

Improvement of

Microsoft Office Build System Feedback Mechanism

Department of computer science

Miao Li

January 2010

Supervisor: Rosemary Monahan

A thesis submitted in partial fulfillment of the requirements for the M.Sc. in Software Engineering

ii

Declaration

I hereby certify that this material, which I now submit for assessment on the program of study leading to

the award of Master of Science in Software Engineering, is entirely my own work and has not been taken

from the work of others save and to the extent that such work has been cited and acknowledged within the

text of my work.

Signed: _____________________ Date: __________________

iii

Table of Content

Declaration .. ii

Abstract .. vi

Internship and Project Overview... 1

Chapter 1: Background ... 5

1.1 Introduction .. 5

1.2 Building Software .. 5

1.2.1 Defining a build .. 5

1.2.2 Build automation ... 6

1.2.3 Continuous integration .. 7

1.2.4 Where we are in software engineering .. 9

1.3 Microsoft SNAP Build .. 10

1.3.1 Microsoft Office Build System ... 10

1.3.2 Microsoft Office Build Process ... 12

1.3.3 Bug Tracking .. 14

1.3.4 Office build system feedback mechanism ... 16

1.4 Analysis Other CI Tools .. 17

1.5 Summary ... 19

2.1 Introduction .. 20

2.2 Feedback Mechanism ... 20

2.2.1 Feedback for developer .. 21

2.3 Problems ... 26

2.3.1 In Step 1 and 2 .. 26

2.3.2 In Step 3 .. 27

2.3.3 In Step 4 and 5 .. 27

iv

2.3.4 The build lab issue ... 28

2.5 Summary ... 28

Chapter 3 Finding Solution ... 29

3.1 Introduction .. 29

3.2 Solution of Indirectly Check Logs .. 29

3.3 Solution of phony break .. 31

3.4 Solution of incomplete contacts ... 31

3.5 Summary ... 33

Chapter 4: Implementation ... 34

Introduction .. 34

Add Error Message .. 34

Finding Lab Issue ... 38

Add more receivers ... 39

Summary ... 44

Chapter 5 Testing and Evaluation ... 45

5.1 Introduction ... 45

5.2 Test Adding Error Message ... 45

5.3 Test Finding Lab Issue ... 46

5.4 Test add more receivers .. 48

5.5 Evaluation .. 50

5.6 Summary ... 50

Chapter 6: Conclusion ... 51

Reference .. 52

v

vi

Abstract

Microsoft Office becomes increasingly large and complex, as well as its build system. The complex and

unique build system for Office is constantly perfecting.

Because the variety of software products the build system and process also very different. But all the

company has the same goal: to make quality software. For large and with long release lifecycle project the

build process is even more important.

My project is especially under Microsoft Office Build System. And improve the feedback mechanism to

report build break to developers, which can reduce builder workload, saving time, and sent useful

message to the correspond developer. Whether a build system can give effective feedback is essential for

improving the software quality.

Internship and Project Overview

About Microsoft

Microsoft was founded in 1975. The company has now become largely successful. As of 2008, Microsoft

has global annual revenue of US$ 60.42 billion and nearly 90,000 employees in 105 countries. Microsoft

first opened its doors in Ireland in 1985, located at Sandyford in Dublin almost 2,000 employees.

Microsoft's operations in Ireland include software development and testing, localization, operations,

finance, IT, HR and sales & marketing, both here in Ireland and across Europe, Middle East and Africa.

More information about Microsoft Ireland at the official website [1].

Microsoft's most profit products are Microsoft Window operating system and Microsoft Office suit of

productivity software. According to recent Forrester Research, as of June 2009, some version of

Microsoft Office is used in 80% of enterprises and the latest Office versions hold roughly 80% of those

installations. Some certain functions Microsoft had to offer may be not better than some companies'

standalone applications, but Microsoft Office is a package of many different applications and they

become more powerful when work together. Microsoft also positions Office as a development platform

for line-of-business software under the Office Business Applications brand. More information about

Microsoft Office products at Office Online [Office]

"One of the jokes in the IT industry is that the biggest competition for Microsoft Office is previous

versions of Microsoft Office," Jason Hiner TechRepublic editor-in-chief. Some of Microsoft's

competitors such as IBM and Google also has launched its own product to compete with the Office, like

IBM's Lotus Symphony tend to be more low-priced, simple, easy integrated with other applications and

support a standard file format OpenDocument Format. "In the past, large-scale application software, when

comparing who has more functions the greater the advantage of whom," Suarez-Potts said. "Now, this

design concept has become obsolete. The future is small, portable applications in the world, they adopted

the same format and design of logic seamlessly combine together to accomplish a task. Open or

proprietary -- - This is not a problem― Even though Microsoft is a giant, but the response is not slow, in

Office 2010 a big new feature is Office Web applications, lightweight online versions of Word, Excel,

PowerPoint and OneNote to compete with similar cloud-based suites like Google Applications.

Internship Introduction

2

My internship is carried on Ireland Office Setup And Release team (OSAR); the OSAR team has built up

a strong working relationship with Redmond team over the last 10 years.

The work of the OSAR is split into three separate areas therefore most team members play an active role

in more than one of these three areas:

 build operation

 build development

 setup infrastructure and authoring

I mainly work on build operation as a build operator also known as builder, well builder also refers the

tools for build software. We sharing build work between Dublin and Redmond build team. The main goal

of build shared operations is to reduce the build turnaround time while still maintaining quality. This is

achieved by taking full advantage of the eight hour time zone difference between the two locations. For

two remote team work together, effective communication is very important. Therefore, we use tools such

as SharePoint forums, Email, Conference calls, Office Communicator and Live Meeting etc.

My daily work includes the following points:

 open bugs for build break and system failures accurately contain detailed failure data

 actively push for the timely resolution of all build issues by self-investigation and resolution of

problems and also escalation of larger issues to the appropriate parties

 report all issues that may have delayed a build and identify trends in the build process

 provide precise and accurate handoff communications highlighting particularly any issues that

occurred with the build during Ireland hours

The above points are also the keys to success on build operations. We are babysits of builds, always

concerned the status of builds, solve any problem or notify the person who can fix it.

I am also work on setup, troubleshoot and maintain Terminal Servers in our lab. The Terminal Servers are

hosting builds for testing by other teams. Specific work includes patch the server, report network failure,

provide access to these Terminal Servers by design and implement a web page use SharePoint.

The Build Development work that has been taken by our team mainly includes:

 build tools development

 update to build break logging automation

3

 efficiency improvements to build lab automation tools

 improvements to the SNAP build environment

 build feature development: to improve efficiency in the overall SNAP build system

 build break root cause resolution: try to discover the root cause of frequently occurring build

breaks

 code reviews: providing support of code review and being a source of advice for developers

across the organization

Build development mainly to improve the build system and solve any issues during build. Office

build team ensures the quality and the completion on time of the builds. In the end, ensure quality of the

Office products.

Project Overview

My project is closely related to my daily work, as I mentioned earlier, with regard to the work of open

bugs for build break and push for timely resolution of build issues. Simply to say, this work is related

with build status feedback. Builders get build system feedback by using some of the tools and developers

get feedback from builders, if their source code changes caused build breaks. The principle of this work is

timely sent the right information to the right person.

My project is improving the tool which used in our team for open bug and sent build break feedback to

developers in the following aspects:

 increase automation of open bug process which reduce workload for builders and the time to send

feedback

 provide error message of build break to developers that can save their time for searching for these

messages, and reduce the network access limitation to improve accessibility to these messages

 sent feedback to all related people, enable all related people get feedback as soon as possible

It is necessary to introduce the relevant background for better understanding of my project. In Chapter 1

Background, I will introduce the position of software build in the software development context. Explain

the software build system used for Microsoft Office product, and further narrow the scope to discuss my

project related area.

