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Abstract

During my work placement in a software development role at Ericsson, I have

worked on a diverse range of software applications written in the Java pro-

gramming language. These applications are utilised both within Ericsson, and

by telecommunications network providers around the world, as part of a large

software system responsible for the management of telecommunications network

models. In this dissertation, I describe my work on two substantial software ap-

plications comprising part of this larger system, with a focus upon the software

engineering techniques that were most relevant to my work.

Numerous design patterns were implemented during my work on each of

these projects. Accordingly, both theoretical and practical aspects of relevant

design patterns are discussed in depth. Several other software engineering tech-

niques - code refactoring, software testing, and code reviews - collectively facil-

itated the delivery of high quality code. These techniques are each discussed in

the context of my project work.

Having completed the two software projects described in this dissertation and

witnessed their successful deployment, it is clear that each of the aforementioned

software engineering techniques played an important role. Knowledge and ap-

plication of these techniques accelerated the development of these projects, and

minimised faults in the final delivered product.
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Chapter 1

Introduction

On May 31st 2010, I commenced my work placement with LMI Ericsson Ltd.,

at the Ericsson Software Campus in Athlone, Co. Westmeath. Throughout

my work placement, I have been a member of the Configuration Service (CS)

Design Team, working on applications that form part of the large CS software

system that Ericsson develops, maintains, and delivers to customers worldwide.

In this dissertation, I will focus specifically upon two of the most substantial

projects that I have undertaken at Ericsson. The software engineering issues

most relevant to my work on these two projects will be discussed in detail. These

issues include:

• Identification and application of design patterns during software devel-

opment constitutes the main focus of this dissertation. During my work

placement, I have applied design patterns on many occasions to implement

effective solutions to design problems that I encountered.

• I have frequently carried out code refactoring to improve the design of

pre-existing code during my placement. I will discuss the usefulness of

code refactoring techniques with reference to my own work.

• Exposing source code to the scrutiny of other software engineers through

a code review process helps to ensure that the code is of high quality. I

will describe the benefits of code review in the context of my own projects.

• Automated software testing is heavily used by the CS Design Team to

ensure that modifications and additions do not break existing code. Dur-

ing my placement, I created a suite of automated tests to accompany a

new application that I had developed. Details of this test suite and its

usefulness during development will be discussed in depth.
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1.1 Background & Company Details

Ericsson is a leading provider of telecommunications equipment and related

services to mobile and fixed telecommunications network operators around the

world. The company is currently the largest mobile telecommunications equip-

ment vendor in the world, possessing a market share of 35% in this sector.[28]

Two Ericsson facilities are currently present in Ireland; in addition to the Er-

icsson Software Campus in Athlone at which I am employed, another Ericsson

facility resides in Clonskeagh, Co. Dublin. Some key statistics[5] about Ericsson

include:

• More than 40% of all mobile telecommunications traffic worldwide passes

through an Ericsson network.

• Ericsson employs 88,060 people globally, across 175 countries, where more

than 10,000 Ericsson telecommunications networks reside.

• Over 25,000 patents have been awarded to the company, whose inventions

include such influential technologies as Bluetooth.

My work has at Ericsson has revolved around a single large software system,

which is part of a larger collection of network management tools provided by

Ericsson. To provide some wider context for my own work, I will briefly describe

the purpose of this collection as a whole.

1.1.1 Operations Support System - Radio & Core

Ericsson provides a collection of wireless network management tools which is

collectively referred to as the Operations Support System - Radio & Core (OSS-

RC). The powerful assembly of tools comprising the OSS-RC enables centralised

management of large, complex telecommunications networks. Network admin-

istrators can utilise these tools to perform a wide variety of tasks, including:

• Monitoring of activities across an entire network.

• Configuration of individual network elements.

• Analysis of faults in the network.

• Performance measurement.

Numerous large telecommunications companies around the world, as well as

Ericsson itself, rely upon OSS-RC for performing an array of network manage-

ment tasks. However, during my placement, all of my project work involved one

component of OSS-RC in particular. I will now describe this specific component.

2



1.1.2 Configuration Service

The two projects described in this dissertation involve applications that are

each part of the Configuration Service (CS), an important component of the

OSS-RC. This component is responsible for management of telecommunications

network models. These models serve as finely-detailed records of the real-world

configuration of telecommunications networks, and can be used to plan physical

changes to individual networks prior to enacting them.

Each network model resides in its own object database, which the CS con-

nects to in order to manipulate the model.1 As depicted in Figure 1.1, ob-

ject databases are utilised by telecommunications network providers around the

world to store large numbers of objects, referred to as Managed Objects (MOs).

Each of these MOs serves as a representation of a different type of real-world

telecommunications network element (such as a radio broadcast tower, for ex-

ample). Collectively, MOs contained within these object databases represent

comprehensive, highly detailed models of real telecommunications networks.

Model of Network A

(object database)

Model of Network B

(object database)

Model of Network C

(object database)

Telecoms Network Provider

Managed Objects

Each Managed Object (MO)

contained in the object

database represents an

element of a real

telecommunications network,

such as a radio broadcast

tower. Collectively, the MOs

form an accurate model of

Network A. In practise, a

single model will contain

millions of MOs.

Various telecoms

network providers

maintain comprehensive

models of real-world

networks. These models

each take the form of an

object database.

Figure 1.1: Network models, comprised of Managed Objects

In order for these models to be useful, a system must exist that can examine

1For confidentiality reasons, I cannot provide details about the specific object database
technology that the CS employs.
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and manipulate the contents of any particular model. The CS fulfils this role;

by use of CS functionality, it is possible to carry out a wide range of tasks upon

telecommunications network models. Such tasks include, but are not limited

to:2

• Creation of new MOs, which represent real-world network elements.

• Creation of various types of association between existing MOs.

• Deletion of existing MOs from the model.

• Modification of MOs which currently reside in the model.

• Retrieval of information about a defined range of MOs in the model.

The CS is a large, complex, and heavily-used software system. Due to the

sheer size of the telecommunications network models that the CS maintains,

efficiency of execution is considered a crucial factor of any code written during

development work upon the CS.

All of my software development work at Ericsson has involved applications

that comprise part of the CS. On account of this, during the subsequent chapters

I will make frequent reference to the CS and the MOs that the CS manipulates.

1.1.3 The CS Design Team

The CS Design Team, of which I am a member, is responsible for all development

and maintenance work pertaining to CS functionality.

There are nine software developers on the team, all situated at the Ericsson

Software Campus in Athlone. The activities of the team as a whole are coordi-

nated by a project manager, who assigns developers to each task and keeps track

of progress made. I was the only member of the team on a work placement,

with all other members having been part of the team for several years. I have

benefitted from the experience of my colleagues in terms of improving my own

skills as a developer, as well as reaching a high level of familiarity with many

aspects of the CS codebase.3

The development model used by the CS Design Team is not fixed, with

different development processes utilised for different projects. Some aspects

of agile methodology have been employed from time to time, such as sprint

backlogs to keep track of individual tasks that collectively make up a project.

2For confidentiality reasons, I cannot delve into too much detail regarding CS function-
ality. However, the explanation provided in this section should be more than sufficient for
understanding the context of my own work.

3Knowledge transfer through code review was particularly useful in this regard.
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Some members of the team are currently working on a detailed new development

model to guide future CS Design Team projects.

Often, tasks are subdivided to allow individual developers to work indepen-

dently on separate areas of code. This has been the case with the two projects

described in my dissertation. In both cases, most of the code was developed

by me, while my colleagues simultaneously worked on other areas of the CS

codebase.

However, the work of individual team members is often strongly interre-

lated4, and consultation between team members is frequent during development.

For instance, on many occasions while working on my projects, I have presented

ideas to my colleagues and solicited their opinions before implementing these

ideas in code.5

Furthermore, all work carried out by individual developers is thoroughly

reviewed by other developers on the team before being delivered to Ericsson

customers. Throughout my placement, I reviewed the work of my colleagues in

addition to having my own work reviewed.6

1.2 Relevant Modules

During my Computer Science (Software Engineering) M.Sc. degree course at

NUI Maynooth, I studied eight separate modules prior to my work placement,

which focused upon techniques with high relevance to industrial software engi-

neering practise. During my work placement, two of the modules in particular

that I studied have proven to be the most relevant to my work:

1. Requirements Engineering & System Design (CS607). Among other soft-

ware engineering topics, this module placed a strong emphasis upon the

application of design patterns as a key aspect of software engineering best

practises, with numerous design patterns covered in depth throughout the

module. During my work placement, I have encountered many situations

in which a particular design pattern was useful in solving a design problem

encountered during software development. As my use of design patterns

constitutes the main focus of this dissertation, the CS607 module proved

to be the most relevant module to my work placement.

In addition to design patterns, various aspects of the Unified Modelling

Language (UML) were also encompassed by this module. During my work

4For instance, as I worked on the application described in Chapter 3, some of my colleagues
were working on CS features that my own application would utilise.

5Specific examples will be brought up in Chapters 2 & 3.
6As this dissertation pertains to my own projects, all code reviews discussed will involve

my own work.
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placement, I have utilised UML diagrams on numerous occasions as a

design aid. I will provide relevant UML class diagrams throughout this

dissertation in order to illustrate design aspects of the projects that I

completed during my placement. I will also use class diagrams to depict

the templates for design patterns that I applied during these projects.

2. Software Testing (CS608). This module provided comprehensive coverage

of software testing principles and techniques, many of which proved rele-

vant during my work at Ericsson. During my work placement, I created

an automated test suite to accompany a newly-developed application. To

build this test suite, I utilised a testing framework that was covered during

CS608. This test suite embodied key software testing techniques such as

black box testing, which received a thorough treatment during the course.

1.3 Relevant Languages & Tools

I will now provide some background information regarding the programming

language that I used for all of my development projects at Ericsson (Java), in

addition to a selection of tools which were heavily utilised during my work on

these projects.7

1.3.1 Java

Many software projects at Ericsson have been developed in the Java program-

ming language. In particular, the CS is comprised predominantly of Java code.

Various aspects of Java were covered in the CS613 (Object-Oriented Pro-

gramming) module during my Masters degree course, which was useful in terms

of revising some of my Java knowledge. As I had also written many Java ap-

plications over the course of my B.Sc. degree8, I began my work placement at

Ericsson with a reasonably strong knowledge of the language.

The projects that I have undertaken over the course of my work placement

have provided me with many opportunities to improve upon my existing Java

knowledge. These projects involved use of some features of the language that

were less familiar to me. In particular, Java’s extensive support for multiple

threads of execution, which I had not worked with extensively in the past, would

play a pivotal role during my work on various multithreaded applications9 at

Ericsson.

7Each of the tools described here will be discussed further in Chapters 2 & 3, with specific
examples of their use.

8Computer Science & Software Engineering, NUI Maynooth.
9Chapter 3 describes a heavily multithreaded application that was developed from scratch

during my placement.
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1.3.2 JUnit Framework

JUnit is an open-source unit testing framework for the Java programming lan-

guage. The tool is intended to facilitate the development and execution of

repeatable, fully-automated test suites. JUnit test suites, executed upon Java

applications, are comprised of test cases that are themselves written in the Java

programming language.

During my work placement, I made liberal use of the JUnit framework,

along with all other members of the CS Design Team. Since JUnit was covered

extensively during the CS608 module described previously in Section 1.2, I was

immediately comfortable with the framework upon commencement of my work

placement. All tests for the CS itself that I have written and executed while

at Ericsson have been based upon the JUnit framework. Additionally, the new

automated test suite that I created10 alongside a newly-developed application

was based upon JUnit functionality.

1.3.3 Apache Ant

Apache Ant is a software tool built around an XML-based scripting language,

which is heavily used by Java software developers to automate software build

processes. This functionality can be particularly useful when working with large

Java applications (such as the CS), which are composed of an enormous number

of class files that must be enhanced during the compilation process in order to

facilitate their interaction with object databases.

Ant configuration files are XML-based, and are easy to adjust and extend

based upon the unique needs of a particular project. While Ant is most com-

monly used to automate build processes, the capabilities of the tool extend far

beyond simple compilation of code; the tool can also be used to automate diverse

activities such as the execution of automated test suites.

In the context of my software development work at Ericsson, Ant has proven

to be an indispensable tool. Many tasks are routinely performed by the CS

Design team using custom-written XML configuration files for Ant, such as:

• Compilation of large Java projects, including the CS itself, into numerous

.jar files.

• Enhancement of Java source code to facilitate interaction with object

databases.

• Execution of large JUnit test suites containing many individual classes.

10This test suite will be described in Section 3.6 (page 84).
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During my work placement, I have frequently made use of existing XML

files that were written by my colleagues, in addition to performing numerous

modifications and additions to these files to suit my own projects. In one par-

ticular case involving an automated test suite, I wrote an Apache Ant script11

of my own in order to facilitate fully automated testing of a newly-developed

Java application.

1.3.4 Unified Modelling Language

The Unified Modelling Language (UML) facilitates comprehensive visual mod-

elling of software systems.[2] Using the visual syntax provided by UML, software

engineers can prepare detailed diagrams which can depict many different aspects

of a software system’s architecture. The latest version of UML (2.2) specifies

14 different types of diagrams.

UML was frequently used by myself and other team members during my

work placement, commonly for the purpose of clarifying software designs prior

to implementation, and communicating design ideas among individual software

developers on the team. I often found UML diagrams very useful for visualising

a design and experimenting with different configurations of classes, prior to

implementing new source code. Thus, during my work placement, both for my

own benefit and to clarify my designs to others, I composed numerous UML

diagrams.

In this dissertation, I will frequently use UML class diagrams to:

• Illustrate architectural details of the software that I have written.

• Depict templates for design patterns that I implemented.

1.3.4.1 Notes on UML Notation

The diagrams depicted in this dissertation were created using IBM Rational

Software Architect (RSA). In class diagrams, RSA depicts the protection level

of attributes and methods using distinct icons to the left of the attribute or

method name. These icons are distinguishable both by their shape, and their

colour. The meaning of these icons is clarified in Figure 1.2.

11This will be discussed further in Section 3.6.2 (page 85).
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Class

thisAttributeIsPrivate

thisAttributeIsProtected

thisAttributeIsPackagePrivate

thisAttributeIsPublic

thisMethodIsPrivate ( )

thisMethodIsProtected ( )

thisMethodIsPackagePrivate ( )

thisMethodIsPublic ( )

Figure 1.2: Protection level notation in Rational Software Architect

1.3.5 IBM Rational ClearCase

ClearCase is a software configuration management (SCM) tool which is used

extensively at Ericsson. While working with the CS source code, all members of

the CS Design Team deposit source code changes into a Versioned Object Base

(VOB) within ClearCase. The VOB is accessible to all team members. Source

code can be checked out at any time by individual team members. Developers

can then check in modified source code to the VOB when they have completed

their changes.

Figure 1.3: Rational ClearCase Explorer, depicting two checked out files

A descriptive comment can be provided at the time of each check-in to the

VOB. This practise, although optional, is encouraged and frequently employed
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among the members of the CS Design Team. Typically, these comments will

contain a succinct description of the changes that have been made (i.e. ”Fixed

issue #124 by repairing method X”, ”Removed redundant code from method

Y”). These descriptions allow developers to determine at a glance which changes

have been made to particular files, rather than having to look at the source code

directly.

Since all developers on the team share access to the same VOB, any devel-

oper can review the work of other developers at any time, provided that it is

checked in. Furthermore, ClearCase allows any given file to be compared with

the previous version stored on the VOB. By use of this functionality, a developer

can quickly determine the exact changes that another developer has made, and

step through the changes in sequence. In this regard, ClearCase facilitates the

practise of frequent code review among CS Design Team members.

1.4 Relevant Software Engineering Techniques

In this section, I will provide an overview of some software engineering tech-

niques relevant to the projects that I worked on at Ericsson. Specific applica-

tions of each of these techniques will be discussed in detail in the subsequent

chapters.

1.4.1 Design Patterns

A design pattern represents a general solution to a commonly occurring prob-

lem in software design.[7] For a particular problem encountered while designing

an application, there will often exist an applicable design pattern that can be

utilised to implement an effective solution to the design problem. Over the

course of the two subsequent chapters relating to specific projects that I worked

on at Ericsson, I will describe in detail eight separate design problems, and the

design patterns that I applied in order to solve them.

1.4.1.1 Origin of Design Patterns

The concept of design patterns was first originated by Christopher Alexan-

der, a civil engineer. Alexander recognised that certain design issues relating

to the architecture of buildings and towns tended to arise again and again in

similar forms. Recognising elements that were common to these design issues,

Alexander realised that a set of patterns could be devised, with each pattern

presenting a solution to a particular design issue.[1] These patterns represented

tried-and-tested solutions to these recurring design issues. As these known de-

sign issues arose during a particular architectural project, an architect familiar
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with Alexander’s patterns would be able to determine the appropriate pattern

to apply in order to resolve the issue effectively.

Inspired by Alexander’s concept of patterns, a group of computer scientists

assembled a collection of design patterns that would serve as a library of reusable

solutions to commonly-occurring problems encountered during software design.

This collection of design patterns was published in a book in 1994, entitled

Design Patterns: Elements of Reusable Object-Oriented Software.[7] This book

has been highly influential to the field of software engineering, as the design

patterns that it describes have been applied to a great number of software

projects since the book was first published.

The principle of reuse of known solutions is fundamental to design patterns.

Rather than solving every encountered design problem from scratch, a software

developer can make use of modular, repeatable solutions in the form of design

patterns that have been shown to provide effective solutions when applied to

similar problems in the past. As the use of design patterns represents a consider-

ably more efficient approach than ’reinventing the wheel’ to solve every design

problem encountered, they can dramatically accelerate the software develop-

ment process when correctly applied to design problems that they are suited for

solving.

1.4.1.2 Design Pattern Categories

Design patterns are divided into three categories:

• Creational patterns. These patterns define specific approaches for in-

stantiation of objects. The factory method design pattern, which will be

first discussed in Section 2.6.2.1, and again in Section 3.5.5.1, represents

an example of a creational design pattern.

• Structural patterns. These patterns define particular ways in which

relationships between classes and objects can be defined. They are con-

cerned with how classes and objects are composed together to form larger

structures. The facade pattern discussed in Section 3.5.1.1 and the deco-

rator pattern discussed in Section 3.5.4.4 represent examples of structural

design patterns.

• Behavioural patterns. These patterns define particular ways in which

classes and objects can communicate with each other. I utilised several

behavioural patterns while working on the two applications described dur-

ing this dissertation. Behavioural design patterns that I have applied

during software development at Ericsson include: the command pattern

(discussed in Section 2.6.1.1), the observer pattern (discussed in Section
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2.7.2.1), the strategy pattern (discussed in Section 3.5.2.1), and the tem-

plate method pattern (discussed in Section 3.5.3.1).

