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Abstract   

Duchenne Muscular Dystrophy is a lethal childhood disorder which results in 

progressive muscle weakness and wasting due to genetic abnormalities in the 

dystrophin gene. While the primary abnormality lies with the loss of the crucial 

membrane cytoskeletal protein dystrophin and the reduction of its associated 

glycoprotein complex, secondary alterations in cellular signalling, ion homeostasis 

regulation and metabolic pathways lead to fiber degeneration and subsequent 

fibrosis. These changes result in loss of ambulation and sufferers being wheelchair 

bound in early adulthood. Severe diaphragm and cardiac complications in later life 

tend to be fatal. The aim of this project was to create a detailed proteomic profile of 

differentially affected dystrophic tissues using the mdx mouse model; from severely 

dystrophic diaphragm; moderately affected hind limb to naturally protected 

interosseus muscle were used to investigate the pathogenesis of the disease.  

Proteomic analysis of the muscle subtypes indicated that skeletal muscles are 

differentially affected by the absence of dystrophin protein. Naturally protected 

interosseus exhibited very little histological and proteomic changes. In contrast to 

the moderately affected mdx hind limb muscles, the dystrophic diaphragm exhibits 

severe symptoms of skeletal muscle fiber degeneration that more closely 

resembles that of the neuromuscular pathology exhibited in Duchenne patients 

than any other muscle. Novel molecular insights into dystrophic changes suggest 

increased cellular stress, impaired calcium buffering, cytostructural alterations and 

disturbances of mitochondrial metabolism in dystrophin-deficient muscle tissue. 

Thus, the absence of the dystrophin isoform Dp427 and resulting reduction in 

dystrophin-associated glycoproteins in the dystrophic sarcolemma seems to trigger 

a variety of secondary abnormalities in muscular dystrophy. This work has 

successfully established a detailed biomarker signature that maybe used to 

evaluate new treatments, improve understanding of the pathobiochemical process 

and supports the use of mdx mouse as a suitable model for Duchenne muscular 

dystrophy. 



  

1 

 

1 Introduction  

 

1.1 Muscle Biology 

Muscle tissue can be divided into four distinct types: skeletal muscle, smooth muscle, 

cardiac muscle and myoepithelial cells, all differing in location and function. In this thesis, 

we examined multiple subtypes of skeletal muscle from the diaphragm, interosseus and 

flexor digitorum brevis muscle to hind limb muscles such as tibialis anterior, extensor 

digitorum longus and soleus muscle of the murine animal model.  

 

1.2 Skeletal muscle structure  

A muscle is comprised of many skeletal muscle fibers. A muscle fiber consists of  

bundles of myofibrils that are arranged longitudinally along the axis of each muscle 

fibers. Thus results in the striated muscle pattern of skeletal muscle, a myofibril contain 

sarcomeres (see Figure 1-1). The sarcomere structure consists of two main filaments, a 

thick and a thin filament. 

1.3 Sliding filament and lever-arm theory  

Skeletal muscle contraction involves the two types of filaments. Thick filaments are 

made up of myosin (and myosin heads) found in the centre of the sarcomeres. Thin 

filaments are made up of actin, tropomyosin and troponin (Tn) and surround each thick 

filament. It is this alignment that gives muscle cells its striated pattern. Calcium in the 

cytosol released from the sarcoplasmic reticulum (SR) binds to Troponin C (TnC) (see 

Figure 1-2) leading to a conformational change of the Troponin complex. In the presence 

of ATP this allows a myosin head on the thick filaments to bind with actin initiating a cross-

bridge (Holmes, 1997; Huxley, 2000; Huxley, 2004). 
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Figure 1-1 Skeletal muscle structure  

Contractile elements comprise the repeating sarcomeres, which arrange to form the 

myofibrils. The thick filaments of the H band consist of intertwined myosin chains enclosed 

by the thin actin filaments. (image from ucl.ac.uk)  
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Figure 1-2 Cross-bridge sliding filament theory  

A conformational change happens to tropomyosin after the binding of calcium to troponin 

C. An actin binding site becomes exposed and the myosin head forms a cross-bridge. 

Allowing the thin filaments to slide over the thick filament and result in muscle shortening. 

(image from edoc.hu-berlin.de)  
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ATP is broken down and myosin head released and continues to the next actin along the 

thin filaments causing the sarcomere to shorten. This cycle of muscle fiber shortening is 

maintained by the interaction of multiple myosin head and actin cross-bridges (while 

calcium is present). The filaments, thin and thick are not altered in length but the H zone 

and I band which are shortened and the level of shortening is proportional with the degree 

of contraction (Reedy, 2000). 

 

1.4 Skeletal muscle excitation-contraction coupling  

Before skeletal muscle can contract an electrical signal must travel from the motor center 

of the brain along the spinal cord. When an electrical signal meets a motor neuron that 

ends beside a muscle fiber it enters the neuromuscular junction. The electrical signal is 

then converted into a chemical signal at this junction in the form of acetylcholine (ACh) 

(see Figure 1-3) which can then cross the synapse to the muscle fiber. In the muscle 

membrane ACh binds to and activates post-synaptic acetylcholine receptors (AChR) 

causing localised depolarisation (Farley and Miles, 1977). The activation of the voltage 

dependent channels results in sodium channels opening causing sodium ions (Na+) 

to flux out to the cytosol and potassium ions to enter into the sarcoplasm. 

Depolarisation of the sarcolemma results in an action potential and enters down into 

the transverse tubules (T-tubules) (Cooke, 1986). 

 Depolarization of the T-tubules activates the alpha-1 subunit of dihydropyridine receptor 

(DHPR). A conformational change in the protein allows its II - III loop domain to physically 

interact with the ryanodine receptor (RyR1) on the SR (Tanabe et al., 1990). The 

interaction with RyR1 allows calcium channels to open causing a flux of Ca2+ into the 

cytoplasm of the cells (Meissner and Lu, 1995). The increase in cytosolic Ca2+ results in 

the conformational change in the troponin complex, no longer inhibiting the interaction of 

the myosin head with actin (Cooke, 1986).  
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Figure 1-3 Voltage-gated action potential 

An impulse activates voltage-gated ion channels along the sarcolemma and into T-

tubules. The activated dihydropyridine receptor also known as the L-type calcium channel 

interacts with the ryanodine receptor (RyR1) of the sarcoplasmic reticulum. Storage bodies 

release calcium within the sarcoplasmic reticulum, which result in interactions with 

contractile elements of the myofibril. (image from www.sim-bio.org)  
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1.5 Skeletal Muscle Fibers  

Skeletal muscle is an extremely heterogeneous tissue composed of a large variety of 

functionally diverse fiber types and subtypes. The properties of individual muscles largely 

depend on the combination of the individual properties of their different fiber types and 

their proportions. Traditionally, fiber types were classified depending on their varying color, 

type I fibers red (slow-twitch) due to the high levels of myoglobin and type II fibers white 

(fast-twitch). These fibers types can be further subdivided into type IIA or type IIB whereby 

the fast-twitch fibers were more aerobic using oxidative metabolism or anaerobic using 

glycolytic metabolism, respectively. Thus, muscle fibers can be classified by their 

contractile and metabolic properties. There are a number of methods employed to classify 

muscle fibers, histochemical staining for myofibrillar ATPase activity, immunohistochemical 

staining for myosin heavy  chain (MHC) type identification and biochemical identification of 

metabolic enzymes (Pette and Staron 2000).  

Muscle  fibers  are  dynamic  structures  capable  of  change  under  certain conditions 

for example, altered neuromuscular activity, mechanical loading or unloading, changes in 

hormonal profiles,  systemic diseases or during aging. Fiber transitions generally follow a 

pattern of either fast-to-slow or slow-to-fast. These MHC isoform transitions are linked to 

energy cost for force and also differences in the ATP phosphorylation in fast and slow 

muscle fibers production (Bottinelli et al., 1994; Conjard et al., 1998).  During sarcopenia 

the degenerative loss of skeletal muscle mass and strength associated with aging there is 

a decrease in type II fibers with fast-to-slow transitions and glycolytic-to-oxidative shifts in 

aging muscle. 
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1.6 Dystrophin and its Isoforms 

It has been over 20 years since the discovery of the genetic defect causing DMD. 

The DMD gene is a huge 2.5 Mb gene that encodes for the dystrophin protein (see 

Figure 1-4). The massive gene accounts for 1.5% of the X chromosome and also 

represents 0.1% the total human genome (Wells, 2006). Dystrophin is a member of the 

spectrin family of very large actin binding proteins (Menhart, 2006). 

The dystrophin gene has 7 different promoters controlling transcription. Three full-

length dystrophin isoforms that are transcribed by these promoters include Dp427-B, 

Dp427-M and Dp427-P in the brain, skeletal muscle and Purkinje cells respectively, 

differing in the amino terminal end sequence (Boyce et al., 1991; Gorecki et al., 1992; 

Yaffe et al., 1992). 

Shorter isoforms of dystrophin protein are produced by four internal promoters. 

These transcribe Dp260 a 260kDa retina isoform, Dp140 a 140kDa brain/kidney 

isoform, Dp116 a 116Da Schwann cell isoform and Dp71 a 71kDa truncated general 

isoform. Each of these isoforms have an unique amino terminal end and some lack the 

actin binding domain found in full-length dystrophin (Byers et al., 1993; D'Souza et al., 

1995; Lidov et al., 1995). Thus, these shorter isoforms function differently compared to 

that of Dp427 in skeletal/cardiac muscle and nervous system. 

Also a number of dystrophin-related proteins exist, 94kDa α-dystrobrevin in muscle, 

61kDa β-dystrobrevin in muscle and brain (Rentschler et al., 1999), 395kDa full length 

utrophin Up395 in the brain and at neuromuscular junction, 116kDa Up116 in the brain 

and 62kDa N-utrophin in glioma cells. 
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Figure 1-4 Genomic organisation of the dystrophin gene 

Figure 1-4 represents the Genomic organisation of the dystrophin gene which is 

located in Xp21. The 79 exons of the dystrophin gene are represented by the black 

line. The 79 exons are distributed over about 2.5 million bases. The arrows indicate 

the various promoters like are brain (B), muscle (M), and Purkinje (P) promoters are 

indicated by the arrows. The point mutation in exon 23 results in the absence of Dp427 

in mdx mice (image modified from Culligan et al., 2001). 
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Full-length dystrophin is comprised of four major domains, three of which are 

homologous to domains present in several actin binding cytoskeletal proteins (Koenig et 

al., 1988). Dystropins four domains: (i) N-terminal “actin binding” domain with 2 

calponin homology units, (ii) a central “rod domain” consisting of 24 spectrin-like 

repeats and four hinge regions which provide a flexible characteristic, (iii) a cysteine-

rich domain which is vital for binding the integral glycoprotein β-dystroglycan and α-

dystrobrevin, and (Rentschler et al., 1999) (iv) a carboxyl terminal domain, a unique 

sequence that bind dystrophin-associated proteins dystrobrevin and syntrophin through 

its coiled-coil protein-binding motifs (seen in Figure 1-5). Both the cysteine-rich domain 

and C terminus are found in all the dystrophin isoforms (Tinsley et al., 1992). Genetic 

deletions or nonsense mutations that block translation resulting in x-linked muscular 

dystrophy occur in distinct regions in these domains, more frequently in the N-terminal 

area of the rod domain.  

Dystrophin is localised to the cytoplasmic face of the sarcolemma (Zubrzycka-Gaarn 

et al., 1988) and mainly within a cytoskeletal lattice termed costameres, (Campbell, 

1995) where dystrophin interacts through its actin binding domain and cysteine-rich 

domain interacts linking the extracellular dystroglycan complex via β-dystroglycan. 

Without the support of dystrophin, these glycoproteins are quickly lost and thus weaken 

the linkage between the actin membrane cytoskeleton and the extracellular matrix. The 

plasmalemma in turn becomes more susceptible to contraction-induced micro-rupturing. 

Repair mechanisms seem to introduce Ca2+-leak channels in the sarcolemma, which 

result in pathophysiologically elevated Ca2+-levels in the dystrophic cytosol (Alderton and 

Steinhardt 2000). Elevated proteolytic activity triggers then various direct and indirect 

negative effects on ion handling, energy metabolism and the structural integrity of 

dystrophic muscle. Chronic alternations of key pathways and important cellular 

mechanisms cause severe tissue wasting and muscle weakness, eventually leading to 

end-stage contractile failure. Suggesting that dystrophin stabilises the sarcolemma 

against mechanical forces experienced during muscle contraction. 
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Figure 1-5 Dystrophin and Utrophin domain structures 

Shown is a comparative representation of the domain regions of murine dystrophin and 

utrophin.  Utrophin structure lacks the rod domain modules which correspond to the helical 

repeats 15-19 in dystrophin. However, the structures both contain an amino terminal (AT) 

domain,  the four  hinge  regions (H1-H4)  comprising  the  rod  domain (RD)  of  up  to  24  

helical  repeats,  the cysteine-rich (CR) domain and finally the carboxyl terminal (CT) 

domain (image modified from Culligan et al., 2001). 
 

 

 

 

 

 

 



  

11 

 

1.7 Dystrophinopathies  

Changes in dystrophin and various dystrophin-associated proteins result in a number of 

muscular dystrophies, the effects of which can be seen across multiple muscle types. 

The most common form of muscular dystrophy is Duchenne Muscular dystrophy (DMD) 

(Dellefave and McNally, 2007). DMD is named after Guillaume Benjamin Amand 

Duchenne a French neurologist and was first reported in 1836 (Conte and Gioja, 1836) 

and later described in 1852 by Meryon. DMD is a lethal disorder of childhood believed to 

affect 1 in every 3500 live male births. A recent epidemiology study of DMD reported the 

incidence ranged from 10.71 to 27.78 per 100,000 (Mah et al., 2014). DMD is inherited as 

an X-linked recessive condition only affects males, with women being carriers. 

The reading frame of the dystrophin transcript is changed due to the mutations in the 

dystrophin gene, resulting in a premature stop codon (Dellefave and McNally, 2007). 

Positional cloning was used to identify the DMD defect. Patients with DMD can have 

different types of mutations. Approximately 65% of patients have intragenic out-of-frame 

deletions and approximately 10% have duplications of one or more of the dystrophin 

gene’s exons. The remaining DMD patients have point mutations or smaller gene 

rearrangements (Kinali et al., 2007). The absence of the dystrophin protein is the 

molecular basis for DMD (Rando, 2006). Dystrophin links the cytoskeleton to the 

extracellular matrix (see Figure 1-6). Reduction or absence of dystrophin protein 

compromises this link and leads to muscle fiber degeneration (Kinali et al., 2007). Thus 

DMD is considered a neuromuscular disorder of the membrane cytoskeleton.  

In DMD symptomatic muscle disease onset occurs between three and five years of age. 

The most frequent presenting symptoms are an abnormal gait or motor delays. Affected 

boys may present difficulty in getting up from the ground (Gower’s sign), running and may 

have frequent falls, due to serve impairment of lower extremities (Dellefave and McNally, 

2007). Proximal weakness affects the lower extremities before the upper extremities (Yiu 

and Kornberg, 2008). The weakness is accompanied by muscle pseudohypertrophy, the 
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enlargement of the muscle tissue, typically calf muscles, caused by infiltration of 

connective tissue and adipose into the degenerating muscle. The progression of muscle 

weakness generally leads to DMD patients being wheelchair bound by the age of 12. The 

leading cause of death in individuals is respiratory insufficiency between the late teens or 

early 20s. Respiratory complications account for approximately 80% of deaths, while 20% 

succumb to dilated cardiomyopathy (DCM) (Kinali et al., 2007).  

It depends on the type of mutation, whether a patient shows DMD or it’s more benign 

counter-part Becker muscular dystrophy (BMD) phenotype. DMD results from a severe 

reduction or absence of dystrophin, whereas BMD is associated with expression of a 

partly functional dystrophin protein. BMD is more variable phenotypically with a later 

onset of serve symptoms and normally follows a less progressive form of fiber 

degeneration than DMD (Monaco et al., 1988). An abnormality in DMD gene, which 

results in the promoter on the 5’ end that transcribes for the cardiac specific dystrophin 

protein, causes X-linked dilated cardiomyopathy (XLDCM). This form of 

dystrophinopathy shows little skeletal muscle disease progression however is fatal 

leading to cardiac failure in early 20s (Towbin et al., 1993).  

Absence of dystrophin-associated proteins can lead to other muscular dystrophies. 

Certain limb-girdle muscular dystrophies (LGMD) result from loss of different sarcoglyan 

isoforms and are referred to as sarcoglycanopathies (Lim et al., 1995; Jung et al., 1996). 

These various muscular dystrophies are progressive diseases which affect shoulder and 

pelvic girdle muscles. Congenital muscular dystrophy (CMD) results from a deficiency in 

laminin protein which interacts with the dystrophin-glycoprotein complex (DGC). While 

not a progressive disease, CMD shows muscles weakness and can result in loss of 

ambulation (Minetti et al., 1996). 
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Figure 1-6 Overview of neuromuscular disorders with primary defects in 

components of the dystrophin-glycoprotein complex 

Shown is a diagram representing the dystrophin-associated glycoprotein complex  

and a list of muscle proteins with a genetic abnormality in muscular disorders. Genetic  

changes in laminin (LAM), γ-sarcoglycan (γ-SG), α-SG, β-SG or δ-SG are linked  

with congenital muscular dystrophy (CMD) and limb-girdle muscular dystrophy (LGMD) 

subtypes 2C, 2D, 2E and 2F, respectively. Primary abnormalities in the Dp427 isoform  

of dystrophin located in the actin membrane cytoskeleton (AMC) result in severe 

Duchenne muscular dystrophy (DMD), milder Becker muscular dystrophy (BMD) as well 

as X-linked dilated cardiomyopathy (XLDCM).  
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1.8 Dystroglycan complex  

The plant lectin germ agglutinin chromatography was important for the biochemical 

isolation of dystrophin and led to the dystrophin-associated glycoprotein complex (DAGC) 

idenfication (Campbell and Kahl, 1989). Lectin chromatography established that 

dystrophin was tightly associated to the glycoprotein complex at the muscle periphery. 

The dystrophin-associated proteins can be grouped into three main components (i) the 

sarcolemma, (ii) the membrane cytoskeleton and (iii) the extracellular matrix. The DAGC 

structural overview is shown in Figure 1-7.  

The sarcolemma components of the dystrophin-associated proteins include (i) 50kDa 

sarcoglycan, 43kDa β-sarcoglycan, 35kDa γ-sarcoglycan, 35kDa δ-sarcoglycan and (ii) 

25kDa highly hydrophobic sarcospan protein (Crosbie et al., 1997; Lim and Campbell, 

1998; Barresi et al., 2000) and 43kDa β-dystroglycan trans-sarcolemmal linker 

glycoprotein (Rentschler et al., 1999). The membrane cytoskeletal components include (i) 

43kDa cortical actin, (ii) 94kDa β-dystrobrevin (Wagner et al., 1993) and (iii) 58, 59 and 

60 kDa syntrophins comprised of a protein family, the α, β1 and β2 isoforms respectively 

(Adams et al., 1993; Ahn et al., 1994; Ahn et al., 1996; Piluso et al., 2000). 

Many other proteins are indirectly linked to muscle Dp427 like the extracellular matrix 

component 156kDa α-dystroglycan and ~400 kDa laminin (Ibraghimov-Beskrovnaya et 

al., 1992; Hohenester et al., 1999). In addition to the main components a large number of 

signalling proteins and ion channels are linked to the dystrophin network of proteins. In 

dystrophic muscle tissue the levels of many of these dystrophin-associated proteins are 

dramatically decreased at the sarcolemma. Interestingly it is the absence of Dp427 that 

leads to the disintegration of the DAGC and subsequent separation of actin membrane 

cytoskeleton and laminin with progression of the disorder.  
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Figure 1-7 Synopsis of the structure of the DAGC form skeletal muscle and its role 

in the molecular pathogenesis of X-linked muscular dystrophy 

Shown is a diagrammatic presentation of the supramolecular dystrophin-associated  

complex of the sarcolemma (SL) that  connects  the  actin  membrane  cytoskeleton 

(AMC)  of  the  cytosol (CYT)  with  the extracellular matrix (ECM) protein laminin (LAM). 

The Dp427 dystrophin isoform interacts with dystrobrevins (DYB), syntrophins (SYN) and 

the integral β-dystroglycan  (β−DG) protein, which in turn binds directly to the extracellular 

laminin-binding protein α-dystroglycan (α-DG). Additional Dp427-associated proteins are 

shown as sarcospan (SS) and the sarcoglycans (α-SG, β-SG, γ-SG and δ-SG). 

Dystrophin-deficiency in muscle fibres from DMD patients and its dystrophic mdx animal 

model, result in a drastic decrease in the DAGC. Loss of the linkage between the ECM 

and AMC leads to the weakening of the SL membrane system, causing various cellular 

disturbances and finally severe muscular degeneration. 
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1.9 Dystrophic mdx animal model  

In biochemical and biomedical research animal models play a crucial role for 

investigating molecular and cellular pathogenesis as well as preclinical evaluation of new 

treatment strategies for neuromuscular disorders they mimic (Vainzof et al., 2008). 

Ideally, an animal model for a genetic disorder should: (i) show similar primary defects 

and secondary downstream changes as seen in the equivalent human disease; (ii) 

closely resemble the pathogenesis of the human disorder in onset, progression and 

severity; (iii) develop majority of the multifactorial features seen in complex human 

pathologies; (iv) exhibit sufficient similarities to human physiology, metabolism and 

immune responses so that there no major differentiating influence of these biological 

factors on disease progression in animal models vs. patients; (v) be suitable for the 

facilitation of physiological and surgical procedures and for genetic manipulations; (vi) be 

easy to breed and house at a practical cost; and (vii) be large enough to yield adequate 

amounts of tissue samples for extended biological analyses (Guenet, 2011). 

The murine X chromosome-linked (mdx) mouse animal model is an established model 

for the study of x-linked muscular dystrophies. The naturally occurring mouse model has a 

point mutation on exon 23 of the dystrophin gene. This results in the almost complete 

absence of the Dp427 protein isoform of the membrane cytoskeleton protein dystrophin. A 

single base pair change from cysteine to thymine on the exon creates a premature 

termination codon. This results in an 115kDa truncated protein product with limited 

function offering some of membrane stability but with over half the rod and terminal 

domain missing there is no interaction with the intracellular actin cytoskeleton. Four 

shorter isoforms of dystrophin are also expressed by mdx mouse in non-muscle tissues. 

These contain the C-terminal end and result in less severe pathologies of the dystrophy 

in these various tissues. This may account for the milder pathology observed in the mdx 

mouse compared with DMD patients (Sicinski et al., 1989). 

The absence of dystrophin at the muscle sarcolemma causes many of the 
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pathological consequences observed in both mdx and human dystrophic muscle such 

as muscle damage shown by elevated creatine kinase levels in serum, an increased 

susceptibility to osmotic shock and vulnerability to contraction and stretch induced 

injury. Interestingly, the same primary abnormality appears to be subtype specific 

affecting mdx muscles differently. Form mildly affected extraocular (Porter et al., 1998) 

and interosseus muscle to moderately hind limb muscles and dystrophic diaphragm 

muscle with severe fiber degeneration. 

 While limb muscle of the mdx model is less severely affected than the human 

condition due to possible support of the truncated form of dystrophin and its non-muscle 

isoforms as well as homologous utrophin protein in the muscle (Blake et al., 2002; 

Deconinck et al., 1997; Rafael et al., 1999). Aged mdx muscle exhibit severe 

symptoms showing plasmalemma weakening, myofibre replacement by extensive 

connective tissue and exhausted structural and functional recovery of cells after injury. 

Proteomic profiling of senescent muscle is of particular interest to determine age 

related changes in dystrophin-deficient fibers, as the mdx senescent phenotype more 

closely resembles that of the human pathology (Lefaucheur et al., 1995). 

 

1.10 Proteomics  

Proteomics is the large-scale study of proteins expressed by a cell. The entire protein 

complement expressed by a cell is known as the proteome. It is important to note that the 

proteins produced in the cell do not fully match up with the translation of the nucleotide 

sequence. This is due to post-translational modification (PTM), when the proteome is 

subjected to environmental influences this process can be applied to adapt to changing 

situations (Anderson and Seilhamer, 1997). Classic proteomic techniques such as 1D 

and 2D polyacrylamide gel electrophoresis have been employed as standard methods to 

investigate the proteome. However, other recently developed in-gel techniques such as  
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DIGE and gel-free protein labelling methods have empowered proteomic quantitative 

analysis. 

Thus, the rapid advancements in protein biochemical techniques and MS-based 

proteomics have allowed for the establishment of global protein expression patterns, 

molecular interactions and PTMs of muscle proteins in samples. In the case of sports 

physiology a recent study (Egan et al., 2011) employed a number of these novel tools 

following physical exercise and this is a successful example of applied proteomics and 

future exercise intervention in muscle and metabolic diseases can build on these kinds of 

studies. Regular exercise has been shown to be effective in the prevention of chronic 

diseases and increased knowledge of the molecular responses to exercise offers an 

important contrast for interpreting studies of disease and can highlight potential novel 

therapeutic targets (Burniston and Hoffman, 2011). Thus, proteomics is an important tool 

in profiling and characterising changes in protein expression in diseased organisms. 

Skeletal muscle proteomics is concerned with identification and cataloguing of the 

proteins constituents involved in voluntary contractile fibers in normal and disease 

muscle.  

 

1.10.1 Sample preparation 

This first step in proteomic study is solubilisation of the sample proteins. Denaturing 

buffers are used containing a pre-optimised and tailored combination of chemicals to 

both solubilise the maximum amount and variety of proteins depending on the sample. 

Usually consisting of chaotropic agents like urea to disrupt hydrogen and hydrophic 

bonds (Rabilloud, 1998), reducing agents such as dithiothreitol DTT to break disulphide 

bridges and detergents such as CHAPS.  
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1.10.2 2-D gel electrophoresis  

Two-dimensional electrophoresis is a powerful technique which allows for the 

separation and subsequent analyse of proteins in a sample. The technique separates 

proteins in two dimensions and was established by Klose, O’Farrell and many others by 

1975. In the first dimension proteins are separated according to their pH by isoelectric 

focusing (IEF) using polyacrylamide gel strips with immobilised pH gradient (IPG). The 

protein sample must enter the gel strip before they are separated. This can be achieved 

through a number of methods; firstly rehydration buffer is used to rehydrate the IPG 

strips. With in-gel rehydration the protein sample is added to the rehydration buffer and 

enters the gel, or sample can be added post rehydration during IEF by cup/wick 

loading. When an electric field is applied, proteins travel along IPG strips till the protein 

has no net charge. 