The Microsoft Office Build System is unique, and my project is to solve these specific problems in this

particular environment, so, in Chapter 2 Identify Problems I will introduce our workflow for open bug

4

and some relative tools. Based on my work experience and the interview with other team members, I

identity six problems exists in the open bug process.

In Chapter 3 Finding Solutions I provide detailed solution for three of them, because of the priority of the

problem and considering the limitation of the existing system. To solve the rest of the problem require

redesign the tool. However, that could be the future work.

After having the solutions, I begin to realize them in the real work environment. I will introduce the

implement process and core source codes in Chapter 4 Implementation. I used a lot of existing code to

complete my functions, but I will not distinguish new code, because the point is the new features.

Next, I will present the results of by testing the new features in Chapter 5 Testing. And evaluate my

contribution.

In Chapter 6 Conclusion, give conclusion on my thesis and an overall judgment on Office build system

feedback mechanism. I will discuss some new ideas for the future research.

5

Chapter 1: Background

1.1 Introduction

This chapter will introduce many aspects to help to understand build system, and introduce a type of build

system – continuous integration build system; because Microsoft Office Build System is the application

of CI. Next, we discuss the feedback mechanism of build system, by looking at some existing methods

and tools.

1.2 Building Software

Building Software is the process that translates the source code into binaries and assembly required files

to create a standalone software application. This process is very different due to a wide range of

differences in software application, such as development environment and size.

1.2.1 Defining a build

When we build software we call the compiler and assembler, convert high-level languages (source code)

into machine language (binary) that computer hardware understand, and software build refers the result of

this process. Look at figure 1.2.1-1 it gives an example of how source code converts to executable code.

Figure 1.2.1-1 example of complication process

More precisely, there are two stages of the build process and each stage has a result. The two different

results are builds and releases. The first stage is to compile the source code into object code and

libraries and the result is build; the next stage package all object code and libraries the result is release.

6

For a simple project consists only a single file the build process is the compile of that file, the compiler is

the build tools. The build process only take seconds, and you get the build result by the compiler, and

most likely your IDE (Integrated Development Environment) [2] can do this for you, such as Eclipse for

Java [3] or Visual Studio for C# [4]. After your project builds successfully you can perform unit test on it

[5]. Most IDE support unit test as well.

However, imagine how you could build hundreds of projects together and need to manage project

dependencies, and how you could run unit tests every time when source code changes. You need to

configure the dependencies and automate the build process with unit tests.

1.2.2 Build automation

The software build process can be automated by using build tools and scripts and this act was called Build

Automation. It is primary focus on automating the calls to the compilers and linker. As the build process

grew more complex this becomes more essential. In order to achieve build automation, one essential

element is Source Control System.

Source Control System

Source Code refers to files written in high-level languages need to be compiled, however Sources refers

to all the files involved in building a product, not only the source code files, also include non-compile file

like library file, documents and configuration files etc.

Source control system also known as version control system is simply just a database where sources

stored in and with a front-end application with graphic user interface or just command prompt which is

faster. It enables multi-user share and edit same file at same time. User ‗check out‘ files from central

repository to his development machine, make changes and ‗check-in‘ changes back to repository, the first

developer always success, it may have conflict when the second developer ‗check in‘ his changes and it is

his responsibility to take care with the merge. ―The current state of the system referred to as the

‗mainline‘, the copy on the developer‘s machine is called ‘working copy‘[CI]‖

Each time a change checked in repository it is a new version of the sources. The system record and track

all versions by identify changes using number and each revision with a timestamp and the person making

the change. To keep simple, source control system keep the history of all changes.

Branching

7

―Branching is the Source Control System operation of creating an independent line of development for

one or more files.‖[book1] Branching is copy some files to a separate place, the copies and original files

can be modified as desired. Changes in one branch are not reflected in the other one, except explicit

operations performed to merge changes from one branch into another, this merge operation is called

Integration. Merge from original branch to the copy branch is Forward Integration; merge from the copy

Branch to original branch is called Reverse Integration.

Integration Hell

The integration process can take very long time and becomes nightmare of development teams. ―The

consequence was that people were exhausted when they finally integrated, increasing the probability of

errors. Also, the delay before integrating increased the probability of conflicts with the changes from

other pairs‖ [6]

Integration is always an event for parallel development that multi-version of projects developing by multi-

developer. And a good practice to solve this problem is to integrate changes continuously.

1.2.3 Continuous integration

―If you would like to run frequent integration builds so that it becomes a non-event on your project—

including compilation, rebuilding your database, executing automated tests and inspections, deploying

software, and receiving feedback—Continuous Integration (CI) [7]‖.

Figure 1.2.3-1 shows the steps in a CI scenario and the components of CI system.

Figure 1.2.3-1 the components of a CI system

8

First, developer commits changes to the version control repository and CI Server is polling repository for

the changes. Then CI Server runs Build Script to build the latest source code. The last, CI Server

generates feedback of build status and sends to specified project members.

CI Server

The CI Server can start an Integration build by schedule on a regular frequency or manually trigger

whenever a change is applied to the repository.

Build script

The basic part of build automation, use scripts because majority of builds are done at command line. It is

scripts use to compile, test and deploy software.

Integration Build Machine

It‘s a separate machine hosts the CI server, the responsibility is to integrate sources.

Feedback Mechanism

―One of the key purposes of CI is to produce feedback on an integration build, because you want to know

as soon as possible if there was a problem with the latest build [8]‖. By receiving feedback promptly, you

can fix the problem quickly. Feedback is at the heart of CI build system.

For continuous integration we need continuous feedback that ―sent the right information to the right

people at the right time and in the right way [9]‖.

 the right information: build status and testing results

 the right people: ―everyone need to receive some type of feedback on the project, but not

necessarily every item every time[9]―, it depends on the role in the team, such as

 Project Manager need high-level information relates to time, cost, quality and scope

 Architect needs the status of all builds because they look at the entire system;

 Developers only need receive information related on their own tasks, the status on the

code they just check-in;

 Testers need information on the test results;

 The right time: as soon as possible, real time is the best.

 The right way: there are main ways enable continuous feedback, such as e-mail, text message,

visual devices and sound etc.

9

 E-mail is the most common form of feedback, require e-mail server and client. The

disadvantage is people don‘t always have immediate access to e-mail;

 Text message require a mobile phone and tool for sent message. It is good because it

almost enable people receive and view feedback anytime, anyplace. But message will be

very short;

 Visual devices such as Ambient Orb, it can be customized to display lots of different

color to show different build status. Requires a script capable of sending HTTP Get

message, a build script and network connection. But cost, and cannot show detailed

information;

 Play different sound through your computer for different build status add a bit of fun, but

easy to miss and short of information.

 Additional Feedback Devices

 Browser plug-in: it enable your browser can indicate build status

 Instant messenger: such as AIM, Yahoo and MSN.

 RSS: Really Simple Syndication file updated for every build, it can provide as much

information as e-mail does.

 Widgets: various widgets can be created for windows and Mac.

No matter use what way for feedback, the purpose is for someone to take action as quickly as possible

according the information.

1.2.4 Where we are in software engineering

Building software is a process belongs to Software Configuration Management (SCM). SCM is an

integral part of the software development process cross all phases of the life cycle and is a series of

measures to control and standardized the products and their process. It's goal is to record evolution of

software products, to ensure that software developers have access to accurate product configuration at any

phase of software lifecycle, by manage vast number of elements include source code, documentation,

change requests, over the lifetime of a large software system, especially for distributed development

projects.

