =  0, where w is 

normal to the hyperplane and || w  || is the Euclidean norm of w, such that

Hi :y  =  w - x  +  b =  + l

H2 '■ y = w  ■ x  +  b = —1.

(4.14)

That is, the following constraint must be satisfied:

|w • x  +  b| < —1 V i (4.15)

This can be combined into:

yi(w • Xi +  b) > 1 V i (4.16)
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Let x -  be any point on the minus plane as given by Hu, and let x + be the 

closest point on the plus plane as given by Hj to x _ , such that a line from x + to 

x _ is perpendicular to the planes, as illustrated in Figure 4.3. The margin width, 

A, is equal to |x+ - x~| and can be calculated by projecting the vector (x+ — x~) 

onto the vector normal to the hyperplane i.e.

Figure 4.3: SVM  solution: the SVM  algorithm will find the optimal hyperplane,

that is, the hyperplane which maximizes the margin, to separate the positive and

negative examples. x + and x~ are support vectors

A =  (a;+ — x~) ■ W 7 =  77—77 (4.17)
||w|| ||w||

Maximising the margin is equivalent to minimising

A =  ^llw ||2 (4.18)

subject to Equation 4.16. The solution for a typical two dimensional case is il­

lustrated in Figure 4.3. The training examples lying on Hj and H% (x+ and x~~ 

respectively) are called support vectors. All other examples could be removed 

without changing the solution. Thus, the problem is a constrained optimisation 

problem which can be solved using the standard Lagrangian approach [AR94], 

which results in:
m j  m

w (a ) =  ai ~ 2 E  ■ x j)  (4'19)
¿=i i j= i
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subject to the constraints

m
cti > 0 Vi and E o* (4.20)

The derivation of Equation 4.19 can be found in [SS02], Equation 4.19 is a 

quadratic optimisation problem and many effective robust algorithms exist for 

solving such problems.

The on values that are non-zero correspond to the support vectors. If cq =  0 

then these points make no contribution to the decision function:

Enforcing the maximal separation between the hyperplane and the closest points 

generates a solution known as a hard margin classifier. However, a separating 

hyperplane may not exist and even if it does, it is not always the best solution as 

an individual outlier in a data set can crucially affect the hyperplane. An algorithm 

that is robust to a certain fraction of outliers might be preferable. An approach 

which has been shown to work well is to incorporate a non-negative slack or error 

variable & > 0, where i = 1, . . .  , m  such that Equation 4.18 becomes:

In Equation 4.22 it can be seen that the constant C  > 0 determines the trade­

off between margin maximisation and training error minimisation. Rewriting in 

terms of Lagrange multipliers this leads to the problem of maximising Equation 

4.19 subject to Equation 4.23:

(4.21)

4.5 .2  Soft M argins

A = l | |w ||2 +  CE™1fj (4.22)

0 <  ai < C  V i and E ^ o n y i = 0. (4.23)
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Thus the only difference from the hard margin classifier previously described is 

that we now have an upper bound of C  [Cam02].

4.5.3 N on-Linear C lassification

Consider the classification function shown in Figure 4.4(a). A linear SVM as de­

fined earlier is unable to solve this problem. However, the data can be transformed 

to a higher dimensional space such that the data points will be linearly separable. 

The higher dimensional space is referred to as the feature space F. The effect of 

mapping non-linearly separable data to feature space can be seen in Figure 4.4(b) 

and is denoted by Equation 4.24.

Suppose a ‘kernel function’ K  exists, such that fc(xi,xj) =  (3>(xi)3?(xj)). That is, 

the dot product in the high dimensional space is equivalent to a kernel function of 

the input space. It is not necessary to be explicit about the transformation given 

that fc(xi,Xj) is equivalent to the dot product of some other high dimensional 

space. If a function satisfies Mercer’s condition it can be considered a valid kernel 

function [Bur98].

When the non-linear mapping is introduced modifications to the objective func­

tion are required:

subject to the constraints defined by Equation 4.20. Once an optimal solution is 

found, the decision function for a new point z is given by

F. (4.24)

(4.25)

(4.26)

Several kernel functions exist including:
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(a) (b)

Figure 4.4: The diagram on the left portrays the original datapoints. It can be seen 

that the xs can not be linearly separated from the os. Each datapoint is projected 

into the feature space using the mapping function  </> and the two sets of data become 

linearly separable.

• Polynomial: K ( x i}Xj ) =  (xt • Xj +  l )d

• Radial Basis Function: K ( x i , x j )  = exp(—7 | | x j  —  X j | | 2 ) ,  7  > 0.

4.5 .4  E valuation o f SVM s

SVMs have been shown to have good generalisation performance. Linear SVMs 

have very fast execution times and do not require any parameter tuning (except 

the constant C  when soft margins are used). In addition, SVMs do not suffer from 

local minima and can cope well when the relative size of the number of training 

examples within each class is very different. Since SVMs do not directly try to
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minimise error, but try to separate the patterns in high dimensional space, the 

result is that SVMs are fairly insensitive to the relative numbers of each class. 

For instance, new examples that are far behind the hyperplanes do not change the 

support vectors.

One of the biggest limitations of the support vector approach is the choice of 

kernel and consequently the kernel function parameters. The best choice of kernel 

is still under debate. Even when a particular kernel is chosen, the kernel function 

parameters must then be selected. A second limitation is that training times can 

be high if there are large numbers of training examples and execution time can be 

slow for non-linear SVMs. Finally, from a practical viewpoint, SVMs have a high 

algorithmic complexity [Bur98], [SS02],

4.6 Backpropagation Networks

Artificial neural networks (ANNs) are simplified models of the central nervous sys­

tem. Networks are composed of highly interconnected nodes connected by directed 

links. Each of the links has a numeric weight associated with it which determines 

the strength of the connection. Typically, the network is presented with sets of 

correctly classified training examples and they learn to recognise and classify other 

instances of these classes. The output of the network is determined by passing the 

sum of the weighted inputs and a term known as the bias to a differentiable transfer 

function. This function is a mathematical representation of the relationship be­

tween input and output. Learning consists of adjusting the weights in the network 

to minimise error using a learning algorithm [Pat96], [Mit97], [Haw99]. Backprop­

agation (BP) networks are one of the most commonly used neural networks and 

have been applied successfully to complex classification problems.

A BP network is typically a layered feedforward neural network as illustrated
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Figure 4.5: Backpropagation Network: in this example the network is composed of 

three layers: an input layer, a hidden layer and an output layer. Signals propagate 

from the input layer to the output layer in a forward direction

by Figure 4.5. In feedforward networks the input signal propagates in a forward- 

direction through the layers of the network. It is composed of an input layer, any 

number of hidden layers and an output layer. Connections within a layer are not 

allowed but connections can skip intermediate layers. Learning consists of two 

passes through the layers of the network: a forward pass and a backward pass. 

In the forward pass an activity pattern, that is, an input vector is applied to the 

units in the network and its values propagates through the network layer-by-layer 

until an output (response) is produced by the network. During the backward pass, 

the weights on the connections are adjusted to minimise the difference between 

the actual output of the network and the desired output [Haw99]. Although any 

differentiable function will do, typically, BP networks use the sigmoid function 

(logistic function) [RHW86] and is given by:

The derivative of the sigmoid function is easily expressed in terms of its output, 

that is, =  f ( x )  — (1 — f {x))  and is used by the backpropagation learning rule 

to minimise the squared error between the network output values and the target 

values for these outputs. The total error, E,  over all of the network output units
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is defined as:

E (tM-O*)2 (4'28)
deD k&outjruts

where D  is the set of training examples, outputs is the set of output units in the 

network, tkd and okd are the target and output values for the kth. output unit for 

training example d respectively [Mit97]. To minimise E ,  the partial derivative of 

E  with respect to each of the weights in the network must be computed (§f). 

This is simply the sum of the partial derivatives of the error with respect to the 

weights, for each of the training examples and details of this derivation can be 

found in Rumelhart et al [RHW86]. Once this derivation is known the weights 

associated with each layer can be modified. This can be done after every input- 

output case and therefore no separate memory is required for the derivatives. An 

alternative approach, which is used in this thesis, is to accumulate over all of 

the input-output cases before changing the weights. Each weight is then changed 

by an amount proportional to the accumulated

dE
Aw  = (4.29)

ow

The size of the adjustment will depend on p, and on the contribution of the weight 

to the error of the function. That is, if the weight contributes a lot to the error, 

the adjustment will be greater than if it contributes in a smaller amount.

4.6.1 Evaluation o f Backpropagation networks

Backpropagation networks are relatively simple to implement and prediction ac­

curacy is often reported to be generally high. The network can handle categorical 

and continuous data types and can learn relationships directly from the data be­

ing modelled. They can model numerous different functions, including boolean

functions and continuous functions. They are robust, working well even when the 

training data contains errors.

70



Principal Component Analysis Machine Learning Techniques

However, the backpropagation algorithm is only guaranteed to converge to some 

local minima and not necessarily to a global minima, although in many practical 

applications the local minima problem has not been shown to be hugely detri­

mental. Backpropagation can be susceptible to overfitting the training examples, 

however, several techniques exist to address this problem, including weight decay 

(decreasing each weight by some small factor during each iteration). BP networks 

can be slow, however, improved performance can be achieved by adding a momen­

tum term when updating weights and was used in this thesis. The value of the 

learning rate is important. If it is too small, it can take a long time to converge. If 

it is too big, the algorithm may continually jump over the optimum weight values 

and fail to converge [Mit97].

4.7 Principal Com ponent Analysis

Principal Component Analysis (PCA) also known as the Karhunen-Loeve trans­

form, is a statistical technique used to lower the dimensionality of a dataset while 

retaining as much information as possible. It is widely used in data analysis and 

compression [DHS01], [TK99]. This method takes a set of data points and con­

structs a lower dimensional linear subspace that best describes the variation of 

these data points from their mean. PCA essentially performs an orthogonal trans­

formation on the input data such that the variance of the input data is accurately 

captured using the resulting principal components. The first principal component 

is the combination of variables that explains the greatest amount of variation. 

Each subsequent principal component defines less of the variation than it’s pre­

ceding components. The maximum number of components that can exist is the 

maximum number of variables [TF01],

To demonstrate the process of PCA assume that a dataset X  =  {x 1, x 2, ..., xN}
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exists, where x% is composed of 2 dimensions, a \, al2, with mean values a i,a 2. For 

illustration purposes this example only considers 2-dimensional data sets but a 

similar process exists for n-dimensional sets. First, the input vectors are normalised 

so that they have zero mean and unity variance. Then the covariance matrix, a 

measure of the strength of the linear relationships between the 2 dimensions, is 

determined using cou(ai,a2) =  £ [(a i — a i)(a 2 — a2)]. Next, the eigenvectors, 

e i , ..., ek, and eigenvalues, A i,..., A*,, for the covariance matrix are calculated. The 

eigenvector with the highest eigenvalue is the principal component of the data 

set. In general, once the eigenvectors are found from the covariance matrix, they 

are ordered in decreasing eigenvalue. The resulting eigenvectors and eigenvalues 

represent degrees of variability where the first eigenvalue is the most significant 

mode of variation. Finally, an n x k matrix A is constructed, where n  is the 

original number of dimensions and k is the number of eigenvectors to be kept. The 

final dataset is calculated by multiplying the transpose of A by the normalised 

original data set a — à. This gives the original data set in terms of the principal 

components [Smi02]. An example of PC A is illustrated in Figure 4.6.