1.4.2 Code Refactoring

Code refactoring is the process of modifying an application’s source code in order

to improve the internal structure of the application, making it easier to under-

stand and maintain, without affecting the application’s observable behaviour.[6]

Refactoring of code can be necessary for a number of reasons, which include:

• As multiple developers make changes to an application’s source code in

order to realise short-term goals (such as the addition of new features

to an existing system), the code can gradually lose its structure. As a

consequence, the code becomes more difficult to read, understand, and

maintain.

• A first attempt at implementing a particular feature will often not yield

optimal code. On a few occasions during my work placement, I have expe-

rienced this myself: sometimes my first attempt at implementing some par-

ticular functionality, regardless of whether it worked as intended, turned

out not to be optimal at the source code level. In such circumstances, I

would then refactor my own code to optimise its internal structure and

complete my work.12

The need for code refactoring can often be indicated by the presence of code

smells. A code smell represents some identifiable characteristic of source code

that indicates the possible presence of a problem. These problems can then be

eliminated by refactoring the code to remove the code smell.

For example, the most prominent and well-known code smell is duplicate

code. If the same code structure exists in more than one place, this indicates

the need for refactoring in order to unify the duplicate structures. This allows

for easier maintenance of the source code, since any subsequent modification to

this unified structure will only have to be performed in one place, rather than in

multiple places across the codebase. Furthermore, it makes the source code less

bug-prone; when multiple instances of duplicate code exist throughout a code-

base, some of these instances can be forgotten when modifications are made,

leading to them becoming inconsistent with each other. Such incidents can give

rise to severe bugs, further emphasising that duplicate code is best avoided, and

eliminated wherever it is found.

12A specific example of this will be described later, in Section 3.5.3 (page 68).
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1.4.3 Software Testing

Software testing is an important software engineering subdiscipline, for which

numerous definitions exist. In 1979, Glenford J. Myers defined software testing

as the process of executing a program or system with the intent of finding errors.

William C. Hetzel presented an alternative definition in 1988: software testing

is any activity aimed at evaluating an attribute or capability of a program or

system and determining that it meets its required results. Broadly speaking,

software testing processes are crucial for ensuring that software functions as its

developers intended it to.

Numerous testing techniques and tools (such as the JUnit Framework de-

scribed previously) were covered during the CS608 module. I will now briefly

discuss some testing techniques that were applicable during my work placement

at Ericsson, in particular during my development of the automated test suite

described in Section 3.6 (page 84).

1.4.3.1 Black Box Testing

The specification of an application determines how it is intended to function.

The purpose of black box testing is to ensure that an application functions

according to its specifications. As the name of this testing technique suggests,

the source code of the application under test is treated as a ’black box’, as

black box testing is not concerned with the inner workings of the application at

the source code level. Rather, black box testing checks whether the output or

result of an application’s execution matches the expected output or result for a

particular set of inputs.

Black box tests are commonly used among the extensive suite of JUnit tests

that are regularly executed upon the CS, in addition to the automated test suite

of JUnit tests that I developed to accompany a newly-developed application

during one of my projects.

1.4.3.2 Regression Testing

Often when changes are made to an area of source code, these changes will

cause unforeseen problems elsewhere in the source code. To detect these prob-

lems early and facilitate their repair, regression testing should be performed

regularly.[19] This involves executing a series of tests after a change has been

made to source code, which were known to have been passing prior to the change

being made. If the tests now fail, this confirms that the recent change to the

source code is responsible for the failure. This information has proven to be

invaluable on numerous occasions, enabling the underlying problem to be found

and fixed quickly.
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Throughout my work placement at Ericsson, this testing technique has been

employed extensively. During work upon the CS itself and applications which

interact with the CS, thorough regression testing has been performed each time

any significant changes have been made to the source code. This testing has

often exposed the presence of problems, which may have gone undetected for

some time if the testing had not been performed.

The automated test suite that I developed during my work placement was

regularly executed for the purpose of carrying out regression testing upon my

code as changes were made. Regression tests exposed newly-introduced prob-

lems in my source code on several occasions, which I was then able to immedi-

ately fix based upon the information I had gleaned from the tests.

1.4.4 Code Review

Code review is a thorough examination of source code, performed by developers

who did not write the code under review. This practise is extremely useful dur-

ing software development, as reviewers may detect issues with the source code

that were missed by the original developers. Studies have demonstrated that

code review can substantially reduce defects in delivered source code, resulting

in 65% fewer code defects on average.[17]

In addition to improving the quality of delivered code, code review promotes

knowledge transfer among team members in a number of ways:

• Reviewers develop familiarity with the source code being reviewed. By

performing code reviews, CS Design Team members improve their famil-

iarity with the CS as a whole.

• The developer having their source code reviewed will often gain new knowl-

edge from the review, as reviewers present ideas that the original developer

had not considered.

At Ericsson, each code review performed is accompanied by a Code Review

Record document. This document stores all observations made by reviewers,

and the response to these comments from the designer of the reviewed code. A

very small snippet13 of such a document is depicted in Figure 1.4.

13Many other columns exist in a typical code review document; these could not be depicted
here due to page width constraints.
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Figure 1.4: Small section of a Code Review Record document

The purpose of each column is explained below:

• Method: This column refers to the Java method14 that the reviewer is

commenting upon.

• Comment: This column contains comments made by a particular15 code

reviewer.

• Response: This column contains my own response to each comment. In

this case I have entered ”ACCEPTED” for both comments, indicating

that I agree with the observations of the reviewer.16

• From: This column refers to the original developer of the code being

reviewed. ”EKEVCOU” is my own identification code at Ericsson; this

indicates that the code being reviewed was written by me.

• Author’s Notes: This column contains my own written response to the

reviewer’s original comment. In this case, my responses state the actions

I have taken to resolve each issue identified by the code reviewer.

Code reviews will be further discussed in the context of a specific project in

Section 2.8 (page 41).

14Another column that is not depicted in this image contains fully qualified Java class
names, to indicate which class the named method resides in.

15The specific reviewer who made the comment is identified in another column.
16If I disagreed with a comment, I could enter ”DECLINED” instead. This might occur if

a code reviewer made an inaccurate observation in error.
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1.5 Dissertation Structure

The software development work performed over the course of my work placement

has encompassed multiple distinct projects, ranging from minor modifications

of existing code to development of an entirely new application from scratch.

During this dissertation, I will discuss two of the more substantial projects that

I have been involved with. These projects are related in the sense that both

are part of the CS system, and share some software engineering techniques and

themes in common, such as use of design patterns17 and code refactoring. In

all other respects, these two projects are independent of each other. In order to

discuss these projects individually, they each receive a chapter of their own.

In Chapter 2, I will discuss my work on the CS Library Test Tool (Cslibtest).

I carried out work on this pre-existing tool as part of one of the earlier projects

that I was involved with at Ericsson. This project involved a substantial amount

of code refactoring, which is discussed in detail during this chapter. As part of

the code refactoring process, and in order to introduce entirely new function-

ality to the application, several design patterns were applied to the Cslibtest

codebase as well.

In Chapter 3, I will discuss my work on the CS Metadata Migration Tool

(CSMMT). This new application, developed entirely from scratch, represents

the larger of the two projects covered in this dissertation. This chapter contains

the initial analysis and early design decisions relating to the application, followed

by comprehensive details of the implementation of CSMMT, including selection

and implementation of applicable design patterns. The chapter concludes with

details of the automated test suite that I constructed to accompany this new

application.

In Chapter 4, I will briefly discuss the conclusions that I have drawn based

upon my experiences with the software engineering techniques described over

the course of Chapters 2 and 3.

17One design pattern in particular would prove useful during both projects, as will be
discussed later.
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Chapter 2

CS Library Test Tool

This chapter details my work on the CS Library Test Tool, which was originally

developed by Ericsson in 2007. This tool is typically referred to in shortened

form as Cslibtest.

2.1 Chapter Structure

In Section 2.2 (Overview of the Cslibtest Application), I will describe

the purpose and operation of the Cslibtest application.

In Section 2.3 (Motivation), I will briefly discuss the motivation behind

the modifications and additions that I made to Cslibtest.

In Section 2.4 (Requirements), I will discuss each of the requirements that

were determined for the work to be performed on Cslibtest. All of these require-

ments were to be satisfied prior to the release of the next Cslibtest version.

In Section 2.5 (Code Refactoring of the CstestCLI class), I will de-

scribe the refactoring work performed upon the CstestCLI class, which was the

main class of Cslibtest when I began working on the application. This refac-

toring entailed the creation of several new classes, in addition to considerable

restructuring of the CstestCLI class itself.

In Section 2.6 (Addition of Command Queue Functionality), the new

additions made to the Cslibtest source code in order to support queuing of com-

mands will each be explored in turn.

In Section 2.7 (Addition of Multiple Model Support), I will discuss the
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work performed in order to implement support for multiple simultaneous net-

work model connections, an improvement upon the single connection support

that Cslibtest had provided previously.

In Section 2.8 (Code Review), I will briefly describe the code reviews per-

formed upon the Cslibtest source code over the course of my work on this

application.

Finally, in Section 2.9 (Project Outcome), I will describe the outcome of

the project, which culminated in the release of a new version of Cslibtest.

2.2 Overview of the Cslibtest Application

Through a command-line interface, the Cslibtest application provides compre-

hensive access to the functionality provided by the Configuration Service. By

entering commands into this interface, users of this tool can manually execute

CS commands, which are used to manipulate managed objects within a network

model. The purpose of the Cslibtest application is to serve as a backdoor into

the CS for testing purposes. The operation of Cslibtest is depicted in Figure

2.1.

CS Library Test Tool

User

Configuration Service

Create New MO

Delete Existing MO

Modify Existing MO

Network Model

(object database)

(other CS functions...)

The CS Library Test Tool

(Cslibtest) provides direct

manual access to CS

functionality. It serves as

a 'backdoor' into the CS.

Managed Objects

Figure 2.1: Cslibtest provides direct access to core CS functionality

By allowing such direct access to the internal functionality of the CS, Cslibtest
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has proven invaluable for preparation and execution of test scenarios which ex-

ercise the functionality of the CS, ensuring that each aspect of its functionality

is working correctly. When changes are made to the CS, Cslibtest is commonly

used afterwards to determine whether the changes made are functioning as the

developers intended.

2.2.1 Modes of Operation

At the start of its execution, Cslibtest takes in a reference to specific network

model as a command-line parameter. This network model will be connected

to by Cslibtest; all CS commands subsequently executed by Cslibtest will be

carried out upon MOs contained within this particular network model.1 A mode

parameter is also taken in, which determines the mode of operation that it will

follow during the current session. These three modes are each described below:

1. Interactive mode. This is the only mode that involves user interaction

with the application during its execution. When Cslibtest is executed in

this mode, a command-line interface is presented to the user. Using this

interface, the user can enter individual Cslibtest commands. As these

Cslibtest commands are entered, CS functionality is executed upon the

network model to which Cslibtest has connected. Results of these com-

mands are output to the screen as they are executed.

2. Single command mode. If a single Cslibtest command is supplied as

a command-line argument, the CS functionality corresponding with this

command will be executed upon the network model to which Cslibtest is

connected. The output from the single command will be displayed, and

Cslibtest will then terminate.

3. Command file mode. If the location of a Cslibtest command file is

supplied to Cslibtest as a command-line argument, Cslibtest will then ex-

ecute in command file mode. Command files contain one or more Cslibtest

commands, to be executed in linear sequence by Cslibtest, from first to

last. After the CS functionality corresponding with all of the commands

from the command file has been executed, Cslibtest will then terminate.

As these modes of operation are central to the operation of Cslibtest, I will

refer back to them in the coming sections as I describe the modifications and

additions that I have implemented.

1Since Cslibtest is a testing tool for CS functionality, usually a ’dummy’ network model
will be used as a testing sandbox, containing a relatively small number of MOs. By contrast,
real network models utilised by telecommunications network providers often contain millions
of MOs.
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2.3 Motivation

When I arrived at Ericsson, the Cslibtest application had already been devel-

oped some years previously, and was in use throughout the company. However,

over time, Cslibtest users had pointed out a number of perceived shortcomings.

Based upon this feedback, it was clear that there was potential for improvement

across numerous aspects of the application.

As one of my earlier projects at Ericsson, I was assigned by the CS Design

Team project manager to carry out improvements to Cslibtest that were deemed

to be required. I will now explain each of these requirements.

2.4 Requirements

The requirements for this project work were provided to me by other CS Design

Team members who had been made aware of the shortcomings of the application

in its current iteration, prior to my arrival at Ericsson. The project work for

Cslibtest was separated into three separate tasks, each of which necessitated

substantial modifications to the existing Cslibtest codebase.

2.4.1 Code Refactoring

Before I began working on Cslibtest, some substantial sections of the Cslibtest

source code were in a disorganised state. Lack of documentation and a large

number of complicated methods made the source code difficult to read and

understand, which made the task of extending and maintaining the application

more difficult for developers. Refactoring of these large sections of source code

would be required, in order to improve the design of Cslibtest and render the

code easier to understand and maintain by developers who would work on the

application in the future.

Among the 111 classes present in the Cslibtest application, the class that

required by far the most refactoring was the main class, named CstestCLI.

During my work on Cslibtest, I performed some degree of refactoring upon

many classes in the Cslibtest codebase. During my discussion of refactoring

work done over the course of this project, I will focus predominantly upon my

work on CstestCLI, as it represents one of the classes that experienced the most

dramatic changes as a result of code refactoring.2

2Several new classes were created as a result of the code refactoring of CstestCLI; these
will be discussed as well.
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2.4.2 Command Queuing Support

Prior to my work on the application, Cslibtest users executing the application in

interactive mode were unable to enter any input until a connection to the chosen

network model had been established. As the CS functionality corresponding

with each Cslibtest command could not be executed upon the network model

until a connection with it was established, this approach appeared to make

sense initially. However, users reported that this delay in accepting input made

the application seem sluggish and unresponsive. These users expressed that

they would prefer to be able to begin entering commands while the connection

process was taking place.

In order to address this issue, I was asked to improve the usability of Cslibtest

by enabling users to begin entering commands as soon as the application had

started, even before a connection to the network model was first established.

Any commands entered at this time must be queued, and then executed upon

the network model immediately as soon as the connection process was finished.

After any queued commands have finished executing and the results had been

displayed, control must then be returned to the user.

Whereas the first requirement necessitated the modification of existing code,

this requirement called for the addition of entirely new functionality to the

Cslibtest application. The third and final requirement also necessitated the

addition of new functionality that had not existed in Cslibtest before.

2.4.3 Multiple Model Support

Previously, Cslibtest was capable of connecting to only one network model dur-

ing a particular session. Furthermore, there was no facility for switching between

different network models after Cslibtest had been executed. If the user wanted

to connect to a different network model, they had no choice but perform one of

the following alternatives:

• Shut down Cslibtest and specify a different network model upon starting

Cslibtest again.

• Execute several parallel instances of the Cslibtest application, each con-

nected to a different network model.

These measures were proving to be an inconvenience for Cslibtest users; lack

of support for simultaneous connections to multiple network models was deemed

to be a significant weakness of Cslibtest in its current iteration.3

3Having access to several different network models at the same time during an execution
of Cslibtest is useful for various test scenarios. For instance, each of the network models may
contain MO types of different configurations, allowing for a diverse range of test scenarios.
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To address this shortcoming, I was responsible for implementing support for

simultaneous Cslibtest connections to an arbitrary number of network models.

Several new classes were be required to implement this functionality, along with

various smaller adjustments across the Cslibtest codebase.

Having described each of the requirements, I will now describe the work per-

formed on Cslibtest to satisfy the first requirement.

2.5 Code Refactoring of the CstestCLI class

As specified in the requirements, based upon earlier code inspections carried

out upon Cslibtest4, the CstestCLI class represented the class most in need of

refactoring of the 111 classes that comprised the Cslibtest source code. In order

to decide upon a course of action, I analysed the existing source code for this

class to determine why my colleagues considered it to be a prime candidate for

refactoring.

2.5.1 Excessive Functionality of CstestCLI

The name of the CstestCLI class contains the CLI acronym, standing for

’command-line interface’. Intuitively, this would appear to suggest that the pur-

pose of this class is to provide a command-line interface, for use when Cslibtest

is executed in interactive mode. As I expected from the class name, this func-

tionality was present in the class.

However, upon further examination of the class, I realised that it contained

other functionality as well. As was described in Section 2.2.1, Cslibtest supports

three distinct modes of operation. Although the name of the CstestCLI class

suggests that it contains functionality relevant to interactive mode only, I found

that all code relevant to command file mode and single command mode were

present in the class as well. I realised that the class had too many responsibili-

ties.

In order to improve the design of this class and Cslibtest as a whole, some

of this functionality would have to be refactored into more suitable locations.

As illustrated in Figure 2.2, the crowded nature of the CstestCLI class in its

original form is clearly apparent upon examination. There were simply too

many methods in this class, performing too many unrelated tasks.

4These code inspections took place prior to the start of my work placement.
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CstestCLI

CstestCLI ( args : String )

handleCommandLine ( )

main ( )

handleSingleCommand ( )

handleFileCommand ( )

shutDown ( )

execCmd ( )

normalRun ( )

handleShellCommand ( )

handleRedirect ( )

handlePipeCommand ( )

output ( )

startCmd ( )

finishCmd ( )

initialize ( )

checkForFileCommand ( )

CommandHandler

runCsCommand ( ... )

runShellCommand ( ... )

CstestCLI  has too many responsibilities.

In its original form as depicted here, it

processed commands under all three modes

of execution of Cslibtest, and then

dispatched them to CommandHandler for

execution.

Refactoring was required to redistribute this

functionality in a more logical manner.

1 1

Figure 2.2: CstestCLI prior to refactoring

2.5.1.1 Aside: The CommandHandler class

The CommandHandler class, depicted in Figure 2.2, is responsible for receiving

Cslibtest commands and coordinating their execution.

• Most Cslibtest commands specify some CS functionality to be executed

on the network model; these commands are ultimately passed into the

runCsCommand method for execution.

• Cslibtest also supports the execution of some shell commands, which are

passed directly to the underlying operating system for execution. These

commands are passed into the runShellCommand method. This additional

functionality is useful for some Cslibtest users, who may want to execute

such commands without having to quit the Cslibtest application.

Although I carried out minor modifications on the CommandHandler class

during my work on Cslibtest, I did not refactor it extensively. However, since

several of the classes that I will describe do interact heavily with CommandHandler,

it will be depicted on several class diagrams for completeness.