Wayne Babich describes SCM as ―the art of identifying, organizing, and controlling modifications to the

software being built by a programming team. It maximizes productivity by minimizing mistakes [10]‖.

People always view coding as the real work for software development. ―SCM can‘t achieve star status,

but it is essential to project success.

10

1.3 Microsoft SNAP Build

SNAP stands for Shiny New Automation Process. SNAP build system is the Microsoft own

implementation of Continuous Integration System. The idea is the same to integrate frequently, but not

for every change nor for each change. We integrate several changes together and these changes were

approved by triage which a process to evaluate the changes. SNAP system is used by several teams in

Microsoft such as Office and Windows. But each team has customized the system to build their products.

1.3.1 Microsoft Office Build System

It is based on SNAP build system and customized and developed by Office team. The build system is

continuous improving. Here is only a brief introduction of some features of some elements, and how they

work together. Figure 1.3.1-1 illustrates some components and how they communicate. All the

components are used within Microsoft and some of them only for Office Build Team.

11

Figure 1.4-1

Source Depot: is the actual product name, which is our source version control system. It is command

line based and provides file revision control, file sharing, branching and integration etc. It has the ability

to effectively handle large projects with millions of files and large number of users.

Build Machines: they are the machines located at Build Lab, where the actual build tasks run at. SNAP

daemon run on these machines and enable them to communicate with SNAP server.

12

SNAP: The Continuous Integration Server. The SNAP itself is a system, but here we can keep it simple

as a server and database. The SNAP DB has all the build tasks and a set of machine daemons. And the

SNAP server schedule tasks to build machines.

Metrics DB: a database keeps subset data of SNAP DB. The data are about the status of the build tasks,

which can be viewed from build monitor tools.

To start a build, builder login into the Integrator to perform Forward Integration, copy all the sources

going to build from Main Branch to Lab Branch and create a build job which includes thousands of

projects or tasks. There have 100 build machines for each build, one build machine only run one single

task at once, when a build machine finish one task it will request SNAP to get a new task. The task might

be failed and could be a bug need developer to fix; if the task succeeds it will create some files and

folders to update Lab Branch. All the build status information such as task‘s name, build machine‘s name,

start running time etc. are go into Metrics database, and builder can monitor the build status through

several User Interface Tools, they are all web based applications. When all the build tasks passed, the Lab

Branch has the new version of files and performs Reverse Integration to update Source Depot.

1.3.2 Microsoft Office Build Process

MS Office has two types of build Daily Build and Weekly Build, they both schedule based and run twice

a week. Daily Build usually takes 48 hours without releases. It is used for testing in build lab quickly

identify problems.

Let‘s look at the build process of a Weekly Build. Weekly build, as the meaning of the name, is a whole

build process will takes about 5 days with Build Verification Test and Releases. With the Shared

Operations of Ireland Build Team and Redmond Build Team, allows for full coverage for at least 16

hours per day.

Build Verification Tests (BVTs): ―BVTs are automated suites of tests designed to validate the integrity of

each new build and the basic functionality of the build before it is released for more in-depth testing

[book1]‖. It is a test process also a phase during build process. We have a dedicate team to perform BVTs,

builders notice BVT team to start running BVT and get the test results from them, if the results is not

good enough we have to fix problems and do another BVT, usually there have two or three BVTs for a

Weekly Build.

During the build process each day has a milestone, that need to be reached ensure the build completes on

time.

13

Day 1

 Build starts at 8am GMT

 Task is loaded and projects start building

 Build is monitored, breaks are logged and investigated

 Build break fixes are picked up as thy arrive

Day 2

 First BVT drop is triggered

 BVT results available by the start of Redmond’s day

Day 3

 BVT fixes from the first drop are picked up, re-builds start

 Second BVT drop is triggered

 Logging of breaks and picking up of fixes

Day 4

 Results of the second BVT determine if wrap up can begin or need another BVT drop

 Once starts wrap up the release projects start to build

Day 5

 Final release projects are built

 Releases begin to work out

Figure 1.3.1-1 describes the process of a Weekly Build

14

Figure 1.3.2-1 Weekly Build Process

There have three phases, during compile phase convert source code files into binary files; during BVT,

BVT team test the executable build; during release phase, put all files into a package which can burn into

CD and install.

1.3.3 Bug Tracking

Product Studio (PS), bug tracking system widely used internally at Microsoft used Microsoft SQL Server

database for storing bug information and with front-end user interface. PS is the bugs‘ depository store all

relevant information from open new bug until the bug be closed.

15

Figure 1.3.3-1 Bug‘s Lifecycle [Book2]

Figure 1.3.3-1 shows fundamental bug‘s lifecycle. A bug has three statuses either Open, Resolved or

Closed. ―When a bug is first found by a software tester, a report is logged and assigned to a programmer

to be fixed, the bug is open. Once the programmer fixes the code, he assigns the report back to the tester,

the bug is resolved. The tester verification the fixes to confirm that the bug is fixed, then close the report

[Book2]‖. If it is not fixed, tester will reopen the same bug and assign to developer.

Build break, the bug will happen when compiler or linker outputs an error caused by the source code it

was run against. A basic rule for build break is that ―who broke it, who fixes it‖. It is developer‘s

responsibility to fix the build break not build team, ―for the build team, building without errors and

having the ability to track down the person who broke the build is the most important thing [book1]‖.

It‘s open by builder, and created a new bug in PS, the status is ―Active‖, show as Figure 1.6-2.

Figure 1.3.3-2 “Active” status

16

When the bug fixed by developer the status change to ―Resolved‖ show as Figure 1.3.3-3.

Figure 1.3.3-3 “Resolved” status

Builder applies the fix for the bug and rebuilds the failed project, if the project builds successfully then

the bug is ―Closed‖. Show as Figure 1.3.3-4.

Figure 1.3.3-4 “Closed” status

1.3.4 Office build system feedback mechanism

There have several tools provide different information for different users. Builders directly get feedback

from build system, and update feedback information by some tools for other users not in build team; also

these tools directly get feedback from build system.

BuildUI and SnapUI

Web tools for builder to monitor and control build process. With BuildUI we can track the current status

of the projects as the wait, get built or fail. With SNAPUI we can monitor the use of build machines for

each active build and task queue status. There do not have the ‗builder‘ role in some company, that‘s

because the developer or manager is the ‗builder‘ himself. In Microsoft we have this specific role for

continuous monitor the build process and directly get feedback from the build system.

Build Break Management Tool

Especially for report build breaks to developers. It is the builder‘s responsibility to open bugs and sent

build break e-mail by using this tool. Build break information includes check-ins information and system

log folder path. The e-mail should send to the developers who make check-ins until last build and stake-

holders for the broken project.

17

ReleaseUI

ReleaseUI is similar to BuildUI ReleaseUI tracks the releases and allows the builder to see which releases

have completed and are available for testers or which ones did not get created correctly. ReleaseUI is a

private tool like SnapUI and BuildUI so it is only accessible by the build team.

OfficePipe

OfficePipe is the customer facing build monitoring tool. OfficePipe is where everyone else in the build

organization gets information about the current running builds. OfficePipe display information such as:

 What stage the build is currently at

 The results of the BVT drops of this build

 Comments that the build lab would like to share with the rest of the org

 All of the bugs that have been logged for this build

 Which bugs have been resolved and which are still active

 Statistics about which project shave been failing most in recent build etc.

Non build team members do not have access to SnapUI or BuildUI so as a result require OfficePipe in

order to get all the information that they require about a specific build.

