ey 3
Lyrapesn L prmnalan o

ERASMUS

MUNDUS NUI MAYNOOTH

Ollscoil na hEireann M3 Muad

A DSL for defining instance templates for the ASMIG
system

Andrii Kovalov
Dissertation 2014

Erasmus Mundus MSc in Dependable Software Systems

Department of Computer Science
National University of Ireland, Maynooth
Co. Kildare, Ireland

A dissertation submitted in partial fulfilment
of the requirements for the
Erasmus Mundus MSc Dependable Software Systems

Head of Department : Dr Adam Winstanley
Supervisor : Dr James Power
Date: June 2014

Abstract

The area of our work is test data generation via automatic instantiation
of software models. Model instantiation or model finding is a process of find-
ing instances of software models. For example, if a model is represented as a
UML class diagram, the instances of this model are UML object diagrams.
Model instantiation has several applications: finding solutions to problems
expressed as models, model testing and test data generation. There are sys-
tems that automatically generate model instances, one of them is ASMIG (A
Small Metamodel Instance Generator). This system is focused on a ‘problem
solving’ use case. The motivation of our work is to adapt ASMIG system for
use as a test data generator and make the instance generation process more
transparent for the user. In order to achieve this we provided a way for the
user to interact with ASMIG internal data structure, the instance template
graph via a specially designed graph definition domain-specific language. As
a result, the user is able to configure the instance template in order to get
plausible instances, which can be then used as test data. Although model
finding is only suitable for obtaining test inputs, but not the expected test
outputs, it can be applied effectively for smoke testing of systems that process
complex hierarchic data structures such as programming language parsers.

Declaration

I declare that this report, which I now submit for assessment on the program
of study leading to the award of Master of Science in Dependable Software
Systems, is entirely my own work and has not been taken from the work of
the others except for the cited fragments.

Andrii Kovalov

Acknowledgement

[want to thank my supervisor Dr James Power whose room I entered some-
times sad, but always exited inspired and full of enthusiasm.

Contents

(1__Introductionl
2_Related Workl
2.1 _Metamodels and model instantiationl
[2.2 Model Instantiation Systems|
221 Alloy|.
222 USElo
23 ASMIGI oo
[2.2.4 Comparison of instance generation systems|
[2.3 Domain-Specific Languages|
2.3.1 Why we are using EMFText|
[2.3.2 Graph definition languages|
[B_Solution
[3.1 System design overview|.
[3.2 Iteration 1: Factory APl
[3.2.1 ASMIG Factory Overview|
(3.2.2 APIDesign|
[3.2.3 Implementation|,
[3.2.4 lesting|.
[3.3 Iteration 2: Language Metamodel
[3.3.1 Design|
[3.3.2 Implementation|
[3.3.3 Testing|.
[3.4 lteration 3: Language syntax|.
[3.4.1 Design|
(3.4.2 Implementation|
[3.4.3 Testing|.

4 Evaluation| 51

[4.1 System testing|. 51
[4.1.1 Verifying the equivalence ot graph formulas with Z3| . . 52

[4.1.2 Smoke testingl L 54

4.1.3 Setof testmodels 55

[4.1.4 Test results summary|. 56

[4.2 Experiment| 58
b__Conclusions and future workl 65
BI Futureworkl 66

[A Test cases for the Equivalence Partitions testing of the Fac- |
| toryFacade class] 68
(B Example of the DSL code for the BibTeX model 71
IC_Test models setl 74
(Bibliography| 77

Chapter 1

Introduction

This report is mainly about software models and the automated instantiation
of these models. If we have, for example, a model of some data structure or
some language, which abstracts over their common properties, it is possible
to automatically generate examples of the data stored in the structure or
the expressions in the language respectively. This generation is called model
instantiation or model finding.

The main use cases of automated model instantiation are:

1. Finding solutions to problems that can be expressed as the model find-
ing problems.

2. Generating test data.
3. Testing the correctness of the model itself.

There are several systems that automatically perform this instance gen-
eration on being supplied with the model expressed in some modelling lan-
guage. These tools usually focus on performing one of these three use cases.
We will be talking more closely about the systems Alloy, USE and ASMIG.

The ASMIG system is a system that is being developed in the Computer
Science department of National University of Ireland, Maynooth and it is
primarily focused on the first use case - solving problems represented in the
form of model finding task.

The ‘big picture’ of ASMIG work flow is shown in Figure [1.1}

The main motivation for our work is to adapt the ASMIG system for use
as a test data generator (use case 2 in the list above). The current version
of ASMIG is unsuitable for this purpose because it lacks the precise control
over the instance generation process that we would like to have in order to
use the resulting instances as test data.

Model @ = Instances

Figure 1.1: Big picture of ASMIG work flow. ASMIG generates instances of
a model

The second motivation is to make instance generation in ASMIG more
transparent for the user. Figure [L.1| represents the user interaction with the
system quite fully - the user gives the input (the model) and gets the output
(the instances). The current system itself is a black box and there is no way
to influence or simply track the generation process.

Our way to achieve these two goals of making the system more transparent
and making it suitable for test data generation is illustrated in Figure [1.2]

ASMIG+

Instance
Model —pC:l—y template aDé Instances

)

A

Figure 1.2: ASMIG+: the modified ASMIG where the user can interact with
the instance template inside ASMIG

Here we need to explain that the ASMIG system builds an instance tem-
plate for a model. This template is represented as a graph. The generated
instances produced by the ASMIG system are represented as the subgraphs
of this template graph.

In our extended system built on the top of ASMIG (we called it ASMIG+)
the user has direct access to this instance template graph and can modify it.

By editing the instance template the user can get the instances with
certain predefined properties. This is necessary for the test data generation
scenario as the real test data should not be random and should contain some

plausible values.

To provide a way of editing the instance template graph we designed
a special domain-specific language. In our ASMIG+ system the user can
now export the instance template graph in the form of a text script in our
language, then edit it and then send it back as an input to the ASMIG system.
So our work in this thesis mainly deals with the design of this language and
the integration of it into the existing ASMIG system.

The report has the following structure: Chapter [2| gives an overview of
metamodeling and model instantiation, compares the existing model instan-
tiating systems, discusses the area of Domain Specifig Languages and specif-
ically the languages related to graphs. Chapter [3|talks about the engineering
of the ASMIG+ system and the integration into the existing ASMIG sys-
tem. In Chapter [we evaluate our work by performing system testing and
demonstrating a use case of test data generation with the ASMIG+ system.
Chapter [5| concludes the report and outlines the potential future work.

Chapter 2
Related Work

This chapter covers material which is related to the current work. First of all
we will give an overview of the model instantiation problem, then discuss and
compare which existing systems perform this task - Alloy, USE and ASMIG.
The ASMIG system will be examined closely as the scope of the project is
to extend this system with new functionality. Finally, we will discuss the
area of Domain-Specific Language engineering and have a look at the graph
definition languages, since a considerable part of our work is to design a
language for defining instance templates for the ASMIG system.

2.1 Metamodels and model instantiation

First of all we would like to define the terminology that we will be using. Our
work primarily deals with models and model instantiation. Sometimes a term
metamodel is used. While with the word model everything is clear, the word
metamodel tends to be somewhat confusing. The concise definition is given
in [I]: ‘A metamodel is a model used to specify a language’. Here are some
other definitions one might encounter in literature: ‘explicit specification of
an abstraction expressed in a specific language’[2], ‘model of the conceptual
foundation of a modeling language’[3], ‘a specification model for a class of
systems where each system in the class is itself a valid model expressed
in a certain modeling language’[4]. Further discussion on the terminology
can be found in [5]. In the current work the word metamodel will be used
to show that the particular model describes a language (not necessarily a
modelling language). For example, the Java metamodel is a model that
contains elements of the Java language. A term model when used in the text
means any model including a metamodel.

Metamodels serve two purposes. First of all, they can be used to verify

models. In other words, to check if the programme written in a particular
language is valid. The example of this use case is error highlighting in an
IDE. The code in the editor is matched against the language metamodel
and if it is not fully compliant, there is an error. A second purpose of a
metamodel is instance generation (also referred to as model instantiation or
model finding; we will be using all these expressions interchangeably).

Instance generation is easy to explain using an example. Let’s assume we
have a UML class diagram of some system, probably with some constraints
specified in Object Constraint Language (OCL) [6] . It is a model of a
system. The instance of this model will then be an object diagram containing
the objects with types from the class diagram, related appropriately, and
where all the OCL constraints hold. Similarly, if we have a metamodel which
corresponds to some language, an instance of this metamodel would be a
valid expression in this language. For example, an instance of the UML
metamodel will be some UML model. The instance of the Java metamodel
are some Java objects. Some models have infinitely many possible instances,
other have a finite number of instances. It is also possible that a model
doesn’t have any instances. This means that there is some contradiction in
it.

Model instantiation has two motives: they are, problem solving via find-
ing a model instance and test data generation. To solve problems using
model instantiation the problem needs to be expressed as a model where
the instances of this model are problem solutions. For example, in [7] the
authors address the problem of network configuration. They build a model
of a desired network with all the requirements and constraints and then use
the Alloy tool to find an instance of this model which represents one possible
configuration of network nodes. In this case the problem of configuring a
network is reduced to a problem of model finding. Whenever such reduction
is possible one can use model finding tools to solve the problem. The second
usage of model instantiation is the generation of test data. To put it clearly
we will again use an example. Assume we have a bank system that can pro-
cess different types of transactions. To test this system we need some test
transactions. Of course we start with careful test design, and write test cases
that cover all the specification. However, we are limited when we create test
transactions manually, whereas we could automatically generate millions of
different test transactions. In order to do this we create a model of a trans-
action. Having a tool which performs model instantiation we can generate
as many different instances of this model (transactions) as we need.

The instantiation of metamodels also makes sense. If we are developing a
compiler for some programming language we would like to test it using pro-
grams written in this language. As defined above, programs are instances of

this language metamodel, so if we have a metamodel and instance generator
we can generate test programs for our compiler.

The aspect we would like to emphasize here is that in order to use such a
system we need to have some control over the instances that will be generated,
as without any control we are likely to get a set of instances that don’t differ
much or which have parameters that are not plausible.

As we can see, instance generation is a practical problem and there are
tools that perform this task. In this overview we will look more closely
to three such systems - Alloy, USE and ASMIG. Most of the tools reduce
the model finding problem to the SAT problem and then use a SAT solver.
However, we need to mention that this is not the only possible way. An
alternative approach is illustrated in [8] and uses graph grammars with a set
of production rules.

2.2 Model Instantiation Systems

2.2.1 Alloy

The Alloy system'] is a project of Software Design Group at Massachusetts
Institute of Technology. Alloy allows us to create models using our own
declarative specification language. The language has rich support for spec-
ifying constraints on model, similar to OCL. Instance generation in Alloy
is automatic and is done within a bounded scope. Also one of applications
of Alloy is checking model properties by finding counter-examples (in the
bounded search space).

The instance generation mechanism in Alloy works by translating the
model and all the constraints to a boolean formula and using a SAT solver
to find out whether it is satisfiable or not. If it is satisfiable the SAT solver
gives the values to the boolean variables in the formula which represent an
instance of a model. All the details on the language and the logic behind
it, as well as a lot of examples, can be found in a book by project director
Daniel Jackson [9].

A question that should interest us in relation to our current work is the
amount of control the user has over the instances to be generated. First of
all, by using predicates, the user can bound the number of objects of every
signaturd? as well as the arity of the relations. However, Alloy lacks support
of primitive types. The only primitive type supported is integer, and the
only way to control the value of an integer is to set the maximum bit-width.

"http://alloy.mit.edu/alloy/
2In Alloy terminology a signature is a classifier (similar to a class in UML).

10

http://alloy.mit.edu/alloy/

For instance, if the bit-width is set to 6, the integer will get a value between
-31 and 31. Other primitive types such as booleans, floats and strings have
no native support.

The absence of support for primitive types makes Alloy unsuitable for
test data generation. This should not be regarded as a flaw of the system as
its main goal is model exploration and analysis, and not instance generation;
this is explicitly discussed in [9, pp. 135-137].

2.2.2 USE

Another system we would like to draw our attention to and have a slightly
closer look at is USE: A UML-Based Specification Environment] introduced
in [I0]. This system allows us to create models consisting of UML represented
in text format with OCL constraints. The original aim of the system was
to check if a given instance of the model (or a ‘snapshot’ in USE terms)
satisfies the constraints. In the first versions the user had to create instances
manually.

Here we will demonstrate an example. A sample model file is shown in
Figure This model then can be opened in a system (see Figure and
manipulated via either a graphical or a command line interface. At any point
the current snapshot (state of the objects) can be verified. Figure shows
the process of work with the model. First an elephant and a trunk objects
are created (command lcreate) and linked together (command linsert). Then
the snapshot is verified successfully. After this a new elephant is added with
the same name and the snapshot is checked again. This check shows two
errors - an error of multiplicity because the new elephant is not related to
any trunk, and a violation of the invariant UniqueName.

In the beginning the USE system did not have any functionality for auto-
mated instance generation, but later some work has been done in this field.
In [11] the authors describe an approach where instances are generated auto-
matically based on the procedures in a special ASSL language (A Snapshot
Sequence Language). These procedures specify the bounds and rules for
generating objects and linking them as well as setting attribute values. The
generation mechanism was based on enumerating all possible combinations.

