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Abstract

This paper presents a number of proofs that
equate the outputs of a Multi-Layer Perceptron
(MLP) classifier and the optimal Bayesian dis-
criminant function for asymptotically large sets of
statistically independent training samples. Two
broad classes of objective functions are shown to
yield Bayesian discriminant performance. The
first class are “reasonable error measures,” which
achieve Bayesian discriminant performance by
engendering classifier outputs that asymptotically
equate to a posteriori probabilities. This class in-
cludes the mean-squared error (MSE) objective
function as well as a number of information the-
oretic objective functions. The second class are
classification figures of merit (CFMmono ), which
yield a qualified approximation to Bayesian dis-
criminant performance by engendering classifier
outputs that asymptotically identify the maximum
a posteriori probability for a given input. Condi-
tions and relationships for Bayesian discriminant
functional equivalence are given for both classes
of objective functions. Differences between the
two classes are then discussed very briefly in the
context of how they might affect MLP classi-
fier generalization, given relatively small training
sets.

1 INTRODUCTION

The use of multi-layerperceptron (MLP) classifiers in statis-
tical pattern recognition requires that there be some mathe-
matically defensible link between MLP outputs and the true
a posteriori probabilities associated with the input random
vector (RV) x being classified. We present a number of
proofs that detail the link for an N-output MLP classifier�
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and the N-class RV x , possessing an input feature space di-
mensionality of M. The number of classes N and the feature
space dimensionality M of x are arbitrary, as is the specific
parameterization (or connectivity) of the MLP classifier.
For our purposes the term “multi-layer perceptron” is used
to describe a backpropagation network using any continu-
ous sigmoidal nonlinearity, although the proofs herein can
be extended to networks employing other non-linearities.

Proofs of the relationship between both linear and non-
linear classifiers trained with the mean-squared-error
(MSE) objective function and the Bayesian discriminant
function are not new. Duda and Hart formulated the proof
for a simple perceptron in [6] (pp. 154-155). More recently,
[1, 3, 7, 11] have given variations of the proof for MSE-
trained MLPs. We extend these proofs to the N-output MLP
classifier trained with any objective function belonging to
one of two broad classes. The proofs herein give detailed
relationships among the MLP outputs, the Bayesian dis-
criminant function, and the class conditional densities of x .
In this sense, they have their conceptual basis in the proof
of [6].

We show that the MSE proofs of [1, 3, 6, 7, 11] pertain
to one specific member of a broad class of error measure
objective functions. This class of “reasonable” error mea-
sures yields MLP outputs that converge to the Bayesian
a posteriori probabilities P(�

i
�
x) (where �

i represents
the ith class) for networks with sufficient functional capac-
ity (see section 3.1.2) to classify asymptotically large sets
of statistically independent training samples. The MSE and
Cross Entropy (CE) [10] objective functions are members
of this class of functions1, as are other objective functions
stemming from information theoretic learning rules (such as
Maximum Mutual Information and Maximum Likelihood),
and the Kullback-Liebler distance measure. These reason-
able error measures all yield optimal Bayesian discriminant
performance2, given sufficient training data.

1Strictly speaking, the Cross Entropy objective function does
not require that MLP outputs be compared with binary target
values. Thus, it is fair to categorize the Cross Entropy objective
function in this way only when binary target values are specified
in its form.

2See section 2.
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Given these results, one is inclined to conclude that all these
objective functions yield equivalent classification perfor-
mance, and that all MLPs are — in effect — no more
than exotic estimators of Bayesian a posteriori proba-
bilities. In fact, neither conclusion is correct. A broad
class of objective functions called “N-monotonic Classifi-
cation Figures of Merit” (CFMmono ) [8] are shown to ap-
proximate Bayesian classification performance under the
same conditions for which the reasonable error measures
yield Bayesian performance. However the CFMmono class
of functions does not produce MLP output activations that
reflect a posteriori probabilities P(�

i
�
x) ; instead it asymp-

totically identifies the maximum a posteriori probability for
a given input P(�

max
�
xp) , as long as P(�

max
�
xp) � 0 �5

(see section 4). Despite this limitation, [8] indicates that
CFMmono -trained MLPs can be more robust approxima-
tions to the Bayesian discriminant than their reasonable
error measure counterparts, given small training sample
sizes.