1.4 Analysis Other CI Tools

There are several visible continuous integration tools, have their own way to give build status feedback,

mostly they are web based application. Some tools only simply provide build status indicate by colors

such as GreenScreen which is designed as a dynamic Big Visible Chart [GS].

Some tools are designed to use in an enterprise environment such as Apache‘s Continuum [Continuum].

Cruise Control [CC], they are some of the best tools provide visual dashboards and enforce the process of

continuous integration. They all offer a variety of choices for the feedback method, such as e-mail, MSN,

SMS, IRC (Internet Relay Chat) [IRC] and Jabber [Jabber] belong to Cisco, provide enterprise real-time

communicating.

They all use XML for configuration of feedback method, the information and the receiver etc. The Figure

1.4-1 is the break notification configuration file of Continuum for using e-mail.

18

Figure 1.4-1 Continuum notification configuration

And Figure 1.4-2 is the Cruise Control notification configuration for using SMS.

Figure 1.4-2 Cruise Control notification configuration

Advantages

 XML is seen as a universal, open, readable representation for data exchange. Using XML creates

extendibility and flexibility.

 Provide multiple feedback methods provide better availability.

Disadvantages

 Use internet communication protocol may face security problem

 Only simple feedback information

19

1.5 Summary

By introducing CI system and Office build system, we can see similarities and differences. Each software

build system will be not all the same, the feedback mechanism of Office build system has a great

difference with others, it provides more information for more participants.

20

Chapter 2: Identify Problems

2.1 Introduction

Analysis the communication process between builder and developer, according the CI feedback

mechanism principle ―timely sent the right information to the right person‖ identify problems exist in

current build break notification process.

2.2 Feedback Mechanism

The following figure illustrates the feedback mechanism for a build break.

Figure 2.1-1 Feedback mechanism

The number on the Figure represents the steps, steps 1 – 5 is the process for generate feedback to

developer; steps 6 – 10 is the process for fix bug and feedback to builder. Let‘s follow the order:

 Step 1 – When a task failed BuildUI get data from Metric DB and monitored by Builder

21

 Step 2 – When Builder not sure whether the failed task opened or not, he should check PS

(product studio) where all bugs stored to make sure the status of the break, especially when

there already have many failed tasks before Builder start monitor, because some bugs maybe

already opened by other Builder.

 Step 3 – Builder open BBMT and fill in all required information such as build number, failed

project name etc. manually.

 Step 4 – BBMT automatically get log folder path from Integrator and open bug in PS

 Step 5 – BBMT automatically get check-in data from Metric DB and generate Build Break Email

sent to developers who make the check-ins and the owner of the project. Email includes links of

the log folder and check-ins information.

 Step 6 – When developer received the Build Break Email he check more details by investigate

the bug in PS and logs in Integrator.

 Step 7 – Developer check-in fixes to Source Depot

 Step 8 – Developer reply Build Break Email to notify Builder that the bug has been fixed.

 Step 9 – Builder login to Integrator to apply fix to the bug

 Step 10 – integrate changes from SD to Integrator

2.2.1 Feedback for developer

Step 1: Monitor BuildUI

Builder monitor build task status use BuildUI one of the web based user interface tools, according Build

ID it represent general information such as build type, builder alias and Integrator name.

Figure 2.2.1-1 BuildUI Task Statues and Running Tasks

As show in the following figure during the build process each task will failing into one of the statuses:

failed, running, ready, not ready or completed.

22

Here is a UML state chart to illustrate the transition of the statuses

Figure 2.2.1-2 Task State Chart

 Not ready – if task has any unfulfilled dependencies which means its precedent tasks either “not

ready” or “ready”. It stays in this state.

 Ready – if task has fulfilled dependencies which means its precedent tasks either “running” or

“complete”.

 Running – the task for a project is executing

 Failed – the task failed to run, after re-queue it will become to “ready” waiting for next “run”

 Completed – the task has run successful

For each task we can check the dependencies, ‗->‘ represent the dependency direction, read as ‗depend

on‘, Figure 2.2.1-3 shows dependencies of a running task, all the running task‘s precedent are ‗completed‘

and all descendant are ‗ready‘.

Figure 2.2.1-3 Task Dependencies

Figure 2.2.1-1 shows some running task, for each task there has project name, platform, flavour and

culture

 Project - the name of components of Office like word, excel etc. there have hundreds project in

Office

23

 Platform - x86 and x64 for 32bit and 64bit platform

 Flavour - debug and ship, two different version of executable. Debug version includes debugging

information. Ship version for distributed to other people which is smaller and run faster

 Culture - for different language such en-us, if the value is ‗0‘ means the project is not language

specified

The following figure shot show there have two failed build tasks which highlighted in red.

Figure 2.2.1-4 Failed Task

 Machines - the build machine which was running the task

 Run - the times this task has been executed, if the first time failed the task will re-queue

automatically and run again to reduce other facts may lead to failure, such as build machine and

network problem.

If there have task failed twice, it was considered to be a new bug. When Builder not sure the state of the

break should check before open, otherwise reopen the same bug will confuse developers. If sure about the

break status can skip Step 2.

Step 2: Check Break State

There have two way to check a build break‘s state, either check email or PS.

 Check from email: search within Build Break Email by failed project name. This way is quicker

than check from PS, and can follow the track of the email get more information.

 Check from PS: show as following screenshot, as PS is especially bug tracking tool, it provide

more powerful functions, you can write your own query to search bugs with complex constraints.

 Figure 2.2.1-5 Query Bugs in Product Studio

24

Step 3: Input break info

Open Build Break Management Tool, and manually fill in required information on the left hand side, all

these information we can get from BuildUI, there have several different break type, different break type

according the different task, in this case the failed task is build task so it is compile time build break, and

the reason why to distinguish break types is that different type of tasks create their own folder and logs,

this help to locate the log files. there have two build task failed but for the same project so only need to

log one bug, just specify the build type, platform and international which is the culture.

Figure 2.2.1-6 BBMT

When click the ‗view log files‘ link on the right side of BBMT, it will show the logs path in a command

window, the purpose for doing this is double check whether the information fill in BBMT before is

correct, if any input incorrect no logs will presented. Following is an example of the two failed task which

show in Screenshot 2.2-4, each task run twice so there have four logs totally.

25

Figure 2.2.1-7 Log Folders

Step 4: Open a Bug

When click ‗open a bug‘ a new bug will create with a bug id at Product Studio and there shows the bug

title and bug ID in the following figure.

Figure 2.2.1-8 Bug Title and Bug ID in PS

Step 5: Send Build Break Email

Click ‗send an email‘ and provide the bug id which you get from Product Studio, it will send email

automatically to correspond developer.

Build break email is the major communication method to notify developers that there have breaks need to

be fixed, and the email provides logs and check-in lists to help developer to investigate, and developer

can reply the email to discuss solutions.

The best-case scenario for build break email is only sent the check-ins which caused the break and only

sent to the correspond developers, so the developers who broke the build can fix it quickly; otherwise sent

the email to all related people without indicate which check-in cause the break will cause too much spam

and wasting a lot of time to find out the right developer.

BBMT can automatically sent build break email. The recipients include two groups of people:

 To – developers who directly check in the project since the last build

 Cc – developers who own the project

If there is no check in developers then the ‗To‘ group is the builder who log the break.

26

BBMT get check in users by query Metrics database provide with build number and project name to get

all check in developers who check in the specific project between the current build and the latest build.

Because after each build checkpoint all check-ins were build and reverse integrated, there is no breaks

exists in the build, if a broken project can‘t get fix then it will be included in the build.

