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Abstract

Mobile enabled devices are ubiquitous in modern society. The information gathered by

their normal service operations has become one of the primary data sources used in the

understanding of human mobility, social connection and information transfer. This thesis

investigates techniques that can extract useful information from anonymised call detail records

(CDR). CDR consist of mobile subscriber data related to people in connection with the network

operators, the nature of their communication activity (voice, SMS, data, etc.), duration of the

activity and starting time of the activity and servicing cell identification numbers of both the

sender and the receiver when available.

The main contributions of the research are a methodology for distance measurements

which enables the identification of mobile subscriber travel paths and a methodology for

population density estimation based on significant mobile subscriber regions of interest. In

addition, insights are given into how a mobile network operator may use geographically located

subscriber data to create new revenue streams and improved network performance. A range of

novel algorithms and techniques underpin the development of these methodologies. These

include, among others, techniques for CDR feature extraction, data visualisation and CDR data

cleansing.

The primary data source used in this body of work was the CDR of Meteor, a mobile

network operator in the Republic of Ireland. The Meteor network under investigation has just

over 1 million customers, which represents approximately a quarter of the country’s 4.6 million

inhabitants, and operates using both 2G and 3G cellular telephony technologies.
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Abstract

Results show that the steady state vector analysis of modified Markov chain mobility

models can return population density estimates comparable to population estimates obtained

through a census. Evaluated using a test dataset, results of travel path identification showed

that developed distance measurements achieved greater accuracy when classifying the routes

CDR journey trajectories took compared to traditional trajectory distance measurements.

Results from subscriber segmentation indicate that subscribers who have perceived similar

relationships to geographical features can be grouped based on weighted steady state mobility

vectors. Overall, this thesis proposes novel algorithms and techniques for the estimation of

movement from mobile telephony data addressing practical issues related to sampling, privacy

and spatial uncertainty.
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CHAPTER 1

Introduction

The ubiquitous nature of technology in modern human civilisation coupled with advancements

in data acquisition techniques has resulted in the quantity of data related to human activity

rapidly expanding. Typically, information which corresponds to human activity may be

characterised as survey based, passive, activity based and device based. The availability of data,

accuracy, scalability, cost and information content related to each approach varies dramatically.

Survey based approaches gather human activity data, preferences and behavioural data

through the information entered by people partaking in a survey. Surveys such as national

census [2], household surveys [3, 4] and customer satisfaction surveys [5] play an important

roll in formation of government policy [6], regional planning [7] and corporate governance [8].

Studies on travel behaviour [9, 10], marketing [11, 12] and health [13, 14, 15] demonstrate how

surveys may be used to gauge public opinion, behaviour and mobility.

Passive sensing approaches infer human activity through static sensors and the loads

observed by service networks. Examples of passive sensors include flow counters [16, 17],

traffic cameras [18, 19, 20] and sensing devices [21, 22, 23, 24]. The spatial and temporal

resolution achieved by using these devices is often dictated by the spatial distribution of the

sensors and their respective coverage areas. Mobile device activity [25], WiFi activity [26] and

the flow of Bluetooth enabled devices [27] have also been used to measure both the spatial and
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temporal dynamics related to human activity. The tracking of bank notes [28], spatial variations

in the amount of available public bikes [29], sensor GPS traces [30] and the tracking of travel

cards [31] also demonstrated that passive sensing approaches could be used to observe human

mobility behaviour.

Activity based approaches record when, where and how people interact with services and

applications. Examples of activity based monitoring includes among others the making of

phone calls [32, 33], tracking behaviour from retail membership reward cards [34, 35] and the

tracking of consumer purchases [36, 37, 38]. The activity data sourced from services such as

Twitter, Foursquare and Flicker have also be used to gauge public opinion [39, 40, 41], study

human mobility [42, 43, 44, 45] and social connection [46].

The behaviour and location of people may also be recorded by sensing devices [47].

Sensing platforms [48, 49, 50, 51, 52], sensors placed on mobile cellular devices [53, 54], radio-

frequency identification (RFID) tags [55, 56], Bluetooth monitors [57] and global positioning

system (GPS) logging devices [58, 59, 60, 61] have been used in applications related to among

others health, land use, mobility and intelligent transportation.

Each collection methodology has associated uncertainty with respect to the quality of

gathered human activity information. For example, the accuracy of survey based approaches

may be influenced by the memory of each individual partaking in the survey [62], sensor data

is affected by the accuracy of each device [63] and activity based approaches have sampling

related issues [64]. As a result, the selection of which collection method to use given accuracy

requirements, scalability, associated cost and desired information needs careful consideration.

Consideration should also be given to the privacy of monitored individuals, as studies which

infringe on this right may face legal reprimand.

Typically, the cost associated with carrying out a survey can be prohibitively expensive.

As a result, large surveys such as censuses tend to be carried out infrequently. However, the

information which may be gathered can be extremely detailed as people can enter complex

information about their preferences, behaviour and relationships. The information which may

be extracted from a passive sensing application is dependant on the sensing device used.

Large urban and national scale observations are limited by the cost of individual sensors

and infrastructure requirements. As a result, passive sensing applications are better suited

to monitoring human activity at local scales. Similarly, device based studies rely on the
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cooperation of each individual carrying the sensing device to share sensor information, thus

limiting the scalability of such studies.

Activity based approaches may be suited to macro scale analysis if the service network or

application from which the activity measurement was taken is ubiquitous in society. However,

the information which may be gathered is limited by the type of service/application used. For

example, WiFi usage patterns do not reveal the gender of the person using that service or their

music preferences. Likewise, mobility studies which require both high spatial and temporal

sampling might not be suited as temporal sampling resolution is dictated by the activity profile

of each individual person and spatial accuracy is limited to the underlying network of the

service/application.

1.1 Motivation

Measuring the movement of people is a fundamental activity in modern society. The ability

to monitor movement insures that transportation services are able to function, planning

authorities can design adequate infrastructure and governments can implement national

policies. Personal location data is also the primary data source used in the delivery of mobile

telecommunications [65] and location-based services (LBS) [66].

The research presented in this thesis uses human activity data to develop applications

related to different aspects of human movement behaviour. The primary data sourced used

is anonymised CDR from Meteor, a mobile network operator in the Republic of Ireland. Call

detail records (CDR) consist of user information relating to people in connection with the

network operators, the nature of the communication activity (voice, SMS, data, etc.), duration

of the activity, starting time of the activity and servicing cell identification numbers of both the

sender and the receiver when available. As a result, assuming users carry their mobile devices

most of the time, it has the potential to be a low cost scalable source of human activity data.

While such activity data has a wide variety of applications, this research focuses on

population density estimation, travel path identification and marketing insights through CDR

metrics. This is motivated by the host of potential practical applications which include, among

others, utility load forecasting and dynamic transportation services. The ability to deliver

intelligent geographically located marketing applications to create new revenue streams for
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mobile operators is also an attractive proposition for in-dept investigations.

Likewise, dynamic population estimation can supplement tradition national census. Cur-

rent population estimation research efforts using mobile generated data often require the

estimation of mobile subscriber home locations which can be computationally intensive

and may have privacy related issues [67, 68, 69, 70]. As a result, there is a need for

different approaches which can provide population density measurements which are both

computationally efficient and privacy preserving. Research presented within this thesis

addresses such concerns by obtaining a direct measure of population density through the steady

state vector of a modified Markov chain mobility model characterising the regional transitions

of Meteor’s customers.

The cost associated with transportation surveys motivates the requirement for low cost

and scalable alternatives. Exploiting mobile network data is an attractive proposition in this

regard [71]. However, due to the lack of trip metadata, spatial uncertainty and temporal

sampling issues, it is difficult to relate CDR positional estimates to transportation related

features. Addressing these issues, similarity metrics are developed to quantify the resemblance

between CDR trajectories and known travel paths between regions of interest.

1.2 Privacy

Over the last decade, the boundaries and content of what is considered private have been the

subject of much debate and legal challenge. As defined by Westin [72] “Privacy is the claim

of individuals, groups or institutions to determine when, how, and to what extent information

about them is communicated to others, and the right to control information about oneself even

after divulgating it” [71]. Typically what is considered private differs between various groups

and individuals, and is often challenged under the title of “public interest”.

The ubiquitous nature of wireless technologies and their subsequent impact on privacy has

directed legislators to devise various laws and regulations which govern how content sourced

from such devices may be used and handled [73]. Within the European Union, there are several

pieces of legislation which address privacy. Article 7 of the Charter of Fundamental Rights of

the European Union (2000/C364/01) [74], states ‘Everyone has the right to respect for his

or her private and family life, home and communications’. Directive 95/46/EC [75] of the
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European Parliament and of the Council outlines a framework for the protection of individuals

with regard to the processing of personal data and on the free movement of such data. Directive

2002/58/EC [76] of the European Parliament and of the Council, concerns the processing

of personal data and the protection of privacy in the electronic medium of communications.

Directive 2006/24/EC [77] of the European Parliament and of the Council, instructs providers

of electronic communications services and networks to keep traffic data record related to

telephony communication and emails for a period of six months to two years, depending on

the Member State. The traffic data includes the information which is required for identifying

the originator and the recipient of phone calls (including Internet telephony), SMS and emails,

together with information on the time, date, and duration of these communications [73].

As a result of the aforementioned directives and the commercial interests of service

providers, access to such data is difficult to obtain. In the telecommunication sector, access

to data governed by Directive 2006/24/EC has typically only been made available to a number

of selected research institutions and commercial entities after contractual agreements are put

in place which govern its use. Privacy issues stemming from such collaborations customarily

arise when the tracking of people or goods transported are addressed [71]. To ensure that

telephony data does not breach current regulations on data protection, such information should

be received and handled in an aggregate and anonymous manner, which maintains user privacy.

Typically, user anonymity is addressed by a hashing of the user’s unique MSISDN code.

A MSISDN is a uniquely identifiable code which links to a person’s subscription on a mobile

cellular network. Such hashing guarantees that a user’s identity is not directly observable.

However, research has shown that through aggregation with external data sources and prior

knowledge, a user may still be identified [78, 79, 80]. As a result, techniques have evolved

which aim to hide user identity through forms of aggregation [81, 82, 83, 84, 85]. The research

detailed within this thesis addresses privacy through a hashing of MSISDN codes and suitable

aggregation. Note, no attempt to aggregate the data with external sources has been made or

allowed. The details of additional steps taken are outlined in subsequent chapters.
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1.3 Thesis Contributions

The general focus throughout this thesis is on the development of applications for large

scale mobility estimation through the use of mobile telephony call detail records (CDR).

Methodologies are developed which enable applications such as population estimation, travel

route discovery and geographical marketing. In this context, the main contributions of the

research presented in this thesis are as follows:

• The development of a novel methodology and distance measurements which enables the

identification of mobile subscriber travel paths.

• The development of a novel methodology for population density estimation based on

significant mobile subscriber regions of interest.

• Insights into how a mobile network operator may use subscriber generated data to help

create new revenue streams and improved network performance.

Other minor contributions of this thesis include:

• A methodology for CDR feature extraction, data visualisation and cleansing techniques.

• A novel procedure for simulating journey trajectories along known travel paths.

• A novel procedure for constructing Generating Travel Paths (GTP) from CDR journey

trajectories, where a GTP represents the likely path taken by a group of similar CDR

journey trajectories which move between regions of interest, without prior knowledge of

any underling travel routes.

1.4 Thesis Organisation

The remainder of the thesis is organised as follows:

Chapter 2 critiques the use of mobile cellular networks as a suitable sensing platform

for monitoring human activity patterns. It starts by giving the reader a brief overview of

modern mobile cellular networks and discusses the various techniques for mobile telephony

data procurement, including an overview of current research using such data. It then details
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the development of a sensor used for the passive collection of client side mobile phone

accumulative RSSI activity. The chapter concludes with a discussion of the evolution of mobile

networks and how this might impact on human activity research directions into the future.

Chapter 3 describes the structure of call detail records (CDR) and the system used for data

processing in this research. The development of cell coverage area models is also described,

along with a suitable technique for mapping multiple cell coverage polygons to a single

representative location covering a population centre. Then procedures for the extraction and

visualisation of various CDR features are examined. The chapter concludes with a discussion

on the taxonomy of possible applications which may be developed from the features extracted.

Chapter 4 details novel distance measurements (VCP and PCC) which enable the measure-

ment of similarity between CDR journey trajectories and travel paths of interest. A comparison

of established trajectory distance measurements and each of the proposed techniques is given,

and it is demonstrated that both VCP and PCC achieve greater accuracy when classifying

which route CDR journey trajectories took. Novel enhancements to the distance measurement

Longest Common Subsequence (LCSS) are then given which improve the accuracy of LCSS

with respect to CDR trajectory distance calculations. The CDR journey trajectories used

in each comparative study, are generated using a novel procedure for simulated journey

trajectories along known travel paths. Also detailed is a novel procedure used to construct

Generated Travel Paths (GTP) of CDR journey trajectories. A GTP represents the likely path

taken by a group of similar CDR journey trajectories which move between regions of interest,

without prior knowledge of any underling travel routes. Finally, the chapter is concluded by

discussing each of the topics covered.

Chapter 5 presents novel techniques for population estimation based on significant mobile

subscriber regions of interest. The techniques use the steady state vector of a modified

Markov chain mobility model which characterises the mobility of individual subscribers and

national aggregated mobility, respectively, as a means of identifying the principle location of

subscribers, thus providing a proxy for population density. Results show a high correlation

between estimated population counts and a national census, which was carried out in 2011. A

methodology for visualising the flow of people across the Republic of Ireland is also given,
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with insights into how the transition intensity observed may be used for event detection. The

chapter is concluded by discussing the limitations and benefits of each technique presented.

Chapter 6 details initial work into the development of geographical marketing applications

built on the outputs of previous chapters. This includes methodologies for identifying black

spots related to high data rate subscribers, event mobility patterns and the segregation of

subscribers based on their perceived links with geographical features of interest. The chapter

is concluded by discussing how future research may build upon these initial findings towards

the aim of fully commercialised applications.

Chapter 7 concludes the thesis with a summary of the work completed, contributions made

to the field and the relevant areas of work which remain to be investigated.
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CHAPTER 2

A Human Sensing Platform: Mobile Cellular Networks

In the last decade, mobile phones and mobile devices utilising mobile cellular network

connections have become ubiquitous in modern society. In several developed world countries,

the penetration of such devices has surpassed 100%. They facilitate communication and access

to large quantities of data without the requirement of a fixed location or connection. As mobile

phones and devices are mostly used by people, their activities and motion are indicative of the

mobility pattern and cellular usage of the person using them. As such, the network of mobile

phones and devices may be considered as a large scale distributed human activity sensing

platform.

In this regard, exploiting the data collection capabilities of mobile devices is an attractive

proposition. Over the last few years, various studies have demonstrated that information

sourced from mobile device activities can be used to reveal space-time behaviour patterns

relating to human mobility [86, 87, 88, 89], social structure [90] and land use [54, 67, 91, 92].

In all cases, it is noted that the type of analysis possible is strongly influenced by the underlying

data collection methodology and the quantity of data available. Before actively acquiring

such data, it is important to consider the structure and behaviours of a mobile phone network

and how it may affect observations. Also, as mobile networks evolve to meet the future

requirements of their customers, it is also important to consider how this will impact on future
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research directions.

This chapter begins by presenting a brief overview of modern mobile cellular networks.

The procurement of mobile telephony data is then discussed in Section 2.2 and Section 2.3.

Section 2.2 outlines the data sources available to mobile networks operators, and gives an

overview of current research using such data. Section 2.3 follows with a discussion of

alternative methods for obtaining mobile telephony data and details the development of a

sensor used for the passive collection of client side mobile phone accumulative RSSI activity.

Section 2.4 concludes the chapter with a discussion of topics covered and insights into the

evolution of mobile networks and how this might impact on future research directions.

2.1 Mobile Telephony Networks

A mobile telephony network is a geographically distributed radio network that enables

communication via voice, text or data between two or more devices [1, 93, 94, 95, 65]. At

one particular time instance, each device has typically a wireless connection to one fixed-

location transceiver, known as a tower. Each tower covers a service area, known as a cell,

ranging from several square kilometres in rural areas to several hundred square metres in

urban districts. Each device communication flow, including intra-cell communications, passes

from the initiating device’s connected transceiver through hierarchical network elements before

being routed to the destination cell and subsequent receiving device, as depicted by Figure 2.1.

Mobile Network

Initiating  

Device

Receiving  

Device

Transceiver
Transceiver

Figure 2.1: Simplified structure of a communication flow in a mobile telecommunication
system.

A typical mobile network consists of a combination of second and third generation

wireless telephone technologies (2G/3G), with newer systems employing long term evolution
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wireless telephone technology (4G LTE). A simplified hierarchical structure of the combined

subsystems is depicted in Figure 2.2. For the purpose of human sensing, a mobile network

may be divided into three main sections, namely the mobile subscriber layer, the radio access

networks and the core network. The mobile subscriber layer is comprised of mobile telephony

enabled devices or mobile stations (MS) which are subscribed to a mobile network. The radio

access networks consist of radio transceivers used to transfer data from the MS to the core

network. The core network is the central part of the mobile telecommunication network. It

provides the services which enables mobility, communication and billing.
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Figure 2.2: Simplified structure of a mobile telecommunication system.
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Depending on the mobile communication standard employed, the radio access network

types will vary between the 2G, 3G and 4G equivalents. A GSM radio access network

(GRAN) consists of base transceiver stations (BTS) and base station controllers (BSC). A

UMTS terrestrial radio access network (UTRAN) consists of Node B transceivers and radio

network controllers (RNC). An evolved UMTS terrestrial radio access network (eUTRAN) is

comprised of evolved Node B (eNode B) and serving gateways. The core network contains

elements of the respective 2G, 3G, and 4G telephone technologies which includes among

others, a mobile switching centre (MSC), serving GPRS support nodes (SGSN) and mobility

management [65].

2.1.1 Multiple Access Techniques

Mobile telephony networks allow the simultaneous transmission and reception of communi-

cation between mobile devices, within a finite amount of radio spectrum. This is achieved by

utilising several multiple access techniques, with the primary focus of permitting transmitting

stations to communicate with receiving stations without any interference [65]. This increases

overall network capacity as more communications can be facilitated within a limited amount

of radio spectrum. The multiple access strategy employed varies between each generation

of mobile telephony system, but each may be generalised by its primary approach, namely

frequency, time or code division multiplexing. These strategies also effect network mobility

management, a major component of cellular networks, as the locating strategies are often

a function of the multiple access technique employed. The main approaches are briefed as

follows:

• Frequency Division Multiple Access (FDMA); Here, individual channels or unique

frequency bands are assigned to each mobile station on demand to users who require

service. For the duration of the activity, no other device may use that channel.

• Time Division Multiple Access (TDMA); This approach divides the radio spectrum into

time slots. In a similar fashion to FDMA, each time slot is assigned to an individual on

an on demand basis, and is allocated to that user for the entire transmission.

• Code Division Multiple Access (CDMA); A spread spectrum technique, CDMA multi-

plies the narrowband message signal by a wideband signal called the spreading signal.
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The spreading signal is a pseudo-noise code sequence that has a chip rate orders of

magnitude greater than the data rate of the message signal [93]. Each active mobile

device is assigned a spreading code, approximately orthogonal to all other codes, and

may transmit simultaneously using the same carrier. For the receiver to be able to recover

the original message it must know the spreading code applied. Decoding is achieved

through a time correlation operation, where all other codewords appear as noise due to

decorrelation [93].

• Orthogonal Frequency Division Multiple Access (OFDMA); This technique uses time

sharing and dynamically assigned orthogonal subcarriers to provide multiple access to

users. Users who require high data rates may be assigned a higher number of subcarriers

compared to those who require low data rates.

For a comprehensive overview of these techniques see [1], [65] [93] and [94].

2.1.2 Spatial Coverage

As radio access network elements communicate wirelessly to devices present in the mobile

subscriber layer, their transmissions suffer an effect known as path loss. Path loss refers to the

amount of energy lost between transmission and reception of a signal. Assuming the use of

an isotropic antenna for transmission, a propagated signal energy will expand over a spherical

wavefront, so the energy received at an antenna a distance d away is inversely proportional

to the sphere surface area, 4πd2 [94]. More precisely, the free space path formula, or Friss

formula, is given as

Pr = Pt
λ2GtGr

(4πd)2 (2.1)

where Pr and Pt are the received and transmitted powers, λ is the wavelength and Gr, Gt refer

to the receiver and transmitter gain, respectively.

Due to such effects, it is only possible to reliably communicate over some limited distance,

given a maximum allowable transmit power. This allows transmitters to operate on the same

frequency at the same time by virtue of being spatially isolated [94]. This effect is the

theoretical basis for cellular mobile telephony systems as the overall capacity of a system

increases as more simultaneous transmission are allowed to occur [94].
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As such, the service area of a mobile telephony system is subdivided into smaller

geographical regions. These smaller regions are commonly referred to as cells, and contain a

single base station. To avoid interference between neighbouring cells, the transmit power level

of each transceiver is regulated such that there is just enough to provide the required signal

strength at the cell boundaries. Due to propagation path loss, the frequency channels they

operate at may also be reused, as long as cells operating at the same frequency are spatially

isolated. However, perfect spatial isolation cannot be achieved in practise, thus the rate of

frequency reuse is determined such that the interference between cells is kept to an acceptable

level [94]. This interference, which is known as other cell interference (OCI), still significantly

impacts the performance of mobile systems. A common technique to reduce its effect is to

sectorise cells, where sectorisation is achieved through the use of directional antennas [94]. As

such, it is common for a cell to refer to an area covered by one sector, in which case a single

base station site may have several associated cells [65].