In the second dimension the focused strips are positioned running along the top of the 

polyacrylamide gels. An electric current is applied through the gels which move the 

proteins through the pores in the gel. The smaller proteins are capable of moving faster 

through the gel, therefore allowing the proteins to be separated based on their 

molecular weight. Gels are then fixed and stained to visualise the proteins.  

 

1.10.3 Protein visualisation  

There are a number of post separation visualisation methods. A method may be  

chosen a variety of reasons be it sensitivity, downstream processing or simply 

because it is cheap and convenient. Commonly used stains in proteomic studies are 

staining with anionic dyes. These include coomassie, silver and fluorescence staining. 

Coomassie brilliant blue (CBB) provides a low cost and mass spectrometry-compatible 

staining method. CBB binds to basic amino acids in a hydrophobic manner Neuhoff and 

colleagues (1985).  
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Silver staining while more sensitive than CBB, has a very limited dynamic range 

and is not reproducible thus, not suitable for quantitative analysis. Silver nitrate binds 

to proteins and then with the addition of formaldehyde the silver ions become reduced to 

metallic silver (Rabilloud et al., 1994). This method of staining is also mass spectrometry 

compatible however requires a destaining step to remove gluteraldehyde from the excised 

proteins. 

Fluorescent compounds offer a better approach for protein detection with high 

sensitivity and large linear dynamic range but usually at more expense and require 

fluorescent scanners. Fluorescent detection of proteins can be performed in two ways. 

Firstly, post-electrophoretic fluorescent labelling such as Ruthenium (II) tris 

bathophenantroline disulfonate (RuBPs) dye developed Rabilloud and co-workers is 

cost-efficient, simple, sensitive and mass spectrometry compatible.  

Secondly, pre-electrophoretic protein staining such as difference in-gel electrophoresis 

(DIGE), were protein samples are fluorescently labelled with cyanine dyes (CyDyes) that 

react to proteins lysyl residues. CyDyes are the most sensitive dyes available capable 

of detecting nanogram of protein (Minden et al., 2009). CyDyes fluoresce at different 

wavelengths with Cy2 at 520 nanometres (nm), Cy3 at 550nm and Cy5 650nm. This 

allows for comparisons of samples to be analysed together on a single gel. Two protein 

samples are labelled with CyDyes, combined, separated, scanned and analysed with 

fluorescence software (see Figure 1-8). 
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Figure 1-8 Overview of the main approaches used in fluorescence difference in-

gel electrophoresis (DIGE) gel-based proteomics  

The 2-dye or 3-dye DIGE system is most commonly applied method of labelling for 

studying global changes in complex protein populations. Specimens (A) and (B) are 

labelled with CyDyes pre-electrophoresis, samples then separated based by their 

isoeletric point and molecular masses. The gels scanned and image analysis of 

differential expression pattern of fluorescently labelled proteins. 

 

.  
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1.10.4 Protein identification  

Quantitative comparative proteomic analysis of the 2-D gel images highlight changes 

between samples. The identification of these protein changes is achieved using 

mass spectrometry. Firstly, sample is cleaned up to remove contaminants by desalting 

and destaining the protein plug. This is then followed by enzymatic digestion using trypsin 

to cleave the proteins at lysine and arginine amino acid residues. With mass spectrometry 

following ionisation, analysis and detection steps the amino acid sequences of the 

peptides are provided and used to identify the protein from a database.  

 

1.10.5 Mass Spectrometry 

An ion trap liquid chromatography mass spectrometry LC/MS with an electrospray 

ionisation (ESI) has been used for protein identification in this study.  Whereby the peptide 

samples are dissolved in a polar solution tube upon existing tubes tip an electric field is 

applied which charges the solvent. Thus results in the emerging sample drop to divide into 

fine spray of droplets which are directed towards the mass spectrometer by nitrogen gas. 

The warm nitrogen gas flowing through the chamber causes the droplets to evaporate till 

the droplets are small enough allowing free ions to enter the mass spectrometer and be 

analysed (Yamashita and Fenn, 1984; Fenn et al., 1989).  

 

1.11 Aims of proposed project  

Duchenne muscular dystrophy represents one of the most frequently inherited 

childhood diseases affecting 1 in 3,500 live male births, due to genetic abnormalities in 

the dystrophin gene. Absence of dystrophin protein compromises the link between the 

cytoskeleton to the extracellular matrix and leads to muscle degeneration. 

Degeneration of muscle fibers and sequent fibrosis leads to DMD patients being 
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wheelchair bound in early childhood and severe cardiorespiratory complications in 

older children, the leading cause of death in individuals. Although DMD is progressive, 

interestingly different subtypes of skeletal muscles are not all affected to the same 

degree. While mdx diaphragm and cardiac muscle are severely dystrophic and hind 

limb moderately affected, there also appear to be spared phenotypes such as the 

interosseus and extraocular muscle.  

The purpose of this research was to perform a detailed proteomic profile on 

differentially distressed dystrophic muscles, to determine potential muscle subtype-

specific changes in secondary alterations and potential age-related changes in the 

dystrophic phenotype. Therefore, we carried out fluorescence labelling such as DIGE 

and RuBPs, mass spectrometry, histology and immunoblotting of dystrophic and 

normal tissue to establish the global proteomic expression patterns for a number of 

skeletal muscles from aged diaphragm, interosseus and flexor digitorum brevis muscle to 

hind limb muscles such as tibialis anterior, extensor digitorum longus and soleus muscle 

using the mdx animal model. 

However, since the main proteins of the actomyosin apparatus and its supporting 

sarcomeric components frequently negate weak signals from minor muscle protein 

species during proteomic analyses, we also employed a pre-fractionation step to 

remove certain parts of this analytical problem. In order to eliminate a large portion of 

highly abundant contractile proteins, differential centrifugation of the crude skeletal 

muscle extracts were performed to reduce the samples complexity. 

Mass spectrometry-based proteomics has been important in determining the global 

protein expression pattern and effects of the disintegration of the dystroglycan complex 

DAGC as well as the identification of compensatory mechanisms and establishment of 

novel biomarkers in dystrophic tissue.   
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2 Materials & Methods  
 

2.1 Materials  

 

2.1.1 Equipment 

Gel electrophoresis equipment and gel imaging systems used for the proteomic analysis 

of muscle proteins were from Amersham Biosciences/GE Healthcare, Little Chalfont, 

Buckinghamshire, UK, including immobilized pH gradient IPG DryStrip rehydration tray, 

IPGphor IEF unit, manifold, 6 gel casting box, cassette racks, Ettan DALT twelve multiple 

vertical slab gel electrophoresis system, fluorescent glass plates for gel electrophoretic 

analysis and a Typhoon Trio variable mode scanner.  

A Vortex Genie-2 from Scientific Industries, New York, NY, a SSL4 Stuart shaker from 

Lennox Laboratory Supplies Ltd., Dublin, Ireland, a model 5417R centrifuge from 

Eppendorf, Cambridge, UK and a Heto speedvac concentrator Medical Supply Company, 

Dublin, Ireland were used for routine mixing, shaking, centrifugation and concentrating 

steps, respectively. Identification of protein species was performed on an electrospray 

ionization Agilent 6340 Ion Trap LC mass spectrometer from Agilent Technologies, Santa 

Clara, CA, USA. With a nanoflow Agilent 1200 series system, fitted with a Zorbax 300SB 

C18 µm and 4mm 40nl pre-column was equipped for the separation of peptides. 

 

2.1.2 Reagent solutions  

All reagent solutions were prepared with ultrapure water using a Millipore Mill-Q 

apparatus, to reduce contamination of protein samples to a minimum. General solutions 

and chemicals were purchased from Sigma Chemical Company in Dorset, UK and were of 

proteomic/analytical grade, unless stated otherwise. Protease inhibitors were from Roche 

Diagnostics in Mannheim, Germany. 
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2.1.3 1-D and 2-D gel electrophoresis  

For gel electrophoretic protein separation, ultrapure Protogel acrylamide stock 

solution and 4X Protogel Resolving Buffer stock solutions were purchased from 

National Diagnostics (Atlanta, GA, USA). Isoelectric focusing immobilized pH gradient 

(IPG) strips of pH 3-10 24cm and pH 3-11 non-linear (NL) 24cm for 2-D 

electrophoresis, IPG buffer  and ampholytes were   purchased   from   Amersham   

Biosciences/GE   Healthcare (Little   Chalfont, Buckinghamshire, UK), and protein 

molecular weight markers and laemmli buffer were obtained from Biorad  

Laboratories (Hemel-Hempstead,  Hertfordshire,  UK).   

 

2.1.4 Protein staining  

Ruthenium batho-phenanthrolinedisulfonate chelate for the production of RuBPs dye 

was from Reagecon Diagnostic Limited (Shannon, Ireland). Sodium Ascorbate for 

RuBPs dye was purchased from Sigma Chemical Company (Dorset, U.K). Coomassie 

Brilliant Blue G-250 was purchased from Bio-Rad Labs, (Herts, UK). DIGE fluor minimal 

dyes Cy3 and Cy5 were purchased from GE Healthcare (Little Chalfont, Bucks., UK).  

 

2.1.5 Mass spectrometry  

Mass Spectrometry grade solvents were purchased for mass spectrometry analysis from 

Sigma Chemical Company (Dorset, UK). LC-MS Chromaslv water and formic acid were 

obtained from Fluka (Dorset, UK). Acetonitrile was from Amersham Biosciences/GE  

Healthcare  (Little  Chalfont,  Bucks.,  UK)  For protein digestion sequencing grade modified 

trypsin was purchased from Promega  (Madison, WI, USA). Model 6340 Ion Trap LC/MS, 

LC/MS vials and ProtlD-Chip-150 II 300A C18 150nm column were from Agilent 

Technologies Ireland Ltd. (Santa Clara, CA, USA). 
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2.1.6 Western blotting  

Chemiluminescence substrate was purchased from Roche Diagnostics (Mannheim,  

Germany).  Nitrocellulose transfer membrane was obtained from Millipore (Bedford, 

MA, USA). X-ray film was from Fuji Photo Film Co.Ltd. (Tokyo, Japan). 

Developer/Fixer was purchased from Sigma Chemical Company (Dorset, UK). 

Ponceau S-Red Staining Solution were purchased from Sigma Chemical Company 

(Dorset, UK). All secondary antibodies used were purchased from Chemicon 

International (Temecula, CA., USA). All antibodies used in this research are shown in 

Table 2-1 with company details and dilutions.  
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Table 2.1 Antibodies  

List of antibodies used for immunoblotting this project including the dilutions used 

for both primary and secondary antibodies, host species (species), company and 

ordering information. Species= Host species; mouse (Ms), rabbit (Rb), chicken (Ck), 10= 

primary; 20= secondary; AB= abcam; NC= Novocastra; SC= Santa Cruz; SGN= Enzo 

Stressgen; SGC= Sigma Chemicals and BIO= Affinity Bioreagents. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Antibody 10 Ab 

Dilutions 

Species 20 Ab 

Dilutions 

10 Order No. Company 

αB-crystallin 1:500 Ms 1:1000 ab13496 AB 

Actinin 1:1000 Ms 1:2000 ab9465 AB 

ATP synthase 1:500 Ck 1:1000 ab43176 AB 

βDystroglycan 1:100 Ms 1:500 NCL-b-DG NC 

βDystroglycan 1:100 Ms 1:500 ab sc-33701 SC 

Calsequestrin 1:500 Ms 1:1000 VIIID12 BIO 

Carbonic anhydrase 1:1000 Rb 1:2000 ab54913 AB 

Collagen 1:1000 Rb 1:2000 ab6588 AB 

cvHSP 1:500 Rb 1:1000 ab111233 AB 

Ferritin light chain 1:500 Rb 1:1000 ab69090 AB 

Hsp27 1:500 Rb 1:1000 ab12351 AB 

Hsp70/72 1:250 Rb 1:1000 ab ADI-SPA-811 SG 

Laminin 1:500 Rb 1:1000 ab L-9393 SGC 

MLC-2 1:500 Rb 1:1000 ab92721 AB 

Myoglobin 1:500 Rb 1:1000 ab77232 AB 

Parvalbumin 1:1000 Rb 1:2000 ab11427 AB 

Phosphoglycerate 

kinase 

1:1000 Rb 1:2000 ab75223 AB 

Prohibitin 1:500 Rb 1:1000 ab28172 AB 

Serpina 1:1000 Ck 1:2000 ab14226 AB 

Transferrin 1:500 Rb 1:1000 ab9033-1 AB 
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2.2 Methods  

 

2.2.1 Dystrophic mdx animal model  

Proteomic analysis was carried out using dystrophic mdx and aged matched C57 control 

mice. All tissue samples were obtained from the Animal House in the University of 

Greifswald in Karlsburg, Germany. The mice were maintained under standard living 

conditions and in accordance to all German and Irish procedures relating to the use of 

animals for scientific experiments. Mice were sacrificed by cervical dislocation and freeze 

frozen in liquid nitrogen.  

 

2.2.2 Preparation of crude skeletal muscle extracts  

The various skeletal muscle extracts for each study were prepared separately. For the 

proteomic profiling control C57 and age matched mdx muscles were taken. The 

diaphragm (DIA), tibialis anterior (TA), soleus (SOL), extensor digitorum longus (EDL), 

interosseus (INT), flexor digitorum brevis (FDB) and crude hind limb muscle extracts 

were washed in distilled water to remove any skin, bone, hair and blood. 

For the initial break-up of the tough contractile fibres the tissue was dissected with a 

blade. Using appropriate safety equipment and protective clothing liquid nitrogen was 

added to freeze the tissue followed by grinding of the tissue into a fine powder with 

mortar and pestle. Each of the ground up muscle powder was solubilised in lysis buffer 

at a ratio of 1:10 (w/v) respectively. With lysis buffer containing 7M urea, 2M thiourea, 4% 

(w/v) (3-[3-Cholamidopropyl)-Dimethylammonio]-1-Propane sulfonate) CHAPS, 2% (v/v) 

IPG buffer pH3-10, 2% (w/v) (dithiothretiol) DTT and protease inhibitors. Samples 

undergoing DIGE analyses were limited to buffer consisting 9.5M urea, 2% (w/v) CHAPS 

and a protease inhibitor cocktail (Doran et al., 2006a). 

The suspension was vortexed and gently left rocking for 1 hour at room temperature 
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followed by centrifugation at 4 0C for 20 min at 20,000g. The protein containing middle layer 

was retained. In the case of further subcellular fractionation an extra differential 

centrifugation step was performed at 100,000g for 1 hour at 4 0C. With sucrose buffer 

containing 20mM sodium pyrophosphate, 20mM sodium phosphate, 1mM MgCl2, 0.303M 

sucrose, 0.5mM EDTA, pH 7.0 and protease inhibitors. Pellets were resuspended in lysis 

buffer and the protein concentration determined using the Bradford assay system 

(Bradford, 1976). 

 

2.2.3 1-D Gel Electrophoresis  

One dimensional SDS polyacrylamide gel electrophoresis was carried out using a 

Bio-Rad Mini-Protean III gel system from Bio-Rad Laboratories (Hemel-Hempstead, 

Herts., UK) and performed according to Laemmli (1970). Ten percent resolving gel were 

used containing 10% (w/v) acrylamide from protogel acrylamide stock, 4X Protogel 

resolving buffer, 0.69M APS, 0.438M SDS and 0.1% (v/v) TEMED (N, N, N’, 

N’-tetramethylethylenendiamine). The stacking gel consisted of 5% (w/v) acrylamide, 

0.69M APS, 0.5M Tris-PO4 at pH 6.7, 0.438M SDS and 0.1% (v/v) TEMED. When 

casting the resolving gel was poured first and stacking gel poured over the resolving gel 

once it had time to polymerise. Samples were heated for 10 min at 960C in a 1:1 dilution 

of Laemmli buffer with 350mM DTT before loading onto the gel. 10mg of protein was 

loaded per lane. Electrophoresis was carried out using running buffer (125mM Tris, 

0.96M glycine, 0.1% (w/v) SDS) and run at 60 volts till sample passed the stacking gel 

were increased to 120 volts until the tracking dye ran off the bottom of the gel.  

 

2.2.4 2-D Gel Electrophoresis  

For isoelectric focusing IPG strips were in-gel rehydrated with sample (and equal 

volume 2x lysis buffer for DIGE analysis) and made up with rehydration buffer (7M urea, 

2M thiourea, 4% (w/v) CHAPS, 2% (v/v) IPG buffer pH3-10, 2% (w/v) DTT, protease 
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inhibitors and 1.2% (v/v) DeStreak rehydration solution from Amersham  

Biosciences/GE   Healthcare. ).  Different volumes were used according to the length of 

the IPG strip and amount of sample required depending on the staining  

technique. For the IPG 24cm strips a total volume (rehydration buffer and sample) of 

450ml is required. 

Rehydrated strips were run on an IPGphor IEF instrument and isoelectric focusing was 

carried as followed:  80V for 4h, 100V for 2h, 500V for 1.5h, 1000V for 1h, 2000V for 1h, 

4000V for 1h, 6000V for 2h and finally 8000V for 2.5h. After completion of isoelectric 

focusing, the IPG strips were initially incubated in equilibration buffer (6M urea, 30% (v/v) 

glycerol, 2% (w/v) SDS, 100mM Tris-HCl, pH 8.8) with addition of 100mM DTT for 20 min 

followed by  an additional equilibration step with 0.25M (iodoacetamide) IAA for 20 min 

(Lewis et al., 2009).  

Strips were then washed briefly in (sodium dodecyl sulphate) SDS  

containing running buffer (125mM Tris, 0.96M glycine, 0.1% (w/v) SDS) and placed 

onto a 12.5% (v/v) resolving slab gel. Sealing solution containing 1x SDS running 

buffer plus 1% (w/v) agarose and Bromophenol Blue was heated to seal the strip gels. Gel 

slabs were then loaded into an Ettan DALT-twelve tank system from GE Healthcare (Little 

Chalfont, Bucks., UK) and electrophoresis carried out at 0.5W/gel for 1 hour followed by 

15W/gel until the Bromophenol Blue dye front ran off the gel.  

 

2.2.5 Protein Staining  

2.2.5.1 Collodial Coomassie Staining  

Colloidal Coomassie staining is a post electrophoretic staining method and was 

performed according to Neuhoff and co-workers (1988). The gels were washed in dH2O 

and placed into the Colloidal Coomassie staining solution, 1part Stock Solution A (5% (w/v) 

Coomassie Brilliant Blue G250), 40 parts Stock Solution B (10% (w/v) ammonium  sulfate, 

2%  (v/v)  phosphoric  acid) and 10 parts methanol and left rocking overnight. The gels were 
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then washed with neutralisation buffer (0.1M Tris-PO4 pH 6.5) for 3 min. Followed by 25% 

methanol wash step for 1 min to help reduce the background and gels fixed overnight in  

fixation solution (20% (w/v) ammonium sulphate). The Collodial Coomassie Staining 

method was repeated until sufficient protein pattern is visualised.  

 

2.2.5.2 RuBPs Stain Preparation 

Ruthenium II Bathophenathroline Disulfonate Chelate (RuBPs) 20mM stock solution was 

synthesised as outlined by Rabilloud and colleagues (2001). Potassium pentachloroaquo 

ruthenate (0.2g) was dissolved into 20ml of boiling dH2O and kept under reflux, resulting in 

a deep red-brown colour solution. Bathophenanthroline disulfonate (3M) was then added 

and kept under reflux for 20 min, resulting in a greenish-brown colour solution. 500mM 

sodium ascorbate solution made up to 5mls was then added and kept under reflux for 20 

min, resulting in a deep orange-brown colour solution. The solution was then cooled and 

adjusted to pH 7 with sodium hydroxide. The RuBPs stain was then adjusted with dH2O to 

give a final volume of 26ml and stored at 4oC till use. 

 

2.2.5.3 RuBPs staining  

Following electrophoresis gels were placed in fixation solution (30% ethanol, 10% acetic 

acid) for 1 hour. The gels were then washed in 20% ethanol for 30 min and repeated three 

times. The gels were then incubated for 6 hours in 20% (v/v) ethanol containing 200nM of 

ruthenium chelate staining dye. Following ruthenium staining the gels were destained for 

overnight in 40% ethanol, 10% acetic acid. Gels were then equilibrated in dH2O twice for 10 

min. RuBPs gels were scanned using variable mode imager from Amersham 

Biosciences/GE Healthcare Typhoon Trio apparatus. The RuBPs labelled muscle proteins 

were scanned at wavelength of λ=532nm. The Photomultiplier tube PMT-values for gels 

analysed were between 500V and 600V and the maximum pixel volume was between 

80,000 and 99,000.  The RuBPs stained gels were scanned at 100 µm resolution. 
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2.2.6 Fluorescence difference in-gel electrophoretic analysis  

Similar to RuBP’s staining DIGE labelling was used to determine potential differences in 

expression patterns of the skeletal muscle soluble proteome (Viswanathan  et  al.,  2006),  

as  recommended  by  Karp  and  Lilley (2005). Prior to use the CyDye’s were taken from 

-200C and left at room temperature. Cy3 and Cy5 dyes were reconstituted in freshly 

prepared (dimethylformamide) DMF to give a working solution of 400pmol/ul. Samples 

were labelled with 400pmols of Cy3 fluor dye per 50µg protein. The internal pooled 

standard for each sample were labelled with Cy5 fluor dye containing 25µg control and 

25µg mdx. The labelled samples were mixed and centrifuged briefly and left on ice for 

30 min in the dark. The reaction was stopped with 10mM lysine for 10 min in the dark. 

The labelled samples and pooled internal standards were combined according to the 

experimental design. Equal amounts of 2x lysis buffer was added and left for 10 min 

prior to electrophoresis separation.  

 

2.2.7 Protein visualization and data analysis  

Fluorescent CyDye and RuBPs labelled proteins were visualised using an Amersham 

Biosciences/GE Healthcare Typhoon Trio variable mode. For image acquisition, RuBPs 

labelled proteins were scanned at a wavelength of λ=532nm. While Cy3 and Cy5 labelled 

proteins were scanned at a wavelength of λ=550nm and λ=650nm, respectively. The 

photomultiplier tube PMT values were adjusted so that the volume of the most abundant 

spot on the gel images was between 80,000 and 99,000 when scanned at 100µm 

resolution. Allowing for an accurate analysis of the gel images as no spot would be 

saturated. The RuBPs and DIGE CyDye gel images were then analysed using an 

alignment based approach with Samespots Progenesis software version 3.2.3 from 

NonLinear Dynamics (Newcastle upon Tyne, UK). RuBPs based experiments were 

normalised against their biological replicates while Cy3 images in the DIGE experiments 

used their corresponding Cy5 image. All the gels in an experiment were then aligned to a 

reference gel. Spots were then detected and filtered.  
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Following filtering, gel images were then placed into groups (control versus disease) and 

analysed to determine significant differences in the abundance of distinct protein spots. A 

list was generated of spots with changed abundance. Each spot was given a power score 

or principal component analysis PCA and any below <0.8 were excluded from analysis. 

Similarly, spots with a P value <0.05 were included with those >0.05 being excluded from 

the experiment. An anova score was established using the one way anova test, an 

ANOVA score above >0.5 was required for consideration. Any spots that met the 

significance criteria were subsequently identified by LC-MS/MS analysis. 

 

2.2.8 In-gel digestion of proteins for Mass spectrometric identification  

Preparative gels containing 800µg of protein (1:1 disease to control) were labelled with 

RuBPs stain and scanned at a wavelength of λ=532nm as previously discussed above. 

These images were attached to the Progenesis Samespots report and aligned to the 

experiments reference gel, highlighting the key protein spots of interest. Prior to 

identification via LC-MS/MS these key protein spots were excised, washed and digested 

according to Shevchenko and colleagues (2006). The gel pieces were destained and 

treated with 400ng of trypsin per gel plug and left at 40C for 30 min before being digested at 

370C overnight. 100µl of extraction buffer (1:2 v/v of 5% (v/v) formic acid/acetonitrile) was 

added to the digested plugs and incubated at 370C for 15min. Resulting supernantant 

fractions were transferred into fresh tubes and the peptides were dried down in a vacuum 

centrifuge.  

 

2.2.9 Mass spectrometric identification of skeletal muscle proteins 

Peptides were reconstituted in 16µl of 0.1% (v/v) formic acid. Followed by brief vortex, 

sonication and centrifugation for 20min in cellulose spin filter tubes at 14,000g. Samples 

were then transferred into individually labelled LC-MS vials and analysed on a 6340 Model 

Ion Trap LC mass spectrometer apparatus using electrospray ionization from Agilent  
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Technologies (Santa Clara, CA, USA). Samples were injected and followed previously 

optimised (Lewis et al., 2010b) running conditions of 10min gradient of 5-100% 

acetonitrile/0.1% formic acid and with a post run of 1min. Peptide separation was 

achieved with a nanoflow Agilent 1200 series system from Agilent Technologies, equipped 

with Zorbax 300SB C18 5µm, 4mm 40nl pre column and a Zorbax 300SB C18 5µm, 43mm 

x 75µm analytical reversed phase column with HPLC-Chip technology.  

Mobile phases were (A): 0.1% (v/v) formic acid, (B): 90% (v/v) acetonitrile and 0.1% (v/v) 

formic acid. Samples (6µl) were loaded into the enrichment column at a capillary flow rate 

of 4µl/min with a mix of A and B at a ratio of 19:1. Elution of the tryptic peptides was 

carried out on a linear gradient with a constant nano pump flow rate of 0.6µl/min. To 

eliminate any sample carryover a 5 min post time of solvent A was carried out. Capillary 

voltage maintained at 2,000V with temperature and flow rate of the drying gas at 3000C 

and 41/min, respectively. 

Distinct protein species were identified using database search engine, Mascot MS/MS 

Ion search from Matrix Science London, UK.  Each search performed followed the same 

criteria (i) two missed cleavages by trypsin, (ii) species Mus “musculus” as taxonomic 

category, (iii) oxidation of methionine as variable modification, (iv) mass tolerance of 

precursor ions ±2.5Da and product ions ±1Da and (v) carboxymethylated cysteine fixed  

modification. Identification of protein of interest were accepted once a Mascot score >49 

was confirmed with >2 peptides matched and pI and molecular weight matched the 

reference gel. Mascot score of >49 (corresponding to <p 0.05) offers a 95% confidence the 

match is correct.  