I will now return to the refactoring of CstestCLI. As I examined this class

further, I realised that its problems were not confined to a mere excess of func-

tionality.
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2.5.2 Layout Issues & ’Spaghetti Code’

As I examined the CstestCLI source code, I realised that the layout of the

class was very convoluted. Disorganised calls from method to method created

a confusing web of execution paths through the class. The protection levels for

each method appeared to have been set almost at random, with several public,

private, and package-private methods present with no apparent reason for the

differences in protection levels between them.

Unfortunately, the aforementioned problems were all compounded by an

almost total absence of documentation. No Javadoc was present to explain the

purpose of any of the methods. Code comments, though present in some places,

were few and far between.

This combination of issues indicated the presence of the most famous anti-

pattern in computer science, which has existed in various forms since the emer-

gence of the first programming languages. Spaghetti code, named after the

twisted and tangled appearance of a bowl of spaghetti, refers to convoluted

application code, often undocumented, which has an intricate and apparently

arbitrary control structure that is difficult for software developers to under-

stand, extend and maintain.[4] Code exhibiting this antipattern is characterised

by unpredictable ’jumps’ from one part of the source code to another.

In older programming languages that supported ’goto’ statements, liberal use

of these statements tended to be responsible for the unpredictable jumps across

the source code that spaghetti code embodies. Java does not support ’goto’

statements, but this does not eliminate the susceptibility of this programming

language to the spaghetti code antipattern. Instead, the antipattern tends to

manifest itself in Java as a confusing sequence of calls from one method to

another, with no readily discernible structure.

It was apparent that extensive refactoring was necessary in order to ren-

der CstestCLI free of spaghetti code. My goal was to repopulate this class

with clear, succinct, well-documented code that would be considerably easier

to understand and maintain. These changes would also allow easier addition of

command queuing support and multiple model support to Cslibtest. Owing to

the importance of the functionality that resided within the original CstestCLI

class, the application as a whole would be considerably easier to extend if this

functionality was well-factored.5

Having examined the CstestCLI class, I next considered the exact changes

to be made in order to improve the situation.

5As intuition would suggest, addition of new functionality to any application is easier if the
source code of that application is well-factored; such an application is more readily extensible
by developers.[6]
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2.5.3 Outline of Major Refactoring Steps

I determined that several sweeping changes would have to be made to the

CstestCLI class, culminating in the creation of some new classes and a sig-

nificantly smaller CstestCLI class with many of its current roles stripped away.

Before delving into the details of how these changes were carried out, I will

briefly outline the planned series of changes as a whole.6

• As was shown in Figure 2.2, CstestCLI contained the main() method

for Cslibtest. However, I believed that CstestCLI should be associated

with interactive mode only, and therefore should only be instantiated if

interactive mode was in effect. In light of this, the CstestCLI class did not

represent the most logical location for the main() method. This method

would have to be situated elsewhere.

• I decided to create a new class called CstestController, which would

contain the main() method instead of CstestCLI. This class would per-

form all processing of command-line arguments, and initiate the connec-

tion process to each network model that was specified. If a single com-

mand was supplied on the command-line, it would be dispatched directly

to CommandHandler for execution, thereby fulfilling the responsibility as-

sociated with single command mode, the simplest mode of operation.7 If

either of the other two modes of operation were in effect, specialised classes

would be instantiated to handle them. CstestCLI would serve as one of

these classes.

• A second new class called FileHandler would be created. All func-

tionality relevant to command file mode, which originally resided in the

overcrowded CstestCLI class, would be moved into the newly-created

FileHandler class.

• After these refactoring steps had been completed, the CstestCLI class

itself would now be dedicated to provision of command-line interface func-

tionality alone. Instead of being utilised during every execution of Cslibtest

as had been the case until this point, the CstestCLI class would only ever

be instantiated and used when interactive mode was in effect.

• After the factoring-out of excess functionality within CstestCLI had been

completed, the remaining methods relating to interactive mode would be

rewritten, to eliminate the last traces of spaghetti code from the class. The

rewritten methods would feature a more readily comprehensible control

6The new classes named here will be discussed in greater detail in the coming sections.
7No distinct class is required for this mode of operation, due to its simplicity.
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structure, with code comments and Javadoc added to clarify the function-

ality present. Furthermore, most methods would be made private8 to

ensure that CstestCLI was the only class that could use them, rendering

the design of Cslibtest as a whole more robust and easier to understand.

This concludes the outline of refactoring steps that I decided upon carrying

out on the functionality contained within the CstestCLI class. I will now de-

scribe each change in the implementation that resulted from carrying out these

steps.

2.5.4 Refactored Functionality - the CstestController class

As determined previously, it was inappropriate for CstestCLI, which would

provide command-line interface functionality only from now on, to serve as a

point of entry for the Cslibtest application as well. On account of this, I factored

the main() method out of the CstestCLI class and into an entirely new class

which serves as a dedicated point of entry for Cslibtest. This new class is named

CstestController in order to succinctly describe the purpose of the class, while

conforming to existing naming conventions within the Cslibtest codebase.

CstestController is responsible for:

• Processing all command-line arguments passed into Cslibtest at execu-

tion time, in order to determine the mode of operation in effect for this

particular execution of Cslibtest.

• Establishing a connection to the network model(s) that Cslibtest will ex-

ecute CS functionality upon.9

• Instantiation of the classes appropriate to the mode of operation which

was specified at the command-line. Rather than attempting to supply

methods for all modes of operation (as had been the case with the original

CstestCLI class), CstestController instead delegates this work to other

classes that are dedicated to specific tasks.

• Termination of Cslibtest after all commands had been executed (if oper-

ating in command file mode or single command mode), or at the point at

which the user decides to quit (if operating in interactive mode).

With the CstestController class in place as depicted in Figure 2.3, the

main() method had been successfully factored out of the CstestCLI class. The

next step was to factor out functionality that was specific to command file mode.

8”After carefully designing your class’s public API, your reflex should be to make all other
members private.” - Joshua Bloch, Effective Java[3]

9These connections would be established by leveraging the functionality of newly-developed
classes. These will be discussed in Section 2.7 (Addition of Multiple Model Support).
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2.5.5 Refactored Functionality - the FileHandler class

As described previously, a command file is processed by Cslibtest when it is

executed in command file mode. The original convoluted implementation of

CstestCLI contained all code related to this mode of operation. It was clear

that this functionality did not belong in the CstestCLI class.

To remedy the situation, I factored this functionality out into a new class

named FileHandler. As the name of the new class implies, FileHandler is

responsible for all processing of command files, which are utilised by Cslibtest

when it is executed in command file mode. As such, this class is only ever

instantiated and used by CstestController when this mode of operation is in

effect.

2.5.6 Outcome of CstestCLI Code Refactoring

With the excessive functionality of the original CstestCLI factored out into

newly-created classes, CstestCLI was now much shorter and more focused in

purpose than it had been when I first began working on Cslibtest. I rewrote

the command-line interface code that remained, detangling the original web of

methods into a tighter, more readily comprehensible structure. Code comments

and Javadoc were added, clarifying the functionality of each method. Together,

these changes resulted in a revitalised CstestCLI class, containing source code

that was succinct, well-documented, and easy to understand.

The refactoring of CstestCLI had resulted in the creation of two new classes

that had not existed previously. This new class structure is depicted in Figure

2.3, with three classes now capable of dispatching commands to CommandHandler,

depending upon the mode of operation in effect. When this new diagram is con-

trasted with Figure 2.2 (page 23), it is readily apparent that the responsibilities

that were initially concentrated within CstestCLI are now better distributed,

with each class serving as a modular part of the whole, performing one specific

role.
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FileHandler

extractCommands ( file : File )

CstestController

main ( args : String )

CstestCLI

enterCommandLoop ( )

CommandHandler

runCsCommand ( ... )

runShellCommand ( ... )

FileHandler is

instantiated if file

command mode  is in

effect. Dispatches

commands as they are

extracted from the

command file.

If a single command  is supplied

as a command-line argument,

CstestController dispatches it

directly to CommandHandler .

CstestCLI is instantiated only if

interactive mode  is in effect.

Dispatches commands as they

are entered by the user.

Figure 2.3: CstestCLI after refactoring; two new classes present

With refactoring of the CstestCLI class completed, I was ready to move on

to implementation of command queue functionality to Cslibtest, as specified by

the second requirement for my work on the application.

2.6 Addition of Command Queue Functionality

The refactoring of the CstestCLI class paved the way for my subsequent work on

new Cslibtest functionality, by facilitating easier extension of the Cslibtest code-

base. My next set of modifications involved the implementation of command

queuing functionality, so that interactive mode users could begin entering com-

mands while the network model connection was still being established, rather

than having to wait until the connection process had completed.

As a first step towards carrying out these modifications, I examined the

current internal representation of Cslibtest commands. I realised that there was

room for improvement, and considered implementing a new internal command

representation for the Cslibtest application.
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2.6.1 Design Problem - How to Represent Commands?

In the original state of the application, Cslibtest commands were represented

internally as one-dimensional string arrays. Each string array collectively repre-

sented one Cslibtest command, with each index of the array containing the in-

dividual arguments for the command. Although this approach was functionally

adequate, I didn’t consider this to be the most elegant possible representation

of commands within Cslibtest from a design point of view.

I realised that a design pattern that I had studied during the CS607 mod-

ule, the command pattern, could serve as an ideal template for a new, more

object-oriented representation of commands in Cslibtest. Individual Cslibtest

commands would now be represented as objects rather than strings, encapsulat-

ing the fine details associated with each command as easily-accessible fields. The

command pattern provided a proven, pre-existing template for accomplishing

this.

2.6.1.1 Solution: The Command Pattern

The command pattern[13] is classified as a behavioural design pattern, as it

defines a manner in which communication between classes or entities can be

controlled. This pattern enables all of the information required to carry out a

request to be encapsulated within a single object. These command objects can

then be passed around between methods and classes, and executed at an ap-

propriate time. This structure is particularly useful when supporting activities

that involve the execution of a series of commands. Since each command is

represented as an object, it is straightforward to place these command objects

within data structures, such as command queues.

Invoker

command : AbstractCommand

executeCommand ( )

AbstractCommand

receiver : Receiver

AbstractCommand ( receiver : Receiver )

execute ( )

Client Receiver

action ( )

ConcreteCommand

execute ( )

Figure 2.4: Command Pattern

Brief summaries of the role of each class in the command pattern template
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depicted in Figure 2.4 are as follows:

• The Client is responsible for creating individual command objects, and

linking them to one or more Receiver objects.

• The Receiver object contains the methods that will be executed when

command objects are invoked. All functionality required to carry out each

command resides within this object. This promotes loose coupling10 by

keeping the functionality triggered by each command separate from the

command definitions.

• The AbstractCommand class serves as an abstract superclass for all

command objects, although it can also be implemented as an interface.

It contains a reference to the receiver object, in addition to an abstract

method, execute(), which will be called when commands are invoked.

• The ConcreteCommand classes are subclasses of AbstractCommand,

which provide implementations for the execute() method. They contain

all information that is required in order to execute the appropriate method

contained within the Receiver object.

• The Invoker object invokes the command objects by calling their exe-

cute() methods.

The template provided by the command pattern represented an ideal solu-

tion to the design problem I was considering. Encapsulation of commands within

dedicated objects would constitute an improvement to the design of Cslibtest

as a whole, since it would remove the need for passing raw string data repre-

sentative of Cslibtest commands between methods and classes. Furthermore,

this design pattern also laid out a structure that was perfectly suited to the

command queueing functionality that was to be implemented.

I will now describe each of the classes that collectively constitute my imple-

mentation of the command pattern within Cslibtest.

2.6.1.2 CommandHandler - The Receiver Class

In the context of my command pattern implementation for Cslibtest, the pre-

existing CommandHandler class would function as the receiver class, as this class

already contained the methods required to execute Cslibtest commands. No

changes to the CommandHandler class were necessary in order for it to fulfil this

role. However, all of the other classes involved in this implementation of the

command pattern were created from scratch.

10”Try to create modules that depend little on other modules. Make them detached, as
business associates are, rather than attached, as Siamese twins are.” - Steve McConnell,
Code Complete: A Practical Handbook of Software Construction.[18]
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2.6.1.3 The Command Interface

This new interface defines a type that all concrete Command implementations

belong to. An execute() method is defined by this interface, obligating all

concrete Command types to implement this method.

2.6.1.4 The Concrete Command Classes

With the Command interface in place, the next step was to create some concrete

classes. These classes include CsCommand and ShellCommand, differently named

to signify the different execution procedure corresponding with the different

command types.11 These new classes are depicted in Figure 2.5.

«interface»

Command

execute ( )

CsCommand

execute ( )

ShellCommand

execute ( )

Each concrete Command  type

provides a different

implementation of execute() .

Figure 2.5: Command interface and concrete classes

2.6.1.5 CommandQueue - The Invoker Class

Finally, I created the CommandQueue class, as depicted in Figure 2.6. An instance

of this class is now used to hold incoming Cslibtest commands in a queue at

the beginning of Cslibtest’s execution, when connection to a network model

had not yet been fully established. Instead of Command objects being passed

directly to CommandHandler to be executed, they are now routed through the

new CommandQueue, within which they are stored in a Queue data structure.

When Cslibtest has finished connectiong to the network model(s) that have

been specified at the command-line, CstestController makes contact with

the CommandQueue to inform it that commands may now be executed. The

CommandQueue then satisfies its role as the invoker class by calling the execute()

method of each Command object held in the command queue. After all commands

11As was described in Section 2.5.1.1 (page 23), in addition to its main purpose of exe-
cuting CS functionality upon a network model, Cslibtest also supports the execution of shell
commands upon the underlying operating system. These two command types are now more
intuitively distinguished from each other by the specific implementation type of the Command

objects that encapsulate them.
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had been executed, the CommandQueue is disabled12, causing commands to be

routed directly to the CommandHandler thereafter.

CommandQueue

commandQueue : Queue<Command>

add ( command )

executeQueuedCommands ( )

CsCommand ShellCommand

CommandHandler

runCsCommand ( ... )

runShellCommand ( ... )

Commands accumulate in the

CommandQueue , and await

their turn to be executed by the

CommandHandler .

«interface»

Command

execute ( )

1 1

1

*

Figure 2.6: The new CommandQueue class, with concrete commands

With the implementation of the CommandQueue class as depicted in Figure

2.6, the basic infrastructure required for queuing commands within Cslibtest

was now in place.

2.6.1.6 Conclusion & Next Steps

With command pattern implementations, all information required to execute a

command is encapsulated within individual command objects. A key advantage

of the command pattern is that these command objects can then easily be added

to data structures such as queues - an advantage that my own implementation

leveraged to good effect. Of course, the broad applicability of the command

pattern is not limited to the particular scenario in which I put it to use.

Commands could also be placed into a stack data structure to implement

undo functionality, for example. Utilising this data structure, the last command

could then be undone simply by ’popping’ the stack and reverting the actions

of the command object that emerges. Numerous other situations involving the

placement of commands within data structures exist that would stand to benefit

from implementation of the command pattern; the situation encountered during

12When the connection process has completed, Cslibtest has no further need to delay com-
mands from executing by placing them in the CommandQueue, as the network model(s) are now
ready to have commands executed upon them.
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my work on Cslibtest is just one of many that the command pattern would

be well-suited to, due to the flexibility and wide applicability that this design

pattern embodies.

Having integrated the command pattern into the design of Cslibtest, much

of the required class infrastructure was now in place to carry out command

queuing within Cslibtest. However, one final class was required in order to

complete the command pattern implementation: the client class referred to by

the command pattern template, which provides a mechanism for the creation

of Command objects upon demand. This represented the final design problem to

be solved in order to complete my work on Cslibtest’s new command queuing

support.

2.6.2 Design Problem - How to Create Commands?

It was apparent that depending upon the specific mode of operation in effect,

different classes in Cslibtest would be required to set the creation of command

objects in motion:

• When interactive mode is in effect, the CstestCLI class must trigger the

creation of Command objects as the user typed them in.

• When command file mode is in effect, the FileHandler class must trigger

the creation of Command objects for each individual command extracted

from the command file.

• When single command mode is in effect, the CstestController class must

trigger the creation of a Command object to encapsulate the single Cslibtest

command received.

In order to trigger the creation of a Command, the above classes must access

the client class.13 At this point, the client class represented the only aspect of

the command pattern implementation that had not yet been put in place. Upon

consideration, I recognised that in this particular situation, the factory method

pattern provided an ideal structure for this new class.

2.6.2.1 Solution: The Factory Method Pattern

The factory method pattern[9] is classified as a creational design pattern, as it

defines a manner in which class instantiation can be controlled. This pattern

constitutes a replacement for class constructors, abstracting the creation pro-

cess so that the specific type of object created can be determined at run-time,

depending upon the parameters passed into the factory method.

13To briefly recap, the client class in a command pattern implementation is responsible for
the creation of Command objects.

33



Product

ConcreteProductA ConcreteProductB

AbstractFactory

createProduct ( ) : Product

ConcreteFactory

createProduct ( ) : Product

Figure 2.7: Factory Method Pattern

The roles of the classes and methods depicted in Figure 2.7 are as follows:

• The AbstractFactory class holds functionality common among all con-

crete factory classes.14

• The ConcreteFactory class implements the logic which is utilised to

create and return new products.

• The Product class can be either an interface or abstract class which is

implemented or inherited by all of the concrete products that the factory

class can create. It defines aspects of functionality that are common to all

of the concrete objects.

• The ConcreteProductA and ConcreteProductB classes, each with

their own distinct functionality, represent the actual objects that are cre-

ated and returned by the concrete factory class.

Upon consideration of the design problem at hand, I decided that only one

concrete factory class was required in this case; for this reason, I did not need to

create my own version of the AbstractFactory class specified above. Instead,

I created a single concrete factory class: the CommandFactory.

2.6.2.2 The CommandFactory class

The new CommandFactory class, as depicted in Figure 2.8, is responsible for

manufacturing Command objects for use within Cslibtest.

14For situations in which only one concrete factory class is required, this class may be
omitted altogether.

34



«interface»

Command

execute ( )

CsCommand ShellCommand

CommandFactory

createCommand ( data : String ) : Command

CstestController FileHandler CstestCLI

creates creates

Figure 2.8: The new CommandFactory class

Raw command information that has been retrieved by CstestController

(when operating in single command mode), FileHandler (when operating in

file command mode), or CstestCLI (when operating in interactive mode) is

now passed into the createCommand method supplied by the CommandFactory.

This method determines the appropriate concrete command type to create

(CsCommand or ShellCommand), based upon the contents of the raw command

data which has been passed into the method.

Finally, a Command object of the appropriate type is returned, which neatly

encapsulates all information associated with the Cslibtest command.