While the findings of [8] are not broad enough to be consid-
ered conclusive, they do argue against the maxim “all objec-
tive functions yield equivalent classification performance,”
when one’s training set is limited in size. Section 5 con-
tains some brief comments regarding the following proofs’
applicability to real-world classification problems. Partic-
ular attention is paid to how the different objective func-
tionsmight yield (or fail to yield)near-optimal classification
boundaries for small training sets. These observations are
made with an eye towards further investigationof MLP clas-
sifier generalization in the probabilistic context presented
by this paper.

By the “asymptotic behavior” of a classifier we mean its
behavior for an asymptotically large set of statistically in-
dependent training samples.

2 A GENERAL DESCRIPTION OF THE
N-CLASS PROBLEM AND THE
BAYESIAN DISCRIMINANT
FUNCTION

In this section we give a brief description of the general
N-class problem and the Bayesian discriminant function in
the context of the connectionist and pattern recognition lit-
erature. The syntax and notation used herein is an expanded
version of that used in [6].

The N-class classification problem is depicted in Figure 1.
A random vector x is to be classified by a classifier with
parameterization specified by the state variable � . The
classifier has N outputs, each one of which corresponds to
one of N possible classes. Table 1 defines the variables used
to describe the basic classification process. Simply stated,
the objective is to associate a particular sample of the RV
x — denoted xp — with the correct class �

c . The method
for deciding the class of xp yielding the fewest errors [6]
(pp. 16-20) can be stated simply:

associate xp with the class �
c that has the largest

a posteriori probability:

P(�
c

�
xp) = P(�

max
�
xp) � P(�

j
�
xp) 	 j 
= c

In simple terms, any function that implements this clas-
sification procedure constitutes the Bayesian discriminant
function.

Clearly, being able to estimate all N P(�
i

�
xp) accurately for

each and every xp allows one to implement the Bayesian
discriminant function. Indeed, a large number of pattern
classifiers do precisely this. The degree to which they
succeed in the classification task is directly related to the
accuracy with which they estimate the a posterioris. An-
other perhaps less obvious way to implement the Bayesian
discriminant function is to consistently identify the largest
P(�

i
�
xp) for each and every xp — an approach that does not

require accurate estimation of the a posterioris. The salient
point here is that while accurate estimation of the a posteri-
oris is sufficient for Bayesian discriminant performance, it
is not necessary. All that is necessary for Bayesian discrim-
ination is accurate identification of the largest a posteriori.

These two approaches to implementing the Bayesian dis-
criminant function lead to two broad classes of objective
functions that one can use to train the classifier in Figure 1:
the class of “reasonable error measures” achieves Bayesian
performance by explicitly estimating the a posterioris as-
sociated with the input xp , while the Classification Figures
of Merit (CFMmono ) achieve Bayesian performance by esti-
mating the identity of the maximum a posteriori probability
P(�

max
�
xp).

3 REASONABLE ERROR MEASURES:
BAYESIAN PERFORMANCE VIA
ACCURATE ESTIMATION OF A
POSTERIORI PROBABILITIES

The first class of objective functions that yield Bayesian
discriminant performance comprises those error measures
engendering classifier outputs that are true estimates of the
a posteriori probabilities P(�

i
�
xp). The necessary and suf-

ficient conditions on the form of these functions are given
below, followed by a number of familiar examples of the
class and detailed proofs of their asymptotic Bayesian per-
formance.