 

2.2.10 Immunoblot analysis  

Key proteins of interest were selected and antibodies purchased. Samples (10µg) were 

loaded onto 1D gel according to the experimental design with a molecular weight marker. 

Gel electrophoretic separation of 1D gel was carried out with a Mini-Protean II 
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electrophoresis rig from Bio-Rad Laboratories (Hemel-Hempstead, Herts., UK) and 

transferred onto nitrocellulose membrane using transfer system from Bio-Rad. Muscle 

proteins were run at 100V for 70min at 40C. Ponsceau S-Red staining was carried out on 

the nitrocellulose membrane and labelled appropriately.  

Prior to immune decoration, nitrocellulose sheets were blocked with milk solution (5% 

(w/v) fat-free milk powder in phosphate-buffered saline PBS) for 1 hour. Membranes 

were then incubated overnight with sufficiently diluted primary antibody solution with 

gentle agitation. Membranes were washed and incubated with secondary 

peroxidase-conjugated antibodies in blocking solution for 1 hour at room temperature. 

Following another wash step the immune-decorated protein bands were visualised 

with enhanced chemiluminescene (ECL) method from Roche Diagnostics (Mannheim, 

Germany) in a darkroom. Immunoblots were then analysed, densitometric scanning was 

performed with Image J software (NIH, Bethesda, Maryland, USA) and Graphpad prism 

statistical software (Graphpad software Inc.) 

 

2.2.11 Statistical Analysis 

Densitometric scanning of Immunoblots was performed with Image J software (NIH, 

Bethesda, Maryland, USA) and Graphpad prism statistical software (Graphpad software 

Inc.). Throughout this project a probability (p) value of 0.05 was used within a Student’s 

t-test, providing a 95% confidence our data is significant. 
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3 Proteomic profiling of age-related changes in the tibialis 

anterior muscle proteome of the mdx mouse model of 

dystrophinopathy  

 

3.1 Introduction  

X-linked Duchenne muscular dystrophy is an extremely progressive childhood 

neuromuscular disorder and can be characterised by primary genetic abnormalities in the 

dystrophin gene. The established mdx mouse model of dystrophinopathy exhibits 

progressive muscle tissue deterioration with age as a result aged mdx muscle specimens 

were analysed on a large-scale survey of potential age-related changes in the dystrophic 

phenotype. Since the mdx mouse tibialis anterior muscle is a commonly used model 

system in muscular dystrophy research, we investigated this particular tissue to determine 

the global changes in the dystrophic skeletal muscle proteome.  

 

3.1.1 Duchenne muscular dystrophy and tibialis anterior skeletal muscle  

The tibialis anterior is one of the most active muscles in the lower leg (Mesin et al., 

2010), displaying a relatively high level of resistance to fatigue or weakness during 

periods of intense exercise (Jones et al., 2009). This level of resistance makes the 

muscle particularly interesting to study with respect to the secondary effects of 

dystrophinopathy. Senescent mdx muscle has been studied as the dystrophic mouse 

muscle progressively deteriorates with age and as a result more closely resembles that of 

the neuromuscular pathology exhibited in Duchenne patients (Lefaucheur et al., 1995). 

Hence, aged mdx muscle represents an appropriate dystrophic phenotype for determining 

and identifying potential global alterations in the protein complement during aging.  
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3.1.2 Experimental design  

Comparative gel-based proteomic analysis of aged mdx tibialis anterior muscle. Muscle 

protein extracts were separated by two-dimensional gel electrophoresis and labelled with 

the fluorescent dye ruthenium II tris bathophenanthroline disulfonate. Then proteins with a 

significant change in their concentration were identified by mass spectrometry. Key 

proteomic findings were verified by immunoblot analysis. This report describes the 

analysis of RuBPs labelled aged dystrophic tibialis anterior tissue across 8 week, 12 

month and 22 month-old dystrophin-deficient mice along 3-10 pH range. Proteomic 

profiling established a change in abundance of 8 protein species across the tibialis 

anterior muscle age groups. Identified proteins were involved in various processes form 

cytosolic cycle, muscle metabolism and the cellular stress response. 

 

3.2 Results  

3.2.1 Comparative proteomic analysis of mdx tibialis anterior muscle  

High-resolution two-dimensional gel electrophoresis was carried out to separate 

the proteome from aged dystrophic mdx tibialis anterior muscle tissues. A pH-range 

of 3-10 in the first dimension was employed to establish a global proteomic pattern. 

Followed by post-electrophoretic labelling of the protein spots with fluorescent dye 

RuBPs. With the help of a Typhoon Trio variable imager and Progenesis 2-D 

analysis software, mdx skeletal muscle proteomes were compared. An altered 

concentration was revealed for 8 protein species, with 4 proteins being increased 

and 4 proteins showing decreased expression in aged mdx tissue. Mass 

spectrometry was then used to identify a number of unchanged landmark proteins 

and the significant muscle-associated proteins of interest from the tibialis anterior 

muscle and listed in Tables 3-1 and 3-2, respectively.  
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3.2.2 RuBPs analysis of landmark proteins in normal tibialis anterior 

muscle  

A list of unchanged landmark 2D protein spots from the tibialis anterior muscle are 

numbered 1 to 20 and marked by circles in the landmark master gel shown in figure 

3-1. The mass spectrometric identification of these unchanged landmark muscle 

proteins is listed in Table 3-1. This table contains the identified muscle-associated 

proteins names, international accession number, relative molecular masses, pI-

values, number of matched peptide sequences, Mascot scores, and percentage 

sequence coverage of major individual muscle protein species in aged dystrophic 

mdx tibialis anterior. 

Identified protein species ranged from a molecular mass of 17 kDa (myoglobin) to 

71 kDa (spot 2 unknown protein product) and with a pI-range from 4.6 pI (myosin 

light chain MLC3) to 8.7 pI (troponin TnI). Spots 1 to 22 represent major muscle-

associated protein species from ATP synthase (spot 1), unnamed protein product 

(spot 2), pyruvate kinase  (spot 3), enolase (spot 4), creatine kinase (spot 5) , actin 

(spot 6), tropomyosin (spots 7 and 8), malate dehydrogenase (spot 9), aldolase (spot 

10), phosphate dehydrogenase (spot 11), carbonic anhydrase (spot 12),

 triosephosphate (spots 13 and 14), troponin TnI (spot 15), adenylate kinase (spot 

16), various myosin light chains consisting of MLC1/3, MLC2, MLC3 (spots 17-20), 

parvalbumin (spot 21) and myoglobin (spot 22). A significant number of the landmark 

proteins identified are part of the contractile apparatus. 
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Figure 3-1 landmark 2D gel of normal mouse tibialis anterior muscle 

Figure 3-1 Two-dimensional gel electrophoretic analysis of normal tibialis anterior 

mouse muscle. Shown is a RuBPs-stained gel with 8 weeks old tibialis anterior 

muscle extracts. Major protein spots are numbered 1 to 22 and marked by circles. 

See Table 3-1 for the mass spectrometric identification of the 2D landmark proteins 

with no change during aging of the mdx model of Duchenne muscular dystrophy. 

The pH-values of the first dimension and molecular mass standards of the second 

dimension are shown on the top and on the left of the panels, respectively  
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Table 3.1 List of unchanged landmark 2D protein spots from normal mouse tibialis 

anterior muscle 
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1 Mitochondrial ATP 

synthase  

AAH37127   5.24 56,632 23 64 456 

2 Unnamed protein 

[Mus musculus]  

BAC34145 5.75  70,730 12 21 230 

3 Pyruvate kinase, 

isozymes M1/M2 

NP_001240812 6.69  58,461 25 51 1149 

4 Enolase, beta, 

isoform 1   

NP_031959 6.73 47,337 21 56 450 

5 Creatine Kinase, 

 M-type 

NP_031736   6.58 43,250 23 47 509 

6 Actin, beta   CAA27396 5.78 39,446 12 41 103 

7 Tropomyosin, beta 

chain  

NP_033442 4.66 32,931 22 59 395 

8 Tropomyosin, beta 

chain  

NP_033442 4.66 32,933 15 32 241 

9 Malate 

dehydrogenase, 

cytosolic  

AAA37423  6.16  36,625 9 36 190 

10 Aldolase A, isoform 

2  

NP_031464   8.31 39,795 24 75 498 

11 Glyceraldehyde- 3-

phosphate 

dehydrogenase  

NP_032110    8.44 36,072 14 57 238 
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12 Carbonicanhydrase  

 CA3  

 NP_031632

  

6.89  29,638  12 43 431 

13 Triosephosphate  

isomerase   

AAB48543 5.62  22,720 11 62 248 

14 Triosephosphate  

isomerase   

AAB48543 5.62  22,720 11 68 638 

15 Troponin TnI, fast 

skeletal muscle 

NP_033431 8.65 21,515 5 20 150 

16 Adenylate kinase, 

isoenzyme 1  

NP_067490  5.7   23,330 14 70 184 

17 Myosin light  

chain MLC1/3  

NP_067260  4.98  

 

20,697  17 79  426 

18 Myosin light chain 

MLC2  

NP_058034  4.82  

 

19,057  

 

15 61 

 

216 

19 Myosin light chain 

MLC2 

NP_058034 4.82  19,059 19 81 391 

20 Myosin light  

chain MLC3 

AAH59087  

    

4.63 18,968 11 60 222 

21 Parvalbumin, alpha NP_038673 5.02 11,923 12 89 622 

22 Myoglobin NP_038621 7.07 17,116 5 37 98 
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3.2.3 Proteomic analysis of dystrophic tibialis anterior muscle during 

aging 

Following the optimisation and initial mass spectrometric identification of landmark 

muscle proteins in normal tibialis anterior mouse muscle, fluorescence high-

resolution two-dimensional gel electrophoresis  was  performed  to  determine  

potential  differences  in  aging-related  protein expression patterns in mdx tibialis 

anterior mouse muscle proteome. Figure 3-2 shows the analytical gels with 4 

biological repeats of 8 week, 12 month and 22 month old total mdx mouse muscle 

extracts. Panels labelled TA MDX 1-4, TA MDX 5-8 and TA MDX 9-12 represent 8 

week, 12 month and 22 month old tibialis anterior muscle preparations, respectively.  

A detailed denitometric analysis was performed on the 2D spot patterns of normal 

versus dystrophic mouse tibialis anterior muscle in order to determine potential 

differences in individual protein species. Densitometric analysis was carried out 

using a Typhoon Trio variable imager scanner and Samespot Progenesis 2-D 

analysis software was performed to establish differential expression patterns during 

the muscle aging. The detailed proteomic profiling of dystrophic tibialis anterior 

showed distinct age-related changes in 8 muscle protein species between 8 week 

and 22 month old total mdx mouse muscle preparations.  
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Figure 3-2 Two-dimensional gel electrophoretic analysis of aging mdx 

mouse tibialis anterior muscle 

Shown are RuBPs-stained gels from 8 weeks (TA MDX 1-4), 12 months (TA MDX 

5-8) and 22 months (TA MDX 9-12) old tibialis anterior muscle extracts. Fluorescent 

images are shown along the pH 3-10 range.  
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3.2.4 RuBPs analysis of dystrophic tibialis anterior muscle  

A list of the tibialis anterior proteins with significantly altered expression level in 

age-related dystrophic mdx tissue is shown in Table 3-2. Proteins with significant 

changes in expression levels are numbered 1 to 8 and marked by circles in the 

master gel Fig 3-3. The mass spectrometric identification of these altered muscle 

proteins is listed in Table 3-2. This table contains the identified muscle-associated 

proteins names, international accession number, relative molecular masses, pI-

values, number of matched peptide sequences, Mascot scores, percentage 

sequence coverage, and fold-change of individual muscle proteins affected in aged 

dystrophic mdx tibialis anterior.  

Protein species with an altered concentration in aged mdx tibialis anterior muscle 

ranged from a molecular mass of 23 kDa (heat shock protein Hsp27) to 224 kDa 

(myosin 3) and with a  pI-range  from  4.7 pI (tropomyosin)  to  8.5 pI (electron  

transferring flavoprotein). The expression levels showed an increased abundance for 

the carbonic anhydrase CA3 isoform (spots 1 and 4), the glycolytic enzyme aldolase 

protein (spot 2) and electron transferring flavoprotein (spot 3). While the expression 

levels of key cytosolic enzyme pyruvate kinase (spot 5), myosin 3 (spot 6), 

tropomyosin beta chain (spot 7) and the molecular chaperone Hsp27 (spot 8) were 

shown to be decreased in mdx aged tissue.  

 
 
 
 
 
 
 
 
 



 

45 

 

 
 
 
 
 
 
    
 
 

 

 

 

 

 

 

 

 

 

 

 Figure 3-3 Fluorescence two-dimensional gel electrophoretic analysis of mdx 

tibialis anterior muscle 

Figure 3-3 Fluorescence gel electrophoretic analysis of aged mdx mouse tibialis 

anterior muscle. Shown is a representative RuBPs-stained master gel with crude 

tissue extracts from mdx tibialis anterior muscle. Proteins with an age-related 

change in expression levels are numbered 1 to 8 and marked by circles. See Table 

3-2 for the mass spectrometric identification of the individual muscle-associated 

proteins. The pH-values of the first dimension and molecular mass standards of the 

second dimension are shown on the top and on the left of the panels, respectively. 
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 Table 3.2 List of identified muscle proteins with a significant change of 

abundance in aging mdx tibialis anterior muscle 
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1 Carbonic anhydrase 

CA3  

 NP031632  6.89  29,638  4 

 

26  

 

181 2.9 

 

2 Aldolase A  

isoform 2  

NP031464  8.31  39,795  2  14  85  2.3 

3 Electron transferring 

flavoprotein, beta 

EDL22660  

 

8.50  29,177  13 42  190 1.9 

4 Carbonic  anhydrase 

CA3 

NP031632   6.89 29,638 12 53 182 1.7 

5 Pyruvate kinase NP035229   7.18 58,388 7 18 440 -1.4 

6 Myosin 3 NP001078

847  

5.62 224,75

5 

9 5 141 -1.4 

7 Tropomyosin, beta 

chain  

NP033442  

 

4.66 32,933  3 14 126 -1.6 

8 Heat shock protein 

Hsp27 

AAA18335 6.45 22,945 2  15 550 -1.9 
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3.2.5 Immunoblot analysis of dystrophic tibialis anterior muscle 

In order to further characterise the tibialis anterior phenotype, comparative 

immunoblotting was carried out following the mass spectrometric establishment of the 

age-related changes in the urea-soluble mdx muscle proteome. Immunoblotting was 

performed to investigate the concentration of the two most extensively altered new 

biomarkers, carbonic anhydrase CA3 and heat shock protein Hsp27 in normal versus 

dystrophic muscle preparations.  

Antibodies to β-dystroglycan (β-DG), a dystrophin-associated glycoprotein which 

forms the main trans-sarcolemmal linker among the extracellular matrix and the 

cytoskeleton in the fibre periphery, were used to confirm the dystrophic status of mdx 

muscle samples during aging. Immunoblotting of the glycoprotein (Figure 3-4) clearly 

shows the drastic reduction of β-DG in both 8 week and 22 month old mdx mouse 

tibialis anterior muscle, which is characteristic of dystrophinopathy.  

Immunoblotting of young versus old muscle samples with the CA3 isoform of 

carbonic anhydrase antibody (Figure 3-5) showed an increased abundance of the 

metabolic enzyme. While immunoblotting with the molecular chaperone Hsp27 

antibody (Figure 3-6) showed a decreased concentration of the small heat shock 

protein in dystrophin-deficient mdx muscle. Thus, both the CA3 fibre type-specific 

protein and the Hsp27 molecular stress protein represent suitable biomarker 

candidates of the dystrophic phenotype.  
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Figure 3-4 Immunoblotting analysis of dystrophin-associated glycoprotein β-

dystroglycan 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblots were labelled with the β-dystroglycan (β-DG) antibody. Lanes 1, 

2 and 3, 4 represent 8 week vs 22 month-old normal wild type vs dystrophic mdx tibialis 

anterior muscle, respectively. The comparative  blotting  was  statistically  verified  using  

an  unpaired  Student’s  t-test (n=4 replicates). Standard deviation represented by Error 

bars, (*p<0.05). 
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Figure 3-5 Immunoblotting analysis of carbonic anhydrase enzyme 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblots were labelled with the fiber type-specific enzyme carbonic 

anhydrase (CA3) antibody. Lanes 1, 2 and 3, 4 represent 8 week vs 22 month-old 

normal wild type vs dystrophic mdx tibialis anterior muscle, respectively. The 

comparative  blotting  was  statistically  verified  using  an  unpaired  Student’s  t-test (n=4 

replicates). Standard deviation represented by Error bars, (*p<0.05). 
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Figure 3-6 Immunoblotting analysis of the small heat shock protein 27 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblots were labelled with the molecular chaperone heat shock protein 

27 (Hsp27) antibody. Lanes 1, 2 and 3, 4 represent 8 week vs 22 month-old normal wild 

type vs dystrophic mdx tibialis anterior muscle, respectively. The comparative  blotting  

was  statistically  verified  using  an  unpaired  Student’s  t-test (n=4 replicates). Standard 

deviation represented by Error bars, (**p<0.005). 
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3.3 Discussion  

Duchenne muscular dystrophy is one of the most crippling childhood neuromuscular 

disorders (Emer, 2002), therefore meriting comprehensive large-scale studies into the 

establishment of detailed biomarker signatures of dystrophinopathy (Lewis et al., 2009; 

Griffin and Rosiers, 2009). In dystrophinopathy, the loss or almost complete absence 

of the crucial 427kDa cytoskeletal membrane protein dystrophin result in a drastic 

reduction of a large number of surface glycoproteins which leads to a loss of 

sarcolemmal integrity.   

In this chapter, proteomic profiling revealed that during the natural aging of  

the moderately dystrophic mouse tibialis anterior muscles a key number of skeletal 

muscle proteins change in abundance. Senescent mdx muscle has been studied as 

the dystrophic mouse muscle progressively deteriorates with age and as a result 

more closely resembles that of the neuromuscular pathology exhibited in Duchenne 

patients (Lefaucheur et al., 1995). Hence, aged mdx muscle represents an 

appropriate dystrophic phenotype for determining and identifying potential global 

alterations in the protein complement during aging.    

 

3.3.1 Proteomic expression changes of tibialis anterior analysis  

This chapter has summarised the results of a comparative proteomic analysis of 

moderately affected mdx tibialis anterior muscle from 8 week, 12 month and 22 month 

old mice. The identification of carbonic anhydrase, aldolase, electron transferring 

flavoprotein, tropomyosin, myosin, pyruvate kinase, and Hsp27 small heat shock 

protein as new markers of progressive muscular dystrophy might be helpful for the 

establishment of a detailed biomarker signature of Duchenne muscular dystrophy. 
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3.3.2 Elevated metabolic enzymes in mdx tissue 

The protein spot with the highest age-related increase was carbonic anhydrase 

isoform CA3 (Fremont et al., 1988). In general, carbonic anhydrases are involved in 

catalysing the reversible hydration of CO2 and are commonly distributed throughout the 

body (Geers, 2000). Several isoforms of this key metabolic enzyme are expressed by 

skeletal muscles in a fiber type-specific manner. The principal CA3 isoform is mostly 

located in the cytosolic fraction of type I and IIa fibers (Fremont et al., 1988). 

Interestingly, altered neuromuscular activity patterns, disuse atrophy, stretch-induced 

hypertrophy and metabolic adaptations significantly influence the expression of muscle 

carbonic anhydrases (Brownson et al., 1988; Brownson and Loughna, 1996; Cote et 

al., 1999). 

The increased concentration of the carbonic anhydrase CA3 isoform in aged mdx 

muscle, as revealed in this survey by mass spectrometry-based proteomics, could 

suggest an increased demand for effective CO2-removal during mdx fibre aging. That 

or perhaps since the CA3 isoform is mainly located in slower-twitching fibre 

populations, its change in density could also be contributed to age-related fibre type 

shifting in the mdx mouse tibialis anterior muscle. 

 

3.3.3 Perturbed stress response in mdx tissue 

The muscle-associated protein spot with the greatest reduction during aging of the 

mdx mouse tibialis anterior muscle was shown to be anti-apoptotic small heat shock 

protein, Hsp27. This suggests a potentially diminished anti-oxidative stress response in 

the dystrophic tibialis anterior muscle fibers and establishes that clear differences exist 

with respect to expression levels of small cellular heat shock proteins in moderately 

affected hind limb muscles compared to severely dystrophic diaphragm muscle in the 

mdx mouse model of dystrophinopathy, shown in chapter 4 (Doran et al., 2006a; Doran 



 

53 

 

et al., 2009a).  

 

3.3.4 Altered glycolytic and oxidative enzymes in mdx tissue 

The enzyme aldolase and pyruvate kinase catalyses the reversible cleavage of 

fructose-1,6-bisphosphate into glyceraldehyde-3-phosphate and dihydroxyacetone 

phosphate and  the  important oxidoreduction-phosphorylation  step  that transforms  

ADP  and  phosphoenolpyruvate  to yield  ATP  and  pyruvate,  respectively 

(Ohlendieck, 2001). These changes in glycolytic enzymes and mitochondrial proteins in 

mdx mouse tibialis anterior muscle suggest altered flux rates through the key metabolic 

pathway. With regards to the glycolytic pathway, pyruvate kinase is central for the 

regulation an enzymatic level (Ohlendieck, 2001). This vital role of pyruvate kinase in 

muscle metabolism makes its altered abundance in the mdx mouse tibialis anterior 

muscle a key finding. Mass spectrometry-based proteomics has clearly confirmed a 

glycolytic-to-oxidative metabolic shift during mdx skeletal muscle aging. 

Previously published surveys have shown pyruvate kinase as a potential biomarker 

for the overall aging process in skeletal muscle tissues (Doran et al., 2008; Doran et 

al., 2009a). The altered metabolic enzymes in the aged mdx mouse tibialis anterior 

muscle agree with the proteomic profiling of the golden retriever muscular dystrophy 

GRMD. In the dog model of dystrophinopathy various glycolytic and oxidative enzymes, 

were found to reduced, such as the aldolase and pyruvate kinase enzymes (Guevel et 

al., 2011).  

 

3.3.5 Other proteins 

While alterations of the contractile apparatus elements indicate down-stream effects 

of dystrophin deficiency on myosin and tropomyosin organisation, changed expression 
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levels in electron transferring flavoprotein suggest perturbed mdx muscle metabolism. 

The electron transferring flavoprotein beta polypeptide chain plays an important role in 

amino acid and mitochondrial fatty acid catabolism, and facilitates the transporting of 

electrons between flavoprotein dehydrogenases (Toogood and Scrutton, 2007). 

 

3.4 Conclusion  

In conclusion, the comparative proteomic profiling of dystrophic tibialis anterior  

muscle from 8 week versus 22 month-old mdx mice has revealed changes in expression 

levels in a number of key proteins during skeletal muscle aging. However, the level  

of  concentrations  altered  was  less  evident  in  the  moderately  dystrophic  tibialis  

anterior mouse muscle as compared to previously analysed aged mdx mouse diaphragm 

(Carberry et al., 2012a). These differing proteomic results agree with the 

pathophysiological notion that the aged mdx mouse diaphragm muscle is more severely 

dystrophic as compared to moderately affected mdx hind limb muscle.   

In the long-term, the continued proteomic identification of novel biomarkers of 

dystrophinopathy may potentially be useful for the establishment of a detailed and 

muscle subtype-specific biomarker signature of Duchenne muscular dystrophy. This 

would be important for monitoring disease progression, identifying novel therapeutic 

targets, improving diagnostic procedures and aid in the evaluation of new treatments, 

such as stem cell therapy or exon-skipping therapy. 
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4 Proteomic profiling of age-related changes in severely 

dystrophic Diaphragm muscle proteome of the mdx mouse 

model of dystrophinopathy  

 

4.1 Introduction  

Aging is a complex and fundamental biological process. The established mdx mouse 

model of dystrophinopathy exhibits progressive muscle tissue deterioration with age and 

more closely resembles the human pathology as a result aged mdx muscle specimens 

were analysed on a large-scale survey of potential age-related changes in the dystrophic 

phenotype. Thus, since senescent mdx mouse diaphragm muscle appears to represent a 

more suitable dystrophic phenotype, we investigated this particular tissue to determine the 

global changes in the protein complement during the natural aging process of the mdx 

muscle. 

4.1.1 Duchenne muscular dystrophy and Diaphragm skeletal muscle  

In contrast to the mdx hind limb muscles, the dystrophic mdx diaphragm exhibits severe 

symptoms of skeletal muscle fibre degeneration that more closely resembles that of the 

neuromuscular pathology exhibited in Duchenne patients than any other muscle 

(Lefaucheur et al., 1995). The Diaphragm is one of the most severely affected muscles in 

Duchenne patients and is the primary cause of death leading from respiratory problems in 

late twenties. Senescent mdx muscle has been studied as the severely dystrophic 

diaphragm mouse muscle progressively deteriorates with age making it more comparable 

to Duchenne muscular dystrophy.  

The  age-related pathogenesis  of  mdx  mouse muscle  is  characterised  by  
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progressive motor weakness (Lynch et al., 2001), a shortened life span with increased 

susceptibility to spontaneous rhabdomyosarcoma (Chamberlain et al., 2007), muscle 

periphery weakening triggered by the presence of branched fibres (Mouisel et al.,2010), 

severe loss  of  myofibres with concomitant replacement by connective tissue (Wineinger 

et al., 1998; Pastoret and  Sebille, 1995a; Pastoret and  Sebille, 1995b), a reduction in 

regenerative potential and changes in the crucial mTOR signaling pathway (Mouisel et 

al.,2010), and impaired structural and functional recovery after injury (Irintchev et al., 

1997). Hence, aged mdx muscle represents an appropriate dystrophic phenotype for 

determining and identifying potential global alterations in the protein complement during 

aging.  

 

4.1.2 Experimental design  

Comparative gel-based proteomic analysis of mdx Diaphragm muscle. Muscle protein 

extracts were separated by two-dimensional gel electrophoresis and labelled with the 

fluorescent dyes. Then proteins with a significant change in their concentration were 

identified by mass spectrometry. Key proteomic findings were verified by immunoblot 

analysis. This report describes both the analysis of RuBPs labelled aged dystrophic 

Diaphragm muscle across 8 week, 12 month and 22 month-old dystrophin-deficient mice 

along 3-10 pH range. Proteomic findings established an age-related change in 

abundance of 11 protein species across the aged mdx Diaphragm muscle.  