BBMT get project contacts by look into an XML file, this file include all the projects and its owner‘s,

following is an example for project ‗access‘.

It include four ‗Contact‘ elements, but BBMT will just sent email to the first two contacts, because the

first two people is the current owner from 2009-09-01, the last two people are the previous owner.

The attributes ‗ContactsFrom‘ means get contacts from which project. In the following example that

project ‗accwiz‘ redirected to the contacts of ‗access‘, and its ‗Contacts‘ element is empty.

The value of ‗PSPath‘ indicate which team introduce the change, project ‗access‘ and ‗accwiz‘ belong to

the same team, so they have the same value for ‗PSpath‘.

BBMT automatically sent Build Break Email to the contacts. The email includes logs path and check-ins

information.

2.3 Problems

After introduce the details about sent build break email, some problems will be identified in each steps.

2.3.1 In Step 1 and 2

Problem 1: Monitor multi-build

27

It is inconvenience to monitor multi-build at the same time. When Builder monitor two builds, he need to

open two BuildUI pages and switching between them and when both build have breaks he need to open

two BBMT as well because one BBMT for one build can reduce manual input especially when the build

just start there will have many breaks to open. Otherwise, just one BBMT for all builds builder need

continue modify the inputs.

In the future the BuidUI and BBMT should be combined, probably add BBMT functions in BuildUI.

Otherwise, require redesign BBMT user interface can indicates the failed break such as BuildUI did.

Problem 2: Check breaks state

There is no difference of a build break whether it is has been open or not, they are all in the ‗failed‘ state

mixed together in the ranks in BuildUI, builder need spend time to confirm, and sometimes made mistake

that reopen bug and caused trouble to developers.

The idea to solve this problem is simple, just quey PS with the build ID, project name and which the bug

status is ‗Active‘. There have SDK for Product Studio, but only available in .NET platform, which BBMT

currently did not use.

2.3.2 In Step 3

Problem 3: Manually input

In order to input the information like Integrator and project name into BBMT, builder need type them

manually or copy from BuildUI.

To reduce the manually input should let builder choose build ID from a drop down list which lists the

running build and that‘s it, all the relative information should get from database automatically. When

open a bug, use the same way, chooses the failed project name from a list.

2.3.3 In Step 4 and 5

Problem 4: Indirectly check logs

The build break email only provide the link of logs folders, the developer still need to get into the folder

and open the error log files to investigate the problem. These log files are located in Integrator to open it

need more time than open it in local machine, and another fact is that sometime developer not on site but

28

he view the email on any computer or Mobile phone. When he received a build break email, he cannot

access intranet to view log files.

Problem 5: Incomplete contacts

Another problem is that sometime the email contacts will not include the developer who introduced the

problem when there is no check-in for this build since last build or none of the check-ins cause problem.

So, in order to find out the problem developers need to investigate log files find out the problem and

forward email to the right person.

2.3.4 The build lab issue

Problem 6: Phony break

Sometimes the build break is caused by build lab issue such as lose network connection or disk out of

space. This kind of break is not real bug, should not be open in PS and assign to developer. But all build

breaks look like the same, only if you check the error log file you can know the reason, while this is hard

for builder to do, not because of it is difficult to check an error file, it is very boring to check for every

breaks and waste a lot of time.

2.5 Summary

By analysis the build break notification method used for Office build system, the outcome is identified

six problems exists in each steps. And discuss solutions for some problems, because these problems are

not provided with detailed solution in the following chapter.

29

Chapter 3 Finding Solution

3.1 Introduction

In this chapter I will provide detail solution for three problems which are identified in Chapter 2. Consider

the time limits the rest of problems will not be solved in this thesis, I will consider them as my future

work which I will talk more in Chapter 6.

3.2 Solution of Indirectly Check Logs

In order to help developer investigate the without the limitation of intranet accessibility and reduce the

frequency to open logs from remote Integrator, the first solution straight in my mind is copy the error log

sent as attachments with e-mail, because considering the difficulty to get the actual error message from an

error log.

This is root log folder for ‗devhosted‘ build task

And when build break happened we usually get into the latest folder to check error logs, to the latest

folder could by the create time or just by the name itself as the name structure is

platform.flavour.culture.number, with the biggest number is always the latest one.

30

There have several different types of error logs, in this case there are three ‗.err‘ files

.build.err

This file is created automatically by a SNAP build scripts. When a project is building it creates and adds

to a large log file (RunCT.log), if it breaks the errors are added to the large log file. The *build*.err file is

created automatically. It contains just the actual errors from the large files and none of the other info. This

is the file we look at when investigating a break.

.export.err

Every project has an export file, this contains a list of files that are created by building this particular

project. It has to do with the dependency chain between projects. If a project ―A‖, produces fileX, fileY

and fileZ, then these 3 files need to be listed in Project A‘s export file. If they are not all listed there will

be an export break and the *export*.err file is created.

RunCT.*.err

The RunCT.err file is very short and kind of useless, it is created when a project breaks but doesn‘t

contain and information about the break.

31

The *.build*.err is usually developer looked into, I ask a developer in our team which kind of error is

useful in this file, the answer is quite simple that‖ the error messages before the first empty line‖. Because

of the structure of the error file, to get the error message is much easier than I expected.

3.3 Solution of phony break

The break caused by Lab Issue is not often, as well builder do not check the log often because not worth,

so it has great potential to report this kind of break to developer that‘s annoying.

Based on the solution of previous this problem is also easy to fix, the solution is the same as the first one,

only different here is search for certain sentences, such as ―Source Depot lost connection‖ which is

network issue, and ―cannot copy file to integrator‖ which is because integrator disk out of space.

3.4 Solution of incomplete contacts

Some of the details about get contacts has mentioned earlier in section 2.2.5 Step 5. The contacts include

the owners and check-in developers, but sometimes check-ins for one project could cause another project

failed, because of source code dependencies, so the contacts should include the check-in developer for

dependent projects.

Get Project Dependencies

All projects dependency information were kept in a file ‗projects.pm‘, this is Perl Module file. A Perl

Module is a self-contained piece of Perl code can be used by a Perl program or by other Perl Module. It is

equivalent to the class concept in Object-oriented world.

‗projects.pm‘ is project information database all information is kept in an associative array. The

associative array is a list of key-value pairs. Following is an example for project ‗graph‘, project name is a

key and its value include three types of dependencies they are ‗NeedProjects‘, ‗ImprotProjects‘ and

‗SetupProjects‘, I add the ‗…‘ which is not in the file to represent there have many other values. Each

type of dependencies also is a key and its value were kept in an ordinary list array ‗[]‘ the values are

other projects‘ name. All the dependencies are organized at project level.

32

 SetupProjects – this is the mapping of setup projects and their platforms which consume files

from this project and platform. Means to setup project ‗devclick2run‘ require files from project

‗graph‘. Means ‗devclick2run‘ depend on ‗graph‘

 ImportProjects – the list of projects that this projects imports from. To build ‗graph‘ will import

files from ‗dlcutil‘, means ‗graph‘ depend on ‗dlcutil‘.

 NeedProjects – keys of other projects whose sources are required to build this project. This kind

of dependency will not affect the build sequence, even if project X and projects Y ‗need‘ each

other. To build project ‗graph‘ SNAP server will copy ‗xl‘ source code and build them together,

so the source code of ‗xl‘ could cause ‗graph‘ failure.