However, in [12] the ASSL approach is claimed to be ineffective: ‘The
main disadvantage of the built-in generator is its enumerative nature, as it
has to create and check each snapshot if the procedure’s snapshot space does
not include a snapshot fulfilling all model constraints. As a consequence,
larger snapshot spaces which for instance comprise more than a few objects

3http://sourceforge.net/apps/mediawiki/useocl/

11

http://sourceforge.net/apps/mediawiki/useocl/

-- classes

model Elephant
attributes
name : String
age : Integer
end

class Trunk
attributes

length : Real
end

—-- associations

association HasTrunk between
Elephant [1]
Trunk[1]

end

association InSameFamily between
Elephant [*]
Elephant [*]

end

-- OCL constraints

constraints

context Elephant
inv UniqueName:

Elephant.alllnstances->
forAll(el, e2 | el.name

e2.name implies el

Figure 2.1: Example of UML model in USE syntax

12

e2)

and attribute values or all possible link constellations cannot be handled’. A
new instance generating mechanism for USE is presented in [12, 13] involving
the Kodkod finder which is a SAT-based system specially designed finding
instances of models expressed in relational logic (see [14]). Kodkod is also
used as an instance generator in Alloy since version 4.0.

The instance generation functionality is available as a plugin for USE
called ‘Model Validator’. It is currently under active development and not
much information on its capabilities is published. Apart from [12| [I3] which
cover the theoretical aspects of model transition to and from Kodkod rela-

|£:| USE: elephantuse o o T P S

File Edit State View Plugins Help

wla]s| o]~ || Bl2]e

s ojm a8

Elephant H = _ o
E|J ‘Jpcmsses Class diagram g &' EH S Object diagram :
Elephant
Trunk 5 Ha=Trunk Elepl
B 4 Associations na:;jZd:'am | edBlephani |
HasTrunk age=5 MERE=AEE
B 4 Invariants = age=Undefined
Elephant::UniqueName HasTrunk
| Pre-/Postconditions i
5 11:Trunk
...] pu——
context self: Elephantinv UniqueMame: t
Elephant.allinstances-=forAll(e1 : Elephant, e2 :
Elephant | ((e1.name = e2.name) implies (1=
ez)))

Log

compiling specification elephant.use...

done.

Model Elephant (2 classes, 1 association, 1 invariant, 0 cperations, 0 pre-/postconditions)

Ready.

Figure 2.2: USE graphical interface

tional logic, the only source of information is the project page on sourceforgeﬂ
Some documentation can be found in the plugin distribution and in discus-
sion forums such as [15] which gives an insight on how the model finder can
be used and what means we have to control the generation process.

The Model Validator plugin has some interesting features and, unlike
Alloy, offers some control of the attribute values in the instance. Similarly to
Alloy there is a possibility to set lower and upper bounds on the number of
classes and relations. Additionally, the user can set the bounds on integers
and real numbers. The same bounds will apply to any integer attribute in
any class. As for the strings, there are two options. The first option is to set
the total number of strings that will be used in the generated instance. In
this case strings will have values stringl, string2 etc. The second option is
to specify the set of strings. All the string attributes will get a random value
from this set. A flaw of this scheme is that there is no way to set different
ranges of values for different attributes.

The second important point we would like to emphasize is that the user
can not only specify bounds for classes, but can also specify a set of object
names that will be created. In the example below, the Company class has
numeric bounds and the Employee class has a set of objects.

Company_min = 3

4http://sourceforge.net/projects/useocl/files/Plugins/ModelValidator/

13

http://sourceforge.net/projects/useocl/files/Plugins/ModelValidator/

F |
Bl C\Windows\system32\cmd.exe |i‘ﬂ|d—hj

tcreate el:Elephant
fcreate tl:Trunk

tzet el.name := ’'Ada’
tzet el.age =5

tzet ti.length == 8.5

tinsert (el.t1? into HasTrunk

check
checking structure...
checking invariants...
checking invariant <1> “Elephant::UnigueName’: OK.
checked 1 invariant in B.083=z, B failures.
use >
use> 'create eZ:Elephant
uze> 'set e2.name = "Ada’
use >

checking structure...

Multiplicity constraint violation in association ‘HasTrunk’:
Ohject ‘e2’ of class “Elephant’ is connected to B objects of class “Trunk’
at association end “trunk' but the multiplicity is specified as “1°'.

*Elephant: :UnigqueName’: FAILED.

checked 1 i;uariant in B.883s, 1 failure.
use>

Figure 2.3: USE command line interface

Company_max = 10

Employee = Set{peter, william, samuel}

The purpose of this notation is to enable predefined links between objects.
Using these object names it is possible to set the relations between specific
objects:

Company = Set{HP, Intel}
Employee = Set{peter, william, samuel}

WorksIn = Set{(peter,HP), (samuel,HP)}

As we can see, the user has a control over the objects and their relations,
but cannot specify attribute values.

Finally, the Model Validator has a feature which is called Automatic
Diagram Extraction and means that the user can build a part of a snapshot
manually and then use the generation engine to turn it into a full instance.
Good thing about it is that user has full control over his part of an instance.
However, it is impossible to refer to manually created objects in the bounds
specification script. So we cannot set predefined links between manually
created and generated objects. All such links will be generated automatically.

14

2.2.3 ASMIG

ASMIG (A Small Metamodel Instance Generator) is an SMT-based system
for generating instances which is being developed in National University of
Ireland, Maynooth. The underlying theory is discussed in [I6]. The work
flow of the system is shown on the figure [2.4

Input: Model (ecore)

) Instance Boolean SMT Instance of
[OCL constraints] template graph formula solver Model
[Instance Bounds] P grap

Figure 2.4: ASMIG work flow

The input for the system consists of three parts - a model (it can be a
metamodel), optionally some OCL constraints and the bounds for generated
instances. The format used for specifying a model is Ecore. It is a format
used in Eclipse Modeling Framework (EMF) which is described in detail in
[17]. An Ecore file is an XML file specifying the model in terms of Classifiers,
Attributes and References. An example of an Ecore model is shown on figure
m (some details are omitted for the sake of clarity). The equivalent diagram
is shown in Figure [2.6]

As we can see, this model is a simple metamodel defining an abstract
entity Classifier with two attributes and a self-relation (parents) with multi-
plicity many-to-many. There is also an entity Class, a sub-type of Classifier
related to zero or more Properties and Operations.

The OCL constraints can also be specified in a separate text file. As
for the instance bounds, there is no easy way of specifying those as the
corresponding user interface hasn’t been created yet, but it is possible to
configure the bounds in the source code using API. There are two kinds of
bounds in the system - bounds on the number of objects for a specified entity
and bounds on the lengths of string attributes. The default values are 3 for
number of entities and 5 for string length.

Examples of generated instances for this input model are shown in Figures
2.9] The bounds in this case are set to 2 for number of instances and
2 for length of strings. The orange nodes in the diagrams represent objects
while gray nodes are attribute values. The integer values are not bounded
explicitly, so the bound is their natural range.

Now after giving this example let us examine how the generation process
in ASMIG is performed (see Figure [2.4] again).

The first step is generation of the instance template graph (ITG). The
graph for this example is shown in Figure 2.10] After the model is read the

15

<?xml version="1.0" encoding="UTF-8"7>
<ecore:EPackage xmi:version="2.0">
<eClassifiers type="EClass" name="Classifier" abstract="true">
<eStructuralFeatures type="EReference"
name="parents"
upperBound="-1"
eType="#//Classifier"/>
<eStructuralFeatures type="EAttribute"
name="name"
eType="EDataType EString"/>
<eStructuralFeatures type="EAttribute"
name="hash"
eType="EDataType EInt"/>
</eClassifiers>
<eClassifiers type="EClass"
name="Class" eSuperTypes="#//Classifier">
<eStructuralFeatures type="EReference"
name="ownedAttribute"
upperBound="-1"
eType="#//Property"/>
<eStructuralFeatures type="EReference"
name="ownedOperation"
upperBound="-1"
eType="#//0peration"/>
<eStructuralFeatures type="EAttribute"
name="isAbstract"
eType="EDataType EBoolean"/>
</eClassifiers>
<eClassifiers type="EClass" name="Property"/>
<eClassifiers type="EClass" name="Operation"/>
</ecore:EPackage>

Figure 2.5: Sample Ecore model

graph is generated in the following way. For every non-abstract classifier in
the model the nodes are created according to the bound of this classifier.
As the bound for all classifiers is 2 in our example there are two instances
created for Class, Operation and Property entities. For the Classifier entity
no nodes are created as it is abstract. In this simple example everything
is clear, but in case of inheritance hierarchies a special algorithm is applied
- the number of nodes (which is equal to bound) is distributed across all
hierarchy so that the number of nodes for all subclasses sums to the value of
the bound. In case there are more members in the hierarchy then a bound,
one node is created for every subclass.

Then for every object node a number of attribute nodes are created

16

H classifier
o pname : EString
o hash : EInk H Property

H Operation

parents ownedOperation

ownedAttribute

H Class
o isAbstrack: EBoolean

Figure 2.6: Ecore model diagram

INSTANCE1

rue:(Bool) |

Figure 2.7: Example instance 1

(shown as rectangles).

Finally, for each relation in the model between classifiers A and B, edges
in the graph are created between all nodes of type A (and its subtypes) on
one side and all nodes of type B (and subtypes) on the other side. In other
words, everything that can be connected according to the model specification
gets connected.

The next stage is translating the graph into a boolean formula. The
presence of every node in the instance is encoded in a boolean variable.
Every edge of the graph is also represented as a boolean variable. So in
the resulting instance every node and edge from the ITG may be ‘switched
on’ which means the node or edge will appear in the instance or ‘switched
off” which means the opposite. Here OCL constraints also come into play.
ASMIG code for translating OCL partially reuses code from the USE system

17

INSTANCE200

class1:Class parents

own edOperation ownedOperation ownedattribute | ownedattribute name hash isAbstract

-

operation1:Operation operation2:0Operation property2:Property propertyl Property aa:String -143:(Int) true:(Bool)

Figure 2.8: Example instance 2

INSTANCE201

class2:Class

class1 Class [parents

isAbstract ownedOperation ownedOperation ownedAttribute |ownedAttribute isAbstract

aa:String false:(Bool) operation1:Operation operation2:Operation property2 :Property propertyl:Property aa: String true: (Bool)

| -145:(Int)

| -144:(Int)

Figure 2.9: Example instance 3

propertyl property2
namel name?2
hash1 hash2
isAbstractl isAbstract2

operationl operation2

Figure 2.10: Instance template graph

(Subsection which is open-source.

The attribute values are also encoded in the formula. Here we would
like to draw reader’s attention to the way string values are instantiated in
ASMIG. As we saw, the USE system allows us to predefine a set of strings
that will be used in the instance or specify the number of strings. Unlike
this, in ASMIG the strings are actually generated. It is accomplished by
treating each character in a string separately. For every character a boolean
expression is created stating that the character can be one of the set of
possible characters. That is why the bound on the string length has to be

18

specified. Usually the generated strings look like ‘aaaaa’ because ‘a’ is a first
symbol in the range of permitted symbols.

This mechanism of string generation gives a benefit of using string-related
OCL constraints. Let’s consider the following example. In a transaction
processing system the transaction can be either incoming or outgoing. Each
transaction has a text code which is a string consisting of a letter I for
incoming transactions or O for outgoing, followed by transaction number.
The incoming transactions have flag In set to true. A model designer might
specify the following invariant:

context Transaction
inv validCode:

if In then
code.substring(1,1) = ’I°
else
code.substring(1,1) = ’0’
endif

ASMIG is designed to be capable of generating strings that satisfy such
invariants. Both the invariant and the string (character-wise) will be trans-
lated to boolean expressions and the satisfaction of this expression will give
the string starting with either I or O. As the part of system responsible for
translating OCL is still under development and not ready for usage yet we
cannot illustrate this example with the Transaction instances generated by
ASMIG. However, we believe it will be possible when the development is
over.

Additionally, ASMIG provides generation for attributes with Enum type
which we haven’t seen in other systems. Enum values are handled as integer
values bounded by the number of Enum elements.

The boolean formula generated from the instance graph and the OCL
constraints is then solved by the Z3 theorem prover [I8] which is a fast
SMT solver developed in Microsoft Research. 73 has native support for
integers which is valuable for ASMIG as we don’t need to specify bit-width
and translate integers into sets of booleans (as is done in Alloy).

Finally, the values obtained from Z3 that represent an instance are mapped
back to the nodes and edges of template graph. The result is expressed in
the DOT language and rendered into an image with Graphviz.

To generate the next instance of the model, the boolean formula is mod-
ified in the following way:

NewFormula = (OldFormula)\—=(Var, = InstVal;AVary = InstValsA...)

19

Here Var; is a variable that defines some aspect of an instance (e.g.
presence of a node or edge or attribute value). InstVal; is a value for this
variable assigned by Z3. This modification is necessary to ensure all instances
are unique.

Following our way of examining model finders, let’s summarize the means
the user has to influence the generated instances in ASMIG. Firstly, it is
possible to specify the bounds on the number of objects in the instance
for every classifier separately. Secondly, the length of string fields can be
bounded. There is no way to set attribute values or somehow influence
relations between objects.

As we can see, ASMIG provides about the same level of control over the
instance generation as Alloy does, while USE has has more to offer in this
respect.

The whole idea of current work, however, is to enhance ASMIG system
with an instrument to edit the instance template graph therefore allowing
users to predefine nodes, relations and, what is most important, attribute
values of the generated objects. The proposed solution is to design a domain-
specific language for defining the template graph. This will make the system
truly helpful in the task of generating test data sets, which is one of the
purposes of instance generation.

The principal schema of how we are proposing to improve ASMIG is
shown in Figure 2.11} Here and later to avoid confusion we will call this
improved system ASMIG+.