This was followed by a detailed comparative DIGE analysis of 22 month-old dystrophin-

deficient mice versus age-matched control mice across 3-11 NL pH range. Proteomic 

profiling established a significant change in abundance of 84 protein species in the aged 

mdx Diaphragm muscle. Identified proteins were involved in various processes form the 

extracellular matrix, contractile apparatus, metabolite transport, mitochondrial energy 

metabolism and the cellular stress response. 
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4.2 Results  

4.2.1 Comparative proteomic analysis of mdx diaphragm muscle  

High-resolution two-dimensional gel electrophoresis was carried out to separate 

the proteome from aged dystrophic mdx diaphragm muscle tissues. A pH-range of 

3-10 in the first dimension was employed to establish a global proteomic pattern. 

Followed by post-electrophoretic labelling of the protein spots with fluorescent dye 

RuBPs. With the help of a Typhoon Trio variable imager and Progenesis 2-D 

analysis software, mdx skeletal muscle proteomes were compared. An altered 

concentration was revealed for 11 protein species, with 10 proteins being increased 

and 1 protein showing decreased expression in senescent mdx tissue. Mass 

spectrometry was then used to identify these significant muscle-associated proteins 

of interest and listed in Table 4-1. 

 

4.2.2 Proteomic analysis of dystrophic diaphragm muscle during aging 

Fluorescence high-resolution two-dimensional electrophoresis in combination with MS 

analysis was performed to determine potential differences in aging-related protein 

expression patterns in mdx diaphragm muscle proteome. Figure 4-1 shows the analytical 

gels with 4 biological repeats of 8 week, 12 month and 22 month-old total mdx mouse 

muscle extracts. Panels labelled DIA MDX 1-4, DIA MDX 5-8 and DIA MDX 9-12 

represent 8 week, 12 month and 22 month-old dystrophic diaphragm muscle 

preparations, respectively.  

The overall 2D protein spot patterns of differently aged dystrophic muscle preparations 

were relatively comparable as a result a detailed denitometric analysis was performed in 

order to determine potential differences in individual protein species. Densitometric 

analysis was carried out using a Typhoon Trio variable imager scanner and Samespot 

Progenesis 2-D analysis software was performed to establish differential expression 
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patterns during the muscle aging. The detailed proteomic profiling of dystrophic 

diaphragm showed distinct age-related changes in 8 muscle protein species between 8 

week and 22 month old total mdx mouse muscle preparations.  
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Figure 4-1 Two-dimensional gel electrophoretic analysis of aging mdx mouse 

diaphragm muscle  

Shown are RuBPs-stained gels from 8 week (DIA MDX 1-4), 12 month (DIA MDX 

5-8) and 22 month (DIA MDX 9-12) old diaphragm muscle extracts. Fluorescent 

images are shown along the pH 3-10 range. 
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4.2.3 RuBPs analysis of dystrophic diaphragm muscle  

The overall degree of diaphragm proteins with significantly altered expression 

levels in age-related dystrophic mdx tissue was striking. Proteins with significant 

changes in expression levels are numbered 1 to 11 and marked by circles in the 

master gel Figure 4-2. The mass spectrometric identification of these altered muscle 

proteins is listed in Table 4-1. This table contains the identified muscle-associated 

proteins names, international accession number, relative molecular masses, pI-

values, number of matched peptide sequences, Mascot scores, percentage 

sequence coverage, and fold-change of individual muscle proteins affected in aged 

dystrophic mdx diaphragm.  

Protein species with an altered concentration in aged mdx diaphragm muscle 

ranged from a molecular mass of 20 kDa (αB-crystallin) to 110 kDa (collagen) and 

with a pI-range from 4.7 pI (dermatopontin) to 8.6 pI (myozenin). The expression 

levels showed an increased abundance for the collagen α-1(VI) chain (spot 1), the 

dermatopontin extracellular matrix protein (spot 2), the ubiquitin carboxyl-terminal 

hydrolase enzyme (spot 3), the αB-crystallin small heat shock protein (spot 4), α-2 

actinin (spot 5), the ferritin heavy chain (spot 6), vimentin (spot 7), the fibrinogen γ 

chain (spot 8) mimecan (spot 9) and apolipoprotein E (spot 10). While the 

expression level of myozenin (spot 11) was shown to be decreased in mdx aged 

diaphragm muscle. 
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Figure 4-2 Fluorescence gel electrophoretic analysis of aged mdx mouse 

diaphragm muscle 

Shown is a representative RuBPs-stained master gel with crude tissue extracts 

from mdx diaphragm muscle. Proteins with an age-related change in expression 

levels are numbered 1 to 11 and marked by circles. See Table 4-1 for the mass 

spectrometric identification of the individual muscle-associated proteins. The pH-

values of the first dimension and molecular mass standards of the second dimension 

are shown on the top and on the left of the panels, respectively. 
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 Table 4.1 List of identified muscle proteins with a significant change of 

abundance in aging mdx diaphragm muscle 
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1 Collagen α-1(VI) 

chain 

NP034063 5.20 109,582  12 15  259 3.6 6.3 

2 Dermatopontin  NP062733 4.70  24,559  4  21 122 5.4 6.1 

3 Ubiquitin carboxyl-

terminal hydrolase 

enzyme 

AAD51029 5.33  25,170  4  30 83 3.5 4.1 

4 αB-crystallin  NP034094   6.76 20,056 7 38 113 3.7 4 

5 α-2 actinin AAK64510  5.34 104,447 4 5 196 4.3 3.6 

6 Ferritin heavy 

chain  

NP034369  5.53 21,227 3 18 50 2.6 2.6 

7 Vimentin CAA39807 5.06 53,747  14 37 140 2.5 2.5 

8 Fibrinogen γ chain NP598623 5.54 50,056  4 12 65 1.9 2.5 

9 Mimecan NP032786 5.52 34,339 5 19 293 1.8 2.2 

10 Apolipoprotein E AAA37252 5.82 33,206 8 32 169 2 1.5 

11 Myozenin-1 NP067483 8.57 31,438 9 54 174 3 -3.6 
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4.2.4 Comparative proteomic analysis of mdx versus wild-type 

diaphragm muscle  

In order to establish the extent of secondary changes in the senescent mdx mouse 

diaphragm proteome due to absence in the membrane cytoskeletal dystrophin 

protein, the urea-soluble protein complement from 22 month-old wild type versus 

age-matched dystrophic diaphragm mouse muscle was investigated. Following 

fluorescent labelling of wild type or mdx samples with the CyDyes Cy3, as well as 

fluor tagging of the pooled standard using the CyDye Cy5, high-resolution two-

dimensional gel electrophoresis was carried out to separate the proteome from aged 

dystrophic mdx diaphragm muscle.  

A pH-range of 3-11NL in the first dimension was employed to establish a global 

proteomic pattern. Detailed densitometric analysis was carried out using a Typhoon 

Trio variable imager scanner and Samespot Progenesis 2-D analysis software was 

performed to establish differential expression patterns of the aged muscle. Figure 4-

3 shows the 2-D DIGE analysis of 22 month-old dystrophic mdx versus aged-

matched normal diaphragm skeletal muscle with 4 biological repeats. 

Panels labelled (MDX 1-4) and (WT 1-4) represent the Cy3-labelled gels of total 

muscle extracts from mdx versus normal wild type mice as well as pooled standard 

Cy5-labelled gels, respectively. DIGE images are shown for the pH 3-11NL range. 

The detailed proteomic profiling of dystrophic diaphragm revealed distinct changes in 

concentration for 84 protein species, with 27 proteins being increased and 57 

proteins showing decreased expression in the total mdx mouse muscle preparations 

(Fig 4-4). Mass spectrometry was then used to identify these significant muscle-

associated proteins of interest and listed in Table 4-2. 
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Figure 4-3 Shown is the 2-D DIGE analysis of dystrophic mdx versus normal 

diaphragm skeletal muscle 

Shown are Cy3-labelled gels of total muscle extracts from mdx (MDX1 to MDX4) 

versus normal wild type (WT1 to WT4) mice, as well as pooled standard Cy5-labelled 

gels. DIGE images are shown for the pH 3-11NL range.  
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Figure 4-4 Overview of the standard 2D-DIGE image analysis process used in 

muscle proteomics 

Shown are a 2D-DIGE master gel of the analysis of normal versus dystrophic aged 

diaphragm muscle (A), the visualization of the altered levels of parvalbumin (B, D, E) and 

cvHsp (C, F, G), the range of detected alterations between normal and dystrophic samples 

(H, I) and the graphical 3D montage of the drastic reduction in parvalbumin (J, K) and 

increase in expression of cvHsp (L, M) in dystrophic muscle. 
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4.2.5 DIGE analysis of dystrophic Diaphragm muscle  

The overall number and degree of diaphragm proteins with significantly altered 

expression levels in aged dystrophic mdx tissue was drastic with 84 changes. 

Showing a significant increase in 27 and decrease in 57 proteins in dystrophin-

deficient and aged diaphragm. Proteins with significant changes in expression levels 

are numbered 1 to 84 and marked by circles in the master gel Fig 4-5. The mass 

spectrometric identification of these altered muscle proteins is listed in Table 4-2. 

This table contains the identified muscle-associated proteins names, international 

accession number, relative molecular masses, pI-values, number of matched 

peptide sequences, Mascot scores, percentage sequence coverage, and fold-

change of individual muscle proteins affected in aged dystrophic mdx diaphragm. 

Protein species with an altered concentration in aged mdx diaphragm muscle ranged 

from a molecular mass of 11.9 kDa (Parvalbumin) to 87.7 kDa (Nebulin fragment) 

and with a pI-range from 4.07 pI (Troponin C) to 9.19 pI (Nebulin fragment). 

Identified proteins were involved in various processes form the extracellular matrix, 

contractile apparatus, ion homeostasis, mitochondrial energy metabolism and the 

cellular stress response. 

The expression levels showed an increased abundance for the extracellular matrix 

protein dermatopontin (spot 1, 2, 3), the HspB7/cvHsp small heat shock protein (spot 

4), the myosin light chain 6B (spot 5), unnamed protein product (spots 7, 17, 26), 

beta actin (spot 10), Hsp70 heat shock protein cognate (spots 11, 21, 22), 

mitochondrial stress 70 protein (spots 12, 24), gamma actin smooth muscle (spot 

13), nebulin fragment (spot 14), lumican (spot 15), prohibitin protein (spot 16), 

transferrin (spot 18), annexin A5 (spot 19), Hsp8 heat shock protein (spot 23), Fmod 

protein (spot 25) and glucose regulated 78 kDa protein (spot 27). 

In contrast, a decreased expression level was shown for alpha parvalbumin (spots 

29, 80, 84), for various isoforms of malate dehydrogenase (spots 30, 39, 41, 46, 49, 

57, 77), ATP-synthase (spots 31, 43, 59, 63), isocitrate dehydrogenase (spot 35), 
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alpha actin (spot 36), coiled-coil-helix-coiled-coil-helix domain-containing 

mitochondrial protein 3 (spot 37), Cu/Zn superoxide dismutase (spot 38), 

peroxiredoxin (spot 40), cytochrome c oxidase (spot 42), Hsp beta-6 heat shock 

protein (spot 44), creatine kinase (spots 45, 52, 74), troponin C (spots 47, 48), 

myoglobin (spots 50, 71, 72, 76, 79, 81), FABP3 fatty acid-binding protein (spots 53, 

78, 82, 83), NCS-1 calcium-binding protein (spot 54), electron transferring 

flavoprotein (spots 55, 60), isocitrate dehydrogenase (spot 56), cofilin-2 (spot 61), 

AK1adenylate kinase (spot 62), MLC2 myosin light chain (spots 65, 73), fumarate 

hydratase (spot 66), ubiquinone biosynthesis COQ9 protein (spot 68) and 

calsequestrin (spot 69). 

A number of proteins with differential expression patterns were identified as 

tropomyosin beta chain, myosin light chain 1/3 and the alpha-fetoprotein. Individual 

2D protein spots representing the tropomyosin beta chain isoforms exhibited both 

increased (spots 6, 9) and decreased (spots 32, 64) levels. In the case of the myosin 

light chain 1/3 1f muscle isoform, both increased (spot 8) and decreased (spots 28, 

51, 67, 75) concentrations were determined. The alpha-fetoprotein was shown to be 

increased (spot 20) and decreased (spot 33) in concentration. Although spots 12, 50, 

54, 72 were only had 1 matched peptide, they were included in Table 4-2 based on 

their mascot scores of 57, 61, 48, 59, respectively. All other proteins species were 

identified by at least 2 peptides or more. 
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Figure 4-5 Fluorescence 2D-DIGE master gel of aged mdx diaphragm muscle 

Shown is a representative DIGE master gel of aged mdx diaphragm muscle. 

Proteins with a significant change in expression levels are numbered 1 to 84 and 

marked by circles. See Table 4-2 for the mass spectrometric identification of the 

individual muscle-associated proteins. The pH-values of the first dimension and 

molecular mass standards of the second dimension are shown on the top and on the 

left of the panels, respectively. 
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Table 4.2 List of identified proteins from 2D-DIGE analyses that exhibit a 

drastic change in abundance in the aged mdx diaphragm 
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1 Dermatopontin NP_062733 4.7 24,559 5 28 73 5.9 

2 Dermatopontin NP_062733 4.7 24,559 7 37 111 4.4 

3 Dermatopontin NP_062733 4.7 24,559 6 26 100 3.4 

4 
Heat shock protein 

HspB7 (beta7, cvHsp) 
NP_038896 5.95 18,681 5 38 87 3.3 

5 Myosin light chain 6B  NP_758463 5.41 22,851 14 74 181 3.1 

6 
Tropomyosin, beta 

chain isoform 1 
NP_033442 4.66 32,933 22 61 319 2.9 

7 
Unnamed protein 

product 
BAE35818 5.78 70,776 15 30 286 2.8 

8 
Myosin light chain 1/3, 

isoform 1f, muscle 
NP_067260 4.98 20,697 2 12 97 2.7 

9 
Tropomyosin, beta 

chain isoform 1 
NP_033442 4.66 32,933 11 35 107 2.7 

10 
Actin, beta (aa 27–

375) 
CAA27396 5.78 39,451 9 21 124 2.6 

11 
Heat shock protein 

Hsp70 cognate 
AAA37869 5.37 71,025 11 23 110 2.6 

12 
Mitochondrial stress-

70 protein  
BAA04493 5.91 73,773 1 1 57 2.6 

13 
Actin, gamma, 

smooth muscle  
AAC52237 5.36 43,258 5 16 81 2.6 
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14 Nebulin (fragment) AAF59979 9.19 87,694 4 7 53 2.5 

15 Lumican  AAB35361 5.84 38,733 2 5 103 2.4 

16 Prohibitin  NP_032857 5.57 29,860 15 69 350 2.4 

17 
Unnamed protein 

product 
BAC34145 5.75 70,766 8 14 129 2.4 

18 Transferrin AAL34533 6.92 78,832 19 24 168 2.3 

19 Annexin A5 NP_033803 4.83 35,788 16 45 249 2.3 

20 Alpha-fetoprotein AAA37190 5.47 48,819 2 6 112 2.2 

21 
Heat shock protein 

Hsp70 cognate  
AAA37869 5.37 71,025 11 23 110 2.2 

22 
Heat shock protein 

Hsp70 cognate  
AAA37869 5.37 71,025 4 6 77 2.2 

23 Heat shock protein 8 AAH66191 5.28 71,060 11 23 110 2.2 

24 
Mitochondrial stress-

70 protein  
BAA04493 5.91 73,773 5 9 71 2.1 

25 Fmod protein AAH52673 5.56 46,637 2 4 92 2.1 

26 
Unnamed protein 

product  
BAC34145 5.75 70,766 8 17 254 2.1 

27 
78 kDa glucose-

regulated protein  
BAA11462 5.09 72,528 7 15 112 2.0 

28 
Myosin light chain 1/3, 

isoform 1f, muscle 
NP_067260 4.98 20,697 15 63 222 −2.0 

29 Parvalbumin, alpha  NP_038673 5.02 11,923 6 57 156 −2.0 

30 
Malate 

dehydrogenase  
AAA39509 8.93 36,052 3 11 90 −2.1 

32 
Tropomyosin, beta 

chain 
gi|11875203 4.66 32,933 11 32 180 −2.1 

33 Alpha-fetoprotein AAA37190 5.47 48,819 2 5 95 −2.1 
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34 

Isocitrate 

dehydrogenase 

subunit alpha 

NP_083849 6.27 40,077 6 20 242 −2.1 

35 

L-lactate 

dehydrogenase B 

chain  

NP_032518 5.7 36,839 5 12 54 −2.1 

36 Actin, alpha, cardiac gi|387090 5.23 42,048 2 7 51 −2.1 

37 

Coiled-coil-helix-

coiled-coil-helix  

domain-containing 

protein 3, 

mitochondrial 

NP_079612 8.56 26,550 5 24 80 −2.1 

38 
Cu/Zn superoxide 

dismutase 
1513495A 6.03 15,926 5 41 147 −2.1 

39 

Malate 

dehydrogenase 

mitochondrial  

NP_032643 8.93 36,053 12 45 256 −2.1 

40 Peroxiredoxin Prdx1 NP_035164 8.26 22,394 11 47 97 −2.1 

41 

Malate 

dehydrogenase 

mitochondrial 

NP_032643 8.93 36,053 15 56 343 −2.1 

42 
Cytochrome c 

oxidase, subunit Va 
CAA34085 6.08 16,252 8 48 125 −2.2 

43 

ATP synthase, 

mitochondrial F0 

complex 

AAH16547 5.52 18,810 5 47 148 −2.2 

44 
Heat shock protein 

Hsp beta-6 

NP_0010124

01 
5.64 17,568 6 51 130 −2.2 

45 
Creatine kinase, M-

type 
NP_031736 6.58 43,250 9 27 276 −2.2 
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46 

Malate 

dehydrogenasemitoch

ondrial 

NP_032643 8.93 36,053 9 36 243 −2.2 

47 
Troponin C, skeletal 

muscle 
NP_033420 4.07 18,156 3 28 238 −2.2 

48 
Troponin C, skeletal 

muscle 
NP_033420 4.07 18,156 8 53 774 −2.3 

49 

Malate 

dehydrogenase 2, 

mitochondrial 

ABD77283 7.7 32,121 7 28 365 −2.3 

50 Myoglobin NP_038621 7.07 17,117 1 9 61 −2.3 

51 
Myosin light chain 1/3, 

isoform 1f, muscle 
NP_067260 4.98 20,697 4 17 93 −2.3 

52 
Creatine kinase, M-

type 
NP_031736 6.58 43,250 10 28 297 −2.3 

53 
Fatty acid-binding 

protein FABP3 
NP_034304 6.11 14,810 6 48 157 −2.3 

54 
Calcium-binding 

protein NCS-1-like 

XP_0039459

63 
6.49 12,957 1 17 48 −2.4 

55 
Electron transferring 

flavoprotein,alpha 
AAH03432 8.62 35,366 11 44 449 −2.4 

56 

Isocitrate 

dehydrogenase 

subunit alpha 

NP_083849 6.27 40,077 6 19 167 −2.4 

57 

Malate 

dehydrogenase 2, 

mitochondrial 

ABD77283 7.7 32,121 2 8 85 −2.4 

58 
Creatine kinase, M-

type 
NP_031736 6.58 43,250 11 33 404 −2.4 
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59 

ATP synthase, 

subunit d, 

mitochondrial 

NP_082138 5.52 18,796 11 70 168 −2.4 

60 

Electron transfer 

flavoprotein, subunit 

alpha 

NP_663590 8.62 35,336 8 39 195 −2.5 

61 Cofilin-2 NP_031714 7.66 18,814 5 36 158 −2.5 

62 
Adenylate kinase, 

isoenzyme AK1 
NP_067490 5.7 23,334 6 36 104 −2.5 

63 
ATP synthase, beta-

subunit 
AAB86421 5.14 56,344 6 16 301 −2.6 

64 
Tropomyosin, beta 

chain 
gi|11875203 4.66 32,920 10 25 129 −2.6 

65 

Myosin light chain 

MLC2, skeletal 

muscle 

NP_058034 4.82 19,059 2 8 93 −2.7 

66 Fumarate hydratase 1 AAH06048 9.12 54,568 6 17 173 −2.8 

67 
Myosin light chain 1/3, 

isoform 1f, muscle 
NP_067260 4.98 20,697 11 53 201 −2.9 

68 

Ubiquinone 

biosynthesis protein 

COQ9 

NP_080728 5.6 35,235 5 21 150 −3.0 

69 
Calsequestrin, 

skeletal muscle 
AAC63616 3.93 45,619 8 22 143 −3.1 

70 
Creatine kinase, M-

type 
NP_031736 6.58 43,250 10 31 505 −3.1 

71 Myoglobin NP_038621 7.07 17,117 6 48 124 −3.1 

72 Myoglobin NP_038621 7.07 17,117 1 11 59 −3.2 

73 

Myosin light chain 

MLC2, skeletal 

muscle 

NP_058034 4.82 19,059 15 68 267 −3.4 
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Creatine kinase, M-

type 
NP_031736 6.58 43,250 11 31 266 −3.5 

75 
Myosin light chain 1/3, 

isoform 1f, muscle 
NP_067260 4.98 20,697 2 12 87 −3.6 

76 Myoglobin NP_038621 7.07 17,117 2 21 91 −3.7 

77 
Malate 

dehydrogenase  
AAA39509 8.93 36,052 5 20 126 −3.7 

78 
Fatty acid-binding 

protein FABP3 
NP_034304 6.11 14,810 11 77 426 −3.7 

79 Myoglobin NP_038621 7.07 17,117 6 46 129 −4.0 

80 Parvalbumin, alpha  NP_038673 5.02 11,923 6 57 285 −4.0 

81 Myoglobin NP_038621 7.07 17,117 6 41 89 −4.3 

82 
Fatty acid-binding 

protein FABP3 
NP_034304 6.11 14,810 7 63 188 −5.3 

83 
Fatty acid-binding 

protein FABP3 
NP_034304 6.11 14,810 9 71 532 −5.3 

84 Parvalbumin alpha  NP_038673 5.02 11,923 8 57 431 −10.5 
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Figure 4-6 Protein interaction map of mdx diaphragm muscle proteins 

The STRING database of known and predicted protein associations (version 9.1) was 

used to generate a protein interaction map that includes direct physical and indirect 

functional protein linkages. This analysis was performed with proteins that exhibited a 

changed abundance in aged mdx diaphragm (Table 4.2).  
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4.2.6 Immunoblot analysis of of altered proteins in aged mdx diaphragm 

muscle 

In order to further characterise the most drastic changes in aged mdx diaphragm as 

shown by proteomics, comparative immunoblotting was carried out. While laminin 

expression was shown not to be affected in muscular dystrophy (Fig 4-7B), the dystrophin-

associated glycoprotein b-dystroglycan showed a drastic reduction in dystrophic muscle 

(Fig 4-7C) confirming the mutant status of the mdx tissue used in this study. In contrast, 

the extracellular matrix protein collagen was shown to be increased during the aging 

process (Fig 4-7A), which agrees with the previous senescent and dystrophic aged mdx 

diaphragm muscle study. This exhibited a general increase of collagen in 12 month and 22 

month-old muscle. However, aged dystrophic mdx diaphragm muscle showed a 

significantly higher increase in collagen expression as compared to aged normal muscle.  

FigureS 4-7(D-I) shows immunoblot labelling of key proteins with an increased or 

decreased expression in aged mdx diaphragm muscle. Increased markers of the 

senescent mdx diaphragm were verified to be the small heat shock protein cvHsp, the 

molecular chaperone Hsp70 and the mitochondrial protein prohibitin figures 4-7D, E and F, 

respectively. In contrast the cytosolic Ca2+- binding alpha parvalbumin protein, the luminal 

Ca2+- binding calsequestrin protein of the sarcoplasmic reticulum and mitochondrial ATP 

synthase figures 4-7G, H and I, respectively were shown to be decreased markers of 

senescent mdx diaphragm. The immunoblot of calsequestrin showed besides the major 

60kDa band of its monomer there are also several high molecular mass bands that 

represent calsequestrin-like proteins. All bands labelled by antibodies to calsequestrin 

showed a reduced abundance in the dystrophic diaphragm.  
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Figure 4-7A Immunoblotting analysis of extracellular matrix protein collagen  

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowheads, with graphical presentation of the statistical 

evaluation. Immunoblots were labelled with the collagen antibody. Lanes 1-3 and 4-

6 represent 8 week, 12 month and 22 month-old normal wild type vs dystrophic mdx 

diaphragm muscle, respectively.  The comparative blotting was statistically verified 

using an unpaired Student’s t-test (n=4 replicates). Standard deviation represented 

by Error bars, (***p<0.001). 
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Figure 4-7B Immunoblotting analysis of unchanged extracellular matrix laminin 

Shown are representative blots with expanded views of immuno-decorated protein bands 

indicated by the arrowhead, with graphical presentation of the statistical evaluation. 

Immunoblots were labelled with the laminin antibody. Lanes 1, 2 represent 22 month-old 

normal wild type vs dystrophic mdx diaphragm muscle, respectively. The comparative 

blotting  was  statistically  verified  using  an  unpaired  Student’s t-test (n=4 replicates).  
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Figure 4-7C Immunoblotting analysis of of dystrophin-associated glycoprotein β-

dystroglycan 

Shown are representative blots with expanded views of immuno-decorated protein bands 

indicated by the arrowhead, with graphical presentation of the statistical evaluation. 