3.1 THE NECESSARY CONDITIONS FOR
REASONABLE ERROR MEASURES

Consider a class of error measures � [� i(xp  � )  � i(xp)]
that give the “loss” of a single output � i(xp  � ) when its
desired or “target” activation is � i(xp). Tables 1 and 2 define
the symbols used to derive this class of error measures. The
concept of a prototype of x introduced in these tabulated
definitions warrants explanation.
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Table 1: Definitions of symbols used to describe the general N-class classification problem.

Symbol Definition

x The RV to be classified.� i The ith output of the N-output classifier.�
i The ith of N classes to which x can belong.

xp The pth unique sample (or prototype) of x.� The parameterization of the classifier. In the case of an MLP
classifier, � would represent the connections of the network.� i(xp  � ) The ith output of the N-output classifier, given the input xp and
the classifier parameterization � .

P(�
i

�
xp) The a posteriori probability of the ith class (�

i), given the input
xp.

P(�
i

�
xp) 1 � P(�

i
�
xp).� (x

� �
i) The “class conditional” probability density function (PDF) for

the RV x (given class �
i).

3.1.1 Prototypes: bounds on the complexity of the
class-conditional densities of the RV x

A prototype is a unique sample xp of the RV x . Thus, if one
obtains two identical yet statistically independent samples
of the RV x , these samples are two instantiations of the
same prototype. The notion of obtaining more than one
statistically independent sample of x with the exact same
value xp is difficult to envision — even for large training
sets. However, if one considers regions on the domain
of x over which the class-conditional densities � (x

� �
i) are

essentially constant for all classes, one can associate each of
these regions with a prototypical value of x. The prototype
for the pth of such regions is given by xp. For an input
feature space of dimensionality M and a sufficiently large
number of statistically independent samples of x , one might
envision an (M+1)-dimensional histogram of the samples as
an embodiment of this concept of prototypes. Such a view
is consistent with the limited resolution of data acquisition
systems used to measure real-world RVs.

Clearly this view of regions on x with constant class-
conditional densities places an implicit restriction on the
probabilistic nature of x . A simple yet elegant description
of a 2-class problem (N = 2) involving a 2-dimensional
RV x (M = 2) that does not have a bounded number of
regions of constant class-conditional density is illustrated
by the following: if one envisions a two dimensional fractal
coastline forming the boundary between land and sea, one
finds that in the vicinity of the boundary (shore line) there
is no observation scale large enough to yield a bounded
number P of regions xp within which � (x

� �
i) is constant

on all sub-regions of each xp for both classes. The RV x is
therefore not “well behaved”. Obviously, if x comprises a
finite number of discrete states, then it will be well behaved.

The necessary conditions for reasonable error measures that
follow — and all subsequent proofs in this paper — rely on
this notion of prototypes. We assume that the RV x is well-
behaved to the extent that P is bounded. This restriction

places some limit on the complexity of the class-conditional
densities of x that one can expect to model accurately using
an MLP classifier — an issue that we discuss further in
section 5.

3.1.2 The reasonable condition

In general, we assume that the outputs of the classifier are
bounded on the closed interval [0,1], that there is minimal
loss incurred when the output equals its target value, and
that there is a symmetry to the loss function:

0 � � i(xp  � ) � 1 	 xp  � (1)� [z  z] � � [y 
= z  z] (2)� [� i(xp  � )  � i(xp)]

= � [� i(xp) � � i(xp  � )  � i(xp)] (3)

The symmetry constraint of (3) can be taken to mean that
the reasonable error measure is a function of the absolute
difference between the output and its target:� [� i(xp  � )  � � � ] = f (

� � i(xp  � ) � � � � �
) (4)

where � � � = � i(xp) or � i(xp)

Furthermore, if we choose binary targets for our error mea-
sure (which incidentally correspond to the upper and lower
bounds on the classifier outputs)� i(xp) �= 1� i(xp) �= 0

(5)

then (4) leads to the following functional description of the
reasonable error measure:
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Table 2: Definitions of symbols used to derive reasonable error measures.

Symbol Definition

i index denoting MLP output i of N, associated with class �
i.