Typical cell layouts are depicted in Figure 2.3. The hexagonal shape commonly associated

with mobile telephony cells (Figure 2.3a), is an idealised depiction of coverage and does

not accurately reflect actual cell boundaries. Instead Figure 2.3b more truly reflects their

observed non-geometric shape with some areas not having the required signal strength for

various reasons [65]. The spatial distribution of such cells is generally dictated by capacity

requirements. In general, capacity can be increased by increasing the density of cells. This is

achieved by turning down the transmit power to make cells smaller [94]. An operator may also

use hierarchical cell structures (Figure 2.4), such as small cells, to increase network coverage

or capacity in areas with very dense cellular usage [1].

Due to the fact that each mobile telephony standard is effectively frequency division

multiplexed (FDM) in the radio spectrum, network planners design each network coverage

layout independently. As a result BTS, Node-B and eNode-B may be mounted on a single

tower, with each transceiver servicing the same particular geographical region in space.

However, as mobile networks evolve and frequency reuse between standards becomes more

prevalent, the layout of each network will be influenced, and sometimes limited, by the capacity

requirements of other standards.
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2.1.3 Mobility Management

Mobility management is a major function of mobile networks. The aim of mobility

management is to track where the MSs are, so that calls, SMS and other cellular services can be

seamlessly delivered. In LTE systems, the MME is responsible for mobility management [94],

which includes among others, functions such as tracking, handovers, paging and inter-cell

interference coordination. There are two types of location registers used by GSM and UTMS

networks [1, 93], namely the home location register (HLR) and the visitor location register

(VLR). The HLR contains the permanent subscriber database which is registered to the

operator’s core network, while the VLR contains both registered subscriber information and

details of devices which are roaming on the network. An entry is added to a HLR when a

new mobile device or subscriber identity module (SIM) card is registered to the operator’s

network and remains static until subscription parameters are updated. Each HLR entry includes

among others, the international mobile subscriber number (IMSI), MSISDNs, possible roaming

restrictions, location area identity (LAI), MSC number and VLR number. The VLR contains

similar information to the HLR, except information in the VLR is stored temporarily and

contains the extra information on roaming customers.

To keep register information up to date, network operators require positional estimates of

each mobile device. This has led researchers to investigate techniques which can be used to

accurately locate mobile devices. The main approaches investigated are as follows:

• Cell Identification; This localisation technique uses the principle of proximity measure-

ment, and involves identifying, communicating and locating the base station to which the

mobile phone is connected. The located coordinates of the serving base station is then

associated with the mobile device. The accuracy of such spatial information depends

upon the physical topology of the mobile network, i.e. the size and coverage area of the

cells.

• Cell Identification + Timing Advance (TA); GSM uses a combination of Time Division

Multiple Access (TDMA) and Frequency Division Multiple Access (FDMA) of mobile

stations for the efficient use of available spectrum [96]. Here each frequency slot is

subdivided into eight time slots. Any one mobile device within a cell is assigned an

individual frequency band and corresponding time slot in that band. For this protocol to
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work, packets sent by any mobile device must arrive at the base station in its assigned

frequency band within its allocated time slot. The time the packet takes to travel from

the mobile device to its serving base station will vary with the distance separating both.

Base stations dynamically control when each device starts its transmission to try and

insure that packets sent will arrive in their assigned window. This variable controlling

of transmission start is known as Timing advance. Thus, the distance of a mobile device

from a serving base station can be extracted from analysing the duration of the timing

advance. However, this method is only used if the mobile user is 550 metres or more

away from the serving base station. Adjustments are calculated depending on how many

multiples of 500-550 metres the mobile user is from a base station.

• Cell Identification + Signal Strength (SS); in a similar fashion to the dynamic control

of timing advance, the power at which a device may transmit is dynamically controlled

by the serving base station. Since the attenuation in power experienced by a signal is

a function of the distance travelled, base stations adopt a policy under which devices

close are required to transmit with reduced power. This is to minimise the risk of devices

close to base stations interfering with weak signals coming from devices further out. A

base station implements this policy by monitoring the received signal strength indication

(RSSI) of a mobile device. Once gathered, it then relays this information back to the

device so that it can appropriately adjust its transmission power. Base stations try to

maintain an optimal received signal strength to noise ratio for efficient communication.

Thus, analysing the power or signal strength at which a transmitted signal is received

allows inference of the distance between the mobile device and its serving base station.

• Time Difference of Arrival (TDOA); This is a triangulation technique, that can be

performed by both mobile devices and mobile networks. Position is determined by

triangulating the time needed for a packet to be sent from a device to three finely

synchronised base stations and back. Problems exist as all transmitters and receivers

in the system have to be precisely synchronised. A time stamp must also be inserted at

the transmitting side in order for the measuring unit to discern the distance the signal has

travelled.

• Enhanced Observed Time Difference (E-OTD); This is a TDOA-based location method
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based on the existing observed time difference (OTD) feature of GSM systems. OTD

calculates the time difference between signals travelling from two different BTS to

a mobile device. As mentioned above though, TDOA has synchronisation issues.

Environmental conditions such as multipath fading and channel characteristics effect

the perceived relative positions of such BTS and MS. As a result mobile network

operators use location measurement units. Theses units compute the clock differences

between base stations and then relay this information back into the network. BTS then

transmit synchronisation information to various mobile devices [97]. Once synchronised,

handsets equipped with software that locally computes location can calculate time

differences and therefore distance from each base station, making triangulation possible.

• Observed Time difference of arrival (O-TDOA); This is a TDOA-based approach

designed to operate over wideband-code division multiple access (WCDMA) networks.

Effectively this is a WCDMA version of E-OTD [98].

• Angle of Arrival (AOA); This is a network localisation technique that uses a location

scheme based on the principle of angulation [63]. The underlying principal of this

method is a reversal of the concept of beamforming. The direction of a mobile device

from a transceiver is determined by the wave incident upon an antenna array. Each

antenna in the array makes a unique observation relating to the wave incident upon it,

which generally relates to the difference in received phase of that wave. These differences

in phase enable AOA to be calculated. A device is located by taking the intersection of

vectors projected at angles determined by AOA from two or more transceivers.

• Assisted global positioning system (A-GPS); Here devices use both GPS and terrestrial

cellular network localisation to obtain a geographic position [98].

The implementation of any one of the above techniques depends on the limitations imposed

by the underlying mobile network structure. A more complete summary of techniques for both

indoor and outdoor mobile device localisation is given by Sun et al. [97], Liu et al. [99],

Kaemarungsi et al. [100], Pahlavan et al. [101], Hightower et al. [102], Jami et al. [103]

and Sayed et al. [104]. Many of the aforementioned localisation techniques required line-

of-sight (LOS) for accurate positioning, and may not be suited to localisation within an

18



A Human Sensing Platform: Mobile Cellular Networks

urban environment, where multipath non-line-of-sight (NLOS) communication is prevalent.

For these reasons, advanced localisation techniques have been designed which take account

for the existence of mixed LOS/NLOS conditions [105]. Such techniques have applied

data fusion techniques to merge data from various sources [104], [106], exploited redundant

measurements [107], combined analytical models with maps of measurements [108], [109],

and used Bayesian methods to estimate a device’s whole trajectory instead of estimating one

position at a time [110], [111], [112], [113].

2.2 Mobile Operator Acquired Data

Modern mobile telephony networks routinely collect a wealth of information related to

customer interactions in the context of their normal service operations. Functions such as

connecting calls, delivering text messages via SMS or providing Internet access generate a

huge amount of data which mobile network operators use for customer billing and service

delivery.

Operator-based data sources include network bandwidth usage measurement logs which

are typically measured in Erlang (in units of person phone use per-hour), handover records,

locating area logs and call detail records (CDR). Handover records are recordings of migrations

of a user from one servicing cell to another while in the process of an active call. Location

updates area logs consist of periodic location updates relating to the set of cell towers which

are prepared to service a particular mobile device at any given time. Call detail records (CDR)

contain information about all interactions between a mobile phone network and their customers

that are required for billing purposes. These contain anonymised user information relating to

people in connection with the network operators, the nature of the communication activity

(voice, SMS, data, etc.), duration of the activity, starting time of the activity and servicing cell

identification numbers of both the sender and the receiver when available.

In typical telecommunication networks, such features are collected at the core network.

When a subscriber activity occurs (i.e. customer makes a call, receives a SMS, etc.), their

mobile device interfaces with either the BTS or Node B, the choice of which depends on

current cell capacity utilisation, the subscriber’s required data load, and their current 2G/3G

connectivity. Note, at this stage high resolution user positional estimates may be collected via
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location triangulation or angulation, as discussed in Section 2.1.3, but the required information

is not routinely stored and thus is typically not available. Instead, several of the activity logs

including handover data logs, call detail records, network bandwidth usage measurement and

user data quantities are stored at the relevant MSC or SGSN.

Whenever a change of user location area is detected, the MSC will initiate a transition

update in either the location register HLR or VLR. This transition update may potentially

provide more location-based data reflecting the mobility pattern of users compared to activity-

based data. This is because of the generally higher sampling frequency by the nature of its

information update. Also from the point of view of human mobility sensing, it does not

suffer from the uncertainty associated with activity based updates. For example, in situations

where users invoke activities only at starting and ending locations over a long distance journey,

it may not be possible to estimate journey trajectories due to the lack of location-based

data. Unfortunately, it is usually very difficult to obtain HLR and VLR data from mobile

operators due to the lack of incentive for long-term storage. In contrast, mobile operators tend

to treat activity-based call detail records with greater importance as it is required for legal

compliance [73] and billing purposes. This explains the greater availability of CDR data for

human mobility sensing.

Initiatives such as Data for Development [114], the Mobile Data Challenge [115] and

CRAWDAD [116] have helped such datasets become more widely available in recent years.

This has meant that there has been steady growth in the number of research groups which

have gained access to human movement and behavioural data at urban and national scales.

Ratti et al. [117, 118], Calabrese et al. [25, 119] and Horanont [120] each focused on

the mapping of human activity. Ahas et al. [121] demonstrated that suburban commuter

movements, tourist movement dynamics [32, 122, 123] and methods for home and work

location estimation and population dynamics [68] could also be extracted from mobile

telephony data sources. Tourist movements have also been studied by Kuusik et al. [124, 125],

while alternative methods for home and work location estimation and population movement

dynamics have been examined by Silm et al. [126], Calabrese et al. [127], Isaacman et al. [128],

Kelly et al. [129] and Ranjan et al. [64].

Areas associated with mass urban activity may also be readily sourced from cell ac-

tivity counts, as demonstrated by Reades et al. [67, 91], Andrienko et al. [130, 131],
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Becker et al. [132], Isaacman et al. [133], Vieira et al. [134] and Caceres et al. [92]. This

type of work has generally focused on clustering areas of similar activity profiles. Clustering

has also been applied to user groups with a focus on group movement patterns [135] and

marketing [136].

Movement and mobility insights through mobile telephony data has also been a topic of

discussion, most notably the works of Gonzàlez et al. [86] and Song et al. [87, 137] have

provided insights on the basic laws governing human motion and limiting thresholds on human

movement predictability. The range of human motion was quantified in Gonzàlez et al. using

the radius of gyration [86]. This measures the overall range of an individual trajectory,

and demonstrated a stark contrast between actual human motion and classical random walk

models [138]. By measuring the entropy of individual trajectories, Song et al. [87, 137] showed

that there was a potential predictability of 93% in user mobility across a mobile network

operator’s subscriber base, despite the significant differences in the travel patterns.

Mobility and movement prediction has also been the topic of works by Eagle et al. [69,

70], Park et al. [138], Couronne et al. [139], Kang et al. [140], Isaacman et al. [141],

Vieira et al. [142], Lu et al. [143] and Phithakkinukoon et al. [144, 145]. Eagle et al. [69, 70]

demonstrated the application and design of community structure algorithms that are appropriate

for the identification of location clusters relevant to a mobile user’s life. Validation of

techniques was supplemented by Bluetooth beacons located in user homes. Mobility modelling

algorithms were also developed using discrete Markov chains, for example by Park et al. [138],

in which it was demonstrated that the approximation of user mobility through Markov chains

reproduces the slow, sub-polynomial growth predicted by the evolution of the radii of gyration.

Park et al. also discussed how the eigenvalues and eigenvectors of a Markov chain were related

to an individual’s mobility.

The availability of large quantities of human movement data has also been of interest in the

transportation sciences. Various researchers have shown that mobile telephony networks can

provide information which may convey transportation survey related parameters, including

origin destination mobility, traffic speed, transportation mode, traffic volumes and home

and work locations [71, 146, 147, 148]. Cell tower activity logs, in particular Erlang

recordings, may be related to traffic parameters such as traffic density as it is linked to person

occupation [149]. However, such logs are unsuitable for most other transportation survey
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parameters. Caceres et al. [150] demonstrated how handover and CDR could be used in the

estimation of traffic volume. Bar-Gera [151] demonstrated that handover could be used in

the estimation of traffic speeds and travel times. Caceres et al. [152] and White et al. [153]

developed origin destination parameters utilising location updates and CDR, respectively, while

Wang et al. [154, 155] and Doyle et al. [148] have both examined transportation mode inference

techniques.

Other research efforts have examined the differences between Rural and Urban Soci-

eties [156] and produced agent-based models of epidemic spread [157], while Onnela et al. [90,

158], Kamola et al. [159] and Nanavati et al. [160] investigated the social network graphs

produced from mobile subscriber interactions. The observed flow of network communication

can also readily extracted from mobile telephony data sources. As such, it has been the subject

of research by Lambiotte et al. [161], Krings et al. [162], Ratti et al. [163], Kelly et al. [129]

and Walsh et al. [164].

2.3 Non-Operator Acquired Data

The natural source of mobile telephony data is from the data centres of mobile network

operators. However, there is a number of difficulties when acquiring information in this manner,

most notably the legal and privacy issues that prevent operators delivering such information

to outside researchers. In addition, even with best efforts, there is no guarantee that data

from theses sources is always available, complete or accurate. Network operators continually

optimise their network throughout the day, using temporary towers. This adds a level of

uncertainty to these fixed point measurements as network topologies become more dynamic. A

more fundamental issue arises regarding spatial accuracy as the spatial resolution of the usage

statistics is dependent on both the operator’s network topology and base station hardware. As a

result, approaches have emerged which aim to address these issues by placing either embedded

software applications on the mobile devices to log data [53], or by constructing custom sensing

platforms which monitor mobile devices in their vicinity [21, 22].

Using an embedded sensing application, Ahas and Mark [165] tracked the mobile phones of

300 users through a social positioning application. They combined spatio-temporal data from

phones with demographic and attitudinal data from surveys to view a map of social spaces in
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Estonia. MITs Reality Mining project [54, 166] also illustrated that it was possible to extract

common mobility patterns from the activities of mobile phone users. The subjects were issued

with mobile phones pre-installed with several pieces of software that recorded and sent research

data on call logs, Bluetooth devices in proximity, cell tower IDs, application usage, and phone

status. Other research efforts have examined social connection [167, 168], mobility [30, 169]

and subscriber behaviour [170]. Another application to make use of embedded sensing

applications is Google Mapsr real time traffic estimator. The traffic information used in this

feature comes from a combination of third party sources and data provided by Android users

which have chosen to share information by opting into the “My Location” feature on Google

Mapsr.

However, there are issues with embedded sensing applications. Aside from potential ethical

concerns, embedded sensing applications require the cooperation of the device user to install

intrusive software applications onto their mobile devices that enable the logging of information.

This can have a limiting effect on the number of devices which can be sensed due to lack

of cooperation from users. A compatibility issue may also arise as software applications on

mobile devices are often platform dependent. As a result, researchers has started to develop

custom-built sensing platforms for the passive collection of mobile telephony data.

Normal mobile network operational functions, such as device paging, are initiated when

mobile devices are connected to a network. All mobile device activities occur in designated

frequency bands and may be passively sensed using mobile receiver technology. Examples

of custom-built sensing platforms include [21, 22] and [171]. Path Intelligence [171] have

devised sophisticated sensing devices to return mobile device mobility patterns for the purpose

of foot fall analysis in shopping centres. Their applications gather information from scanning

the mobile phone frequency ranges and localising devices based on the characteristics of the

radio signals observed. Typically, information which may be collected through custom sensing

platforms includes in-range device positional estimates, in-range device count estimates and

mobile spectral energy.

Doyle et al. [21, 22], highlighted the capabilities of cumulative received signal strength

indications (RSSI) for the measurement of overall mobile device transmissions within the

proximity of custom built sensing devices. The research, carried out on the north campus

of the National University of Ireland Maynooth (NUIM), evaluated these sensing devices by
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undertaking two experiments. The first experiment investigated whether such sensors could

detect spectral emissions from an SMS and phone call under controlled conditions. Results

from this initial experiment are depicted in Figure 2.5 and Figure 2.6 respectively. The second

experiment investigated each sensing device’s capability to record mobile spectrum RSSI in an

uncontrolled environment. Here, normal mobile device activity was observed from mostly the

student population of NUIM over two consecutive time periods. Results from this experiment

are given in Figure 2.7 and Figure 2.8.

The results of the first experiment indicate that the sensing nodes were capable of detecting

normal mobile phone activity as the spectral energy associated with a text message and phone

call were clearly visible. The second experiment performed on a non-controlled environment

highlight events occurring close to each hour mark. These events relate to times where classes

finished and started, and are as expected. These preliminary findings suggest that monitoring

cumulative receiver signal strength measurements of mobile phone signals can be a valuable

tool in gathering information for mobile phone usage independent of mobile phone operators

on localised scales. However, these results are preliminary and the parameters of the temporal

processing technique used, detailed in [21, 22], require further tuning.

In the experimental setup, only an aggregated measure of spectral energy was recorded.

Using more sophisticated sensors, the spectral energy of each unique device may be monitored.

With this information, it is possible to obtain a more meaningful result for user occupancy.

Such data could also be used to complement traditional techniques for mapping mobile device

activity. For instance, one could use the network operator data, if available, to model the

dynamics of a city or town, while localised RSSI data mapping could be employed to observe

the dynamics of specific buildings or localised areas.
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Figure 2.5: Observed mobile transmissions through recorded RSSI of mobile spectral energy
from detecting sensors.
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Figure 2.6: Weighted RSSI, highlighting time periods of high activity.
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Figure 2.7: Normal mobile device activity from the student population of NUI Maynooth over
consecutive time periods (1.5 hours).
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Figure 2.8: Weighted RSSI, highlighting time periods of high activity.
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2.4 Discussion

This chapter presented a brief overview of modern cellular telephony networks and discusses

the various options available when gathering data from them. Supplementing this is a review

of current research which uses mobile telephony data as a primary source of information. The

development of a novel sensor which can be used for the passive collection of client side mobile

phone accumulative RSSI activity is also briefly discussed.

Although the results from the initial investigation into RSSI collection have proved

encouraging, the cost of building a distributed sensor network which could accurately monitor

the client side mobile phone accumulative RSSI activity, even over a small geographical area,

has proven to be prohibitively expensive. Alternatively, the costs associated with gathering

data from a mobile network operator is minimal, as the infrastructure required to gather many

of the logs outlined in Section 2.2 is in situ. While location accuracy is influenced by a mobile

operator’s cell tower topology, there exist opportunities to monitor mobile device activity at

urban and national scales, which is not practical using only RSSI data collection.

As mobile phone networks evolve and Long Term Evolution (4G LTE) networks become

more prevalent, the issues surrounding the location accuracy from mobile operator data will

tend to diminish. This is due to the foreseen increased demand for mobile wireless broadband.

As demand increases, the speed at which data is transferred will be required to increase

substantially. Due to the effects of free space path loss, as outlined in Section 2.1.2, the most

effective way of achieving this is to decrease area of cell coverage. This will result in an

increased deployment of small cells throughout urban areas and towns.

As a result, the ongoing research presented in the remaining chapters of this thesis will

concentrate on the use of operator provided mobile telephony data. The features that can

be extracted from the call detail records (CDR) of Irish mobile phone provider Meteor are

described in Chapter 3. The insights gathered from these features are then built upon in later

chapters and form the basis of the primary contributions of this thesis.
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CHAPTER 3

CDR Feature Extraction

There is a myriad of information which may be derived from mobile network operator sourced

data that relates directly or indirectly to human activity. This chapter outlines the methodology

used to extract and visualise a sample of such features from call detail records (CDR), cell

tower information and subscriber registration data from one of the Republic of Ireland’s cellular

phone networks, Meteor. Insights into required procedures for data cleansing, cell coverage

area modelling and cell clustering are also presented. Contributions include the estimation of

the achievable distance a mobile device may travel over time, a novel activity spatial weighting

function and a detailed discussion on the time variability of CDR trajectory sampling.

The Meteor network under investigation has just over 1 million customers, which represents

approximately a quarter of the country’s 4.6 million inhabitants, and operates using both 2G

and 3G telephone technologies. The CDR are collected at the operator’s MSC and SGSN

and contain records related to voice calls, short message service (SMS) and data transfer.

The available dataset consists of approximately three months of voice and SMS records from

09/11/2010 to 27/02/2011 and approximately two weeks of data records from 08/02/2011 to

27/02/2011.

The cell tower information provided contains geo-spatial coordinates in the Irish Grid

Coordinate Reference System [172]. This coordinate system is used throughout this thesis, and
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uses the projections of Easting and Northing, which are in metre units from an origin located at

a latitude of 53°30’00 N and a longitude of 8°00’00 W. Other cell information includes network

type, transmitter azimuth, and the cell’s associated MSC or RNC. The subscription information

provided contains individuals anonymised MSISDN, subscription type (bill or prepay), year of

birth and town of residency. Also included is information related to the number of upgrades

and details on whether or not they have churned in from another network.