Immunoblots were labelled with the dystrophin-associated glycoprotein β-dystroglycan 

antibody. Lanes 1, 2 represent 22 month-old normal wild type vs dystrophic mdx diaphragm 

muscle, respectively. The comparative blotting was statistically verified using an unpaired 

Student’s t-test (n=4 replicates). Standard deviation represented by Error bars, (**p<0.005). 
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Figure 4-7D Immunoblotting analysis of small heat shock protein cvHSP 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblot analysis of novel biomarker proteins in normal versus aged mdx 

diaphragm muscle. Immunoblots were labelled with the cvHSP antibody. Lanes 1, 2 

represent 22 month-old normal wild type vs dystrophic mdx diaphragm muscle, 

respectively.  The comparative blotting was statistically verified using an unpaired 

Student’s t-test (n=4 replicates). Standard deviation represented by Error bars, 

(***p<0.001). 
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Figure 4-7E Immunoblotting analysis of large heat shock protein 70 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblot analysis of novel biomarker proteins in normal versus aged mdx 

diaphragm muscle. Immunoblots were labelled with the Hsp70 antibody. Lanes 1, 2 

represent 22 month-old normal wild type vs dystrophic mdx diaphragm muscle, 

respectively. The comparative blotting was statistically verified using an unpaired  

Student’s t-test (n=4 replicates). Standard deviation represented by Error bars, 

(*p<0.05). 
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Figure 4-7F Immunoblotting analysis of prohibitin protein  

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblot analysis of novel biomarker proteins in normal versus aged mdx 

diaphragm muscle. Immunoblots were labelled with the prohibitin antibody. Lanes 1, 2 

represent 22 month-old normal wild type vs dystrophic mdx diaphragm muscle, 

respectively. The comparative blotting was statistically verified using an unpaired 

Student’s t-test (n=4 replicates). Standard deviation represented by Error bars, 

(**p<0.005). 
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Figure 4-7G Immunoblotting analysis of calcium-binding protein parvalbumin 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblot analysis of novel biomarker proteins in normal versus aged mdx 

diaphragm muscle. Immunoblots were labelled with the parvalbumin antibody. Lanes 1, 2 

represent 22 month-old normal wild type vs dystrophic mdx diaphragm muscle, 

respectively. The comparative blotting was statistically verified using an unpaired 

Student’s t-test (n=4 replicates). Standard deviation represented by Error bars, 

(***p<0.001). 
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Figure 4-7H Immunoblotting analysis of the luminal Ca2+-binding protein 

calsequestrin  

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblot analysis of novel biomarker proteins in normal versus aged mdx 

diaphragm muscle. Immunoblots were labelled with the calsequestrin antibody. Lanes 1, 

2 represent 22 month-old normal wild type vs dystrophic mdx diaphragm muscle, 

respectively. The comparative blotting was statistically verified using an unpaired 

Student’s t-test (n=4 replicates). Standard deviation represented by Error bars, 

(*p<0.05). 

 



 

85 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7I Immunoblotting analysis of mitochondrial enzyme ATP synthase 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblot analysis of novel biomarker proteins in normal versus aged mdx 

diaphragm muscle. Immunoblots were labelled with the mitochondrial ATP synthase 

antibody. Lanes 1, 2 represent 22 month-old normal wild type vs dystrophic mdx 

diaphragm muscle, respectively. The comparative  blotting  was  statistically  verified  

using  an  unpaired  Student’s  t-test (n=4 replicates). Standard deviation represented by 

Error bars, (*p<0.05). 
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4.3 Discussion  

In this chapter, proteomic profiling revealed that during the natural aging of the 

severely dystrophic mdx diaphragm muscles a key number of skeletal muscle 

proteins change in abundance. Senescent mdx muscle has been studied as the 

dystrophic muscle progressively deteriorates with age and as a result more closely 

resembles that of the neuromuscular pathology exhibited in Duchenne patients 

(Lefaucheur et al., 1995).   

The  age-related pathogenesis  of  mdx  mouse muscle  is  characterised  by  

progressive motor weakness (Lynch et al., 2001), a shortened life span with 

increased susceptibility to spontaneous rhabdomyosarcoma (Chamberlain et al., 

2007), muscle periphery weakening triggered by the presence of branched fibres 

(Head, 2010), severe loss  of  myofibres with concomitant replacement by 

connective tissue (Wineinger et al., 1998; Pastoret and  Sebille, 1995a; Pastoret 

and  Sebille, 1995b), a reduction in regenerative potential and changes in the 

crucial mTOR signaling pathway (Mouisel et al.,2010), and impaired structural and 

functional recovery after injury (Irintchev et al., 1997). Hence, aged mdx muscle 

represents an appropriate dystrophic phenotype for determining and identifying 

potential global alterations in the protein complement during aging. This chapter 

has summarised the results of a comparative proteomic analysis of severely 

affected mdx diaphragm muscle from aging 8 week versus 22 month-old mice as 

well as a comprehensive aged-matched 22 month-old dystrophic diaphragm versus 

22 month-old control mice. 

 

4.3.1 Proteomic expression changes of diaphragm analysis during 

aging 

Dystrophic mdx diaphragm muscle exhibited changed expression levels in 11 

protein species during skeletal muscle aging. Alterations in the aging mdx 
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diaphragm proteome indicate elevated levels of fibrosis, an increased stress 

response and an escalation in cytoskeletal elements perhaps compensating the 

lack of dystrophin. These proteomic results support the idea of more extensively 

perturbed protein concentrations in dystrophin-deficient mdx diaphragm tissue as 

compared to other mdx muscle subtypes (Lewis et al., 2009). 

 

4.3.2 Increased extracellular matrix proteins in aging mdx tissue 

The approximately 6-fold increase of collagen and dermatopontin in aging mdx 

diaphragm muscle are key proteomic findings and reveal the dystrophic status of 

this muscle type. Immunoblotting analysis clearly shows the dramatic increase of 

collagen in the mdx diaphragm supporting the mass spectrometric results in table 

4-1 and 4-2. While it is known that collagen levels are elevated in the extracellular 

matrix of the skeletal muscle during the natural aging process (Kragstrup et al., 

2011), the mdx dystrophic phenotype demonstrates an intensified age-related 

increase of collagen α-1(VI) chain. Collagen is the key protein component of 

connective tissue and is particularly enriched in the endomysium of the skeletal 

muscles. Previous studies have highlighted increase amounts of mRNA in the mdx 

diaphragm (Goldspink et al., 1994), which agrees with the elevated collagen protein 

levels and supports the notion of severe fibrosis in the mdx tissue (Graham et al., 

2010; Trensz et al., 2010)   

Dermatopontin the non-collagenous extracellular matrix protein plays a role in 

matrix assembly and cell-matrix interactions (Okamoto and Fujiwara, 2006) and 

also known as tyrosine-rich acidic matrix protein (TRAMP) (Forbes et al., 1994)). 

TRAMP seems to regulate interactions of transforming growth factor beta (TGF-β), 

fibronectin and decorin (Kato et al., 2011). Its increased abundance in mdx 

diaphragm is possibly due to greater demands for collagen matrix organisation 

within the dystrophic muscle tissues.  
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4.3.3 Perturbed stress response and cytoskeletal disruption in aging 

mdx tissue 

The increased levels of αB-crystallin and vimentin suggests an intensified cellular 

stress response and an up-regulation of cytoskeletal elements in mdx dystrophic 

muscle, respectively, which supports previous proteomic reports (Doran et al., 

2006a). 

 

4.3.4 Other proteins  

Increased concentrations of fibrinogen protein in aged mdx diaphragm, as 

indicated by proteomics, agree with a previous report (Vidal et al., 2008). 

Fibrinogen appears to play a crucial role in fibrosis through a TGF-β or alternative 

macrophage activation pathway in dystrophinopathy.  

 

4.3.5 Proteomic expression changes of aged diaphragm analysis   

The comparative proteomic analysis of the naturally aged diaphragm versus 

dystrophin-deficient mdx diaphragm shown here establishes that the fluorescence 

difference in-gel electrophoresis with optimised animal model proteomics can be 

important for the identification of new protein biomarkers candidates involved in the 

molecular pathogenesis of dystrophinopathy. Figure 14 illustrates an overview of 

the proteomic results from the senescent mdx mouse model survey for Duchenne 

muscular dystrophy.  

Global changes in structural proteins, extracellular proteins, contractile proteins, 

molecular chaperones, calcium-binding proteins, glycolytic enzymes, mitochondrial 

enzymes and metabolite transporters suggest changes in the cytoskeletal complex 

and its indirect linkage to the extracellular matrix, reorganisations within the 
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actomyosin apparatus, an intensified cellular stress response, compromised ion 

handling and metabolic disturbances. Overall, this analysis revealed that protein 

expression patterns are severely changed in the dystrophin-deficient mdx 

diaphragm muscle and that these pathobiochemical alterations are more intense as 

compared to that of the mdx hind limb muscles examined in this thesis 

(Rayavarapu  et al., 2013; Ge et al., 2003; Carberry et al., 2012b).  

 

4.3.6 Increased extracellular matrix proteins in aged mdx tissue 

Elevated levels of dermatopontin and the resulting increase in collagen, as 

indicated here by proteomics and immunoblotting, respectively, supports the initial 

RuBPs aging survey of increased connective tissue in the dystrophic mdx 

diaphragm (Carberry et al., 2012a). 

 

4.3.7 Perturbed stress response in aged mdx tissue 

Increased levels of fibrosis appear to be accompanied by an intensified cellular 

stress response with the up-regulation of various heat shock proteins. In the form of 

several isoforms of Hsp70 and the muscle-specific molecular chaperone cvHsp, 

this supports the general principle of severe cellular stress in dystrophinopathy 

(Carberry et al., 2013a). The various isoforms of Hsp70 play a main role in skeletal 

muscle stress in response to injury, oxidative conditions, reperfusion-induced ischemia, 

excessive exercise and neuromuscular disorders (Liu et al., 2006). 

During periods of muscle stress molecular chaperone regulation has been shown to 

be crucial in protecting muscle from damage (Maglara et al., 2003). In general, stress 

proteins facilitate in protein-protein interactions by helping to stabilise misfolded 

proteins or peptide clusters as well as regulating there degradation and elimination in 
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order to prevent harmful unwanted accumulation of non-functional protein  aggregates 

(Boluyt  et  al., 2006). Hence, the observed increase in expression of mitochondrial 

Hsp70 isoforms can be seen as a compensatory mechanism to protect dystrophic 

fibres from excessive oxidative stress and supporting previous reports on elevated 

levels of the small heat shock protein cvHsp in dystrophic skeletal muscle (Doran et 

al., 2006a).  

 

4.3.8 Increased expression of Iron handling proteins in aged mdx tissue 

The 2-fold increase in transferrin concentration suggests fluctuations in iron 

absorption and use in muscular dystrophy. Since circulating transferrin acts as an 

iron transporter delivering needed iron to tissue proteins (Wang and Pantopoulos, 

2011), the elevated abundance suggests impaired iron homeostasis in the 

degenerating mdx diaphragm muscle. During the aging dystrophic diaphragm study 

which investigated 8-week to 22-month range (Carberry et al., 2012a), we also 

examined the 8-week to 12-month range and recorded a drastic increase in ferritin 

light chain levels in mdx muscle. Deficiency in dystrophin seems to impair iron 

homeostasis and the elevated iron transporter and binding-protein concentrations 

possibly suggest a compensatory mechanism to help prevent harmful iron 

overloading in muscle tissues. 

 

4.3.9 Reduced mitochondrial enzymes in aged mdx tissue 

Previous reports have shown that skeletal muscles from the dystrophin-deficient 

mdx mouse exhibit disturbed mitochondrial metabolism leading to decreased 

intramuscular ATP concentrations. Mitochondrial abnormalities consist of the 

pathophysiological uncoupling of oxidative phosphorylation and the resulting 

reduction in maximal ATP synthesis capacity (Kuznetsov et al., 1998) and a 
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disturbance of the subsarcolemmal localisation of mitochondria which leads to 

metabolic inefficiency and thus limits the maximal generation of ATP (Percival et 

al., 2013). This bioenergetic dysfunction of mitochondria in the senescent mdx 

diaphragm indicates that aged mitochondria are incapable of meeting the ATP 

demand of the dystrophic muscle fibres, which agrees with recent proteomic study 

in aged mdx heart (Holland et al., 2013a). 

A reduced concentration was shown for essential mitochondrial enzymes, 

including cytochrome c oxidase, electron transferring flavoprotein, isocitrate 

dehydrogenase, malate dehydrogenase and ATP synthase. In addition, the 

proteomic findings of a decreased concentration of the vital and rate-limiting 

metabolite transporters for the utilisation of oxygen and fatty acids, intracellular 

oxygen transporter myoglobin and the fatty acid binging protein FABP3, suggest 

the idea of impaired mitochondrial metabolism. 

 

4.3.10 Other proteins 

The contractile apparatus degeneration and/or remodeling, as indicated here with 

actin, troponins, tropomyosin and myosin light chains, and interestingly, possible 

compensatory mechanism to stabilise the deteriorated sarcomeric structure was 

observed with elevated levels of a nebulin fragment perhaps strengthening the 

nebulin-associated thin filament in dystrophic tissue fibres (Holland and 

Ohlendieck, 2013).  

 

4.3.11 Predicted interaction patterns of altered proteins in aged mdx 

diaphragm muscle 

The STRING database of direct physical and indirect functional protein interactions 

(Franceschini et al., 2013) was employed to evaluate potential protein networks within the 
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proteomic data set generated by this study of the aged mdx diaphragm. Figure 4-6 shows 

the result of this bioinformatics analysis, which revealed a relatively complex interaction 

map. Two large clusters were shown to exist that are linked via adenylate kinase and 

creatine kinase interactions. Since both proteins were shown to be reduced in dystrophin-

deficient fibers, this indicates that more severe downstream effects on various proteins 

may occur within these apparent protein clusters. The upper protein network consists 

especially of enzymes involved in mitochondrial metabolism, such as ATP synthase, 

isocitrate dehydrogenase, aconitase and malate dehydrogenase. The lower protein cluster 

contains several major contractile elements, including tropomyosin, troponin and myosins. 

Important ion handling proteins and metabolite transporters are also proposed to interact 

with these protein complexes. 
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Figure 4-8 Overview of the molecular function of altered diaphragm-associated 

proteins  

Shown is the application of the bioinformatics software program PANTHER (database; 

version 8.1) to identify the clustering of molecular functions of the mass spectrometrically 

identified proteins with a changed abundance in aged mdx diaphragm (Table 4.2). The 

molecular functions of the identified muscle proteins have been catalogued as being 

involved in ion homeostasis, the cellular stress response, cytoskeletal stabilization, 

extracellular matrix organization, structural integrity, metabolic transportation and 

metabolism. The largest groups of proteins were represented by calcium-binding proteins, 

cytoskeletal proteins and oxidoreductase. Frequent changes were also observed in 

molecular chaperones, kinases, structural proteins, transferases and carrier proteins. 

Relatively small alterations were shown to occur in extracellular matrix proteins. 
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4.4 Conclusion  

In recent years, comparative proteomic studies with mdx muscle tissue extracts 

have shown significant alterations in the enzyme adenylate kinase AK1(Marouga et 

al., 2005; Ng et al., 2012; Theodoridis et al., 2012), the actin binding protein profilin, 

the fatty acid binding protein FABP3 (Okamoto and Fujiwara, 2006), the cytosolic 

Ca2+-binding protein parvalbumin (Stastna and van Eyk, 2012), the Ca2+-binding 

protein calsequestrin CSQf (Cox and Mann, 2011), the enzyme carbonic anhydrase 

CA3 (Carberry et al., 2012b), the molecular chaperone cvHsp/HspB7 (Marouga et 

al., 2005; Kato et al., 2011), the oxygen carrier myoglobin (Stastna and van Eyk, 

2012), different isoforms of annexin (Okamoto and Fujiwara, 2006), the ion 

transporter transferrin (Forbes et al., 1994; Graham et al., 2010), the mitochondrial 

enzyme isocitrate dehydrogenase (Kornegay et al., 2012; Stastna and van Eyk, 

2012; Mallick and Kuster 2010) and the extracellular matrix protein dermatopontin 

(Mouisel  et al., 2010).  

These proteomic profiles of the mdx mouse were performed with multiple muscle 

subtypes, variety of tissue extracts or subcellular fractions, various protein 

separation techniques, opposing labelling methods and different mass 

spectrometric techniques. The proteomic results in this chapter has established 

that the abundance of annexin, carbonic anhydrase CA3, cvHsp, prohibitin, 

transferrin and dermatopontin is significantly increased and that the concentration 

of adenylate kinase, calsequestrin, isocitrate dehydrogenase, myoglobin, and 

parvalbumin is drastically reduced in the aged mdx diaphragm model of DMD.  

This makes these proteins suitable biomarker candidates of dystrophinopathy, 

which might be helpful to evaluate diagnostic, prognostic or therapeutic 

approaches. In conclusion, the proteomic results presented here indicate that the 

aged mdx diaphragm, which shows severe respiratory impairment following fibrosis 

(Ishizaki et al., 2008), is a suitable model system to study the molecular 

pathogenesis of Duchenne muscular dystrophy.  
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5 Comparative proteomic profiling of soleus, extensor 

digitorum longus, flexor digitorum brevis and interosseus 

muscle from the mdx mouse model of Duchenne muscular 

dystrophy  

 

5.1 Introduction  

In the mdx animal model of dystrophinopathy, different skeletal muscle subtypes are 

affected to varying degrees resulting from the same single base substitution of the dystrophin 

gene. Thus, to establish potential muscle subtype-specific alterations in secondary changes 

due to dystrophin-deficiency, we have performed a comparative proteomic survey of multiple 

mdx muscles. We included those specific skeletal muscles that are frequently used for 

studying the muscular dystrophy pathomechanism, soleus, extensor digitorum longus, flexor 

digitorum brevis and interosseus muscle. 

 

5.1.1 Duchenne muscular dystrophy and skeletal muscle subtypes 

In humans, the corresponding mouse muscle tissue subtypes examined relate to (i) soleus 

(SOL), a muscle of the lower back part of the leg located just below the gastrocnemius that 

contains predominantly oxidative type 1 fibers, (ii) extensor digitorum longus (EDL), a 

muscle lying in the lateral front part of the leg that contains a high number of glycolytic type 

2B and 2X fibers, (iii) flexor digitorum brevis (FDB), muscles of the foot located in the middle 

part of the sole and contains a large portion of oxidative-glycolytic type 2A fibers, and (iv) 

interosseus (INT), a muscle of the hand positioned near the metacarpal bones that contains 

almost exclusively type 2 fibers (Jarmey, 2006; Lieber, 2010; Stal et al., 1987; Staron et al., 
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1997). All four muscles have been extensively used to investigate changes of mdx muscle 

structure, physiology, function and biochemistry. 

However, each of these different muscle subtypes has strengths and weaknesses with 

respect to routine biological analyses. While SOL and EDL are ideal to study the 

biochemistry, force and fatigue in muscle, FDB and INT are suited to study muscles on the 

single fiber level, as they can be readily enzymatically dissociated into single fibers. Thus, 

numerous observations on subsarcolemmal Ca2+ levels, Ca2+ influx and the function of 

cation channels have been made with FDB (Boittin et al., 2010; Mallouk et al., 2000; 

Teichmann et al., 2008) and INT (Mallouk et al., 2000; Pritschow et al., 2011; Tutdibi et al., 

1999) without knowing whether these results can be generalised. Thus, we included FDB 

and INT muscle preparations in this proteomic analyses to evaluate whether they exhibit 

similar abnormalities as compared to other mdx mice limb muscles. While different skeletal 

muscle subtypes are affected to varying degrees resulting from the same single base 

substitution of the dystrophin gene these distinct differences in the level of protein 

perturbation of different muscle subtypes from mdx mice are perhaps a result of 

dissimilar secondary processes in the molecular pathogenesis.  

 

5.1.2 Experimental design  

Comparative gel-based proteomic analysis of normal versus mdx soleus, extensor 

digitorum longus, flexor digitorum brevis and interosseus muscle, the urea-soluble protein 

complement was prepared from these four muscles from control and dystrophic mice. 

Muscle protein extracts were separated by two-dimensional gel electrophoresis and labelled 

with the fluorescent dye ruthenium II tris bathophenanthroline disulfonate. Then proteins 

with a significant change in their abundance were identified by mass spectrometry. Key 

proteomic findings were verified by immunoblot analysis. This report describes the analysis 

of RuBPs labelled normal and dystrophic SOL, EDL, FDB and INT tissue of 3-month-old 

dystrophin-deficient versus aged-matched wild type (WT) mice across 3-10 pH range. 
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Proteomic profiling established a change in abundance of 24, 17, 19 and 5 protein species 

in SOL, EDL FDB and INT muscle, respectively. Identified proteins were involved in various 

processes form the contraction-relaxation cycle, muscle metabolism, metabolite transport 

and the cellular stress response. 

 

5.2 Results  

5.2.1 Comparative proteomic analysis of mdx versus normal  muscle  

High-resolution two-dimensional gel electrophoresis was carried out to separate the 

proteome from normal versus dystrophic mdx SOL, EDL, FDB and INT muscle 

tissues. A pH-range of 3-10 in the first dimension was employed to establish a global 

proteomic pattern. Followed by post-electrophoretic labelling of the protein spots with 

fluorescent dye RuBPs, a Typhoon Trio variable imager and Progenesis 2-D analysis 

software were used to analyse the mdx skeletal muscle proteomes. An altered 

concentration was revealed for 24, 17, 19 and 5 protein species, with 19, 15, 8 and 1 

proteins being increased and 5, 2, 9 and 4 proteins showing decreased expression in 

SOL, EDL, FDB and INT mdx tissue, respectively. Mass spectrometry was then used 

to identify these significant muscle-associated proteins of interest and listed in Tables 

(5-1 to 5-4). 

 

5.2.2 Proteomic analysis of dystrophic skeletal muscle subtypes 

Following optimisation, fluorescence high-resolution two-dimensional gel 

electrophoresis was performed to determine potential differences in protein 

expression patterns in mdx skeletal muscle proteomes. Figure 5-1 shows the total 

extracts from 3 month old normal wild-type vs dystrophic mdx (A) SOL, (B) EDL, (C) 

FDB and (D) INT muscles. The 32 RuBPs-stained gel images contain four biological 

repeats of each group of normal wild-type (WT 1-4) versus dystrophic (MDX 1-4) 
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muscle. Fluorescent images are shown along a pH 3-10 range. The overall 2D spot 

patterns of normal versus dystrophic skeletal muscle subtypes were relatively 

comparable as a result a detailed denitometric analysis was performed in order to 

determine potential differences in individual protein species. Densitometric analysis 

was carried out using a Typhoon Trio variable imager scanner and Samespot 

Progenesis 2-D analysis software was performed to establish differential expression 

patterns with the dystrophic muscles. The detailed proteomic profiling of dystrophic 

subtypes showed distinct changes in 24, 17, 19 and 5 muscle protein species in SOL, 

EDL FDB and INT tissue respectively, suggesting the INT to be a much milder affected 

phenotype. 
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Figure 5-1 Overview of two-dimensional gel electrophoretic analysis of the mdx 

mice skeletal muscles for x-linked muscular dystrophy 

Shown are RuBPs stained gels from 3-month-old normal wild type (WT) vs dystrophic 

(MDX) (A) soleus (SOL), (B) extensor digitorum longus (EDL), (C) flexor digitorum brevis 

(FDB) and (D) interosseus (INT) muscle extracts. The 32 gel images comprise of four 

biological repeats of each set of normal (wild-type; WT 1-4) vs diseased (MDX 1-4) muscles. 

Fluorescent images are shown across the pH 3-10 range. 
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5.2.3 RuBPs analysis of dystrophic soleus muscle  

Proteins with significant changes in expression levels are numbered 1 to 24 and 

marked by circles in the master gel Fig 5-2. The mass spectrometric identification of 

these altered muscle proteins is listed in Table 5-1. This table contains the identified 

muscle-associated proteins names, international accession number, relative 

molecular masses, pI-values, number of matched peptide sequences, Mascot scores, 

percentage sequence coverage, and fold-change of individual muscle proteins 

affected in the dystrophic mdx SOL tissue. 

Protein species with an altered concentration in mdx SOL muscle ranged from a 

molecular mass of 17 kDa (myoglobin) to 127 kDa (myosin binding protein) and with a 

pI-range from 4.7 pI (myosin light chain) to 8.9 pI (malate dehydrogenase). The 

expression levels showed an increased abundance for various myosin light chains 

consisting of MLC1/3, MLC2 and MLC3 (spots 1, 5, 11,17 and 19), cadherin 13 (spot 

2), aldolase (spot 3), the molecular chaperone αB-crystallin (spots 4, 9 and 14), 

troponin TnC (spot 6), glutathione transferase (spot 7), different subunits of 14-3-3 

protein (spots 8 and 15), collagen (spot 10) phosphatase (spot 12), iron transporter 

ferritin (spot 13), myosin binding slow protein MyBP-C (spot 16) and peroxiredoxin 

(spot 18). A decreased abundance was established in the tumor metastatic 

process-associated protein NM23 (spot 20), oxygen carrier myoglobin (spot 21), ATP 

synthase Atp5b protein (spot 22), creatine kinase (spot 23) and for malate 

dehydrogenase (spot 24). 
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Figure 5-2 Fluorescence two-dimensional gel electrophoretic analysis of mdx 

soleus muscle 

Shown is a representative RuBPs-stained master gel of crude muscle extracts from 

mdx soleus muscle. Protein spots with age-related alterations in abundance are 

numbered 1 to 24 and marked by circles. See Table 5-1 for the mass spectrometric 

identification of individual muscle-associated protein spots. The pH-values of the first 

dimension and molecular mass standards of the second dimension are shown on the 

top and on the left of the panels, respectively.  
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Table 5.1 List of muscle-associated proteins with changes in abundance in the 

soleus muscle from mdx mice 
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1 Myosin light chain 2 

(MLC2) 

AAA39796 4.71 18870 9 60 401 5.0 

2 Cadherin 13 AAH21628 4.9 78474 2 4 104 4.4 

3 Aldolase A, isoform 2 NP031464 8.31 39795 17 40 136 4.3 

4 αB-crystallin NP034094 6.76 20056 3 28 121 4.2 

5 Myosin light chain 3 

(MLC3) 

EDL09001 5.03 22523 6 38 268 3.3 

6 Troponin C, skeletal 

muscle 

NP033420 4.07 18156 2 20 190 3.1 

7 Glutathione 

S-transferase 

NP034488 7.71 26069 9 42 415 2.8 

8 14-3-3 Protein γ NP036611 4.8 28519 4 9 145 2.8 

9 αB-crystallin NP034094 6.76 20056 1 14 58 2.8 

10 Collagen α-1 (VI) chain NP034063 5.2 109582 13 16 224 2.6 

11 Myosin light chain 2 

(MLC2) 

NP058034 4.82 19059 4 31 272 2.5 
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12 Mg-dependent 

phosphatase 1 

NP075886 6.29 18629 3 29 98 2.4 

13 Ferritin light chain 1 P29391 5.66 20848 6 44 372 2.3 

14 αB-crystallin NP034094 6.76 20056 13 60 141 2.3 

15 14-3-3 Protein ζ BAA13421 4.7 27911 4 18 258 2.2 

16 Myosin binding protein 

C, slow 

HQ848554 5.74 127046 9 10 411 2.1 

17 Myosin light chain 2 

(MLC2) 

NP058034.1 4.82 19059 5 44 161 2.1 

18 Peroxiredoxin-1 NP035164 8.26 22394 5 24 170 2.0 

19 Myosin light chain 1/3 

(MLC1/3) 

NP067260 5 4.98 20697 11 53 514 2.0 

20 Tumor metastatic 

process-associated 

protein NM23 

AAA39826 8.44 18846 4 40 141 -2.0 

21 Myoglobin NP038621 7.07 17117 2 21 161 -2.1 

22 Atp5b protein BC037127 5.24 56632 7 20 488 -2.2 

23 Creatine kinase 

M-type 

NP031736 6.58 43250 2 7 97 -2.3 

24 Malate dehydrogenase AAA39509 8.93 36052 5 22 132 -4.2 
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5.2.4 RuBPs analysis of dystrophic EDL muscle  

Proteins with significant changes in expression levels are numbered 1 to 17 and 

marked by circles in the master gel Fig 5-3. The mass spectrometric identification of 

these altered muscle proteins is listed in Table 5-2. This table contains the identified 

muscle-associated proteins names, international accession number, relative 

molecular masses, pI-values, number of matched peptide sequences, Mascot 

scores, percentage sequence coverage, and fold-change of individual muscle 

proteins affected in the dystrophic mdx EDL tissue. 