N the total number of classes.
p index denoting the pth prototype of x.
P the total number of prototypes on the domain of x.

npi the number of statistically independent occurrences of prototype
xp belonging to class �

i.
npi the number of statistically independent occurrences of prototype

xp not belonging to class �
i.

np npi + npi : the total number of statistically independent occur-
rences of prototype xp in the training set.

ni � P npi : the total number of statistically independent samples
in the training set belonging to class �

i.
ni � P npi : the total number of statistically independent samples

in the training set not belonging to class �
i.

nt � P np : the total number of statistically independent samples
in the training set.� i(xp) The target value for � i(xp  � ) when xp belongs to class �

i.� i(xp) The target value for � i(xp  � ) when xp does not belong to class�
i.� [� i(xp  � )  � i(xp)] The error measure (or loss) for output � i(xp  � ) when its target

value is � i(xp) (i.e., when xp belongs to class �
i).� [� i(xp  � )  � i(xp)] The error measure (or loss) for output � i(xp  � ) when its target

value is � i(xp) (i.e., when xp does not belong to class �
i).

� [� i(xp  � )  � i(xp)] � f (1 � � i(xp  � ))� [� i(xp  � )  � i(xp)] � f (� i(xp  � ))
(6)

Using the definitions in tables 1 and 2 with (6), we can
express the average error produced by nt samples of x.
Note that these nt samples are grouped into P prototypes;
there are np samples of the pth prototype xp:

� =
1
nt

P�
p=1

N�
i=1

�
npi � f (1 � � i(xp  � ))

+ npi � f (� i(xp  � )) � (7)

Equation (7) can be restated as

� =
N�

i=1

P�
p=1

np

nt

�
npi

np
� f (1 � � i(xp  � ))

+
npi

np
� f (� i(xp  � )) � (8)

The law of large numbers leads to the following asymptotic
form for the average error:

lim
nt � � � =

N�
i=1

P�
p=1

P(xp) � P(�
i

�
xp) � f (1 � � i(xp  � ))

+ P(�
i

�
xp) � f (� i(xp  � )) � (9)

A necessary and sufficient condition for minimizing � in
(9) is

� � � � �
= 0 , which requires that

d
d� i(x  � )

� =
P�

p=1

P(xp) � � P(�
i

�
xp) � f  (1 � � i(xp  � ))

+ P(�
i

�
xp) � f  (� i(xp  � )) �

= 0 	 i (10)

where

f  (u) �= d
du

f (u)

Equation (10), in turn, is satisfied if

f  (� i(xp  � ))
f  (1 � � i(xp  � ))

=
P(�

i
�
xp)

P(�
i

�
xp)

=
P(�

i
�
xp)

1 � P(�
i

�
xp)

	 xp (11)
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Note that (11) is both a necessary and sufficient condition
for satisfying (10) for all possible distributionsof xp (which
are directly related to the class-conditional densities of x
(see section 3.1.1)). While it is possible to satisfy (10)
without satisfying (11) for some distributions of xp (e.g.,
some sets of class-conditional densities � � (x

� �
i) � ), (11)

must hold for (10) to hold independent of � � (x
� �

i) � . As a
trivial example, if P(xp) were zero for all but one prototype,
satisfying (10) would require satisfying (11).

Clearly, the Hessian of the average error (H
� � ) must be

positive definite in order for (11) to yield a minimum aver-
age error:

!!H� � !! � 0 (12)

One can show that if � in (4) is a strictly increasing function
of

� � i(xp  � ) � � � � �
, (12) will hold.