Input: Model (ecore)

) Instance Boolean SMT Instance of
[OCL constraints] template graph formula solver Model
[Instance Bounds] P grap

Ability to edit
template graph

I
I
Ability to give I
input as a DSL » DSL :
I

script

Figure 2.11: ASMIG+ work flow. The new functionality enables the user to
interact with the ITG directly

20

2.2.4 Comparison of instance generation systems

The summary of the characteristics of described systems is shown in Table
As can be seen, the USE system has the richest support for instance
generation configuration among the existing systems. However, our ASMIG+
system is supposed to give the user even more control over the instance
generation.

2.3 Domain-Specific Languages

In this section we will give an overview of domain-specific language (DSL)
engineering. This area is directly connected with the current project as
the proposed approach for adding new functionality to ASMIG system is to
create a special language for defining and editing instance template graphs
that were previously hidden from the user.

To start with, we will give a definition of a DSL by Martin Fowler [19, p.
27]: ‘Domain-specific language (noun): a computer programming language of
limited expressiveness focused on a particular domain’. The two key features
given in this definition which are in a way consequences of each other are
the limited expressiveness and focus on a particular domain (or to be more
precise usually on a particular task). Limited expressiveness means that in
DSLs we normally find a small set of operators as opposed to general purpose
languages with a wide range of constructs and operators serving different
needs. As a rule, DSLs are not Turing-complete. The focus on a specific
problem means that a DSL is designed to serve one purpose in a particular
domain.

DSLs are not something rare or new, and we may use some of them
regularly, probably without thinking of them as DSLs. For example, all fol-
lowing languages fall into the category of domain-specific languages: SQL,
Graphviz/DOT, LINQ, CSS, ant. Two things are common for all the lan-
guages in this list - they have limited expressiveness and they are aimed at
one particular task.

The main benefit of using a DSL is that it is small and much easier to
learn then a general purpose language. Because of their focus on one task,
DSLs are very clear and expressive. This has two consequences. First of all,
using a DSL can considerably increase engineering productivity. Consider
the difference between using SQL and retrieving data from the DBMS pro-
grammatically using the API. As a result it is easier to maintain the code
written in such languages. Secondly, a DSL can be easily understood not only
by software engineers, but also by domain experts, analysts etc. This sec-

21

Alloy USE ASMIG | ASMIG+
Model Own UML Ecore
format language
Constraints | Own OCL OCL
format language
Instance automatic manual automatic automatic
generation automatic preedited
mixed
Class Yes Yes Yes Yes
boundaries
Reference Yes Yes No Yes, by lim-
boundaries iting ITG
Integer Yes, Yes, Yes, unbounded
generation bounded bounded
by bit-width | by range
Float No Yes, No
generation bounded
by range
and step
String No Predefined Yes, bounded by length
generation set of strings
Enum No No Yes
generation
Generation No Yes No Yes, by edit-
from par- ing ITG
tially cre-
ated in-
stance
Specifying No Yes, via | No Yes
attribute ASSL (in-
values on appropriate
object level for large
instances)

Table 2.1: Comparison of characteristics of instance generating systems

ond point is more beneficial in the industrial cases than in research projects.
However, a good DSL can help to communicate the domain and the problem
to people who are not experts in a certain area.

As for the mechanics, the processing of a DSL is quite similar to the

22

processing of a general purpose programming language. Figure [2.12] shows
the flow of DSL processing.

bSL . Grammar
Script
parsing
optional
Abstract Syntax Tree Semantic model
(instantiated objectsin GPL) Codein
—>) | e
language
population generation

Figure 2.12: DSL Mechanics

The script conforming to the grammar of the language is scanned and
parsed using standard techniques and the result is an abstract syntax tree.
The tree is then traversed and used to populate the semantic model. A
semantic model is a fragment of system consisting of classes that contain the
data which the DSL is meant to express. A DSL can be seen as a front-end to
the semantic model. For example, in the DSL for instance template graphs
in ASMIG, the semantic model will be a part of ASMIG that stores this
graph. Some DSLs are created to simplify code generation. In this case the
next step of the processing is the generation of code in a target language.

There are two types of DSLs - Internal and External. Internal DSLs are
built on the top of the general purpose (host) languages. These languages
should conform to the syntax of a host language. An example of internal DSL
is the LINQ language (Language-Integrated Query) for querying data stor-
ages. A typical approach used in internal DSLs is method-chaining. Figure
2.13] shows an expression in LINQ that illustrates this concept of ‘language
inside of a language’.

The host language for LINQ is C#. However, the code in Figure [2.13
does not look like typical C# code. It has its own structure and rules that
are built on top of C# syntax.

External DSLs on the contrary have their own syntax and are parsed
separately according to Figure [2.12] In our current work we will be talking
about an external DSL.

Although domain-specific languages have been used in the industry for a
long time, we can see that the interest to this area is increasing nowadays.

23

var weakestUnitId = units.Select(x => x.Id)
.Where(x => x.Player == pl)
.0rderByDescending(x => x.Health)
.ThenBy(x => x.Level)

.First();

Figure 2.13: LINQ code example

The reason for this is the appearance of so-called ‘language workbenches’ -
special systems for creating languages. Among these systems are Spoofax,
MPS, Xtext, EMFText and many others. These tools simplify defining the
grammar of the language, the syntax, binding the semantic model, defining
editing behaviour and so on. A detailed overview of language workbenches
and their capabilities can be found in [20].

For further reading on the subject of DSL engineering we may recom-
mend books [I] by Anneke Kleppe giving the theoretical background and a
big picture, [I9] by Martin Fowler with many practical advices and a refer-
ence list of applicable patterns and [21] by Markus Voelter which focuses on
implementing DSLs using different language workbenches.

2.3.1 Why we are using EMFText

The language workbenches available now provide more or less similar func-
tionality. Hence it is not easy to argue for one variant over another. There
are many papers comparing different workbenches and pointing out the dif-
ferences and similarities [22], [23], [24], but there is no significant distinction
between them.

In our case, however, the choice is narrowed by the fact that the ASMIG
system is already interacting with Eclipse Modeling Framework. Therefore it
is more convenient to use one of the Eclipse-based workbenches - EMFText
[25] or Xtext. There is a comparison between these two systems [26] which
tells us that Xtext is more language-oriented, while EMFText follows a model
driven approach.

Furthermore, when using EMFText the language metamodel plays a cen-
tral role (see [27]) and it is specified in the EMF Ecore format discussed
previously in Subsection [2.2.3] This means we can experiment with the in-
stance generation for our new language using ASMIG. This fact decides our
choice in favour of EMFText.

Ideally after the creation of the language we will be able to generate
instances of our DSL metamodel (in other words, scripts in our DSL) which

24

we can then feed into ASMIG as test input and therefore prove the whole
concept of using instance generator for generating test data sets.

2.3.2 Graph definition languages

When there is a task of creating a language one is supposed to use the
experience of previously created languages in the same area. Our task of
defining instance template graphs for model finding is of course too narrow
to expect the existence of languages for this. However, in the more general
problem of graph definition there are several existing languages which are
listed below:

e GXL (Graph eXchange Language).

Graph Modeling Language (GML).

Directed Graph Markup Language (DGML).

Graph ML.

Trivial Graph Format.

e DOT language.

Among the these languages GXL, DGML and Graph ML are XML-based.
We are not interested in the XML-based languages as we want our own
instance template graph language to be more human-friendly than computer-
friendly.

Trivial Graph Format is a simplistic language that specifies only nodes
and edges with labels:

1 First Node

2 Second Node

#

1 21 am an edge

The GML represents a graph in a following manner (fragment of an ex-
ample from [28§]):

graph [
comment "This is a sample graph"
directed 1
IsPlanar 1
node [
id 1

25

label "Node 1"
]

node [
id 2
label "Node 2"
]
edge [
source 1
target 2
label "Edge from node 1 to node 2"
]
]

This language has many keywords that in our opinion can be removed
from the language without any harm. So we would not like to use it as an
example for our language.

DOT is a domain-specific language for the Graphviz system introduced in
[29] and designed for describing graphs for two-dimensional graphical visual-
isation. In the ASMIG system Graphviz is used to render resulting instances
(for example, Figure [2.7).

DOT is a rich language able to express many aspects of graph visual-
ization - shape and colour of nodes and edges, labels, subgraphs, composite
nodes and many more, for details see [30]. An example of graph definition
and rendered visualisation is shown in Figure [2.14]

We can see that nodes and edges may have different attributes, and the
edges are defined with the construct ‘->" which is very simple and expressive.

Although the task of DOT is different from the task of our ASMIG DSL,
there are certain similarities. In our DSL the user also should be able to
define a graph and to set node attributes. On the other hand, we would like
to know the type of the object represented by a node to check the correctness
of relations which is absent in DOT. In spite of these differences we can
consider reusing some subset of DOT syntax for our DSL.

26

//example of directed graph
digraph Example{

//nodes
salt [fillcolor="gray",style="filled"];
p [label="Buckwheat porridge",shape=square];

butter

//edges
salt -> p [label = "1 sp", style="dashed"]
butter -> p

b

@ G

S
+1sp
A |
Buckwheat porridge

Figure 2.14: DOT and Graphviz example. Graphviz generates the graph
image from the graph definition in DOT language

27

Chapter 3

Solution

3.1 System design overview

Here we will discuss what components have to be added to ASMIG system
in order to turn it into ASMIG+ with the precise control over the instance
generation. Figure [3.1] shows the principal schema of the new modules and
their interaction with existing system.

The new part in the figure is shown in detail whereas in the old part only
essential blocks are present. This is why there are more components in the
‘new’ part of the diagram. It has no relevance to the actual complexity of
the systems. The ASMIG system of course is much more complex.

One of the key principles we used in the design is the minimization of
impact on the existing ASMIG code. This is done in order to keep the
coupling between the two parts as low as possible. Additionally, we did not
want to interfere with the development process of ASMIG.

Another key principle we took is testing of the system on every stage
which is important in the context of system evaluation.

Figure shows what parts are there in the system. In order to under-
stand why we need all these components let us go back to Figure and
remind ourselves the use cases of the system.

First of all, the user should be able to create an instance template graph
(ITG) using our domain-specific language.

This use case is supported by the ‘up’ arrows in Figure[2.11] The user cre-
ates a script which is then converted into a model (this is the way EMFText
works). Then a ‘DSL-Factory converter’ traverses the model and creates a
graph in the ASMIG data structure called ‘Factory’. This factory does not
have an API for creating custom graphs, it is designed to create graphs from
Ecore models. In order to manipulate this Factory we have provided an API.

28

Input i

Graph
Factory

Output

3 » (instance)

Existing ASMIG

Factory - DSL
converter

populates

model instantiation

Figure 3.1: ASMIG+ Design overview. The new part of the system (below
dashed line) integrates with the existing ASMIG system (above the line) to

Factary New functionality
API (ASMIGH+)
\u ses
D5L - Factory
converter
reads

> DSL
instance of | Metamodel

code generation

DSL
sCript

provide new functionality

This instance template graph is then used to generate instances.

The second use case is editing the graph. The user gives an Ecore model
as an input, and then the ITG is generated according to the bounds. After
this, the user should be able to modify this graph. Here we need the ‘down’
arrows of Figure as well. The ‘Factory-DSL converter’ walks the ASMIG
graph and populates the DSL Model which is then translated into a script.

29

We used the incremental process in system development, with iterative
cycles of design, implementation and testing. It took us three iterations to
build the whole system.

The material of this chapter is structured by iterations because this way
logically follows the engineering path, and better reveals the decisions we
made and the reasons behind these decisions.

1. In the first iteration we created and tested the innermost layer, a Fac-
tory API. This also required slight modifications of ASMIG code.

2. In the second iteration we worked on the DSL Metamodel and the
converters between graphs in DSL and ASMIG representations. We
also performed integration and system testing.

3. In the third iteration the language based on the DSL Metamodel was
implemented using EMFText language workbench. The integration
and system testing performed again.

These three iterations are illustrated in Figure [3.2]
Next three chapters describe each iteration in closer detail.

3.2 Iteration 1: Factory API

3.2.1 ASMIG Factory Overview

In order to integrate new functionality into any existing system we should
first of all study this system. So our starting point is the code of ASMIG. The
system includes 24 packages having in total 238 classes and 16968 lines of code
(measured by State Of Flow Eclipse Metrics pluginED. At the moment we are
only interested in the part of ASMIG that is related to creating and storing
instance template graph as our task here is to populate these data structures
with our custom graph. A class diagram showing the corresponding fragment
of the system is shown in Figure [3.3l This diagram has been simplified
and slightly modified for better readability as a representation of the actual
ASMIG code.

First of all we would like to discuss the class Factory. This class is im-
portant as it contains the data structures representing the graph. The graph
is stored in three fields of Factory - BVG, ENA and ST. We are not quite
sure why these reference are named this way, but in order to talk about the

Ihttp://www.stateofflow.com/projects/16/eclipsemetrics

30

http://www.stateofflow.com/projects/16/eclipsemetrics

ASMIG

L3
N

N

Factory
AP

teration 1

vy
DSL
Metamodel
T' lteration 2

v

DSL
script lteration 3

Figure 3.2: ASMIG+ Development iterations

system we will be using its terminology. BVG is a collection of nodes, ST is
a collection of edges and ENA is a collection of edges for attributes.

There are two types of nodes in the graph. GraphNodes represent the
actual nodes of the ITG (objects that will or will not appear in the gener-
ated instance). The second type of a node is DataNode. DataNodes store
the information about GraphNode attributes. A DataNode contains a value.
Depending on the attribute type this value is one of the subclasses of an
abstract Value class. ASMIG supports the generation of values for the fol-
lowing data types: Boolean, Integer, String, Enumeration. If a DataNode
has a NULL value the actual value is generated by Z3. Otherwise if the value
is set, this value will appear in the instance.