2.6.2.3 Conclusion

Application of the factory method pattern entailed the addition of a new class,

the CommandFactory, dedicated to the creation of Command objects. This new

class integrated smoothly into the Cslibtest implementation, providing function-

35



ality that is utilised by all three of the classes that were involved in my earlier

refactoring work. Furthermore, as all code relating to the creation of Command

objects is concentrated in the CommandFactory class, unnecessary code dupli-

cation is avoided.

The factory method pattern allows for a great deal of flexibility when creating

objects. Rather than returning one class type only, a factory method can return

a command object of a dynamically chosen type, depending upon the contents

of the request passed into the factory method; in this regard, Cslibtest clearly

benefits from the flexibility that this design pattern affords, as the two types of

command that Cslibtest supports (CS commands, and shell commands which

are less frequently used) may now be clearly distinguished from each other.

This approach is modular, intuitive, and takes full advantage of the inheritance

capabilities offered by an object-oriented language such as Java.

2.6.3 Command Queue Support - Outcome

With the command and factory method design patterns having both been ap-

plied to the Cslibtest source code, the application now possessed the command

queuing support that had been specified as one of the requirements for my work

on the application. As well as adding new functionality to Cslibtest, use of these

patterns contributed new classes to the Cslibtest codebase that are modular,

loosely coupled, and easy to understand. These characteristics will contribute

favourably to the future maintainability and extensibility of the application.

With the first two requirements having been satisfied, one task remained

to be completed: addition of support for multiple simultaneous network model

connections. I will now describe the work done to complete this final task.

2.7 Addition of Multiple Model Support

As specified in the final requirement given to me for my work on Cslibtest,

the application was required to support simultaneous connections to multiple

network models at once, in order to improve upon the single connection support

that had existed in Cslibtest up to this point. In order to implement this

support, I had to make numerous modifications to several classes across the

Cslibtest source code, in addition to developing some entirely new classes.

Upon examination of the existing source code, I found that the code re-

sponsible for establishing a connection to a network model at the beginning of

Cslibtest’s execution was buried inside a class which performed numerous other

duties as well. This situation was reminiscent of the previous structure of the
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formerly problematic CstestCLI class; the network model connection function-

ality did not really belong where it was currently situated.

As my first step towards implementing multiple network model support, I

decided to refactor the source code responsible for establishing individual net-

work model connections, by moving this code into a new class dedicated solely

to the task of establishing network model connections. I will now describe the

operation of this new class.

2.7.1 The Connection class

The new Connection class serves as the only location in Cslibtest in which

connections to network models are established. Each instance of Connection is

dedicated to carrying out a connection process between the Cslibtest application

and one specific network model. Collectively, multiple instances of Connection

can establish multiple network model connections.

In practise, the connection process to each network model can take a vary-

ing length of time to complete. I realised that utilisation of multiple threads

to execute all of the Connection processes in parallel would allow the connec-

tion process to proceed as efficiently as possible; the entire process would take

considerably longer if these processes executed sequentially, rather than concur-

rently as multithreaded execution would enable. Therefore, I decided that each

Connection instance would operate upon a single thread. Implementing Java’s

Runnable interface, each Connection instance is instantiated as a new Thread

of execution at runtime.

After the Connection instances corresponding with each network model have

been instantiated, connections with each model are established one by one, until

all connections have been established. While this process is taking place, any

Cslibtest commands entered by the user (if Cslibtest is operating in interac-

tive mode) are placed in the CommandQueue, taking advantage of the command

queuing support that I described previously.

Eventually, when all connection processes have completed, the CommandQueue

is signalled by CstestController to execute all waiting commands.

However, a design problem became apparent. With several Connection

threads executing at once, CstestController needs to be kept informed of their

progress in order to determine when all Connection processes had resolved, since

the Command objects held within the CommandQueue cannot be safely executed

until all network model connections have been established.
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2.7.2 Design Problem - How to Inform CstestController?

In order for CstestController to signal CommandQueue to execute the com-

mands contained within its command queue, it needs to be kept informed

of the current status of each Connection instance. As each single-threaded

Connection instance completes its work, it must signal CstestController

somehow, to inform it of the newly-established connection. In essence, the

CstestController has to observe the progress of the Connection instances.

After some consideration, I realised that this situation seemed familiar. I had

studied a design pattern during CS607, the observer pattern, which was intended

for addressing design problems such as the one that I had just encountered. I

will now describe the template for this pattern.

2.7.2.1 Solution: The Observer Pattern

The observer pattern[14] is classified as a behavioural design pattern, as it defines

a manner in which communication between classes or entities can be controlled.

This pattern enables objects, known as subjects, to publish changes to their state

as these changes occur. Other objects, referred to as observers, can subscribe

to the subjects so that they are immediately made aware of any changes to the

state of the subjects.

Subject

observers

registerObserver ( o : Observer )

deregisterObserver ( o : Observer )

notifyObservers ( )

ConcreteObserver

notify ( )

«interface»

Observer

notify ( )

Figure 2.9: Observer Pattern

The roles of each class in the observer pattern template depicted in Figure

2.9 are as follows:

• The Subject represents a class which can be observed. When the Sub-

ject changes state, it uses the notifyObservers() method to inform all

registered observers of the state change. To achieve this, the method loops
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through all registered observers, calling their notify() methods.

• The Observer interface obligates all classes that inherit this interface to

provide a notify() method. This allows Subject instances to which the

observers have registered to notify the observers when state changes occur.

• The ConcreteObserver objects are the observers that depend upon

knowledge of the current state of the Subject. They provide their own

implementations of the notify() method; as this method will be called

when subjects change their state, the contents of this method will enable

the observer to take appropriate action at that time.

Given the nature of the design problem that I was facing, an implementation

of the observer pattern appeared to represent an ideal solution. I will now

provide a detailed description of my solution to the design problem at hand,

which was implemented using the observer design pattern as a template.

2.7.2.2 Application of the Observer Pattern

In the context of my observer pattern implementation, each Connection in-

stance is considered a subject, while the single CstestController instance

present within Cslibtest throughout its execution is subscribed as an observer

to each of the Connection subjects.

One of the responsibilities of the CstestController class, as was previously

discussed in Section 2.5.4 (page 26), is setting the network model connection

process in motion when Cslibtest is executed. In order to carry out this respon-

sibility, it creates Connection objects corresponding with the network models

that have been specified at the command-line.

Upon creation of these Connection objects, CstestController also stores a

list of the network models that have Connection objects allocated to them. This

list of pending connections is altered by CstestController as the Connection

instances announce changes in their state.

As was depicted in Figure 2.9, all observers must implement an interface

containing a notify() method, so that subjects can call this method in order to

announce changes to their state. To this end, I created my own version of this

interface named ConnectionEventListener. This interface provides a method

named handleConnectionEvent, which fills the role of the notify() method

depicted in the observer pattern template.

As CstestController is an observer class in the context of the observer

pattern, it now implements the ConnectionEventListener interface, which

obligates it to provide an implementation for the handleConnectionEvent()

method. The full class layout is depicted in Figure 2.10.
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«interface»

ConnectionEventListener

handleConnectionEvent ( event : ConnectionEvent )

CstestController

pendingConnections : List<Collection>

ConnectionEvent

database : String

error : String

ConnectionEvent ( database : String, error : String )

Connection

eventListeners : List<ConnectionEventListener>

CstestController is an observer , as it

implements ConnectionEventListener .

Each Connection

is a subject .

Each Connection publishes a

ConnectionEvent to announce its completion.

1 *

Figure 2.10: Observer pattern in action

I also created a simple container class called ConnectionEvent, which is

used to contain data sent from each subject to the observer. Thus, instances

of ConnectionEvent are utilised to provide the fine details of the Connection

state changes to the CstestController observer. The two fields within each

ConnectionEvent allow them to convey:

• The name of the network model that a particular Connection subject

attempted to connect to.

• An error string. If this string is empty, this indicates that the Connection

established a network model connection successfully. If the string is not

empty, this indicates that the Connection instance failed to establish a

network model connection, and provides a descriptive reason for the fail-

ure.

As each Connection instance finishes connecting to the network model as-

sociated with it, it notifies CstestController by passing a ConnectionEvent

object into the handleConnectionEvent() method which is implemented by

the CstestController class. If the network model connection was successfully

established, the network model name contained within the ConnectionEvent

is then removed from the list of pending connections that is stored within

CstestController.
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Eventually, when the last remaining Connection instance has finished con-

necting to its allocated network model and has dispatched a ConnectionEvent

object to announce this, CstestController removes the network model men-

tioned in the ConnectionEvent from its list of pending connections. The list

of pending connections is now empty, which is confirmed by a quick check at

the end of the handleConnectionEvent() method. After this confirmation,

CstestController signals the CommandQueue to inform it that all queued com-

mands can now be executed.

With this new class structure in place which embodies the observer design

pattern, Cslibtest is now capable of connecting to multiple network models

simultaneously.

2.7.2.3 Conclusion

My implementation of the observer pattern provided an elegant solution to

the final substantial design problem that I encountered during my work on

the Cslibtest application. As this pattern allows a one-to-many dependency to

be defined between objects, it proved to be excellently suited to ’scaling up’

the functionality of Cslibtest to handle multiple simultaneous network model

connections instead of just one.

Of course, this pattern would be equally applicable in many other situations

in which a similar ’scaling up’ of functionality was desired for a particular ap-

plication. This pattern is also commonly utilised in conjunction with graphical

user interfaces, with the GUI serving as the observer and the underlying state

of the application serving as the subject.

2.7.3 Multiple Model Support - Outcome

With multiple network model support for Cslibtest now in place, all require-

ments that had been given to me at the start of my work on the Cslibtest

application had been satisfied. With support for command queuing integrated

into the Cslibtest codebase as well, and considerable refactoring having been

performed upon the original source code, my development work on Cslibtest

was complete.

2.8 Code Review

During my work on Cslibtest, my code was reviewed on several occasions during

development by other members of the team. These code reviews were among the

first that I experienced at Ericsson, as Cslibtest was one of my earlier projects.

41



These reviews ranged from quick ’deskchecks’15 to longer reviews which took

place in a meeting room, with a projector used to provide several developers in

the room with a common view of the source code being examined.

The features of Cslibtest that I had written at the point of review were

typically fully functional; the review process did not catch any major bugs.

However, the developers performing the code reviews suggested several struc-

tural improvements to the code. Examples include:

• In a very early iteration of my additions to the Cslibtest codebase, the

Connection class existed as a nested class of CstestController. This

arrangement was fully functional, but upon examination, it was suggested

by another team member that the source code would be more comprehen-

sible if Connection was made into a fully separate class instead. I agreed,

and the change was made.

• One of my colleagues noticed that a single variable in the CommandQueue

class was redundant, and could be removed completely if I made a small

change to the logic of the class.16

• An early version of the CstestController class only checked the valid-

ity of the command-line arguments at the point at which they were used.

Another developer suggested that if the validity of these arguments was

checked in the constructor, this would simplify the structure of the class

by ensuring that the constructor would only finish successfully if all argu-

ments were valid.

Since Cslibtest was my first substantial project at Ericsson, I was relatively

inexperienced when these first code reviews were performed. Through these

code reviews, I gradually accumulated knowledge from my more experienced

colleagues. On account of this, subsequent code reviews tended to prompt

fewer suggestions from my colleagues, as the quality of my code was steadily

improving.

After implementing the various minor suggestions that my colleagues gave

me, they were satisfied with my implementation and approved the product for

delivery.

15A deskcheck simply involves a software developer examining another developer’s source
code from their own computer. Since ClearCase allows shared access to source code files as
described earlier (page 9), deskchecks may be carried out conveniently at any time, provided
that the latest source code changes have been checked in.

16Precise observations such as this are a testament to the rigour employed by my colleagues
during code reviews!
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2.9 Project Outcome

Cslibtest represents one of the larger applications that I have worked on at

Ericsson to date. My work on the application included a significant amount

of code refactoring, with functionality being relocated from an oversized class

into multiple new classes, with each new class purpose-built to carry out a

single set of tightly related functions. I refactored Cslibtest’s internal treatment

of commands to a series of classes that together formed an implementation of

the command pattern. Other new classes that I created were integrated into

implementations of the factory method and observer design patterns.

This project represented the first time in which I had made substantial use

of design patterns during development of a commercial software product. Prior

study of these patterns during the CS607 module proved to be very useful; since

I had been exposed to these patterns previously, it didn’t take long to recognise

their applicability to design problems that I faced. My experience of utilising

design patterns during my work on Cslibtest confirmed the assertions made

during the CS607 module (and in software engineering literature) that design

patterns represent broadly applicable solutions to many design problems which

are frequently encountered during software development.

With the requirements having been satisfied and my work on Cslibtest now

complete, a new version of the application was deployed soon afterwards. This

version, containing the new functionality that I described throughout this chap-

ter, is now in use throughout Ericsson. In the future, developers who wish to

extend or maintain the Cslibtest source code will benefit from the clearer, more

focused class structure which was introduced to the Cslibtest codebase through

refactoring. In the present, end-users will benefit both from the greater usability

facilitated by pre-connection command queuing, and the greater productivity

enabled by the newly-implemented support for multiple simultaneous network

model connections.

43



Chapter 3

CS Metadata Migration

Tool

Some time after I finished my work on Cslibtest, I began working on a new soft-

ware project, the CS Metadata Migration Tool (CSMMT). This project proved

to be larger in scope than Cslibtest, offering a wide range of new design prob-

lems to be solved. As this new software application was to be developed from

scratch, code refactoring of pre-existing ’legacy’ code was not be required as in

Cslibtest; however, use of design patterns was even more prominent. Further-

more, my knowledge of software testing techniques was exercised, as my respon-

sibilities included construction of an automated test suite to accompany the new

application. In this chapter, I will describe in detail my work on CSMMT.

3.1 Chapter Structure

In Section 3.2 (Motivation), I will provide some background information

about the events that led to the development of CSMMT.

In Section 3.3 (Requirements), I will list and explain the requirements that

were specified for the CSMMT application.

In Section 3.4 (Analysis of CSMMT Main Task), I will step through

my high-level analysis of the requirements and the functionality required to im-

plement them. This coverage of high-level design decisions undertaken early in

the project will pave the way for subsequent discussion of the CSMMT imple-

mentation in the following section.
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In Section 3.5 (Implementation & Use of Design Patterns), I will dis-

cuss the development of CSMMT in detail, with extensive reference to specific

design patterns that were utilised during the development process in order to

solve numerous design problems that were encountered.

In Section 3.6 (Automated Testing of CSMMT), having previously de-

scribed the key aspects of the CSMMT implementation, I will describe the

automated test suite that I developed to accompany it, which resulted from my

practical application of software testing techniques covered during the CS608

module.

Finally, in Section 3.7 (Project Outcome), I will briefly discuss the out-

come of the CSMMT project.

3.2 Motivation

As was previously described in Section 1.1.1 (page 2), the CS facilitates inter-

action with MOs contained within telecommunications network models, which

reside in object databases. Several hundred distinct MO types will be typically

be supported by each of these models, with up to several million MO instances

held within each model. Each different MO type is represented by a distinct Java

class, each of which inherits from an abstract superclass in the CS (hereafter

referred to as ManagedObject) common to all MO types.

Crucially, some important CS metadata1 is specified within this abstract su-

perclass, in the form of several private fields. These fields are always populated

in all instances of all MO types.

In the weeks prior to the commencement of my work on CSMMT, various

modifications had been implemented by the CS Design Team across the CS

codebase, with the goal of improving overall performance of the system.2 As

part of these modifications, the structure of the ManagedObject class within the

CS was significantly overhauled. This involved extensive changes to the data

structures within ManagedObject, which contain the crucial metadata required

for correct functionality of the CS.

The altered data structures would yield faster performance during normal

1Specific details pertaining to this CS metadata and related data structures have been
omitted for confidentiality reasons. In terms of understanding the operation of CSMMT, it is
sufficient to know that this metadata must be accurately specified within each MO, in order
for the CS to function properly.

2Between my work on Cslibtest and CSMMT, I was involved in carrying out some of
this work upon the CS in conjunction with other CS Design Team members. However, as
the Cslibtest and CSMMT projects were more substantial as a whole and presented more
challenging design problems, they represented more interesting dissertation topics.
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CS operation. However, in order for these performance benefits to be realised,

the new data structures would have to be propagated to all network models

in use, both within Ericsson and by Ericsson customers. This substantial task

called for the creation of a new tool.

3.2.1 New Application Required: The CSMMT

In order for the network models to benefit from the performance improvements

that the new data structures within ManagedObject would provide, a large

update would have to be performed upon each network model individually. For

every MO instance in a particular network model:

1. The new data structures (initially empty) must be put in place in the

ManagedObject class, as depicted in Figure 3.1.

Schema Evolve

ManagedObject

Old Data Structures (Populated for each instance)

ManagedObject

Old Data Structures (Populated for each instance)

New Data Structures (Initially empty)

Schema evolution of the

network model results in the

ManagedObject class gaining

new data structures. By

extension, all MO instances now

have these new data structures.

Figure 3.1: Schema evolution introduces new data structures to all MOs

2. CS metadata must then be migrated3 from the old data structures to the

new. This process must be performed on every MO in the network model,

as depicted in Figure 3.2.

3This migration is not a simple ’copy and paste’ affair, as the format of the new data
structures is considerably different to that of the old ones.
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CSMMT

Network Model

(object database)

Managed Objects

CSMMT  iterates over all Managed

Objects in specified network

model, migrating metadata from

old data structures to the new data

structures that were introduced by

schema evolution.

Figure 3.2: CSMMT migrates metadata for all MO instances in the model

To enable delivery of these updates to individual network models, an en-

tirely new software tool was required. This new application, the CSMMT, must

perform a one-time update4 of all of the managed objects residing within each

network model.

3.3 Requirements

The requirements for the new tool were identified by two CS Design Team

members who performed a preliminary analysis.5 My colleagues discussed these

4The work carried out by CSMMT only needs to be carried out once on any particular
network model, since the old data structures are left empty following the metadata migration,
and will never be populated again.

5At this very early stage, I was not involved with the CSMMT project. My involvement
began when the requirements were identified and passed on to me for further analysis and
implementation.
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requirements with me, and I assumed responsibility for development of CSMMT

from that point forward.6

The key requirements can be summarised as follows:

1. The schema of the network model to be updated by CSMMT must be

evolved prior to any other action taking place. This schema evolution

updates the class structure, introducing new data structures into the

ManagedObject abstract superclass, and by extension, to every MO in-

stance in the network model.7

2. As its main task, accounting for the vast bulk of code written and most

of CSMMT’s execution time, the application is required to perform four

distinct updates8 upon every individual MO instance in a given network

model. Each of these updates must convert and migrate the metadata

contained within a particular set of old data structures into the new data

structures which were introduced by the previous schema evolution.