Equations (11) and (12) ensure a minimum of � but they
place no explicit condition on the form of � i(xp  � ). Since
we wish the outputs of the classifier to equal the a posteriori
probabilities, we can assure this equivalence by constrain-
ing the reasonable error measure’s functional form based
on (11):

f  (� i) =
� i

1 � � i
f  (1 � � i) 0 � � i � 1 (13)

Any function satisfying the conditions of (3) – (6) and
(10) – (13) is a reasonable error measure. Such a measure
will yield classifier outputs that asymptotically equate to the
a posteriori probabilities P(�

i
�
x), provided the functional

capacity of the classifier (i.e., the classifier’s ability to model
the function that maps the RV x to the a posterioris P(�

i
�
x)

for all xp ), embodied in the parameterization variable � , is
at least as great as the complexity of all the class-conditional
densities � (x

� �
i). This statement relies on the assumption

that these class conditional densities are restricted to those
that are well behaved (see section 3.1.1). This, combined
with the finding that a MLP with a single hidden layer of
adequate connectivity can — under mild constraints consis-
tent with our assumptions — approximate any continuous
function mapping x onto the N-dimensional hypercube [4],
assures that there exists a MLP that will accurately model
the Bayesian discriminant functions of any well-behaved
x , given a sufficiently large set of statistically independent
training samples.

Finally, one can show that any positively scaled reasonable
error measures is, itself, a reasonable error measure. That
is, if f 1(� ) is a reasonable error measure, then a f 1(� )
will also be reasonable if a � 0.

3.2 THE GENERAL REASONABLE ERROR
MEASURE APPROXIMATION TO THE
BAYESIAN DISCRIMINANT FUNCTION

If one defines the Bayesian discriminant function for the ith
of N possible classes as

gi(x) �= P(�
i

�
x) (14)

where

P(x) =
N�

j=1

P(x
� �

j) (15)

one can define the reasonable approximation error for the
ith discriminant function as

"
i �= #

x $f (1 � � i(x  � )) � gi(x)

+ f (� i(x  � )) � (1 � gi(x))% � (x) dx (16)

Additionally, one can define the aggregate reasonable ap-
proximation error as " =

N�
i=1

"
i (17)

Given (9), one can express the asymptotic average rea-
sonable error of the training set. One can in turn express
the asymptotic average reasonable error in terms of the
aggregate reasonable approximation error to the Bayesian
discriminant function expressed in (16) and (17). Duda and
Hart first showed such a relationship for the simple per-
ceptron trained with the MSE objective function in [6] (pp.
154-155). The symbol “& ” should be read as, “asymptoti-
cally equals.”

lim
nt � � � =

P�
p=1

P(xp)
N�

i=1

� P(�
i

�
xp) � f (1 � � i(xp  � ))

+ P(�
i

�
xp) � f (� i(xp  � )) �

=
P�

p=1

N�
i=1 ' P(�

i  xp) � f (1 � � i(xp  � ))

+ P(�
i  xp) � f (� i(xp  � )) (& N�

i=1 ) P(�
i) E $f (1 � � i(x  � ))

� �
i %

+ P(�
i) E $f (� i(x  � ))

� �
i % *

=
N�

i=1

� #
x

f (1 � � i(x  � )) � � (x
� �

i)� P(�
i) dx
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+ #
x

f (� i(x  � )) � � (x
� �

i) � P(�
i) dx �

=
N�

i=1

� #
x

f (1 � � i(x  � )) � (x  �
i) dx

+ #
x

f (� i(x  � )) � (x  �
i) dx � (18)

Since � (x  �
i) =

d
dx

P(x  �
i)

=
d
dx

P(�
i  x)

=
d
dx $P(�

i
�
x) � P(x)%

= P(�
i

�
x) � � (x) (19)

and� (x  �
i) = P(�

i
�
x) � � (x) (20)

one can re-state the expression of (18) as

lim
nt � � � =

N�
i=1

� #
x

f (1 � � i(x  � )) P(�
i

�
x) � � (x) dx

+ #
x

f (� i(x  � )) P(�
i

�
x) � � (x) dx �

=
N�

i=1

+,,,,,-,,,,,.
/
x $f (1 � � i(x  � )) � gi(x)

+ f (� i(x  � )) � (1 � gi(x))% � (x) dx0 1 2 34
i

5,,,,,6,,,,,7
= " (21)

Clearly then, minimizing the reasonable error measure of
(7) also minimizes the reasonable approximation errors of
(16) and (17). In order for " in (17) and (21) to be zero, it
is necessary that the MLP’s functional capacity exceed the
functional complexity of all the class-conditional densities� (x

� �
i) (see section 3.1.2).