Protein species with an altered concentration in mdx EDL muscle ranged from a 

molecular mass of 17 kDa (myoglobin) to 224 kDa (myosin) and with a pI-range from 

5.2 pI (actin) to 9.0 pI (Troponin TnT). Mass spectrometric analyses revealed an 

increased concentration in fast troponin TnT (spots 1 and 9), oxygen carrier 

myoglobin (spot 2), phosphoglycerate mutase 2 (spots 3 and 15), 

glyceraldehyde-3-phosphate dehydrogenase (spot 4), triosephosphate isomerase 

(spot 5), myosin protein (spot 6), lactate dehydrogenase B chain (spot 7), 

phosphoglycerate kinase (spot 8), creatine kinase (spot 10), the malate 

dehydrogenase (spot 11), , actin (spot 12), glycogen phosphorylase (spot 13) and for 

phosphoglycerate kinase (spot 14). In contrast, decreased concentrations were found 

for glycogen phosphorylase (spot 16) and actinin (spot 17). 
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Figure 5-3 Fluorescence two-dimensional gel electrophoretic analysis of mdx 

extensor digitorum longus muscle 

Shown is a representative RuBPs-stained master gel of crude muscle extracts from 

mdx extensor digitorum longus muscle. Protein spots with age-related alterations in 

abundance are numbered 1 to 17 and marked by circles. See Table 5-2 for the mass 

spectrometric identification of individual muscle-associated protein spots. The 

pH-values of the first dimension and molecular mass standards of the second 

dimension are shown on the top and on the left of the panels, respectively.  
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Table 5.2 List of muscle-associated proteins with changes in abundance in the 

extensor digitorum longus muscle from mdx mice 
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1 Troponin T, fast skeletal 

muscle 

AAB39743 9.01 29358 2 11 66 3.8 

2 Myoglobin NP038621 7.07 17117 11 68 547 3.7 

3 Phosphoglycerate 

mutase 2 

NP061358 8.65 28983 11 49 484 3.4 

4 

 

Glyceraldehyde-3-phosph

ate dehydrogenase 

AAH85315 7.59 36099 7 30 347 3.0 

5 Triosephosphate 

isomerase 

AAB48543 5.62 22724 4 22 90 2.6 

6 Myosin-1 NP109604 5.60 224131 19 11 774 2.6 

7 Lactate dehydrogmenase 

B chain 

NP032518 5.70 36839 15 49 775 2.5 

8 Phosphoglycerate kinase AAA70267 7.53 44914 6 21 299 2.3 

9 Troponin T, fast skeletal 

muscle 

AAB39743 9.01 29358 6 31 131 2.3 
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10 Creatine kinase M-type NP031736 6.58 43250 5 16 114 2.2 

11 Malate dehydrogenase AAA39509 8.93 36052 11 41 313 2.1 

12 Actin, α skeletal muscle NP001091 5.23 42372 10 31 136 2.1 

13 Glycogen phosphorylase NP035354 6.65 97689 25 35 1047 2.0 

14 Phosphoglycerate kinase AAA70267 7.53 44914 7 22 109 2.0 

15 Phosphoglycerate 

mutase 2 

NP061358 8.65 28983 14 51 637 2.0 

16 Glycogen phosphorylase NP035354 6.65 97689 2 4 54 -2.6 

17 α-actinin-3 NP038484 5.31 103616 7 9 374 -2.8 
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5.2.5 RuBPs analysis of dystrophic FDB muscle  

Proteins with significant changes in expression levels are numbered 1 to 19 and 

marked by circles in the master gel Fig 5-4. The mass spectrometric identification of 

these altered muscle proteins is listed in Table 5-3. This table contains the identified 

muscle-associated proteins names, international accession number, relative 

molecular masses, pI-values, number of matched peptide sequences, Mascot 

scores, percentage sequence coverage, and fold-change of individual muscle 

proteins affected in the dystrophic mdx FDB tissue. 

Protein species with an altered concentration in mdx FDB muscle ranged from a 

molecular mass of 12 kDa (parvalbumin) to 130 kDa (collagen) and with a pI-range 

from 4.9 pI (vimentin) to 9.2 pI (collagen). MS-based proteomics revealed an 

 increase in expression levels for fast troponin I (spot 1), serpina 1d protein (spots 2, 6 

and 9), the molecular chaperone αB-crystallin (spot 3), vimentin (spot 4), 

phosphoglycerate mutase 2 (spot 5), desmin (spot 7), the leukocyte elastase inhibitor 

A (spot 8) and tropomyosin (spot 10). Decreased protein abundance was established 

in FBD muscle for the glycolytic enzyme aldolase (spots 11, 12, 15, 17 and 18), 

cytosolic Ca2+-binding protein parvalbumin (spots 13 and 16), the 14-3-3 protein (spot 

14) and for collagen (spot 19). 
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Figure 5-4 Fluorescence two-dimensional gel electrophoretic analysis of mdx 

flexor digitorum brevis muscle 

Shown is a representative RuBPs-stained master gel of crude muscle extracts from 

mdx flexor digitorum brevis muscle. Protein spots with age-related alterations in 

abundance are numbered 1 to 19 and marked by circles. See Table 5-3 for the mass 

spectrometric identification of individual muscle-associated protein spots. The 

pH-values of the first dimension and molecular mass standards of the second 

dimension are shown on the top and on the left of the panels, respectively.  
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Table 5.3 List of muscle-associated proteins with changes in abundance in the 

flexor digitorum brevis muscle from mdx mice 
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1 Troponin I, fast 

skeletal muscle 

NP033431 8.65 21518 5 30 57 3.1 

2 Serpina 1d protein AAH21850 5.18 46140 9 24 104 2.7 

3 αB-crystallin NP034094 6.76 20056 8 45 324 2.4 

4 Vimentin CAA69019 4.96 51591 21 50 261 2.4 

5 Phosphoglycerate 

mutase 2 

NP061358 8.65 28983 2 8 75 2.3 

6 Serpina 1d protein AAH21850 5.18 46140 5 11 136 2.3 

7 Desmin NP034173 5.21 53523 10 32 206 2.2 

8 Leukocyte elastase 

inhibitor A 

NP079705 5.85 42722 9 30 178 2.1 

9 Serpina 1d protein AAH21850 5.18 46140 7 17 131 2.0 

10 Tropomyosin, β 

chain 

NP033442 4.66 32933 17 47 176 2.0 

11 Aldolase A, isoform 2 NP001170778 8.31 39795 15 48 202 -2.2 
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12 Aldolase A, isoform 2 NP001170778 8.31 39795 13 40 249 -2.2 

13 Parvalbumin α NP038673 5.02 11923 8 65 228 -2.3 

14 14-3-3 Protein γ AAC14345 4.80 28519 8 38 116 -2.3 

15 Aldolase A, isoform 2 NP001170778 8.31 39795 13 40 163 -2.7 

16 Parvalbumin α NP038673 5.02 11923 8 65 219 -3.0 

17 Aldolase A, isoform 2 NP001170778 8.31 39795 9 27 139 -3.1 

18 Aldolase A, isoform 2 NP001170778 8.31 39795 20 55 215 -3.3 

19 Pro-α-2(I) collagen CAA41205 9.23 130046 2 2 51 -3.4 
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5.2.6 RuBPs analysis of dystrophic INT muscle  

In contrast to the above listed results of extensive alterations in the  

proteomes from the mdx dystrophic SOL, EDL and FDB muscle, the  

MS-based proteomic analyse of INT muscle exhibited only a limited number of 

changed proteins. Proteins with significant changes in expression levels are 

numbered 1 to 5 and marked by circles in the master gel Fig 5-5. The mass 

spectrometric identification of these altered muscle proteins is listed in Table 5-4. This 

table contains the identified muscle-associated proteins names, international 

accession number, relative molecular masses, pI-values, number of matched peptide 

sequences, Mascot scores, percentage sequence coverage, and fold-change of 

individual muscle proteins affected in the dystrophic mdx INT tissue. 

Protein species with an altered concentration in mdx INT muscle ranged from a 

molecular mass of 12 kDa (parvalbumin) to 33 kDa (40 kDa protein) and with a 

pI-range from 4.8 pI (40 kDa protein) to 8.65 pI (Toponin I). MS-based proteomics 

revealed an increase in expression levels for fast Toponin I (spots 1 and 2), the heat 

shock protein αB-crystallin (spot 3) and the 40 kDa protein (spot 4). In contrast, 

decreased protein abundance was found in the cytosolic Ca2+-binding protein 

parvalbumin in the INT muscle. 
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Figure 5-5 Fluorescence two-dimensional gel electrophoretic analysis of mdx 

interosseus muscle 

Shown is a representative RuBPs-stained master gel of crude muscle extracts from 

mdx interosseus muscle. Protein spots with age-related alterations in abundance are 

numbered 1 to 5 and marked by circles. See Table 5-4 for the mass spectrometric 

identification of individual muscle-associated protein spots. The pH-values of the first 

dimension and molecular mass standards of the second dimension are shown on the 

top and on the left of the panels, respectively.  
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Table 5.4 List of muscle-associated proteins with changes in abundance in the 

interosseus muscle from mdx mice 
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1 Troponin I, fast skeletal 

muscle 

NP033431 8.65 21518 8 29 301 4.1 

2 Troponin I, fast skeletal 

muscle 

NP033431 8.65 21518 5 21 245 3.4 

3 αB-crystallin NP034094 6.76 20056 9 56 421 2.2 

4 40 kDa Protein 1405340A 4.80 32848 3 15 164 2.1 

5 Parvalbumin, α NP038673 5.02 11923 7 63 400 -2.2 
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5.2.7 Immunoblot analysis of dystrophic skeletal muscle subtypes 

In order to further characterise the various skeletal muscles, comparative immunoblotting 

was carried out following the mass spectrometric establishment of the subtype specific 

changes in the urea-soluble mdx muscle proteomes. Lanes 1 and 2, 3 and 4, 5 and 6 

and 7 and 8 shown in figure 5-6A were labelled with a laminin antibody for control 

purposes. The extracellular matrix protein presented relatively comparable quantities in 

normal versus dystrophic samples, with the exception of SOL muscle which exhibited an 

increased concentration in mdx preparations.  

As shown in Figure 5-6B to 5-6I, antibody labelling was performed to verify the altered 

abundance of 2 marker proteins from each of the mdx muscle subtypes analysed. The 

reduced expression of myoglobin and increased concentration of collagen in the SOL 

muscle in figure 5-6B and 5-6C, respectively. The lower levels of actinin and higher levels 

of phosphoglycerate kinase in the EDL muscle in figure 5-6D and 5-6E, respectively. The 

reduced expression of parvalbumin and increased concentration of serpina in the FDB 

muscle in figure 5-6F and 5-6G, respectively and the reduced levels of parvalbumin and 

higher levels of αB-crystallin in the INT muscle in figure 5-6H and 5-6I, respectively were 

all confirmed by immunoblot analysis. 
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Figure 5-6A Immunoblotting analysis of the extracellular matrix protein laminin in 

normal versus mdx skeletal muscle subtypes 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical evaluation. 

Immunoblots were labelled with the Laminin antibody. Lanes 1 and 2, 3 and 4, 5 and 6 

and 7 and 8 represent 3-month-old normal wild-type vs dystrophic mdx preparations 

from soleus (SOL), extensor digitorum longus (EDL), flexor digitorium brevis (FDB) and 

interosseus (INT) muscles, respectively. The comparative  blotting  was  statistically  

verified  using  an  unpaired  Student’s  t-test (n=4 replicates). Standard deviation 

represented by Error bars, (*p<0.05). 
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Figure 5-6B Immunoblotting analysis of myoglobin in soleus muscle 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical evaluation. 

Immunoblots were labelled with the myoglobin antibody. Lanes 1 and 2 represent 

3-month-old normal wild type vs dystrophic mdx soleus (SOL), respectively. The 

comparative  blotting  was  statistically  verified  using  an  unpaired  Student’s  t-test (n=4 

replicates). Standard deviation represented by Error bars, (*p<0.05). 
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Figure 5-6C Immunoblotting analysis of extracellular matrix protein collagen in 

soleus muscle 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical evaluation. 

Immunoblots were labelled with the collagen antibody. Lanes 1 and 2 represent 

3-month-old normal wild type vs dystrophic mdx soleus (SOL), respectively. The 

comparative  blotting  was  statistically  verified  using  an  unpaired  Student’s  t-test (n=4 

replicates). Standard deviation represented by Error bars, (**p<0.005). 
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Figure 5-6D Immunoblotting analysis of α-actinin-3 in extensor digitorum longus 

muscle 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical evaluation. 

Immunoblots were labelled with the α-actinin-3 antibody. Lanes 1 and 2 represent 

3-month-old normal wild type vs dystrophic mdx extensor digitorum longus (EDL), 

respectively. The comparative  blotting  was  statistically  verified  using  an  unpaired  

Student’s  t-test (n=4 replicates). Standard deviation represented by Error bars, (*p<0.05). 

 

 

 

 



 

120 

 

 

 

 

 

 

 

 

 

 

Figure 5-6E Immunoblotting analysis of phosphoglycerate kinase in extensor 

digitorum longus muscle 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical evaluation. 

Immunoblots were labelled with the phosphoglycerate kinase antibody. Lanes 1 and 2 

represent 3-month-old normal wild type vs dystrophic mdx extensor digitorum longus 

(EDL), respectively. The comparative  blotting  was  statistically  verified  using  an  

unpaired  Student’s  t-test (n=4 replicates). Standard deviation represented by Error bars, 

(*p<0.05). 

 

 

 



 

121 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-6F Immunoblotting analysis of calcium-binding protein parvalbumin in 

flexor digitorium brevis muscle 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical evaluation. 

Immunoblots were labelled with the parvalbumin antibody. Lanes 1 and 2 represent 

3-month-old normal wild type vs dystrophic mdx flexor digitorium brevis (FDB), 

respectively. The comparative  blotting  was  statistically  verified  using  an  unpaired  

Student’s  t-test (n=4 replicates). Standard deviation represented by Error bars, 

(**p<0.005). 
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Figure 5-6G Immunoblotting analysis of serpina 1d in flexor digitorium brevis 

muscle 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical evaluation. 

Immunoblots were labelled with the serpina antibody. Lanes 1 and 2 represent 

3-month-old normal wild type vs dystrophic mdx flexor digitorium brevis (FDB), 

respectively. The comparative  blotting  was  statistically  verified  using  an  unpaired  

Student’s  t-test (n=4 replicates). Standard deviation represented by Error bars, (*p<0.05). 
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Figure 5-6H Immunoblotting analysis of calcium-binding protein parvalbumin in 

interosseus muscle 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical evaluation. 

Immunoblots were labelled with the parvalbumin antibody. Lanes 1 and 2 represent 

3-month-old normal wild type vs dystrophic mdx interosseus (INT), respectively. The 

comparative  blotting  was  statistically  verified  using  an  unpaired  Student’s  t-test (n=4 

replicates). Standard deviation represented by Error bars, (*p<0.05). 
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Figure 5-6I Immunoblotting analysis of αB-crystallin in interosseus muscle 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical evaluation. 

Immunoblots were labelled with the αB-crystallin antibody. Lanes 1 and 2 represent 

3-month-old normal wild type vs dystrophic mdx interosseus (INT), respectively. The 

comparative  blotting  was  statistically  verified  using  an  unpaired  Student’s  t-test (n=4 

replicates). Standard deviation represented by Error bars, (*p<0.05). 
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5.2.8 Histological profiling of skeletal muscle tissue from mdx mice   

In order to further characterise the various skeletal muscles, histological examination 

was performed using hematoxylin and eosin-stained muscle cross-sections from 

wild-type (WT; A, C, E and G) and mdx mice (B, D, F and H) seen in figure 5-7. The 

histological analysis of cross sections from the SOL, EDL, FDB and INT muscles 

observed central nucleation in all examined types of skeletal muscle from mdx mice 

(Fig 5-7B, D, F and H). In addition, the muscles exhibited variations in fiber size and 

the occurrence of small, rounded fibers. As expected, central nuclei were rarely 

detected in the muscle fibers from WT mice (Fig 5-7A, C, E and G). Quantitative 

evaluation of central nucleation showed a significantly lower degree of nucleation in 

the FDB and INT compared with the SOL and EDL muscles.  
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Figure 5-7 Histological profiling of skeletal muscles from mdx mice 

Shown is a representative hematoxylin and eosin-stained muscle cross-sections 

from wild-type (WT; A, C, E and G) and dystrophic mdx mice (B, D, F and H). Note the 

lower degree of central nuclei in the flexor digitorum brevis (FDB; E and F) and 

interosseus (INT; G and H) muscles, compared with the soleus (SOL; B) and extensor 

digitorum longus (EDL; D) muscles from mdx mice. Muscles were prepared from 

3-month-old dystrophin-deficient versus aged-matched wild type mice. Scale bar, 20 

μm. 
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5.3 Discussion  

In this chapter, proteomic profiling of 4 skeletal muscle subtypes, SOL, EDL, FDB and 

INT muscle, has revealed considerable changes in the extent of protein perturbations 

in different muscles of the mdx dystrophic mouse model of Duchenne muscular 

dystrophy. While we observed 24, 17 and 19 altered protein species in mdx SOL, EDL 

and FDB muscles, respectively, dystrophin-deficient INT muscle preparations 

revealed only changes in fast troponin I, αB-crystallin, the 40 kDa protein and the 

cytosolic Ca2+-binding protein parvalbumin.  

This is an interesting discovery from a global profile of protein expression patterns in 

dystrophinopathy and supports the idea that the loss of dystrophin and resulting 

reduction of associated glycoproteins leads in considerably different secondary 

alterations and cellular adaptations in specific skeletal muscles, even though all 

contractile mdx muscle tissues exhibit the same primary genetic defect. Previous 

proteomic reports of mdx muscle tissues agree that the deficiency in the membrane 

cytoskeletal protein dystrophin leads to impaired protein expression patterns in 

contractile tissues (Lewis et al., 2009). While past studies on mdx muscle proteomics 

vary significantly on the listing of distinct proteins involved in the molecular 

pathogenesis of muscular dystrophy, the disintegration of sarcolemmal integrity 

clearly has severe impact for the overall function of the affected muscle fibers.  

Interestingly, as shown in the previous chapter severely dystrophic mdx diaphragm 

muscle displays extensive alterations in a large number of muscle proteins (Doran et 

al., 2006a; Doran et al., 2006b; Doran et al., 2009b; Carberry., et al 2012a),  while 

mildly affected phenotypes such as mdx extraocular muscle which exhibit much less 

changes in its proteome (Lewis and Ohlendieck, 2010). This establishes a link 

between the pathophysiological phenotype of individual mdx muscle tissues and the 

level of proteome-wide changes.  
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5.3.1 Moderate expression changes of RuBPs labelled skeletal muscle 

proteins 

Muscle-associated proteins with an altered abundance in mdx muscle tissues are 

predominantly involved in the contraction-relaxation cycle, muscle metabolism, 

metabolite transportation, and the cellular stress response. While in the mildly affected 

mdx INT muscle phenotype, the most significantly increased protein was fast troponin I 

(Swartz et al., 2006) suggesting a certain level of remodeling of the regulatory elements 

in the contractile apparatus (Gordon et al., 2000). Other protein alterations in mdx INT 

muscle were minimal, as compared to the other skeletal muscles examined.  

Two additional observations on the mdx INT muscle support the proteomic analyses. 

Firstly, the occurrence of central nucleation in the muscle fibers was lower in the INT 

and FDB compared with the SOL and EDL hind limb muscles (Fig 5-7). This is key, as 

central nucleation is considered as a reliable sign of recent muscle fiber regeneration. 

Secondly, there was no observed increase in muscle mass in INT and FDB, in contrast 

to that of the SOL and EDL muscles. Hypertrophy has been reported in 

dystrophin-deficient muscles in a number of models of DMD, including the mdx mouse 

(Kornegay et al., 2012) though the signaling pathways resulting in muscle growth have 

not yet been fully revealed (Andres-Mateos et al., 2013) (Gundersen, 2011). However, 

both central nucleation and the level of hypertrophy are in agreement with a less 

severe impairment of the mdx INT and FDB, compared with the SOL and EDL 

muscles (Carberry et al., 2013b). 

In mdx SOL muscle, various myosin light chains consisting of MLC1/3, MLC2 and 

MLC3 isoforms (Gonzalez et al., 2002), were revealed to be increased in expression in 

the dystrophin-deficient fibers. The highly complex myosin molecule forms a hexameric 

structure containing 2 MHC heavy chains and various MLC light chains in the contractile 

apparatus (Bozzo et al., 2005; Clark et al., 2002). Various arrangements of myosin heavy 

and light chains form a wide array of fiber type-specific isoforms and the myosin 

complement of contractile fibers is very flexible (Pette and Staron, 2000; Holland and 
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Ohlendieck, 2013).  

Previous proteomic studies have established that neuromuscular activity has an 

intense effect on the myosin isoform expression patterns (Donoghue et al., 2005; 

Donoghue et al., 2007). The drastic alterations in mdx SOL muscle suggest that the 

dystrophic phenotype is concomitant with considerable remodeling of the contractile 

apparatus, together with myosin, myosin binding proteins and troponin. Interestingly, the 

unique GPI-anchored cadherin-13 protein is elevated in mdx SOL muscle and may 

promote angiogenesis the process of new blood vessel formation form existing vessels 

(Philippova et al., 2006). Altered expression levels of the molecular chaperone 

αB-crystallin, ferritin, glutathione S-transferase and peroxiredoxin indicate intensified 

demands for cellular stress response, iron storage, detoxification and anti-oxidant 

activity in dystrophic fibers, respectively.  

Interestingly, specific isoforms of 14-3-3 proteins are altered in muscular dystrophy, 

which has been reported for various neurodegeneration processes (Steinacker et al., 

2011). This indicates that interactions of 14-3-3 proteins with signaling receptors, 

phosphatases and kinases are disturbed in mdx SOL muscle. Reduced concentrations 

of ATP synthase, malate dehydrogenase and myoglobin suggest metabolic disturbances 

in mdx SOL muscle.    

In the mdx EDL muscle, altered protein expression levels were shown for contractile 

elements such as myosin, troponin, actin and actinin, and in the actomyosin apparatus. 

Proteomic analysis also revealed a striking increase in levels of key glycolytic enzymes. 

The affected cytosolic proteins were also identified by mass spectrometry as 

glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, 

phosphoglycerate mutase and phosphoglycerate kinase which are involved in the 

production of 1,3-bisphosphoglycerate and NADH, the reversible conversion of 

dihydroxyacetone phosphate and glyceraldehyde-3-phosphate, the reversible 

conversion of 3-phosphoglycerate into 2-phosphoglycerate and the generation of ATP 

and 3-phosphoglycerate from ADP and 1,3-bisphosphoglycerate, respectively 



 

130 

 

(Ohlendieck, 2010). The increased expression in several glycolytic enzymes indicates a 

shift to more anaerobic metabolism.  

Interestingly, one of the chief regulatory enzymes for converting glycogen into glucose 

for utilisation in muscle, glycogen phosphorylase, was shown to be elevated in 

contractile mdx EDL tissue. Previous proteomic profiling of slow-twitching versus 

fast-twitching skeletal muscles has established that fast muscles reveal higher levels of 

enzymes involved in the glycolytic pathway and exhibit increase concentrations of 

glycogen phosphorylase (Gelfi et al., 2006). 

In addition, the increased expression of lactate dehydrogenase, an enzyme that 

catalyses the interconversion of the final product of glycolysis, pyruvate, and lactate 

supports the idea of a glycolytic shift in mdx EDL muscle. During periods of high intensity 

such as exercise, skeletal muscles adopt this anaerobic glycolysis (Wells et al., 2009), 

thus a sharp increase of glycolytic enzymes suggest an increased demand on the 

glycolytic pathway in the bioenergetics of dystrophin-deficient mdx EDL muscle.     

While in contrast to the mdx EDL muscle, the dystrophin-deficient mdx FDB muscle 

revealed a reduction in a crucial glycolytic enzyme. The skeletal muscle aldolase, an 

enzyme that catalyses the reversible biochemical breakdown of 

fructose-1,6-biphosphate into glyceraldehyde-3-phosphate and dihydroxyacetone 

phosphate (Ohlendieck, 2010). In the gluconeogenic pathway, muscle aldolase has 

been shown to form a supramolecular complex with alpha-actinin and 

fructose-1,6-biphosphatase on both sides of the Z-line in skeletal muscle fibers. It has 

been suggested that the tight association between aldolase and 

fructose-1,6-biphosphatase  might enable efficient substrate channeling between these 

proteins (Rakus et al., 2004). 