3. In practise, customer network models are only taken down for limited

periods of time for maintenance tasks to be carried out. Consequently,

a time constraint was imposed upon the time required for CSMMT to

execute upon a typical customer network model. The application must

operate efficiently in order to finish executing on time.

This concludes my outline of the CSMMT requirements that were provided

to me at the beginning of the project. I will now describe the analysis that I

performed after receiving these requirements, with a view to determining the

broad structure of the CSMMT application and the exact approach to be taken

towards tackling the large-scale network model updates that CSMMT was re-

quired to perform.

3.4 Analysis of the CSMMT Main Task

After being given the requirements for the new CSMMT application, the next

step was to determine how CSMMT’s main task would be carried out - the

mass update of a large number of MOs within a manageable time span. While

6As I was writing this application, other team members worked in parallel upon areas of
core CS functionality that were impacted by the new data structures placed in ManagedObject.

7This requirement was trivial to satisfy, as existing tools offered this schema evolution
functionality already. The focus of this chapter will be upon CSMMT’s main functionality;
migration of the metadata from the old data structures to the new ones.

8For confidentiality reasons I cannot delve into detail regarding the exact nature of each
of these updates, but for the purpose of understanding CSMMT’s operation, it is sufficient to
know that four sets of metadata must be migrated by CSMMT within each MO instance -
hence the need for four separate updates.
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performing my analysis, I frequently consulted with my colleagues to explain

my ideas and solicit their opinions. The decisions made during analysis would

play a major role in shaping the implementation of CSMMT. I will now explain

these decisions, and the process of reasoning that led to them.

3.4.1 Multithreaded Execution & MO Updater Objects

Since a tight time limit per execution of the application was explicitly specified

in the requirements, it was clear that performance of the application would be

a major factor to be borne in mind during the design process.

Computer hardware has improved greatly in its capacity for true parallel

operations in recent years, with an increasing trend towards increasing num-

bers of cores rather than increasing single core speeds.[26] As a result, multiple

threads of execution have become more commonly utilised in applications with

high performance requirements, in order to take full advantage of the power that

multiple CPU cores offer. As typical customer machines would possess several

CPU cores that could be fully utilised during the downtime imposed for network

model updates, I recognised that efficient use of multiple threads would be a

critical performance factor for this application.

Accordingly, I decided to design CSMMT around multiple threads of execu-

tion, each of which would update only a subset of the MO instances present in

the model. As I would be developing CSMMT in Java, an object-oriented lan-

guage, it seemed logical that individual objects occupy each thread of execution.

Each of these MO updater objects would be responsible for updating a particu-

lar subset of the MO instances contained within the network model. Since each

MO updater would be tackling only a subset of the MO instances, and would

be executing upon its own thread, this would enable the work of updating all

MO instances to be paralleled across multiple threads of execution.

By splitting up the work into multiple threads of execution which could then

execute in parallel, CSMMT would be able to take full advantage of all avail-

able processor cores. Multiple MO updaters would access the network model

concurrently, performing their updates at the same time as other active MO

updaters.

With millions of MO instances residing in a typical network model, the work

of updating these MO instances would have to be cleanly divided among the

individual MO updater threads in order for this multithreaded approach to

work. With the basic details of the approach set out, I moved on to consider

how best to divide CSMMT’s work among multiple MO updaters.
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3.4.2 Division of Work Among MO Updaters

In order to divide the work among multiple threads, it seemed reasonable to

make each MO updater object responsible for updating the instances of one

specific MO type only. Each individual collection of MOs comprised of a single

type could then be updated concurrently by separate MO updaters, without any

interference between them, since they would be operating on entirely different

collections of MOs within the network model.

However, as stated during the introductory chapter (page 2), the MO in-

stances in a typical customer network model are collectively comprised of hun-

dreds of different MO types. On account of this, it was apparent that a lim-

itation upon the number of MO updater objects which could execute at any

one time would have to be imposed. This would serve to restrict the number of

simultaneously active threads to the maximum number that could be efficiently

handled by the CPU cores available on a given machine, while not placing too

great a burden on memory.

After consideration and discussion with other members of the CS Design

Team, it was apparent that a queue data structure would be a good solution. A

limited number of thread ’slots’ would be made available, and all MO updaters

would be placed in a queue to acquire one. The first few MO updaters in the

queue would occupy the available threads of execution, and the remainder would

have to wait for their turn to execute. When a thread of execution freed up as

an MO updater finished updating the MO instances assigned to it, the next MO

updater in the queue could then step in, occupying the thread and carrying out

its own updates. Eventually, all MO updaters would complete their work, the

queue would be empty, and CSMMT’s main task would be complete.

In order to implement this system of allowing multithreaded execution up

to a clearly defined point, a limit would have to be defined9 upon the number

of MO updater objects which would be allowed to execute at any one time.

3.4.3 Manual Thread Management vs. Threadpools

From a design perspective, there were numerous approaches available which

would enable to me to implement this system of ’queuable’ threads. One op-

tion would be to perform extensive manual management of Thread objects, in

order to implement the functionality previously described. However, as of Java

version 1.5, the java.util.concurrent package has been a part of the lan-

guage. Among other things, this package allows the use of ExecutorServices

which can be used to create thread pools. As it is generally considered better

9To allow for different hardware configurations, this limit would be configurable via a Java
system property, which could be specified on the command-line upon execution of CSMMT.
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programming practise to utilise thread pools instead of performing extensive

manual management of individual threads of execution[3], I opted to implement

an ExecutorService thread pool[23] of fixed size.

The thread pool would allow a fixed number of MO updaters to execute in

parallel at any one time. The remaining threads would wait in a queue until one

of the active threads in the threadpool completed, at which point the next thread

in the queue would become active. All of this work would be performed ’under

the hood’ by the ExecutorService. This hidden complexity facilitated by the

java.util.concurrent package would provide the functionality that CSMMT

required, while helping to keep the source code succinct and comprehensible by

freeing it of manual thread management.10

I moved on to another consideration: how would CSMMT know which MO

types resided within a particular network model? Across different network mod-

els, the MO types utilised to simulate each network element can vary. This

information would have to be known in order for MO updaters to be properly

allocated to specific MO types.

3.4.4 Schema Processing

I was initially unsure of how to obtain a definitive list of MO types residing

within a particular network model. I pointed out this issue to a colleague, who

suggested that I look into utilising the schema definition file. Every network

model is associated with a file of this type, which specifies a list of MO types in

XML notation11 that are allowed to reside within the network model.

Through some processing upon this schema definition file, a definitive list of

MO types present in the associated network model could be obtained for use by

CSMMT. Since this processing would be an essential prerequisite for dividing up

work between MO updater threads, it was apparent that this schema processing

would have to occur at the very start of CSMMT’s execution, before any creation

of MO updater objects.

At this point, the beginnings of a conceptual approach for CSMMT’s main

task had been mapped out. Processing of the schema definition file would yield

a list of MO types. One single-threaded MO updater would be allocated to each

MO type, allowing CSMMT to update several MO types in parallel by placing

the MO updater objects in a thread pool. After all MO updaters had finished

their work, CSMMT’s main task would be done.

10As described previously in Section 2.7.1, I performed some manual management of Thread
objects during my work on Cslibtest. The multithreaded aspect of Cslibtest was considerably
smaller and simpler than the multithreaded architecture that CSMMT was designed around.
For this reason, manual thread management was a viable option for that project.

11Reading the contents of these files involved some substantial processing, which prompted
the use of a design pattern. This will be discussed on page 58.

51



However, I soon received some data analysis results which had been derived

from a customer network model.12 Upon examination of this data, I realised

that the conceptual approach as it stood could suffer from decreased efficiency

under certain circumstances. Given the importance of maintaining a high level of

efficiency throughout CSMMT’s execution, this issue would have to be addressed

before I could proceed further.

3.4.5 Problem Identified: ’Outlier’ MO Types

The data analysis results that I received consisted of a detailed breakdown of

all MO types which were present within the customer network model, including

the exact number of instances for each MO type. Upon examination of the data,

I realised that a handful of MO types had disproportionately large numbers of

instances in the model by comparison to the other MO types. One MO type in

particular had an enormous number of instances relative to the others.

My conceptual approach in its current state could run into difficulty if any

such outlier MO types13 existed in the network model being updated. After all

MO updaters associated with non-outlier MO types had completed their work,

a single MO updater could still be working on the enormous number of instances

associated with the outlier MO type. This would mean that CSMMT could be

operating on a single thread of execution for a significant portion of its execution

time, while this last MO updater finished its work.

This ’worst case scenario’ would result in several CPU cores being left idle,

while a single CPU core did all the work of updating the instances of the outlier

MO type. Of course, this would be a very undesirable situation in terms of

efficiency. I began considering how I could adapt my initial approach to maintain

efficient concurrent execution throughout, even with the presence of outlier MO

types.

3.4.6 Evaluation of Possible Solutions

Despite the efficiency concern that I had identified, my initial conceptual ap-

proach remained perfectly adequate for almost all MO types. Problems would

only occur when outlier MO types were subjected to this same approach, as

well. I realised that perhaps the best course of action would be to stick with the

previously described solution for most MO types, with some special treatment

12This network model could be considered a representative sample of the type of network
model that CSMMT would typically be executed upon.

13Technically, a MO type with relatively few instances could also by definition be considered
an ’outlier’. However, such an MO type would not pose any obstacle to efficient execution
of CSMMT, and is therefore not of special interest. During this chapter, I will use the word
’outlier’ to refer exclusively to MO types that have considerably more instances than average.
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added for outlier MO types only.

I realised that there were multiple different refinements to the original ap-

proach that could potentially be implemented, in order to apply this special

treatment to outlier MO types. I will now discuss two of the refinements that

were considered.

3.4.6.1 Solution #1: Outlier MO Types Prioritised

Initially, I considered the possibility of manipulating the queue of MO updaters

waiting to enter an available thread slot in the threadpool; perhaps by changing

the order in which they were queued, thread utilisation could be increased. I

will describe this concept with the aid of a simple example, depicted in dia-

grams. Figure 3.3 illustrates a highly simplified example situation: CSMMT is

being executed upon a network model containing four MO types14, with the

maximum number of active threads in the threadpool set to two15. Of the 4

MO types depicted, one of them is an outlier MO type, clearly identifiable in

the diagram by its greater number of instances. Each ’block’ in the stacked

bar chart represents the execution of a distinct MO updater object. Note that

queued MO updaters can only begin their work when a space frees up in the

threadpool, allowing a different MO updater to begin updating MO instances.

Figure 3.3: Ineffective use of multiple threads

In this example, the single MO updaters which have been allocated to each

14In practise, hundreds of MO types will be present within a given network model.
15In more realistic usage scenarios, CSMMT would typically execute with at least six active

threads of execution.
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of the four MO types have been added to the threadpool queue in ’natural’ order

- no measures have been taken to fine-tune which MO updaters were permitted

to join the queue first. As is apparent in the diagram, Thread 1 ends up having

to update far more instances than Thread 2 does; and as soon as Thread 2

is finished and Thread 1 is left working, CSMMT becomes a single-threaded

application. This is not a very effective use of the two available threads.

However, what if MO updaters assigned to outlier MO types were prioritised

and moved to the front of the queue, so that they would be the first to enter an

available thread ’slot’ in the threadpool? With all other elements identical to

the first example, Figure 3.4 depicts the result of this queue manipulation. By

allowing the MO updater associated with an outlier MO type to begin its work

first, utilisation of the two available threads has been greatly improved. This

strategy would clearly improve performance in many situations.

Figure 3.4: Manipulation of the MO updater queue improves performance

However, it quickly became apparent that this solution was inherently lim-

ited in terms of flexibility. Although it often presented an improvement over

arbitrary queuing of MO updaters, a lot of CPU time could still be wasted in

certain situations. For instance, the situation depicted in Figure 3.4 changes

greatly when a single extra thread of execution is made available, as is shown

in Figure 3.5.
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Figure 3.5: Very ineffective use of multiple threads

As depicted above, the queue manipulation strategy has fallen short. Re-

gardless of how the MO updater queue is manipulated in this situation, two of

the threads are under-utilised for a significant proportion of the application’s

execution.

Upon discussion with my colleagues, we agreed that this type of approach

was not feasible, and it was dropped from consideration. I began considering

another more sophisticated approach. It was apparent that the work of updating

the outlier MO types would have to be broken up, if effective thread utilisation

was to be attained.

3.4.6.2 Solution #2: Multiple MO Updaters for Outlier MO Types

After consideration as to how to break up the work of updating the instances

of outlier MO types, I arrived upon a possible solution. With this solution, the

outlier MO types would still be updated with MO updater objects; however,

the nature of these MO updaters would be different to those that would be

applied to ’regular’ MO types. Instead of one MO updater being assigned to

each outlier MO type, several MO updaters would be assigned instead. Each of

these specialised MO updaters would update only a limited subset of the outlier

MO type’s instances, instead of all of them as with the standard approach

applied to all other MO types.

These specialised MO updaters would each operate on a separate thread,

just as the standard ones would. However, with multiple MO updaters applied

to a single outlier MO type, multithreaded execution of instances within a single
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MO type would be enabled. This further breakdown of work would combat the

problems associated with the sheer number of instances that accompany outlier

MO types.

The example depicted in Figure 3.5 depicted the shortcomings of the ’queue

manipulation’ approach. The same situation depicted in that diagram is shown

again in Figure 3.6, with one difference: the work of updating the outlier MO

type’s instances has now been broken up among six specialised MO updaters.

Figure 3.6: Outlier MO type is ’broken up’ for superior thread utilisation

As shown in the diagram above, thread utilisation has greatly improved due

to this division of work.16 In practise, the number of specialised MO updaters

applied to outlier MO types could be configurable, in order to achieve optimal

thread utilisation based upon the number of threads available and the number

of instances associated with a particular outlier MO type.

Ultimately, among the possible solutions that were considered for the prob-

lem of outlier MO types, I felt that this solution represented the best choice. I

discussed this idea with other CS Design Team members, and we agreed that

it was promising. The high-level algorithmic question of how I would split

CSMMT’s work into multiple threads of execution had been answered. With

this aspect of the analysis completed, it was time to move from concepts to

implementation details. Before I describe the CSMMT implementation, I will

outline the key decisions made during analysis.

16Even with this optimisation, thread utilisation is not at 100% throughout the entire exe-
cution of the application. This is impractical in practise. The goal in this case is to maximise
performance by maintaining 100% thread utilisation for the vast majority of CSMMT’s exe-
cution time.
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3.4.7 Outcome of Analysis

Following analysis, numerous key design decisions were made which would heav-

ily influence the CSMMT implementation. These decisions can be summarised

as follows:

• CSMMT would execute on multiple threads for greater performance. Each

thread of execution would target one MO type.

• In order to retrieve a list of MO types that exist in a given network model,

a schema file would be processed at the start of CSMMT’s execution run.

• Some MO types may have a disproportionately large number of instances.

To ensure maximum thread utilisation through CSMMT’s execution run,

this handful of outlier MO types would each have their work split among

more than one thread of execution. This would be achieved by allocating

specially-configured multiple MO updaters to these outlier MO types, in-

stead of the single MO updaters that would be allocated to all other MO

types.

Having discussed the key aspects of the analysis performed, I will now de-

scribe how the approach decided upon during analysis was translated into work-

ing implementation code.

3.5 Implementation & Use of Design Patterns

In this section, I will move through each key aspect of the CSMMT implemen-

tation step-by-step, explaining the rationale behind each major decision made

during development of the application’s core components, with a focus upon the

design patterns that I deemed to be suitable for each design problem encoun-

tered.

I will begin by describing the first design problem that I encountered after

moving on from initial analysis and beginning the process of determining the

fine implementation details of CSMMT.

3.5.1 Design Problem - How to Process Schema?

As determined during analysis, CSMMT would have to process a schema defini-

tion file at the very beginning of its execution run, in order to determine which

MO types resided within the network model to be updated. This preliminary
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step would enable the work of updating different MO types to be divided neatly

among different threads of execution.

While considering how to go about implementing the required schema pro-

cessing functionality, I examined the CS codebase and discovered that a library

existed which supplied much of the functionality required to manipulate the

schema definition files. This library will hereafter be referred to as the schema

file library (SFL).

In this instance, it made more sense to reuse the functionality of the existing

SFL, rather than ’reinventing the wheel’ by developing my own alternative code.

However, although the SFL provided useful functionality that would save me

the time and effort of developing my own analogous functionality, it did not

represent a completely ready-made solution. The SFL provided a large number

of methods through its API. In order to compile a list of MO types present

in the schema file, numerous method calls would be required to the SFL in a

particular sequence.

Upon consideration of this situation, I soon realised that a design pattern

that I had studied during CS607, the facade pattern, was a good fit for this

design problem. Prior to explaining my use of the pattern, I will provide some

basic details about the pattern itself.

3.5.1.1 Solution: The Facade Pattern

The facade pattern[12] is classified as a structural design pattern, as it defines

a manner in which relationships between classes and entities can be created.

The purpose of the facade pattern is to create a simplified point of access to a

more complex underlying subsystem. This point of access could be described

as ’wrapping around’ the functionality of the complex subsystem beneath the

facade.

Use of the facade pattern is appropriate when the underlying system is suffi-

ciently complex that several method calls are required to complete a particular

operation. An implementation of the facade pattern can offer simpler, more

readable code, by encapsulating several method calls to the underlying sub-

system within one easy-to-use method. This single method can then be called

throughout the program, presenting a more convenient alternative than having

to perform multiple method calls each time.
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Package 2

Facade

simpleMethod ( )

Package 1

ComplexClassA ComplexClassB

ComplexClassDComplexClassC

Figure 3.7: Facade Pattern

Brief summaries of the role of each class in the facade pattern template

depicted in Figure 3.7 are as follows:

• The Facade class contains simple, publicly-accessible methods that access

the underlying subsystem in order to perform a complex task, while hiding

this complexity from classes that call the simple method(s).

• The ComplexClass classes contain the complex functionality that is

’wrapped’ by the Facade.

Having identified this design pattern as applicable to my own situation, I

will now elaborate upon my implementation of this pattern to solve the design

problem at hand. This entailed the creation of a new class, which serves as a

facade.

3.5.1.2 The SchemaProcessor class

In order to retrieve the list of MO types that CSMMT requires, a multitude

of method calls must be performed upon the existing SFL. I realised that con-

centrating all of these method calls together in one place, in order to hide their

complexity and provide a single point of access to the functionality that was

required, would serve to simplify the CSMMT codebase. Classes that required

a list of MO types would only need to use the simple methods presented by the

facade, rather than performing a complex series of method calls directly upon

the SFL themselves.
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To fulfil the role of the facade, I created a new class named SchemaProcessor,

which wrapped the functionality of the SFL to perform CSMMT-specific func-

tions.