3.3 SPECIFIC EXAMPLES OF REASONABLE
ERROR MEASURES

One family of reasonable functions, which can be derived
by inspection of (13), is

f (� ) = # � r (1 � � )r8 1 d� (22)

This family has two special cases of great practical impor-
tance.

3.3.1 r = 0: Information Theoretic objective functions

One function that satisfies the reasonable conditions is

f (� ) = # (1 � � )8 1 d�
= � log(1 � � ) (23)

— the functional expression used to implement the Cross
Entropy, Maximum Mutual Information, Kullback-Liebler
distance, and Maximum Likelihood objective functions
[7, 10].

3.3.2 r = 1: Mean Squared Error

The MSE objective function is also a special case of (22):

f (� ) = # � d�
=

1
2

� 2 (24)

3.4 SOME “UNREASONABLE” ERROR
MEASURES

Obviously, any objective function which does not satisfy
the necessary reasonable conditionswill be an unreasonable
function for estimating a posteriori probabilities. Neverthe-
less, many such unreasonable error functions will still yield
asymptotic Bayesian discriminant performance. If its out-
puts asymptotically reflect the correct ranking of the a pos-
terioris, an unreasonable error measure will yield Bayesian
discriminant performance. We discuss two classes of ob-
jective functions that are unreasonable.

3.4.1 Minkowski-R error measures

When the objective function is of the form f (� ) = � R —
which corresponds to a Minkowski-R (LR) metric [9] — one
finds that the reasonable condition is satisfied only when

� R 8 1 =
�

1 � � (1 � � )R 8 1� R 8 2 = (1 � � )R 8 2

or R = 2 (r = 1 , in section 3.3.2). Another perspective is
that � is minimized when

� i(xp  � ) = R 9 1

:
P(�

i
�
xp) � ; R 9 1

:
P(�

i
�
xp)

+ R 9 1

:
P(�

i
�
xp)

< 8 1

6



which simplifies to = i(xp > ? ) = P(@
i A xp) only when R = 2

(note that the L2 metric is the MSE objective function).
Since an LR metric is reasonable only when R = 2 , this
argues against using LR metrics other than L2 when the
output of the classifier is being interpreted as an a posteriori
probability.

Figure 2 gives an intuitive feel for how various LR metrics
bias the output = i(xp > ? ) towards certainty (for R B 1),
or away from it (for R B C ): the minimum error value
for = i(xp > ? ) is plotted as a function of P(@

i A xp) for var-
ious values of R. It should be noted that while LR metrics
are generally not reasonable error measures, they do in fact
yield classifier outputs that asymptotically reflect the cor-
rect ranking of a posteriori probabilities.3 Strictly speak-
ing, they will yield Bayesian discriminant performance, and
one can defend their use in training classifiers if the biases
towards or away from certainty depicted in Figure 2 are not
excessive for one’s application.

3.4.2 Error measures with non-binary targets

Another class of unreasonable error measures is found if
one employs otherwise reasonable error measures with non-
binary targets D E F . In such cases the resulting error mea-
sure will not be reasonable. Whether or not the resulting
error measure reflects the correct a posteriori probability
rankings depends on the choice of non-binary targets. We
illustrate this point in the followingsections as we derive the
approximation error to the Bayesian discriminant function
for the MSE and information theoretic error measures.