The voice calls and SMS records are split into originating and terminating files, while

data logs contain information on mobile Internet sessions. The voice originating and

terminating logs contain information on the time of each call, both caller and called subscriber’s

anonymised MSISDN, the duration of each call and the servicing cell towers of both caller

and called subscribers at the start and end of each call when available. Similar information

related to SMS activity is contained in the SMS originating and terminating logs. For each

Internet session recorded in the data logs, information on the anonymised MSISDN, access

point name (APN), session start time, duration of the session, servicing cell at the start of the

session, quantities of data uploaded and downloaded, and servicing SGSN is collected. Note,

cell information is only available for Meteor subscribed mobile stations.

The system architecture used to process the CDR consists of a repository server and three

SFTP servers. The raw data in the form of CSV files were transferred from Meteor servers

to the repository server. The repository server is used to hold all unprocessed data. Then

SFTP servers are used to analyse the data. The data is transferred, preprocessed and stored

in MySQL databases on these servers, with each table optimised for parameter extraction.

From here an analyst may directly log on to the processing servers or remotely log in to the

MySQL databases. An overview of this system architecture is illustrated by Figure 3.1. The

data structures of call and SMS originating tables, call and SMS terminating tables and data

session tables are given in Table 3.1 to Table 3.5 respectively.

The rest of this chapter is organised as follows. Section 3.1 describes the process used

to model cell coverage areas. Section 3.2 details the identification of cell towers whose

location information is incorrect. Section 3.3 then outlines procedures for the extraction and

visualisation of various network activity metrics, while Section 3.4 details the methodology

for the extraction of mobile subscriber trajectories. Such trajectories can be used to convey

the aggregated flow of people between regions or towns. The grouping of cell towers into
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geographical coverage regions which service population centres is discussed in Section 3.5.

Section 3.6 discusses how to summarise and visualise movements between such regions. The

flow of information from one area to another is then examined in Section 3.7 and Section 3.8

describes how to extract social graphs from CDR. Finally, Section 3.9 concludes this chapter

with a discussion on the taxonomy of possible applications which may be developed from the

aforementioned features.
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Figure 3.1: The system architecture used to process the CDR.
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Table 3.1: CDR call originating table structure

Field Description
id Unique table row index

realTimeStamp Formatted start time of the call

userID Index link to the registration information for the subscriber making the
call

CalledUserID Index link to the registration information of the subscriber receiving
the call

cellIDStart Index link to the cell tower information of the cell servicing the caller
when the call was initiated

cellIDEnd Index link to the cell tower information of the cell servicing the caller
when the call was terminated

TAC The Type Allocation Code (TAC) of the mobile device making the call

callerMsisdn The caller anonymised MSISDN

calledMsisdn The called subscriber’s anonymised MSIS

callTime Un-formatted start time of the call

duration The duration of the call

startCell Cell tower ID of the cell tower which serviced the subscriber who made
the call when the call was initiated

endCell Cell tower ID of the cell tower which serviced the subscriber who made
the call when the call was terminated

Table 3.2: CDR SMS originating table structure

Field Description
id Unique table row index

realTimeStamp The formatted time at which the SMS was sent

userID Index link to the registration information for the subscriber sending the
SMS

CallerUserID Index link to the registration information of the subscriber receiving
the SMS

cellIDStart Index link to the cell tower information of the cell servicing the
subscriber who sent the SMS

TAC The Type Allocation Code (TAC) of the mobile device sending the
SMS

callerMsisdn The anonymised MSISDN of the subscriber sending the SMS

calledMsisdn The subscriber’s anonymised MSISDN who is receiving the SMS

callTime Un-formatted time when the SMS was sent

startCell Cell tower ID of the cell tower which serviced the subscriber who sent
the SMS
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Table 3.3: CDR call terminating table structure

Field Description
id Unique table row index

realTimeStamp Formatted start time of the call

userID Index link to the registration information for the subscriber receiving
the call

CalledUserID Index link to the registration information of the subscriber making the
call

cellIDStart Index link to the cell tower information of the cell servicing the
subscriber receiving the call when the call was initiated

cellIDEnd Index link to the cell tower information of the cell servicing the
subscriber receiving the call when the call was terminated

TAC The Type Allocation Code (TAC) of the mobile device making the call

callerMsisdn The caller anonymised MSISDN

calledMsisdn The called subscriber’s anonymised MSIS

callTime Un-formatted start time of the call

duration The duration of the call

startCell Cell tower ID of the cell tower which serviced the subscriber who
received the call when the call was initiated

endCell Cell tower ID of the cell tower which serviced the subscriber who
received the call when the call was terminated

Table 3.4: CDR SMS terminating table structure

Field Description
id Unique table row index

realTimeStamp The formatted time at which the SMS was received

userID Index link to the registration information for the subscriber receiving
the SMS

CallerUserID Index link to the registration information of the subscriber who sent
the SMS

cellIDStart Index link to the cell tower information of the cell servicing the
subscriber who received the SMS

TAC The Type Allocation Code (TAC) of the mobile device receiving the
SMS

callerMsisdn The anonymised MSISDN of the subscriber sending the SMS

calledMsisdn The subscriber’s anonymised MSISDN who is receiving the SMS

callTime Un-formatted time when the SMS was received

startCell Cell tower ID of the cell tower which serviced the subscriber who
received the SMS
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Table 3.5: CDR data session table structure

Field Description

id Unique table row index

realTimeStamp The formatted time at which the data session started

userID Index link to the registration information for the subscriber
who is active

cellIDStart Index link to the cell tower information of the cell servicing
the subscriber when the session started

msisdn The anonymised MSISDN of the subscriber who is active

datetime Un-formatted start time of the session

apn Access Point Name (APN) used by the mobile device

systemType The system (2G/3G) the device is connected to

nodeid SGSN id used in the session

accessPointNameNIapn The Access Point Name (APN) used to identify an IP Packet
Data Network (PDN), that the mobile data user communicates
with

pdptype The Packet Data Protocol used to transfer data, entry is empty
for all CDR

uplinkBytes Quantity of bits uploaded

downlinkBytes Quantity of bits downloaded

duration The duration of the session

TAC The Type Allocation Code (TAC) of the mobile device active
during the session

cellid Cell tower ID of the cell tower which serviced the start of the
session
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3.1 Cell Coverage Regions

As outlined in Section 2.1.2 a BST, Node-B and eNode-B may be mounted on a signal tower,

with each servicing various spatially overlapping geographical regions. Using the collective

cell tower data, namely the geo-spatial coordinates and network type of each cell, it is possible

to approximate idealised cell site coverage areas via Voronoi tessellation [173] for each mobile

network of interest, where each centre represents a cell site location. Figure 3.2 depicts cell site

Voronoi tessellations areas for 2G and 3G cell sites in our mobile network of interest. Note,

the accuracy of the tessellation in approximating cell coverage areas is affected by channel

characteristics, topography of the area and physical layer parameters which include transmitter

frequency, tilt, height, and transmission power [65]. These factors have not been incorporated

into this analysis, as the collection of such information is prohibitively expensive. As a result,

it should be noted that the estimation technique applied does introduce some approximation

error at a local level.

Figure 3.2 was produced using MATLABr plotting functions. The Voronoi tessellation

was produced using the MATLABr function VORONOI, for which cell site locations of each

network (2G/3G) were used as inputs separately. The function returns a polygon for each

unique site location, thus cells with matching site location on the same network share the same

site polygon. The county geographical regions polygons presented are sourced from Ordinance

Survey Ireland (OSI) [174].

The coverage regions in Figure 3.2 are a reasonable approximation for cell site locations

that lie within central locations, however, the absence of a limiting threshold for the size of

coverage regions means that cells along coastal regions are poorly approximated. To address

this a maximum cell site radius of 20 km and 15 km is introduced for 2G and 3G networks

respectively. The choice of each limit reflects the realistic limit for communication with each

standard given our network topology. Each site radius S r is calculated as

S r = min


√

S a

π
, S max

 (3.1)
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where S a denotes the cell site coverage area and is given by

S a =
1
2

N−1∑
i=0

(xiyi+1 − xi+1yi) (3.2)

where N is the number of points in the coverage polygon and (x,y) are the spatial coordinates of

each point. The effect of the limiting radius on the coverage map approximation is visualised

in Figure 3.3. The limiting boundary is implemented by extracting the polygon of the spatial

intersect of the idealised cell site coverage polygon with the polygon of the maximum cell

site. This intersect is implemented using POLYBOOL, a function from the mapping toolbox

of MATLABr.

More specific cell sectored coverage regions may be extracted by incorporating the

transmitter azimuth angle information into the tessellation, as visualised in Figure 3.4. This

tessellation is achieved by subdividing each cell site coverage polygon by the unique transmitter

azimuth angles of cells associated with the site. Note, cells with the same azimuth angles

share the same cell coverage polygon, Cp. Cell radius (Cr) and area (Ca) may be calculated

via equation 3.1 and equation 3.2 respectively. Also, an individual cell centroid Easting and

Northing location, (Cx, Cy), may be calculated via equations (3.3) and (3.4), respectively.

Cx =
1

6Ca

N−1∑
i=0

(xi + xi+1) (xiyi+1 − xi+1yi) (3.3)

Cy =
1

6Ca

N−1∑
i=0

(yi + yi+1) (xiyi+1 − xi+1yi) (3.4)
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3.2 Data Cleansing

It is common practice for mobile operators to relocate hardware within their mobile network.

As a result, the spatial locations of cells may become outdated and can introduce errors

to studies where location information is important. Such errors are clearly seen when the

relationship between travel time and distanced travelled is observed. Due to localisation

based on cell identification, there is uncertainty associated with CDR location estimates. If

a subscriber is consecutively serviced by cells Ci and C j at time ti and t j respectively, then the

subscriber is assumed to have moved from Ci coverage polygon, Cpi, to C j coverage polygon,

Cp j, in time t j − ti or less (i.e. t j − ti is an upper bound on the time it took to travel from Cpi to

Cp j). The uncertainty associated with the actual distanced travelled by the subscriber will be

a function of cell topology. Using a cell’s coverage polygon as an estimate of the possible

locations, a subscriber may inhabit while being serviced by a particular cell, the distance

travelled will vary between dmin
i j and dmax

i j . As depicted in Figure 3.5, the max distance between

points in two polygon regions will always be two vertices so

dmax
i j = max

m,n
||Cpim −Cp jn|| (3.5)

where Cpxy is the yth vertex of the cell coverage polygon for cell x, m = [1 → Mi],

n = [1 → N j], and Mi, N j are the number of vertices in polygon regions Cpi and Cp j,

respectively. However this is not always the case for the minimum distance as sometimes

the shortest distance between two polygons could be between a vertex and a side. Therefore,

dmin
i j is given by

dmin
i j = min

m,γ,n,β
|| [γCpi,m + (i − γ)Cpi,m+1] − [βCp j,n + (1 − β)Cp j,n+1]|| (3.6)

where 0 < γ < 1, 0 < β < 1, m = [1 → Mi], n = [1 → Ni] and n = 1 + Mi ≡ 1,

m = 1 + M j ≡ 1. The average distance, di j, can be estimated by taking the Euclidean distance

between cell coverage polygon centroids.
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dij
max dij

Ci

Cj

dij
min

Figure 3.5: Depiction of the level of uncertainty associated with the distanced travelled
between cells Ci and C j from ti to t j. dmin

i j shows the shortest distance between the cells while
dmax

i j show the longest distance between them.

As illustrated by Figure 3.6, plotting di j against the travel time ti j, where ti j = t j − ti, shows

that there are occurrences of mobile subscribers being consecutively serviced by cells which

are several hundred kilometres apart. Such observations do not adhere to practical travel speed

restrictions. The baseline cell boundary error,

max
i, j ad jacent

dmax
i j (3.7)

is approximately 66.8 km from existing CDR data and is indicated by the green horizontal line

in Figure 3.6.

As a result, a procedure is needed to identify those cells whose positional information

has become outdated. If cells are adjacent then dmin
i j = 0, hence consecutive activities may

produce ti j ≈ 0. As ti j ≈ 0 should only occur if cells are adjacent, the detection of ti j ≈ 0 for

non-adjacent cells indicates that the location of Ci or C j is outdated. However, cell coverage

polygons are only estimates of cell spatial coverage, and as a result ti j ≈ 0 may occur in cells

where Ci and C j are relatively close. In general for two non-adjacent cells, the uncertainty

associated with the actual distance travelled reduces if di j � dmax
i j − dmin

i j . Therefore, removing

measurements where di j ≤ dmax
i j − dmin

i j reduces the error associated with determining outdated

cells. Allowing for this, baseline cell boundary error and realistic travel speed expectations, a

more realistic infeasible region can be defined. This region is illustrated in Figure 3.7.
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Figure 3.6: Distances travelled within a given time frame as observed through CDR.
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Figure 3.7: Distances travelled within a given time frame as observed through CDR with
tolerance boundary and infeasible travel speed region superimposed.

If a data point (ti j, di j) associated with a transition between Ci and C j, falls within this

region, then both cells involved in the movement are flagged as potentially outdated. By

observing all other transitions between each flagged cell and other network cells, the outdated

cell may be identified. To maintain consistency throughout our dataset, data from cells which

have been identified as becoming outdated is removed. However in some instances, due to the

low number of observed transitions, it may not be possible to isolate the offending cell. In
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this instance, both cells are marked as outdated. Figure 3.8 depicts di j against the upper bound

travel time ti j observed where all cell information identified as outdated is removed.
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Figure 3.8: Distances travelled against the upper bound travel time as observed through CDR
with applied filtering.

Due to the uncertainty in ti j and di j, it is not possible to get reliable estimates for velocityi j.

However, if we plot dmin
i j against ti j we can get a lower bound on the maximum travel velocity.

Specifically the slope related to observed measurements (ti j, dmin
i j ) is a lower bound on the

associated maximum travel velocity, V̂i j. This is because dactual ≥ dmin
i j and tactual ≤ ti j,

therefore

V̂i j =
dmin

i j
ti j

velocityactual ≥ V̂i j .
(3.8)

As illustrated by the manually drawn slope in Figure 3.9, a lower bound on the maximum

V̂i j (slope of black line) indicates that a journey between 40 km and 150 km will have a

minimal maximum velocity of approximately 100 km/h, while journeys between 150 km and

200 km and will have a minimal velocity of 72 km/h respectively. These estimates correspond

well to average speed measurements estimated by [175]. The decrease in average speed with

increased distance relates to geographical constraints and the reduced opportunity for direct

travel between journey end points as travel paths are restricted to the underlying transportation

infrastructure.
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Figure 3.9: Distances travelled against the minimum travel time as observed through CDR
with applied filtering.

3.3 Spatio-temporal Cell Activity Maps

Individual cell tower activities may be easily extracted from CDR tables by selecting

temporally sorted rows which correspond to a cell of interest. A spatio-temporal cell activity

map may then be constructed by combining cell tower spatial information, as outlined in

section 3.1, with the temporally sequenced information extracted from CDR. For visualisation

clarity, spatial smoothing of cellular activity across each cell coverage region is required.

Standard temporal smoothing techniques may also be employed to remove high frequency

temporal variations.

An example of temporal cell activity is depicted in Figure 3.10. Here, four cell towers were

chosen at random from our mobile cell network, and their activities summed into 15 minute

bins. Both 0 and 7 represent the midnight of Maonday (00:00:00). In order not to divulge

possibly commercially sensitive information, each cell tower activity pattern is normalised.

From this figure, the cycle of daily human activity is clearly evident, with expected lulls at

night, and peaks during each day.

To enable a spatio-temporal cell activity map to be constructed from the temporal activity,

a spatial smoothing function is required which accommodates varying cell size and multiple

co-located and overlapping cell coverage polygons from both 2G and 3G networks. The spatial
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Figure 3.10: Temporal activity patterns of four randomly sampled cell towers over a seven-day
period.

smoothing function involves the construction of an individual Gaussian bell for each cell tower,

located at its coverage area centroid. The spreading factor of each Gaussian is governed by cell

tower radius and spreads each individual cell metric of activity, Cw, over a spatial lattice, δ(x, y).

An illustrative example of a weighted lattice for a single cell is depicted in Figure 3.11. The

weighted spreading function of a single cell is given by

δ(x, y) = ρCw exp
− (x −Cx)2

2C2
r
−

(y −Cy)2

2C2
r

 , (3.9)

where (x,y) are coordinates of points in the spatial lattice, Cr and (Cx,Cy) correspond to the

cell radius and centroid location, respectively, and ρ is a scaling weight which ensures that the

combined weights in δ(x, y) sum to Cw.

Each lattice, corresponding to an individual cell activity measurement may be expanded to

the temporal horizon by incorporating an additional parameter at a particular time sample k.

The resulting lattice δ(x, y, k) may then be combined to view the spatial distribution of activities

at that instant. The combined weighted lattice, Φ(x, y, k), is given by

Φ(x, y, k) =

Nc∑
C=1

δC(x, y, k) (3.10)

where δC(x, y, k) is the lattice for the cell tower C and Nc is the number of cell towers.
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Figure 3.11: Example of a weighted lattice which corresponds to activity at a single cell tower.
Here activity at a cell was set to 1000 and the cell radius is 2500 metres.

An example visualisation of the cell activity map for spatial distributions of data sessions,

calls and SMS loads as recorded on 22/02/2011 for time periods of high and low activity are

depicted in Figure 3.12, Figure 3.13 and Figure 3.14, respectively. To this end, the Republic of

Ireland was divided into 500 × 500 metre pixels and traffic intensity was assigned at each pixel

considering the aforementioned spatial distribution functions, while temporal activity load was

binned into 15 minute time intervals. Each visualisation is constructed using MATLABr

plotting functions, with county geographical regions polygons sourced from Ordinance Survey

Ireland (OSI). Total network temporal activity in each instance is also indicated on each figure

and is normalised. The time sample corresponding to each spatial lattice is indicated on each

temporal plot by ‘*’.

For visual clarity, high frequency temporal variations were removed using a temporal

smoothing function. The function, given by Equation (3.11), is a moving average filter which

averages the current measurement over three temporal samples.

Φ̄(x, y, k) =
1
3

k+1∑
i=k−1

Φ(x, y, i) . (3.11)

The plots show the dependence of activity levels with both population density and hour of the

day. They also illustrate the relatively high spatial and temporal correlations of data, call and

SMS loads.

44



CDR Feature Extraction

(a
)2

2/
02

/2
01

1
06

:0
0:

00
(b

)2
2/

02
/2

01
1

20
:0

0:
00

Fi
gu

re
3.

12
:S

pa
tia

ld
is

tr
ib

ut
io

ns
of

D
at

a
Se

ss
io

ns

45



CDR Feature Extraction

(a
)2

2/
02

/2
01

1
06

:0
0:

00
(b

)2
2/

02
/2

01
1

20
:0

0:
00

Fi
gu

re
3.

13
:S

pa
tia

ld
is

tr
ib

ut
io

ns
of

C
al

lA
ct

iv
ity

46



CDR Feature Extraction

(a
)2

2/
02

/2
01

1
06

:0
0:

00
(b

)2
2/

02
/2

01
1

20
:0

0:
00

Fi
gu

re
3.

14
:S

pa
tia

ld
is

tr
ib

ut
io

ns
of

SM
S

A
ct

iv
ity

47



CDR Feature Extraction

3.4 Mobile Device Trajectories

A mobile device CDR trajectory is the path that a subscriber follows through a cell network as

a function of time as observed from CDR. Such trajectories can readily be extracted from CDR

tables by selecting device specific temporally sorted cell tower connections. The trajectory may

be spatially correlated by relating the spatial information of a servicing cell to each trajectory

point. A sample of 5 randomly chosen observed trajectories is displayed in Figure 3.15, using

a space time cube representation [176].
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Figure 3.15: Space time cube visualisation of 50 user trajectories.

In general, location-specific information of trajectories generated in this way will be subject

to spatial-heteroskedasticity, as the variance in estimation accuracy will be influenced by the

variation in physical topology of the mobile network (i.e., the size and density of the cells). For

example, it is less likely for a user 20 km away from a cell tower to be associated with that cell

if the cell is located in the city centre compared to one located in rural areas.

CDR trajectory sampling distributions, as discussed in [86], are non uniform and dictated

by the activity profiles of individual subscribers. The distribution of the time intervals between
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consecutive activities, τ, across the whole operator’s population under investigation for call,

SMS and Data CDR are depicted in Figure 3.16, 3.17 and 3.18 respectively. Note that a bin size

of one second is used to compute each distribution. As mobile devices can execute call, SMS

and data sessions simultaneously, activity distributions may be combined when appropriate.
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Figure 3.16: Probability density function (pdf) of time intervals between consecutive mobile
calls: (a) over the range 0-4500 seconds; (b) over the range 0-120 seconds.
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Figure 3.17: Probability density function (pdf) of time intervals between consecutive mobile
SMS: (a) over the range 0-4500 seconds; (b) over the range 0-120 seconds.
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Figure 3.18: Probability density function (pdf) of time intervals between consecutive mobile
data sessions: (a) over the range 0-4500 seconds; (b) over the range 0-120 seconds.
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From the pdfs, several temporal spikes in activity are noticeable. In each of the

distributions, there exists a spike centred around the 1 hour mark. The 1 hour spike present

in Figure 3.16a may be an artifact of Meteors billing policy, as under certain call plans Meteor

only charges for calls which exceed an hour, thus encouraging customers to hang up and call

again once that threshold approaches. This is supported by observing the 1 hour spike in the

distribution of call durations, illustrated in Figure 3.19. The 1 hour spike present in Figure 3.17a

may also correspond to network artifacts such as delivery of previously undelivered text

message, or it may be as a result of periodic activities caused by automated systems which

communicate over Meteor’s mobile network. The noticeable weight corresponding the 1 hour

spike in Figure 3.18a is linked to a procedure in Meteor’s billing system which creates a

new data session instance for sessions with duration over an hour. Observing the duration

of data sessions in Figure 3.20, this procedure is clearly evident. The remaining spikes in

Figure 3.18a may also correspond to periodic activities caused by automated systems which

communicate over Meteor’s mobile network, or may be artifacts introduced by applications

commonly installed on mobile devices.
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Figure 3.19: Probability density function (pdf) of the duration of calls.
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Figure 3.20: Probability density function (pdf) of the duration data sessions.

