Code/space and the nature,
production and enrolment
of software

Reviewed by: Martin Dodge, University of
Manchester, UK, and Rob Kitchin, National Institute
for Regional and Spatial Analysis, National University
of Ireland, Maynooth, Ireland

In the four or so years since we completed the manu-
script of Code/Space, it is evermore apparent that the
onrushing pace of digitisation of economic tran-
sactions and social interactions means that scope of
software has increased in most people’s lives, yet the
ability to comprehend the workings of code itself and
account for its agency remains limited. Given the
growing automation of activities, the potential



250

Dialogues in Human Geography 3(2)

advantages at least for some, and the inherent risks of
taking humans out of the loop, it is helpful to have
this forum to consider why code matters from a spa-
tial perspective and how human geographers might
contribute to documenting work of software.

Before we respond to their critiques, we would
like to thank Paul Adams, Aaron Kellerman, Sam
Kinsey and Mark Wilson for reading and ruminating
on our book Code/Space. Collectively, they provide
useful reflections on our arguments and additional
empirical scope that challenge us to extend our
thinking and analysis in productive ways. In this
short response, we extract and synthesise what we
think are their most valuable insights and in the final
section detail how we are about to embark on a new
project — The Programmable City — that seeks to
perform some of the work they call for.

From our reading, the reviews suggest three
issues that Code/Space neglected or failed to fully
explicate: the nature, consumption and production
of software.

In Code/Space, we developed an argument that
software is both a product and producer of the
world, a special kind of technology that possesses
secondary agency that enables and empowers at the
same time as it introduces a new form of governance,
automated management, wherein software enacts
automatic, automated and autonomous actions.
Whilst sympathetic to this approach, the reviewers
correctly suggest that further work is required in
thinking through the nature of software. Kellerman
argues that code constitutes ‘a special kind of infor-
mation’ and needs to be ‘assessed against other forms
of information and their geographies.” It seems to us
that the executable nature of machine code running
on digital computers is distinctive from other forms
of information, although the case could be made that
in essence, it is not too different to a punched paper
tape directing a mechanical weaving machine.
Given the long genealogy of such self-instructional
code, we did not explore code within a framework of
information theory, but such framings would
undoubtedly be useful and productive (e.g. Cox,
2013). Kinsey suggests a deeper engagement with
Bernard Stiegler’s work, theories of technogenesis,
philosophies of technology more broadly, and the
role of the speculative in the discursive formation

of software, all of which we concur with. Adams
rightly makes the case for a greater focus on the
nature of software’s secondary agency and the role
of programmers in producing code, which inevita-
bly inculcates their values, ideologies and desires.

The latter leads into what Kellerman notes is a
second underdeveloped theme, that of the produc-
tion of software. He notes that in Code/Space, we
neglect an analysis of the geographies and political
economy of the research and development, creation
and distribution of software products. We did note
that code not only reflects the secondary agency of
programmers, but is a complex techno-social prod-
uct bound up in diverse markets, capitalist modes
of'accumulation, constraints of regulations and laws
and discourses of openness and sharing in the case
of open-source software, but in Code/Space, we
focused our attention primarily on the work that
software does in the world, rather than providing
an examination of how code is made. We agree with
Adams and Kellerman’s assertions that much more
research needs to be conducted into the creation of
code, both in relation to the investment of secondary
agency, but also its wider contextualisation as loca-
lised and globalised product. A focus on the latter
and the geography of the software industry has been
and is being actively researched in business schools,
economic geography and regional studies, with
linkages to more applied planning concerns for
attracting information technology (IT) jobs and sti-
mulating so-called ‘creative industries’.

The third underdeveloped theme noted in the
reviews concerns the consumption of software and
how software inflects individual agency and sense
of self. Kellerman posits that it would be profitable
to examine the geographies of software consump-
tion across a number of socio-spatial contexts such
as level of development and political regime. He
rightly argues that we presently know little about
how software consumed in different locales and
what factors shapes its consumption. Wilson reflects
on the extent to which people interact actively with
software, writing their own code or configuring
settings and how this is changing over time and
circumstance and what it means for the work code
does. Certainly, there is much more to be revealed
about the individual psychology of software



Book review forum

251

enrolment and the significance of spatial context in
situating interactions, especially if/when wearable
computers (e.g. Google Glasses) become the cul-
tural norm. Similarly, Adams points out that we did
not pay enough attention to ‘our status and nature as
code-users’ and ‘the kind of agents we become by
inhabiting these [code] spaces’. He suggests it
would be productive to examine the intersection
between the primary agency of software users, and
those that software seeks to act upon, and the sec-
ondary agency of software and its developers, and
to think through ‘how code permits people to act
at a distance and over time, more often, with more
ongoing feedback, and in more complex ways, than
they were able to do without code.” For Kinsey, the
larger philosophical question that needs answering
is ‘what it means to be human in an age of a per-
ceived increase in technological agency’? We agree
that much more research and thinking needs to be
conducted with respect to the emergent relationship
between code and people and how each shapes the
other in relational and contingent ways.