Here we would like to mention that Enumeration values cannot be pre-
defined in the current version of ASMIG. This functionality is not imple-
mented. This means that Enumeration values will always be generated. In-
teger, Boolean and String values can be set.

So coming back to the Factory class, BVG field stores a collection of
GraphNodes, ST is a collection of edges that connect a GraphNode to another

31

Bound | EClass |

e2a
- bounds: Map<EClass, Integer= /.'—l

- ecoreFileName: String - str_bounds: Map<EAftribute, Integer=

+ e2alfile: String) + Boundfiile: String} EReference,

- - loadObjects() | i
calculateBound()

+ translate() + setBound(EClass, Integer) o —

~TranslateECIass() + setStringBound(EAtftribute, Integer)

- TranslateEReference() + setDefaultStringBound(integer) EAttribute
- TranslateEAttributes(ECIass) +getBound(EClass) T
+ getStringBound(EAttribute) * !

+ getClasses()
+ getReferences()

1

Factaory

+ Factory(Bound)

EMA + makeGraphModes(EClass)

+ makeMNodeAftributes(EClass, EAttribute)

+ makeSrcDest{EReference, List<EC|ass>, List<EClass>)

5T

h

Edge source | <<interface==
il Node
- name: §iring I\’

) BVG
destination | getNameq): String
o
h 4
DataNode ‘ GraphNode ‘
- name: String ‘ - name: String ‘
value
¥
Value |
- name: 5fring |
BoolValue ‘ IntValue | StringValue |
-value: boolean ‘ -value:int | - value: Siring |
+ setValue(boolean) + setValue(int) + setValue(String)
+ getValue(): boolean + getValue(): int + getValue(): String

L

EnumValue |

Figure 3.3: Class diagram of I'TG-related fragment of ASMIG system

32

GraphNode. These edges correspond to EReferences of the Ecore model.

Finally, ENA is a collection of edges between a GraphNode and a DataN-
ode. These edges tell us which nodes have what attributes.

Now let us draw our attention to the upper part of the diagram in Figure
[3.3]- classes e2a and Bound. e2a (Ecore model to attributed graph) is a class
that acts as a coordinator of the whole process of graph creation and popula-
tion. The class Bound serves two purposes. First of all, it stores information
about numeric bounds that limit the instance generation space. Secondly,
the Bound class has references to the contents of the Ecore model. This data
is available through methods getClasses() and getReferences().

The process of creating the ITG can be divided into two phases - initial-
ization and translation. The initialization process is shown in a form of a
sequence diagram in Figure [3.4]

We can see that the entry point is an instance of class e2a. This object
takes a file name of the Ecore model (*.ecore file) as a constructor parameter.
Then a Bound object is created which reads the model (EClass, EReference,
EAttribute from the Ecore file). After this a Factory object is instantiated.

The bounds are also calculated in the initialization phase. The method
calculateBound () sets the user-defined class bound for the classes, applying
some additional logic for inheritance hierarchies. This logic should not bother
us now. As a result of the bounds calculation the Bound object stores integer
bounds for every non-abstract EClass on the model.

Then the default string bound is set. In ASMIG string bound can be
set either for the whole model (it is a default string bound) or for a specific
EAttribute.

As we can see from the diagram all the initialization is performed in a
constructor of e2a. Afterwards this e2a object can be used to perform a
translation phase which translates a model into a graph.

The first part of this process (translation of classes) is shown in Figure
We don’t show the whole process as the diagram would be too large
and complicated. Moreover, first translation step is enough to give us the
impression of how the system works.

The translation happens in the e2a.translate() method. This method
does not do anything else apart from calling private methods Translate-
EClass() and TranslateEReference(). In TranslateEClass() there is a
loop which invokes factory.makeGraphNodes (EClass) for every EClass in
the model. The Factory then gets the bound for this specific class and instan-
tiates corresponding number of GraphNodes. Then control returns back to
TranslateEClass () method which invokes TranslateEAttributes (EClass)
for the current class (not shown on the diagram). This method iterates over
all EAttributes of the EClass and invokes factory.makeNodeAttributes

33

main

L new(fileMNamea) 5
- Bda

new(fileMNamea)
_— :Bound
loadObjects()
.‘
nenw{ bound) E
. > :Factory
| calculateBound() E

loop | setBound(EClass) !

[for each EClass]

—

setDefaulkSiringBound()

S SEDICCRRTENE T |

Figure 3.4: Initialization of Factory

(EClass, EAttribute) which instantiates DataNodes and Edges connect-
ing DataNodes to previously created GraphNodes.

Therefore by the end of the method e2a.TranslateEClass() factory
stores a collection of nodes with attributes (BVG and ENA collections). Then
TranslateEReference () method iterates over all EReferences in the model
and calls makeSrcDest (EReference, List <EClass>, List<EClass>) in
factory object which populates ST collection. We would like to explain why
here a list of classes is passed instead of one class. This takes into considera-
tion the references between subclasses. For example, if a reference e connects
classes A and B, than e can also connect any subclass of A with any subclass
of B.

After the e2a object is created and the translate() method is invoked

34

m;lam eda Factory :Bound
L
translata() !
> TranslateEClass() '
[:
loop makeGraphhModes(EClass ——

getBound|EClass) :'|
L

[for each

EClass] loop

[bound times]

new

‘GraphMNode

. Chhee

Figure 3.5: Population of Factory (fragment)

this e2a object is passed on for further processing.
To summarize, the Factory object is created in the e2a constructor and
the ITG is populated using these methods:

makeGraphNodes (EClass)
makeNodeAttributes (EClass, EAttribute)
makeSrcDest (EReference, List<EClass>, List<EClass>)

This brings us to two important conclusions:
1. We need to have an Ecore file in order to instantiate e2a and a Factory.
2. We cannot create an arbitrary graph using the current functionality.

The first point is understandable and logical. We will need a model
anyway to check that the graph is valid, so it is not a problem.

The second aspect means that we have to implement our own mechanism
for creating a graph inside a factory.

35

3.2.2 API Design

We need the API for a Factory which would allow us to perform the following
operations:

1. Create a node of some type.
2. Create edge between two nodes.

3. Set node attribute value.

We would like our nodes to have name and a type. A type is one of
EClasses from the model. We would also like to prevent creating invalid
graphs - e.g. with types that are not in the model or with edges between
objects that don’t have a reference in a model.

The proposed design of a solution that fulfills these requirements is shown
in Figure 3.6, We decided to use a pattern Facade from a ‘Gang of Four’
book [31]. The reasons for using this was our wish to provide a clean API
for creating graphs and isolate all the complexity of ASMIG.

e2a | Factory | Bound

~ [7

FactoryFacade

+ FactoryFacade(ecoreFileMame: String)

+ addMode(classMame: String, nodeMame: String)

- addEmptyMNodeAtiributes{inode: GraphMNode)

+ addEdge(srcModeMam: String, destModeMName: String)

+ addEdgeWithReferenceMame(srcModeNam: String, destNodeMName: String, refiName: String)
+ setAftribute(nodeMame: String. atirMame: String, value: String)

+ getE2Atranslator(): e2a

5T ENA BVG
L L L
Edge GraphNode

Figure 3.6: FactoryFacade class diagram

36

The FacadeFactory holds references to the e2a class, Factory class and
Bound class. Moreover, it also holds references to the BVG, ST, ENA col-
lections to be able to create the graph directly. It may seem strange that
we need a reference to the Bound class since we don’t need the bounds.
However, this class stores not only the bounds, but the whole Ecore model
as well (EClasses, EReferences, EAttributes). We need this information to
check that our custom graph conforms to the model.

The work flow for the FactoryFacade consists of three stages - creation,
creating an arbitrary graph using API methods and finally call to a method
getE2Atranslator () which returns a e2a object which then can be used in
the following steps of ASMIG work flow.

The instantiation of FactoryFacade is shown in Figure (3.7, The approach
can be argued as breaking Factory encapsulation. However, the Factory class
already contains methods getBVG(), getST() and getENA() which are used
at some later stage to read the graph. So the graph is not really encapsulated
inside the factory.

new(fileMame)

‘FactoryFacade

new(fileMName)
g eda
new
¥ :Factory
getFactory() ,._:_
..‘ ______________________
getBoundi) ‘I
- - - - - - - mm - - - o !
NN getBVG() e
- = m e e 1]
. getsTi) e
oo M
' getEMA() —
PR .

Figure 3.7: FactoryFacade instantiation sequence diagram

37

FactoryFacade class also performs the validation of a graph in the terms
of conformance to the model.
Now let us examine the API methods:

addNode (className: String, nodeName: String)
setAttribute(nodeName: String, attrName: String, value: String)
addEdge (srcNodeNam: String, destNodeName: String)
addEdgeWithReferenceName

(srcNodeNam: String, destNodeName: String, refName: String)

All the input parameters are passed in the form of strings because the
client of FactoryFacade will get the node names, class names and all the rest
from the text script and there will be no more appropriate place to perform
this validation.

The method addNode () not only adds the node to the graph, but also
adds all the DataNodes for all attributes this node may have. The attributes
have empty values which means that by default the attributes will get val-
ues generated by Z3 (as it is in the existing version of ASMIG). Method
setAttribute () allows to set an exact value for an attribute and it means
that this value will appear in the resulting instance without changes (of course
if the node will be ‘switched on’ in the instance).

As for the edges, we have two methods. Method addEdge () adds an edge
between two nodes if there is only one reference between classes of these
nodes, and addEdgeWithReferenceName () adds an edge between two nodes
for a specific reference. It is possible that two classes have more than one
link between them. For example, if we have a bidirectional linked list we will
normally have a class Node with fields next and previous referencing Node
objects. In this example the Ecore model will consist of one EClass (node)
and two EReferences connecting Node to itself.

We could leave only one method which takes reference name, but we
have a reason to keep two methods. For the cases when there is only one
possible way to link two classes (and most of the cases are like this) we want
to give user a simple syntax like ‘A ->B’ in DOT. We don’t want the user
to specify redundant information in the script. As we are anyway handling
graph validation in the FactoryFacade class it seems to be a reasonable place
to resolve reference names.

3.2.3 Implementation

The implementation of the Factory API was very straightforward. We cre-
ated a class FactoryFacade according to the design described above.

38

However, there is one tricky moment related to the string bounds. As we
mentioned in Section |3.1]a string bound can be either global or for particular
attribute. When the user sets a value for a string attribute to a particular
string, there can be two variants. If the length of the string is less then the
current bound, the bound remains the same, otherwise the bound is set to
the length of the string.

When the ASMIG string generator generates a string it allocates exactly
bound number of characters. It means that if the bound is two, every value
of this attribute will have length two. The same applies to predefined values
as well. If the bound of the attribute is five, and the value is three characters
long, ASMIG will generate values for remaining two characters.

Let us consider the following code:

FactoryFacade ff = new FactoryFacade('"model.ecore");
addNode ("A", "al")

addNode ("A", "a2")

setAttribute("al", "name", "Alice");
setAttribute("a2", "name", "Bob");

After the first setAttribute() call the bound on attribute name will be
equal to 5. After the second call it does not change. In the instance the name
of node al will be ‘Alice’, but the name of a2 will be something like ‘Bobaa’
because ASMIG will generate the missing characters so that the resulting
length will be equal to bound.

To prevent this behaviour we add a zero character (\0) to every string
value. It does not affect ASMIG generation process, but when the string is
interpreted it finishes on a zero character.

3.2.4 Testing

As one of our main priorities is code reliability, testing plays an extremely
important role in the development process.

In this first iteration we are only testing the FactoryFacade class with
unit-tests. We are using black-box Equivalence Partition testing as described
in [32] with the elements of Combinational testing (when we have to invoke
a series of methods to test some case). Finally we perform white-box testing
to achieve good code coverage.

The test cases in detail are shown in Appendix[A] We instantiate a Facto-
ryFacade object, then call one or several methods that are supposed to create
some graph. To check expected values we get a factory in the following way:

Factory f = factoryfacade.getE2Atranslator().getFactory();

39

The designed test cases were implemented in 23 unit tests. There are less
unit tests then test cases because non-error test cases can appear in one unit
test. For example, cases 5 and 7 from Appendix [A] are tested in one test.

This test set gives us a coverage of 91.9% (measured by EclEmmaE[).

To achieve full statement coverage we added 5 white-box tests. The
coverage we got is 98.9% which corresponds to full statement coverage and
several missed branch which is a sufficient level of coverage for our case.

To summarize, we performed unit-testing of Factory API. In figures: 28
tests, 98.9% coverage, all tests pass.

As the result of testing several minor bugs were fixed. We would like to
mention one of them. The API didn’t throw the exception on the attempt
to set a value for not existing attribute (test case 10). This is not a critical
bug, but this error could have caused problems at a later stage when the
user expects the attribute value to be set, but it is not because of spelling
mistake, and there is no signal.

3.3 Iteration 2: Language Metamodel

3.3.1 Design

In this iteration we are starting to use the Eclipse Modelling Framework.
The main artifact of the iteration is a language metamodel in Ecore format.
Additionally, we are creating the integration mechanism to convert a graph
from ASMIG format into the DSL format.

The structure of the incremental part of this iteration is shown in Figure
3.8

The metamodel is shown in Figure 3.9 This is in a terms of domain-
specific languages a semantic model of a language. This is a data structure
that will store the DSL program after parsing. Our language is for defining
attributed graphs, and this is reflected in the metamodel.