In Figures 3.16b and 3.17b, there are interesting double peaks clearly evident below the 60-

second mark. In Figure 3.16b the peaks centred at 5 and 15 seconds respectively, may represent

the observed process of making an unsuccessful call and attempting to redial. In Figure 3.17b,

the double peaks are located at 10 and 30 seconds respectively. The initial sharp peak may

refer to the process of sending a text message and receiving a subsequent delivery notification,

while the second broader peak may reflect the average reply time.

The number of observed active subscribers over a 7-day period is illustrated in Figure 3.21.

Note, similar to the cell tower activity distributions as discussed in Section 3.3 it is clearly

evident that there exists a variability in trajectory sampling which is time dependant as it

fluctuates with the cycle of daily human activity. Further insights into the temporal variability

of CDR sampling is discussed by [64].
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Figure 3.21: Proportion of observable user population over a seven-day period.
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To investigate whether or not this temporal variation is statistically significant, the variance

in expected τ, E(τ), over a 24-hour period was evaluated to see if the observed sampling

distributions were indeed a function of time. Before the test of significance can be measured, a

distribution of τ for each hour was tabulated, as depicted in Figure 3.22. Here, each observed

value of τ captures the measured time between an activity that occurred within a temporal

window and the next consecutive activity from an individual subscriber. From Figure 3.22, it

is clear that none of the τ distribution are Gaussian. As a result, bootstrapping was applied to

measure E(τ) form each temporal window.

Bootstrapping [177] is a resampling technique which consists of taking the mean of

samples from a population with replacement in order to produce a distribution of mean values

for that particular population. By central limit theorem, a distribution of mean estimates from

samples of a population with finite variance approaches a normal distribution regardless of the

statistical distribution of the population. As illustrated in Figure 3.23, the distributions of mean

values for several temporal windows approach a normal distribution. Thus, the E(τ) for each

temporal window can be approximated using the sample mean of each distribution to within

a certain level of confidence. The variance in estimated E(τ) with 95% confidence intervals

for each temporal windows is depicted in Figure 3.24. The variance in E(τ) and number of

samples within each temporal distribution indicate that, on average, the sampling rate of active

subscribers is less during the early hours of the morning.

During the hypothesis testing Welch’s t-test [178] is used to evaluate if distributions of τ

were sourced from distributions with statistically similar means and variance. While the t-test

is not valid for small samples (N<30) from non-Gaussian distributions, it is valid for large

samples. This is because of the fact that it makes no assumptions on the normality of the

distribution, rather is assumes that the mean value of E(τ) is normally distributed. Applying

Welch’s t-test [178] to each pair of observed τ distributions we find that each distribution of τ is

not statistically similar to all other samples at 95% significance. As a result, the aforementioned

sampling distributions are temporally heterogeneous. Accordingly, observed journeys taken

during times of low network activity will be generally undersampled compared to journeys

taken during times of high network activity due to increase in E(τ).
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Figure 3.22: τ distributions observed over a 24-hour period, where each distribution of τ
captures the observed times between activities which occurred within a temporal window and
the next consecutive activity for individual subscribers. Temporal information is encoded using
the colour chart provided.
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Figure 3.23: Distributions of the mean time to the next subscriber activity, where the initial
activity occurred at; (a) 3am to 4am; (b) 7am to 8am; (c) 11am to 12am; (d) 3pm to 4pm; (e)
7pm to 8pm; and (f) 11pm to 12pm.
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Figure 3.24: The variance in E(τ) over a 24-hour period: (a) E(τ) with 95% confidence
intervals; and (b) the number of activities.

3.5 Spatial Clustering of Cell Towers

A mobile network topology is governed by coverage and capacity requirements. While cell

coverage is generally influenced by geographical factors, capacity is generally influenced by

traffic demand [1, 65, 93, 94, 95]. As traffic demand is strongly linked to user population

density, cell size and density vary with mobile user density. As previously discussed, typically
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mobile network topology for 2G, 3G and 4G are designed separately. This results in several

cells of varying standard covering a single geographical area.

Several clustering methods may be used to combine multiple cell coverage polygons

of varying standard into a single polygon representative of a symbolic location covering a

population centre. To this end, an agglomerative hierarchical based clustering algorithm [179]

was applied. The clustering similarity metric was the Euclidean distance between each cell’s

site location, including both 2G-3G distance measurements for our network of interest. The cell

location information was inputted into the MATLABr function LINKAGE, which returned a

hierarchical cluster tree. The dendrogram of this tree is illustrated in Figure 3.25. Clustering

was implemented on this tree using the MATLABr function CLUSTER.

10
5

10
6

10
7

Figure 3.25: Dendrogram of hierarchical cluster tree. Note for visual clarity, the number of
leaf nodes is limited to 200. The full tree has over 10,000 nodes.

This resulted in 500 distinct clusters with cells being grouped together if they were in close

spatial proximity. By performing a spatial union on the coverage polygons (Section 3.1) of

individual cells within each cluster, that cluster can be characterised by its regional coverage

polygon. The visualisation of the clustered polygons is depicted in Figure 3.26.
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Figure 3.26: Regional coverage polygons.

3.6 Movement Transition Flows

With the ever increasing availability of trajectory data, observing the aggregated flows of people

or animals between regions of interest has been a growing area of research. The work of Natalia

and Gennady Andrienko et al. [27, 180, 181], Buchin et al. [182] and Doyle et al. [148] have
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explored varying techniques to visualise and group similar movement patterns. Similarly, CDR

subscriber trajectories may be exploited in this regard.

By counting the number of subscriber transitions between servicing cell towers in a given

time frame, we can construct an aggregated transition matrix, Υa(k),

Υa(k) =



υ1,1(k) υ1,2(k) · · · υ1,NR(k)

υ2,1(k) υ2,2(k) · · · υ2,NR(k)
...

...
. . .

...

υNR,1(k) υNR,2(k) · · · υNRNR(k)


(3.12)

where NR is the number of regions of interest, and υi j(k) is the transition intensity from

region i to j at time k. For the mobile network considered in this research, Υa is a large

matrix containing close to 115 million elements (NR = 10,721). For transition flow analysis,

the matrix size needs to be reduced in order to lower both the computational complexity and

memory requirements.

Initially, as a compromise between computational load and spatial accuracy, 2G and 3G

network cell towers were combined into 500 clustered cell regions as outlined in Section 3.5.

This reduces Υa to Υ (NR = 500). The flow of people between clustered regions and the

geographical areas covered represents a proxy for the flow of people between individual

population centres. The proportional link strengths demonstrating observed transitions between

regions is illustrated in Figure 3.27.

The transition intensity or strength can also be observed temporally between two individual

regions. A comparison of average daily activity volumes between Maynooth and Leixlip, towns

in the north-east corner of County Kildare, Ireland, is displayed in Figures 3.28 and 3.29. With

populations of 12,510 and 15,452, respectively, both are served by a commuter train service

to Dublin and are close to the M4 motorway. From the figure, as expected Friday evening

(4 - 8pm) has the highest transition volume in comparison to other days of the week. The

commuting behaviour that exists between Maynooth and Leixlip is also evident, as early spikes

in transition intensity from Maynooth to Leixlip is recorded on week days, with the expected

lull on weekends.
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Figure 3.27: The proportional link strengths demonstrating observed transitions between
clustered cell regions.
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Figure 3.28: Average daily activity volumes of subscribers moving between clustered regions
covering the towns of Maynooth and Leixlip, in the direction of Maynooth to Leixlip.
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Figure 3.29: Average daily activity volumes of subscribers moving between clustered regions
covering the towns of Maynooth and Leixlip, in the direction of Leixlip to Maynooth.

3.7 Communication Flow

The flow of information from one region to the next is naturally observed through analysing

mobile telephony data. As such, it has been the subject of many research articles in recent

years [129, 161, 162, 163, 164]. In a similar fashion to the transition matrix discussed in

Section 3.6, communication flow may be summarised by an aggregated communication flow

matrix ζa(k),

ζa(k) =



ς1,1(k) ς1,2(k) · · · ς1,NR(k)

ς2,1(k) ς2,2(k) · · · ς2,NR(k)
...

...
. . .

...

ςNR,1(k) ςNR,2(k) · · · ςNRNR(k)


(3.13)

where ςi j(k) is the intensity of communication between the ith and jth region at time k. A

sample of communication flow between regions for call and SMS is depicted in Figure 3.30.

For visual clarity, ζ(k)a in each instance has been modified such that ςii = 0 ∀ i. ζa is then

normalised such that for any row i,

ζa(k) = [ςi j(k)]NR×NR →

NR∑
j=1

ςi j(k) = 1 , ∀ i (3.14)

Each visualisation is constructed using MATLABr plotting functions. Note that the opacity of

each observed connection edge is dictated by its communication intensity value.
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3.8 Subscriber Social Graph

Typically, CDR contain information on both the sender and recipient of each voice or SMS

communication. In such cases, a social graph may be constructed from the observed com-

munications, where subscriber identifiers are used for the graph vertices, and communication

intensity for graph edges [90, 159].

For the mobile network considered in this research, a complete social graph for Meteor

to Meteor subscriber connections may be constructed. Partial information also exists

for connections to subscribers on external operators through their interaction with Meteor

customers. A sample social graph from a selection of Meteor’s subscriber base is depicted

in Figure 3.31. This graph is visualised using ORAr [183], a network visualisation software

platform. Subscribers are orientated using a spring embedded layout [184]. Such graphs

provide a rich source of information for research into social interaction and reaction. However,

the analysis of user connections is not the focus of the research in this thesis and as such it is

only mentioned here for completeness.

Figure 3.31: Sample user connection graph.
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3.9 Discussion

This chapter presented the methodology used to extract and visualise a range of features from

call detail records (CDR), cell tower information and subscriber registration data from the

Meteor cellular phone network in the Republic of Ireland. Insights into required procedures

for data cleansing, cell coverage area modelling and cell clustering were also presented. The

contributions of the chapter include the estimation of the achievable distance a mobile device

may travel over time, a novel activity spatial weighting function for spatio-temporal cell

activities and a detailed discussion on the time variability of CDR trajectory sampling.

There are many potential applications which require a human activity feed or source,

whether live or historic, to help explore useful real-time and predictive human-related

behaviours. A number of the features presented in this chapter may be appropriate as inputs

to such applications, the obvious example being subscriber CDR trajectories. Subscriber

trajectories exhibit repetition as people often perform periodic journeys. By modelling a

subscriber’s movement patterns, we can predict their location in time. With such information it

is possible to develop population density estimators, identify city and regional catchment areas,

produce traffic monitoring applications and observe how urban environments are used. As the

capacity to predict population density over time evolves, such information may be related to

the demand loads seen on utility networks, thus enabling the development of load forecasting

applications.

Dynamic transportation services may also benefit from such data. As the daily movement of

people becomes more predictable, the location and quantity of public transportation needed to

service a geographical area can be refined to meet current requirements. Also, real time traffic

information can be relayed to traffic management systems enabling the real-time optimisation

of transportation networks.

The analysis of communication links between cells, regions or people can be used to

observe the flow of information throughout a country. Such information makes it possible to

identify socially connected groups. This has several marketing applications as well as providing

insights into socially connected geographical regions. Applications focused on communication

network optimisation may also use such data to help streamline service delivery.

In future chapters, techniques and algorithms which aim to solve some of the technical
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challenges associated with the aforementioned applications are developed. The specific focus

is on the extraction of movement related behaviours that enable prediction of travel paths

taken between points of interest, national mobility prediction, subscriber mobility routines and

dynamic population estimation.
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CHAPTER 4

Travel Path Discovery

Transportation surveys, which gather data on human mobility patterns and transport infras-

tructure utilisation, are widely used as inputs to strategic planning exercises by city [185],

regional [186] and national [4] authorities with responsibility for the provision and maintenance

of infrastructure and services for the general public. They are also a valuable data source

for research into human mobility preferences [187] and societal trends [188]. Practically,

however, transportation surveys are resource intensive and expensive to undertake as they

typically involve either the deployment of dedicated monitoring hardware systems or manual

data collection. Consequently, they tend to be performed infrequently, are of limited duration

and only collect data for a small number of representative locations within the transportation

network. Thus, while transport surveys are immensely valuable, they provide poor temporal

and spatial resolution. This motivates the requirement for low cost and scalable alternatives.

Exploiting the data collection capabilities of mobile phone networks is an attractive proposition

in this regard [71, 147, 146, 149, 150, 189].

However, as the spatial accuracy of CDR positional estimates are restricted by network

cell topology, it is often difficult to identify the particular route an individual travelled along

between points of interest. Thus, in the absence of trip metadata, it is often quite difficult

to attribute the flow of people between regions to particular routes, or distinguish modes of
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transport taken.

This chapter outlines novel research into the identification of mobile subscriber travel paths

which attempts to address these issues. New similarity metrics are developed to quantify

the resemblance of CDR trajectories and known travel paths between regions of interest.

These metrics are compared to traditional trajectory comparison techniques, and are shown

to outperform them when classifying the travel routes of trajectories within a test dataset. The

test dataset, comprised of simulated journey trajectories, are generated using a novel agent

based model which simulates CDR journey trajectories between points of interest. A novel

methodology is then presented which identifies the routes taken by individuals as they travel

between regions of interest. An overview of this procedure is depicted in Figure 4.1.
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Figure 4.1: Methodology used to identify the routes taken by individuals as they travel between
regions of interest.

Each stage of this procedure is detailed in the following sections of this chapter: Section 4.1

describes the formation of journey trajectories. Section 4.2 outlines a novel method for

visualising the density of CDR journey trajectories, which is used during the visual validation

of classification results. The details of the agent based model which simulates CDR journey

trajectories between points of interest is given in Section 4.3. Section 4.4 then summarises each

of the new similarity metrics proposed. A brief overview of traditional trajectory similarity

measurement techniques is also given. Each of these techniques is then compared in Section 4.5

using a simulated CDR journey dataset. A novel procedure used to generate travel paths
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between regions of interest is then presented in Section 4.6. A classification algorithm which

identifies the routes taken by subscribers as they travelled between Dublin city and Cork city is

also introduced. Section 4.7 describes a novel procedure used to estimate travel paths belonging

to a group of similar CDR trajectories. Finally, Section 4.8 concludes the chapter with a

discussion outlining both the benefits and limitations of the proposed techniques for mobile

travel path identification.

4.1 CDR Journey Trajectories

As previously discussed in Section 3.4, CDR trajectories are paths taken by mobile devices

through a cell network as a function of time as observed from CDR. These trajectories may be

segmented into CDR journey trajectories by identifying trajectory segments which correspond

to trips between spatial regions of interest. A spatial region of interest, R, is a symbolic

representation of an area in terms of cellular network coverage. Here, cells are deemed to

belong to a region of interest if their site location falls within the spatial bounds of that location.

Trajectory path information is then sorted and preprocessed, as in Table 4.1, for future

analysis, where m is the table placement index, u is the anonymised subscriber ID, i is the

journey index, Rs is the starting region, Re is the ending region, t is the time stamp of the

activity, A is the recorded CDR activity, and C is an index to the serving cell tower. For

clarity, the term activity and event are used interchangeably throughout. A journey trajectory

(J) is defined as a single recorded path taken between two regions of interest, where each

user may have several associated journey trajectories. An example of several extracted journey

trajectories is depicted in Figure 4.2.

Ensuring anonymity of individual users whose trajectories are being tracked is important.

Researchers have shown that the combination of trajectory data with external information

sources can reveal the identity of previously unidentifiable users [80, 190, 191, 78, 79]. To

address this issue, the index u is removed before analysis and journey identification is directly

obtained from i. Such re-anonymisation reduces the likelihood of being able to identify any

user associated with a particular journey, as the omission of a user reference breaks the linkage

between blocks of travel information.
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Table 4.1: Processed CDR structure used in the formulation of user CDR trajectories
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Figure 4.2: A CDR journey trajectory between two regions of interest, Ra and Rb.

4.2 Kernel Density Estimate (KDE)

To order to characterise the density of CDR trajectories, a suitable model is required which

can accurately capture the likely travel path taken by a subscriber as they move from one

area to the next. A number of mobility models have been developed for ad-hoc wireless

networks [192, 193] and imperfect trajectory data [194]. Using accurate positional estimates,

Demšar et al [195] outlined a suitable technique to estimate the kernel density of trajectories.

In the absence of an accurate model for CDR trajectory representation, plotting the density

of the visited cell towers which make up a journey trajectory gives a good approximation of

density as it captures the locations visited between the start and end locations of that journey.

As discussed in Section 3.3, cell tower activities may be spatially distributed as a function of

each cell tower’s spatial parameters. Using a similar approach, a technique to estimate the

kernel density of CDR trajectories is introduced.

The spatial smoothing function applied constructs an individual Gaussian bell for each

unique cell tower present in a CDR journey trajectory, located at cell coverage area centroids

67



Travel Path Discovery

(Cx, Cy). The spreading factor of each Gaussian is governed by each cell tower radius, Cr,

and spreads a weighting over a spatial lattice, ϕ(x, y), such that the combined weight under an

individual Gaussian sums to 1. The estimated kernel density is then obtained by combining

each individual cell tower lattice. The spreading function used for a single cell tower is given

by

ϕ(x, y) = % exp
− (x −Cx)2

2C2
r
−

(y −Cy)2

2C2
r

 , (4.1)

where (x, y) are coordinates of points in the spatial lattice, Cr and (Cx,Cy) correspond to the

cell radius and centroid location, and % is a scaling weight which ensures that the combined

weights in ϕ(x, y) sum to 1. The combined weighted lattice, ϕ(x, y), is given by

ϕ(x, y) =

NJ∑
C=1

ϕC(a, b) (4.2)

where ϕC(x, y) is the lattice for the cell tower indexed by C and NJ is the number of unique cell

towers making up J. An illustrative example depicting a kernel density estimate for a single

journey trajectory, J, shown in Figure 4.2 is given in Figure 4.3.
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Figure 4.3: An illustrative example depicting a kernel density estimate for a single journey
trajectory as shown in Figure 4.2.
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4.3 Simulating CDR Journey Trajectories

This section outlines the development of an agent based model that combines mobile network

cell tower connection probabilities, mobile phone activity distributions and geographical route

map information, to model observed mobile subscriber activities along travel paths. The model

outputs simulated journey CDR trajectories (Ji) which are constructed to contain sampling

points along known travel paths between regions of interest such that they are, probabilistically

speaking, representative of the actual subscriber trajectories observed through CDR.

4.3.1 Allocating Activity Locations

As previously discussed in Section 3.4, CDR trajectory sampling distributions are non uniform

and are dictated by the activity profiles of individual subscribers. Within each trajectory, these

distributions dictate activity locations, (Ax, Ay). Thus, a simulated journey trajectory needs to

distribute activities along the selected travel path such that the bursty nature of device activity

is maintained. As modern mobile devices may preform several activities simultaneously, the

sampling distributions outlined in Section 3.4 are combined into one single distribution of τ.

This distribution is displayed in Figure 4.4.
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Figure 4.4: Probability density function (pdf) of time intervals between consecutive mobile
phone activities

Given an initial start time of tst, the temporal activities of users can be simulated by
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consecutively sampling the distribution of τ. However, there is a natural bias for samples

to occur just after tst. This feature is clearly evident from examining Figure 4.5. This figure

illustrates the proportion of 1000 agents which where active during each temporal slot, given

the time between each agent’s activity is sampled from the distribution of τ. Thus it is clear

that a settling time is needed which avoids the initial peak in agent activity. If not introduced,

there is an assumption that every agent has performed an activity at tst. Setting t0 as the journey

start time and ttot as the total journey time, where t0 � tst, the temporal sequence of activities

attributed to a journey may be selected from each agent’s simulated temporal activity when,

t0 ≤ At ≤ ttot (4.3)

where At is the estimated time of each activity, and is given by

Atk = t0 +

k∑
i=1

τi . (4.4)

Assuming a constant travel speed and total journey length Ltot, the relationship between

distance travelled along the path and time passed is denoted by,

Lk

Ltot
=

Atk

ttot
, (4.5)

where Atk/ttot is the proportion of time passed since t0 up until the activity indexed by k

and Lk/Ltot is the corresponding proportion of distance travelled along the route. An example

illustrating the selected locations of activities using this technique is given in Figure 4.6.
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Figure 4.5: The number of agents active in each temporal slot given that the time between each
activity is sampled from the distribution of τ, plotted in Figure 4.4. The total number of agents
is 1000 and the temporal bin width is 2.1 minutes.
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Figure 4.6: Estimated location of activities (Ax, Ay), indicated by •, along a travel path of
interest.
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4.3.2 Cell Tower Selection

Once the location of each activity is estimated, the next step is to select the servicing cell towers.

In real world situations, the selection of the cell which enables a call, SMS or data transfer to a

mobile device is influenced by factors which include, among others, cell network topology, cell

congestion and the perceived distance between the cell tower and device, which takes account

of current channel characteristics and transmission power. To model this phenomenon, cell

tower connection probabilities are derived from all relevant GPS-tracked mobile phone cell

tower connection traces sourced from OpenCellID [196]. Cell tower connection probabilities

allow for the deterministic localisation of a mobile device by isolating the most probable area

the device was located while being serviced by that cell. This measure is then used to evaluate

the likelihood of a cell servicing an activity which occurred at the location (Ax, Ay). By

evaluating this measure for each cell in the network of interest, the selection of which cell

services the activity may be determined stochastically.