Both ‗SetupProjects‘ and ‗ImportProjects‘ are dependencies on binary files, which will affect build

sequence. ‗NeedProjects‘ is dependencies on source code, the changes made for the source code of ‗xl‘

also cause ‗graph‘ build break, even there is no changes made directly for ‗graph‘, so when the ‗graph‘

break BBMT need get its ‗NeedProjects‘ which is ‗xl‘

BBMT is a HTML application, to create an HTML application just write an HTML page and save it

as ‘.hta‘. HTAs not only support everything a web page does, also have functionality control over user

interface design and access to the client system, run as trusted applications, run like any executable.

BBMT is written by Jscript, which is Microsoft version of JavaScript which is customized for Internet

Explore.

However, BBMT cannot use ‗projects.pm‘ directly. There have many batch file in the Source Depot to

perform a variety of tasks and BBMT usually call these procedures for some functions. So, a batch file in

Perl can fetch ‗NeedProjects‘ from ‗projects.pm‘.

‗projects.pm‘ file is very large and stored in different locations with BBMT. Access ‗projects.pm‘ for

every break is not efficient. And ‗projects.pm‘ does change frequently by developers, we cannot copy it to

the same location of BBMT because we do not know when it will change and keep it updated. So, only

get necessary data from ‗projects.pm‘ and saved to a file in the same location with BBMT.

33

Get dependent projects check-in developer

For each ‗NeedProjects‘ for the failed project, do the same as the failed project get all check-in developers

by query Metric database.

User define dependencies

There have some already know build breaks ‗pattern‘, such as project X break probably because of

project Y. In addition to the ‗NeedProjects‘ other dependencies and some facts also could cause breaks.

So, we can define these dependencies in a file such as XML or text file. BBMT can use this file when

build break happen, do the as for the file which keep the ‗NeedProjects‘ data.

3.5 Summary

Three problems had found detailed solutions. Even the first two solutions are similar but solve the tow

different problems, one problem for builder and another problem for developer. After finding solutions

the implementation is straightforward.

34

Chapter 4: Implementation

4.1 Introduction

In this chapter I will implement the three solutions discussed in Chapter 3 and solved the problems. The

implementation is based on existing source code of BBMT and the major languages are Perl and Jscript.

4.2 Add Error Message

Add error message in the build break email to solve the developer indirect check log problem. According

the solution do following steps.

Get needed error logs

The command ―dir * > a.txt /B /O-D‖ could list all the files in the current folder and save into a.txt file.

The ―/B /O_D‖ can only keep the file name and list by reverse order. So, the line 4 can save the project

log folder in the temp.txt

// Get the log file contents

1. oTextStreamOut.WriteLine("@echo

___");

2. oTextStreamOut.WriteLine("@echo Log file directories for the bug,

sorted from newest to oldest:");

3. oTextStreamOut.WriteLine("dir /B /O-D " + getLogFileMask() + "");

4. oTextStreamOut.WriteLine("dir /B /O-D " + getLogFileMask() +

">c:\\office\\dev14\\temp.txt");

5. oTextStreamOut.WriteLine("@echo test:" + getLogFileMask());

6. oTextStreamOut.WriteLine("@echo test:" + getFullLogFolder());

 //------------put log files name in tempFiles.txt

7. var tempFileStream = g_oFS.OpenTextFile("c:\\office\\dev14\\temp.txt");

8. var slog = "";

35

9. slog = tempFileStream.ReadLine();

10. var logFolder = getFullLogFolder()+"\\"+slog;

11. oTextStreamOut.WriteLine("dir /B /O-D " + logFolder+

">c:\\office\\dev14\\tempFiles.txt");

12. tempFileStream.Close();

13. getErrorLogPath(logFolder);

The temp.txt is like:

x64.ship.en-us.02

x64.ship.en-us.01

x64.debug.en-us.02

x64.debug.en-us.01

And at line 13 pass the log folder path which is x64.ship.en-us.02 to the function getErrorLogPath(), and

in this function will search the .err file and for each .err file search the error message and save all the error

message in g_sErrorMessage

function getErrorLogPath(logPath)

{

 var errorMessage="now this is empty";

 var tempLogFS = g_oFS.OpenTextFile("c:\\office\\dev14\\tempFiles.txt");

 var fileNames = new Array();

 var i=0;

 while (!tempLogFS.AtEndOfStream)

 {

 fileNames[i] = tempLogFS.ReadLine();

 i++;

 }

 //to match a file name to get more file could have more RE

36

 //var reLog = new RegExp("^.*\.err$","i");

 //Get all err files

 var reLog = new RegExp("^.*err$","i");

 var reRunCT = new RegExp("^RunCT.*","i");

 var errorLogName = "";

 //for each element find err file

 //g_sErrorMessage = "-----------Error Message-------------
";

 for (var j=0; j<fileNames.length; j++)

 {

 // search err

 errorLogName = fileNames[j].match(reLog);

 //for err file

 if (errorLogName)

 { // file name + error message

 g_sErrorMessage +=">>>>>>Error From File: " +

errorLogName + "<<<<<<
"

 +

getErrorMessage(logPath+"\\"+errorLogName)+"
"+">>>>>>End of

File<<<<<<

";

 if(haveLabIssue(logPath+"\\"+errorLogName))

 alert("This is Lab Issue, do not open bug");

 }

 }

Get error message

function getErrorMessage(filePath)

{

37

 //read file into string

 var sError = "";

 var tempLogFS = g_oFS.OpenTextFile(filePath);

 var alines = new Array();

 var i=0;

 //read file

 while (!tempLogFS.AtEndOfStream)

 {

 var line = tempLogFS.ReadLine();

 //get all lines before the first empty line

 if(line != "\\n")

 {

 sError += line + "
";

 }

 else

 {

 break;

 }

 }

 return sError;

}

Put in e-mail body

Modify the e-mail template to add a paragraph of ‗ERRORMESSAGE‖ which indicate the location going

to be replaced by actual error message.

<p>Log file directories, sorted from newest to oldest:</p>

38

<p>

LOGFILES

</p>

<p>

ERRORMESSAGE

</p>

<p>Check-ins to this project, Import Projects and Need Projects :</p>

<p>

CHECKINS

</p>

Before sent the e-mail replace the e-mail template with the error message with saved in a global string

varialble.

sLine = sLine.replace(/ERRORMESSAGE/,g_sErrorMessage);

4.3 Finding Lab Issue

I already can get the error file path, then the following function just take the file path as parameter and

search the specific string in the file, if the error file contain matched string return ‗true‘ .

function haveLabIssue(filePath)

{

 var reSD = new RegExp("Source Depot client error","g");

 var tempLogFS = g_oFS.OpenTextFile(filePath);

 var file ="";

 var have = false;

 while (!tempLogFS.AtEndOfStream)

 {

 file = tempLogFS.ReadLine();

39

 if (file.match(reSD))

 have = true;

 }

 return have;

}

And this function is called in getErrorLogPath() function, each time get an error log file will call this

function to check if it cause the by the lab issue, and if it is the case will open an alert window to warning

builder do not open bug.

if (errorLogName)

 { // file name + error message

 g_sErrorMessage +=">>>>>>Error From File: " +

errorLogName + "<<<<<<
"

 +

getErrorMessage(logPath+"\\"+errorLogName)+"
"+">>>>>>End of

File<<<<<<

";

 if(haveLabIssue(logPath+"\\"+errorLogName))

 alert("This is Lab Issue, do not open bug");

4.4 Add more receivers

Get ‘NeedProjects’

Following is a piece of code from ‗oNeedProjects.bat‘ use ‗projects.pm‘, and extract each project and its

‗NeedProjects‘ write into ‗NeedProjects.txt‘ a text file.