The root of the metamodel is a ‘Graph’ classifier. The Graph has an
ecoreFilePath attribute which stores the path to the Ecore model for a current
DSL script. The Graph contains a collection of Nodes and Edges. The
type of a Node is a name of an EClass from the model. An Edge has a
referenceName attribute which is optional - as we explained before in many
cases this information is redundant. Finally, a Node contains a collection
of Attributes. EMF supports two types of references - Containment (drawn
with the black diamond) and Non-Containment (drawn as simple arrows).

Zyww . eclemma. org

40

www.eclemma.org

reads populates

Factory -= DSL D5L -=Factory
converter converter
populates reads
DSL D5L

Model [instance of *| Metamodel

Figure 3.8: Iteration 2 design. DSL Metamodel is integrated with ASMIG
graph representation

H Node attributes g aAttribute
nodes 0.* 2 name : EString = 2 name : EString
2 type : EString 0.* 2 value: EString
source | 1 1 | destination
H Graph
T ecoreFilePath : EString
H Edge

edges 0.*| = referenceName:EString

Figure 3.9: Metamodel of the DSL for defining the instance template graph

Apart from the DSL metamodel we have a DSL model which is an instance
of a metamodel and represents a concrete graph. A model is generally a result
of parsing a script, but here we will instantiate it programmatically in our
Factory-DSL converter.

3.3.2 Implementation

As we are dealing with EMF framework our implementation in many asbects
is based on the standard techniques for EMF described in [33].
There are three ways to create a model in EMF"

1. Create from scratch in the editor.

41

2. Import from UML.
3. Generate from annotated Java code.

For our case we picked the first option. First of all, the model is not large.
And secondly, the current ASMIG Java code is not that straightforward to
annotate several classes and get a model like ours (compare Figures and
53)

One of the benefits of using EMF is that from a model it generates first
of all a ‘DSL factory’ that provides methods for creating instances of this
model, and also several utility classes one of which is a ‘DSLSwitch’ class for
traversing a model instance.

After creating a metamodel we had to create the converters between the
ASMIG format of a graph and a graph stored as an instance of DSL meta-
model.

For converting ASMIG to DSL we took a following approach. The AS-
MIG factory class has toString() method used for printing the graph for
debugging purposes. This method walks the BVG, ENA and ST collections,
gathers the necessary information and forms a string.

We took the logic of walking the graph and created our own method
where we replaced the string formatting with calls to DSL factory API.

For the opposite conversion from DSL to ASMIG we used the instance
visitor class generated by EMF (see figure [3.10).

The classes Switch and DSLSwitch are generated by EMF. Class DSLFac-
tory Visitor implements the visiting functionality for different parts of the in-
stance and uses the FactoryFacade to create a graph in ASMIG. A DSLFac-
toryVisitor overrides methods of DSLSwitch by making appropriate Facto-
ryFacade calls while visiting the DSL graph.

Here is the example of usage of this class:

DSLFactoryVisitor visitor = new DSLFactoryVisitor();
for(
Iterator<Object> itr = modelInstance.getAllContents();

itr.hasNext();)

EObject eObject = (EObject)itr.next();
visitor.doSwitch(eObject);

}

return visitor.getE2Atranslator();

42

T
Switch q

|
doSwitch(EObject): T |

JAY

=
DSLSwitch C,—'

+ caseAftribure(Aftribute): T
+ casebEdge(Edage): T

+ caseGrapg(Graph): T

+ caseMNode(Node): T

+ defaultCase(EObject): T

/N

=T:Boolean>

DSLFactoryVisitor
- factoryFacade: FactoryFacade

+ getE2ATranslator)

Figure 3.10: DSL Visitor class hierarchy. Switch and DSLSwitch classes
are generated by EMF, DSLFactoryVisitor traverses the DSL Model and
populates the Factory via the API in FactoryFacade

There is a return value T which is not used in our case. We just return
Boolean. TRUE in every overriden method.

3.3.3 Testing

To test the new functionality of graph transformation we perform integration
testing rather than unit testing.

The approach of use is illustrated in Figure [3.11]

Here the ASMIG graph is instantiated, then converted into DSL graph,

43

Input Ecore mode! ASMIG ASMIG
—>

Graph 1 Graph 2
DsL DsL DsL
Model Maodel Model
Serialization Deszerialization Serialization
XM XM

file 1 <=9=> file 2

Figure 3.11: Integration testing schema. We produce two XML files and
compare them

then serialized in XMI file. This file is then deserialized, converted back to
ASMIG and then again to DSL and serialized as XMI.

XMI (XML Metadata Interchange) is a default format for serializing
model instances in EMF and the serialization/deserialization functionality
is available out of the box.

We chose this approach because it is easier to compare two XML files than
two EMF models. However, we have to admit this approach did not work.
The files contained equivalent models, but the order of nodes and edges was
different. This happens because of different way we create ASMIG graph -
the first time it is created using the ASMIG API, and the second time we
create every node separately using our FactoryFacade API.

In spite of this we decided to compare the DSL models by comparing
the files. EMF has a built-in comparison mechanism for comparing models.
However, it also takes order into consideration and therefore treats similar
models as different.

This issue of ignoring the order of elements while comparing EMF in-
stances is not new. There is a post in Jorge Manrubia’s blog addressing this
subjectfl]

The solution is to create a subclass of EcoreUtil.EqualityHelper class
which performs the comparison and override the comparing of the lists in
following way: first we sort both lists, then we compare sorted lists.

As this approach involves interfering with EMF inner structure we decide
to test it first on sample models. Our custom comparator takes two file

3http://jorgemanrubia.net/2008/07/06/comparing-emf-models/

44

http://jorgemanrubia.net/2008/07/06/comparing-emf-models/

names as input and produces a boolean result of comparison.
We again used Equivalence Partitions technique to test the component.
Method under testing:

boolean compareXMIFiles(String fileNamel, String fileName2);

EP for fileNamel
1*) not existing file
2*%) invalid XMTI file
3) valid file

EP for fileName2
4*) not existing file
5%) invalid XMI file
6) valid file

EP for output
7) true for identical files
8) true for files with different order of nodes
9) true for files with different order of edges
10) false for files with difference in node attribute
11) false for files with difference in node
12) false for files with same nodes and difference in edge

This test set is implemented in 9 unit tests and covers 100% of the method
under testing.

After the testing of the comparator we performed the integration testing
as explained above. In the process of testing several defects has been discov-
ered. First of all, we found a bug in FactoryFacade class related to handling
a model with multiple references having the same name. Secondly, there was
an error with handling bidirectional references.

After the integration testing we also did system testing using the Z3
prover to make sure that after the ASMIG-DSL-ASMIG conversion loop the
generated instances are the same. This is described in detail in the Evaluation
chapter in Section [4.1]

3.4 Iteration 3: Language syntax

3.4.1 Design

In this iteration we will design the syntax of the language and bind it to the
previously created metamodel as shown in Figure [3.12]

45

DSL DSL
Model |[instance of °| Metamodel

parsing printing

scriptin a text file
defining a graph

Figure 3.12: Iteration 3 components: binding of the textual language to the
metamodel

Our language should be able to express the following concepts:

e Declaring a node with its type.
e Specifying the values of node attributes.

e Declaring an edge between two nodes (optionally with the reference
name to avoid ambiguity).

e Specifying the corresponding Ecore model.

Our syntax design was mainly inspired by Graphviz DOT language be-
cause first of all DOT is quite similar to what we need and secondly it is a
well-known language and many people are already familiar with its syntax.

The grammar of our ITG language in the Backus-Naur Form is shown in
Figure [3.13]

The root element <itg> of the script consists of a reference to the Ecore
file followed by the definitions of nodes and edges.

For the node definition we used a slightly modified syntax of node defini-
tion in the DOT language. The difference between the nodes in our language
and in DOT is that in our language the node has a type. So the node decla-
ration in our language looks like this:

Class cl1 [isAbstract=true, id=25]

The attributes block is optional.

As for the edges, we decided to support two types of syntax. The first
type of edge definition is the same as in the DOT language, with an optional
reference name in square brackets:

46

<itg> ::= <ecore-reference> <graph>
<ecore-reference> ::= "model" <quoted-ecore-file-path>
<quoted-ecore-file-path> ::= ’"’ <ecore-file-path> ’"’
<graph> ::= <node-declarations> <edge-declarations>
<node-declarations> ::= <node> | <node> <node-declarations>
<node> ::= <node-type> <node-name> <optional-attributes>
<optional-attributes> ::= "" | "[" <attributes-list> "]"
<attributes-list> ::=

<attribute> | <attribute> "," <attributes-list>
<attribute> ::= <attribute-name> "=" <attribute-value>
<edge-declarations> ::= <edge> | <edge> <edge-declarations>
<edge> ::= <edge-arrow> | <edge-dot>
<edge-arrow> ::=

<source-node-name> "->" <destination-node-name>

<optional-reference-name>

<optional-reference-name> ::= "" | "[" <reference-name> "]"
<edge-dot> ::=
<source-node-name> "." <reference-name>

"=" <destination-node-name>

Figure 3.13: Language grammar

classl -> operationl [ownedOperation]

The second variant of edge syntax is taken from the usual Java-like syntax
for qualified names which refers to a property of an object using a dot:

classl.ownedOperation = operationl

We had following reasons for including this type of syntax. First of all,
for some models it may be more illustrative to use this syntax instead of
the ‘arrow’ syntax. Secondly, we believe supporting this standard notation
makes it easier to integrate other systems with ASMIG+. Finally, it is an
easily understandable syntax used in many other languages which is clear
even without knowing anything about our language.

3.4.2 Implementation

The implementation of the language is done using the EMFText language
workbench.

The language development process in EMFText consists of the following
stages:

1. Create a language metamodel in Ecore format.

47

2. Define grammar rules that specify how the script should be translated
into an instance of the metamodel

3. Generate the tools - scanner, parser and other utilities.

4. Optionally customize the generated code.

As we already have our metamodel, we start with the grammar. In the
EMFText the grammar is stored in a ‘Concrete Syntax’ file. This file stores
the rules for every metamodel EClass in a form which is close to Backus-Naur
notation.

Here is a fragment of the file that corresponds to the grammar defined in
Figure |3.13]

START Graph
RULES {
Graph ::=
"model" #1 ecoreFilePath[’"’,’"’] 10 !0 nodes* !0 edges*;

Node ::=

typel[] namel[]

("[" 11 attributes ("," !1 attributes)* !0 "]")? 10;
Attribute ::=

name[] n=n Value["",""];
Edge ::=

(source[] #0 "." #0 referenceName[] "=" destination([] !0) |

(source[] "->" destination[] ("[" referenceName[] "1")?);

}

The statement START Graph means that the root node of the syntax tree
will be a Graph object. The RULES section contains the rules for every EClass
of our metamodel (see Figure . The rule for every class tells the parser
what syntactic construct to expect when the object of the class is expected.
The attributes of classes are referred to with the square brackets (e.g. name[],
value[]). The construct ecoreFilePath[’"’,’"’] means that the value of
ecoreFilePath attribute will be written between double quotation marks.

The EReference syntax differs for Containment and Non-Containment
references.

Non-Containment references are defined like attributes (source and desti-
nation references in the Edge class). To identify the object which is referred

48

to by a Non-Containment reference EMFText is looking for the attribute ‘id’
or attribute ‘name’. Since the Node class has the attribute ‘name’, it will be
used as a unique identifier for Node objects.

Containment references are written without square brackets and when
a Containment reference is encountered, the parser expects an expression
defining a contained object. For example, for a Node object the Attribute
objects (which are referenced with a Containment reference) will be defined
inside the Node object according to the rule for Attributes (name = value),
but for Edge references (source and destination) only the Node name will be
expected.

Additionally, EMFText supports the optional parts in the rules (?) and
multiple occurrences (*).

The expressions like ‘#1’ and ‘!0’ control the formatting of the script
when the model is printed into a text file. The expression ‘#n’ prints n
whitespace characters, and ‘'n” means print a line break followed by n tabs.

When there are several alternative ways to represent the object (for ex-
ample, the Edge), the printer uses the first option.

Having specified this Concrete Syntax file, we can generate the parser
and the printer. The parser is used to transform the text file containing
the script into the model containing the corresponding objects. The printer
performs the opposite task. As our language is very simple, we don’t need any
customization of the generated code. Therefore, we have both our ‘parsing’
and ‘printing’ arrows from Figure done.

An example of how the DSL code looks like for a model describing BibTeX
format is shown in Appendix [B]

3.4.3 Testing

We perform the testing of the third iteration in a similar way to the testing
of the second iteration (see Subsection [3.3.3).

First we perform Integration Testing to define the consistency of the con-
version from the script to the model and back. This testing seems to be a bit
redundant because the conversion is performed by the EMFText-generated
code. However, since we already have the code for checking the equivalence
of two instances of our DSL Metamodel, we decided to test the third iteration
as well.

The test scenario for the integration testing is following:

1. Load Ecore model to ASMIG, generate I'TG

2. Convert ITG into DSL representation (DSL model 1)

49

3. Print DSL model into text file in a form of script
4. Parse script, get DSL model 2

5. Compare DSL model 1 with DSL model 2

System testing has also been performed. For the system testing we com-
pared the ASMIG system with the Ecore model as the input and the AS-
MIG+ system with the equivalent DSL script as the input. The testing
strategy is described in Section [4.1

As a result of testing no new errors have been found in this iteration.

Presumably we caught the majority of the defects in the earlier stages of
testing.