The OpenCellID [196] database allows users to upload their GPS locations with their

corresponding detected cell tower IDs via a client-side application installed on their mobile

devices. Data from this database for the network under investigation amounted to just over

21,000 entries. These entries spanned the entire countryside, mostly along main roads and in

cities, although a significant proportion were located in rural areas. The spatial distribution of

activities is displayed in Figure 4.7.

To form cell tower connection probabilities, the distance between OpenCellID GPS

recordings and the cell tower to which they are connected is tabulated. Each measurement

may then be collated into a single distribution which describes the observed distances users

were from cell towers while being serviced by them. If sufficient data were available, it

would be possible to derive cell tower specific connection distributions from the GPS sourced

information. In practice, the low number of samples and the biased sampling nature of

the GPS recordings (e.g. many collected along roads but few for forests, etc.) means that

individual connection distributions are not suitable for inference purposes. Instead, using the

aforementioned distance measurements, it is possible to estimate a generic probability density

function (pdf) which measures the likelihood of connecting to a cell as a function of the distance

from the cell tower location. This distribution is displayed in Figure 4.8. Note the distribution
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of connection distance s is in general unique to each cell tower, reflecting the practical factors

influencing their connection characteristics.

Figure 4.7: Distribution of GPS recordings from OpenCellID from devices active on the
Meteor Network
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Figure 4.8: Distribution of the observed distances OpenCellID recordings were from servicing
cell site locations.

73



Travel Path Discovery

A commonly observed phenomenon with GPS recordings is for repeated samples to cluster

into dense regions once the device is stationary [197]. These dense regions are clearly evident

within OpenCellID recording, as illustrated in Figure 4.9, and do introduce peaks within the

derived pdf (i.e. the peak at the 5 km mark in Figure 4.8). As a result, it is necessary to

remove such areas as they unduly bias particular distances. To isolate these regions, samples

were grouped using DBSCAN [179], a density based clustering algorithm with noise. Each

identified cluster was then replaced with a single point measurement located at its centroid.

The aforementioned pdf is then reconstituted and is as depicted in Figure 4.10.

 

Figure 4.9: Irregularities (red circle) in OpenCellID recordings

A single distribution characterising the probability of connecting to a cell, which accounts

for varying cell size, is constructed by scaling each OpenCellID recording by the theoretical

radius of the connecting cell tower (Cr), as estimated from the Voronoi cell polygons. The

resulting pdf, illustrated in Figure 4.11, measures the likelihood of connecting to a cell as a

function of the normalised distance ŝ from the cell tower location, where

ŝ =
s

Cr
. (4.6)
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Figure 4.10: Distribution of the observed distances OpenCellID recordings were from
servicing cell site locations with irregularities removed.
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Figure 4.11: Distribution of likelihood of connecting to a cell as a function of the normalised
distance ŝ from the cell tower location.

Using this pdf, the probability of connecting to a cell while being at least a distance s from

a cell with connection radius Cr is given by

P (ŝ > s/Cr) = P(ŝ > s∗) =

∞w

s∗
Pn(ŝ)ds (4.7)

Given that connections can be assumed to occur on a 2D plane, the probability density function

for connecting at a given radius ψ and a bearing θ to the cell tower C can be expressed as

PC(ψ̂, θ) =
Pn(ψ̂)
2πψ̂

, (4.8)
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where ψ̂ = ψ/Cr and ψ is the Euclidean distance from the activity location (Ax, Ay) and cell

centroid (Cx, Cy). Angle θ is as depicted in Figure 4.12.

Cr

ψ

θ

(Ax, Ay)

(Cx, Cy)

Figure 4.12: Illustration showing the calculation of distance ψ and angle θ.

The probability of an event occurring within a selected region or area, Aβ, is given by
r

Aβ
PC(ψ̂, θ)dAβ. This can be approximated by summing over an evenly distributed grid of

discrete point measurements which fall within the enclosed region, that is

P(Aβ) ≈
MA∑
i=1

PC(ψ̂i, θi)∆i (4.9)

where ∆i is the area of the ith grid pixel, (ψ̂i,θi) are the polar coordinates of pixel centre and MA

is the number of points which fall within area Aβ. For a uniform grid ∆i = ∆ ∀ i and hence

P(Aβ) = ∆

MA∑
i=1

PC(ψ̂i, θi). (4.10)

An example illustrating the spatial dispersion of connection probability from two cells of

varying radius is depicted in Figure 4.13. To enable a direct comparison, each figure has been

normalised to the same scale.

Given the position of an activity (Ax, Ay) along a travel path, as determined in Section 4.3.1,

PC(ψ̂i, θ) for each cell in the network under investigation is tabulated. The choice of which

cell to select is then stochastically sampled from 50 of the top ranked cell towers. Fifty cells

are selected as a compromise between spatial variance and realistic network behaviour. An

example of two simulated CDR trajectories is depicted in Figure 4.14.
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(a) (b)

Figure 4.13: The spatial dispersion of connection probability from selected cells: (a) Cell with
a radius of 2 km; and (b) Cell with a radius of 10 km.
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Figure 4.14: Simulated CDR trajectories, J, travelling along travel paths of interest, T , between
Dublin City and Cork City: (a) Path following rail line; and (b) Path following motorway.
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4.4 Path Similarity Measurements

Path similarity is a quantitative measure that describes how similar two paths are. In this

section, two novel similarity measures are introduced which measure the distances between

CDR trajectories and travel paths. The first measurement technique involves virtual cell paths

(VCP). This measurement is based on the proportion of events which occur at cells that are

deemed to represent a route of interest. The second is based on probabilistic cell connectivity

(PCC). PCC is a stochastic distance measurement which calculates the probability of activities

within a journey trajectory being along any travel path. These similarity measurements

are compared to commonly used trajectory similarity measures in Section 4.5. Alternative

measurements used in this comparison are also detailed within this section. Additionally,

novel enhancements to the similarity measurement Longest Common Subsequence (LCSS) are

introduced, which enable LCSS to account for the spatial-heteroskedasticity which is present

within CDR trajectories.

4.4.1 Virtual Cell Path

A virtual cell path is a collection of cells which represents a pathway through a mobile

telephony network along which a user may travel while on any particular route. The virtual cell

path distance between a route of interest, T = [tp1, tp2, . . . , tpNT ], and CDR journey trajectory,

J = [ jp1, jp2, . . . , jpNJ ], is defined as

DVCP(T, J) =
n j

NT
, (4.11)

where n j is the number of samples of the journey trajectory J which occur at cells contained

within the VCP of travel route T and NT is the length of T . In general, a VCP is comprised of

cells whose coverage areas intersect with the travel path considered. Additional cells associated

with a travel path, as manually identified from training data, may be added to improve the

spatial accuracy of the resultant VCP. Once completed, each VCP consists of a list of cells

whose spatial coverage either coincides with part of the travel path or serves as a connecting

cell to users travelling along the path.

An example of a constructed VCP is depicted in Figure 4.15. Also depicted in Figure 4.15
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are two selected CDR journey trajectories, J1 and J2 with length of 5 and 6 activities,

respectively. Given that the number of activities occurring at cells within the VCP are 2 and 3,

respectively, the corresponding VCP distances are DVCP(T, J1) = 2/5 and DVCP(T, J2) = 3/6.
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Figure 4.15: An example of a VCP and selected CDR journey trajectories, where the cells
which construct the VCP for route T are indicated in green.

To account for the temporal sequencing of trajectories, the virtual cell path distance can

be modified such that only temporally close trajectory points in J and T are compared. To

add temporal data into T , we may apply a technique similar to that for distributed simulated

activity locations along a route of interest, as detailed in Section 4.3.1. That is, each point in T

is assigned a time proportional to the time it takes to reach that point while travelling along T

given a constant speed and total travel time, where the total travel time is equal to the journey

travel time of J. The modified virtual cell path distance, DMVCP, between J and the modified

T is given as

DMVCP(T, J) =
1

N j

N j∑
k=1

DVCP(T a, jpk) (4.12)

where T a = [tpk−δ, . . . , tpk+δ] is a set of points in T temporally within δ of jpk.
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4.4.2 Probabilistic Cell Connectivity

The probabilistic cell connectivity distance, DPCC , is a measurement of the probability that a

CDR journey trajectory, J, can be attributed to a subscriber travelling along a particular route

of interest, T . It is influenced by both the distance between T in relation to the connecting cells

in J and the surrounding network topology of these cells. The distance measurement is given

by

DPCC(T, J) =

N j∏
i=1

P( jpi,T ) (4.13)

where N j is the number of activities in a CDR journey trajectory, and P( jpi,T ) is the probability

that an activity at cell jpi could be attributed to someone travelling along T .

If the trajectory of interest T was unevenly sampled, there might be undesirable biasing

of DPCC(T, J) in certain spatial locations. To reduce the impact of such sampling bias, T

is quantised using an evenly dispersed spatial lattice of hexagonal nodes. The quantisation

method consists of selecting those nodes whose spatial coverage polygon intersects with the

points in T . An illustrative example of the applied quantisation is depicted in Figure 4.16. Note

the width of each tile in the lattice should be small enough to accurately capture the shape of

T . The probability of a single activity at cell C corresponding to a travel path of interest T is

then estimated as

P(C,T ) =

Nq∑
j=1

PC(ψ̂ j, θ j) (4.14)

where Nq is the number of quantised sample points which form T , and PC(ψ̂ j, θ j) is calculated

for each point as detailed in equation 4.8.
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Figure 4.16: Quantisation of a trajectory of interest, T , onto a spatial lattice of hexagonal
nodes.
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By modifying P(C,T ) to account for the temporal sequencing of trajectory samples, a

modified version of probabilistic cell connectivity distance (DMPCC) can be derived. Applying

the same temporal extension to T as discussed in Section 4.4.1, the modification to P(C,T ) is

given as

P(C,T a) =

n j∑
j=1

PC(ψ̂ j, θ j) . (4.15)

4.4.3 Hausdorff and Modified Hausdorff Distances

The Hausdorff distance refers to the greatest possible distance from any point in a trajectory to

the closest point in another [198]. This measurement is defined primarily for unequal length

data. However, it does not take account of the ordering of points, thus it may incorrectly match

dissimilar trajectories (i.e. driving different directions on the same road) [20]. The Hausdorff

distance between a route of interest, T and CDR journey trajectory, J is defined as

DH(T, J) = max (Dh(T, J),Dh(J,T )) . (4.16)

The distance Dh(T, J) is given as

Dh(T, J) = max
k

(
min

l
dE(tpk, jpl)

)
∀k, l (4.17)

where dE(tpk, jpl) is the Euclidean distance between a point in T , tpk, and a point in J, jpl.

The modified Hausdorff distance [199] was introduced to account for temporal ordering

within trajectories. It is defined for T and J as

DMH(T, J) = max (gd(T, J), gd(J,T )) (4.18)

where gd(T, J) is the given by

gd(T, J) =
1

NT

∑
tp∈T

min
jp∈J

(dE(tp, jp)) (4.19)

4.4.4 Dynamic Time Wrapping

Dynamic Time Wrapping (DTW) measures the distance between two trajectories of un-

equal length by finding a time warping that minimises the total distance between matching
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points [200] [201]. The DTW distance between a route of interest, T , and CDR journey

trajectory, J, is defined as

DDTW(T, J) =
(dDTW(T, J) + dDTW(J,T ))

2
. (4.20)

The distance dDTW(T, J) is given by

dDTW(T, J) =
1
K

K∑
k=1

dE(φtp,k, φ jp,k) mk/Mφ (4.21)

where φtp and φ jp are the time warping functions that minimise the distance between aligned

points, mk is a path weighting coefficient, and Mφ is a path normalisation factor. The warping

path φ can be efficiently found using dynamic programming.

4.4.5 Longest Common Subsequence

Similar to DTW, Longest Common Subsequence (LCSS) is a trajectory similarity measurement

which aligns trajectories of unequal length [202]. However, it is more robust to noise and

outliers than DTW because not all points need to be matched. Instead of one-to-one mapping

between points, a point which does not have a good match may be ignored to prevent unfair

biasing [201]. The LCSS distance between a route of interest, T , and CDR journey trajectory,

J, is given by [201]

DLCS S (T, J) = 1 −
LCS S (T, J)

min(a, b)
(4.22)

where LCS S (T, J) specifies the number of matching points between two trajectories and is

calculated as

LCS S (T, J) =


0 a = 0 | b = 0

1 + LCS S (T a−1, Jb−1) dE(tpa, tpb) < ε & |a − b| < δ

max(LCS S (T a−1, Jb), LCS S (T a, Jb−1)) otherwise

(4.23)

where T a = {tp1, tp2, . . . , tpa} denotes all the flow vectors in trajectory T up to time a, and

both ε and δ are distance and time thresholds, respectively. Like DTW, LCSS can be efficiently

computed using dynamic programming.
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4.4.6 Modified LCSS

Because LCS S (T, J) uses Euclidean distance to evaluate whether or not a singular point

in J is within ε of T , it is unable to account for CDR trajectory spatial-heteroskedasticity.

This motivates the use of DVCP or DPCC as an enhancement for LCS S (T, J). By replacing

dE(tpa, tpb) with DVCP(tpb, tpa) or DPCC(tpb, tpa), LS CC(T, J) may be modified to account

for the spatial variance present in CDR trajectories.

LCS S (T, J) with DVCP for a route of interest, T = {tp1, tp2, . . . , tpNJ }, and CDR journey

trajectory, J = { j1, j2, . . . , jM}, is given by

LVCP(T, J) =


0 a = 0 | b = 0

1 + LCS S (T a−1, Jb−1) DVCP(ta, tb) > ε & |a − b| < δ

max(LCS S (T a−1, Jb), LCS S (T a, Jb−1)) otherwise

(4.24)

Likewise the modification LCS S (T, J) with DPCC is given by

LPCC(T, J) =


0 a = 0 | b = 0

1 + LCS S (T a−1, Jb−1) DPCC(tpa, tpb) > ε & |a − b| < δ .

max(LCS S (T a−1, Jb), LCS S (T a, Jb−1)) otherwise
(4.25)

4.5 Comparative Study

To evaluate the effectiveness of the DVCP and DPCC distance measurements proposed, a

comparison is made among each technique and standardised methods which have been shown

to be effective trajectory similarity measures. The trajectory similarity measurements used in

the study are outlined in Table 4.2. Note, we restrict ourselves in this study to only spatial

similarity as opposed to temporal or semantic feature similarity. This is a common practise

as it results in a natural interpretation of spatial proximity [201]. The study is also restricted

to a select group of suitable similarity measurements. For a more complete list of trajectory

similarity measurements see Morris et al. [20, 201], Dodge et al. [203] and Zhang et al. [204].

The dataset used for the comparison consisted of 2,000 simulated CDR journey trajectories,

split equally between two travel paths. The travel paths and corresponding simulated CDR

journey trajectories are depicted in Figure 4.17. Using DVCP, DPCC and each of the similarity

measurements as outlined in Table 4.2, the distance between each J and T was tabulated. Each
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J was then assigned to the closest travel path. The results are presented in Table 4.3, and reflect

the percentage accuracy of each distance measurement for the given dataset.

Table 4.2: Trajectory similarity measurement techniques.

Technique Reference
Hausdorff Distance Lou [198]

Modified Hausdorff Distance Dubuisson and Jain [199]

Dynamic Time Wrapping Keogh et al. [200]

Longest Common Subsequence Hirschberg [202]
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Figure 4.17: Trajectory dataset used to compare the similarity metrics. The simulated
trajectories (Ji) along travel paths T1 and T2 are depicted in (a) and (b), respectively.

Table 4.3: Accuracy of closed travel path assignment using different similarity measurements.

Technique % T1 % T2 % Total

VCP 98.60 100 99.30

PCC 100 100 100

Hausdorff 45.40 97.80 71.60

Modified Hausdorff 93.80 75.10 84.45

Dynamic Time Wrapping 11.60 80.20 45.90

Longest Common Subsequence 86.10 99.40 92.75

84



Travel Path Discovery

The results show that DVCP, DPCC and DLCS S are effective metrics for spatial proximity

between paths of interest and simulated CDR trajectories. Note, the distance parameter ε used

in DLCS S has been optimised to achieve the highest classification accuracy for this dataset.

Otherwise, no training was applied. DPCC demonstrates that it is more effective at inferring

subscriber travel paths compared to other techniques tested. Both DVCP and DLCS S tend to

struggle when paths of interest are situated close together and occupy some common cell

coverage areas. This is evident from viewing the spatial distribution of simulated activities

from misclassified journeys as given in Figure 4.18.
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Figure 4.18: Kernel density estimate of simulated activities from misclassified journeys for (a)
VCP; and (b) LCSS.

Without a temporal component, DVCP and DLCS S apply similar distance metrics, however,

DVCP has the added feature of accounting for surrounding cell topology which enables it to

account for CDR trajectory spatial-heteroskedasticity. As previously discussed in Section 3.4,

CDR trajectory spatial-heteroskedasticity refers to the variance in uncertainty of positional

estimates, which, is a function of the physical topology of the mobile network. The accuracy

of DPCC reflects its ability to account for both cell topology and network connection mechanics

in a spatial context. Using simulated CDR journey trajectories with both spatial and temporal

features, a performance comparison of DMVCP, DMPCC , DLCS S , DLVCP and DLPCC was

performed. A sub-sample of the journey trajectories used in the comparison is depicted in

Figure 4.19. The distance between the simulated CDR journey trajectories and each travel

path was then tabulated in the direction of Ra → Rb and Rb → Ra, with each trajectory being
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assigned to the closest travel path. If two or more travel paths were equidistant the CDR

trajectory was marked as indistinguishable (Ind).

The percentage accuracy of each distance measurement for the given dataset are presented

in Table 4.4. The results show that both DMVCP and DMPCC outperformed DLCS S , DLVCP

and DLPCC when determining the correct travel path taken. By incorporating DPCC or DVCP

into DLCS S improved accuracy with respect to CDR trajectory distance calculations can be

observed. The high number of indistinguishable trajectories recorded with DLCS S is due to the

combination of DLCS S ’s inability to account for CDR trajectory spatial-heteroskedasticity, and

the omission of points which fall outside temporal and spatial tolerances in the calculation of

DLCS S (T, J). The omission of such points is a well documented feature of LCSS which enables

it to account for noise within trajectories. As a result, both DLVCP and DLPCC will account for

instances where noise is introduced to a J due to outdated cell tower locations. Therefore, there

is a tradeoff between accuracy and noise tolerance when deciding which similarity metric to

apply.
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Figure 4.19: Sample of simulated CDR journey trajectories between regions Ra and Rb along:
(a) T1 and (b) T2.
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Table 4.4: Spatio-temporal trajectory similarity measurement results

Technique % T1, Ra → Rb % T2, Ra → Rb % T1, Ra → Rb % T2, Ra → Rb % Ind % Er
MVCP 98.80 99.00 100 99.80 0.60 0.00
MPCC 99.20 99.40 100 100 0.35 0.00
LCSS 86.20 66.60 66.80 76.25 22.95 0.80
LVCP 98.20 85.60 100 88.60 5.90 1.00
LPCC 100 77.20 98.40 66.80 14.20 0.20

4.6 Estimating Travel Paths

The ability to observe the travel paths taken by individuals as they migrate between regions of

interest allows planning authorities to identify the particular routes which serve as gateways

between each region. This information can be valuable when deciding on future infrastructural

requirements, as planners can observe the number of individuals and the routes they take

while travelling between towns or cities at a much higher temporal resolution compared to that

currently possible with traditional travel survey methods. To demonstrate this an investigation

was carried out which aimed to identify the travel paths taken by individuals who travelled

between the Republic of Ireland’s two largest cities, Dublin City and Cork City from 03-01-

2011 to 10-01-2011, as observed through CDR.

For this purpose CDR journey trajectories were extracted for people who travelled between

the two cities over the study period. The regions defining each cities boundary is depicted in

Figure 4.20. The number of identified journeys over this time period was approximately 9500.

Each CDR journey trajectory is displayed in Figure 4.21, with the distribution of journey times

given in Figure 4.22. As can be clearly observed, individuals travelled along several different

paths, with many travelling indirectly between each city. To identify the journeys taken directly

between each city along known major transportation links (rail and motorway), journeys were

classified based on their similarity to each transportation link trajectory. The transportation

links are depicted in Figure 4.23.
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Figure 4.20: Cells located within city boundaries of (a) Dublin City; and (b) Cork City. Cell
site locations are indicated by black dots.

For this purpose, we applied DPCC as a similarity measure between each journey trajectory

and transportation link and classified the journey type of each trajectory as follows:

T =



Rail if DPCC(Trail, J) > DPCC(Troad, J) + ε

Road if DPCC(Troad, J) > DPCC(Trail, J) + ε

unknown if DPCC(Troad, J) = DPCC(Trail, J) = 0

Indistinguishable otherwise

(4.26)

The results of this classification are given in Table 4.5. A kernel density of the journeys

which were identified as travelling along each transportation link is given in Figure 4.24. The

corresponding travel times are depicted in Figure 4.25.
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Figure 4.21: Extracted journey trajectories between Dublin City and Cork City from 03-01-
2011 to 10-01-2011 where city boundaries are indicated by red polygons.
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Figure 4.22: Travel time distribution of extracted journey trajectories between Dublin City and
Cork City. Note a temporal bin width of 1 hour was used.
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Figure 4.23: Major transportation links between Dublin City and Cork City.

However, a significant number of journeys were not classified as travelling along either

direct route. To identify indirect paths, a novel methodology was developed which extracts

alternative routes using geographical route map information from OSI [174]. This data

consisted of unlabelled road and rail point data corresponding to the locations of road and

rail tracks through the Republic of Ireland, as illustrated in Figure 4.26.

The first step involves quantising the point data. The method of quantisation is the same

as that used by PCC, as outlined in Section 4.4.2. Like PCC, a hexagonal lattice is used as

the underlying structure. This is chosen to maintain a constant spatial distance relationship

between neighbouring nodes. An example lattice indicating nodes which contain road point

data is shown in Figure 4.27.
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Table 4.5: Classification of travel path taken by 9490 journey trajectories between Dublin City
and Cork City.