Several algorithms exist for choosing the number of eigenvectors (principal 

components) to keep. Probably the best known is the Kaiser criterion, which 

specifies that all components with eigenvalues greater than 1.0 should be kept and 

this criterion is used in this thesis.

4.8 Summary

In this chapter, six machine learning algorithms that can be used to classify stu­

dents as ‘strong’ or ‘weak’ programmers were described. The algorithms were k- 

nearest neighbour, C4.5, naïve Bayes, logistic regression, support vector machines 

and backpropagation. Each of the algorithms were presented and evaluated. The
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Figure 4.6: PCA example: this figure shows six points where the coordinates have 

a high covariance. PCA calculates the principal axes using the input data. The 

first principal axis can be used to represent the data and can explain the majority 

of the variance found in the input data. In this example the first principal com­

ponent describes 97-45% of the entire variance in the training set. By projecting 

the input data onto the first principal axis it is possible to represent the data in 

one-dimension. The + ’s represent the input data, the *’s represent the input data 

projected onto the first principal component and the o ’s represent the input data 

projected onto the second principal component.
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chapter concluded with an overview of Principal Component Analysis, a technique 

to reduce the dimensionality of a dataset. In Chapter five, details on the use of 

PCA to reduce the number of predictors required are provided and the results of 

implementing each of the six machine learning algorithms to predict programming 

performance are described.
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Chapter 5 

Results: Effectiveness o f the  

Predictors

1 ' his chapter details the results of implementing the six machine learning algo- 

rithms described in Chapter 4 using the data gathered from the empirical study 

as documented in Chapter 3. First, the procedure implemented to reduce the di­

mensionality of the data set is described. Then, the process for selecting the most 

important factors is outlined. Subsequently, the findings from implementing six 

machine learning algorithms using the most significant factors are presented. Fi­

nally, various approaches for optimising the results are described and implemented. 

The outcome of each optimisation is described.

5.1 Procedure

In this section, details of dimensionality reduction along with measurement tech­

niques and the factor selection process are briefly described.
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5.1.1 D im ensionality  R eduction

Principal components analysis (PCA), as described in Section 4.7, is a dimension 

reduction technique that can be used to replace a large set of observed variables 

with a smaller set of new variables. PCA was implemented using two distinct ap­

proaches. Using the first approach every factor considered in the study was treated 

as input to PCA (irrespective of the underlying relationships between the factors). 

Components that satisfied the Kaiser criterion (all component with eigenvalues 

greater than 1.0) were retained for predicting programming performance. In the 

second approach PCA was applied to individual instruments where multiple items 

(questions) were used to measure the same underlying phenomena (where high 

correlations between the items are typical). PCA was applied to three separate 

instruments, specifically, the comfort-level scale (9 questions), the programming 

self-esteem scale (10 questions) and the self-efficacy scale (7 questions). Again, 

components that satisfied the Kaiser criterion were retained: one component for 

programming self-esteem, one component for self-efficacy and three components 

for the comfort-level questions.

The first approach was not found to be satisfactory for two reasons. Due to the 

effects of missing data, incorporating all factors resulted in a considerably reduced 

sample size. Maintaining a high sample size is very important in this study to 

facilitate good generalisation. Also, subsequent predictive modelling resulted in 

poorer performance than models built using PCA components derived from the 

second approach. Performing PCA on instruments with high multi-collinearity is 

more successful in this instance than on input that has a large amount of diversity.

As outlined in Section 3.2.2 data was collected in two study administrations. 

The first administration included all surveys, except the MSLQ, and was carried 

out early in the programming module (when the students had completed prelimi­

nary programming concepts) while the second administration was completed when
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they were on average one third of the way through the material. In order to de­

termine the most important factors in predicting programming performance, two 

investigations were carried out. In the first investigation, all the factors from the 

first administration of the study were included, while in the second investigation 

all of the factors from both administrations were considered. Within each inves­

tigation, models were developed using both PCA approaches. Logistic regression 

was used to develop models to identify the most significant factors. Although any 

of the machine learning techniques could have been used, logistic regression was 

selected for three main reasons: (1) to maintain consistency with previous ‘regres­

sion’ based studies and with the pilot study, (2) it has been shown to perform well 

and is relatively straight-forward to implement, and (3) the models derived are easy 

to interpret and the beta-weights associated with each variable provide valuable 

insight for a model-builder on modifications that could improve performance.

In total over 40 models were developed with various degrees of freedom. All 

models were generated using 10-times 10-fold stratified cross validation. In this 

procedure, data is randomly split into 10 parts, with each part representing the 

same proportion of each class. Each part is held out in turn and the learning 

scheme is trained on the remaining nine parts, then the error rate is calculated 

on the holdout set. Thus the procedure is executed 10 times on different training 

sets. This whole procedure is repeated a further nine times and the results are 

averaged over all of the testing datasets.

5.1.2 M easurem ent Techniques

Three measurement techniques are employed: classification accuracy, sensitivity 

(true positive rate) and specificity (true negative rate).

The simplest form of evaluation is classification accuracy, that is, the propor­

tion of instances correctly predicted. Using Table 5.1 for illustration, the compu-
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Pred icted  Class

Yes No

A ctual Class Yes TP FN

No FP TN

TP =  True Positive, FP =  False Positive

TN= True Negative, FN= False Negative

Table 5.1: Sample confusion matrix 

tation of this measure is given by Formula 5.1.

T P  + T N
(5.1)

T P  + T N  + F P  + F N  
Sensitivity is a measure of the proportion of actual positive instances that are

correctly classified, given by Formula 5.2. Specificity is the proportion of actual 

negative instances correctly classified, as illustrated by Formula 5.3.

T P
T P  +  F N  

T N  
T N  + F P

(5.2)

(5.3)

5.1.3 Factor Selection

Over 40 logistic regression models, using combinations of the factors, were de­

veloped using the variables from the first administration of the study. A model 

using three predictor variables (Predictor Set 1), specifically, LC mathematics 

score (LCMATHEMATICS), number of hours playing computer games while tak­

ing the module (WHILEGAMES) and factor scores from PC A on the program­

ming self-esteem scale (PROGSELFEST) were the most significant. A subset of
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102 cases from a total of 123 were included in the model. The percentage of stu­

dents accurately classified was significant at 76.5% and Table 5.2 provides further 

performance measures. Although a considerable number of other models were de­

veloped using other attributes from the first administration, no superior predictor 

set was found. LCMATHEMATICS and PROGSELFEST were found to have a 

positive relationship with performance, although WHILEGAMES was found to 

have a negative effect. A second model did emerge with a marginally higher pre­

diction accuracy of 79%, but with a considerably reduced sample size (n =  82). 

The model included four predictor variables (Predictor Set 2) including the three 

predictor variables from the first model and the number of hours students were 

likely to spend studying module material per week (LIKELYHOURS) and mea­

sures of performance are given in Table 5.2. Given the considerable reduction in 

sample size this model is not considered further in this study.

The second investigation considered all of the variables in the study. A signif­

icant model emerged but care must be taken interpreting the results due to the 

reduced sample size and the differences noted earlier between the sample and popu­

lation at Institute A and Institute C. The model included four predictor variables 

(Predictor Set 3), specifically, LCMATHEMATICS, WHILEGAMES, LIKELY­

HOURS and the Self-Efficacy for learning and performance scale from the MSLQ 

(MSLQSELFEFF). Ninety percent of students (n = 58) were classified correctly 

and the model had high sensitivity and specificity measures, as outlined in Ta­

ble 5.2. Due to the considerably reduced sample size, coupled with the problems 

of sample representativeness it would be inappropriate to make recommendations 

based on these factors and thus this model is not considered in detail in this study. 

Subsequently, implementations of each of the machine learning algorithms outlined 

in Chapter 4 were developed using the factors in Predictor Set 1 and the results 

are presented in the following section.
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M odel ID Acc % Sen % Spe %

Model 1 using Predictor Set 1 76.5 84 65

Model 2 using Predictor Set 2 79 82 75

Model 3 using Predictor Set 3 90 93 86

Acc =  Accuracy, Sen =  Sensitivity, Spe =  Specificity

Table 5.2: Most significant models found using logistic regression

5.2 Results

Each of the six machine learning algorithms were implemented using Predictor 

Set 1, that is, LCMATHEMATICS, WHILEGAMES and PROGSELFEST. Java 

implementations of these algorithms from the Waikato Environment for Knowledge 

Analysis, WEKA, as outlined in Witten and Frank (2005) [WE05], were used. 

The accuracy, sensitivity and specificity measures for each of the algorithms are 

presented in Table 5.3.

Based upon the accuracy measure, the most successful algorithms in descending 

order are naïve Bayes, support vector machine (SVM), logistic regression, back- 

propagation, C4.5 and 3-NN. Although overall accuracy is important in this study 

the sensitivity measure is deemed more important. While ideally, we would like to 

predict the performance of all students accurately, misclassifying strong students 

as weak is far less detrimental than misclassifying weak students as strong. In the 

latter case, suitable interventions may not be put in place to prevent weak students 

from failing while providing good students with extra attention unnecessarily is 

at worst a waste of resources. In order of importance based on the sensitivity 

measure, the algorithms of choice are naïve Bayes, SVM, C4.5, logistic regression,
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A lgorithm Acc % Sen % Spe %

Naive Bayes 78.28 87.00 66.00

Logistic Regression 76.47 84.00 65.00

BP 75.46 84.00 63.00

SVM 77.49 87.00 63.00

C4.5 74.49 85.00 63.00

3-NN 71.64 77.00 59.00

Acc =  Accuracy, Sen =  Sensitivity, Spe = Specificity

Table 5.3: Performance of each algorithm using Predictor Set 1

backpropagation and 3-NN. Finally in terms of the specificity measure, the best 

algorithms are, in order, naive Bayes, logistic regression, SVM, backpropagation, 

3-NN and C4.5. Using the sensitivity measure to choose an algorithm, the naive 

Bayes and SVM models achieve the best results.

5.3 Improving the Results

Although the predictive accuracies found in this study are exceptionally high given 

the domain, further improvements were still desired. To this end, two further 

investigations were carried out in an attempt to increase the performance of the 

machine learning algorithms using Predictor Set 1. Each of these investigations is 

described in the following section.
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5.3.1 Ensem bles o f M ultip le M odels

An ensemble of classifiers is a set of classifiers whose individual predictions are 

combined to classify new examples. Numerous studies have found that an ensemble 

of models yields higher generalisation performance than the best base model alone 

([Die97]). In general, an ensemble consists of a set of base models, m i , ..., m s where 

S  is the size of the ensemble formed during the learning phase. Each base model 

in the ensemble is trained using training instances from the training set Tf, ...Tn. 