30

Chapter 4

Evaluation

The evaluation of our work includes answering two questions. The first ques-
tion is ‘Does the system do what it is expected to do?’. This question is
related to the system testing and it is covered in the corresponding section.
The second question is ‘Does the system help the user to achieve their goals?’.
This is where the true evaluation comes in. In other words, is our new system
applicable for generating test data sets for given models? We will address
this question in the ‘Experiment’ section of this chapter where we will use
the system to generate test data for our DSL.

4.1 System testing

To perform system testing of ASMIG+ we need to check that for the input
model in the form of a DSL script the set of generated instances will have
the following properties:

1. Every generated instance is an instance of the input model.

2. For the bounded search space the generated set contains all possible
instances of the model.

Luckily we have the ASMIG system at our disposal which we assume is
already tested. Therefore, we can reduce the task of system testing ASMIG+
to the task of checking whether ASMIG and ASMIG+ give equivalent outputs
for equivalent inputs.

To get equivalent inputs for ASMIG and ASMIG+ we will use our ASMIG-
to-DSL conversion mechanism which we already tested in the phase of inte-
gration testing.

o1

However, the task of defining output instance equivalence is itself rather
complicated. First of all, it is not feasible to generate a complete set of
instances except for trivial models.

Secondly, the order of generated instances may differ for ASMIG and
ASMIG+. This means the first N instances produced by ASMIG may be
different from the first N instances produced by ASMIG+, although all of
these instances might be correct.

In spite of these facts we decided to further reduce the task of system
testing. We know that the instance generation itself is performed by Z3. Af-
ter an instance template graph is translated to a boolean formula there is no
difference in the processing of this formula by Z3 for ASMIG and ASMIG+.
So rather than comparing the output of Z3 (instances) we will be comparing
the input to Z3 (boolean formulas). A good point of this approach is that
the equivalence of boolean formulas can be formally proved.

4.1.1 Verifying the equivalence of graph formulas with
Z3

The interaction of ASMIG with Z3 is performed in following way. The ITG
is translated to a formula which is then exported to a file in SMT-LIB v2
format [34] for processing by Z3.

So our task here is easy - take Z3 file from an ASMIG run and compare
it to the file from an ASMIG+ run. However, we encountered an unexpected
problem. The variables in the file denoting edges were named differently in
different runs. The edges were named sequentially el, €2, e3 etc. throughout
the whole model. There was an edge el in file a.z3 and an edge el in a file
b.z3 and these edges were between different nodes.

To overcome this problem we had to change the naming of edges. As we
stated earlier, one of our principles was not to change ASMIG code. However,
in this case it was absolutely necessary. The danger of this modification is
that it may result in errors if some logic in another place of the system was
depending on the old edge naming rule.

We decided to guard ourselves with a smoke test. This test iterates
through a set of test models and generates one instance for every model with
ASMIG. After this we make the naming change and then we run the smoke
test once again to make sure nothing has broken. The details and the results
of this smoke testing are in Subsection [4.1.2]

The new naming convention for edges we used forms the edge name in
the following way:

edgeName =

92

"e_"+referenceName+"_"+sourceNodeName+"_'"+destNodeName;

Having made this change we can come back to the system testing. We
have two Z3 files - one from an ASMIG run and one from an ASMIG+ run
on the equivalent input. These files are not identical, but they are supposed
to describe equivalent formulas.

The structure of generated Z3 files is shown in Figure [4.1l Every file
starts with a header which is always the same. Then a number of variable
declarations follow. These variables describe the presence of nodes and edges
in the instance and the values of node attributes. Then the formula itself is
encoded in a number of asserts. At the end of a file there is a check-sat
statement which checks if a model is satisfiable or not and a get-value
statement which retrieves the combination of values for variables that makes
all asserts true.

(set-option :print-success false)
(set-option :produce-models true)
(set-logic QF_LIA)

(declare-const classl (Bool))

(declare-const class2 (Bool))

(declare-const operation2 (Bool))

(declare-const propertyl (Bool))

(declare-const e_ownedOperation_classl_operationl (Bool))
(declare-const e_parents_class2_classl (Bool))
(declare-const classli_hash (Int))

(declare-const class2_isAbstract (Bool))

(assert (=> (= classl false) (= classl_hash (- 1))))
(assert (=> (= classl false) (= classl_isAbstract false)))
(assert (=> (not classl) (= classl_classl_name_0 0)))
(assert (=> (not classl) (= classl_classi_name_1 0)))

(check-sat)
(get-value (...))

Figure 4.1: Structure of Z3 file

To compare two models from two files of this structure we merge them into
one Z3 file using the following algorithm. First we read the declare-const
statements into two lists, sort the lists and compare the sorted lists element-
by-element. If the lists are equal, we write these variable declarations to the

file.

33

Then we change every assert statement into a boolean function taking
no parameters. In this way we turn asserts into functions Al, A2, A3 etc.
for the first file and B1, B2, B3,... for the second file.

Then we define functions A and B:

A=A NA3 N A3 N ...

B =By NByN\BsA ...

Function A defines the model from the first file, B corresponds to a model
in the second file. These boolean functions are equivalent if and only if A
implies B and B implies A. Therefore, the expression (A = B) A (B =
A) should be a tautology. Z3 cannot tell if a function is a tautology. Instead,
it can tell whether a function is satisfiable or not. In other words, we can
check for a contradiction. We define a function which is supposed to be a
contradiction:

NotEquivalent = -((A = B) AN (B = A))

Finally, we assert NotFEquivalent. If the models A and B are equivalent,
NotEquivalent is a contradiction and consequently Z3 will give an answer
that the model is unsatisfiable.

We then feed this merged file into Z3 and if the output is ‘unsatisfiable’
then the inputs to Z3 from ASMIG and ASMIG+ are equivalent and it means
that our system test passed.

4.1.2 Smoke testing

The purpose of smoke testing is to find out whether the system works ‘in
general’” or not. This term originates from electrical engineering when a
device could actually smoke when turned on the first time. In software testing
this kind of testing checks that the software does not crash. It is usually a
kind of testing performed regularly after system changes to make sure other
parts of the system were not affected.

In our case we performed smoke testing after changing edge naming in
ASMIG. Of course it does not guarantee the system did not break, but it
gives at least some confidence. Our test scenario was the following:

1. Generate one instance for every model from a test set and save these
instances (*.dot files).

2. Make a change in the code.

o4

3. Generate the instances for every model once more.

4. Compare the size of new and old instances, if the difference is more
than 10% of file size then fail the test, else pass.

We set this threshold of ten percent because instances are often different
even between two runs without code changing. However, if the files differ
significantly it is suspicious.

The smoke testing revealed one error. The edge name after modification
includes the name of the reference. In one of the test models a reference
name contains a colon symbol (‘:”). This colon got inside the edge name and
caused a crash of Z3 processing as Z3 does not allow identifiers containing a
colon.

Our solution was to replace all occurrences of > with ‘_colon_’. Of course
if there are two references in the model named ‘a:b’ and ‘a_colon_b’ we will
still get an error, but first of all this is unlikely and secondly this is inevitable
because for reference names we can use more symbols then for Z3 identifiers.

4.1.3 Set of test models

The ASMIG project includes a data set of sample Ecore models for testing.
This set is supposed to cover all features of Ecore which somehow participate
in the instance generation process.

The test set includes 84 models either taken from the Metamodel Zodl
or created manually. The smallest models consist of one class. The largest
models have more than two hundred classes. The models we used for the
testing are mainly metamodels of some languages - Java metamodel, UML
metamodel, ECore metamodel itself etc.

Ten largest models from the set are shown in Table [4.1]

The model java.ecore has the biggest number of classes - 233. However,
the largest model in the set is UML2.ecore which has 227 classes, 437 refer-
ences and 91 attributes. Although it has a slightly smaller number of classes,
it has the biggest number of references which increases processing time dra-
matically.

We also added our language metamodel dsl.ecore (shown in Figure
to the test set so in total we got 85 models to test our system on.

The information on the remaining 75 models can be found in Appendix

[

"http://www.emn.fr/z-info/atlanmod/index.php/Ecore

95

http://www.emn.fr/z-info/atlanmod/index.php/Ecore

Model Classes | References | Attributes
java.ecore 233 104 17
UML2.ecore 227 437 91
XHTML.ecore 146 255 33
JavaAbstractSyntax.ecore 95 151 46
KML.ecore 93 2 64
ATL.ecore 84 114 32
ACG.ecore 70 40 20
HTML.ecore 59 14 98
MavenMaven.ecore 58 34 94
Ant.ecore 48 28 93

Table 4.1: The largest models from the test set

4.1.4 Test results summary

In this subsection we would like to summarize how we tested different com-
ponents of the system and give some results.
The components covered by unit-tests:

e FactoryFacade class: 28 unit tests that give 98.9% of code coverage.
e XMIComparer class: 9 unit tests, 100% of code coverage.

Integration testing. Performed by round-trip conversion of models be-
tween ASMIG Factory format and DSL format:

e Integration between DSL Metamodel and ASMIG Factory. All 85 test
models pass. Total testing time: 2.5 minutes.

e Integration between DSL Scripts and ASMIG Factory. All tests pass.
Total testing time: 23.6 minutes.

System testing. Performed by verifying the equivalence of Z3 inputs:

e On the second iteration (conversion to DSL model). All 85 test models
pass. Testing time: 29 minutes. The long operations are translation
from ITG to a boolean formula which is performed twice (for ASMIG
and ASMIG+) and processing the merged Z3 file (for the largest model
file is about 120MB).

e On the third iteration (conversion to DSL script). All tests pass. Total
testing time: 49 minutes.

56

Smoke testing. Performed for detecting system crashes after code modi-
fications. Testing time for the test set of 85 models: 10 minutes.

Additionally, we did performance testing to find out the overhead of con-
verting the ITG into the corresponding script and back. On small models
the overhead is not significant (see Figure as the most time-consuming
part is reading the input Ecore model. Stages performed by our code are
shown in red.

Reading Ecore model 650
Creating ITG B
Printingto script 60
Creating ITG from script gO
Translating to formula &
Generation of an instance 30
I
0 100 200 300 400 500 600 700

time, ms

Figure 4.2: Processing time in milliseconds for a small model ‘dsl.ecore’. The
longest operation is reading the model. Overhead is insignificant

However, on the large models the situation changes dramatically. Figure
[4.2] shows the processing time distribution for the largest model UML2.ecore.

We can see that the printing of the ITG to script file takes the longest
time. This stage consists of conversion from the ASMIG ITG to the DSL
model (which takes less than a second) followed by the serialization of the
model to a file which is performed by the EMFText and takes almost 20
minutes for UML2.ecore.

The bottle-neck of the ASMIG+ system is clear. The next stage would
be the investigation of the EMFText serialization mechanism and trying to
optimize it to reduce total processing time.

57

Reading Ecore model 1

Creating ITG 03

Printingto script 1196

Creating ITG from script a6

Translating to formula 210

Generation of an instance 163

a 200 400 &00 800 1000 1200 1400

time, s

Figure 4.3: Processing time in seconds for the model ‘UML2.ecore’. The
export of a graph to the textual representation performed by EMFText takes
74% of the whole processing time

4.2 Experiment

In this section we would like to show how the ASMIG+ system can be used
to generate test data. We will be testing the ASMIG+ system itself. We
have a metamodel of our DSL (see Figure and we want to generate a set
of scripts in this DSL in order to run our system with these scripts as the
input.

Let us have a look at the instance of DSL metamodel generated with the
ASMIG system. Figure [4.4] shows one of the generated instances.

As we can see, this instance conforms to the metamodel. It has one
Graph with two Nodes, two Edges and two Attributes, but this instance is
semantically invalid.

First of all, the ecoreFilePath attribute in the graphl object does not
contain a link to an Ecore model. Secondly, the Nodes don’t have unique
names. Finally, both edges have node2 object as source and destination. It
can be fine as long as the edges stand for different references. However, in
this instance both edges have the same reference name ‘aa’.

It is clear that this instance cannot be used to produce a valid DSL
script. However, we can use the new ASMIG+ functionality to customize
the instance template so that the generated instances would be valid.

28

INSTANCEO

graphl:Graph

ﬁes Nes ecoreFilePath

nodes edge2;Edge nodes edge 1:Edge aa:String
%cel\lame source destination destination /source \referenceName
N A%
nodel:Node aa:String node2:MNode aa:String
/yp\efmarr‘e\l;butes attributes attrbut%butes &ypN"e
aa:String aa:String attributel Attribute attribute2 Attribute aa String aa: String
/nam"e \alue jnamNue
aa:String aa String aa:String aa: String

Figure 4.4: A generated instance for the model dsl.ecore without template
customization

The instances of the DSL metamodel are template graphs. So we have
to customize the template for templates. For the sake of clarity we will call
this template a metatemplate.

Figure illustrates the test scenario.

We decided to generate templates for the model Sample.ecore shown in
Figure because it is simple and has all the elements that an Ecore model
typically has.

First of all we export the ITG generated by the ASMIG system into a
script. Here is this script containing our metatemplate:

model "dsl.ecore"

Edge edgel

Edge edge2

Graph graphl
Attribute attributel
Attribute attribute?2
Node node2

Node nodel

node2.attributes=attribute?2

39

dsl.ecore . ASMIG

Metatemplate
graph

Manual customization

Test scripts for

testing ASMIG+

ASMIG+ Templates for
i Sample.ecore

4 ¥ s
ternplate1.itg template2.itg templatei.itg
Test ASMIG+an |------" - ¥ st r
one of the scripts NSANGCES O
P ASMIG+ Sample.ecore
W "3
instance instancez2 instancef

Figure 4.5: Test scenario for the templates generation

node2.attributes=attributel
nodel.attributes=attribute2
nodel.attributes=attributel
edgel.source=nodel
edgel.source=node2
edge2.source=nodel
edge2.source=node2
edgel.destination=nodel
edgel.destination=node2
edge2.destination=nodel
edge2.destination=node2

60

graphl.nodes=nodel
graphl.nodes=node2
graphl.edges=edge?2
graphl.edges=edgel

We have to set the ecoreFilePath in the graphl object to an Ecore
model:

Graph graphl [ecoreFilePath = "Sample.ecore"]

Every Node in the metatemplate represents a possible node in the tem-
plate. So the types of the nodes should be EClass names from Sample.ecore
model. Edges have to link nodes according to the EReferences of Sam-
ple.ecore.