Travel Path Number
Unknown 8475

Rail 732

Road 283

Indistinguishable 5
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Figure 4.24: Kernel density estimate of journey trajectories identified as travelling along (a)
road; and (b) rail travel paths.
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Figure 4.25: Travel times of journey trajectory identified as travelling along (a) road; and (b)
rail travel paths.
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Figure 4.26: Unlabelled points which correspond to the locations of (a) road; and (b) rail
tracks.

The next step is to quantify the cost associated with moving between each node. This is

achieved using a travel cost matrix given by, Γ,

Γ =



γ1,1 γ1,2 · · · γ1,NL

γ2,1 γ2,2 · · · γ2,NL

...
...

. . .
...

γNL,1 γNL,2 · · · γNLNL


(4.27)

where γi j is the cost associated with moving from node i → j, and NL is the number of nodes

in a lattice. γi j = 1 for neighbouring nodes, and γi j = ∞ otherwise. This is done to restrict

movement, and ensure only a transition to an adjacent neighbouring node is allowed in any one

step, i.e. no jumping is allowed. Each row in Γ is then scaled by a Boolean vector σ, where

σ(i) = 1 if node i contains route point data or σ(i) = inf otherwise. The effect of this scaling

is to further restrict movement, such that only a transition between two neighbouring nodes is

permitted if both contain route point data.

92



Travel Path Discovery

2.7 2.8 2.9 3 3.1 3.2 3.3

x 10
5

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

x 10
5

Easting

N
or

th
in

g

(a)

2.7 2.8 2.9 3 3.1 3.2 3.3

x 10
5

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

x 10
5

Easting

N
or

th
in

g

(b)

Figure 4.27: A sample of a hexagonal lattice which covers road point data; (a) road point data
indicated in red; and (b) nodes containing road point data indicated in green. Note each lattice
node width is 2.5 km.

The selection of routes upon which a subscriber may travel while moving between a

start and end location may be extracted from Γ by the k-shortest path algorithm outlined in

Yen [205]. This technique was applied for both rail and road Γ matrices using the MATLABr

function GRAPHKSHORTESTPATHS, where the start and end locations were points within

Dublin City and Cork City, respectively. The result was several paths between each point

along both rail and road networks, each with varying travel cost. Several of the paths produced

were very similar, thus in an effort to reduce the number of paths and to extract the distinct

travel routes, clustering was applied based on the similarity of each estimated path. The

similarity measurement used was the Hausdorff distance, and clustering was applied using

an agglomerative hierarchical based clustering algorithm [179]. The dendrograms illustrated

in Figure 4.28, show the clear separation of paths into a few high level clusters. As a

representation of each cluster, the path with lowest travel cost within each was selected. The

selected paths for rail and road networks are displayed in Figure 4.29. The segregation of

93



Travel Path Discovery

journeys between these travel paths are detailed in Section 4.6.1.
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Figure 4.28: Dendrogram illustrating the arrangement of the clusters produced by the
agglomerative hierarchical clustering of travel paths from: (a) road travel paths; and (b) rail
travel paths.
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Figure 4.29: The selected paths from within each cluster with the lowest travel cost for both
road and rail networks.
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4.6.1 Travel Path Identification

To identify which routes were taken by extracted journey trajectories between Dublin city

and Cork city, the similarity between each journey trajectory and estimated travel path was

computed using PCC. DPCC(T, J) was then used as a feature to classify the most likely travel

path taken as follows:

T =


Tx if DPCC(Tx, J) > DPCC(Ty, J) + ε ∀ y

unknown if DPCC(Tz, J) = 0 ∀ z

Indistinguishable otherwise

(4.28)

where y = 1, . . . ,MT , y , x, and z = 1, . . . ,MT , MT is the number of travel paths being

compared and Tx is given as

Tx = argmax
i

DPCC(Ti, J) . (4.29)

A summary of classification results is given by Table 4.6.

Table 4.6: Classification of travel path taken by 9490 journey trajectories between Dublin City
and Cork City.

Rail Road

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Ind. Unknown

No. of J 889 174 749 122 55 1145 258 325 0 815 1087 3871

A kernel density of trajectories assigned to each rail route and road route is given in

Figures 4.30 and 4.31, respectively. From visually inspecting the distribution of activity

locations related to each classified journey, it is clear that the locations of activities correlates

well in most cases with the designated travel routes. Furthermore, as only a limited number of

possible travel routes were evaluated, each unique travel path taken by a journey may not have

been included in the evaluation process. Thus, there remains 3871 journeys which were not

classified as travelling along the tested routes.

The absence of trajectories assigned to T9 reflects the similarities between T9 and T7.

This motivates the requirement for a methodology which can discover similar subtrajectory

components between J and T similar to that proposed by Buchin et al [206]. However, due to

time constraints this research is the subject of future work and is not investigated further here.
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(c) T3, 749 journeys
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(d) T4, 122 journeys

Figure 4.30: Kernel density estimate of trajectories assigned to each route on the rail network
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(b) T6, 1145 journeys
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(c) T7, 258 journeys
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(d) T8, 325 journeys
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Figure 4.31: Kernel density estimate of trajectories assigned to each route on the road network
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4.7 Travel Path Generation

Generated travel paths (GTP) represent the likely path taken by a group of similar CDR

journey trajectories which move between regions of interest, without prior knowledge of

underling transposition infrastructure, or a known travel path. The omission of transportation

infrastructural data enables the estimations of travel paths which do not adhere to perceived

routes which serve as gateways between each region.

To approximate this path, we find the least cost path between journey end points which is a

function of the observed cellular activity of the subscribers who travelled between the regions

of interest. The first step in this process is to calculate the total number of activities at each cell

tower. Secondly, disperse nodes over the study space and weight each node with interpolated

distributed cell tower activity counts. Then, transform node weights into a transition cost matrix

Γ (Eq. 4.27), representing the cost of moving from a node to its neighbour. Nodes are selected

to form part of the least cost path, if the cost of moving between starting and ending locations

while visiting those nodes is minimal in comparison to alternative routes, given only a transition

to an adjacent neighbouring node is allowed.

As in Section 4.6, the lattice used comprises of nodes located at the centroids of hexagonal

cells. This ensures a constant distance relationship to neighbouring nodes, thus the neighbour

transition cost is solely based on Γ. The size of each hexagon (2.5 km in diameter) is chosen to

be much smaller than the typical rural area cells (10 km to 20 km). The reason for this choice is

to balance the compromise between speed and spatial accuracy. In areas such as the city centre,

where cell diameters are sometimes smaller than that of the hexagon grid, the error margin will

be the diameter of the hexagon or diameter of the cell, whichever is larger.

Node weights are calculated based on a kernel density smoothing of user activity counts on

servicing cell towers. The non-negative spatial kernel density weight W at a node is given by

W =
1
ϑ

Nc∑
i=1

Cwi

2πC2
ri

exp
 (x −Cxi)2 + (y −Cyi)2

2C2
ri

, (4.30)

where Nc is the number of cell towers, x and y are the node coordinates and ϑ is a normalisation

factor which insures that the largest value of W for all nodes is 1. The Gaussian kernel

bandwidth corresponds to cell radius Cr, while Cw represents the number of CDR activities
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at that cell.

However, kernel density weights cannot be employed directly in a transition cost matrix

between neighbouring nodes. The non-negative transition matrix Ω is proposed instead, which

relates the observed W at each node to the cost of moving to and from neighbouring nodes.

Ω =



$1,1 $1,2 · · · $1,MN

$2,1 $2,2 · · · $2,MN

...
...

. . .
...

$MN ,1 $MN ,2 · · · $MN MN


(4.31)

where MN is the number of nodes, $i j is the cost of moving between node i and node j and is

given by

$i j =
W j

Wi

(
2 −W j

)
. (4.32)

The ratio W j/Wi scales the transition cost such that the cost of moving from a high Wi to a

low W j is large, while the cost of moving in the other direction is small. The transition cost of

moving from similar weights should also be small, so to penalise the transition among nodes

with low W and encourage the shortest path, the term
(
2 −W j

)
is introduced. Then, to ensure

that only a transition to an adjacent neighbouring node is allowed in any one step, each row in

Ω is transformed by σL, where σL( j) = 1 if node j is a neighbour of node i and σL( j) = ∞

otherwise. We then employ Dijkstra’s algorithm [207] to locate the single-source shortest path

between starting and ending nodes with non-negative edge path costs corresponding to node

transition costs. Dijkstra’s algorithm [207] determines the shortest path by selecting the nodes

which if visited, return the minimal total transition costs.

An example GTP for the journeys classified as travelling along rail and road transportation

link paths is depicted in Figure 4.32. From visual inspection, it can be clearly seen that the

GTP corresponds well to the actual rail and road travel paths. It should be noted that each GTP

does not exactly match the corresponding transportation link because the CDR locations are

locations of cell towers rather than the actual locations of users.
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4.8 Discussion

This chapter outlined a novel methodology which enables the identification of travel routes

taken by subscribers as they move between regions of interest. The observed transitions

are summarised using CDR journey trajectories. A journey trajectory is defined as a single

recorded path taken between two regions of interest. To preserve privacy, data linking

individual subscribers to journeys is removed. The methodology developed uses novel

similarity metrics to quantify the similarity between journey trajectories and known travel paths

between regions of interest. Using transportation infrastructural point data from OSI [174] a

procedure is given which can generate a number of travel paths between start and end locations.

These paths are then compared to journey trajectories and likely travel routes assigned. A

novel technique to generate a travel path from a group of similar CDR trajectories, without

prior knowledge of underling transposition infrastructure or a known travel path, was also

developed.

The novel similarity metrics introduced are the virtual cell path distance DVCP and the

probabilistic cell connectivity distance DPCC . Temporal extensions were also defined, namely

modified virtual cell path distance DMVCP and modified probabilistic cell connectivity distance

DMPCC . DVCP is based on the proportion of events which occur at cells that are deemed

to represent a route of interest, whereas DPCC is a stochastic distance measurement which

calculates the probability of activities within a journey trajectory being along any travel route.

Novel enhancements to the longest common subsequence distance, DLVCP and DLPCC were

also developed. These enhancements incorporate DVCP and DPCC respectively into the longest

common subsequence distance, DLCS S , to enable it to account for CDR trajectory spatial-

heteroskedasticity.

The ability of DVCP and DPCC to infer a mobile subscriber’s travel path is compared to

traditional similarity metrics using a test dataset. The test dataset is comprised of simulated

journey trajectories which are generated using a novel agent based model which simulates

CDR journey trajectories between regions of interest. Both metrics are shown to outperform

traditional techniques when classifying these travel routes.

Using similar simulated journey trajectories, the performance of DMVCP, DMPCC , DLCS S ,

DLVCP and DLPCC was compared. Results showed that both DMVCP and DMPCC outperformed
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DLCS S , DLVCP and DLPCC . Also, incorporating DVCP or DPCC into DLCS S improves the

accuracy of DLCS S with respect to CDR trajectory distance calculations. While DMVCP and

DMPCC performed best, both DLVCP and DLPCC will naturally account for instances where

noise is introduced to a journey trajectory due to outdated cell tower locations. Therefore,

when deciding which similarity metric to apply, there is a tradeoff between accuracy and noise

tolerance.

The proposed methodology which incorporates these measurements to identify the journey

travel path taken by a mobile subscriber between regions of interest is highly accurate when

that subscriber travels directly between each region, given required sampling criteria. However,

travel path prediction for multipath journeys was less accurate, which is reflected by the number

of unknown travel paths recorded in Table 4.6. As a result, the methodology proposed may be

better suited to identifying journey travel paths which correspond to direct travel paths. Future

work may build upon these results by segmenting each multipath journey into several direct

sub-journeys by incorporating a greater number of regions of interest into each study.

Furthermore, due to spatial and temporal sampling issues, the use of CDR billing data for

travel path identification is only effective for journeys which cover large distances, and it is

not suited to small area studies. Rose [147] reached a similar conclusion, observing that the

use of mobile phone sourced data for traffic monitoring may be more suited to an interurban

motorway context rather than an urban setting. However, as mobile data usage intensifies due

to the introduction of 4G services, such spatial and temporal sampling issues will become less

significant enabling small area studies to be carried out.

Also, attention should be given to the customer profile and market penetration of the mobile

network operator who supplies the CDR billing information, as it may add bias to results. This

bias is introduced because it is common for social demographic groups to be clustered into

individual networks. Therefore, mobility patterns observed will reflect the mobility patterns

of the operator’s subscriber base, and may not be a true reflection of an entire populations

mobility.
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CHAPTER 5

Population Mobility

A census is the primary tool used by national governments to gather information on population

metrics, which includes among others, population count, religious status, marital status and

household occupancy. The knowledge obtained dictates future policy on decisions related

to the planning of future infrastructure and public services. While the information gathered

is extremely important for the delivery of such services, carrying out a census is extremely

expensive and time-consuming. As a result, a census may be only carried out every 5-10

years. Consequently, they provide poor temporal resolution and are incapable of providing

information on the current status of a population. This motivates the requirement for low cost

alternatives.

In this regard, exploiting the ubiquity of mobile devices has become an attractive

alternative [67, 68, 69, 70]. While the information sourced from such devices may never

replace a census, the population count estimated via techniques such as that discussed by

Ahas et al. [68] result in much more temporally fine-grained measurements. However, such

techniques often require the estimation of mobile subscriber home locations which can be

computationally intensive and may have several privacy related issues.

As a result, there is a need for techniques which allow population density estimations which

are both computationally efficient and privacy preserving. The research presented within this
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chapter details novel research into the development and evaluation of such techniques. The

first developed technique uses the steady state vector of a modified Markov chain mobility

model of individual subscribers to enable their residential locations to be estimated. This is

achieved by selecting the region which has the maximum steady state vector weighting. When

individual residential location estimates are combined, a measurement of population density

can be obtained. The second technique uses the steady state vector of a modified Markov chain

mobility model characterising the regional transitions of Meteor’s customers, to obtain a direct

measure of population density.

Each modified Markov chain mobility model is constructed using Meteor’s call detail

records (CDR) from 01/12/2010 to 31/01/2011. When compared to data from a recent census

held on 10/04/2011, results show that there is a high correlation between estimated population

density and census population counts for each of the proposed techniques. An overview of the

methodology used in both techniques is depicted in Figure 5.1.
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Figure 5.1: Overview of each population estimation technique.
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The omission of individual subscriber regions of interest means that the aggregated

approach is both privacy preserving and computationally efficient. However, while the use

of individual subscriber data reduces the attractiveness of the maximum weighting approach

with respect to such criteria, the efficient ranking of each individual’s spatial regions of interest

in terms of their importance to the individual has both commercial and research applications.

These include, among others, geo-marking applications, planning insight and better mobile

network optimisations. Some of the methodology required to deliver these applications is

further outlined in Chapter 6.

The remainder of this chapter is organised as follows: Section 5.1 gives details on the

information which may be extracted from transition matrices that record the flow of subscribers

between regions of interest, while Section 5.2 details how such matrices may be transformed

into mobility Markov chains. Section 5.3 then discusses how these mobility models may be

used to extract measurements of population density comparable to that captured through a

census. Section 5.4 then investigates the use of Markov chain mobility model eigenvectors

for community identification. Finally, Section 5.5 concludes the chapter with a discussion

outlining the benefits and limitations of the proposed techniques.

5.1 Subscriber Transition Intensity

As previously discussed in Section 3.6, the flow of individuals between cells and clustered cell

regions may be summarised through an aggregated transition matrix, Υa(k),

Υa(k) =



υ1,1(k) υ1,2(k) · · · υ1,R(k)

υ2,1(k) υ2,2(k) · · · υ2,R(k)
...

...
. . .

...

υR,1(k) υR,2(k) · · · υRR(k)


(5.1)

where R is the number of regions of interest, and υi j(k) is the transition intensity from

region i to j at time k. In this form, the temporal flow of subscribers between cell towers

or clustered cell regions is readily available. For example, Figure 5.2 depicts the flow of

subscribers into and out of Dublin’s city centre during the period 13/12/2010 to 19/12/2010.

As demonstrated by Ahas et al. [32], variations in regional occupancy can be quantified
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using mobile positional data. In an Irish context, variations in regional occupancy can also

be observed through Υa(k). As a demonstration, Figure 5.3 depicts the influence of University

College Dublin (UCD) semesters on the aggregated mobility patterns of the Donnybrook region

in Dublin City. UCD is the Republic of Ireland’s largest university with approximately 25,000

students. It is located in the Donnybrook region of Dublin city, which has a surrounding

resident population of approximately 51,000 [2]. During the observation period, the first

academic semester finished on December 17th and the second semester started on January

17th. The increased flow of individuals to and from Donnybrook during each semester is

clearly visible in Figure 5.3, highlighting the impact of the university on local area mobility.
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Figure 5.2: The aggregated flow of subscribers to and from a clustered cell region covering
Dublin city centre from 13/12/2010 to the 19/12/2010. Inward and outward flow intensity
is measured using the left hand axis, while the quantity of observed stationary subscribers is
measured using the right hand axis.
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Figure 5.3: The aggregated flow of individuals to and from the Donnybrook region of Dublin
City, highlighting the impact of UCD semesters on local mobility patterns.
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Such data is useful when trying to observe the temporal flow of people between regions.

However, when subscriber transition intensity is compared to traffic counter data, a common

measure of flow intensity between regions, there are some notable differences. To demonstrate

these differences, the flow of subscribers between clustered cell regions corresponding to the

towns of Kildare and Monasterevin were compared to traffic counter data from a counter

position on the M7 motorway located between each town. These towns are located in county

Kildare and are serviced by both motorway, regional roads and rail connections. The observed

transitions between each, as illustrated in Figure 5.4, shows that subscriber transition intensity

lags temporally compared to the traffic counter data.
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Figure 5.4: Comparison of traffic count data and the aggregated bi-directional flow intensity
of subscribers moving between Kildare town and Monasterevin: (a) Clustered region coverage
areas, town locations and traffic counter location; and (b) Observed transition intensity between
each town.
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As mentioned to in Section 3.4, this phenomenon occurs because while people are active

and travelling early in the morning, for example from 6 AM to 8 AM, they are less likely

to be sampled through CDR due to low overall mobile network activity. This motivates the

requirement for suitable techniques which can relate the transition intensity observed through

CDR to the actual flow of people between regions of interest [150].

5.1.1 Flow Directionality

The temporal directionality of the transition intensity is an important feature when observing

the flow of individuals. This is highlighted in Figure 5.5 showing a sample of the average

directional movement of subscribers across the Republic of Ireland. This visualisation is

constructed using a customised interface between MATLABr and Google Earthr, where the

width of a connecting arrow corresponds to directional flow intensity. Note, very low intensity

connection arrows have been removed for visual clarity. The anchor point for each connection

arrow is positioned at the centroid of each cluster, which is the centre of mass of cell base

station sites within the cluster and is independent of the number of cells in each site. From the

figure, inspection the influence of primary roads and motorways on transition patterns between

major Irish towns is clearly evident.

Figure 5.5: Average intensity of subscriber transitions between clustered cell regions.
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The temporal component of this transition directionality can also be used to gain further

insight into the dynamics governing regional connectivity. To illustrate, Figure 5.6 depicts

regional transition flows between cell site clusters across Dublin city for both the time periods

of low and high intensity.

(a) low transition intensity

(b) high transition intensity

Figure 5.6: Dublin city regional transition flows in time periods of (a) low; and (b) high
intensity, where the width of the connecting arrow corresponds to directional flow intensity.
Note connecting arrows with very low intensity have been removed for visual clarity.
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5.2 Markov Chain Mobility Model

A Markov chain is a mathematical representation of a stochastic process that undergoes step

transitions from one state to another within a finite or countable state space. They have been

extensively used in many domain areas including mobility modelling [138, 69], biomedical

data analysis [208] and speech recognition [209, 210]. A first-order, discrete-time Markov

chain is used to mathematically represent a process, {S (k), k = 0, 1, 2, . . . }, that undergoes

random step transitions such that

P[S (k) = j | S (k − 1) = i] = pi j(k) (5.2)

for all i, j and k [211]. Here pi j(k) is the conditional probability that the process will transition

from state i at time k − 1 to state j at time k. A Markov chain which does not depend on the

time unit, is known as a homogeneous Markov chain and implies that

P[S (k) = j | S (k − 1) = i] = pi j. (5.3)

From this, it is inferred that the state transition probability pi j only depends on the current state

and not on the sequence of previous states. This specific kind of memorylessness is called the

Markov property. It is customary to display the state transition probabilities pi j as entries of a

Ns × Ns matrix P,

P =



p1,1 p1,2 · · · p1,Ns

p2,1 p2,2 · · · p2,Ns

...
...

. . .
...

pNs,1 pNs,2 · · · pNsNs


(5.4)

where pi j satisfy the following conditions:

1. 0 ≤ pi j ≤ 1, ∀ i ∀ j

2.
∑

j pi j = 1, ∀ i, which follows from the fact that the states are mutually exclusive and

collectively exhaustive.

A state transition diagram is a convenient way to visually represent the matrix P. States are

typically represented by circles and transitions are represented by weighted connections. An
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example state transition diagram is illustrated in Figure 5.7. It corresponds to a scenario where

it was observed via a series of rolls of a particular biased 4-sided die that the outcome of the

next roll depends on the outcome of the current roll, as summarised by

P =



0.3333 0 0.4103 0.2564

0 0.1923 0 0.8077

0 0.3571 0.6429 0

0.7059 0 0.2941


(5.5)

S1

S4

S3

S2

0.2564

0.7059

0.2941

0.3571

0.4103
0.8077

0.3333

0.1923

0.6429

Figure 5.7: A state transition diagram of a particular Markov chain representing the observed
outcome from a series of biased 4-sided die rolls.