The predictions of the base models are combined during the application phase to 

produce the final prediction of the ensemble. Two ensembles were implemented, 

namely, Voting and StackingC. With Voting, the probability estimates of each of 

the classifiers in the learning phase is averaged in the application phase to derive a 

final prediction ([WE05]). Several different models using voting were implemented 

each with different combinations of the top five classifiers (excluding K-NN given 

the statistically significant differences found between it and the other classifiers). 

However, no improvements beyond using a single naïve Bayes classifier were found. 

In Stacking, a learning algorithm or level-1 learner is used to learn how to combine 

the predictions of the base-level classifiers also known as level-0 learners. A meta­

level classifier is then used to obtain the final prediction from the predictions of 

the base-level classifiers ([Wol92]). StackingC implements a more efficient variant 

of the basic stacking algorithm using the classification probabilities of the level-0 

learners ([See02]). An implementation of StackingC using linear regression as the 

meta-learner and naïve Bayes, SVM, logistic regression and backpropagation as 

the base learners resulted in a higher accuracy (82%) and sensitivity value (90%). 

This is an improvement of ~  4% on overall accuracy and ~  3% on sensitivity. 

Subsequent analysis of the errors generated by the base learners indicated that the 

errors made by each of the classifiers were highly correlated (r > 0.90) and as an 

ensemble can only be more accurate that its components classifiers if the individual
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classifiers disagree with one another, this explains why the improvements are not 

higher ([Die97]).

5.3.2 M odel Im provem ent

Naïve Bayes and support vector machines produce the best predictions with regard 

to both accuracy and sensitivity. As such, investigations to optimise the results of 

both algorithms were carried out. The optimisations and results are discussed in 

this section.

Im proving N aïve Bayes

Bagging and Boosting are two popular approaches for improving the performance 

of classifiers. With Bagging, a classifier, Q , is built using each of M  bootstrap 

training sets, Bi, £ 2, •••, Bm, formed by uniformly sampling k instances with re­

placement from the original training set. A final classifier, C*, is built from 

C\, C2 , ..., Cm and the estimated probability that any sample x  has label y =  1 

is the proportion of learned classifiers that output 1 for x. Boosting uses all in­

stances at each repetition, but maintains a weight for each instance in the training 

set that reflects its importance; adjusting the weights causes the learner to focus 

on different instances and so leads to different classifiers. With both, the multiple 

classifiers are then combined by Voting to form a composite classifier. In Bagging, 

each component classifier has the same voting strength, while Boosting assigns 

different voting strengths to component classifiers on the basis of their accuracy 

([WE05]). Implementations of the Bagging algorithm, using a resample size of 

k =  50, 66 and 100 respectively did not improve the accuracy of the naïve Bayes 

algorithm. AdaBoost.Ml was used to implement boosting. This approach works 

by generating the classifiers sequentially and changing the weights of the input 

training instances based on classifiers that were previously built. However, like
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the Bagging technique, no improvements were found in performance.

Im proving Support Vector M achines (SV M ) Perform ance

As with naïve Bayes further improvements to the SVM results were sought. The 

implementation previously discussed was linear, however, as outlined in Section 

4.5, support vector machines can be implemented using a variety of kernels in­

cluding Polynomial and Radial Basis Function (RBF) kernels. Implementations of 

each of these kernels were employed using LibSVM [CL01]. Polynomial SVMs with 

exponent values of 2, 3 and 4 resulted in poorer performance than linear SVMs. 

A grid search using 10 times 10 fold cross validation was performed to determine 

the best parameters for C (soft margin parameter) and 7 (kernel parameter) for 

an RBF SVM. Using the best parameters (C = 512, 7 =  0.0078) resulted in an 

overall accuracy of 78.95%, sensitivity of 88% and specificity of 66%. Given the 

only marginal improvement in results produced by this technique compared to 

the increased computational requirements, the selection of naïve Bayes to predict 

future student performance is currently recommended.

5.4 Summary

Principal Component Analysis (PCA) was implemented to reduce the dimension­

ality of the dataset. Two approaches were taken. Using the first approach PCA 

was performed on the complete dataset while the second approach applied PCA 

to reduce the dimensionality of individual instruments used in the study. Data 

in this study was collected in two separate administrations and thus two distinct 

investigations were carried out based on the amount of data available after each 

administration. Logistic regression was used to determine the factors that could 

account for the most amount of variance in student performance. Three factors

84



Summary Results: Effectiveness of the Predictors

were identified in the first study: LC mathematics result, Programming self-esteem 

and the number of hours spent playing computer games at the start of the module. 

Four factors emerged as the most important in the second investigation: LC math­

ematics result, the number of hours students were likely to spend studying module 

material, self-efficacy for learning and performance and the number of hours spent 

playing computer games at the start of the module. However, due to the lack of 

representativeness of the sample in the second investigation, subsequent analysis 

focused only on the factors identified in the first investigation.

Six machine learning algorithms were implemented to classify students as ‘weak’ 

or ‘strong’. The most successful algorithms in descending order of prediction accu­

racy were naïve Bayes, SVM, logistic regression, backpropagation, C4.5 and 3-NN. 

Although overall accuracy is important in this study the sensitivity measure (stu­

dents correctly predicted as ‘weak’) is more important. In order of importance 

based on the sensitivity measure, the algorithms of choice are naïve Bayes, SVM, 

C4.5, logistic regression, backpropagation and 3-NN. Using the sensitivity mea­

sure to choose an algorithm, it would appear that any algorithm except for 3-NN 

will result in a similar sensitivity measure with the naïve Bayes and SVM models 

achieving the best results. However when the overall accuracy is also considered 

naïve Bayes achieves the highest results.

Although the predictive accuracies found in this study are exceptionally high 

given the domain, further improvements in the results were sought. Two tech­

niques, Voting and StackingC, for developing ensembles of multiple models were 

implemented. Several different models using voting were implemented each with 

different combinations of the top five classifiers but no improvements above using a 

single naïve Bayes classifier were found. An implementation of StackingC resulted 

in higher accuracy (82%) and sensitivity value (90%). This is an improvement of 

~  4% on overall accuracy and ~  3% on sensitivity. Subsequent analysis of the
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errors generated by the base learners indicated that the errors made by each of 

the classifiers were highly correlated (r > .9) and this helps to explain why the 

improvements are not greater.

Attempts were also made to improve the results of the two top performing 

algorithms: naïve Bayes and SVM. Neither Bagging nor Boosting improved the 

previous naïve Bayes results. Polynomial and Radial Basis Function SVMs were 

implemented using LibSVM. Polynomial SVMs with exponent values of 2, 3 and 4 

resulted in inferior performance than linear SVMs. An implementation of an RBF 

SVM resulted in an overall accuracy of 78.95%, sensitivity of 88% and specificity 

of 66%. Given the only marginal improvement in results produced by this tech­

nique compared to the increased computational requirements of this procedure, 

the selection of naïve Bayes to predict performance is currently recommended and 

is discussed further in Chapter 6.

86



Chapter 6

D iscussion

" I '  his chapter provides a discussion on the programming predictors investigated 

in this study and the subsequent machine learning models developed. First, the 

significant predictors used to develop the machine learning models are presented. 

Next, an evaluation of the instruments and factors that were not used in the final 

models is described. Then, a discussion on the results achieved by the machine 

learning algorithms is provided and a comparison of the results found in this study 

with the most closely related study is presented. A technique that can be used 

to interpret misclassified cases is described and the chapter concludes with an 

epilogue study that further validates the effectiveness of the naive Bayes algorithm 

for predicting programming performance.

6.1 Predictor Sets

In this section a review of the three significant predictor sets found in this thesis 

is presented. Predictor Set 1 included three factors: LC mathematics score, the 

number of hours students spent playing computer games and a student’s perception 

of their programming self-esteem. The combination of these three factors led
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to a highly significant model and to the largest sample size (n =  102). The 

second set of predictors, (Predictor Set 2) incorporated the same three factors 

as Predictor Set 1 but also included the number of hours a student felt they 

were likely to spend studying for the module. The inclusion of this factor led to a 

marginally more accurate prediction model than Predictor Set 1 but with a reduced 

(possibly non-representative) sample size of n = 82. Discussion of this model in 

this thesis is merely to encourage future researchers to explore the model further 

but no conclusions can be drawn at this point. The final set (Predictor Set 3) was 

composed of four predictors: LC mathematics, the number of hours spent playing 

computer games, the likely number of hours spent studying for the module and the 

score on the MSLQ self-efficacy scale. The combination of predictors in Predictor 

Set 3 were found to account for the highest prediction accuracy but extreme caution 

must be taken due to the considerably reduced sample size (n =  58) and the 

differences noted earlier between the sample and population at Institute A and 

Institute C. Again, no definitive conclusions can be made using this predictor set 

however, future work would be justified to investigate the predictor set further.

6.1.1 P redictor Set 1

Predictor Set 1 included three factors: LCMATHEMATICS, WHILEGAMES and 

PROGSELFEST. The fact that LC mathematics is a useful predictor is of no great 

surprise given our literature review in Chapter 2. The Programming Self-Esteem 

Instrument was specifically designed for this study. Its success as a predictor 

of programming performance can be attributed to the fact that it is based on a 

well-established, well-respected measure of self-esteem [Ros65] and also because it 

can be thought of as another measure of comfort-level, which has previously been 

found to be a predictor of programming performance. The importance of computer 

game-playing as a negative predictor of performance is in line with the findings of
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Cantwell-Wilson and Shrock [CWS01] and Evans and Simkin [ES89]. This study 

did not attempt to uncover why game-playing negatively relates to programming 

performance but a study to do this would be useful. It would also be useful 

to determine if game-playing negatively influences general academic performance, 

performance on computer science courses or just programming performance. If 

game-playing does not effect performance on non-computer science courses, it may 

be that non-game-playing-students view time in front of a computer as predomi­

nantly work (study) time while for game-playing students it is also seen as hobby 

time which may interrupt study-time. Additional studies in the area should be 

carried out to explore this phenomena further.

6.1.2 P redictor Set 2

Predictor Set 2 was composed of LCMATHEMATICS, WHILEGAMES, PROG- 

SELFEST and LIKELYHOURS. The inclusion of the likely number of hours a 

student spends studying for the module results in an improvement in the number 

of students classified as strong (from 65% in Predictor Set 1 to 75% in Predictor 

Set 2), but with a slight decrease in the prediction performance of weak students 

(from 84% in Predictor Set 1 to 82% Predictor Set 2). An ANOVA test failed 

to reveal any significant differences between the mean likely hours that strong 

and weak students would study for. Thus knowing the likely number of hours a 

student will study improves the classification of stronger students but not weaker 

ones. Further investigation is needed to explore these findings.