CSMMT Package

SchemaProcessor

getMoTypes ( schema : File )

XML Schema Processing Package

AbstractElement

AssociationAttribute

Child
Member

Mim

MoClass

Model NodeState

Struct

The SchemaProcessor

class acts as a facade for the

schema processing library.

Figure 3.8: The SchemaProcessor facade class

As depicted in Figure 3.8, the SchemaProcessor class provides a public

getMoTypes() method, which takes in the location of a schema definition file

as a parameter. When called, this method performs various method calls of

its own upon the underlying SFL, in order to perform all operations required

to compile a complete list of MO types that reside within the network model.

This complex sequence of operations is completely obscured from any client that

utilises the getMoTypes() method.
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3.5.1.3 Conclusion & Next Steps

With the SchemaProcessor class in place serving as a facade for the compli-

cated functionality of the SFL, a design problem had been solved. If I had not

implemented this pattern, I would have had to place many direct calls to the

SFL subsystem in the middle of other source code devoted to different tasks.

Although this would have been perfectly acceptable from a functional point of

view, from a design point of view it would have resulted in more convoluted,

less readable source code. It made far more sense to factor out this functionality

to a dedicated facade class.

I will now discuss a more substantial design problem that was encountered,

relating to the implementation details of the MO updater objects that were

described earlier.

3.5.2 Design Problem - The MO Updater Objects

As detailed at the beginning of the chapter, the main task of the CSMMT is to

deliver a series of four updates to every individual MO instance in the network

model. As determined during initial analysis, this was to be achieved by MO

updater objects. Most MO types would be worked on by a single MO updater

object, which would be responsible for iterating over all MO instances of that

type and updating them.

However, some outlier MO types with disproportionately large numbers of

instances in the network model would represent an exception to this rule, as

they would have several MO updater objects assigned to them, to facilitate

efficient multi-threaded execution.

Given that different behaviour is required in these two separate cases, it

was apparent that two distinct classes should be created. One variety of MO

updater would iterate over all instances of a given MO type, whereas the other

variety would target only a defined range of a MO type’s instances. These

approaches would be quite different programmatically, as the network model

would be interacted with in two different ways.

However, despite the differences between these two classes, they would also

share substantial common functionality: they would each carry out the same set

of updates upon individual MO instances in the network model. The difference

between the two classes lies in how they would carry out these updates. These

two classes represent interchangeable algorithms - although they carry out their

tasks differently, the end result is identical.

After taking the above considerations into account, it was apparent that a

particular design pattern covered during CS607 was applicable to this design

problem. I will now describe the theory behind the pattern.
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3.5.2.1 Solution: The Strategy Pattern

The strategy pattern[15] is classified as a behavioural design pattern, as it defines

a manner in which communication between classes or entities can be controlled.

Use of the strategy pattern enables creation of an interchangeable family of

algorithms, allowing any of the algorithms to be chosen for use at runtime.

Client Strategy

algorithm ( )

ConcreteStrategyA

algorithm ( )

ConcreteStrategyB

algorithm ( )

Figure 3.9: Strategy Pattern

I will now summarise the role of the classes from the pattern template de-

picted in Figure 3.9:

• The Client is a class that wishes to use an interchangeable algorithm.

In the template above, a field is present within the Client for holding a

strategy class instance. This field can be set at runtime depending upon

which algorithm the Client requires.

• The Strategy is an abstract class that contains all aspects of functionality

which are common among all of the interchangeable algorithms.

• The two ConcreteStrategy classes represent the actual interchangeable

algorithms. Common functionality among the algorithms is inherited from

the Strategy class, but the two ConcreteStrategy classes will carry out

their tasks in different ways. In practise, there may be two or more con-

crete strategies present.

A logical way to begin implementing this pattern was to first implement the

Strategy class from the above pattern template. I will now describe this new

class, as I implemented it initially.17

17My first implementation was not perfect, and left room for refinement. This would ulti-
mately lead to a new design problem, which will be discussed in Section 3.5.3.
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3.5.2.2 The AbstractMoUpdater class

I created the AbstractMoUpdater class to correspond with the Strategy class

depicted in Figure 3.9. This abstract class contains all functionality that is

common to all MO updater objects. In particular, the calls to each of the four

update methods18 that carry out updates upon individual MOs are situated in

this class.

«interface»

Callable<Result>

call ( ) : Result

AbstractMoUpdater

managedObjects : List<ManagedObject>

call ( ) : Result

applyUpdates ( mo : ManagedObject )

??? ???

Concrete MO updater

types to be added.

These will provide their

own distinct

implementations of the

call()  method, to

carry out MO updates

in different ways.

Figure 3.10: AbstractMoUpdater class, first implementation

As depicted in Figure 3.10, the class contains a call() method which has

been made abstract. This method, as the only public method in the class,

serves as the ignition key for each MO updater. When a MO updater reaches

the front of the threadpool queue and becomes active, this method is called,

signalling the MO updater to begin its work. Since this call() method is

declared abstract in the AbstractMoUpdater class, the concrete MO updater

18The exact location of these four update methods will be discussed later, in Section 3.5.4
(page 72).
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classes are obligated to provide their own implementations. This allows them

to distinguish themselves with their own unique approaches to carrying out the

MO updates required.

With the AbstractMoUpdater class in place serving the role of the Strategy

class from Figure 3.9, the next step was to implement the two concrete MO

updaters which would each constitute a ConcreteStrategy class in the context

of the strategy pattern.

3.5.2.3 Strategy #1: The StandardMoUpdater class

During execution of CSMMT, most MO types will have one MO updater as-

signed to updating their instances. Since this represents the more common,

standard approach to updating MOs within CSMMT, I chose the name of

StandardMoUpdater for the concrete strategy class that would perform this

work.

As this class inherits from AbstractMoUpdater, it is obliged to provide its

own implementation of the call() method, which is triggered automatically

by the threadpool when the MO updater reaches the front of the queue. I

populated this method with functionality that characterised the approach of

StandardMoUpdaters for carrying out updates upon MO instances:

1. Some querying is done upon the network model to access the MO type

that this StandardMoUpdater will work on.

2. An iterator is obtained for the collection of MO instances that are of the

MO type associated with this StandardMoUpdater.19

3. The MO updater iterates over every MO in the collection. For each

MO, it calls the applyUpdates method, which resides within the com-

mon AbstractMoUpdater class as depicted in Figure 3.10.

4. When finished updating MOs, the class returns a simple Result object to

indicate success or failure.

19Since this type of MO updater simply updates all instances of an MO type from start to
end, it does not need to refer to specific indexes in the collection of MO instances; an iterator
alone is sufficient.
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StandardMoUpdater

was the first concrete

MO updater type to be

implemented.

AbstractMoUpdater

managedObjects : List<ManagedObject>

call ( ) : Result

applyUpdates ( mo : ManagedObject )

«interface»

Callable<Result>

call ( ) : Result

???StandardMoUpdater

call ( ) : Result

Figure 3.11: StandardMoUpdater class, first implementation

Having implemented my first version of the StandardMoUpdater class as de-

picted in Figure 3.11, I now had one more concrete strategy class to implement:

the specialised MO updater type that would be targeted at outlier MO types

only.

3.5.2.4 Strategy #2: The RangedMoUpdater class

I created the RangedMoUpdater class to serve as the second and final MO up-

dater concrete strategy class. This type of MO updater would only be instanti-

ated for use upon outlier MO types, which would have several RangedMoUpdaters

dedicated to updating their large number of MO instances. The name for this
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class was chosen to indicate that each instance of this type of MO updater would

only update a limited range of MOs of a particular type, rather than updating

all of them as a StandardMoUpdater object would.

As with the StandardMoUpdater class, the RangedMoUpdater class is also

obligated to provide its own implementation of the call() method, which has

been declared abstract in AbstractMoUpdater. The following tasks are carried

out:

1. Some object database querying is done upon the network model to access

the MO type that this RangedMoUpdater will work on.

2. As well as having a MO type allocated to it, each RangedMoUpdater also

has a start and end index allocated to it, indicating the range of MOs

that this MO updater must update. Rather than using an iterator like a

StandardMoUpdater, a RangedMoUpdater instead targets specific indexes

within the range defined by the startIndex and endIndex integer values.

3. The MO updater traverses the range of MOs to be updated, passing each

of them into the applyUpdates method which resides in the common

AbstractMoUpdater class.

4. When finished updating MOs, the class returns a simple Result object to

indicate success or failure.20

20Notably, the first and last steps laid out here are identical to those which were described
for the StandardMoUpdater class. This suggested that some further work on these classes was
required, which I will elaborate upon shortly.
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RangedMoUpdater

was implemented to

handle outlier MO

types.

AbstractMoUpdater

managedObjects : List<ManagedObject>

call ( ) : Result

applyUpdates ( mo : ManagedObject )

«interface»

Callable<Result>

call ( ) : Result

RangedMoUpdater

call ( ) : Result

StandardMoUpdater

call ( ) : Result

Figure 3.12: Initial implementation of the MO updater classes

With the RangedMoUpdater class in place as shown in Figure 3.12, my first

implementation of the three crucial MO updater classes was in place, following

the template laid out by the strategy pattern.

3.5.2.5 Conclusion & Next Steps

My use of the strategy pattern enabled implementation of an elegant solution

for updating individual MOs within an network model. All common function-

ality for updating MOs resided in the AbstractMoUpdater class; this prevented

unnecessary code duplication, allowing both concrete classes to utilise this func-

tionality without having to reproduce it in their own classes. The two concrete
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classes which have been described, StandardMoUpdater and RangedMoUpdater,

serve as interchangeable algorithms which can be chosen by CSMMT at runtime,

as MO types are determined to be outliers or otherwise.

Furthermore, the strategy pattern allows for a great deal of future flexibil-

ity. Although I have implemented only two concrete MO updater strategies, I

(or another developer) could easily add more in the future, without modifying

the code of the any of the existing classes that were depicted in Figure 3.12.

This flexibility serves to emphasise the modularity that the strategy pattern

embodies.

My initial implementation of the the MO updater strategy classes was func-

tionally sound. However, I realised that some code was being duplicated at the

beginning and end of the call() method of each of the two MO updater strate-

gies. Although the amount of duplicated code was small, this was still a code

smell that signalled the need for refactoring. I will now describe the problem

in more detail, and the process of reasoning that led to a solution.

3.5.3 Design Problem - How to Avoid Code Duplication?

As described previously, each of the two MO updater strategies was obligated

to provide an implementation for the call() method, which was declared

abstract in the common AbstractMoUpdater class. This approach enabled

each of the two strategies to distinguish themselves from the other, by use of

different logic within the call() method. However, a shortcoming of this ap-

proach became apparent:

• At the beginning of the call() method for both strategies, code was

present for querying the network model to access a particular MO type.

• At the end of the call() method for both strategies, some code was

present to return a Result object.

In both cases, the code involved was identical across the two strategies.

I realised that in order to perfect the design of these strategy classes, I would

have to eliminate the duplicate code at the beginning and end of the two call()

methods. This code would have to be factored out to a single location that both

MO updater types could access. As an abstract class extended by both concrete

MO updater types, the AbstractMoUpdater class was the obvious candidate.

During the execution of CSMMT, when a MO updater reaches the front of

the threadpool queue and it is time for it to be executed, the call() method

of that MO updater is activated automatically, to signal the MO updater to

begin working. I had previously written this method into AbstractMoUpdater

as an abstract method, allowing the concrete MO updater types ’free reign’
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to provide their own implementations for the method. Although this approach

provided the functionality required, it also resulted in code being duplicated

across both MO updater types. I realised that a more structured approach

would be necessary, in order to eliminate this duplicate code from the design.

After consideration, I realised that by implementing another design pattern,

the template method pattern, I could achieve this more structured approach and

factor out the duplicate code. Crucially, this pattern could be applied without

any change to the current class structure. The class structure put in place by

my use of the strategy pattern suited my needs perfectly, so I did not want to

change it. It was the internal structure of the classes that I did want to change,

in order to facilitate reuse of code that would otherwise be duplicated.

3.5.3.1 Solution: The Template Method Pattern

The template method pattern[8], like the strategy pattern, is also classified as

a behavioural design pattern, since it defines a manner in which communication

between classes or entities can be controlled. The pattern lays out an approach

for defining basic algorithmic steps which are common among several concrete

classes. Not all concrete classes will share the same approach for all algorith-

mic steps, though. For algorithmic steps where differentiation is necessary, the

concrete types will be permitted free reign to provide their own unique imple-

mentations of these steps.

Algorithm

templateMethod ( )

performTask ( )

ConcreteAlgorithmA

performTask ( )

ConcreteAlgorithmB

performTask ( )

Figure 3.13: Template Method Pattern

I will now describe the classes and methods present in the pattern template

depicted in Figure 3.13:

• The Algorithm class is the abstract superclass of all concrete implemen-
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tations of a particular algorithm. Within this class, templateMethod()

represents the publicly accessible method called by other classes, in order

to set the algorithm in motion. The algorithmic steps which are common

regardless of which subclass is executing them are fully implemented in

this method.

• However, the algorithmic steps which vary by subclasses will not have any

implementation in this method at all. The performTask() method is an

example of an algorithmic step which varies by subclass. To allow the

concrete classes to implement their own functionality for this method, it

is declared abstract.

• At the appropriate point during the algorithm which is laid out in tem-

plateMethod(), the abstract performTask() method will be called.

This will enable one of the concrete classes to step in and perform its own

unique functionality, before returning control to the common algorithmic

steps defined in the templateMethod().

• Finally, the ConcreteAlgorithm classes are the concrete classes that

provide their own implementations for the performTask() method. This

enables them to provide their own distinct functionality as part of the

common algorithm defined in the templateMethod().

Next, I will describe how I applied the template method pattern as described

above, in order to solve the design problem at hand and eliminate the duplicate

code from my design.

3.5.3.2 Application of Template Method Pattern

During the execution of CSMMT, when a MO updater is activated within the

threadpool, the call() method is triggered. In my initial implementation, I

had left this method abstract, allowing the concrete MO updater strategies to

implement it themselves. I now realised that it would be better to have the

call() method serve an identical role to the templateMethod() from the

template method pattern. To accomplish this, I altered AbstractMoUpdater

so that the common algorithmic steps at the beginning and end of each MO

updater’s execution are now fully implemented in this class, instead of being

duplicated across the two concrete subclasses.

However, apart from these common steps, the StandardMoUpdater and

RangedMoUpdater MO updater types operate in different ways. I had to give

these concrete classes the opportunity to step in and provide their own unique

implementations for this non-common section of the algorithm. I provided this

opportunity with the new abstract updateMOs() method in AbstractMoUpdater.
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After the common initial algorithmic steps have been carried out by the

call() method, the updateMOs() method is then called. Since this method

has no implementation in the abstract superclass, the implementation provided

by the applicable concrete type - StandardMoUpdater or RangedMoUpdater -

is used. Once the MOs have been updated and this non-common part of

the algorithm is over, control returns to the call() method situated in the

AbstractMoUpdater class, which contains the common conclusion of the algo-

rithm (the return of a Result object).

The final implementation of these three classes, with the template method

pattern applied in addition to the strategy pattern, is depicted in Figure 3.14.

AbstractMoUpdater

managedObjects : List<ManagedObject>

call ( ) : Result

applyUpdates ( mo : ManagedObject )

updateMOs ( moInstances : List<ManagedObject> )

«interface»

Callable<Result>

call ( ) : Result

StandardMoUpdater

updateMOs ( moInstances : List<ManagedObject> )

RangedMoUpdater

updateMOs ( moInstances : List<ManagedObject> )

call()  is now implemented

by AbstractMoUpdater ,

rather than being left abstract.

It is a template method .

A new method,

updateMOs , is left

abstract. It is called by

the template method.

The concrete MO updater types now do

not implement call()  themselves.

Instead, they provide their own

implementations for updateMOs .

Figure 3.14: Template method pattern and strategy pattern used together

3.5.3.3 Conclusion & Next Steps

My initial implementation of the three MO updater classes with the strategy

pattern had provided the required functionality, with a considerable amount
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of common functionality residing in the AbstractMoUpdater class (such as the

applyUpdates() method, which was called by each of the concrete MO updater

types during their update process). However, with some duplicate code resid-

ing within each of the two concrete types, I realised that there was room for

improvement. Subsequent application of the template method design pattern

served to eliminate duplicate code from this aspect of the CSMMT design.

From a design perspective, the three classes as they are depicted in Fig-

ure 3.14 represent a clear improvement over the implementation depicted in

Figure 3.12 (page 67). The new updateMOs method allows extension of the

AbstractMoUpdater class to be performed in a very controlled way: the concrete

MO updaters are only permitted to implement functionality which is unique to

them.

Furthermore, this final approach is easier to understand than the initial

approach, and therefore easier to maintain by future developers. By looking at

the call() method within AbstractMoUpdater, a developer can see a high-level

overview of the MO updater algorithm. Since the call() method embodies the

template method that gives the template method pattern its name, it lays out

a complete algorithmic skeleton from start to finish, deferring implementation

details to concrete types only when necessary.

With this work completed, the infrastructure for accessing every MO in-

stance in the network model through use of MO updaters was now in place.

However, one final mechanism was required for performing the MO update work

triggered by the MO updaters - the mechanism that would be triggered each

time a MO updater called the applyUpdates() method upon a particular MO.

Access to private MO data would be required to carry out each of the four indi-

vidual updates that CSMMT is responsible for. While looking into this design

problem, I realised that this would be trickier to achieve than it first appeared.

3.5.4 Design Problem - How to Access Internal MO Data?

In order to apply updates to each individual MO instance, the MO updaters

would require access to private data fields stored within each MO instance.

No ’getter’ and ’setter’ methods existed for these private fields, since external

access to these fields from other Java classes has never before been required in

the history of the Configuration Service.

This posed a critical design dilemma, because the MO updater objects would

have to access this internal data somehow, in order to migrate the metadata

within each MO from one data structure to another. It was apparent that in

order to carry out this work, I would have to make careful modifications to the

design of the CS itself, since the ManagedObject class resides within the CS.
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This class is particularly critical to the operations of the CS; I would have to

modify it with great care.

I realised that there were several approaches that I could take in order to

carry out these needed modifications, providing CSMMT with access to internal

MO data.

3.5.4.1 Approach #1: Updating ’In-Situ’

The CSMMT update methods could be placed directly within the ManagedObject

class. These update methods, triggered by the applyUpdates() method within

each MO updater, would be able to access the private data held within each

MO by virtue of being situated inside the same class. This would remove the

need for the addition of any ’getter’ or ’setter’ methods.