In general, states of a discrete-time Markov chain may be classified by their transient

proprieties. A list of formal state definitions is given as follows [211]:

• A state i is called a transient state if there is a positive probability that the process will

never return to i again after it has left i.

• A state i is called a recurrent state if, with probability 1, the process will eventually

return to i after it has left i.

• A recurrent state j is called a periodic state if there exists an integer a (known as the

period), a ≥ 1, such that pi j(n) is zero for all values of n other than a, 2a, 3a, . . . ; If
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a = 1, the recurrent state j is said to be aperiodic.

• A recurrent state i is called a positive recurrent state if, starting at state i, the expected

time until the process returns to state i is finite. Otherwise, the recurrent state is called a

null recurrent state.

• Positive recurrent, aperiodic states are called ergodic states.

• A chain consisting of ergodic states is called an irreducible, or ergodic, chain.

• A state i is called an absorbing state if pii = 1. Thus, when the process enters an

absorbing state, it has a 0 probability of leaving, meaning it is absorbed or trapped.

The probability that the process starts in state i and finds itself in state j at the end of the

nth transition is given by the product of the probability that the process starts in state i and finds

itself in an intermediate state φ after r transitions and the probability that it goes from state φ

to state j after an additional n − r transitions [211]. For all 0 ≤ r ≤ n

pi j(φ) =
∑

piφ(r)pφ j(n − r) (5.6)

From 5.6, it may be shown that pi j(n) is the (i, j)th entry in the matrix Pn, where Pn is the

matrix

Pn =



p1,1(n) p1,2(n) · · · p1,Ns(n)

p2,1(n) p2,2(n) · · · p2,Ns(n)
...

...
. . .

...

pNs,1(n) pNs,2(n) · · · pNsNs(n)


(5.7)

If a Markov chain is irreducible, or ergodic, it is possible to go from every state to every

other state in one or more steps [212]. If a Markov chain is ergodic, then the following holds

true:

W = lim
n→∞

Pn (5.8)

where W is a matrix with identical rows w, and all components of w sum to 1. Then wP = w,

and any row vector v such that vP = v is a constant multiple of w. A row vector w with the

property wP = w is called a f ixed row vector for P and may be calculated by various methods,
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as outlined in [212]. A fixed row vector characterises the long term probability of a system

being in a given state when the state transitions are governed by an underlining Markov chain.

Homogeneous Markov chains are useful when the state sequence, S (k), k = 0, 1, 2, . . . ,

is directly observable. By extracting a subscriber’s CDR trajectory, it is possible to directly

observe an individuals cell tower state sequence. As previously discussed, cells may be linked

to symbolic locations defined by their coverage regions, thus a Markov chain may be used

to model a mobile subscribers transient movements between these symbolic locations, where

the number of observable states equals the number of regions of interest NR. By counting

the transitions between clustered regions from concurring activities, an aggregated transition

matrix, Υu, can be constructed which summarises the movement of the uth subscriber.

To reduce the influence of high frequency transitions and to ensure uniformly sampled

trajectories, each subscriber trajectory was sampled at a regular interval every 15 minutes from

the start of the observation period. The procedure is illustrated in Figure 5.8. Within each 15-

minute temporal window, the estimate of location is based on the last recorded servicing cell

tower recorded for that subscriber during that period. When no CDR activity occurs during a

temporal window, no sample would be taken.

S1 S1 S3 S3 S4

15 min

S1 S1 S2 S1 S3 S3 S5 S4

Sampling 

Interval

Observed

Transitions

Figure 5.8: CDR trajectory state sequence sampling of the output sequence S = {S 1, S 1, S 3,
S 3, S 4}. Smaller yellow circles represent actual regional transitions within a sample period and
larger yellow circles represent the observed output transition sequence before resampling. The
larger white circle represents missing information and is discarded.

The transition matrix of each subscriber, Υu, can be translated into a transition probability

matrix, Pu, by scaling each row such that

Pu = [pi j]NR×NR =

NR∑
j=1

pi j = 1 , ∀ i (5.9)
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The resulting transition probability matrix Pu characterises the movements of that individual

subscriber between regions of interest. This is illustrated in Figure 5.9 by the state transition

diagram for a randomly selected subscriber, where arch height corresponds to transition

probability. The visualisation is constructed using customised MATLABr plotting functions

for Google Earthr.

Figure 5.9: Visualisation of a subscriber’s transition probability matrix P, where arch heights
correspond to transition probability. Note weights which are asymptotically zero are removed
for visual clarity.

Similarly, national mobility can be modelled when subscriber movements are combined

into a single mobility model characterising flow throughout the country.

Υ =

Nu∑
u=1

Υu (5.10)

where Nu is the number of subscribers. As before, the aggregated transition matrix, Υ, can be

translated into an aggregated transition probability matrix by scaling each row such that

P = [pi j]NR×NR =

NR∑
j=1

pi j = 1 , ∀ i . (5.11)
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An example aggregated Markov chain mobility model which characterises the flow of

individuals between clustered cell regions across the Republic of Ireland is given by the state

transition diagram depicted in Figure 5.10. Here, cells have been grouped into distinct clusters

as detained in Section 3.5 where NR = 500. For visual clarity, pi j in each instance has been

modified such that pii = 0 ∀ i. pi j is then re-normalised as in Equation (5.11). The visualisation

is constructed using MATLABr plotting functions. Note that the opacity of each observed

connection edge is dictated by transition probability, pi j.

Figure 5.10: Visualisation of aggregated probability matrix, P, characterising the flow
of individuals across the Republic of Ireland, where line colour corresponds to transition
probability as shown on colour bar.
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5.3 Population Density Estimation

As previously discussed, if a Markov chain is ergodic, then it is possible to find a fixed row

vector w with the property wP = w [212]. This vector characterises the long term probability

of a system being in a given state when the state transitions are governed by an underlining

Markov chain. The fixed row vector of a mobile subscriber’s mobility Markov chain, wu,

conveys the probability of observing that subscriber at a region in space over a long period

of time, if their Markov chain is stationary. In the context of this research, each subscriber’s

mobility Markov chain is assumed to be stationary over the study period. In order to extract

national population counts using fixed row vectors, the home location of each subscriber needs

to be segregated from these regions of interest. Here, the maximum weighting approach

involves assigning a subscriber’s residential location to the region that has the maximum fixed

row vector weight. The population count of any region may then be calculated by counting the

number of subscribers who are estimated to live in that region.

Alternatively, it is also hypothesised that the fixed row vector for the aggregated Markov

chain mobility model, wa, will convey the likelihood of observing the mobile operators active

subscriber base at a particular region in space over a long period of time, which in turn provides

an estimate for national population density. Similarly, it is assumed that the aggregated Markov

chain mobility model is stationary. The model has the advantages that the calculation is based

on the overall subscriber data rather than individual subscriber regions of interest. Hence, it

is totally privacy preserving in the sense that none of the subscribers are individually tracked.

Also, only a single calculation is required to form the aggregated model fixed row vector, which

is less computationally intensive than the maximum weighting approach, where the number of

calculations is proportional to the number of subscribers.

However, mobility Markov chains are not necessarily ergodic. Instead, they are typically

sparse and may contain absorbing states (i.e. pii = 1). These may occur if a subscriber is only

ever serviced by a single cell tower or if its last trajectory sample was to a previously unvisited

tower. For an aggregated mobility Markov chain, an absorbing state may occur if subscribers

from a particular region of interest never left that area during the time period concerned. In

other words, a non-ergodic chain may form if every region of interest was not visited during

the observation period.
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To ensure each mobility Markov chain is ergodic and thereby non-absorbing, a regularisa-

tion process similar to that used by the Googler PageRank algorithm [213] is introduced. It

consists of applying a small transition weight to all state transitions before the fixed row vector

is calculated and is given by

Q = αP + (1 − α)
Z

NR
(5.12)

where Q is a modified Markov chain, Z is an NR × NR matrix of ones and α balances the

learnt mobility patterns summarised by P with the influence of random transition probabilities

introduced by the term Z/NR. To this end α is estimated as (1 − 1/NR). Note, Q should comply

to the following conditions

1. pii < 1, ∀ i

2. 0 ≤ pi j ≤ 1,∀ i,∀ j

3. Q = [qi j]NR×NR →
∑NR

j=1 qi j = 1, ∀ i

The incorporation of uniformly regularised weighting has the added benefit of accounting

for the likelihood of observing transitions which relate to all plausible but unobserved journeys.

Using previously mentioned clustered cell regions (NR = 500) as a proxy for spatial regions of

interest, a visualisation of Q for the selected subscriber whose Markov chain mobility model is

depicted in Figure 5.9 is illustrated in Figure 5.11. The observed regional weighting suggests

that the subscriber tends to travel in County Meath, with occasional trips into Dublin City.

Using the same clustered regions, an estimate of population density was calculated using

both proposed techniques. The results are visualised by Figure 5.12, with density weights

normalised between 0 and 1 for visual clarity. While maximum weighting relies only on

information collected from individual subscribers, it is prone to noise in CDR data as it relies

on the assumption that both a significant amount of time is spent and a significant amount

of CDR activities are carried out at residential locations by each subscriber, which may not be

true. The mobility Markov chain is constructed such that it takes account of both aspects of user

behaviour and reflects that in the form of individual fixed row vectors. Comparing Figure 5.12

with the locations of towns and urban districts in the Republic of Ireland as presented in

Figure 5.13, it can be seen that each area of high proportional population density generally

corresponds well to urban centres and large towns.
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Figure 5.11: Visualisation of the fixed row vector, wu, for the modified mobility Markov chain,
Qu, of the subscriber whose P is depicted in Figure 5.9.

5.3.1 District Scaling

Problems arise with the estimation of population density through CDR as both clustered cell

regions and cell coverage areas do not naturally correspond to the boundaries of districts or

municipalities used by governments in the calculation of regional or local population. To

allow direct comparisons between estimated population density and census ground truth, where

census data is supplied from the Central Statistics Office Ireland (CSO) [2], measurements

of population observed at each region need to be redistributed to regions from officially

defined district boundaries. In Ireland, a common local area district used in the calculation

of population is known as an Electoral Division (ED). There are approximately 3400 ED in

Ireland ranging in size from several hundred meters squared in urban areas to several squared

kilometres in rural regions.

A sample of the spatial distribution of buildings is displayed in Figure 5.14. The property

usage and location of each building is sourced from Geodirectory [214]. Established and

maintained by An Post and Ordnance Survey Ireland (OSI), it is one of the most comprehensive

building address databases available in the Republic of Ireland.

The procedure used to distribute estimated populating density through fixed row vector

analysis onto EDs consists of several steps. First, assign each identified occupied home from
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Figure 5.12: Population density estimates based on (a) individual home locations as sourced
from subscribers; and (b) aggregated mobility model.

Geodirectory to an ED. Next, allocate each home in an individual ED to the cell region of

interest whose spatial coverage polygon covers that dwelling. If multiple regions of interest

cover a particular building, due to instances of overlapping cell tower coverage, randomly

assign a covering region from that list. Once all dwellings have been assigned, group them into

a matrix H,

H =



h1,1 h1,2 · · · h1,NR

h2,1 h2,2 · · · h2,NR

...
...

. . .
...

hM,1 hM,2 · · · hMNR


(5.13)

where hi j is the number of homes from ED i assigned to region of interest j, and M and NR are

the number of EDs and clustered regions, respectively. H is then ED normalised such that

H̄ = [h̄i j]M×NR →

M∑
i=1

h̄i j = 1 ∀ j. (5.14)
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Figure 5.13: Sourced from the Central Statistic Office (CSO) Ireland, (a) town locations across
the Republic of Ireland, with (b) corresponding normalized population density.

The number of subscribers living within an individual ED i, N̄i, is then estimated as,

N̄i =

NR∑
j=1

N jh̄i, j . (5.15)

where N j denotes the number of estimated subscribers living in a region of interest. Using

this method of distribution, Figure 5.15 depicts the population for each ED as estimated using

the aforementioned fixed row vectors techniques for NR = 500. In particular, proportional

population count estimated for the Dublin region is displayed in Figure 5.16. It can be

observed that the ED segregated spatial distribution of subscribers between census data and

both estimation techniques are strongly correlated. The discrepancies, such as in the city centre

region, could be attributed to the differences in the nature of census, where only residential

addresses are recorded, and the human activity observed via mobile networks.
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Figure 5.14: A sample of the spatial distribution of buildings across the Republic of Ireland.
Also included is the cell coverage regions in the area (indicated by red lines), and ED
boundaries (black lines); (a) Residential locations (blue dots); and (b) Commercial buildings
(black dots).

5.3.2 Census Validation

To validate the population estimate given by each fixed row vector from modified Markov chain

mobility models, a direct comparison is drawn between the estimated populations and the Irish

2011 census (CSO, 2012). The correlation of census population counts with the population

estimates based on maximum weighting was found to be 0.8645 while that with aggregated

vector was 0.8088. The results indicate that both approaches have a strong spatial relationship

to census count measurements.

On a national level, the spatial variance of percentage error between census data and

estimated population is shown in Figure 5.17. In general, the mean of the percentage error

between census data and estimates from aggregated vector is 0.64037% with a standard

deviation of 0.51335% while the corresponding values for the population estimates based on

maximum weighting are 0.54007% and 0.42464%, respectively. As a result, the maximum

weighting approach appears to provide population estimates which match more closely with
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(b) Aggregated vector

Figure 5.15: Electoral division population estimates across the Republic of Ireland from (a)
maximum weighting; and (b) aggregated vector.

the census data. Note the percentage error is calculated based on normalised population

count. From Figure 5.17, there is no clear pattern associated with the spatial distribution

of error. In the absence of accurate Meteor subscriber demographics, it is hypothesised that

estimation error fluctuates with the spatial density of Meteor’s subscriber population. If the

age of each subscriber was known, this hypothesis could be tested by proportionally scaling

each population estimate by its corresponding ED age profile.
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Figure 5.16: Proportional population estimated for the Dublin region from (a) census counts;
(b) maximum weighting; and (c) aggregated vector.

Finally, to obtain the population density, perhaps a more important measure, H is

transformed to D where

D = HÅ. (5.16)

and Å is a diagonal matrix

Å =



1
å1

0 · · · · · · 0

0 1
å2

0
...

...
. . .

...

...
. . .

...

0 · · · · · · · · · 1
åM


(5.17)

where åi is the spatial area of EDi. Then, D is normalised to D̂ using ED columns similar to H̄.

Comparing the population density between census data and both techniques, correlations of

0.8661 and 0.8438 are obtained from maximum weighting and aggregated vector approaches,

respectively. While the census correlation from Ĥ are similar to those from D̂ using

both techniques, it appears that the maximum weighting approach provides better estimates

compared to aggregated vector. However, it is noted that maximum weighting is much more

computationally intensive and privacy non-preserving as the assumed home location of each

individual subscriber is tracked anonymously during the process.

On the regional scope, a comparison of census data and estimated proportional population
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count for each county in the Republic of Ireland is summarised in Table 5.1. In each case,

the total proportional population count for each county is the sum of all ED counts which

are located in a particular county. From this table, the maximum weighting approach and

aggregated vector approach had a percentage mean squared error (MSE) with CSO census of

6.2288 and 4.0415, respectively. When the measurement for Dublin county is omitted the

percentage MSE was 1.0491 and 2.0832, respectively.

In the study of mobility, correlation is another important measure, as it captures the

relationship between measured population count and population estimates. By observing

changes in correlation, we can capture relative displacements of population over time. Here,

the maximum weighting approach and aggregated vector approach had correlations with CSO

census of 0.98408 and 0.97731, respectively. When the measurement for Dublin county is

omitted, the correlations were 0.9124 and 0.8515, respectively.

The strong correlations (> 0.95) of estimated counts demonstrates the effectiveness of

Markov chain fixed row vector analysis for approximating proportional population density

based on CDR at county level. However, while similar correlations are also observed at

the Electoral Division level, there is an overall reduction in the measured correlation at ED

relative to county level. This may be a result of greater fluctuations in proportional population

representation over smaller geographical regions, caused by the spatial variations of mobile

operator penetration.

Moreover, the consistently high levels of errors found in Dublin County might illustrate one

possible limitation of a census, that it only contains records of residential addresses. Indeed,

subscribers may tend to carry out a substantial amount of CDR activities in densely populated

areas. Alternatively, a substantial number of subscribers might be staying in the city centre

temporarily for an extended period of time (shopping, night-out, etc), and may not be recorded

as residing there through a census.

Evaluating the impact that spatial resolution has on accuracy and correlation with respect to

census measurements of ED population density and population count, it was observed that the

aggregated approach had an optimal region of spatial resolution. To illustrate Figures 5.18

and 5.19 depict the observed measurements of correlation and MSE over a range of R, a

parameter that generally corresponds to spatial resolution.
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Table 5.1: A comparison of census data and estimated population density for each county in
the Republic of Ireland, where measurements are the percentage of total population.

County Central
Statistics Office
Ireland %

Maximum
Weighting %

Aggregated
Vector%

Carlow 1.19 2.22 2.93
Cavan 1.60 0.53 0.39
Clare 2.55 2.81 3.16
Cork 11.31 10.24 11.98
Donegal 3.51 1.14 0.48
Dublin 27.75 39.40 35.03
Galway 5.46 5.27 4.17
Kerry 3.17 1.36 0.92
Kildare 4.58 6.09 7.24
Kilkenny 2.08 2.24 2.98
Laois 1.76 2.35 3.33
Leitrim 0.69 0.14 0.07
Limerick 4.18 5.36 6.82
Longford 0.85 0.50 0.44
Louth 2.68 1.34 0.70
Mayo 2.85 1.35 0.99
Meath 4.01 3.74 3.55
Monaghan 1.32 0.27 0.15
Offaly 1.67 1.43 1.83
Roscommon 1.40 0.66 0.52
Sligo 1.43 0.65 0.34
Tipperary 3.46 2.02 2.37
Waterford 2.48 1.97 1.69
Westmeath 1.88 1.89 2.19
Wexford 3.17 2.63 3.14
Wicklow 2.98 2.39 2.62
MSE 0 6.2288 4.0415
MSE Excluding Dublin 0 1.0491 2.0832

Results indicate that if spatial regions of interest are too small, the approximation error

due to noise, such as those introduced by localisation uncertainty and network penetration,

will increase. This suggests that spatial regions of interest should mirror national population

centres, where towns and other urban district boundaries are maintained. Note, the effects of

spatial resolution on subscriber based maximum weighting could not be evaluated in this extent

due to computational limitations. Nonetheless, results presented by Eagle et al. [69, 70] show

that when locating the home of a subscriber, a set of home cell towers is typically found. Thus,

similar to the results obtained for the aggregated vector approach, it is reasonable to assume
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that the subscriber maximum weighting approach will also have a threshold of R above which

transition noise will affect home location estimation accuracy.

Another important factor when evaluating performance is temporal homogeneity. If each

mobility Markov chain used in the calculation of population is temporally heterogeneous, it is

statistically different when computed for different observation periods, meaning each estimate

of population will be different. Thus, the accuracy of the proposed technique will be a function

of the observation period. However, due to the limited amount of available data and time

constraints, the study of temporal homogeneity is the subject of future work.
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Figure 5.18: Impact of spatial resolution on the correlation between census data and population
density estimates form the aggregated vector approach.
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Figure 5.19: Impact of spatial resolution on the MSE between census data and population
density estimates form the aggregated vector approach.
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5.4 Community Structures

Recent studies by Schlote et al. [215] have demonstrated that if the eigenvector of the

second largest eigenvalue of a Markov chain mobility model is real, it can be used to

characterise hidden communities within an urban network. Applying a similar methodology as

Schlote et al. [215], the eigenvector relating to the second largest eigenvalue of the aggregated

mobility Markov chain model (w2) was used to evaluate the community structures that exist in

the Republic of Ireland. The spatial structures of identified communities across the Republic

of Ireland are depicted in Figure 5.20. As expected, identified communities are concentrated

around dense urban areas with close links to those regions that are typically associated with

commuting.
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Figure 5.20: Communities identified across the republic of Ireland using the eigenvector of the
second largest eigenvalue for the aggregated mobility Markov chain model. Communities are
colour coded based on their corresponding eigenvector weight as shown on colour bar. Omitted
cell coverage polygons correspond to cells with incorrect location data.
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Examining Dublin and Cork cities further, results highlight several sub-communities within

each region. As depicted in Figure 5.21, a clear separation exists between sub-communities

located in the north and southern regions of county Dublin, while the sub-communities of

Cork city tend to flow from east to west. These communities reflect well known social divides

and complement results presented by Walsh et al. [164], in which the community structure of

Dublin was analysed using the flow of mobile communications. In each instance, the mobility

Markov chain model was reduced to only capture transition probabilities between individual

cell towers inside highlighted search areas.
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Figure 5.21: Visualisation of sub-communities which exist within (a) Dublin city; and (b) Cork
city.

Examining the eigenvector of the second largest eigenvalue of a Markov chain mobility

model of an individual subscriber, we can investigate if there exists a structure to that

subscriber’s movement. To illustrate, Figure 5.22 depicts identified communities and cor-

responding region rank weights for two randomly selected subscribers, U1 and U2. From

visual inspection, U1 has two primary communities each centred around cells with large region

rank weights. This implies that the subscriber may have a distinct mobility pattern within

each community. Alternatively, the community structure identified for U2 indicates that this

subscriber’s movements are centred around a single community.
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Figure 5.22: Identified communities and corresponding region rank weights for two randomly
select subscribers, U1 and U2. The communities identified for each subscriber are depicted by
(a) and (b), respectively, while the relationship between region rank and second eigenvector
weight for each subscriber are depicted by (c) and (d), respectively.
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5.5 Discussion

This chapter used call detail records from Meteor, to estimate the regional flows of people

across Ireland. Two novel techniques for population estimation based on significant mobile

subscriber regions of interest were also introduced. The techniques use the steady state vector

of a modified Markov chain mobility model which characterises the mobility of individual

subscribers and national aggregated mobility, respectively, as means of identifying the principle

location of subscribers, thus providing a proxy for population density.