6.1.3 P red ictor Set 3

The third predictor set included LCMATHEMATICS, WHILEGAMES, LIKELY­

HOURS and MSLQSELFEFF. While the measures of self-regulated learning (SRL) 

were generally disappointing, the self-efficacy scale on the Motivated Strategies for
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Learning Questionnaire (MSLQ) was found to have predictive value. This is not 

surprising given the findings on the importance of self-efficacy in other studies. 

Again, this can be thought of as a comfort-level type measure and when it is in­

cluded in the model, the programming self-esteem measure is no longer needed. In 

fact, running the model, with the same 58 students as in Predictor Set 3 but using 

the programming self-esteem measure instead of the MSLQ self-efficacy measure 

results in poorer prediction accuracy, with 88% of the students classified correctly. 

This may indicate that Predictor Set 1 could be further improved if this measure 

was available for all students, assuming that the findings are not skewed by the 

sample representativeness.

While Predictor Set 2 and Predictor Set 3 result in higher classification accu­

racies there are considerable problems with missing data, sample size and sample 

representativeness. As such, the only predictor set that is recommended currently 

for use is Predictor Set 1. However, this thesis provides sufficient evidence to 

justify further research on Predictor Set 2 and Predictor Set 3.

6.2 Factors Not Used In Predictor Sets

In this section a discussion of the instruments and factors that were not incorpo­

rated into the final models is presented and suggestions on why the factors were 

not found to be significantly predictive are provided.

6.2.1 Background Q uestionnaire

Gender as a factor

Recently there has been concern about the lack of women studying computer sci­

ence [CWOO]. Typically, enrolment of female students is much lower than male 

enrollment and this study reflects this trend with 22.5% female participants and

90



Factors Not Used In Predictor Sets Discussion

77.5% male participants. This study found that inclusion of gender as a factor 

in the prediction models does not lead to higher classification accuracy. However, 

the models more accurately classify male students than female students, with 84% 

of male students and 70% of female students correctly classified. Subsequent t- 

tests of independent samples revealed that statistically significant differences ex­

isted between the LC mathematics score (¿(103) =  3.765, p =  0.001), number of 

hours playing games (¿(115) =  3.634, p — 0.001) and overall module performance 

(¿(118) = 2.210, p = 0.029) of male and female students. The removal of the num­

ber of hours students spend playing computer games improves the classification of 

female students to 79% indicating that its inclusion as a factor is not constructive 

in predicting female student performance. Furthermore, a prediction model that 

considers LC mathematics, programming self-esteem and meta-cognitive strategy 

use accurately classifies 92% of female students, however the sample size is very 

low (n =  14). Thus building separate models for male and female students could 

be a useful future direction.

Place of study (in stitu tion) as a factor

Developing a separate prediction model using Predictor Set 1 for each institution 

results in a prediction accuracy of 85% at Institute A, 96% at Institute B, 92% 

at Institute C and 71% at Institute D. The lower result at Institute D is not 

surprising as only 7 students were included in the classification due to a large 

number of missing data. In most cases, LC mathematics score was missing. A large 

proportion of the students at this college were educated outside the state and did 

not sit the LC mathematics examination. This is a problem for the current model. 

Although several substitution schemes were examined, none were found suitable. 

Future research on other substitution schemes to alleviate this problem would be 

useful. An alternative solution would be to devise a mathematics examination,
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somewhat similar to the LC mathematics examination, that students could take 

at the start of the course. Aside from this issue the model does appear to fit each 

institution well.

The order of importance of each of the three factors is different among the 

institutions. At institutes B, C and D the most important predictor is playing 

computer games, followed by LC mathematics at Institute B and Institute C and 

programming self-esteem at Institute D. At Institute A the most important fac­

tor is programming self-esteem, followed closely by LC mathematics score. It is 

interesting that the exact same ordering of predictors is found at Institute B and 

Institute C. Both of these institutes have similar admission requirements and are 

the same type of Institute (institutes of technology). As such, students with similar 

academic backgrounds would attend each of these college and the model appears 

to adjust accordingly for this. Institute A is a university and in general would have 

a higher admissions requirement. Computer game-playing at this institution is the 

least important predictor as opposed to the most important at the others. It could 

be interpreted that students at Institute A who in general would have higher entry 

results, are more academically oriented and are less likely to play games. How­

ever, a one-way ANOVA test failed to reveal any significant differences between 

computer game-playing at each of the institutions. An ANOVA test revealed a 

statistically significant difference between the mean LC mathematics score at In­

stitute A and each of the other institutes (F(3,98) =  24.985,p < 0.001). There 

was no difference in the LC mathematics mean score at Institute B, Institute C 

and Institute D. This could partially explain why LC mathematics is a more im­

portant factor at Institute A. No statistical differences were found on programming 

self-esteem score at the different institutions.
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Science as a factor

Results from the pilot study suggested that performance in LC science subjects 

was related to programming performance. However, not all students in Ireland 

study a science subject for LC examination as is the case in this study with only 

67% of students taking a science subject for this examination. However, inclusion 

of this factor results in a significantly reduced (possibly unrepresentative) sample 

size or requires investigation of an appropriate substitution scheme to determine 

a suitable score (value) for students who did not study a science subject. To 

examine the effect of science in this study, the inclusion of science as a factor (with 

a reduced sample size) was first investigated. If this led to a superior predictive 

model it was the authors intention to investigate suitable substitution schemes. 

Various models including science as a factor were developed, however none were 

more highly predictive and thus further investigation was not warranted.

Prior Program m ing and C om puter Experience

Prior programming experience was not found to be a predictor of performance on 

the module. Only 37% of students indicated that they had some form of previous 

programming experience. This experience was either from taking a programming 

course (object-oriented or procedural), a web-design course or self-taught. A t- 

test of independent samples revealed that there was no statistically significant 

difference between the mean performance of students with and without previous 

experience. Although previous studies have identified a relationship between prior 

programming experience and performance on an introductory module, as previ­

ously mentioned, these studies have typically taken place in countries where stu­

dents can study programming at national examination level. This is not the case in 

Ireland and could explain our findings. A more detailed study of the type of prior 

experience students have commencing an introductory programming module, with
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a considerably larger sample, could help to explain this finding further. Only 12.5% 

of students had no previous experience of internet-surfing and emailing, and 30% 

of students had no previous experience using application software. No statistically 

significant differences were found between the performance of students with and 

without experience in these two areas. This result was anticipated and confirms 

earlier research that previous computer experience (non-programming computer 

experience) is not a useful predictor of programming performance. Programming 

is a skill and knowing how to email, surf the web or use an application such as MS 

Word are not advantageous in learning how to program.

M iscellaneous factors

In a previous study by Cantwell-Wilson and Shrock [CWS01] the encouragement 

students receive from others (parents, teachers, family members etc.) to study 

CS\IT and workstyle preference (preference to work alone or in a group when 

solving programming problems) was examined. Neither factor was found to be 

predictive of programming performance. To validate these findings both factors 

were re-examined here. In this study, there was an even distribution of students 

who received and who did not receive encouragement to study CS\IT. No sta­

tistically significant differences were found between students with or without en­

couragement. Forty-one percent of students indicated that they preferred to work 

alone when solving programming problems with the remaining 59% indicating a 

preference to work in groups. Again, no statistically significant differences could 

be found between the mean performance of students who preferred to work alone 

and those who preferred to work in groups. However, it is interesting to note that a 

t-test did tend towards significance (¿(117) =  1.995, p =  0.053) with students who 

preferred to work alone having a higher performance. A possible explanation for 

this marginal effect could be that weaker students prefer the support of working
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with other (possibly stronger) students than working alone. Further research on 

the types of students weaker students prefer to work with (for example students 

perceived to be worse than, same as or better than themselves) could be useful in 

assigning students to group activities such as peer-programming and PBL. Finally, 

as outlined in Chapter 2 some studies have found the number of hours a student 

spends working at a part-time job relates to programming performance. No such 

relationship was identified in this study. In fact, students who indicated that they 

worked between 6 to 10 hours per week had the highest average programming 

performance. Students who did not work or worked over 16 hours per week had 

similar mean performance. A possible explanation for this could be that some un­

derlying variable, perhaps motivation, is more important than time spent working 

at a part-time job.

6.2.2 C antw ell-W ilson and Shrock C om fort-Level m easure

While our programming self-esteem measure proved useful in our classification 

model, the Cantwell-Wilson and Shrock [CWS01] comfort-level measure did not 

add any further value to the models. The instrument resulted in only a slightly 

poorer classification model when used with LC mathematics and game playing, 

(omitting PROGSELFEST). This suggests that it is measuring the same phenom­

ena as programming-self-esteem, however, programming self-esteem is a superior 

measure.

6.2.3 C om puter Program m ing Self-Efficacy Scale

The ‘Computer Programming Self-Efficacy’ scale did not add any further value to 

the models. Given that we are trying to capture attributes at a very early stage in 

the programming course, only seven questions asking students to judge their ability
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at specific programming tasks, from the scale could be administered. Clearly, this 

shortened version is not sufficient to capture programming self-efficacy.

6.2.4 M otivated  Strategies for Learning Q uestionnaire

Analysis of the SRL measures using independent t-tests revealed that weaker stu­

dents had lower intrinsic motivation than stronger students (t(77) =  —3.298, p =

0.001). In addition, weaker students used less meta-cognitive strategies (specifi­

cally, planning, monitoring and regulating) than stronger students (i(79) =  —4.566, p

0.001). While, use of meta-cognitive strategies and intrinsic motivation level do 

not increase the accuracy of the models (perhaps because the information they 

provide is already captured in the model), this information is useful to educators 

who are seeking to help students learn programming. Given the evidence provided 

in this thesis on the role of SRL in learning to program future studies would be 

well justified in considering this area further.

6.2.5 Sum m ary o f Factors N ot In P redictor Sets

In summary, Predictor Set 1 was found to predict better the performance of male 

students than female students. Removing the number of hours students spend 

playing computer games results in a higher percentage of female students be­

ing correctly classified. The inclusion of the meta-cognitive strategy scale from 

the MSLQ appears to be an important predictor of female student performance. 

Building separate models for male and female students could be a useful future 

direction. Developing a separate model using Predictor Set 1 for each institution, 

results in a high classification accuracy at each institution. Missing LC mathemat­

ics scores at Institute D is problematic because a large proportion of students were 

educated outside the state and consequently did not sit the LC mathematics ex­

amination. Future research on devising a mathematics examination that students
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could take at the start of the course would be useful.