We were aware of some of these gaps in the book
and made brief reference to them in the concluding
chapter. Subsequently, we have outlined a detailed
programme of research that seeks to address the
issues raised by the reviewers as well as extend our
original work (Kitchin, 2011). This programme sug-
gests using the city as a platform for investigating
processes of software translation (how cities are
translated into code) and transduction (how code
reshapes city life) (see Figure 1), operationalised
through eight questions concerning how software
inflects how we know, manage, work and live in cit-
ies (see Table 1). Formulated in this gridded fashion,
the questions work both vertically and horizontally
to frame a programme of research that should pro-
vide further insights into the nature, production and
consumption of software.

This programme of research has recently recei-
ved 5 years of funding from the European Research
Council and will employ a team of four postdoctoral
researchers and four doctoral students, each focused
on one of the broad analytic questions. Our hope is
that this set of interlinked projects will produce a
large body of empirical material as well as provid-
ing new theoretical insights that illuminate the

Discourses, Practices, Knowledges, Models

Translation: City into Code

SOFTWARE THECITY

Transduction: Code reshapes City

Mediation, Augmentation, Facilitation, Regulation

Figure 1. The conceptualisation of the ‘Programmable
City’ (Kitchin, 2011).

nature of software, how it is produced and con-
sumed and the work it does in the world.

Yet, getting a clearer map of code/space is going
to be challenge for several reasons, not least because
of the speed of development of software products
and services, and the continued invisibility of the
executable code and data structures beneath the sur-
face of the interface. Moreover, like much social
science research, there will be issues of access, with
key aspects of scholarly analysis being controlled by
institutions, companies and third parties that have
little need to cooperate and may actively resist out-
side scrutiny of their commercial secrets or vital
operations. The temptation will be to analyse more
accessible forms of code (such as online media and
open source software development) rather than
investigating the code that matters most to daily life
and the ongoing production of the city (e.g. control
systems of the utility companies, the scheduling
software of transport systems, the tasking of security
personnel, the calculation of insurance rates and
mortgage risks, etc.). A critical challenge is the need
to expose algorithmic pinch-points and demonstrate
in precise ways how a piece of code makes space
come into being. Even if such research becomes
possible, a further problem is how to communicate
its significance to a wider audience without resort-
ing to logical operations and mathematical expres-
sions. (An effort in this direction, Cormen, 2013,
is worthwhile but demonstrates how hard it is to
do in practice.) This is the ‘elephant in the room’
for software studies given that most social science
and humanities scholars cannot programme, raising
an epistemological problem in researching code.
Without the ability to both make and deprogramme
code, can social scientists really begin to show the



252

Dialogues in Human Geography 3(2)

Table I. An analytical framework for a comprehensive account of the work of software in contemporary Western

urban contexts.

Translation: City into code

Transduction: Code reshapes city

Understanding the
city (Knowledge)
Managing the city
(Governance)
Working in the city
(Production)
Living in the city
(Social Politics)

about cities and their citizens?

software production organised?

legitimated by vested interests?

How are discourses and practices of city
governance translated into code?
How is the geography and political economy of How does software alter the form and nature

How is software discursively produced and

How are digital data generated and processed How does software drive public policy

development and implementation?
How is software used to regulate and govern
city life?

of work?
How does software transform the spatiality
and spatial behaviour of individuals?

consequences of code for everyday activities? Such
abilities might be vital if we are to have a meaning-
ful influence on the development of code and coding
practices and to resist software that is unethical and
open channels for the progressive production and
use of software. If this is the case, then perhaps we
are failing to equip the next generation of research-
ers with the skills required for making sense of a
world inflected with software; whilst many students
are Web savvy and adroit in using software, they are
largely ignorant of how to produce it. Perhaps then

the real follow-on from Code/Space is need for
someone to write a book not on the geographies of
code but a textbook to teach geographers to code.

References

Cox G (2013) Speaking Code. Cambridge, MA: MIT
Press.

Cormen TH (2013) Algorithms Unlocked. Cambridge,
MA: MIT Press.

Kitchin R (2011) The programmable city. Environment
and Planning B 38: 945-995.