1 use Office::Projects;

2 open (NEEDFILE, ">NeedProjects.txt");

3 foreach my $project (sort keys %ProjectData)

40

4 {

 print NEEDFILE $project." ";

6 my $need = $ProjectData{$project}{NeedProjects};

7 my $i=0;

8 while ($need->[$i])

9 {

10 print NEEDFILE $need->[$i]." ";

11 ++$i;

12 }

13 print NEEDFILE "\n";

15 close (NEEDFILE);

The ‗oNeedProjects.bat‘ is a batch file in Perl scripts, the reason to use batch file is because it is easy to

run in command line and can be used for other tools or batch file exist in the system.

The ‘NeedProjects.txt’

This file include every project and its ‗NeedProjets‘, each line start with the project name followed by its

‗NeedProjects‘, all the project name separate by a space.

41

BBMT function GetNeedProjects ()

This function open the file ‗NeedProjects.txt‘ and read line by line, put each line into an array, and find

the failed project from the first elements of the array, when find the failed project return its ‗NeedProjects‘

array maybe its empty.

Function GetNeedProjects ()

{

 var aProjectList = new Array();

 var fso = new ActiveXObject("Scripting.FileSystemObject");

 var needFileStream =

fso.OpenTextFile("c:\\office\\dev14\\bat\\NeedProjects.txt",1,false);

 var eachLine = "";

 var temp = new Array();

 var next = true;

 while ((!needFileStream.AtEndOfStream)&&next)

{

eachLine = needFileStream.ReadLine();

temp = eachLine.split(' ');

42

if ((g_sProjectName == temp[0])&&temp[1])

{

 for (var i=1; i<temp.length-1; i++)

{

 aProjectList[i-1]=temp[i];

 }

 next = false;

}

 }

 needFileStream.Close();

 return aProjectList;

BBMT function onSendEmail()

GetNeedProjects() is called here, and assign the value to array ‗aNeedProjects‘, for each element in the

array get the check-in developers which assign to string ‗sCheckInUsers‘ and get all check-in changes

which assign to string ‗sCheckinChanges‘.

aNeedProjects = GetNeedProjects();

var sCheckInUsers = GetCheckinUsersForProjects(g_sProjectName, oAdoConn);

while(aNeedProjects[Count])

{

sCheckInUsers += GetCheckinUsersForProjects(aNeedProjects[Count++],

oAdoConn);

}

Count = 0;

43

var sCheckinChanges = GetCheckinUsersByChanges(g_sProjectName, oAdoConn);

while(aNeedProjects[Count])

{

sCheckinChanges += GetCheckinUsersByChanges(aNeedProjects[Count++],

oAdoConn);

}

oAdoConn.Close();

oAdoConn = null;

The check-in developers of failed project and its ‗NeedProjects‘ were on the ‗To‘ line of email contacts

and ignore check-ins by integration.

if (sCheckInUsers)

{

// People who check in go on the To: line. Ignore integration checkins

sToList = sCheckInUsers.replace(/=y-arnold;(.*)/gi, "$1");

// People in ProjectInfo go on the CC: line

sCCList = sProjectContacts;

}

Open Build Break Email Template which is a text file pre-defined the email format and content. And

replace with breaks information such as ‗PROJECT‘, ‗TOLINE‘ and ‗CHECKINS‘.

// read in the break mail template and swap in the bug number, etc.

var oTextStream = g_oFS.OpenTextFile(g_sBreakMailTemplate);

if (oTextStream)

{

 var sLine = "";

44

 while (!oTextStream.AtEndOfStream)

 {

 sLine = oTextStream.ReadLine();

 sLine = sLine.replace(/PROJECT/, getProjectFlavorName());

 sLine = sLine.replace(/BUGNUM/g, g_sBugNumber);

 sLine = sLine.replace(/OFFICEVERSION/g, g_sOfficeVersion);

 sLine = sLine.replace(/BUILDNUM/, g_sFullBuildNumber);

 sLine = sLine.replace(/LOGFILES/, sLogErrors);

 sLine = sLine.replace(/CHECKINS/, sCheckinChanges);

 sLine = sLine.replace(/TOLINE/, sToList);

 sLine = sLine.replace(/CCLINE/, sCCList);

 sLine = sLine.replace(/BUILDER/g, sBuilder);

 sEmailContents += sLine;

 }

}

oTextStream.Close();

4.5 Summary

The actual coding to implement the solution is not the hard part, because the direction is already clear,

and only need focus on the very specific problem which is related with programming languages.

45

Chapter 5 Testing and Evaluation

5.1 Introduction

I did some unit tests one the functions during coding, and here mainly is functional or system testing,

which I test the new develop functions in the real working environment.

5.2 Test Adding Error Message

The original e-mail

In the original email there is only four links to the log folder.

The improved e-mail

In the improved email the error message from each error log is added.

46

5.3 Test Finding Lab Issue

This test I did not test in the real working environment, because to test this function require the actual lab

issue happened, and I cannot use the error log files in the history, because they already removed from

integrator, but as it use the same function to get error files and the function has been tested in previous

example, here I just perform a unit test on function haveLabIssue(filePath) by provide two text file one

contain the string pattern and the other not.

So I create a test environment, another HTA file and contain the haveLabIssue(filePath) and another

function to call it.

<script>

function getFile()

{

 var file = name.value;

 if (haveLabIssue(file))

47

 alert ("this is caused by Lab Issue, Do not open bug");

 else alert ("should open bug");

}

function haveLabIssue(filePath)

{

 var reSD = new RegExp("Source Depot client error","g");

 var tempLogFS = g_oFS.OpenTextFile(filePath);

 var file ="";

 var have = false;

 while (!tempLogFS.AtEndOfStream)

 {

 file = tempLogFS.ReadLine();

 if (file.match(reSD))

 have = true;

 }

 return have;

}

</script>

<input id="p" type="text" name="name" />

<input type="button" name="button1" value="Run" onClick="getFile()" />

To run the program an provide a text file which contain the string pattern,

48

It shows the expected result

And provide another text file which do not contain the string pattern also get expected output.

5.4 Test add more receivers

Test conditions:

There have ‘failed’ project in BuildUI and a bug has been open.

The ‘failed’ project has ‘NeedProjects’

Following Screenshot 5-1 is the original Build Break Email for bug #738945 for project ‘motif’.

49

Screenshot 5-1 original Build Break Email

Before the bug got fix by developer I re do the open process with BBMT, instead ‘send an email’ just for

a preview.

Screenshot 5-2 open bug for preview

The screenshot 5-2 shows the improved Build Break Email, for the same bug and project. Before only

check project ‘motif’, now also includes another project ‘motiftest’ the ‘NeedProjects’ of ‘motif’

50

Screenshot 5-3 improved Build Break Email

5.5 Evaluation

The first improvement provides developers directly access to error message and reduce the network

access limitation, save time for developer to take action to fix the problem. This can save approximate 2-3

minutes for each build break

The second improvement reduce builder workload, even though the lab issue is rarely happened, but

when it happened the tool can detected it, that is very easy for builder to miss.

The third improvement includes all developers who make check-ins until the latest build, by add the

check-in developer for ‗NeedProjects‘. There have about 5% projects have ‗NeedProjects‘ dependency, in

theory before the improvement the BBMT did not work for this 5% and developer need to find out the

real cause and include the relative developer in the receivers.

5.6 Summary

The test result examples shown here is not the best example to show the difference, because I test the tool

in the real environment, there do not have the suitable break can show the difference.

51

Chapter 6: Conclusion

The biggest problem for me to do the thesis is the visibility of the whole build system, as a builder I only

familiar my work flow and tools, because the Microsoft Office Build System is extremely large and

complex after long-term development, the way I learn the system is by some internal document and

meeting with senior members.