Performance in LC science was not found to be a significant predictor of pro­

gramming performance in this study. Although previous studies have identified 

a relationship between prior programming experience and performance on an in­

troductory module, these studies have typically taken place in countries where 

students can study programming at final second-level examination level. As this 

is not the case in Ireland this could explain why prior programming experience 

was not found to be a predictor of programming performance in this study. The 

Cantwell-Wilson and Shrock comfort-level measure [CWS01], resulted in a slightly 

poorer classification model when used with LC mathematics and game playing, 

(omitting PROGSELFEST) indicating that it is measuring the same phenomena 

as programming-self-esteem, however, programming self-esteem is a superior mea­

sure. The shortened version of the computer programming self-efficacy scale was 

not sufficient to capture self-efficacy. Analysis of the SRL measures revealed that 

weaker students had lower intrinsic motivation than stronger students and that 

weaker students used less meta-cognitive strategies than stronger students. This 

is in line with previous findings on SRL and programming performance.

6.3 Performance of the Machine Learning Algo­

rithms

A review of the accuracy, sensitivity and specificity measures of Predictor Set 1 in 

Chapter 5 indicated that many of the algorithms had highly comparable results. 

Given such similar results selection of the most suitable algorithm to use is not 

obvious. As interested parties may have a preference for the choice of algorithm 

they would like to implement it is important to know if the use of a particular 

algorithm(s) would result in a statistically significant lower performance. To test
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the hypotheses that there would be statistically significant differences between the 

algorithms based on the accuracy, sensitivity and specificity measures, ANOVA 

tests with Tukey post-hoc analysis were implemented [TF01].

Based upon the accuracy measure, the most successful algorithms in descending 

order are naïve Bayes, SVM, logistic regression, backpropagation, C4.5 and 3-NN. 

An ANOVA test revealed that there were statistically significant differences on 

the overall accuracy of the algorithms, F(5,594) =  4.134, p < 0.001. Post-hoc 

analysis revealed that there were no statistical differences between naïve Bayes, 

logistic regression, SVM, backpropagation and C4.5. However, 3-NN was found to 

have statistically significant lower accuracy than naive Bayes, logistic regression 

and SVM but no statistically significant differences were found between it and 

C4.5 or backpropagation.

In order of importance based on the sensitivity measure, the algorithms of 

choice are naïve Bayes, SVM, C4.5, logistic regression, backpropagation and 3-NN. 

With regard to the sensitivity measure, an ANOVA test revealed that there were 

significant statistical differences between the algorithms, F (5 ,594) =  6.496, p <

0.001. Post-hoc analysis found this difference to be between 3-NN and all the other 

algorithms, with 3-NN having significantly lower sensitivity. No other differences 

were found.

Specificity, although important is not as critical a measure in this study. The 

best algorithms, in order, on this measure were naïve Bayes, logistic regression, 

SVM, backpropagation, 3-NN and C4.5. However, no statistically significant dif­

ferences were found between the algorithms based on specificity.

Using the sensitivity measure to choose an algorithm, it would appear that any 

algorithm except for 3-NN will result in a sensitivity measure that does not have a 

statistically significant difference with any of the other algorithms. This is impor­

tant as it means that if an interested party has a preference for or expertise with a
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particular algorithm they can be confident that it achieves statistically comparable 

results to all of the other algorithms (except 3-NN). However, naive Bayes achieves 

the highest results. In addition, an ANOVA test based upon the training times 

of each of the algorithms indicates that statistically significant differences exist, 

F(5,594) =  3282.24, p < 0.001. Post-hoc analysis reveals that logistic regression, 

SVM and backpropagation have statistically significant higher training times than 

naive Bayes and C4.5. This provides further evidence to support the use of naive 

Bayes to solve this classification problem.

Although this is the first study to use a variety of machine learning algorithms 

to predict programming performance, a study by Kotsiantis et al. investigated 

the effectiveness of the same machine learning algorithms to predict performance 

on a distance learning course [KPP04]. In this study, naive Bayes, SVMs, back­

propagation, k-nearest neighbour, logistic regression and a decision tree (C4.5) 

were implemented and therefore it is useful to compare our findings to theirs to 

determine (1) if similar algorithms are useful at predicting performance in other 

academic domains, and (2) to check if any considerable differences exist between 

the findings of the two studies that could suggest implementation problems. The 

results of the study are illustrated in Table 6.1.

Kotsiantis et al argue for the use of naïve Bayes as the best overall algorithm. 

In their study naïve Bayes had a higher statistically significant sensitivity measure 

than all of the other algorithms. Backpropagation, logistic regression and SVM had 

the next highest sensitivity measure, with no statistical differences between them. 

With regard to overall accuracy, naïve Bayes, logistic regression, backpropagation 

and SVM were the top performers with no statistically significant differences be­

tween them. Finally, although less important, no significant statistical differences 

were found between the SVM, logistic regression and backpropagation algorithms 

on the specificity measure, while naive Bayes was found to have statistically sig-
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Table 6.1: Performance of each algorithm in the study by Kotsiantis et al. [KPP04]

A lgorithm Acc(% ) Sen (%) Spe(% )

Naïve Bayes 72.48% 78.00% 67.37%

Logistic regression 72.32% 76.06% 68.52%

B ackpr opagation 72.26% 76.32% 68.31%

SVM 72.17% 76.05% 69.06%

C4.5 69.99% 73.89% 66.44%

3NN 66.93% 71.49% 62.00%

Acc =  Accuracy, Sen =  Sensitivity, Spe = Specificity

nificant lower specificity than the SVM and logistic regression algorithms.

Table 6.2 provides a comparison of the results between the [KPP04] study and 

the current one. As can be seen, in both studies naïve Bayes is the top performer 

with SVM, backpropagation and logistic regression following closely behind on all 

measures. As naïve Bayes is relatively straight-forward to implement and under­

stand and achieves the highest overall performance, the author recommends its use 

for predicting incoming student performance. However, this thesis has also shown 

that each of the other algorithms have statistically comparable performance (ex­

cept for 3-NN) and thus can be used to predict programming performance either.

6.4 Using Classification Probabilities

Each of the algorithms in this study can estimate the probability of belonging to 

a particular class in addition to predicting a class. However, previous empirical
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Table 6.2: Comparison of results

K otsian tis et al. Bergin

Ordered by Accuracy

Naive Bayes Naïve Bayes

Backpropagation SVM

Logistic regression Logistic regression

SVM Backpropagation

C4.5 C4.5

3-NN 3-NN

Ordered by Sensitivity

Naive Bayes Naive Bayes

Bankpropagation SVM

Logistic regression C4.5

SVM Logistic regression

C4.5 Backpropagation

3-NN 3-NN

Ordered by Specificity

SVM Naïve Bayes

Logistic regression Logistic regression

Backpropagation SVM

NB Backpropagation

C4.5 3-NN

3-NN C4.5
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studies indicate that while naïve Bayes is a very accurate classifier care must be 

taken when interpreting the class probabilities due to the assumption of condi­

tional independence. The technique works well at predicting the correct class but 

the strengths of the predictions tend to be inaccurate [Mit97]. For illustration 

purposes logistic regression is used here as the class probabilities are very easily 

computed. In logistic regression classification probabilities are used to determine 

which class a student belongs. In general, the cut-off value is 0.5. Thus, we are 

not restricted to treating our outcome as dichotomous (weak or strong) but can 

further classify performance using the classification probabilities. This is an impor­

tant benefit as it allows borderline students to be identified, that is students who 

are clearly not very strong or very weak, for example, students with a classification 

probability between 0.35 and say 0.65. For example, using the attributes described 

in Predictor Set 1 a classification model can be derived using all 102 students as 

training data (for illustration purposes it is simpler to consider a single training set 

than 10-fold cross validation). Twenty students are misclassified. However, analy­

sis of the classification probabilities indicates that 10 of the misclassified students 

have a classification probability between 0.35 and 0.65 and thus form a borderline 

group of students. Assuming the objective is to assist weaker students, students 

in this borderline group should also be monitored. Of the remaining 10 students, 

3 are classified as strong but are actually weak and 7 are classified as weak who 

are actually strong. Given the above objective it could be argued that the only 

significant error is the 3 students classified as strong who are weak. Furthermore, 

the classification probabilities can be used as a confidence measure of how well a 

student belongs in a particular group. For example, one would be much more con­

fident that a student with a classification probability of 0.9 belongs in the stronger 

class than a student with a classification probability of 0.6.
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6.5 Epilogue

In the academic year 2005-2006 students enrolled on CS101, an introductory pro­

gramming module, at the Department of Computer Science were asked to partici­

pate in an additional study to verify the effectiveness of naïve Bayes at predicting 

programming performance. Students were asked to answer questions based on the 

three factors identified in Predictor Set 1, that is their LC mathematics result, the 

number of hours spent playing computer games and questions on the programming 

self-esteem scale. Twenty-one of the 22 students (95%) who completed the mod­

ule participated in the study. The study was carried out when the students had 

completed three weeks of Java programming (variable types, selection statements 

and iteration).

The full set of students who participated in the main study and had no missing 

data, (n =  102), were used as training instances to develop a final naïve Bayes 

model. The model achieved an overall prediction accuracy of 81% (4 students were 

misclassified). The sensitivity measure was 80% (2 students misclassified) and the 

specificity measure achieved was 82% (2 students misclassified). With regards to 

the two students who were predicted to be ‘strong’ programmers but were actually 

‘weak’, the first student achieved an overall result of 54.97% and the cut-off value 

for weak was 55.5%. That is, had the student achieved 0.6% more they would have 

been correctly classified, increasing the overall accuracy measure to 86% and the 

sensitivity measure to 90%. The second student who was misclassified as ‘strong’ 

did not attend any lab or PBL workshop sessions and attended less than 5% of 

the lectures in the second semester. Prior to their non-attendance the student had 

performed well in their class and lab exams.

This study further confirms the effectiveness of the naïve Bayes model at pre­

dicting programming performance.
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6.6 Summary

In this chapter the significant predictor sets (Predictor Set 1, Predictor Set 2, Pre­

dictor Set 3) identified in this thesis were discussed. With regard to Predictor Set 

1 , the findings on the importance of mathematics and computer game-playing is in 

line with other studies as outlined in the literature review in Chapter 2. Although 

the Programming Self-Esteem instrument was developed for this study it can be 

thought of as another measure of comfort-level, which has previously been found 

to be a predictor of programming performance. Analysis of how each of these 

factors influence weak and strong students, implies that strong programming stu­

dents, on average, tend to achieve a D grade (pass) in higher-level LC mathematics 

or an A  grade in ordinary-level LC mathematics. They tend to have high levels 

of programming self-esteem and on average spend three hours playing computer 

games per week. Weak programming students achieve on average a B  grade in 

ordinary-level LC mathematics, have lower levels of programming self-esteem and 

spend, on average five hours playing computer games.