Results show a high correlation between estimated population density and the national

census carried out in 2011. Provided the mobile operator network is servicing a subscriber base

proportional to the population both spatially and demographically, the techniques proposed

are potential supplements to the procedure of census, which due to the associated costs are

infrequently carried out. However, while population fluctuations can be monitored at much

finer temporal resolutions, the population metrics which may be captured do not result in the

fine grained measurements achieved through a census. Thus, the application of such work may

be limited to the estimation of population density and the study of mobility.

Each population density estimation technique discussed has its own advantages and

disadvantages. While the estimates derived from the maximum weightings of subscriber

Markov chain fixed row vectors are more accurate, the calculation of each individual vector

is more computationally intensive compared to the single calculation required from the

aggregated vector approach. Moreover, the aggregated approach is totally privacy preserving,

as calculations are based on the overall subscriber data instead of individual subscriber regions

of interest.

The community structures identified by the eigenvector of the second largest eigenvalue

of the aggregated Markov chain mobility model allows regional connectivity patterns to be

readily visualised and observed. Similarly, the community structures which exist within an

individual subscriber’s Markov chain mobility model allows further insight into the subscribers

mobility pattern within their environment. However, further research is required to understand

the hierarchical structures and temporal dynamics associated with these communities in terms

of both methodology and visualisation strategies.
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CHAPTER 6

Geographically Located Subscriber Intelligence

Tighter regulation, increasing demand for data services and a fall in the revenues generated

from call and SMS traffic means that mobile network operators are beginning to see profit

margins fall. In this context, network operators are increasingly focusing their efforts on new

revenues generation schemes, lower subscriber churn rate and increasing customer satisfaction.

However, such shift in focus has unearthed significant gaps in their knowledge of how

subscribers use and perceive the mobile services on offer to them.

This chapter presents initial work into the mining of intelligent geographically located

subscriber data. Insights are given into how a mobile network operator may use subscriber

generated data to help create new revenue streams and improved network performance.

The chapter is organised as follows. Section 6.1 summarises how information related to

subscriber regions of interest may be used by mobile network operators to improve the quality

of service delivered to high data users. Section 6.2 then details how the mobility flows related

to organised events may be isolated and used to help identify subscriber interests. Section 6.3

describes a methodology which enables targeted geographical marketing applications. Finally,

Section 6.4 concludes the chapter with a discussion outlining the future work needed to develop

the proposed techniques into suitable commercial applications.
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6.1 High Traffic Regions Of Interest

The growing number of smartphones, tablet computers and cellular-network enabled devices

means that greater demands are being placed on each mobile network operator to continually

deliver a better quality of service to high data driven applications. These services are

typically catered for by increasing network capacity in areas where activity spikes are observed.

However, little consideration is given to the areas frequented by the subscribers who use the

applications.

As previously stated, the steady state vector of a subscriber’s modified Markov chain

mobility model measures the long term probability of observing that subscriber at a location

into the future. By combining the vector weights of subscribers who frequently use large

amounts of data, it is possible to get a better understanding of the areas they occupy on a daily

basis. This is illustrated in Figure 6.1 showing a map of the combined steady state vector

weights for subscribers who were deemed to be high data users.
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Figure 6.1: Spatial mapping of the combined steady state vector weights from a sample of
subscribers deemed to have high data usage behaviour.
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Note, to prevent the divulgence of any commercially sensitive information, only a small

sample of steady state vector weights were combined and visualised. This map can then

be correlated with network coverage maps and customer complaint logs to identify network

coverage black spots specific to high demand subscribers.

6.2 Event Mobility

The temporal signatures which relate to large social gatherings can readily be extracted from

call detail records (CDR) by observing variations in cell activity and subscriber transition

intensity, as such events attract large crowds which can in turn generate lots of above average

CDR activities. Illustrating this, Figures 6.2 and 6.3 depict the accumulated temporal activities

and the flow of subscribers from cells which service The O2 Dublin amphitheatre from the

01/12/2010 to the 15/01/2011, respectively using a 15-minute temporal bin window. The O2

Dublin is a 14,000 seat amphitheatre located at the Docklands in Dublin City. Here, the flow

of subscribers who were stationary within each servicing cell was combined with the flows

of subscribers entering and leaving each cell. A summary of the labelled events is given in

Table 6.1.

From observing the variations in recorded activities between events, it is clear that the

recorded activities are influenced by the social demographics of the subscribers attending each

event, as events which cater to juvenile audiences and young adults have much larger activity

spikes compared to events which cater to more mature audiences. For example, there are

stark differences between the Elton John concert activity spike (H) and the activity spikes

corresponding to both JLS concerts (K,L). By identifying the subscribers who attend these

particular events mobile network operators can gain valuable insights into their behaviour,

which may be exploited for targeted marketing campaigns.

Unlike the event signatures provided by cell activity counts, in many instances the temporal

signatures provided by flow intensity are clearly less defined. These differences are likely

due to the sampling window applied which restricts observations to within the 15-minute

temporal window. This reduces the number of observed transitions at any one instance, as

subscribers enter and leave the venue at varying times for different types of events. However,

transition intensities can capture many event signatures which cannot be observed using cell
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tower activity, for example, the flow intensity of subscribers as they enter and leave an area.

Also, activity based measurements are subject to network load balancing mechanisms which

may result in unexpected bursts in activity as highlighted by event A in Figure 6.2. On this

date, there was no organised events taking place at The O2 Dublin. Yet, there is a noticeable

peak in the activity which is not recorded by the transition intensity based measurements.
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Figure 6.2: The number of CDR activities at cells whose coverage areas polygon services The
O2 Dublin, from 01/12/2010 to 15/01/2011 in 15-minute temporal bins.

30/11/10 05/12/10 10/12/10 15/12/10 20/12/10 25/12/10 30/12/10 04/01/11 09/01/11 14/01/11
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Date

F
lo

w
 In

te
ns

ity

C

L

K

J
IH

G

F

E

DB

A

Figure 6.3: The accumulated flow of subscribers around the The O2 Dublin, from the
01/12/2010 to the 15/01/2011 using 15-minute temporal bins.

Table 6.1: Events at The O2 Dublin.

Event Date Act
A 2nd Dec 2010 No Recorded Event
B 3rd Dec 2010 Cheerios ChildLine Concert
C 4th Dec 2010 Horslips
D-E 5th & 6th Dec 2010 Arcade Fire
F 11th Dec 2010 Kings of Leon
G 14th Dec 2010 Deadmau5
H 15th Dec 2010 Elton John
I 16th Dec 2010 Shakira
J 18th Dec 2010 Meat Loaf
K-L 9th & 10th Jan 2010 JLS
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A Space Time Prism (STP) [194] is a convenient way to approximate the region of

occupancy of an individual between consecutive location samples. Given a maximum velocity

vmax and a starting cell tower C0, the region in space which the individual may occupy before

being located at the next cell tower C1 is approximated using the intersection of their STPs. An

illustrative example depicting the intersection of STPs is shown in Figure 6.4a. By calculating

this region for a series of samples within a trajectory, a Space Time Bead (STB) is formed,

as shown by Figure 6.4b. Allowing each location within the plausible region of occupancy

to be equally likely, a subscriber may be thought of as being distributed across the region

allowing an estimate of temporal spatial density to be taken. Applying this scaling to a subset

of subscribers who attend a particular event, their aggregated movement to and from that event

may be observed. This information could then be used by event organisers to help with the

crowd management of future events. Alternatively, the spatial density of subscribers may be

approximated using Gaussian mixture models [216] or kernel weighting functions [195].
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Figure 6.4: Illustration of the plausible region of occupancy estimated using the concept of
Space Time Prisms, given a maximum velocity vmax and connective locating cell towers C0
and C1; (a) Space Time Prisms; (b) Space Time Bead.
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As previously discussed, the calculation of velocity using CDR is unreliable due to the

uncertainty associated with the arrival time and location estimates. However, a lower bound on

velocity V̂i j may be more accurately estimated using observed transition time and the minimum

distance between each cell tower’s coverage polygon. As such, an estimated value for vmax may

be obtained by

vmax =


V̂i j if V̂i j ≥ ρ

ρ otherwise
(6.1)

where ρ is a lower limiting threshold on V̂i j. This threshold is introduced to account for

situations when V̂i j → 0 due to instances when there is a large temporal gap between activities

that occur between two cells which are in close spatial proximity.

Consider each transition contained within the trajectories of the mobile subscribers who

were at or in the vicinity of the O2 Dublin during the Deadmau5 concert, on the 14th December

2010. Using this measure of velocity, it is possible to observe the flux of individuals to and

from this event. This movement is shown in Figure 6.5 using KDE estimates of subscriber

density given each subscriber’s STB. Note, for visual clarity, density normalised such that

the maximum density is 1. The depiction of subscriber trajectories in this manner allows the

commuting patterns associated with a particular event to be dynamically observed and may be

of interest to event marketeers and planners.
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(e) 23.00 Hr.
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Figure 6.5: Kernel density estimates of the changing population density relating to individuals
who were at or in the vicinity of the O2 Dublin during the Deadmau5 concert at The O2
amphitheatre Dublin on the 14th December 2010.
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6.3 Targeted Geographical Marketing

The integration of trajectory datasets with semantic information is a growing trend in

human mobility research [217]. The sources of semantic information varies among different

studies. However, recent initiatives such as Dublinked [218] and the growing trend in smart

city research [219, 220, 221] means that publicly available datasets are becoming more

prevalent. The datasets used in this study consist of information sourced from Dublinked and

GeoDirectory [214].

As previously discussed, Section 5.3.1, GeoDirectory is one of the most comprehensive

address databases available in the Republic of Ireland. It includes both residential and

commercial building locations and typically has limited semantic data related to commercial

property use. Dublinked is an Irish data repository set up by Dublin City Council, Dun

Laoghaire Rathdown County Council, Fingal County Council and South Dublin County

Council in collaboration with NUI Maynooth. Using this resource it is possible to obtain

semantic data related to public amenities and services, including shopping centres, recreational

areas, health centres, pubs and local eateries.

Due to the uncertainty associated with CDR positional estimates, it is not possible to

directly relate CDR samples to particular activities located at individual buildings or amenities.

Instead, trajectory samples may be encoded by the semantics within each cell coverage area

polygon. This is illustrated in Figure 6.6 through a subscriber CDR trajectory with sample

underlying semantic data.
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Figure 6.6: Illustration of a subscriber’s CDR trajectory with sample semantic data.
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It is difficult to determine if subscriber CDR activities are due to that subscriber passing

through an area while moving between points of interest, or, as a result of some meaningful

activity at that location. As previously demonstrated, the steady state vector of a subscriber’s

modified Markov chain mobility model is a convenient measure of the importance of each

region to an individual subscriber. Generally, people are more likely to use amenities and

services which are easily assessable from areas they frequent if they fulfil their specific

needs. Therefore, it is reasonable to assume that subscribers steady state vector weights are

a reflection of the importance of amenities/services available within a general area to the

individual subscriber concerned.

Here, two geographical weighting approaches are applied to measure the relative impor-

tance of each amenity to an individual subscriber. The first method calculates the relative

importance of an amenity by summing of all steady state vector weights from each cell whose

spatial coverage polygon overlaps that amenity. The second approach, ranks each amenity by

distributing the steady state vector weights observed at each cell location. This is applied using

a weighting function similar to that described in Section 3.3. Illustrating these techniques,

Figure 6.7 shows the ranking applied to each amenity/service using the steady vector from a

randomly selected subscriber.
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Figure 6.7: The relationship between local amenities and the steady state vector weight, w, for
a selected subscriber using (a) accumulative cell weighting; and (b) ranked vector weighting.
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Estimating the population density of subscribers who have strong links to a particular

amenity/service allows the catchment area associated to that particular amenity/service to

be determined. The aggregated catchment area data may then be passed on to third parties

for targeted marketing purposes, generating new revenue streams for mobile operators. For

example, Figure 6.8 depicts the population density of subscribers who have varying levels

of attraction to cells covering the Liffey Valley shopping centre, Lucan, Co. Dublin. Note

that home location estimates are based on the aforementioned maximum likelihood technique

(Section 5.3). Results highlight towns and villages which lie on directly connected roads, with

strong links to regions of west Dublin and north east Kildare.
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Figure 6.8: The catchment area of the Liffey Valley shopping centre, Lucan, Co. Dublin.
Estimated of catchment area is based on the population density of subscribers with a steady
state vector weight of (a) ≥ 1%; (b) ≥ 5%; (c) ≥ 10% and (d) ≥ 20% relating to cells covering
the shopping centre concerned.
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6.4 Discussion

This chapter presented initial research into the mining of intelligent geographically located

subscriber data using the techniques developed in this thesis. Details are given on how network

operators may utilise subscriber mobility steady state vectors to identify coverage black spots.

The mapping of combined steady state vectors is a better representation of where subscribers

spend time compared to a mapping of home locations, because it also captures a measure of

time spent in each region. These insights may help reduce future churn rate, as operators can

deliver services to where they are needed.

Methodologies that enable targeted geographical marketing applications are also discussed.

This includes a procedure to observe the aggregated flow of subscribers who were identified

as being in the vicinity of organised events, and a methodology to geographically weight

amenities/services based on subscriber regions of interest.

By incorporating external data sources and better semantic data, some of the ambiguity

associated with what places and services subscribers are using can be removed. While more

studies are required for more conclusive answers, such data fusion will result in potentially

more accurate subscriber segmentation, which may lead to better geographical marketing

applications. However, as previously discussed in Section 1.2, fusing CDR with external data

sources can make it easier to determine a subscriber’s identity. Therefore careful consideration

needs to be given to insure subscriber privacy rights are maintained.
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CHAPTER 7

Concluding Summary & Future Work

7.1 Concluding Summary

This work contributes to the area of large scale mobility estimation through the use of mobile

telephony call detail records (CDR), with enabling methodology for applications such as

population estimation, travel route discovery and geographical marketing being detailed. In

the development of this methodology, several challenges related to mobile feature extraction,

computational complexity, localisation uncertainty and privacy are addressed.

The thesis begins by giving a brief overview of human activity monitoring applications,

with a focused discussion on the scalability of each technique. A modern mobile telephony

network is then critiqued for its use as a suitable sensing platform for relating human activity

patterns, with an accompanying discussion on the various techniques for mobile telephony data

procurement and an overview of current research using such data.

Results from an initial investigation into mobile client RSSI collection showed the potential

of accumulative RSSI activity as a proxy for mobile device activity over a small geographical

area. However, the cost of building a distributed sensor network which could accurately

monitor this metric have proven to be prohibitively expensive.

The primary data source used in this body of work was the call detail records (CDR) of
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Meteor, a mobile network operator in the Republic of Ireland. Motivated by the minimal costs

associated with gathering data from a mobile network operator, there exists opportunities to

monitor mobile device activity at urban and national scales, a feat not possible with RSSI

collection. Also, as demand for mobile broadband increases, a substantial increase in data rates

will result in the need to deploy even smaller cells through urban areas and towns. This will

have the effect of reducing location uncertainty and sampling frequency, problems commonly

associated with CDR movement data.

The procedures used to extract and visualise a range of features from CDR, cell tower

information and subscriber registration data from a cellular phone network was then given.

Techniques for data cleansing, cell coverage area modelling and cell clustering were also

presented. Along with these contributions, the estimation of the achievable distance a mobile

device may travel over time, a novel activity spatial weighting function for spatio-temporal cell

activities and a detailed discussion on the time variability of CDR trajectory sampling were

provided.

Analysing the movement patterns readily available in CDR is an attractive proposition for

transportation engineers and planning authorities. However, investigations of which route an

individual travelled along between points of interest are limited due to the localisation and

temporal uncertainty associated with CDR samples. To overcome these issues, the novel

distance measurements virtual cell path distance (DVCP) and probabilistic cell connectivity

distance (DPCC) were developed. These distances enabled a measurement of similarity between

CDR journey trajectories and travel paths of interest. Corresponding temporal extensions were

also presented, namely modified virtual cell path distance (DMVCP) and modified probabilistic

cell connectivity distance (DMPCC).

Evaluated using a test dataset, results showed that both DVCP and DPCC achieved greater

accuracy when classifying which route CDR journey trajectories took when compared to

traditional trajectory distance measurements. The dataset used was comprised of simulated

journey trajectories which were generated using a novel agent based model which simulates

CDR journey trajectories between regions of interest. Results also showed that incorporating

DVCP or DPCC into the longest common subsequence distance (DLCS S ) improves the accuracy

of DLCS S with respect to CDR trajectory distance calculations.

Using similar simulated journey trajectories, the performance of DMVCP, DMPCC , DLCS S ,
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DLVCP and DLPCC was compared. Results showed that both DMVCP and DMPCC outperformed

DLCS S , DLVCP and DLPCC . However, a limitation of DMVCP and DMPCC is that each distance

measurement is sensitive to the noise which may be introduced by outdated cell tower locations.

Therefore, when deciding which similarity metric to apply, there is a tradeoff between accuracy

and noise tolerance as DLVCP and DLPCC will naturally account for noisy samples.

As a more cost effective alternative to traditional national census, recent studies have

demonstrated that the ubiquity of mobile devices may be exploited for population count

estimation. However, techniques to date often require the estimation of mobile subscriber home

locations and tend to be computationally intensive. As a result, there is a need for techniques

which can provide population density measurements which are both computationally efficient

and privacy preserving.

To address such concerns, it was shown that the steady state vector of a modified Markov

chain mobility model which characterises the aggregated movements of subscribers could

be used as an approximation for regional population density. As a matter verification,

results showed a high correlation between approximated population density and that measured

using a census. Alternatively, the steady state vector of a modified Markov chain mobility

model characterising the movement of an individual subscriber was evaluated as a means of

quantifying the significance of spatial regions to that individual. Using the region which has

the maximum steady state vector weighting as an estimate of the location of his/her home,

approximated population density was shown to be highly correlated with that measured using

a census.

These findings suggest that provided the mobile operator network is servicing a subscriber

base proportional to the population both spatially and demographically, the techniques

proposed are potential alternatives to the procedure of census. However, while population

fluctuations can be monitored at a much finer temporal resolution, the population metrics which

may be captured do not result in the fine grained measurements achievable through a census.

Thus, the application of such work may be limited to the estimation of population density and

the study of mobility in a regional context.

Initial research into geographically located subscriber insights demonstrated a methodol-

ogy to segment subscribers based on their perceived relationship to amenities and services.

Also investigated was a procedure to identify coverage black spots related to data services
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and a methodology related to identifying the mobility flows related to organised events. It

is envisaged that further research into these applications may help mobile network operators

reduce future churn rate, create new revenue streams and improve services delivered to

subscribers.

7.2 Future Work

This thesis addresses many of the central issues surrounding the estimation of population

density, the identification of which path a subscriber travelled while moving between regions

of interest and the mechanisms which enable geographical marketing applications from mobile

telephony CDR. However, there are still issues remaining, which, if addressed correctly, could

lead to more accurate population estimates, better travel path identification and commercial

geographical marketing applications.

There are several features which need to be optimised if population estimation error is to be

minimised. These include, among others, the identification of an optimal observation period,

optimal spatial resolution for subscriber-based analysis, a more robust home identification

procedure and automatic scaling to population demographics.

The observation period dictates the transition weights contained within each Markov chain

mobility model. For the national mobility estimation technique, temporal heterogeneity of

regional transition flows may result in the steady state vector becoming outdated. As a result,

further research is required to determine the optimal observation window. Similarly, if a

subscriber moves their home location during the observation period or significantly alters their

movement behaviour, their Markov chain mobility model will not accurately capture their

updated mobility patterns. As a result, longitudinal studies are needed to ensure that each

subscriber’s Markov chain mobility model is temporally homogenous, otherwise the explicit

removal of outdated positional data may be required.

As previously discussed, typically mobile network topology for 2G and 3G are designed

separately. This results in several cells of varying standards covering a single geographical area.

Therefore, to capture the true link between subscriber and regional occupancy, cell grouping

is required. Hence, to minimise population estimation error the optimal spatial resolution for

regions of interest needs to be determined. Likewise, further research into the relationship
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between residential location and steady state vector weight is also necessary. This work may

be supplemented by the validation of results through a survey of mobile subscribers.

The spatial variation of subscriber penetration on a mobile network results in the non-

uniform population sampling, both in a regional and national spatial context. To accurately

estimate population density, further research is required into how a mobile network operator’s

subscriber penetration may be scaled, such that uniform population sampling is achieved. In

other words, a method of transforming subscriber distribution to population distribution is

required for a representative spatial, and presumably temporal, analysis comparable to a census.

This task is not trivial as many non-bill paying subscribers do not register correct personal

information, resulting in unreliable subscriber demographic data.

If intelligent transportation systems are to benefit from ongoing research into subscriber

travel path prediction, algorithms which can avail of real-time transportation data and streamed

CDR records may be able to provide in real-time or near real-time the path or mode of transport

a subscriber is taking. Similarly, research into the identification of sub-trajectories within

subscriber CDR journey trajectories, may identify if a journey consists of multiple paths instead

of one single complex path. This information is important as it can be used to identify multiple

modes of transport along a single journey.

By incorporating external data sources, and improved semantic data, some of the ambiguity

associated with what places and services subscribers are using can be removed. This will

result in potentially more accurate subscriber segmentation, and may lead to potentially better

commercial geographical marketing applications. However, such data fusion would make it

easier to determine a subscriber’s identity, thus efforts should be made to ensure that subscriber

privacy rights are respected and not infringed.
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