The build break notification method used by Office build team generally meet the needs of the system, it

can accurate and useful information and sent to the correspond developers, while because it is sent by

builder manually so not very fast, in the future the tool should be automatic open bugs and sent feedback

information to developers. And it will be better if the tool can provide more notification method to choose

by developer. They can customize their favorite feedback methods, and information types and even the

style how to represent. Feedback can be sent by e-mail and SMS, and developer can either way suitable.

Because the limit time, I did not implement all the features and I would like to keep working on it in the

future. By researching the area of feedback mechanism I also have some new ideas. I would suggest

create e-mail template with XML rather than HTML. That would provide potential for new features, such

as automatically open bug and search for solutions. As the e-mail defined by XML, the data could be

saved in database or Active Directory which is searchable and manageable, that could be used to create an

Expert System to help developers find similar solutions and automatically open bug under the complex

situation.

52

Reference

[1] more information about Microsoft Ireland at

http://www.microsoft.com/ireland/about/

[2]http://en.wikipedia.org/wiki/Integrated_development_environment

[3]http://www.eclipse.org/

[4]http://msdn.microsoft.com/en-us/vstudio/default.aspx

[5]:The Art of Unit Testing: with examples in .Net, Pg.4

[6]Planning Extreme Programming , By: Kent Beck; Martin Fowler Integration Hell

Pg.66 http://pqtechbus.safaribooksonline.com/0-201-71091-9

[7]Continuous Integration: Improving Software Quality and Reducing Risk, by Paul

Duvall, Steve Matyas Pg.3

http://pqtechbus.safaribooksonline.com/9781933988276

[8]Continuous Integration: Improving Software Quality and Reducing Risk, by Paul

Duvall, Steve Matyas Pg.10

http://pqtechbus.safaribooksonline.com/9781933988276

[9]Continuous Integration: Improving Software Quality and Reducing Risk, by Paul

Duvall, Steve Matyas Pg.203

http://pqtechbus.safaribooksonline.com/9781933988276

[10]Quality Software Project Management, By: Robert T. Futrell; Donald F. Shafer;

Linda I. Safer Pg.947

http://pqtechbus.safaribooksonline.com/0-13-091297-2

[Book1]: The Build Master, by Vincent Maraia

http://pqtechbus.safaribooksonline.com/0321332059

[Book2]: Software Testing, Second Edition, by Ron Patton

http://www.microsoft.com/ireland/about/
http://en.wikipedia.org/wiki/Integrated_development_environment
http://www.eclipse.org/
http://msdn.microsoft.com/en-us/vstudio/default.aspx
http://pqtechbus.safaribooksonline.com/0-201-71091-9
http://pqtechbus.safaribooksonline.com/9781933988276
http://pqtechbus.safaribooksonline.com/9781933988276
http://pqtechbus.safaribooksonline.com/9781933988276
http://pqtechbus.safaribooksonline.com/0-13-091297-2
http://pqtechbus.safaribooksonline.com/0321332059

53

http://pqtechbus.safaribooksonline.com/0672327988

[Office]http://office.microsoft.com/en-

us/FX100647101033.aspx?pid=CL100569831033

[CI]http://martinfowler.com/articles/continuousIntegration.html Continuous

Integration Martin Fowler

[GS]http://martinjandrews.github.com/greenscreen/

[Continuum]http://continuum.apache.org/

[CC]http://cruisecontrol.sourceforge.net/

[IRC]http://en.wikipedia.org/wiki/Internet_Relay_Chat

[Jabber]http://www.jabber.com/CE/JabberHome2

http://pqtechbus.safaribooksonline.com/0672327988
http://office.microsoft.com/en-us/FX100647101033.aspx?pid=CL100569831033
http://office.microsoft.com/en-us/FX100647101033.aspx?pid=CL100569831033
http://martinfowler.com/articles/continuousIntegration.html
http://martinjandrews.github.com/greenscreen/
http://continuum.apache.org/
http://cruisecontrol.sourceforge.net/
http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://www.jabber.com/CE/JabberHome2

54

Appendix A: oNeedProjects.bat

@echo off

perl -x %~dpf0 %*

exit /b %errorlevel%

#!perl @rem = '-*- Perl -*-';

@rem = '

@if "%overbose%" == "" echo off

setlocal

call oenvtest.bat nodirs

set ARGS= %*

call perl%OPERLOPT% -w %~dpnx0 %ARGS:/?=-?%

exit /b %ERRORLEVEL%

';

SCRIPTNAME

Brief description of purpose of script.

BEGIN { # common %otools%\bin\perl_template.bat script config -- do not edit

require "$ENV{OTOOLS}\\lib\\perl\\otools.pm"; import otools;

}

file://lib/perl/otools.pm%22;%20import%20otools

55

require 5;

use strict;

use Getopt::Long;

use Office::Projects;

Display detailed usage information and quit.

sub usage {

print <<EOT;

Usage:

 ScriptName [options] ...

 Detailed description of meanings of options and arguments

EOT

exit 1;

}

main

first off, check if user needs help

56

GetOptions("help|h|?", \&usage); # augment with arguments for other options

open (NEEDFILE, ">NeedProjects.txt");

foreach my $project (sort keys %ProjectData)

{

print NEEDFILE $project." ";

my $need = $ProjectData{$project}{NeedProjects};

my $i=0;

while ($need->[$i])

{

print NEEDFILE $need->[$i]." ";

++$i;

}

print NEEDFILE "\n";

}

close (NEEDFILE);

exit 0;

 Appendix B: Email template (original)

Please reply to this email immediately so that we know you are managing the build break. The bug

needs to be assigned to a developer in the next hour and the bug resolved within 1 to 2 hours (for

compile breaks) or 2 to 4 hours (for CIT breaks). Note that backing out a changelist or turning off a

test is often the fastest way to fix a break. For more information on build break responsibilities, see:

http://office/sites/build/Shared Documents/Office Pipeline Build Breaks and Contact Policies.mht

For more information regarding the bug, view it in Product Studio:

http://office/sites/build/customers/Shared%20Documents/Office%20Pipeline%20Build%20Breaks%20and%20Contact%20Policies.mht

57

http://psph/OfficeOFFICEVERSION/BUGNUM

Log file directories, sorted from newest to oldest:

LOGFILES

Check-ins to this project:

CHECKINS

While you may not have caused the build break, you are receiving this e-mail because you checked

into the project since the last build (if you are on the To: line), or you are on the list of build break

contacts (if you are on the CC: line). Please assign this bug to the person responsible for the build

break as soon as possible. You can update your project contacts here:

http://office/sites/build/Shared Documents/ProjectInfo14.xml

You are currently in the first stage of the build break notification process. If no action is taken, the

automated build break escalation system will proceed with the next stage as outlined below:

Time Mail Sent

Now Mail sent out to build break contacts for all build breaking bugs

In one hour Mail is sent out for unassigned bugs

Mail is sent to dev owners of compile breaks

In two hours Mail is sent out for unassigned bugs

Mail is sent to dev owners of compile breaks

Notification mail is sent to dev owners of CIT breaks

In four hours Mail is sent out for unassigned bugs

Mail is sent to dev owners of compile breaks

Mail is sent to dev owners of CIT breaks

If you need more time than the schedule listed above to resolve this issue, please reply-all to this mail

and CC your manager, providing an ETA for the fix.

http://psph/OfficeOFFICEVERSION/BUGNUM
http://office/sites/build/Shared%20Documents/ProjectInfo14.xml