Predictor Set 2, included the likely number of hours a student would spend 

studying for the module and resulted in a slightly more predictive model but with 

a considerably reduced sample size. Further research is required to validate this 

model. With regard to Predictor Set 3, the inclusion of the MSLQ self-efficacy 

scale in place of the programming self-esteem scale resulted in a considerable im­

provement in classification accuracy (90%). Again, this can be thought of as a 

comfort-level type measure and suggests that Predictor Set 1 could be further im­

proved if this measure was available for all students, assuming that the findings 

are not affected by lack of sample representativeness. Based on the problems of 

missing data and sample representativeness associated with Predictor Set 2 and 

Predictor Set 3, this study recommends the use of Predictor Set 1 for classifying 

student performance. However, sufficient evidence has been provided to justify
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further research studies on the predictor sets.

Subsequent analysis based on gender indicated that the factors in Predictor 

Set 1 are better at predicting the performance of male than female students. Re­

moving the number of hours students spend playing computer games improves the 

classification of female students suggesting that its inclusion is not constructive in 

predicting female student performance while the use of the meta-cognitive strat­

egy scale from the MSLQ appears to be an important predictor of female student 

performance. Building separate models for male and female students could be a 

useful future direction.

Developing a separate prediction model for each institution, results in a high 

classification accuracy for each. The poorest prediction at Institute D (71%) is not 

surprising as only seven students were included in the classification due to a large 

number of missing data. These missing data were predominantly LC mathematics 

score as a large proportion of students at this college were educated outside the 

state and did not sit the LC mathematics examination. This is a problem for the 

current model. Future research on devising a mathematics examination, somewhat 

similar to the LC mathematics examination, that students could take at the start 

of the course would be useful.

This chapter also provided a discussion on the factors that were not incorpo­

rated into the final models. Of note, science was not found to be a significant pre­

dictor of programming performance and inclusion of this factor leads to problems 

of missing data substitution. Although previous studies have identified a relation­

ship between prior programming experience and performance on an introductory 

module, these studies have typically taken place in countries where students can 

study programming at final second-level examination level. This is not the case in 

Ireland and could explain why prior programming experience was not found to be 

a predictor of programming performance in this study. The Cantwell-Wilson and
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Shrock comfort-level measure [CWS01], resulted in slightly poorer classification 

when used with LC mathematics and game playing, (omitting PROGSELFEST) 

indicating that it is measuring the same phenomena as programming self-esteem, 

however, programming self-esteem is a superior measure. The shortened version 

of the computer programming self-efficacy scale was not sufficient to capture self- 

efficacy. Analysis on the SRL measures revealed that weaker students had lower 

intrinsic motivation than stronger students and that weaker students used less 

meta-cognitive strategies than stronger students. This is in line with previous 

findings on SRL and programming performance.

With regard to the choice of machine learning algorithm based on the sensitivity 

measure, it would appear that any algorithm except for 3-NN will result in a 

sensitivity measure that does not have a statistically significant difference with any 

of the other algorithms. However, naïve Bayes achieves the best overall results. 

Further, analysis based on training times further confirms the choice of naïve 

Bayes to classify student performance. Although this is the first study to use 

machine learning algorithms to predict programming performance, a similar study 

by Kotsiantis et al. to predict performance on a distance learning course [KPP04]. 

A comparison of the results found in each study indicated a similar ranking of 

classifiers. In particular, the Kotsiantis et al. study also found naïve Bayes to 

be the top performer with SVM, backpropagation and logistic regression following 

closely behind on all measures.

The chapter concluded with the recommendation that classification probabil­

ities could be used to determine the students who were neither clearly weak or 

clearly strong. As such it was recommended that any student with a probability 

distribution between 0.35 and 0.65 should be treated as a borderline student and 

handled accordingly. An illustration was provided using logistic regression.
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Conclusion and Future D irections

I . ' his thesis detailed longitudinal research on factors that influence program- 

ming success and described a number of techniques for predicting programming 

performance. In addition, recommendations on the most suitable techniques for 

predicting future performance were provided. This concluding chapter summarises 

the contributions made and provides suggestions for possible future directions for 

this work.

7.1 Contributions

The work outlined in this thesis makes three fundamental contributions to the 

field. This section summarises and comments on each of these contributions

7.1.1 Longitudinal R esearch on P rogram m ing Predictors

This thesis documents a three year multi-institutional, multivariate study to de­

termine the factors that influence programming success. The research involved 

four institutions, investigating 25 factors. The vast majority of previous studies 

on this research problem are not replicated, have small sample sizes, and involve
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a single class. Given this, one is reluctant to fully trust the generality of the find­

ings. The institutes that participated in this research were diverse in that one was 

a university, two were institutes of technology and one was a college of further 

education and as such, they attract students with varying previous academic ex­

perience and achievement. In addition, the specifics of the programming modules 

(including language taught) was not the same nor were the modules taught by the 

same teacher. However, the prediction models developed achieve high prediction 

accuracy at each of the institutions. This increases confidence in the likelihood 

that the models will generalise well elsewhere.

The studies documented in this thesis provided evidence on the importance 

of performance in LC mathematics, perceived level of programming self-esteem 

and the effects of playing computer games on programming success. These three 

factors were found to significantly predict introductory performance. The fact 

that the factors were found to be so predictive and were measured at the start 

of the year when students had only minimal experience of programming concepts 

is especially important. Early interventions can now be developed and tailored 

to assist struggling students. It is important to note that the factors are also 

predictive of strong students and thus additional resources or alternative streams 

could be provided to further develop and foster their skills from a very early stage.

The study also examined numerous other factors and found that they failed 

to contribute further to the prediction model, for example, prior programming 

experience, number of hours a student spends working at a part time job, en­

couragement from others to study programming, preference to work alone or in 

a group when solving problems and number of hours using application software, 

emailing or surfing the web before and during the early stages of the course. It is 

disappointing that these factors were not found to be useful. However, given that 

this research was carried out over three years and involved multiple institutions,
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it may be more beneficial to direct future research on identifying new factors as it 

seems unlikely that these factors will prove predictive in other studies.

7.1.2 Instrum ent D evelopm ent

During the course of this research a number of questionnaire items and instru­

ments were developed. Of particular importance was the development of a new 

instrument, the programming self-esteem scale, based on Rosenberg’s self-esteem 

measure [Ros65]. The scale proved to be a very important comfort-level type mea­

sure and was found to out-perform the Cantwell-Wilson and Shrock comfort-level 

measure and the shortened computer-programming self-efficacy scale in predicting 

programming performance.

7.1.3 In itial Investigation  o f th e role o f Self-R egulated  Learn­

ing

The work carried out on self-regulated learning in this thesis was the first detailed 

investigation on using SRL to predict programming performance. While the prob­

lems of missing data and sample representativeness meant that the findings on 

SRL had to be interpreted with caution the results did suggest that aspects of 

SRL, in particular the self-efficacy scale on the MSLQ, were useful in predicting 

programming performance. Furthermore, the findings that weaker students are 

less intrinsically motivated than stronger students and use fewer meta-cognitive 

strategies justifies further investigation in this area.

7.1.4 M odel D evelopm ent

Typically, the models built to predict programming performance are statistical, 

with multiple linear regression the most common technique used. The work out-
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lined in this thesis is a first attempt to utilise a variety of machine learning (ML) 

algorithms to predict introductory programming performance. While similar tech­

niques have been investigated in other academic domains, a detailed review of the 

literature suggests that no comprehensive study on the effectiveness of a variety 

of ML techniques to predict performance has been carried out within this domain. 

This work is important as it bridges the gap between predicting programming 

performance and the application of machine learning techniques, and provides 

the foundations for future work on the use of artificial intelligence techniques for 

analysing this problem. It also encourages computer science educators to consider 

a broader suite of techniques.

The models developed as part of this thesis are the most effective models ever 

developed to predict programming performance. Similar results have never been 

achieved before. Further optimisations were also carried out to investigate if the re­

sults could be further improved. Several techniques were implemented with varying 

performance. StackingC, an ensemble algorithm, was shown to result in a higher 

prediction accuracy than that achieved by a single classifier. This finding not 

only gives interested parties an additional means of improving prediction accuracy 

but also justifies and warrants further research and development on optimisation 

techniques and, in particular, ensemble methods.

7.1.5 R ecom m ended A lgorithm

Although visual inspection indicated that naïve Bayes was the most effective al­

gorithm for predicting programming performance, detailed statistical analysis was 

carried out to determine if there were any statistically significant differences be­

tween the prediction accuracy of each of the algorithms. This was important as 

interested parties may have a preference for the choice of algorithm they would 

like to implement and as such need to know if the use of a particular algorithm(s)
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would result in a statistically significant lower prediction performance. The analy­

sis determined that all of the algorithms, except 3-NN, had statistically comparable 

prediction performance and thus could be used to predict incoming student per­

formance. However when consideration is also given to training times along with 

ease of implementation and interpretation, naive Bayes is recommended as the 

best choice for predicting future student performance.

7.2 Future Directions

There are numerous possible directions for future work in this area. In this section 

we provide suggestions for future work within the area.

7.2.1 Further R esearch on Program m ing P redictors

It is important that work continues on determining the attributes to predict pro­

gramming performance. Approximately 20% of students in our studies are still 

misclassified and sizeable improvements to this figure may not take place until 

further significant factors are identified.

As such, future work should seek to validate the effectiveness of SRL in predict­

ing programming performance. The MSLQ should be re-administered to determine 

if it is a useful indicator when administered in the very early stages of the module. 

If it is, then incorporating the measure with the number of hours a student is likely 

to study on the module, LC mathematics score and the number of hours playing 

games could result in an improved model. In addition, future studies should fur­

ther examine SRL with a view to developing interventions to assist students. In 

this study weaker students were found to have lower intrinsic motivation levels and 

to use less meta-cognitive strategies than stronger students in this study. If future 

studies can determine that these factors have a causal relationship on program­
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ming performance, that is, that level of intrinsic motivation and meta-cognitive 

strategy use effect (cause) programming performance, then interventions that im­

prove intrinsic motivation levels and meta-cognitive strategy use could improve 

programming performance.

7.2.2 A ssessing M athem atical A b ility

With regards to LC mathematics score, studies need to be carried out in other 

countries to see if performance on alternative mathematics tests can be used in 

the model instead. Moreover, work to develop a test that could be given to intro­

ductory programming students would remove the necessity of relying on results on 

a test that some students may not have taken, for example foreign students.

7.2.3 D evelop ing su itable in terventions

The prediction model proposed in this thesis accurately classifies ~  80% of students 

as ‘weak’ or ‘strong’. Suitable interventions can now be developed and used to 

assist such students. Learning technologies are receiving considerable research 

attention of late and possible future work could look at the development of an 

online learning system, for example, a tutoring system tailored to provide remedial 

support for weaker students.

7.2.4 N on-C om pleting S tudents

A considerable amount of data was gathered from students who subsequently 

dropped-out of the programming module at each of the participating institutions. 

A study analysing this data could lead to insight as to why students do not continue 

with programming and could be useful in developing interventions to encourage 

and support students to persevere with the module.
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7.2.5 Targeting Secondary School S tudents

The naïve Bayes prediction model developed in this thesis can be used to predict 

the introductory programming performance of students when they have experi­

enced only preliminary programming concepts. As such, this tool with minor 

adjustment, could be employed by guidance councillors in secondary schools to 

assess a students likely success in programming after similar concept exposure. 