However, it was immediately obvious that this option would constitute a very

poor design decision. The update methods supply CSMMT functionality, not CS

functionality. Therefore, they belong somewhere within the jurisdiction of the

CSMMT application, not directly within a core CS class as depicted in Figure

3.15. Only fundamental MO functionality belongs within the ManagedObject

class. CSMMT-specific functionality, in addition to being out of place, would

also serve to ’bloat’ the class, rendering it more difficult to understand and

maintain.

CS Package CSMMT Package

ManagedObject

... ( )

performCSMMTUpdate1 ( )

performCSMMTUpdate2 ( )

performCSMMTUpdate3 ( )

performCSMMTUpdate4 ( )

... ( )

AbstractMoUpdater

applyUpdates ( mo : ManagedObject )

StandardMoUpdater RangedMoUpdater

This approach was rejected . CSMMT methods do not belong in ManagedObject .

Figure 3.15: Approach #1 - This design idea was rejected.

With this approach quickly ruled out, I moved on to considering an alterna-

tive approach.

3.5.4.2 Approach #2: Public Getters and Setters

I considered the possibility of adding public getter and setter methods to the

ManagedObject class, which could then be utilised by CSMMT to access the pri-
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vate data structures that had to be updated. This represented an improvement

upon the previously considered approach in that the functionality for carrying

out the updates would reside entirely within CSMMT classes; the only modifi-

cation to the ManagedObject class would be the addition of simple getter and

setter methods.

However, this approach still did not seem ideal. The aforementioned data

structures, up to this point, have been entirely internal to each MO instance,

with no external access available whatsoever. Providing universal access to

them to any other Java class through public methods, as depicted in Figure

3.16, did not seem like a good idea. Although I wanted CSMMT to be able

to read and set these data structures, I also wanted to limit this access to the

greatest degree possible, as minimisation of access to members of a class is

considered a key tenet of effective object-oriented programming.21

CS Package

CSMMT Package

ManagedObject

... ( )

getPrivateData1 ( )

setPrivateData1 ( ... )

getPrivateData2 ( )

setPrivateData2 ( ... )

getPrivateData3 ( )

setPrivateData3 ( ... )

getPrivateData4 ( )

setPrivateData4 ( ... )

... ( )

AbstractMoUpdater

applyUpdates ( mo : ManagedObject )

performCSMMTUpdate1 ( mo : ManagedObject )

performCSMMTUpdate2 ( mo : ManagedObject )

performCSMMTUpdate3 ( mo : ManagedObject )

performCSMMTUpdate4 ( mo : ManagedObject )

StandardMoUpdater RangedMoUpdater

This approach was rejected . The public getters and setters provide global

access to ManagedObject metadata. Access should be more tightly controlled.

Figure 3.16: Approach #2 - This design idea was rejected.

With this concept of minimisation of access in mind, I moved on to consid-

ering another approach.

3.5.4.3 Approach #3: Package-Level Access

The previous approach would have been ideal, were it not for the fact that

it would provide excessive access to internal MO data by making the getter

and setter methods public. To resolve this problem of excessive access, I con-

21”The rule of thumb is simple: make each class or member as inaccessible as possible. In
other words, use the lowest possible access level consistent with the proper functioning of the
software that you are writing.” - Joshua Bloch, Effective Java[3]
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sidered the possibility of making these methods package-private instead. This

would allow access to the internal MO data that CSMMT had to update, but

it would only permit access to classes that resided within the same package as

ManagedObject.

In terms of minimisation of access, this approach seemed to be the best

choice among those that I had considered. Of course, for this approach to

work, I would need to create an entirely new class in the same package as

ManagedObject. This class would contain functionality for utilising the get-

ter and setter methods which had been added to ManagedObject, in order to

perform updates upon individual MO instances. The applyUpdates() method

within each MO updater would access the functionality of this new class, us-

ing it as an intermediary between the core CSMMT classes (which reside in

their own package) and the ManagedObject class. This concept is illustrated in

Figure 3.17, with the to-be-implemented intermediary class shown as ”???”.

CS Package

CSMMT Package

ManagedObject

... ( )

getPrivateData1 ( )

setPrivateData1 ( ... )

getPrivateData2 ( )

setPrivateData2 ( ... )

getPrivateData3 ( )

setPrivateData3 ( ... )

getPrivateData4 ( )

setPrivateData4 ( ... )

... ( )

AbstractMoUpdater

applyUpdates ( mo : ManagedObject )

StandardMoUpdater RangedMoUpdater

This approach represented a better design choice  than the previous two.

Access to private ManagedObject metadata is available, but only to classes

in the same package; the getters and setters are now package-private .

???

performCSMMTUpdate1 ( )

performCSMMTUpdate2 ( )

performCSMMTUpdate3 ( )

performCSMMTUpdate4 ( )

A new "intermediary" class would be created in the

CS package, to update individual MO instances.

Figure 3.17: Approach #3 - This design idea was chosen for implementation.

I considered how the intermediary class would work. In my discarded first

approach, I had considered the possibility of placing CSMMT update methods

directly within the ManagedObject class. This idea was not feasible; however,

there was no reason why these same update methods could not reside within the

75



intermediary class instead. In fact, this idea could be taken further: the interme-

diary class could serve as an embellished version of the original ManagedObject

class, which would supply some extra functionality that ManagedObject itself

did not. After all, my true goal was to add some CSMMT-specific functionality

to the ManagedObject class, without placing it directly inside that class.

I realised that this apparent contradiction could be resolved through appli-

cation of a powerful design pattern - the decorator pattern. I will now describe

the theory behind the pattern, and my subsequent implementation of it to solve

the design problem.

3.5.4.4 Solution: The Decorator Pattern

The decorator pattern[11] is classified as a structural design pattern, as it de-

fines a manner in which relationships can be created between classes or entities.

This pattern allows the functionality of existing classes to be altered or embel-

lished at runtime. This is achieved by wrapping the class with a new decorator

class, which ’decorates’ the wrapped class with differing or new functionality.

A template for this pattern is depicted in Figure 3.18.

AbstractComponent

operation ( )

ConcreteComponent

operation ( )

AbstractDecorator

component : AbstractComponent

Decorator ( component : AbstractComponent )

ConcreteDecorator

operation ( )

extraOperation ( )

Figure 3.18: Decorator Pattern

The roles of the classes and methods depicted in the pattern template are

as follows:

• The AbstractComponent class is the superclass of the component that

is being decorated. This may be take the form of either an abstract class
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or an interface.

• The ConcreteComponent class represents the specific class that is being

decorated.

• The AbstractDecorator class is extended by the concrete decorator.

Since it inherits from AbstractComponent, it can be used in place of

the component that is being decorated. As a result, the concrete decorator

is rendered interchangeable with the decorated object itself. Within this

class, a constructor is present that takes in an AbstractComponent

as its parameter. This parameter represents the AbstractComponent

instance that will be wrapped by the decorator.

• The ConcreteDecorator class provides the new or altered functional-

ity that is being applied to the wrapped class. Within this class, the

additionalOperation() method represents an extra operation that the

decorator ’adds’ to the wrapped object.

Since my goal was to embellish the ManagedObject class with CSMMT up-

date functionality without adding CSMMT methods directly into ManagedObject

itself, I realised that the decorator pattern as described above represented an

ideal approach for tackling this design problem. The next step was to implement

the new classes that were required.

3.5.4.5 The ManagedObjectDecorator and CSMMTDecorator classes

The new ManagedObjectDecorator class, depicted in Figure 3.19, represents

an analogue of the AbstractDecorator class shown in the design pattern tem-

plate. The constructor allows a MO instance to be taken in, which is then

wrapped by a decorator.

The key class to my implementation of this design pattern is the concrete

decorator class, CSMMTDecorator. Each instance of this decorator class wraps

around a MO instance, and enables the four update methods contained within

the decorator to be executed upon that MO instance. The applyUpdates()

method contained within each MO updater calls these four update methods

residing in CSMMTDecorator in sequence. Since CSMMTDecorator resides in the

same package as the ManagedObject class, it is capable of utilising the newly-

added package-level access methods present in the ManagedObject class, in order

to retrieve and set internal MO metadata.
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CS Package

«interface»

InternalManagedObject

ManagedObject

ManagedObjectDecorator

managedObject : ManagedObject

ManagedObjectDecorator ( managedObject : InternalManagedObject )

CSMMTDecorator

CSMMTDecorator ( mo : ManagedObject )

performCSMMTUpdate1 ( )

performCSMMTUpdate2 ( )

performCSMMTUpdate3 ( )

performCSMMTUpdate4 ( )

The newly added

ManagedObjectDecorator

and CSMMTDecorator

classes allow

ManagedObject instances

to be decorated  with CSMMT-

specific functionality.

The ManagedObject class

implements this pre-existing

interface. To conform with

the decorator pattern ,

ManagedObjectDecorator

must implement the interface

as well.

decorates

Figure 3.19: CSMMTDecorator embellishes the ManagedObject class

The new CSMMTDecorator class as depicted in Figure 3.19 represents an in-

termediary between MO updaters (StandardMoUpdater and RangedMoUpdater),

and each MO instance. With this critical class in place, all necessary infrastruc-

ture was now in place for delivering updates to individual MO instances. This

use of CSMMTDecorator by MO updater types is depicted in Figure 3.20.
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CS Package

CSMMT Package

ManagedObject

... ( )

getPrivateData1 ( )

setPrivateData1 ( ... )

getPrivateData2 ( )

setPrivateData2 ( ... )

getPrivateData3 ( )

setPrivateData3 ( ... )

getPrivateData4 ( )

setPrivateData4 ( ... )

... ( )

AbstractMoUpdater

applyUpdates ( mo : ManagedObject )

StandardMoUpdater RangedMoUpdater

CSMMTDecorator

CSMMTDecorator ( mo : ManagedObject )

performCSMMTUpdate1 ( )

performCSMMTUpdate2 ( )

performCSMMTUpdate3 ( )

performCSMMTUpdate4 ( )

Figure 3.20: CSMMTDecorator is utilised by all MO updater types

3.5.4.6 Conclusion & Next Steps

Use of the decorator pattern enables the dynamic addition of behaviour to

objects at runtime. In this instance, it constituted an ideal solution to the design

problem that I had encountered. By wrapping individual MO instances with the

CSMMTDecorator, the CSMMT application is able to treat these wrapped objects

as embellished MO instances, which contain additional functionality required

by CSMMT to carry out its updates, but also contain all methods than a MO

instance would normally contain.

The application of the decorator pattern described above represented a land-

mark in the development of CSMMT. With the MO updater classes present, and

the CSMMTDecorator in place to enable full access by CSMMT to internal MO

metadata, a complete delivery system was now in place for the updates that

CSMMT would have to deliver as its main task.

However, one last design problem remains to be described. In order for

CSMMT to take advantage of the functionality made available by the MO up-

dater objects, it would first need to create them. I will now discuss this final

design problem, of which the solution would share some similarities to one which

I had implemented during my previous work on Cslibtest.
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3.5.5 Design Problem - Creating the Updater Objects

After processing the schema to glean a list of MO types present in the network

model, and instantiating an ExecutorService threadpool to accommodate the

MO updater objects, CSMMT has to carry out one final step before the MO

updaters can carry out their work: the required MO updaters have to be created.

This creation process must be capable of creating objects of two different con-

crete MO updater types. It was apparent that creation of a StandardMoUpdater

would be relatively simple: a MO type would be chosen from the list of MO types

which had not yet been assigned an MO updater, and a StandardMoUpdater

would then be created, with the unassigned MO type passed into its construc-

tor. When this MO updater is later activated by the call() method, it will

update all instances of its assigned MO type.

However, creation of RangedMoUpdaters would be more complicated. To

properly handle an outlier MO type, multiple RangedMoUpdaters would have

to be assigned to that MO type. Each would have to be assigned a specific

range of MO instances to update, so that between all of the RangedMoUpdaters

assigned to an outlier MO type, all of the instances of that type would be

updated between them.

After considering the above, I concluded that a particular design pattern that

I had utilised previously in the Cslibtest project - the factory method pattern -

was applicable to this design problem. I will now describe my implementation

of this final design pattern.

3.5.5.1 Revisited Solution: The Factory Method Pattern

The factory method pattern previously provided me with a solution for manu-

facturing different types of objects while I was working on the Cslibtest appli-

cation. In the case of Cslibtest, these objects were Cslibtest command objects.

With CSMMT, the objects to be manufactured were MO updater objects. De-

spite these differences, the basic principles behind the creation process remain

the same for both applications; therefore, the same design pattern is equally

applicable to both of them.

Since I have previously discussed the template for the factory method pattern

in section 2.6.2.1 (page 33), I will not reiterate it here. Instead, I will move

directly to explaining my application of this design pattern to the CSMMT

application, with the creation of the new MoUpdaterFactory class.

3.5.5.2 The MoUpdaterFactory class

To implement the factory method pattern, I created the new MoUpdaterFactory

class, which contains the createMoUpdaters factory method. This method
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takes in two parameters:

1. An MO type. This MO type is assigned to the MO updater(s) returned

by a single call of the createMoUpdaters method.

2. An integer value, indicating the number of MO updaters re-

quired for the given MO type. This value is set to 1 for most MO

types, indicating that only a single StandardMoUpdater is required. A

value greater than 1 indicates that an outlier MO type had been passed

into the method, to which multiple RangedMoUpdaters must be assigned.

AbstractMoUpdater

StandardMoUpdater RangedMoUpdater

MoUpdaterFactory

createMOUpdaters ( MO Type ) : List<AbstractMoUpdater>

The MoUpdaterFactory  class is

solely responsible for the creation

of MO updater objects.

creates creates

Figure 3.21: The MoUpdaterFactory class

If the integer value is set to 1, a StandardMoUpdater is instantiated for

the supplied MO type, and returned. However, if the integer value is greater

than 1, several steps are followed by the factory method to ensure that an even

distribution of work is achieved among the RangedMoUpdaters to be created.

The following steps enumerate the process of creating RangedMoUpdaters for a

given MO type:
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1. The exact number of instances of the outlier MO type is determined, by

use of a specialised object database query to the network model.22

2. Computations are performed to determine a start and end index for each

of the RangedMoUpdaters to be created, which results in each MO updater

being responsible for the same number of instances.

3. The RangedMoUpdaters are each instantiated with a pair of start and end

indexes, drawing from the computation performed in the last step.

4. Finally, the new RangedMoUpdaters are all returned in a collection.

With the new MoUpdaterFactory class in place, a comprehensive mechanism

for creation of specialised MO updaters was now in place for CSMMT to access

at the beginning of its execution.

3.5.5.3 Conclusion

The factory method pattern, already of use during my work on Cslibtest, proved

to be useful for a second time during my work on CSMMT. By example, this

served to emphasise the broad applicability of design patterns such as the fac-

tory method pattern; although Cslibtest and CSMMT are entirely different

applications, the same design pattern proved readily applicable to both.

The individual assemblies of classes which work together to provide the func-

tionality required for carrying out CSMMT’s main task, and the design patterns

that inspired the structure of these assemblies, have each been explored in isola-

tion. I will now summarise the execution of the CSMMT as a whole, illustrating

the role of each of these assemblies as modular components of the CSMMT ap-

plication. To this end, I will describe the class I developed to coordinate the

activities of CSMMT and provide a point of entry to the application: the aptly-

named CSMMT class.

3.5.6 Overall Execution of CSMMT - the CSMMT class

The CSMMT class, named after the application in line with naming conventions

within the CS, leverages all of the classes that have been described thus far in

order to update a single network model at a time. To describe the operation

of this class, I will provide an overview of each step of the algorithm that it

executes.

The following series of steps takes place when CSMMT is executed upon a

network model:
22This computationally expensive counting operation represents a downside of the

RangedMoUpdater approach. However, the improved thread utilisation gleaned from their
use makes up for this disadvantage.
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1. A schema definition file is processed, in order to compile a list of MO

types which have instances in the network model. To achieve this, the

CSMMT class utilises the SchemaProcessor class. As an implementation of

the facade pattern, the SchemaProcessor class facilitates this schema

processing by presenting a simplified point of access to a complicated

schema processing library that resides within the CS.

2. Analysis is performed upon the number of instances of each MO type,

to determine whether any outlier MO types with a disproportionately

large number of instances are present. If an outlier type is present, a

number greater than 1 is associated with that MO type, indicating the

exact number of MO updaters that have been deemed necessary for this

MO type23 based upon the number of instances present.

3. The list of MO types is traversed. For each MO type in the list, a

call is made to the createUpdaters() factory method present within

MoUpdaterFactory, which represents an instance of the factory method

pattern. This class provides a centralised point of creation for all MO

updaters used during CSMMT’s execution.

4. As new MO updaters are obtained from the factory method, they are

compiled into a single collection of AbstractMoUpdaters. This class and

the two concrete MO updater types collectively represent a combination

of the strategy pattern and template method pattern. The synergy

between these two patterns provides the benefits of interchangeable algo-

rithms which can be selected at runtime, coupled with greater code reuse

and the elimination of duplicate code.

5. An ExecutorService threadpool is created, and the entire collection of

AbstractMoUpdaters is submitted to the threadpool queue. A limit is

defined as to how many of these MO updaters will be active at once, so as

not to overwhelm system resources with too many threads. The remaining

MO updaters will queue, becoming active within the threadpool as other

MO updaters finish updating their assigned MO instances and terminate.

6. Within the threadpool, each MO updater accesses the MO instances that

it is responsible for updating. It decorates these MO instances with the

CSMMTDecorator class. This use of the decorator pattern allows the

ManagedObject superclass held within the CS to be embellished with

metadata update methods that CSMMT requires. These methods are

23The more instances that are present in the outlier MO type, the greater the number of
MO updaters that will be allocated to it, in order to ensure efficient multithreaded execution
of CSMMT.
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called by the MO updaters in order to perform the required updates upon

each individual MO instance.

7. As MO updaters finish their work, they return Result objects which are

compiled into a collection within the CSMMT class. When all MO up-

daters have finished working, the collection of Results is iterated over

and checked. If no failures are found, this indicates that CSMMT has

performed its work successfully, and the network model is now fully up

to date. If failures are found, CSMMT will terminate with a descriptive

error message.

The above steps encompass all of the CSMMT implementation aspects that

were discussed in detail throughout this chapter. By leveraging the capabilities

of these classes, the CSMMT class carries out the main task of the application

in its entirety.

Although it did account for the majority of my time spent on the project,

development of the CSMMT application itself did not comprise the entirety of

my work on the project. I was also responsible for putting together an extensive

suite of automated black-box tests for CSMMT. I will now describe the structure

and operation of this automated test suite, and the role that it played during

the development of CSMMT.

3.6 Automated Testing of CSMMT

While working on the CSMMT implementation, I was also responsible for de-

veloping an automated test suite to accompany the application. This test suite

functions as a comprehensive series of black box tests, which can be executed

at any time in order to determine whether or not CSMMT is carrying out all of

its metadata updates correctly. I will now describe the layout of this test suite

in more detail.