However, it is thought that many glycolytic enzymes have a multi-functional role in 

various cell types motility (Kim and Dang, 2005). Thus, alterations in these glycolytic 

enzymes may affect a number of biological systems other than the anaerobic breakdown 

http://en.wikipedia.org/wiki/Pyruvate
http://en.wikipedia.org/wiki/Lactic_acid
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of glucose in skeletal muscles (Ohlendieck, 2010). For instance, enzymes with a key 

glycolytic function have also been shown to be involved in transcriptional regulation, 

metabolic integration, regulation of apoptosis and stimulation of cell motility (Kim and 

Dang, 2005). As a result it is difficult to determine from alterations in one key glycolytic 

enzyme whether this relates to distinct metabolic changes in mdx FDB or perhaps 

showing adaptations in a separate unrelated glycolysis biological system. Altered 

expression levels in tropomyosin and troponin and the cytosolic Ca2+-binding protein 

parvalbumin suggest abnormalities in the contractile apparatus and ion homeostasis, 

respectively. 

In comparison with the mdx SOL muscle, the apparent increased abundance of the 

molecular chaperone αB-crystallin in dystrophic FDB muscle agrees with the idea of an 

intensified cellular stress response in muscular dystrophy (Doran et al., 2006b). 

Interestingly, the cytoskeletal proteins desmin and vimentin were shown to be elevated in 

dystrophic mdx muscle suggesting a potential compensatory mechanism for the 

structural instabilities in the membrane cytoskeleton of the dystrophin-deficient fibers in 

the mdx FDB muscle.  

 

5.4 Conclusion  

In conclusion, the comparative proteomic analysis of 4 widely used skeletal muscles of 

the mdx mouse model of Duchenne muscular dystrophy, SOL, EDL, FDB and INT 

muscles, has revealed that high-resolution two-dimensional gel electrophoretic 

separation in combination with electrospray ionization mass spectrometry are highly 

suitable techniques for studying muscle subtype-specific changes in the mdx dystrophic 

skeletal muscle proteome. The variations in the number and degree of protein changes 

in the analysed mdx muscles suggest that the INT muscle is a protected phenotype, 

much less affected compared to that of the SOL, EDL and FDB muscles. These 

proteomic findings are in agreement with the lack of hypertrophy in FDB and INT 
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muscles and the lower levels of central nucleation compared with SOL and EDL muscle 

(Carberry et al., 2013b). Thus, the evaluation of experimental gene therapies for treating 

dystrophinopathy or future pharmacological studies should note that dystrophin-deficient 

skeletal muscle subtypes are not all affected in the same way. The individual 

physiological, biochemical and histological properties of specific muscles have to be 

taken into account when one wants to determine secondary abnormalities and 

adaptations in muscular dystrophy. 
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6 Comparative proteomic analysis of the contractile protein-

depleted fraction of the mdx mouse model of 

dystrophinopathy  

 

6.1 Introduction  

In recent years extensive proteomic surveys have highlighted various skeletal muscle 

extracts. However, since the main proteins of the actomyosin apparatus and its supporting 

sarcomeric components frequently negate weak signals from minor muscle protein species 

during proteomic analyses, we have employed a pre-fractionation step to remove certain 

parts of this analytical problem. In order to eliminate a large portion of highly abundant 

contractile proteins, differential centrifugation of the crude skeletal muscle extracts was 

performed to reduce the samples complexity. The subsequent protein fraction was then 

separated by two-dimensional gel electrophoresis and landmark proteins identified by mass 

spectrometry. In order to better comprehend the complex alterations that occur during X-

linked muscular  dystrophy,  this chapter  focused on analyse  of  contractile  protein-

depleted fractions  from  8-week-old normal  versus  dystrophic hind limb  muscle  

preparations. 

 

6.1.1 Duchenne muscular dystrophy and hind limb skeletal muscles  

Primary genetic abnormalities in the dystrophin gene result in the loss of a crucial 

427kDa cytoskeletal membrane protein located in the subsarcolemmal region of the 

muscle fibers (Dalkilic and Kunkel, 2003).  This loss causes secondary effects which lead 

to muscle weakness and damage due to sarcolemmal instability, disturbance of the 
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excitation-contraction coupling, metabolic pathways, alterations in ion homeostasis, and 

cellular signalling (Emery, 2002). As the dystrophin protein anchors large membrane 

glycoprotein complexes within the cell, membrane rupturing occurs due to its absence 

and results in the loss of membrane integrity. It is this reduction in the dystroglycan 

complex presence which is believed to be an important role in the degeneration of 

dystrophic muscles (Carlson and Makiejus, 1990; Williams and Bloch, 1999). 

 

6.1.2 Experimental design  

Comparative gel-based proteomic analysis of mdx hind limb muscles, subcellular 

fractionation was performed prior to gel electrophoretic separation of the contractile 

protein-depleted. Crude hind limb muscle extracts were separated by two-dimensional 

gel electrophoresis and labelled with the fluorescent dyes (RuBPs). This was followed 

by a detailed comparative DIGE analysis of subcellular hind limb fraction of 8-week-old 

dystrophin-deficient mice versus age-matched control mice across 3-11NL pH range. 

Then proteins with a significant change in their concentration were identified by mass 

spectrometry. Key proteomic findings were verified by immunoblot analysis. Proteomic 

profiling established a distinct change in abundance of 10 protein species in the 

dystrophic mdx hind limb muscles. Identified proteins were involved in various 

processes form the metabolite transport, ion handling and and the cellular stress 

response. 

 

6.2 Results  

6.2.1 Comparative proteomic analysis of mdx hind limb skeletal muscle 

In order to analyse the minor muscle protein species and the extent of secondary 

changes in the mdx hind limb skeletal subproteome due to absence in the 
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membrane cytoskeletal dystrophin protein, a pre-fractionation step to remove the 

actomyosin apparatus and its supporting sarcomeric components was employed. The 

urea-soluble protein complement from the 8-week-old wild type versus age-matched 

dystrophic hind limb muscle was then investigated. Following fluorescent labelling of 

wild type or mdx samples with the CyDyes Cy3, as well as fluor tagging of the 

pooled standard using the CyDye Cy5, high-resolution two-dimensional gel 

electrophoresis was carried out to separate the subproteome from dystrophic mdx 

hind limb muscle. A pH-range of 3-11NL in the first dimension was employed to 

establish a global proteomic pattern.  

Detailed densitometric analysis was carried out using a Typhoon Trio variable 

imager scanner and Samespot Progenesis 2-D analysis software was performed to 

establish differential expression patterns of the aged muscle. Figure 6-3 shows the 

2-D DIGE analysis of 8-week-old dystrophic mdx versus aged-matched normal hind 

limb skeletal muscle. An altered concentration was revealed for 10 protein species, 

with 8 proteins being increased and 2 proteins showing decreased expression in the 

mdx contractile protein-depleted fractions. Mass spectrometry was then used to 

identify these significant muscle-associated proteins of interest and listed in Table 

6-3. 

 

6.2.2 RuBPs analysis of landmark proteins in total extract of normal 

hind limb skeletal muscle  

Prior to the subcellular fractionation gel electrophoretic separation of the total crude 

extract were performed. A list of landmark 2D protein spots from the hind limb muscle 

are numbered 1 to 30 and marked by circles in the total muscle extract landmark 

master gel shown in Fig 6-1. The mass spectrometric identification of these 

unchanged landmark muscle proteins is listed in Table 6-1. This table contains the 

identified muscle-associated proteins names, international accession number, 
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relative molecular masses, pI-values, number of matched peptide sequences, 

Mascot scores, and percentage sequence coverage of major individual muscle 

protein species in dystrophic mdx hind limb muscles.  

Identified protein species ranged from a molecular mass of 12 kDa (parvalbumin) 

to 57 kDa (ATP synthase) and with a pI-range from 3.9 pI (calsequestrin) to 9.0 pI 

(troponin TnT). Spots 1 to 30 represent major muscle-associated protein species 

from ATP synthase (spot 1), enolase (spots 2 and 3), actin (spot 4), creatine kinase 

(spots 5,6, 13, 15 and 18) , fructose-bisphosphate aldolase A (spots 7 and 8), 

calsequestrin (spots 9 and 10), tropomyosin (spot 11), malate dehydrogenase (spot 

12), phosphate dehydrogenase (spot 14), myozenin-1 (spot 16), carbonic 

anhydrase (spot 17), various myosin light chains consisting of MLC1/3, MLC2 (spots 

19, 26-29), adenylate kinase (spot 20), triosephosphate (spot 21), troponin TnI (spot 

22), troponin TnT (spots 23-25) and parvalbumin (spot 30). A significant number of 

the landmark proteins identified are part of the contractile apparatus. 
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Figure 6-1 landmark 2D gel of total mouse skeletal muscle extracts 

Figure 6-1 Two-dimensional gel electrophoretic analysis of total muscle extracts. 

Shown is a RuBPs-stained gel representing major protein species from crude 8-

week-hind limb muscle extracts. Major protein spots are numbered 1 to 30 and 

marked by circles. See Table 6-1for the mass spectrometric identification of the 2D 

landmark proteins. The pH-values of the first dimension and molecular mass 

standards of the second dimension are shown on the top and on the left of the 

panels, respectively 
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Table 6.1 Mass spectrometry list of 2D-landmark proteins from crude tissue 

extracts 
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1 ATP synthase, Atp5b 

protein 

AAH37127 5.24 56632 34 67 834 

2 Enolase, beta NP_031959 6.73 47343 27 63 1249 

3 Enolase, beta NP_031959 6.73 47343 28 61 693 

4 Actin, beta CAA27396 5.78 39451 15 27 481 

5 Creatine kinase, M-

type 

NP_031736 6.58 43250 20 44 911 

6 Creatine kinase, M-

type 

NP_031736 6.58 43250 21 46 949 

7 Fructose-

bisphosphate aldolase 

A isoform 2 

NP_031464 8.31 39795 21 57 344 

8 Fructose-

bisphosphate aldolase 

A isoform 2 

NP_031464 8.31 39795 22 66 1063 

9 Calsequestrin, skeletal 

muscle 

AAC63616 3.93 45619 12 28 219 
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10 Calsequestrin, skeletal 

muscle 

AAC63616 3.93 45619 9 25 463 

11 Tropomyosin, beta 

chain isoform 1 

NP_033442 4.66 32933 12 30 232 

12 Malate 

dehydrogenase, 

mitochondrial 

NP_032643 8.93 36053 11 44 301 

13 Creatine kinase, M-

type 

NP_031736 6.58 43250 15 34 551 

14 Glyceraldehyde-3-

phosphate 

dehydrogenase 

AAH85315 7.59 36099 12 46 281 

15 Creatine kinase, M-

type 

NP_031736 6.58 43250 19 43 879 

16 Myozenin-1 NP_067483 8.57 31438 13 62 406 

17 Carbonic anhydrase, 

CA3 isoform 

NP_031632 6.89 29638 15 58 167 

18 Creatine kinase, M-

type 

NP_031736 6.58 43250 13 23 267 

19 Myosin light chain 

MLC1/3 muscle 

isoform 1f 

NP_067260 4.98 20697 17 78 792 

20 Adenylate kinase 

isoenzyme AK1 

NP_067490 5.7 23334 20 74 497 



 

140 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

21 Triosephosphate 

isomerase 

AAB48543 5.62 22724 12 83 323 

22 Troponin TnI, fast 

skeletal muscle 

NP_033431 8.65 21518 12 31 191 

23 Troponin TnT, fast 

muscle isoform 

AAB39743 9.01 29358 6 13 237 

24 
Troponin TnT, fast 

muscle isoform 
AAL77612 5.08 36537 14 351 8 

25 Troponin TnT, fast 

muscle isoform 

AAB39743 9.01 29358 18 378 10 

26 Myosin light chain 

MLC2, skeletal muscle 

isoform 

NP_058034 4.82 19059 92 883 22 

27 Myosin light chain 

MLC2, skeletal muscle 

isoform 

NP_058034 4.82 19059 92 463 21 

28 Myosin light chain 

MLC2, skeletal muscle 

isoform 

NP_058034 4.82 19059 52 162 7 

29 Myosin light chain 

MLC1/3, muscle 

isoform 1f 

NP_067260 4.98 20697 39 313 11 

30 Parvalbumin, alpha NP_038673 5.02 11923 71 659 12 
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6.2.3 DIGE analysis of landmark proteins in the contractile protein- 

depleted fraction from mouse skeletal muscle  

A list of landmark 2D protein spots from the subcellular hind limb muscle fraction 

are numbered 1 to 39 and marked by circles in the subcellular fraction landmark 

master gel shown in Fig 6-2. The mass spectrometric identification of these 

landmark muscle proteins is listed in Table 6-2. This table contains the identified 

muscle-associated proteins names, international accession number, relative 

molecular masses, pI-values, number of matched peptide sequences, Mascot 

scores, and percentage sequence coverage of major individual muscle protein 

species in dystrophic mdx hind limb muscles.  

Identified protein species ranged from a molecular mass of 12 kDa (parvalbumin) 

to 86 kDa (phosphofructokinase) and with a pI-range from 4.7 pI (tropomyosin) to 8.7 

pI (phosphoglycerate mutase). Spots 1 to 39 represent most abundant 

subproteomic protein species from transferrin (spot 1), Phosphofructokinase (spot 

2), various heat shock protein Hsp70 isoforms (spots 3-6), Pgm2 protein (spot 7), 

pyruvate kinase (spots 8 and 9), ATP synthase (spot 10), hippocalcin-like protein 

(spot 11), enolase (spots 12-15 and 22), actin (spot 16), beta-actin-like protein (spot 

17), creatine kinase (spot 18), fructose-bisphosphate aldolase (spot 19), 

tropomyosin (spots 20 and 21), phosphate dehydrogenase (spot 23), malate 

dehydrogenase (spots 24 and 25), phosphoglycerate mutase (spots 27 and 28), DJ-

1 protein (spot 30), peroxide reductase (spot 31), manganese superoxide dismutase 

(spot 32), phosphatidylethanolamine binding protein (spot 33), adenylate kinase 

(spot 34), ferritin (spot 35), peptidyl-prolyl isomerase (spot 36), parvalbumin (spots 

37 and 38) and hemoglobin (spot 39). In contrast to the total extracts, a substantial 

number neutral-to-acidic protein species have been removed in the subcellular fraction 

with limited number of minor spots with contractile.  

 



 

142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6-2 landmark 2D gel of the subcellular mouse muscle fraction 

Figure 6-2 Two-dimensional gel electrophoretic analysis of the subcellular mouse 

muscle fraction. Shown is a  DIGE-labelled gel representing major protein species from 

the contractile protein-depleted fraction. Major protein spots are numbered 1 to 39 and 

marked by circles. See Table 6-2 for the mass spectrometric identification of the 2D 

landmark proteins. The pH-values of the first dimension and molecular mass standards 

of the second dimension are shown on the top and on the left of the panels, respectively.  
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Table 6.2 Mass spectrometry list of 2D-landmark proteins from the subcellular 

fraction 
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1 Transferrin AAL34533 6.92 78832 4 6 41 

2 Phosphofructokinase, 

muscle 

GI:13529638 8.24 86119 8 10 53 

3 Heat shock protein 

Hsp70, inducible 

ABK96811 5.53 70378 5 11 136 

4 Heat shock protein 

Hsp70, mitochondrial 

BAA04493 5.91 73773 4 7 82 

5 Heat shock protein 

Hsp70, mortalin 

AAB28641 5.72 73403 4 6 99 

6 Heat shock protein 

Hsp70, mitochondrial 

BAA04493 5.91 73773 2 3 74 

7 Pgm2 protein, partial GI:33416468 6.02 63700 12 24 109 

8 Pyruvate kinase, 

muscle isoform M1 

GI:359807367 6.69 58470 11 22 182 

9 Pyruvate kinase, 

muscle isoform M1 

GI:359807367 6.69 58470 9 22 148 
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10 ATP synthase Atp5b 

protein 

GI:23272966 5.24 56632 5 12 42 

11 Hippocalcin-like 

protein 1 

GI:407263738 5.54 22459 2 28 44 

12 Enolase, beta GI:6679651 6.73 47343 4 14 110 

13 Enolase, beta GI:6679651 6.73 47343 4 13 107 

14 Enolase, beta GI:6679651 6.73 47343 15 45 316 

15 Enolase, beta GI:6679651 6.73 47343 12 35 241 

16 Actin, alpha, skeletal 

muscle 

GI:4501881 5.23 42372 7 19 62 

17 Beta-actin-like protein 

2 

GI:30425250 5.3 42325 2 4 44 

18 Creatine kinase, M-

type 

GI:6671762 6.58 43250 6 22 181 

19 Fructose-

bisphosphate aldolase 

A isoform 2 

GI:6671539 8.31 39795 10 30 71 

20 Tropomyosin, beta 

chain 

GI:11875203 4.66 32933 2 9 42 

21 Tropomyosin, alpha-1 

chain isoform 3 

GI:31560030 4.71 32747 9 17 92 

22 Enolase, beta GI:6679651 6.73 47343 5 16 138 
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23 Glyceraldehyde-3- 

Phosphate 

dehydrogenase 

GI:6679937 8.44 36077 6 20 83 

24 Malate 

dehydrogenase, 

cytosolic 

GI:387129 6.16 36628 4 16 108 

25 Malate 

dehydrogenase, 

cytosolic 

GI:387129 6.16 36628 4 16 113 

26 Phosphoglycerate 

mutase 2 

GI:9256624 8.65 28980 7 22 93 

27 Triosephosphate 

isomerase 

GI:54855 6.9 27021 4 20 116 

28 Triosephosphate 

isomerase 

GI:54855 6.9 27021 8 55 125 

29 Phosphoglycerate 

mutase 2 

GI:9256624 8.65 28980 4 17 60 

30 DJ-1 protein GI:55741460 6.32 20236 3 12 42 

31 Thioredoxin-

dependent peroxide 

reductase, 

mitochondrial 

GI:6680690 7.15 28337 4 16 57 

32 Manganese 

superoxide dismutase 

GI:53450 8.8 24894 2 3 36 
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33 Phosphatidylethanol- 

amine binding protein 

GI:1517864 5.19 21018 3 18 93 

34 Adenylate kinase, 

isoenzyme AK1 

GI:10946936 5.7 23330 5 33 87 

35 Ferritin light chain 1 GI:120524 5.66 20847 4 32 81 

36 Peptidyl-prolyl cis-trans 

isomerase A 

NP_032933 7.74 18134 4 35 89 

37 Parvalbumin GI:53819 5.02 11937 3 26 80 

38 Parvalbumin GI:53819 5.02 11937 6 57 136 

39 Hemoglobin beta GI:229301 7.26 15767 5 40 98 
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6.2.4 Proteomic analysis of dystrophic skeletal muscle 

Following the optimisation and initial mass spectrometric identification of landmark 

muscle proteins in mouse skeletal muscle, comparative DIGE analysis was 

performed to determine potential differences protein expression patterns in mdx 

skeletal muscle subproteome.  4 biological replicates for each sample type were run 

using a two dye system. Each repeat contained a subcellular hind limb muscle 

fraction. Figure 6-3 shows the analytical 2-D gels  of  Cy3-labelled  normal  and  

dystrophic skeletal muscle  and  corresponding  Cy5-labelled  pooled  standards. 

The overall 2D  spot  patterns  of  normal  versus  dystrophic mouse skeletal  

muscle  were relatively comparable as a result a detailed denitometric analysis was 

performed in order to determine potential differences in individual protein species. 

Densitometric analysis was carried out using a Typhoon Trio variable imager 

scanner and Samespot Progenesis 2-D analysis software was performed to 

establish differential protein expression patterns. The detailed proteomic profiling of 

the contractile protein-depleted fraction revealed distinct changes in 10 muscle 

protein species in the mdx dystrophic muscle preparations. 
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Figure 6-3 Fluorescence 2D-DIGE analytical gel of normal versus mdx 

skeletal muscle fraction 

Figure 6-3 Two-dimensional gel electrophoretic analysis of the subcellular mouse 

muscle fraction. Shown are Cy3-labelled gels of the soluble fraction of contractile 

protein-depleted normal (A) and dystrophic mdx (C) skeletal muscle as well as Cy5-

labelled gels with all the samples combined to form a pooled standard (B) and (D).  

Analytical DIGE gels with electrophoretically separated proteins are displayed 

across 3-11 NL pH range. The pH-values of the first dimension gel system and 

molecular mass standards (in kDa) of the second dimension are indicated on the 

top and the left of the panels, respectively. 
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6.2.5 DIGE analysis of dystrophic muscle proteins 

The comparative proteomic analysis of normal vs dystrophic mdx hind limb 

muscle, performed with the contractile protein-depleted fraction, revealed altered 

expression patterns for 10 distinct protein spots. Proteins with significant changes 

are numbered 1 to 10 and marked by circles in the DIGE master gel Fig 6-4. The 

mass spectrometric identification of these altered muscle protein species are listed 

in Table 6-3. This table contains the identified muscle-associated proteins names, 

international accession number, relative molecular masses, pI-values, number of 

matched peptide sequences, Mascot scores, and percentage sequence coverage of 

major individual muscle protein species in dystrophic mdx hind limb muscles.  

Identified protein species ranged from a molecular mass of 18 kDa (peptidyl-prolyl 

cis-trans isomerase) to 79 kDa (transferrin) and with a pI-range from 5.5 pI (Hsp70) 

to 7.7 pI (peptidyl-prolyl cis-trans isomerase). Altered proteins were shown to be 

various isoforms of the molecular chaperone Hsp70 (spots 1-3 and 6), an unnamed 

protein BAC34145 (spots 4 and 5), ferritin light chain (spot 7), the transferrin protein 

(spot 8), peptidyl-prolyl cis-trans isomerase (spot 9) and Pgm2 protein (spot 10). 

While the 2 enzymes were revealed to be decreased in abundance, the heat shock 

proteins and iron-binding proteins expression levels showed an increased 

abundance (Table 6-3).  
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Figure 6-4 Fluorescence 2D-DIGE master gel of the subcellular mouse 

muscle fraction 

Figure 6-4 Two-dimensional gel electrophoretic analysis of the subcellular mouse 

muscle fraction. Shown is a  DIGE-labelled gel representing the analysis of 

dystrophin-deficient hind limb muscles from the mdx mouse animal model of 

Duchenne muscular dystrophy. Protein species with a significantly altered 

abundance are numbered 1 to 10 and marked by circles. See Table 6-3 for the 

mass spectrometric identification of the changed muscle proteins in muscular 

dystrophy. The pH-values of the first dimension and molecular mass standards of 

the second dimension are shown on the top and on the left of the panels, 

respectively.  
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Table 6.3 List of changed proteins in the subcellular fraction from mdx muscle as 

verified by fluorescent 2D-DIGE analysis 
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1 Heat shock protein 

Hsp70, mitochondrial 

BAA04493 5.91 73773 2 3 74 1.9 

2 Heat shock protein 

Hsp70, mortalin 

AAB28641 5.72 73403 4 6 99 1.9 

3 Heat shock protein 

Hsp70, mitochondrial 

BAA04493 5.91 73773 4 7 82 1.9 

4 Unnamed protein 

product 

BAC34145 5.75 70730 11 22 238 1.8 

5 Unnamed protein 

product 

BAC34145 5.75 70730 9 18 305 1.8 

6 Heat shock protein 

Hsp70, inducible 

ABK96811 5.53 70378 5 11 136 1.7 

7 Ferritin light chain 1 GI:120524 5.66 20847 4 32 81 1.6 

8 Transferrin AAL34533 6.92 78832 4 6 41 1.6 

9 Peptidyl-prolyl cis-

trans isomerase A 

NP_032933 7.74 18134 4 35 89 -1.4 

10 Pgm2 protein, partial GI:33416468 6.02 63700 12 24 109 -1.7 
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6.2.6 Immunoblot analysis of dystrophic hind limb muscle 

In order to further characterise the mdx hind limb muscle, comparative immunoblotting 

was carried out following the mass spectrometric identification of key changes in the 

mdx skeletal muscle subproteome. Immunoblotting was performed to verify the 

altered concentration in Hsp70, transferrin, and ferritin light chain protein in normal 

versus dystrophic muscle preparations (Figure 6-5E, F, H), respectively.  

Prior to investigating the novel candidates with distinct changes in expression in the 

mdx hind limb muscle, established biomarker proteins with unchanged concentration, 

increased expression and decreased expression were blotted. This included Immuno-

labelling of myosin MLC2, laminin and parvalbumin which exhibited comparable 

expression levels in normal versus mdx preparations (Figure 6-5A, B, G), respectively. In 

contrast, the dystrophin-associated glycoprotein β-dystroglycan and the extracellular 

matrix protein collagen revealed significantly altered concentrations in dystrophin-

deficient muscle (Figure 6-5C, D), respectively.  

Immunoblotting  of  the  novel  marker candidates  of  x-linked  muscular  dystrophy,  as  

shown  here  by  subcellular proteomics analysis,  clearly  confirmed  their  changed  

expression in  dystrophic mdx muscle. Immuno-labelled transferrin, Hsp70 and ferritin 

light chain blots revealed statistically significant reduced levels in mdx hind limb muscle 

(figure 6-5E, F, H), respectively. Immunoblots in Figure 6-5A-F were prepared with crude 

tissue extracts to establish changes in abundance on the global muscle protein level. 

However, immune decoration of ferritin light chain did not produce a sufficient signal. 

Thus ferritn analysis, in combination with the unchanged marker protein parvalbumin, 

was carried out with the contractile protein-depleted fraction (Figure 6-5G, H) 

respectively. 
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Figure 6-5A Immunoblotting analysis of unchanged MLC2  

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblots were labelled with the myosin MLC2 antibody. Lanes 1, 2 

represent normal wild type versus dystrophic muscle from total tissue extracts, 

respectively. The comparative  blotting  was  statistically  verified  using  an  unpaired  

Student’s  t-test (n=4 replicates).  
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Figure 6-5B Immunoblotting analysis of equally loaded extracellular matrix 

protein laminin  

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblots were labelled with the laminin antibody, an unchanged protein in 

dystrophic myofibres. Lanes 1, 2 represent normal wild type versus dystrophic muscle 

from total tissue extracts, respectively. The comparative  blotting  was  statistically  

verified  using  an  unpaired  Student’s  t-test (n=4 replicates).  
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Figure 6-5C Immunoblotting analysis of dystrophin-associated glycoprotein β-

dystroglycan 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblots were labelled with the β-dystroglycan Novocastra antibody. 