Research on an alterative mathematics measure would be required.

7.2.6 A pplication  o f th e A pproach to  O ther C om puter Sci­

ence Topics

It would be useful to determine how effective the naïve Bayes model is at predicting 

performance in other computer science topics, for example, discrete mathematics. 

The only modification required to the instruments would be to re-word the pro­

gramming self-esteem measure to represent the new topic. Where students study 

computer science as part of a science or arts degree, it would also be useful to de­

termine how well the model predicts performance on the associated science or arts 

modules. Such a predictive model would be a highly significant contribution to the 

education community and again future research could investigate its effectiveness 

when measured in secondary schools.

7.2.7 O ptim ising R esu lts o f M achine Learning A lgorithm s

This thesis provides a baseline for further studies on the application of machine 

learning techniques to predict programming performance. The use of an ensemble 

of mixed models appears fruitful and justifies the examination of further techniques 

other than Stacking and Voting. Although Bagging and Boosting did not result in 

an improved performance of the naïve Bayes algorithm, other alternative optimi­
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sations could be examined, for example, tree augmented naive Bayes. The results 

of the RBF SVM implementation were encouraging and subsequent studies could 

be carried out to gather more data that can be used to investigate this approach 

further.
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A ppendix A  

Background Survey

1. Please circle the level of mathematics studied for the Irish Leaving Certificate

and the grade achieved. If this is not applicable circle N \A

Higher Lower Foundation N \A

Al A2 B1 B2 B3 C l C2 C3 D1 D2 D3

If you selected N \A  please explain why:

2. Did you take a science subject in the Leaving Certificate? If yes, please enter 

the subject name, the level studied and the grade achieved.

Subject: Level Grade:

3. Tick each statement that applies to you:

 I took an object-oriented programming course e.g. Java, C++, prior to this

module.
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 I took a procedural programming course e.g. PASCAL, BASIC, COBOL prior

to this module.

 I took a programming course on another type of language prior to this module.

Please specify language: _______

 I took a web design course prior to this module.

 I learned to program on my own by reading books, talking with others, etc. but

did not take a class.

4. How many hours per week on average did you spent on the following items 

p rio r to taking this class?

 Number of hours/week surfing the web and using e-mail.

 Number of hours/week playing computer games.

 Number of hours/week using application software such as word-processing, spread­

sheets etc.

5. How many hours per week on average did you spent on the following items 

while taking this class?

 Number of hours/week surfing the web and using e-mail.

 Number of hours/week playing computer games.

 Number of hours/week using application software such as word-processing, spread­

sheets etc.

6. Why did you take this course:

 There is good money in computers

 I like computers /programming

 It was something to do

 I thought I might be good at it
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 I wanted to prove I could do it

 None of the above

If you selected ’None of the above’ please explain why:

7. Did someone give you encouragement and/or the desire to study computer

science either by words or role modelling? Yes No

If yes, put a tick by the most important person. (Choose only one)

 Parent /  Guardian

 Other family member

 Teacher or guidance counsellor or other secondary school staff

 Friend /  peer

 Professional in the computer field (does not have to be an acquaintance)

 College recruitment

 Other

If you selected ’Other’ please give details:

8. Indicate the number of hours on average per week you have worked at a part- 

time job while taking this course:

 None

_ 1  - 5

 6 -10

 11-15

 1 6 +

9. Indicate the number of hours per week available to you out of class for studying
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the material on this module: 

 None

_ 1  - 5
 6 -10

 11-15

_16+

10. Being as honest as you can indicate the likely number of hours per week 

that you believe you will actually spend studying the material on this module:

 None

_ 1  - 5

 6 -10

 11-15

 16+

11. When given a programming assignment or when a test is coming up which 

method would you prefer? (check one)

 Individual /  competitive work or study

 Co-operative /  group work or study
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Cantwell-W ilson and Shrock 

Comfort-Level measure

The following questions are based on a larger set of questions used in a study by 

Cantwell-Wilson and Shrock [CWOO]. The questions focus on the same issues as 

the original questionnaire but are re-structured to reduce the length of completion 

time.

A ppendix B

Please read each of the following items completely and circle the number that 

most accurately reflects how you feel about each item.

1. Always un­ 2. Sometimes 3. Neutral 4. Sometimes 5. Always

comfortable uncomfortable comfortable comfortable

119



Cantwell-Wilson and Shrock Comfort-Level measure

Asking questions in lectures 1 2 3 4 5

Asking questions in lab 1 2 3 4 5

Answering questions in lectures 1 2 3 4 5

Going to the lecturer after a lecture to ask a 

question about the lecture or an assignment

1 2 3 4 5

Going to the lecturer’s office to ask a question 

about the lecture or an assignment

1 2 3 4 5

Please read each of the following items completely and circle the number that 

most accurately reflects how you feel about each item.

1. Very diffi­ 2. Mostly diffi­ 3. Neutral 4. Mostly easy 5. Very easy

cult cult

Understanding Java programming concepts 1 2 3 4 5

Designing the logic of a program without 

help

1 2 3 4 5

Completing lab assignments 1 2 3 4 5

How do you rate your level of understanding of the programming module: 

Higher than others in the class 

Higher than most of the class 

Average

Lower than most of the class

Lower than any of the others in the class.
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Self-efficacy for Com puter  

Program m ing

A ppendix C

The Computer Programming Self-Efficacy Scale [RW98] consists of 33 items that 

ask students to judge their capabilities in a wide range of programming tasks and 

situations. As this instrument was administered when students had very limited 

experience of the programming module, a shortened version of this scale using only 

seven questions about simple programming tasks was used.

Below is a list of statements dealing with your general feelings about your 

Java* programming ability. If you strongly agree, circle 1. If you agree with the 

statement, circle 2. If you disagree, circle 3. If you strongly disagree, circle 4.

1. Not 2. Mostly 3. 4. 50/50 5. Fairly 6. Mostly 7. Ab­

at all con­ not confi­ Slightly confident confident solutely

fident dent confident confident
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Self-efficacy for Computer Programming

1 . I can write syntactically correct Java statements. 1 2 3 4 5 6 7

2. I understand the language structure of Java and 

the usage of the reserved words.

1 2 3 4 5 6 7

3. I can write logically correct blocks of code using 

Java.

1 2 3 4 5 6 7

4. I can write a Java program that displays a greeting 

message.

1 2 3 4 5 6 7

5. I can write a Java program that computes the av­

erage of three values.

1 2 3 4 5 6 7

6. I can write a Java program that computes the av­

erage of any given number of values.

1 2 3 4 5 6 7

7. I can write a small Java program given a small 

problem that is familiar to me.

1 2 3 4 5 6 7

* Where students were studying Pascal or Visual Basic, an identical question­

naire with the appropriate language was administered.
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Program m ing Self-Esteem  Scale

A ppendix D

The Rosenberg Self-Esteem (RSE) questionnaire ([Ros65]) was adapted to apply 

to programming self-esteem. The scale consists of 10 questions and has been shown 

to have generally inter-item and test-retest reliability. Each of the questions were 

re-worded to relate to programming self-esteem and not to self-esteem directly, for 

example the first question was changed from ‘On the whole, I am satisfied with 

myself’ to ‘On the whole, I am satisfied with my Java programming progress’.

Below is a list of statements dealing with your general feelings about your 

Java programming ability. If you strongly agree, circle 1. If you agree with the 

statement, circle 2. If you disagree, circle 3. If you strongly disagree, circle 4.

1. Strongly agree 2. Agree 3. Disagree 4. Strongly disagree
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Programming Self-Esteem Scale

1 . On the whole, I am satisfied with my Java pro­

gramming progress.

1 2  3 4

2. At times I think I am no good at all at Java pro­

gramming.

1 2  3 4

3. I feel that I have a number of good Java program­

ming qualities.

1 2  3 4

4. I am able to do Java programming as well as most 

other students in my class.

1 2  3 4

5. I feel I do not have much Java programming ability 

to be proud of.

1 2  3 4

6. I certainly feel useless at Java programming at 

times.

1 2  3 4

7. I feel that I’m a person of worth, at least on an 

equal plane with the other Java programmers in 

my class.

1 2  3 4

8. I wish I could have more respect for my Java pro­

gramming ability.

1 2  3 4

9. All in all, I am inclined to feel I am a failure at 

Java programming.

1 2  3 4

10. I take a positive attitude towards my Java pro­

gramming ability.

1 2  3 4
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M otivated Strategies for Learning 

Q uestionnaire

The Motivated Strategies for Learning Questionnaire (MSLQ) is a self-report in­

strument designed by Pintrich et al. to measure students’ motivation and self­

regulated learning in classroom contexts [PSGM91].

The following questions ask about your motivation for and attitudes about this 

class. Remember there are no right or wrong answers, just answer as accurately as 

possible. Use the scale below to answer the questions. If you think the statement 

is very true of you, circle the 7; if a statement is not at all true of you, circle the

1. If the statement is more or less true of you, find the number between 1 and 7 

that best describes you.

A ppendix E

1. Not at all true of me 2. 3. 4. 5. 6. 7.Very true of me
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Motivated Strategies for Learning Questionnaire

1 In a class like this, I prefer course material that really 

challenges me so I can learn new things

1 2 3 4 5 6 7

2 If I study in appropriate ways, than I will be able to 

learn the material in this course

1 2 3 4 5 6 7

3 When I take a test I think about how poorly I am doing 

compared with other students

1 2 3 4 5 6 7

4 I think I will be able to use what I learn in this course 

in other courses

1 2 3 4 5 6 7

5 I believe I will receive an excellent grade in this class 1 2 3 4 5 6 7

6 I’m certain I can understand the most difficult material 

presented in the readings for this course

1 2 3 4 5 6 7

7 Getting a good grade in this class in the most satisfying 

thing for me right now

1 2 3 4 5 6 7

8 When I take a test I think about items on other parts 

of the test I can’t answer

1 2 3 4 5 6 7

9 It is my own fault if I don’t learn the material in this 

course

1 2 3 4 5 6 7

10 It is important for me to learn the course material in 

this class

1 2 3 4 5 6 7

11 The most important thing for me right now is improving 

my overall grade point average, so my main concern in 

this class is getting a good grade

1 2 3 4 5 6 7

12 I’m confident I can learn the basic concepts taught in 

this course

1 2 3 4 5 6 7

13 If I can, I want to get better grades in this class than 

most of the other students

1 2 3 4 5 6 7

continued on next page
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Motivated Strategies for Learning Questionnaire

continued from  previou s page

14 When I take tests I think of the consequences of failing 1 2 3 4 5 6 7

15 I’m confident I can understand the most complex mate­

rial presented by the instructor in this course

1 2 3 4 5 6 7

16 In a class like this, I prefer course material that arouses 

my curiosity, even if it difficult to learn

1 2 3 4 5 6 7

17 I am very interested in the content area of this course 1 2 3 4 5 6 7

18 If I try hard enough, then I will understand the course 

material

1 2 3 4 5 6 7

19 I have an uneasy, upset feeling when I take an exam 1 2 3 4 5 6 7

20 I’m confident I can do an excellent job on the assign­

ments and tests in this course

1 2 3 4 5 6 7

21 I expect to do well in this class 1 2 3 4 5 6 7

22 The most satisfying thing for me in this course is trying 

to understand the content as thoroughly as possible

1 2 3 4 5 6 7

23 I think the course material in this class is useful for me 

to learn

1 2 3 4 5 6 7

24 When I have the opportunity in this class, I choose 

course assignments that I can learn from, even if they 

don’t guarantee a good grade

1 2 3 4 5 6 7

25 If I don’t understand the course material, it is because 

I didn’t try hard enough

1 2 3 4 5 6 7

26 I like the subject matter of this course 1 2 3 4 5 6 7

27 Understanding the subject matter of this course is very 

important to me

1 2 3 4 5 6 7

28 I feel my heart beating fast when I take an exam 1 2 3 4 56 7

continued on next page
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continued from  previou s page