Here is the edited version of the metatemplate script:

model "dsl.ecore"

Graph graphl [ecoreFilePath = "Sample.ecore"]
Node classl [type = "Class", name = "c1"]
Node class2 [type = "Class", name = "c2"]
Node propl [type = "Property", name = "pl1"]
Node opl [type = "Operation", name = "o1"]

Edge parents [referenceName = "parents"]
Edge property [referenceName = "ownedAttribute"]
Edge operation [referenceName = "ownedOperation"]

parents.source=classl
parents.destination=class?2
property.source = classl
property.destination = propl
operation.source = class2
operation.destination = opl

graphl -> classl
graphl -> class?2
graphl -> propl
graphl -> opl
graphl -> parents
graphl -> property
graphl -> operation

61

When we use this edited ITG file (metatemplate) as the input to our
ASMIG+ system, it produces a set of instances for this metatemplate (tem-
plates). Some of the generated templates are shown in Figures and
The orange boxes represent the objects and the grey ones represent the
attributes.

INSTANCEG

graph1:Graph

ecorefilePath

nodes

parents:Edge nodes property:Edge operation:Edge

destination source destmatmn\s{sncer\lame

propl:Node

Sample .ecore:String

referenceName source freferenceMame

class1:Node class2:Node

parents: String

ﬁe narme type /name type | name type name
A s

‘ Class:String

ownedAttribute:String

op1:Node

ownedOperation: String

cl:5tring Property:String p1l:String Class:String c2:5tring Operation:String 01;:String

Figure 4.6: Generated template 6. The Edge ‘parents’ does not have source
and destination nodes, The Node ‘propl’ is not connected to the Graph.
Therefore, the Edge ‘property’ is also meaningless

INSTANCE1

graphl:Graph

ecoreFilePath

parents:Edge

operation:Edge property:Edge Sample ecore:String

destination [referencenName referenceName destination

parents: String class1:Node class2:Node

A e\ ar

2:String

op1:Node ownedOperation: String ownedAttribute:String propl:Node

Class:String c1:String Operation:String 01:String Class String Property:String p1:String

Figure 4.7: Generated template 1. The ‘parents’ Edge has a source, but does
not have a destination

These instances correspond to the block ‘Test scripts for testing ASMIG+’
in Figure [4.5] As can be seen, there are meaningless parts in the generated
templates. For example, in Figure[4.6]the Edge parents does not have source
and the destination nodes. In Figure the Edge parents does not belong
to the graph, so it will not be present in the instances.

62

INSTANCE 3

parents:Edge

referenceNarme \ source

graphl:Graph

ecorefilePath

class1l:Node

type l/name

c1:String

parents: String

property.Edge

referencenName
ownedAttribute:String
A e o\

Property.String

Sample.ecore: String

destination

class2:Node

Class:String propl:Node

ownedOperation:String

pl:String

Class:String

c2:5tring

Operation:String

01:String

Figure 4.8: Generated template 3. The ‘parents’ edge is not connected to
the Graph, ‘property’ edge has no source

Here we are coming to one of the limitations of this approach of defining
the instance template graph - in the current implementation of ASMIG we
cannot force some elements from the template graph to be present in every
instance.

The next step is to convert the generated templates to the ITG scripts.
We did it manually for the instance in Figure 4.6l However, it is easy to
implement an automatic converter. The resulting script is shown in Figure
4.9

Notice that the node prop1 is ignored because there is no link between the
node graphl and the node propl. Similarly, edges parents and property
are not present in the script.

After obtaining this script we perform the final part of our experiment -
actually running the ASMIG+ system on this generated test input.

The instance generation for the input in Figure has been successful
and we got a number of instances of Sample.ecore model. See Figures [4.10
and [4.111

Generation of these instances in Figures and conclude our ex-
periment according to the Figure

To summarize, we tested the processing of our DSL by the ASMIG+
system, using the generated programs as the input. The test programs have
been generated by the ASMIG+ system itself with the DSL metamodel as
the input. The applicability and the limitations of this approach will be
discussed in the next chapter.

63

model "Sample.ecore"

//the object classl from Figure \ref{fig:itg6}
//represented by with type and name attributes

Class

cl

//the object class2 from Figure \ref{fig:itg6}

Class

c2

//the object ol from Figure \ref{fig:itg6é}
Operation ol

//this edge corresponds to the operation object
//which has class2 as a source and opl as destination

c2 —>

Figure 4.9: ITG Script for template 6 created manually

INSTANCEO

ol

c2:Class

ownedOperation ﬁbstract\ash name

|

At ract |hash

cl:Class

name

ol:Cperation

true: (Bool)

0:(Int)

aa:5tring

true:(Bool)

0:(Int)

aa:String

Figure 4.10: Generated instance 0 for a template graph in Figure

INSTANCE1

c2:Class

ownedOperation ﬁbstract&ash name

ol:Operation

true: (Bool)

-1:(Int)

aa:string

Figure 4.11: Generated instance 1 for a template graph

64

Chapter 5

Conclusions and future work

In this chapter we would like to summarize our work, draw some conclusions
and discuss potential future work.

Our aim was to make the model instantiation in ASMIG more usable
for test data generation. We fulfilled this aim by providing a language for
defining the instance template graph and the functionality to use a script in
this language as the input to the system.

Now let us discuss what we can and what we cannot do with our ASMIG+
system. The system performs an automatic generation of model instances.
The input to the system can be either an Ecore model or a script defining a
template graph for instance generation. We can export the template graph
generated by ASMIG for an input Ecore model into a script. Therefore, we
can interfere into the generation process which makes it more transparent.
We can edit the template script: first of all we can add or remove nodes and
edges to achieve the necessary configuration of the template. Secondly we
can set values of node attributes, and these values will then appear in the
generated instances. This setting of the attribute values is very important
because with this feature we can generate not just random instances, but the
instances that will be semantically valid for the system under test. However,
there are a number of limitations.

The main limitation in our opinion is that there is no way to ensure that
certain elements of the template appear in the instance. It is always decided
by 73 which nodes and edges are switched on and off in the instance. In
Section we faced this limitation when the generated instances had some
edges without the nodes and some nodes not contained in the graph. In
other words, we can bound our instances from above (because the instances
will always be the subgraphs of the template), but we cannot set the lower
bounds. It would be logical if we could specify the required elements of the
template and the optional elements.

65

We would also like to mention a fact that our system does not allow
the user to specify the ranges of attribute values for numeric attributes and
wildcards or regular expressions for string attributes. However, these two
limitations can be worked around with the use of OCL constraints.

Another limitation of the system is that it outputs the instances in the
DOT format. So for practical usage we have to either convert the DOT files
into the format we need or implement our own Instance Interpreter which
will produce the instances in the required format (which is actually rather

easy).

5.1 Future work

As for the future work, we would like to say that in the current implemen-
tation of the ASMIG+ system the graph definition language we introduced
has the same expressiveness as the I'TG itself. So any improvements in the
language would include modification of the instance generation process in
ASMIG.

The ideas for the improvements of the system are mainly caused by the
limitations. First of all, the full OCL support has to be added to the system.
Secondly, as we mentioned before, we have to add a feature of specifying the
parts of the template which are mandatory in all instances. It would also be
good to add conditional expressions. For example, the node A is required
in the instance if the node B is present. This would remove the problem of
having an edge without any nodes.

The next logical step of developing our ITG language would be adding the
ranged values and regular expressions or wildcard characters for strings. It
is worth mentioning that for the numeric values this functionality is already
implemented in the USE system and it does not seem a difficult thing to add.

The output format of the instances also has to be improved. One of
the ideas we had in relation to this aspect is the following. If the input
model corresponds to the UML Class diagram, and the output (the instance)
corresponds to the Object diagram, we could instantiate the actual objects in
the Java language if the user provided the corresponding classes with setters.
Then these objects can be serialized and used afterwards as the test input.

Now we would like to address the wider question of applicability of model
finders for test data generation. The main problem here is that we can
generate the test inputs, but we cannot generate the expected test outputs.
We would need a ‘test oracle’. This fact makes the approach applicable only
for smoke testing where we just want to check that the software under test
does not crash on different inputs, and we don’t care much about the outputs.

66

However, model finders are perfect for generating complex hierarchical
data objects, and the systems that process these complex data structures
have to be tested. The generated test data can help to reveal defects in
the boundary cases (e.g. when some collection contains no elements or one
element) which covers the most of software flaws according to Daniel Jackson.
In [9] it is called the ‘small scope hypothesis’.

A good example of such a complex data structure is a programming lan-
guage. We think that this kind of testing with the use of instance generation
would be extremely helpful in the testing of language parsers. Therefore, our
work has an application and the tools performing the model finding have to
be further improved to meet the needs of test data generation.

67

Appendix A

Test cases for the Equivalence
Partitions testing of the
FactoryFacade class

Equivalence Partitions for the input values of the methods of the FactoryFa-
cade class (partitions with * denote error cases):
EP for FactoryFacade(ecoreFileName)
1*) invalid file name
2*%) valid file name, invalid model
3) valid model

EP for addNode(className, nodeName)

className:
4*) not existing class
5) existing class

nodeName:
6*) invalid name
7) valid name

EP for setAttribute(nodeName, attrName, value). Testing of this and
subsequent methods requires the existence of nodes in a graph. So here
comes the Combinational aspect, we need to first create nodes, and then test
attributes and edges.

nodeName:

8%) not existing node
9) existing node

68

attrName:
10*) not existing attribute
11) existing attribute

value:
12*) invalid value for Integer attribute
13*) invalid value for Boolean attribute
14*) attempt to set Enumeration value (not supported)
15) valid value for Boolean attribute
16) valid value for Integer attribute
17) valid value for String attribute

EP for addEdge(srcNodeName, destNodeName)

srcNodeName
18*) source node does not exist
19) source node exists

destNodeName
20*) destination node does not exist
21) destination node exists

22*) source and destination nodes exist, but there is no possible reference
between them

23*) source and destination nodes exist, and there is more than one possible
reference between them

24) source and destination nodes exist, and there is one possible reference

EP for addEdgeWithReferenceName(srcNodeName, destNodeName, ref-
Name)

srcNodeName
25*) source node does not exist
26) source node exists

destNodeName
27*) destination node does not exist
28) destination node exists

refName

69

29%) not existing reference
30*) reference exists, but not between these classes
31) reference exists between these two classes

We would like to make several remarks. For the partition 6 (invalid
node name) we didn’t previously specify the rules for valid node names. We
decided to treat names without space, non-empty and starting with a letter
as valid.

As for the partition 13, we decided to use method Boolean.parseBoolean()
to convert an input string into a boolean. This method does not treat any
input values as invalid, on all strings except ‘true’ (case insensitive) it returns
false. So in our API the behaviour is the same - if a boolean value is set to
some unrecognizable string, it is set to false.

70

Appendix B

Example of the DSL code for
the BibTeX model

Here we would like to show how the actual generated script looks like for one
of the models. We chose a model of BibTeX which is a format of bibliographic
records. The diagram of the model is shown in Figure B.1] Note that many
classifiers in this model are abstract (written in italic). Abstract classifiers
don’t get instantiated and therefore they are not present in the instance
template. The following code of the template graph in our DSL was generated
for this model:

model "BIBTEXML.ecore"

InBook inbookl

Proceedings proceedingsl
Manual manuall

Author authoril

Author author2

InProceedings inproceedingsl
Book book1l

Unpublished unpublishedl
Conference conferencel
MastersThesis mastersthesisl
PhdThesis phdthesisl

Misc miscl

BibtexFile bibtexfilel
Booklet bookletl

Article articlel
InCollection incollectionl
TechReport techreportl

bibtexfilel.entries=articlel
bibtexfilel.entries=incollectionl

71

bibtexfilel.
bibtexfilel.
bibtexfilel.
bibtexfilel.
bibtexfilel.
bibtexfilel.
bibtexfilel.
bibtexfilel.
bibtexfilel.
bibtexfilel.

entries=techreportl
entries=unpublishedl
entries=inproceedingsl
entries=miscl
entries=bookl
entries=manuall
entries=conferencel
entries=mastersthesisl
entries=phdthesisi
entries=inbook1l

bibtexfilel.entries=proceedingsi
bibtexfilel.entries=bookletl
inbook1l.authors=author2
inbook1l.authors=authori
phdthesisl.authors=author2
phdthesisl.authors=authorl
mastersthesisl.authors=author?2
mastersthesisl.authors=authoril
conferencel.authors=author2
conferencel.authors=authorl
manuall.authors=author?2
manuall.authors=authoril
bookl.authors=author2
book1l.authors=authori
unpublishedl.authors=author2
unpublishedl.authors=authorl
articlel.authors=author?2
articlel.authors=authorl
incollectionl.authors=author2
incollectionl.authors=authorl
techreportl.authors=author2
techreportl.authors=authorl
inproceedingsl.authors=author?2
inproceedingsl.authors=authorl
bookletl.authors=author2
bookletl.authors=authorl
miscl.authors=author2
miscl.authors=authori