3.5 THE MSE APPROXIMATION TO THE
BAYESIAN DISCRIMINANT FUNCTION

Using (16), one can define the mean-squared approximation
error for the ith discriminant function asG

i H= I
x J K = i(x) L gi(x)M 2L gi(x)2 + gi(x) N O (x) dx (25)

Additionally, one can define the aggregate mean-squared
approximation error as G =

NP
i=1

G
i (26)

One can express the average mean-squared error of the
training set as

MSE H= 1
nt

PP
p=1

NP
i=1 J npi Q K = i(xp > ? ) L E i(xp)M 2

3This is because R i(xp S T ) is asymptotically a strictly increas-
ing function of P(U i V xp).

+ npi Q K = i(xp > ? ) L E i(xp)M 2 N (27)

Following the litany of section 3.1.2, one can express the
asymptotic average mean-squared error as

lim
nt W X MSE =

PP
p=1

P(xp)
NP

i=1 J P(@
i A xp) Q K = i(xp > ? ) L E i(xp)M 2

+ P(@
i A xp) Q K = i(xp) L E i(xp)M 2 N (28)

From this asymptotic form, one can show that the necessary
condition for minimum MSE is

lim
nt W X = i(xp > ? ) =E i(xp) Q P(@

i A xp) + E i(xp) Q P(@
i A xp) Y xp(29)

For the case in which binary targets as specified in (5)
are used, the MSE objective function constitutes a reason-
able error measure, and the classifier outputs asymptotically
equate to the a posterioris. If E i and E i are both set equal
to the same value on the closed interval [0 > 1], this will lead
to a most undesirable asymptotic state in which all classifier
outputs converge to E i — a state of complete uncertainty
analogous to that attained by the Minkowski-R error metric
LX . For the case in which E i Z E i and both targets are
non-binary on [0,1], one finds that = i(xp > ? ) is no longer
an accurate estimate of P(@

i A xp) , although it does remain
a strictly increasing function of P(@

i A xp). For the bizarre
case in which E i [ E i, = i(xp > ? ) becomes a strictly in-
creasing function of P(@

i A xp) (or 1 L P(@
i A xp)). Figure 3

illustrates the effect of different target values on the asymp-
totic value of = i(xp > ? ) plotted as a function of P(@

i A xp).
As we shall see in the next section, this figure is relevant to
information theoretic objective functions as well.

Returning to (28) one can derive the asymptotic mean-
squared error (binary targets: E i = 1, E i = 0) in terms of the
aggregate approximation error to the Bayesian discriminant
function (expressed in (25) and (26)). Using derivational
procedures analogous to those of equations (18) – (21), one
finds

lim
nt W X MSE =

PP
p=1

P(xp)
NP

i=1 J P(@
i A xp) Q K = i(xp > ? ) L 1M 2

+ P(@
i A xp) Q = i(xp)2 N\ NP

i=1 J P(@
i) E ](= i(x > ? ) L 1)2 A @

i ^
7



+ P(@
i) E ](= i(x > ? ))2 A @

i ^ N
=

NP
i=1 _ I

x
(= i(x > ? ) L 1)2 O (x > @

i) dx

+ I
x

= i(x > ? )2 O (x > @
i) dx ` (30)

=
NP

i=1 _ I
x

] = i(x > ? )2 L 2 = i(x > ? ) + 1^Q gi(x) O (x) dx

+ I
x

= i(x > ? )2 K1 L gi(x)MQ O (x) dx ` (31)

=
NP

i=1 _ I
x

= i(x > ? )2 O (x) dxL 2 I
x

= i(x > ? ) gi(x) O (x) dx

+ I
x

gi(x) O (x) dx `
lim

nt W X MSE =

NP
i=1

abbbbbcbbbbbd
e
x K = i(x > ? ) L gi(x)M 2 O (x) dxL e

x (gi(x))2 O (x) dx + P(@
i)f g h ij

i

kbbbbblbbbbbm (32)

= G
This result is the MLP analog of Duda and Hart’s result for
the MSE-trained perceptron ([6], pp. 154-155). A compar-
ison of (32) and (25) confirms that each of the N terms in
(32) is equivalent to the mean-squared approximation error
term of (25). Thus, minimizing the MSE objective function
of (27) (binary targets) also minimizes the mean-squared
approximation errors of (25) and (26). Note that only the
first term in (32) depends upon the output activations = i of
the MLP. In order for G in (26) to be zero, it is necessary
that the MLP’s functional capacity exceed the functional
complexity of all the class-conditional densities O (x A @

i)
(see section 3.1.2).