29 I’m certain I can master the skills being taught in this 

class

1 2 3 4 5 6 7

30 I want to do well in this class because it is important to 

show my ability to my family, friends employer of others

1 2 3 4 5 6 7

31 Considering the difficulty of this course, the teacher, and 

my skills, I think I will do well in this class

1 2 3 4 5 6 7

32. When I study the readings for this course, I outline the 

material to help me organise my thoughts

33. During class time, I often miss important points because 

I’m thinking of other things

34. When studying for this course, I often try to explain the 

material to a classmate or friend

35. I usually study in a place where I can concentrate on my 

coursework

36. When reading for this course, I make up question to help 

focus my reading

37. I often feel so lazy or bored when I study for this class 

that I quit before I finish what I planned to do

38 Often find myself questioning things I hear or read in

this course to decide if I find them convincing

39. When I study for this class, I practice saying the mate­

rial to myself over and over

40. Even if I have trouble learning the material in this class,

I try to do the work on my own, without help from

anyone

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

continued on next page
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continued from  previou s p age

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

When I become confused about something I’m reading 

for this class, I go back and try to figure it out 

When I study for this course, I go through the readings 

and my class notes and try to find the most important 

ideas

I make good use of my study time for this course 

If course readings are difficult to understand, I change 

the way I read the material

I try to work with other students from this class to com­

plete the course assignments

When studying for this course, I read my class, notes and 

course reading over and over again 

When a theory, interpretation or conclusion is presented 

in class or in the readings, I try to decide if there is good 

supporting evidence

I work hard to do well in this class even if I don’t like 

what we are doing

I make simple charts, diagrams, or tables to help me 

organise course material

When studying for this course, I often set aside time to 

discuss course material with a group of students from 

the class

I treat the course material as a starting point and try 

to develop my own ideas about it 

I find it hard to stick to a study schedule

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

continued on next page
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continued from  previou s page

53. When I study for this class, I pull together information 

from different sources, such as lectures, readings and 

discussions

54. Before I study new course material thoroughly, I often 

skim it to see how it is organised

55. I ask myself questions to make sure I understand the 

materials I have been studying in this class

56. I try to change the way I study in order to fit the course 

requirements and the instructor’s teaching style

57. I often find that I have been reading for this class but 

don’t know what it was all about

58. I ask the instructor to clarify concepts I don’t under­

stand well

59. I memorise key words to remind me of important con­

cepts in this class

60. When course work is difficult, I either give up or only 

study the easy parts

61. I try to think through a topic to decide what I am sup­

posed to learn from it rather than just reading it over 

when studying for this course

62. I try to relate ideas in this subject to those in other 

courses whenever possible

63. When I study for this course, I go over my class notes 

and make an outline of important concepts

64. When reading for this class, I try to relate the material 

to what I already know

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7
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Motivated Strategies for Learning Questionnaire

continued from  previou s page

65. I have a regular place set aside for studying

66. I try to play around with ideas of my own related to 

what I am learning in this course

67. When I study for this course, I write brief summaries of 

the main ideas from the readings and my class notes

68. When I can’t understand the material in this course, I 

ask another student in this class for help

69. I try to understand the material in this class by making 

connections between the readings and the concepts from 

the lectures

70. I make sure that I keep up with the weekly readings and 

assignments for this course

71. Whenever I read or hear an assertion or conclusion in 

this class, I think about possible alternatives

72. I make lists of important items for this course and mem­

orise the lists

73. I attend this class regularly

74. Even when course materials are dull and uninteresting, 

I manage to keep working until I finish

75. I try to identify students in this class whom I can ask

for help if necessary

76. When studying for this course I try to determine which 

concepts I don’t understand well

77. I often find that I don’t spend very much time on this 

course because of other activities

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

continued on next page
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continued from  p reviou s page

78. When I study for this class, I set goals for myself in order 1 2 3 4 5 6 7

to direct my activities in each study period

79. If I get confused taking notes in class, I make sure I sort 1 2 3 4 5 6 7

it out afterwards

80. I rarely find time to review my notes or readings before 1 2 3 4 5 6 7

an exam

81. I try to apply ideas from course readings in other class 1 2 3 4 5 6 7

activities such as lecture and discussion
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Sample C ognitive Test Q uestions

A ppendix F

The following questions have been kindly provided by Ms. Jacqueline McQuillan, 

Department of Computer Science, NUI Maynooth (jmcq@cs.nuim.ie). The cog­

nitive test measured a number of cognitive abilities including number sequencing 

ability, letter sequencing ability, arithmetic reasoning ability, procedural ability 

and ability to follow simple syntax. A sample question and answer within each of 

these categories is provided.

F .l Number Sequencing Ability

What is the next number in this sequence?

2, 4, 16,

Answer: 256

F.2 Letter Sequencing Ability

Which letter should come next in this sequence?

Z, X, U, Q,
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Arithmetic Reasoning Ability Sample Cognitive Test Questions

Answer: L

F.3 Arithmetic Reasoning Ability

The area of a rectangular field is 24 m2 and its perimeter is 20 m. Given that its 

length is bigger that its width, what is the width of the field?

Answer: 4 m

F.4 Procedural Ability

Follow the steps below.

Box Number 1 2 3 4 5 6

Contents 3 6 -4 1 -2 3

Step 1. Double the contents of box number 5

Step 2. Add the result from step 1 to the contents of box number 4 and put the 

result in box number 6

Step 3. Add the square of the contents of box number 6 to box number 1 and put

the result in box number 2

What is the value in box number 2?

Answer: 12
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Problem Translation Skills Sample Cognitive Test Questions

F.5 Problem Translation Skills

What value will be printed?

Start

1
Store 0 In reaJt 

1
Store 1 in coirter 

1
Add counter to result ana-*- 
slore tne answer in result

I
Add 1 Id counter and 

store the answer in counter

1  Yes
Is counter <= 10__ ___

|  No

Display the value 
In counter

Answer: 11
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A ppendix G

Consent Form

Research project: Factors that influence performance on an introductory

programming module.

Researchers: Susan Bergin and Professor Ronan Reilly (Supervi­

sor), Department of Computer Science, NUI Maynooth,

Maynooth, Co. Kildare

Contact details: sbergin@cs. nuim.ie, ronan@cs. nuim.ie

I, (Name of research subject), agree to participate in the research conducted by- 

Susan Bergin and Ronan Reilly on factors that influence novice programming per­

formance at the Department of Computer Science, National University of Ireland 

Maynooth. The project is under the supervision of Ronan Reilly. The purpose 

of the research is to determine factors that may predict a student’s overall score 

on an introductory programming module. My participation will consist essentially 

of participating in no more than eight fifteen-minute sessions (2 hours in total) 

during the academic year X (either 2003-2004 /  2004-2005 /  2005-2006). During 

these sessions I may be asked to answer questions on my academic background, my
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Consent Form

previous computer experience and on my experience participating in an introduc­

tory programming module. I may also be asked to solve puzzles and aptitude test 

items using paper and pencil or on a computer. The data gathered will only be 

used by the researchers and the findings may be published in suitable conferences, 

journals and in the PhD thesis of Susan Bergin. I understand my confidentiality 

will be respected. I have received assurance from the researchers that the infor­

mation I will share will remain strictly confidential and that no information that 

discloses my identity will be released or published without my specific consent to 

the disclosure. I am free to withdraw from the study at any time and can refuse 

to answer any of the questions asked or to participate in any of the tasks. All data 

gathered will be stored in a secure manner and only the above named researchers 

will have access to it. There are two copies of the consent form, one of which I 

may keep. If I have any questions about the research project, I may contact Susan 

Bergin or her supervisor Professor Ronan Reilly at the email addresses provided 

above.

Principal Researcher’s signature: (Signature) Date: (Date)

Research Subject’s signature: (Signature) Date: (Date)

137



A ppendix H

Student Inform ation Sheet

Research project: Factors that influence performance on an introductory

programming module.

Researchers: Susan Bergin and Professor Ronan Reilly (Supervi­

sor), Department of Computer Science, NUI Maynooth,

Maynooth, Co. Kildare

Contact details: sbergin@cs.nuim.ie, ronan@cs.nuim.ie

I would like to invite you to participate in this study, which is concerned with 

identifying factors that influence performance on an introductory programming 

module. The study is part of the PhD research being carried out by Susan Bergin 

at the Department of Computer Science, NUI Maynooth. It is hoped that the 

findings of the project would help lecturers and course coordinators to identify 

students that may have difficulty with the module and to put in place appropriate 

facilities to assist them.

Participation will consist of no more than eight fifteen-minute sessions (two 

hours in total). During these sessions you may be asked to answer questions on
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Student Information Sheet

your academic background, your previous computer experience and on your expe­

rience participating in the introductory programming module (CS100/SE101) at 

the Department of Computer Science, NUI Maynooth. You may also be asked to 

solve puzzles and aptitude test items using paper and pencil or on a computer. 

When the PhD thesis has been completed a summary of the findings will be pro­

duced which can be sent to you if you are interested. The data gathered will only 

be used by the the above mentioned researchers and the findings may be published 

in suitable conferences, journals and in the PHD thesis of Susan Bergin. Your par­

ticipation would be on a confidential basis and no information that discloses your 

identity will be released or published. Your participation in this project is entirely 

voluntary. You are not obliged to take part, you have been asked to participate in 

this study because you are participating in an introductory programming module. 

This does not mean you have to. If you do not wish to take part you do not have 

to give a reason. Similarly, if you do agree to participate you are free to withdraw 

at any time during the study if you change our mind. Additionally, you can agree 

to participate but refuse to answer a question asked of you or to participate in a 

task. If you have any questions about this study, you may contact Susan Bergin 

at sbergin@cs.may.ie
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