Lanes 1, 2 represent normal wild type versus dystrophic muscle from total tissue 

extracts, respectively. The comparative blotting was statistically verified using an unpaired 

Student’s t-test (n=4 replicates). Standard deviation represented by Error bars, 

(*p<0.05). 
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Figure 6-5D Immunoblotting analysis of extracellular matrix protein collagen  

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblot analysis of novel biomarker proteins in hind limb muscle normal 

versus mdx. Immunoblots were labelled with the collagen antibody. Lanes 1, 2 represent 

normal wild type versus dystrophic muscle from total tissue extracts, respectively. The 

comparative  blotting  was  statistically  verified  using  an  unpaired  Student’s  t-test (n=4 

replicates). Standard deviation represented by Error bars, (**p<0.005). 
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Figure 6-5E Immunoblotting analysis of iron transporter protein transferrin  

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblot analysis of novel biomarker proteins in hind limb muscle normal 

versus mdx. Immunoblots were labelled with the transferrin antibody. Lanes 1, 2 

represent normal wild type versus dystrophic muscle from total tissue extracts, 

respectively. The comparative  blotting  was  statistically  verified  using  an  unpaired  

Student’s  t-test (n=4 replicates). Standard deviation represented by Error bars, 

(*p<0.05). 
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Figure 6-5F Immunoblotting analysis of large heat shock protein 70 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblot analysis of novel biomarker proteins in hind limb muscle normal 

versus mdx. Immunoblots were labelled with the Hsp70 antibody. Lanes 1, 2 represent 

normal wild type versus dystrophic muscle from total tissue extracts, respectively. The 

comparative  blotting  was  statistically  verified  using  an  unpaired  Student’s  t-test (n=4 

replicates). Standard deviation represented by Error bars, (***p<0.001). 
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Figure 6-5G Immunoblotting analysis of unchanged calcium-binding protein 

parvalbumin 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblots were labelled with the parvalbumin antibody. Lanes 1, 2 

represent normal wild type versus dystrophic muscle from the contractile protein-

depleted subcellular fraction, respectively. The comparative  blotting  was  statistically  

verified  using  an  unpaired  Student’s  t-test (n=4 replicates).  
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Figure 6-5H Immunoblotting analysis of iron storage protein ferritin 

Shown are representative blots with expanded views of immuno-decorated protein 

bands indicated by the arrowhead, with graphical presentation of the statistical 

evaluation. Immunoblot analysis of novel biomarker proteins in hind limb muscle normal 

versus mdx. Immunoblots were labelled with the ferritin light chain antibody. Lanes 1, 2 

represent normal wild type versus dystrophic muscle from the contractile protein-

depleted subcellular fraction, respectively. The comparative  blotting  was  statistically  

verified  using  an  unpaired  Student’s  t-test (n=4 replicates). Standard deviation 

represented by Error bars, (**p<0.005). 
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6.3 Discussion  

Duchenne muscular dystrophy is one of the most crippling childhood neuromuscular 

disorders, therefore meriting comprehensive large-scale studies into the establishment 

of detailed biomarker signatures of dystrophinopathy (Lewis et al., 2009; Griffin and 

Rosiers, 2009). Subproteomic surveys have clearly revealed that organelle proteomics 

is well suited for evaluating global alterations in distinct subcellular fractions from 

skeletal muscles during pathological or physiological adaptations (Ohlendieck, 2012). 

Although the primary defects causing X-linked muscular dystrophy are well-known and 

the resulting absence in the membrane cytoskeletal dystrophin protein is well 

documented, little is established about the complexity of secondary alterations leading 

to dystrophinopathy.  

In this chapter as outlined in Figure 6-6 below, an investigation into the suitability of 

introducing a simple subcellular fractionation step to swiftly eliminate a large part of the 

actomyosin apparatus from muscle homogenates was performed. Subsequently, 

allowing for the comparative analysis of low level protein species by MS-based 

subproteomics. The flowchart of Figure 6-6 clearly verifies the different protein 

expression patterns in the fluorescent 2-D gel images, with the separation of the 

abundant contractile protein fraction from the pellet representing less frequent muscle 

proteins.  
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Figure 6-6 Differential centrifugation of muscle homogenates to obtain a 

contractile protein-depleted fraction for comparative subproteomic analysis 

Shown is a flowchart of the subcellular fractionation protocol used to swiftly isolate low 

abundant protein fractions in normal versus dystrophic skeletal muscle homogenates (A). 

The separation of the abundant contractile protein fraction from the pellet representing 

less frequent muscle proteins is  shown  by  the considerably different protein expression 

patterns in the fluorescent 2-D gel images of  crude  tissue  extracts (B)  vs  the  protein  

pellet  following differential centrifugation (C). An open circle represents the contractile 

protein-containing area of 2D gels in the acidic-to-neutral pI range.  
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The drastic reduction in protein abundance in the acidic-to-neutral area of the gel 

image in Figure 6-6C, as compared to the crude extract shown in Figure 6-6B, suggests 

the successful elimination of a substantial portion of contractile elements, like the actins, 

troponins, myosins and tropomyosins (Holland and Ohlendieck  2013; Gannon  et al., 

2009). To confirm the depletion of the actomyosin apparatus, mass spectrometry 

analysis was performed on the 2-D gels before and after differential centrifugation to 

clearly identify abundant landmark protein spots.  

Table 6-1 lists their identity as actin (spot 4), tropomyosin (spot 11), myosin  

light chains MLC1f (spots 19, 29), MLC2 (spots 26-28), troponin I (spot 22) and troponin 

T (spots 23-25). In contrast, many of the contractile muscle proteins have subsequently 

been eliminated by differential centrifugation. Table 6-2 shows a limited number of 

proteins with contractile elements, like actin (spots 16, 17) and tropomyosin (spots 20, 

21). A number of the other 2D-landmark protein species in both the crude extracts and  

subcellular fraction of the  skeletal  muscle homogenates were identified as involved in 

various processes form the metabolite transport, ion handling and and the cellular stress 

response. 

 

6.3.1 Proteomic expression changes of skeletal muscle analysis  

Previous proteomic surveys have predominantly concentrated on total tissue extracts 

and as a result have identified mainly abundant muscle-associated proteins,  such  as  

components  involved  in various processes form metabolism, ion  handling, 

stabilization  of  the cytoskeleton and extracellular matrix, excitation-contraction 

coupling  and  the  cellular  stress  response (Lewis et al.,  2009; Guevel et al., 2011; 

Gardan-Salmon et al., 2011; Rayavarapu et al., 2013; Carberry et al., 2012a; Carberry et 

al., 2012b; Carberry et al., 2013b). 

In contrast, this chapter as shown that the depletion of the contractile apparatus by 

differential centrifugation, results in the comparative  proteomic  profiling  of  minor low 
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abundant  protein  species  in  normal  vs dystrophic   preparations. Changes in 

expression of these minor muscle-associated proteins were identified as various 

isoforms of the heat shock protein Hsp70, transferrin, ferritin light chain and the 

enzymes phosphoglucomutase and peptidyl-prolyl cis-trans isomerase in the mdx 

muscle. 

 

6.3.2 Increased expression of Iron handling proteins 

Transferrin (Szőke and Panteghini, 2012) and ferritin light chain (Crichton and 

Declercq, 2010) are essential iron-transporting proteins and key elements of iron 

metabolism (Wang and Pantopoulos, 2011). Elevated levels of transferrin and ferritin 

proteins in dystrophic muscle support recent findings from the proteomic profiling of the 

aged mdx heart (Holland et al., 2013a) and the aged mdx diaphragm, shown in chapter 

4. 

During the aging dystrophic diaphragm study which investigated 8-week to 22-month 

range (Carberry et al., 2012a), we also examined the 8-week to 12-month range and 

recorded a drastic increase in ferritin light chain levels in mdx muscle. Deficiency in 

dystrophin seems to impair iron homeostasis and the elevated iron transporter and 

binding-protein concentrations possibly suggest a compensatory mechanism to help 

prevent harmful iron overloading in muscle tissues. The 2-fold increase in 

concentration of transferrin indicates disruptions in iron absorption and 

consumption in muscular dystrophy, as circulating transferrin functions as an iron 

transporter providing iron requirements to tissue proteins (Wang and Pantopoulos, 

2011).  
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6.3.3 Perturbed stress response in mdx tissue   

Elevated levels of molecular chaperones are indicative of intensified cellular stress in 

dystrophic muscle tissue. One of these key molecular chaperones is Heat shock 

protein Hsp70 which exists as several different isoforms (Young, 2010). The various 

isoforms of Hsp70 play a main role in skeletal muscle stress in response to injury, 

oxidative conditions, reperfusion-induced ischemia, excessive exercise and 

neuromuscular disorders (Liu et al., 2006). In the aging dystrophic diaphragm study 

(Carberry et al., 2012a) which examined the 8-week to 12-month range also recorded a 

significant increase in heat shock protein Hsp70-cognate levels in mdx muscle. 

During periods of muscle stress molecular chaperone regulation has been shown to 

be crucial in protecting muscle from damage (Maglara et al., 2003). In general, stress 

proteins facilitate in protein-protein interactions by helping to stabilise misfolded 

proteins or peptide clusters as well as regulating there degradation and elimination in 

order to prevent harmful unwanted accumulation of non-functional protein  aggregates 

(Boluyt  et  al., 2006). Hence, the observed increase in expression of mitochondrial 

Hsp70 isoforms can be seen as a compensatory mechanism to protect dystrophic 

fibers from excessive oxidative stress and supporting previous reports on elevated 

levels of the small heat shock protein cvHsp in dystrophic skeletal muscle (Doran et al., 

2006a). 

 

6.3.4 Other proteins 

Besides the molecular chaperone Hsp70, two other protein spots were identified with 

an increased concentration displaying similar molecular mass and somewhat different 

isoelectric points. These protein spots relate to an unnamed protein (BAC34145 protein 

product, gi|26340966|) with unknown function. The reduction in expression of the 

enzymes phosphoglucomutase and peptidyl-prolyl-isomerase indicates abnormal 
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glycogen utilisation and impaired protein folding processes in mdx muscle, 

respectively. Phosphoglucomutase facilitates the interconversion of glucose-1-

phosphate and glucose 6-phosphate during glycogenesis and glycogenolysis, making it 

a key protein of glycogen and glucose metabolism in muscle (Ohlendieck, 2011).  

Reduced levels of this enzyme indicate impaired glucose utilisation in dystrophic 

muscle fibers. Peptidyl-prolyl-isomerase facilitates in protein folding by accelerating the 

process. In oligopeptides, this enzyme mediates the cis-trans isomerisation of proline 

imidic peptide bonds (Quintá et al., 2011). Therefore, its decreased concentration might 

reduce the capability of dystrophic muscles to correctly refold certain classes of muscle 

proteins.  

 

6.4 Conclusion  

In conclusion, the  systematic  depletion  of abundant  contractile  proteins  from  

muscle preparations before gel electrophoretic protein separation has resulted in 

improved  access  to  minor low level  protein  species  from  dystrophic  muscle. The 

comparative proteomic profiling of subcellular hind limb fraction of 8-week-old 

dystrophin-deficient mice versus age-matched control mice has revealed changes in 

expression levels in a number of interesting proteins and highlighted potential novel 

biomarker candidates for Duchenne muscular dystrophy. 

This chapter demonstrates that the employment of organelle proteomics can overcome 

particular technical limitations of whole tissue proteomics and should be used to 

complement these proteomic findings. Since skeletal muscle tissues are characterised 

by a mainly diverse range of minor low level protein species and a large dynamic range 

of protein expression patterns, the employment of pre-fractionation procedures 

significantly reduces sample complexity and thus enables for a more 

comprehensive coverage of complex muscle protein mixtures and the skeletal 
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proteome.  
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7 General Discussion  

 

X-linked Duchenne muscular dystrophy is an extremely progressive childhood 

neuromuscular disorder and can be characterised by primary genetic abnormalities in 

the dystrophin gene. Defects in the dystrophin gene result in the loss of a crucial 

427kDa cytoskeletal membrane protein (Dalkilic and Kunkel, 2003).  

The optimisation of animal models is a vital area in biomedical proteomics and 

proteomic biomarker discovery. The application of gel-based proteomics is routinely 

employed to establish muscle-associated biomarkers and in recent years been used 

with the mdx animal model of muscular dystrophy for the biochemical evaluation of 

novel experimental therapies, such as exon skipping for a potential treatment for DMD 

(Doran et al., 2009b).  

The overall goal of this report was to establish a detailed proteomic signature for the 

mdx animal model across various age groups and muscle types. It is important to 

stress that the muscles in mdx mouse exhibit varying degrees of degeneration. This 

report focused on moderately affected mdx hind limb muscles, the mildly affected 

phenotype of the mdx interossious muscle which was shown to be even less necrotic 

than the mdx soleus, extensor digitorum longus or tibialis anterior muscles. In 

contrast, the mdx diaphragm muscle was shown to be severely affected (Stedman et 

al., 1991) and aging of the diaphragm exacerbate the dystrophic phenotype (Carberry 

et al., 2012a). Thus, the aged mdx diaphragm muscle more closely resembles that of 

the neuromuscular pathology exhibited in Duchenne patients (Lefaucheur et al., 1995).  

Skeletal muscle proteomics is concerned with the global identification, comprehensive 

cataloguing and biochemical analysis of the entire protein complement of contractile 

fibers in normal and pathological specimens (Isfort, 2002). Previous proteomic reports 

have revealed that MS-based technologies are suitable for studying a representative 

proportion of muscle-associated proteins involved in regulation, contraction, structure, 
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metabolism and cellular stress response (Doran et al., 2008; O'Connell et al., 2008; 

Lewis et al., 2009). Figure 7-1 represents an overview of the past usage of MS-based 

proteomics employed to characterise the dystrophin-glycoprotein complex and 

secondary alterations in the dystrophic mdx mouse (Holland et al., 2013b). Figure 7-1 

includes the various age groups and muscle types evaluated by proteomics and also 

highlights the comparative proteomic approaches discussed in this report. 

Mass spectrometry in combination with fluorescence labelling techniques can  

detect several thousand muscle-associated proteins in high-resolution 2D gel 

electrophoresis (Doran et al., 2006b). However, there are limitations to this technique 

with respect to analysing the entire cellular proteome (Rabilloud et al., 2009). 

Membrane proteins, high molecular mass proteins and low-level abundance proteins 

can be challenging to detect in polyacrylamide  gels  due  to  the hydrophobic  nature,  

pore  size  and  dynamic  range, respectively. 
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Figure 7-1 MS-based proteomic profiling of the mdx mouse model of Duchenne 

muscular dystrophy 

Figure 7-1 represents the various types of muscle and age groups of the mdx mouse 

that have been analysed over the recent years to establish global changes in the 

dystrophic muscle proteome. All highlighted proteomic studies have been discussed in a 

detailed review of the proteomics of the dystrophin-glycoprotein complex and 

dystrophinopathy (Staunton et al., 2011). While, the blue circles represent the muscle 

types covered in this thesis. 
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Thus, since the main proteins of the actomyosin apparatus and its supporting sarcomeric 

components frequently negate weak signals from minor muscle protein species during 

proteomic analyses, we have employed a pre-fractionation step to remove certain parts of 

this analytical problem (Carberry et al., 2014). In order to eliminate a large portion of highly 

abundant contractile proteins, differential centrifugation of the crude skeletal muscle 

extracts were performed to reduce the samples complexity as shown in Chapter 6. 

In the mdx animal model of dystrophinopathy, different skeletal muscle subtypes are 

affected to varying degrees resulting from the same single base substitution of the 

dystrophin gene. Thus, to establish potential muscle subtype-specific alterations in 

secondary changes due to dystrophin-deficiency, we have performed a comparative 

proteomic survey of multiple mdx muscles. Highlighting alterations in naturally protected 

and moderately affected phenotypes as shown in Chapter 5.  

Furthermore, the established mdx mouse model of dystrophinopathy exhibits progressive 

muscle tissue deterioration with age and more closely resembles the human pathology as a 

result aged mdx muscle specimens were analysed on a large-scale survey of potential age-

related changes in the dystrophic phenotype as shown in Chapters 3 and 4. This 

established senescent mdx mouse diaphragm muscle as a more suitable dystrophic 

phenotype. Thus, we investigated this particular tissue further to determine the global 

changes in the protein complement during the natural aging process of the mdx muscle. 

 

Figure 7-2 illustrates an overview of the proteomic results from the senescent mdx 

mouse model survey for Duchenne muscular dystrophy. Global changes in structural 

proteins, extracellular proteins, contractile proteins, molecular chaperones, calcium-

binding proteins, glycolytic enzymes, mitochondrial enzymes and metabolite 

transporters suggest changes in the cytoskeletal complex and its indirect linkage to the 

extracellular matrix, reorganisations within the actomyosin apparatus, an intensified 

cellular stress response, compromised ion handling and metabolic disturbances.  
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Overall, this analysis revealed that protein expression patterns are severely changed 

in dystrophin-deficient mdx diaphragm muscle and that these pathobiochemical 

alterations are more intense compared to that of the different mdx skeletal muscles 

examined in this thesis (Rayavarapu  et al., 2013; Ge et al., 2003; Carberry et al., 

2012a; Carberry et al., 2013a). Additionally, it was revealed that isoforms of the same 

protein exhibit differential expression patterns suggesting possible post-translational 

modifications such as glycosylation demonstrating the complexity of the disease. 

These features display  the  benefits  of 2-D gel electrophoresis in  its  ability  to  

present  crude  soluble  protein complement of the muscle fibers.  

 

Elevated levels of dermatopontin and the resulting increase in collagen supports the 

progressive accumulation of connective tissue in the dystrophic mdx diaphragm (et al 

Carberry). ATP production appears severely disturbed in diaphragm tissue whereas 

we saw only moderate alterations in ATP production in the moderately affected hind limb 

muscles and the milder phenotype of the fingers and toes exhibited spared mitochondrial 

function. This bioenergetic dysfunction of mitochondria in the senescent mdx 

diaphragm indicates that aged mitochondria are incapable of meeting the ATP demand 

of the dystrophic muscle fibers. In addition, the proteomic findings of a decreased 

concentration of the vital and rate-limiting metabolite transporters for the utilisation of 

oxygen and fatty acids, intracellular oxygen transporter myoglobin and the fatty acid 

binging protein FABP3, suggest the idea of impaired mitochondrial metabolism. 

 

The contractile apparatus degeneration and/or remodeling of the skeletal muscles 

were indicated here with actin, troponins, tropomyosin and myosin light chains to 

varying degrees. All the muscle types exhibited an intensified cellular stress response 

with the up-regulation of various heat shock proteins due to the lack of dystrophin. 

Increased iron transporter and binding-protein concentrations indicate disruptions in 

iron absorption and consumption in muscular dystrophy, the elevated abundance 

suggests impaired iron homeostasis in the degenerating mdx diaphragm and hind limb 



 

173 

 

muscles. 
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Figure 7-2 Proteomic survey of the mdx animal model for Duchenne muscular 

dystrophy 

The diagram summarises the key classes of diaphragm proteins identified by the 

proteomic analysis of the aged and mdx dystrophin-deficient mouse model of X-

linked muscular dystrophy. The severely affected protein expression pattern of mdx 

dystrophic muscle includes extracellular matrix proteins, structural proteins, 

contractile proteins, molecular chaperones, calcium-binding proteins, mitochondrial 

enzymes, glycolytic enzymes and metabolite transporters. Thus, the absence of the 

dystrophin isoform Dp427 and resulting reduction in dystrophin-associated 

glycoproteins in the dystrophic sarcolemma seems to trigger a variety of secondary 

abnormalities in muscular dystrophy. 
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Sarcolemma disruption is high in mdx diaphragm tissue. As the dystrophin protein 

anchors large membrane glycoprotein complexes within the cell, membrane rupturing 

occurs due to its absence and results in the loss of membrane integrity. One of these 

glycoproteins, ß-dystroglycan is rescued in the finger and toe muscles of Chapter 5 

(Dowling et al., 2004). The rescue of ß-dystroglycan reduces the contraction-induced 

micro-rupturing normally observed in dystrophic tissue. The dystrophic diaphragm 

revealed progressive accumulation of connective tissue with elevated levels of 

dermatopontin and the resulting increase in collagen, while the fingers and toes appear 

naturally protected.   

Interestingly, the number of fibers containing central nuclei was lower in the fingers 

and toes compared to that of the mdx hind limb muscles (Fig 5-7). This is vital, since 

central nucleation is considered as a sign of recent muscle fiber regeneration. The 

fingers and toes also observed no increase in muscle mass, in contrast to the hind 

limb muscles. Both central nucleation and the level of hypertrophy of the finger and 

toe muscles are in line with a less severe impairment (Carberry et al., 2013b). 

From our studies we have demonstrated that the INT and FDB muscle are under less 

stress than the severely dystrophic diaphragm tissue. This is apparent from the stress 

response possible due to the rescue of the dystroglycan protein and evident from lack of 

central nucleation and hypertrophy. The smaller diameter of the muscle fibers may 

facilitate the replacement of utrophin and offer mechanical stability to the cell membrane. 

Over the last decade major advances have been made in both the understanding of the 

molecular genetics and pathogenesis of Duchenne muscular dystrophy. This has raised 

expectations of a curative treatment with gene theraphy.  Exon skipping therapy is a form 

of non-viral gene therapy, were it was hypothesized that one could change the serve DMD 

phenotype into a milder BMD phenotype, simply if one was able to change the splicing of 

the DMD gene to produce a smaller in-frame transcript. 
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A comparative proteomic analysis was performed to evaluate exon skipping as a 

potential therapeutic approach and revealed a restoration of key muscle-associated 

proteins after the dystrophin isoform was restored in the dystrophic diaphragm (Doran 

et al., 2009b). Reversal of differential proteins involved in dystroglycan complex, 

energy production and calcium handling were significantly expressed. Although this 

therapy appears promising one of the challenges is the need for personalised 

therapies. Skipping over a single exon in such a large size gene will only target a 

small number of suitable candidates to treat (Rando, 2007) (Lim and Rando, 2008) 

and offer a milder form of the disease and personalised therapies would prove costly at 

this initial stage of the development.  

While the large size and complexity of dystrophin is problematic, it does carry a 

silver lining as the vast majority of the gene remains unchanged (Menhart, 2003). 

Thus this major challenge of personalised therapy is partly obviated by the fact some 

deletions are very common in DMD and that a vast majority of DMD cases are 

represented by a relatively small number of deletions. This means, theoretically a 

limited number of antisense oligonucleotides will be effective in a majoriy of DMD 

patients (Aartsma-Rus et al., 2003). 

Over the years, many pharmacological interventions have been proposed as likely 

treatments for DMD/BMD. Glucocorticoids offer the only method of preserving muscle 

function. Though their mechcanism(s) of action is unknown, glucocorticoids such as 

prednisone and prednisone-derivative deflazacort are effective in slowing the progression 

of DMD. Side effects are associated with both drugs, which include excessive weight gain 

which can negatively impact muscle function (Biggar et al., 2006). Treatment of DMD boys 

carried out by using Deflazacort resulted in improved pulmonary function, suggested an 

improvement in the respiratory muscles (Biggar et al., 2001). There is universal agreement 

that boys with DMD benefit from corticosteroid treatment.  
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A number of neuromuscular disorders are characterised by this membrane-spanning  

complex that a detailed analysis is warranted into its assembly, interactions and 

maintenance in healthy fibers versus its dysfunction in dystrophic muscle tissue. The 

comprehensive proteomic study of the high-molecular mass proteins excluded 

from traditional 2D gels with subsequent MS identification may provide insight into the 

fate of protein species over the progression of muscular dystrophies. A detailed label-

free analysis into severely dystrophic aged diaphragm, mildly affected hind limb and 

spared extraocular and interosseus fibers may provide new insights into the 

compensatory mechanisms that counteract dystrophic abnormalities. Since the 

approximately 30,000 protein-coding genes in the human genome are predicted to 

produce several 100,000 protein species, it is assumed that the number of muscle-

associated protein isoforms far exceeds that of the skeletal muscle-specific genes. 

Therefore, future studies into the analysis of post-translational modifications and the 

classification of protein isoforms in healthy and diseased muscle is warranted.  

In recent years, comparative proteomic studies with mdx muscle tissue extracts 

have shown significant alterations in the enzyme adenylate kinase AK1 (Marouga 

et al., 2005; Ng et al., 2012; Theodoridis et al., 2012), the actin binding protein 

profilin, the fatty acid binding protein FABP3 (Okamoto and Fujiwara, 2006), the 

cytosolic Ca2+-binding protein parvalbumin (Stastna and van Eyk, 2012), the Ca2+-

binding protein calsequestrin CSQf (Cox and Mann 2011), the enzyme carbonic 

anhydrase CA3 (Carberry et al., 2012b), the molecular chaperone cvHsp/HspB7 

(Marouga et al., 2005; Kato et al., 2011), the oxygen carrier myoglobin (Stastna 

and van Eyk, 2012), different isoforms of annexin (Okamoto and Fujiwara, 2006), 

the ion transporter transferrin (Forbes et al., 1994; Graham et al., 2010), the 

mitochondrial enzyme isocitrate dehydrogenase (Kornegay et al., 2012; Stastna 

and van Eyk, 2012; Mallick and Kuster, 2010) and the extracellular matrix protein 

dermatopontin (Mouisel  et al., 2010). 

These proteomic profiles of the mdx mouse were performed with multiple muscle 
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subtypes, variety of tissue extracts or subcellular fractions, various protein 

separation techniques, opposing labelling methods and different mass 

spectrometric techniques. The proteomic results in this report has established that 

the abundance of annexin, carbonic anhydrase, cvHsp, profiling, transferrin and 

dermatopontin is severely increased and that the concentration of adenylate 

kinase, calsequestrin, isocitrate dehydrogenase, myoglobin, and parvalbumin is 

drastically reduced in dystrophic model of Duchenne muscular dystrophy. This 

makes these proteins suitable biomarker candidates of dystrophinopathy, which 

might be helpful to evaluate diagnostic, prognostic or therapeutic approaches. With 

a number of potential blood-based biomarkers present such as transferrin they 

could offer a simpler, cheaper and less invasive means for obtaining and analysing 

samples.  

In conclusion, the proteomic results presented here indicate that the aged mdx 

diaphragm, which shows severe respiratory impairment following fibrosis (Ishizaki 

et al., 2008), is a suitable model system to study the molecular pathogenesis of 

Duchenne muscular dystrophy. Although the cure for DMD remains elusive gene 

therapies such as exon skipping does provide hope. While supportive care remains 

vital until a curative treatment has been developed, with the use of corticosteroids, 

physiotherapy and orthoses shown to increase life expectancy and quality of life 

DMD patients considerably.  
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