72

Buls edfy & SR
c 3 !
B s o Buis : aydeyd &
— e 300801 3
[P3uaszyues H | [EEEEEENNE]
Rkl e Buls ssbed = e
A1u3paiiyoog Bupys asyspgnd = Kp—m7 72"
Bupis | uojieziuebio o SBUIP3320.dul Bupis 830U =
Buls @ s53UpPE o Buls uolIps o
Bul3s 830U = BUlIS 53135 = Bupis i s300 = Bulls 83300 = BUIS : SS3UPPE o
Bulis i szbed o Bulis: jaqunu o Bulls =200 o Bupis uonips o Bulis : sssippe o Bulls ssues o Buis:sou o
Bul3s 13guwny o Buuls : swnjen o BulIIS : SS3UPPE o BulS @ SS3IPPE o Bul3s 1egunu = Bulgs 12quiny o Bulls : s53JppE o
Bup]s @ swnon = Bupas aojpe o Gunis : paysngndmoy & Bupis : uoiyeziuebio = Gupis i edfy o Bupis : swnon = Bups:edfy o
apy § sBulpae30id H 13jecd § lenuey § Jodayyral ocog § Augsisayl B
] _
— v v VV W v
[P3ushandun Hj
Buras : yuow o
i Bulgs eudnol & Buns:ann & Buls 1esk & Gupis uoiangiasyl & Bulgs tJsysngnd & | |Buuis:lojps & Bulgs fjooyas &
Bup3s (3100 & | Anuzouinor 5 Ajuspapl H | Anuipaipg H Auzuoinyinsu) B Anuzpaioyny H| Au3paiaqsingnd B Auzpasonps H AMijuzpooycs H
\E.u:mﬁmunz B ouane
| #0 sJpyine
[T /k a_
$$4 Bulis: 230U = Bulias : sweu &
Bupis tiesk o s10 Joyiny H
7] Buis : 10esqe 5 3
31918 - ummuc_bm .n_U_ 2 Bupas yuow = 0
=R e Bulas : paysngndmoy o
[Aqus g | BuIS: 3N o
SN g

for a model of BibTeX format

iagram

D

Figure B.1

73

Appendix C

Test models set

Table C.1: Size of Ecore models used for testing.

Model Classes | References | Attributes
A _small_example.ecore 7 9 4
BIBTEXML.ecore 28 4 55
BPMN.ecore 18 31 11
BusinessProcessModel.ecore 26 17 0
C.ecore 34 6 3
CPL.ecore 32 16 42
CPP.ecore 16 5 21
CSharp.ecore 10 10 17
Chain.ecore 1 1 0
Class.ecore 4 5 1
Company.ecore 7 9 4
CoverageTest.ecore 3 1 3
DIT .ecore 2 1 0
DOT .ecore 26 30 44
DoDAF-SV5.ecore 31 59 9
Enum_simple.ecore 4 0)
FSM.ecore 6 4 3
FiniteStateMachine.ecore 6 13 3
GWPNV5.ecore 7 14 1
GraphColoring.ecore 1 1 1
GraphML.ecore 11 13 12
HierarchicalStateMachine.ecore 15 31 13
ICST.ecore 1 0 1
JAVA3.ecore 11 19 6

4

Model Classes | References | Attributes
JavaClass.ecore 8 6 1
KMa3.ecore 12 10 8
LCOM.ecore 2 1 0
MoDAF-AV .ecore 48 40 33
NOC.ecore 1 1 0
Person.ecore 1 1
QoS.ecore 24 30 5
RFC.ecore 2 3 0
RoyalAndLoyal.ecore 15 54 34
Sample.ecore 4 3 3
T1.ecore 3 2 1
UML2_CD.ecore 40 75 18
UML_2.0_CD.ecore 40 75 18
WebApplications_ConceptualModel.ecore 19 32 0
bi_FSM.ecore 6 8 3
bi_Some.ecore 2 2 0
bi_one2one.ecore 3 2 0
bi_one2one_name_simple.ecore 2 2 0
bi_one2one_simple.ecore 2 2 0
bi_one2some_simple.ecore 2 2 0
bi_one2zero_or_one.ecore 4 2 0
bi_one2zero_or_one_simple.ecore 2 2 0
bi_zeor_or_some.ecore 2 2 0
bi_zero_or_some.ecore 2 2 0
bi_zeroorone.ecore 2 2 0
boundtestl.ecore 6 2 0
coverage_testl.ecore 2 0 4
dsl.ecore 4 5 6
ecore.ecore 22 48 33
lightjava.ecore 32 4 2
lunar.ecore 7 6 17
mccabe.ecore 1 1 0
ocl_simple_example.ecore 4 2 2
ocl_simple_example_1.ecore 3 2 1
oclimm.ecore 2 1 4
paper2_examplel.ecore 5) 4 2
simplemodel.ecore 3 4 0
simplemodell.ecore 2 2 0

)

Model

Classes

References

Attributes

string.ecore

student.ecore

student_nobody.ecore

testl.ecore

tree.ecore

umlPrimitiveTypes.ecore

un_Some.ecore

un_Some_order_simple.ecore

un_Some_simple.ecore

un_ZeroSome.ecore

un_one2Zone.ecore

un_one2one_simple.ecore

un_zero2one.ecore

=N O = DN DN O O Oy |]| 0O —

== =N = == OO NN O

OO OO0 |~ W

76

Bibliography

1]

[10]

Anneke Kleppe. Software Language Engineering: Creating Domain-
Specific Languages Using Metamodels. Addison-Wesley Professional, 1st
edition, 2008.

Brian Henderson-Sellers. On the Mathematics of Modelling, Metamod-
elling, Ontologies and Modelling Languages. Springer, Berlin, 2012.

Alfons Laarman and Ivan Kurtev. Ontological Metamodeling with ex-
plicit instantiation. In Proceedings of the Second International Confer-
ence on Software Language Engineering, SLE'09, pages 174-183, Berlin,
Heidelberg, 2010. Springer-Verlag.

Ed Seidewitz. What Models Mean. IEEE Softw., 20(5):26-32, Septem-
ber 2003.

Thomas Kiithne. Matters of (Meta-) Modeling. Software € Systems
Modeling, 5(4):369-385, 2006.

OMG. OMG Object Constraint Language (OCL), Version 2.3.1, January
2012.

Sanjai Narain. Network Configuration Management via Model Finding.
In David N. Blank-Edelman, editor, LISA, pages 155-168. USENIX,
2005.

Karsten Ehrig, Jochen Malte Kiister, and Gabriele Taentzer. Generat-
ing instance models from meta models. Software € Systems Modeling,

8(4):479-500, 2000.

Daniel Jackson. Software Abstractions: Logic, Language, and Analysis.
The MIT Press, 2006.

Martin Gogolla, Fabian Biittner, and Mark Richters. USE: A UML-
based specification environment for validating UML and OCL. Science

77

[11]

[12]

[13]

[19]

of Computer Programming, 69(13):27 — 34, 2007. Special issue on Ex-
perimental Software and Toolkits.

Martin Gogolla, Jgrn Bohling, and Mark Richters. Validating UML and
OCL models in USE by automatic snapshot generation. Software €
Systems Modeling, 4(4):386-398, 2005.

Mirco Kuhlmann, Lars Hamann, and Martin Gogolla. Extensive vali-
dation of OCL Models by Integrating SAT Solving into USE. In Judith
Bishop and Antonio Vallecillo, editors, Objects, Models, Components,
Patterns, volume 6705 of Lecture Notes in Computer Science, pages
290-306. Springer Berlin Heidelberg, 2011.

Mirco Kuhlmann and Martin Gogolla. From UML and OCL to Re-
lational Logic and Back. In Robert B. France, Jrgen Kazmeier, Ruth
Breu, and Colin Atkinson, editors, MoDELS, volume 7590 of Lecture
Notes in Computer Science, pages 415-431. Springer, 2012.

Emina Torlak and Daniel Jackson. Kodkod: A relational model finder.
In Orna Grumberg and Michael Huth, editors, Tools and Algorithms for
the Construction and Analysis of Systems, volume 4424 of Lecture Notes
i Computer Science, pages 632—647. Springer Berlin Heidelberg, 2007.

A short guide to the USE Model Validator. Available at:
http://sourceforge.net/p/useocl/discussion/928881/thread/
df56f303/ald6/attachment/Usage.pdf.

Hao Wu, Rosemary Monahan, and James F Power. Exploiting at-
tributed type graphs to generate metamodel instances using an SMT
solver. In Theoretical Aspects of Software Engineering (TASE), 2013
International Symposium on, pages 175-182. IEEE, 2013.

Eclipse Modeling Framework (EMF) - Tutorial. Available at: http:
//www.vogella.com/tutorials/EclipseEMF/article.html|

Leonardo De Moura and Nikolaj Bjgrner. Z3: An Efficient SMT Solver.
In Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, pages 337-340, Berlin, Heidelberg,
2008. Springer-Verlag.

Martin Fowler. Domain Specific Languages. Addison-Wesley Profes-
sional, 1st edition, 2010.

78

http://sourceforge.net/p/useocl/discussion/928881/thread/df56f303/a1d6/attachment/Usage.pdf
http://sourceforge.net/p/useocl/discussion/928881/thread/df56f303/a1d6/attachment/Usage.pdf
http://www.vogella.com/tutorials/EclipseEMF/article.html
http://www.vogella.com/tutorials/EclipseEMF/article.html

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

Sebastian Erdweg, Tijs Storm, Markus Volter, Meinte Boersma, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven
Kelly, Alex Loh, Gabriél D.P. Konat, Pedro J. Molina, Martin Palatnik,
Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi,
Vlad A. Vergu, Eelco Visser, Kevin Vlist, Guido H. Wachsmuth, and
Jimi Woning. The State of the Art in Language Workbenches. In Martin
Erwig, Richard F. Paige, and Eric Wyk, editors, Software Language
Engineering, volume 8225 of Lecture Notes in Computer Science, pages
197-217. Springer International Publishing, 2013.

Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engel-
mann, Mats Helander, Lennart C. L. Kats, Eelco Visser, and Guido
Wachsmuth. DSL FEngineering - Designing, Implementing and Using
Domain-Specific Languages. CreateSpace Independent Publishing Plat-
form, 2013.

Michael Pfeiffer and Josef Pichler. A Comparison of Tool Support for
Textual Domain-Specific Languages. In Proceedings of the 8th OOPSLA
Workshop on Domain-Specific Modeling, pages 1-7, 2008.

Roman Stoffel. Comparing Language Workbenches. In MSE-seminar:
Program Analysis and Transformation, University of Applied Sciences
Rapperswil (HSR), Switzerland, pages 18-24, 2010.

Bernhard Merkle. Textual Modeling Tools: Overview and Comparison
of Language Workbenches. In Proceedings of the ACM International
Conference Companion on Object Oriented Programming Systems Lan-
guages and Applications Companion, SPLASH ’10, pages 139-148, New
York, NY, USA, 2010. ACM.

Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and
Christian Wende. Derivation and Refinement of Textual Syntax for
Models. In Proceedings of the 5th FEuropean Conference on Model Driven
Architecture - Foundations and Applications, ECMDA-FA 09, pages
114-129, Berlin, Heidelberg, 2009. Springer-Verlag.

Christopher Guntli. Create a DSL in Eclipse. Technical report, HSR-
University of Applied Science in Rapperswil, 2010.

Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and
Christian Wende. Model-Based Language Engineering with EMFText.
In Ralf Lammel, Joao Saraiva, and Joost Visser, editors, Generative and
Transformational Techniques in Software Engineering IV, volume 7680

79

28]

[29]

[30]

[31]

[33]

[34]

of Lecture Notes in Computer Science, pages 322-345. Springer Berlin
Heidelberg, 2013.

Michael Himsolt. GML: A portable graph file format. Technical report,
Universitat Passau, 94030 Passau, Germany, 1997.

Emden R Gansner and Stephen C North. An open graph visualization
system and its applications to software engineering. Software Practice
and Ezxperience, 30(11):1203-1233, 2000.

John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and
Gordon Woodhull. Graphviz-open source graph drawing tools. In Graph
Drawing, pages 483—-484. Springer, 2002.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign patterns: elements of reusable object-oriented software. Pearson
Education, 1994.

Stephen Brown, Joe Timoney, Tom Lysaght, and Deshi Ye. Software
Testing: Principles and Practice. China Machine Press, 2012.

Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: Eclipse Modeling Framework. Pearson Education, 2008.

Clark Barrett, Aaron Stump, and Cesare Tinelli. The smt-lib standard:
Version 2.0. In Proceedings of the 8th International Workshop on Satis-
fiability Modulo Theories (Edinburgh, UK), volume 13, page 14, 2010.

80

	Introduction
	Related Work
	Metamodels and model instantiation
	Model Instantiation Systems
	Alloy
	USE
	ASMIG
	Comparison of instance generation systems

	Domain-Specific Languages
	Why we are using EMFText
	Graph definition languages

	Solution
	System design overview
	Iteration 1: Factory API
	ASMIG Factory Overview
	API Design
	Implementation
	Testing

	Iteration 2: Language Metamodel
	Design
	Implementation
	Testing

	Iteration 3: Language syntax
	Design
	Implementation
	Testing

	Evaluation
	System testing
	Verifying the equivalence of graph formulas with Z3
	Smoke testing
	Set of test models
	Test results summary

	Experiment

	Conclusions and future work
	Future work

	Test cases for the Equivalence Partitions testing of the FactoryFacade class
	Example of the DSL code for the BibTeX model
	Test models set
	Bibliography