3.6.1 Series of Steps

Early in the development of these tests, I realised that in order to test the

functionality of CSMMT effectively, several steps would need to be carried out

in order. The steps are as follows:

1. A new ’dummy’ network model is created and initialised, in order to ensure

that each test run is entirely isolated and independent of any other test

runs.
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2. The network model is populated with some MOs for CSMMT to up-

date. This is achieved by a new Java class that I developed, named

PopulateDatabase. The class makes use of existing CS functionality to

create each MO individually within the network model. Special care is

taken to create these MOs in ’pre-update’ format, without any new data

structures present in ManagedObject.

3. Some Java code is then used to iterate over every MO in the network

model, in order to record the metadata contents of the old data structures.

After CSMMT, this recorded data is checked against the contents of the

new data structures, ensuring that no data has been lost or corrupted

during the execution of CSMMT.

4. CSMMT is then executed upon the network model.

5. After a successful execution of CSMMT24, an extensive suite of JUnit tests

is then executed upon the current state of the CS metadata within each

MO instance, to ascertain whether or not it has been migrated correctly.

6. Upon completion of its tests, the JUnit test suite records its test results

to an XHTML document and terminates.

This series of steps encompasses a wide variety of actions. When I was

designing the test suite, it was readily apparent to me that it would be undesir-

able (and entirely impractical) to have to execute each individual step manually

upon each test run. In order to be useful, this test suite would have to be fully

automated. Having made use of existing Apache Ant scripts during my work

placement prior to this point, I knew that Apache Ant represented an ideal tool

for this task.

3.6.2 Automated Execution via Apache Ant

Apache Ant is widely used for numerous code compilation and testing tasks

within Ericsson. Upon examination of the XML scripts that Ant uses, and

some of the scripts written by my colleagues for other tasks, I realised that such

a script would be ideally suited to the series of steps that I wanted to carry out

in order to test CSMMT.

Since Apache Ant supplies dedicated functionality for launching JUnit test

suites, I leveraged this feature to compile the complete test sequence that I pre-

viously described into a new Ant script. In Figure 3.22, the high-level structure

24If CSMMT produces a non-zero exit code indicating failure, the test sequence aborts prior
to any JUnit tests being executed.
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of the series of operations that I implemented into an Apache Ant XML script

is graphically depicted.

MetadataMigrationTool_TestSequence

Create a new

network model

for testing.

Populate the model with

some 'legacy' MOs for

CSMMT to update.

Record the

metadata initially

stored in each MO.

Execute CSMMT upon the network model.

Exit Code 0?

Execute JUnit tests. They

will compare the recorded

metadata contents with

the metadata that is now

present in each MO

instance.

Tests pass?

Metadata was

migrated correctly;

CSMMT was

successful.

Record details of the test failures.

A non-zero exit code

indicates that CSMMT has

failed. Provide a stack

trace and abort test

sequence.

Start of test sequence.

End of test sequence.

noyes

yes

no

Figure 3.22: CSMMT automated test sequence

With this structure integrated into a reusable Apache Ant XML script, I
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was able to execute all of the steps described in Section 3.6.1 with a single com-

mand. This allowed for comprehensive, repeatable testing of the functionality

of CSMMT throughout the development process, which proved to be extremely

useful for pinpointing aspects of the application which were not functioning

properly.

In particular, these tests proved to be very useful for regression testing of

the CSMMT source code.

3.6.3 Regression Testing

On numerous occasions late in CSMMT’s development, I made changes to the

CSMMT source code to improve non-functional qualities of the code (such as

code reuse and elimination of duplicate code) without any intention of affecting

the actual functionality of CSMMT. However, on multiple occasions, I inadver-

tently disrupted the functionality of CSMMT while carrying out these changes,

even though no errors were detected upon compilation of the source code.25

By rigorously executing my test suite after each change I made to the source

code, I was able to immediately detect subtle glitches in the application that

had been inadvertently introduced by my changes. The reports that the test

suite generated allowed me to quickly track these problems down and rectify

them. After fixing the problem in the source code that the test report had led

me to, I would then compile a new version of the source code and execute the

automated test suite again. This subsequent execution of the same set of tests

would then verify whether or not I had solved the problem.

Without the presence of this automated test suite, the regular regression

testing that I performed throughout the development of CSMMT would not

have been possible.26 As a facility for carrying out this regular regression testing

quickly and easily, the automated test suite that I had developed alongside

CSMMT proved to be indispensable on many occasions.

3.6.4 Conclusion

The JUnit Framework, covered during the CS608 module (Software Testing),

proved to be very useful in carrying out individual tests upon the metadata

stored within each MO instance after CSMMT had been executed. However,

Apache Ant scripts made the automated execution of the test sequence depicted

25Any code refactoring, though beneficial in terms of the superior code that it produces,
can also result in the accidental introduction of subtle bugs.[6] Through regular regression
testing, these bugs can be found and fixed quickly.

26Without these regular regression tests, any run-time errors introduced to CSMMT through
minor changes to the source code might have gone undetected for some time, becoming more
and more difficult to track down and fix as additional changes were made to the source code
thereafter.
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in Figure 3.22 possible. The functionality offered by these scripts proved to be

invaluable in enabling me to rapidly implement the automated series of testing

steps that I wanted to execute regularly upon CSMMT.

My automated test suite was utilised heavily throughout the development

of CSMMT. At several points during development of the application, some of

the metadata migrations that CSMMT is responsible for were being carried out

successfully, whereas others were not. Use of the automated test suite enabled

me to pinpoint exactly which areas of the code were failing; this was of great

assistance to me in tracking down problems within CSMMT’s source code and

resolving them quickly.

Eventually, all of the tests in my test suite passed for the first time, indicating

that CSMMT was carrying out the entirety of its main task correctly. After this

point, the automated test suite continued to be extremely useful as a facility

for regression testing of the CSMMT source code as minor changes and tweaks

were made.

3.7 Project Outcome

At the outset of the project, the requirements specified that CSMMT would

have to be capable of updating millions of MOs residing inside a network model

within a tightly constrained time window, if the project were to be deemed a

success. Efficient multithreaded execution, and measures to ensure maximum

thread utilisation throughout, proved to be instrumental factors in enabling

CSMMT to reach this target.

As with my previous work on Cslibtest, design patterns played a key role

in this project as well. Rather than having to re-invent the wheel each time I

encountered a familiar design problem, I was able to draw upon existing knowl-

edge, acknowledged and accepted throughout the software engineering field, of

applicable solutions to these problems. The presence of these templates allowed

me to quickly identify suitable class structures for CSMMT, which afforded

me more time for developing and tweaking the code. Furthermore, use of these

design patterns helped me to put together a readily understandable, highly mod-

ular, loosely coupled codebase. These characteristics should make life easier for

other developers who wish to maintain or modify the CSMMT application in

the future.

Prior to delivery of CSMMT, the code was reviewed in a similar manner

to Cslibtest. The comments made by the reviewers did not suggest any seri-

ous problems; some very minor structural issues were identified in a handful

of classes, in addition to a handful of methods that had no Javadoc informa-

tion associated with them. These small issues were rapidly resolved, and the
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application was deemed ready for deployment.

With the successful conclusion of the CSMMT project, a new update pack-

age has since been delivered, both within Ericsson and to Ericsson customers

around the world. This package includes the new CSMMT application, and a

mechanism for automatically executing it upon network models that require a

metadata migration update.
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Chapter 4

Conclusions

4.1 Software Engineering Techniques

I will now briefly discuss, based upon my own experiences, my conclusions upon

several aspects of software engineering that have been discussed during this

dissertation in the context of two substantial software projects.

4.1.1 Conclusions on Design Patterns

As demonstrated by my project work at Ericsson, use of design patterns for ap-

propriate design problems can dramatically accelerate the software development

process. Many of the problems that I encountered, both with the Cslibtest and

CSMMT projects, would have been considerably more time-consuming to solve

if I did not have proven design patterns to refer to and utilise.

My prior exposure to the theory and practise of design patterns during my

M.Sc. coursework enabled me to recognise the patterns applicable to particular

design problems very quickly. This was of great benefit to me during my work

placement, and would undoubtedly be of benefit to other software engineers

as well. In addition to enabling me to implement design patterns in my own

projects, my knowledge of patterns has allowed me to better understand areas

of the Configuration Service that were written by other developers with heavy

use of design patterns.

As I discovered during my work placement, it can often to be beneficial to

’think outside the box’ in terms of the application of design patterns. On multi-

ple occasions, I have found distinct benefits to be associated with applying more

than one design pattern to the same set of Java classes. The most prominent

example of this arose during my work on CSMMT, when I realised that code

duplication could be eliminated by implementing the template method pattern
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in combination with the strategy pattern. It is clear that the modularity of

design patterns enables them to be productive not only individually, but also

when used together. Application of one design pattern to a particular set of

classes does not necessarily preclude the application of additional patterns.

4.1.1.1 The Future of Design Patterns

Design patterns will continue to be useful to software engineers in the future.

However, as newer programming languages become more widely used, new pat-

terns may emerge, and the implementation of existing patterns may change or

be replaced entirely with native language support. As is the case with many

aspects of the software development industry, software engineers will have to

learn and adapt in order to keep pace with changes that occur.

For instance, the multi-paradigm Scala programming language is gaining in

popularity, having recently been adopted by Twitter to power the backend of

their popular microblogging service.[27] It is necessary to re-evaluate several

popular design patterns in the context of Scala. For example:

• Scala supports pattern matching [20], which provides a native equivalent

of the visitor design pattern[16].

• Scala’s companion objects[22] provide a native equivalent of the singleton

design pattern[10].

• The strategy design pattern which I used in my own work (as discussed

on page 62) is unnecessary in Scala, where functions are represented as

first-class objects[21]. Since such functions can serve as strategies and are

treated as objects, it is unnecessary to create entire classes to encapsulate

individual strategies, as is the case in Java.

Although the aforementioned design patterns are highly relevant for Java

designers as distinct constructs in source code (as has been the case in my

own work at Ericsson), they have effectively been subsumed into the Scala pro-

gramming language and are facilitated by native features of the language. As

programming languages continue to evolve, design patterns will evolve as well.

4.1.2 Conclusions on Code Reviews

Any software project, irrespective of its size1, will benefit greatly from regular

code reviews by observant software developers. During both of the projects

1On the CS Design Team, even miniscule alterations to pre-existing code are reviewed
by at least one team member prior to delivery. Problems have been detected with small
modifications on a number of occasions.
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discussed in this dissertation, code reviews performed by my colleagues resulted

in detection of issues that may otherwise have been missed. When I performed

code reviews upon the work of my colleagues, I also detected issues that other-

wise may have been missed.

It is worth emphasising that code reviews do not constitute a ’magic bullet’;

some faults may be missed by code reviews, as I observed on a couple of occasions

during my placement.2 However, the execution of thorough code reviews is

virtually guaranteed to substantially reduce the number of faults in a software

product. In combination with other techniques, such as software testing, code

review represents a vital technique to be employed by any software development

team in order to ensure that each finished product is of the highest quality

possible.

4.1.3 Conclusions on Software Testing

A comprehensive suite of automated software tests is akin to a safety net for

software engineers, catching faults and ensuring that they can be resolved prior

to the delivery of a software product. During my placement, software testing

was a particularly prominent aspect of the CSMMT project. Without the JUnit

test suite that I produced, numerous faults in earlier versions of my code would

surely have gone undetected for some time. If such faults had gone undetected

during code review as well, it is conceivable that they could have remained

present in the delivered product, resulting in the need for troublesome fixes

later.3

As demonstrated during Section 3.6 (Automated Testing of CSMMT ), the

critical importance of this software engineering subdiscipline was validated by

my own experiences at Ericsson. The detection and repair of problems in

CSMMT by use of testing tools and techniques not only prevented severe issues

from being present in the delivered product, but also accelerated the develop-

ment process by enabling each problem to be tracked down and fixed rapidly.

Even the most comprehensive software testing can never guarantee the total

absence of faults.[24] However, as is the case with code review, testing provides

the assurance of fewer faults reaching the delivered product intact. Given the

importance of software testing during the development process, my prior expo-

sure to software testing techniques during my M.Sc. course proved advantageous

on many occasions during my work placement. Based upon my own experience,

2On one occasion, a highly significant fault in some recently-altered CS code was missed,
despite a thorough code review being performed. Thankfully, a comprehensive series of tests
performed by a separate testing team detected the problem prior to delivery.

3As intuition would suggest, a problem detected earlier in the development process is
considerably less costly to fix than a problem detected in the later stages.[25]
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I believe that a solid grounding in the principles and practises of software testing

is vital knowledge for any software engineer to possess.

4.1.4 Conclusions on Code Refactoring

Code refactoring proved to be necessary on both the Cslibtest and CSMMT

projects, despite their differing nature. Cslibtest involved the modification of

pre-existing code, and the need for code refactoring of this legacy codebase was

apparent. However, habitual examination and refactoring of newly-written code

is highly beneficial, as well, since it is very difficult to write perfectly structured

source code on the first attempt. As a key example, my observation of code

duplication in CSMMT led to significant refactoring of source code that I had

written. This involved the introduction of a new design pattern, resulting in

the combination of strategy and template method patterns that was described

previously.

Although code refactoring is an immensely practical technique for software

engineers, it was not covered in great depth during the degree courses that I

have taken at university. I will now conclude with my thoughts on an important

aspect of software development that, while of high relevance during my work

placement at Ericsson, was not extensively covered during my degree courses at

university.

4.2 Importance of Non-Functional Qualities

Not long after I first began my work placement, an early version of some code

that I had written was reviewed by my colleagues. This code compiled and func-

tioned exactly as required. However, there was room for improvement of the

non-functional qualities of my code. For instance, my experienced colleagues

pointed out instances of high coupling between classes in the code that I had

written. Although the code functioned as intended, maintainability and exten-

sibility of the software could be improved upon by decoupling the classes.

After these early code reviews, I implemented the suggestions of my col-

leagues, and the structure of my code improved rapidly. I could soon determine

at a glance whether or not sections of source code were well structured as a

whole. If they were not, I could identify the reasons why. As I reviewed the

work of others and developed a greater familiarity with the CS codebase, I be-

came more adept at spotting structural issues in the code that I was examining.

With frequent exposure to code of varying levels of maintainability and exten-

sibility, I developed a greater appreciation for these important subtleties, and

the impact that they can have upon the software development process.
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During my time at university (both during my B.Sc. and M.Sc. degree

courses), taught modules have placed a strong emphasis upon external func-

tionality where programming is concerned, but considerably less emphasis has

been placed upon the structure of the underlying source code. This was re-

flected in how programming assignments were marked. Marks have generally

been awarded based upon whether a programming assignment functioned as

intended, with the underlying non-functional aspects of the code often treated

as unimportant or even irrelevant.

Two programs with differing underlying structure but identical functionality

will appear interchangeable from an external perspective. However, from the

perspective of a software engineer, better structured code is considerably easier

to understand, maintain and extend. In order to work effectively as part of a

development team, with source code that remains in use for several years or

longer, a software engineer cannot afford to ignore non-functional qualities of

code.

I believe that software engineering students would benefit if greater academic

emphasis was placed upon this important aspect of software development. As

one example, a taught module with a significant focus on non-functional qualities

of code could fill this gap, with the marking scheme for programming assign-

ments heavily weighted upon the structural attributes of the code submitted

rather than upon its external functionality alone. In addition to demonstrat-

ing qualities associated with well-factored code, such a module could also teach

code refactoring techniques, to provide students with the necessary knowledge

to improve the structure of existing code.

Of course, it is impossible to fully simulate an industrial environment in the

realm of academia. Although university can provide a solid grounding in many

fundamental areas of software development, it cannot prepare a student for

every eventuality due to the enormous diversity of the field. Inevitably, software

engineers are required to continue learning and improving their skills throughout

their careers, long after their university education has ended. However, I do

believe that a greater academic emphasis on non-functional aspects of software

architecture such as maintainability and extensibility would provide a significant

advantage to many graduates at the start of their careers, due to the great

importance of these qualities in the field of commercial software development.

94



Bibliography

[1] Alexander, C (1977). A Pattern Language: Towns, Buildings, Construc-

tion. Oxford University Press.

[2] Arlow, J & Neustadt, I (2009). UML 2 and the Unified Process. 2nd ed.

Addison-Wesley Professional. p5.

[3] Bloch, J (2008). Effective Java. 2nd Edition. Prentice Hall.

[4] Brown, W.J. et al (1998). AntiPatterns: Refactoring Software, Architec-

tures, and Projects in Crisis. Wiley. p119.

[5] Ericsson (2010). Company information. Available: http://www.ericsson.

com/thecompany. Last accessed 5th Dec 2010.

[6] Fowler, M et al (1999). Refactoring: Improving the Design of Existing Code.

Addison-Wesley Professional.

[7] Gamma, E & Helm, R & Johnson, R & Vlissides, J. M (1994). Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley

Professional.

[8] Ibid., p63.

[9] Ibid., p107.

[10] Ibid., p127.

[11] Ibid., p175.

[12] Ibid., p185.

[13] Ibid., p233.

[14] Ibid., p293.

[15] Ibid., p315.

[16] Ibid., p331.

95



[17] Jones, C (June 2008). Measuring Defect Potentials and Defect Removal

Efficiency. Crosstalk, The Journal of Defense Software Engineering.

[18] McConnell, S (2004). Code Complete: A Practical Handbook of Software

Construction. 2nd Edition. Microsoft Press.

[19] Myers, G.J (2004). The Art of Software Testing. 2nd Edition. Wiley.

[20] Odersky, M & Spoon, L & Venners, B (2011). Programming in Scala (eBook

Version). 2nd Edition. Artima Inc. p309.

[21] Ibid., p57.

[22] Ibid., p110.

[23] Oracle (2010). ThreadPoolExecutor (Java 2 Platform SE 5.0). Available:

http://download.oracle.com/javase/1.5.0/docs/api/java/util/

concurrent/ThreadPoolExecutor.html. Last accessed 5th Dec 2010.

[24] Patton, R (2005). Software Testing. 2nd Edition. Sams. p24.

[25] Ibid., p9.

[26] Sutter, H (2005). The free lunch is over: A fundamental turn toward con-

currency in software. Dr. Dobbs Journal, 30(3).

[27] Venners, B (2009). Twitter on Scala. Available: http://www.artima.com/

scalazine/articles/twitter_on_scala.html. Last accessed 29th Jan

2011.

[28] Virki, T (2010). Ericsson market share jumps in Q4: Dell’Oro. Avail-

able: http://www.reuters.com/article/idUSTRE61G0DS20100217. Last

accessed 5th Dec 2010.

96