Equation (32) illustrates the manner in which MSE is min-
imized during classifier training. The mean-squared ap-
proximation error term (G ) indicates that MSE is in fact
a weighted integral sum of the squared errors between the
MLP outputs = i and their corresponding discriminant func-
tions. The weighting factor is O (x) . The form of G

i in (32)

indicates that the approximation error minimization process
focuses on the mode(s) of x , where O (x) is large. This issue
is discussed further in section 5.

3.6 INFORMATION THEORETIC
APPROXIMATIONS TO THE BAYESIAN
DISCRIMINANT FUNCTION

Reference [7] shows that the information theoretic learn-
ing paradigms of Maximum Mutual Information, Kullback-
Liebler distance, and Maximum Likelihood lead to a rea-
sonable error measure known in the connectionist literature
as the Cross Entropy (CE) objective function [10]. This er-
ror measure applied to a single input sample xp belonging
to class @

i is expressed by

CE H=L NP
i=1 J E i(xp) log D = i(xp > ? ) F

+ (1 L E i(xp)) log D 1 L = i(xp > ? ) F N (33)

Given the Bayesian discriminant functions of (14), one can
define the cross-entropy approximation error for the ith
discriminant function as

G
i H= L I

x
]gi(x) log D = i(x > ? ) F

+ (1 L gi(x)) log D 1 L = i(x > ? ) F ^ O (x) dx

(34)

The aggregate cross-entropy approximation error is then
given by

G =
NP

i=1

G
i (35)

Given the definitions of tables 1 and 2, one can express the
total cross entropy of the training set as

CE H=L 1
nt

PP
p=1

NP
i=1 _ npi Q KE i(xp) log D = i(xp > ? ) F

+ n 1 L E i(xp)o log D 1 L = i(xp > ? ) F M
+ npi Q KE i(xp) log D = i(xp > ? ) F
+ n 1 L E i(xp)o log D 1 L = i(xp > ? ) F p ` (36)
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Following the litany of section 3.1.2, one can express the
asymptotic cross entropy as

lim
nt W X CE =L PP

p=1

P(xp)
NP

i=1 _ P(@
i A xp) KE i(xp) log D = i(xp > ? ) F

+ n 1 L E i(xp)o log D 1 L = i(xp > ? ) F M
+ P(@

i A xp) Q KE i(xp) log D = i(xp > ? ) F
+ n 1 L E i(xp)o log D 1 L = i(xp > ? ) F p ` (37)

From this asymptotic form, one can show that the necessary
condition for minimum Cross Entropy is

lim
nt W X = i(xp > ? ) =E i(xp) Q P(@

i A xp) + E i(xp) Q P(@
i A xp) Y xp(38)

— precisely the same condition required for minimizing
the MSE objective function. For this reason, the comments
following (29) and Figure 3 accurately describe the depen-
dence of information theoretic classifier outputs on target
values: binary targets yield classifier outputs that asymp-
totically equate to the a posterioris P(@

i A xp).

Returning to (37) one can derive the asymptotic Cross En-
tropy (binary targets: E i = 1, E i = 0) in terms of the ag-
gregate approximation error to the Bayesian discriminant
function (expressed in (34) and (35)). Using derivational
procedures analogous to those of equations (18) – (21), one
finds

lim
nt W X CE =L PP

p=1

P(xp)
NP

i=1 J P(@
i A xp) log D = i(xp > ? ) F

+ P(@
i A xp) log D 1 L = i(xp > ? ) F N (39)\ L NP

i=1 J P(@
i) E Klog D = i(x > ? ) F A @

i M
+ P(@

i) E Klog D 1 L = i(x > ? ) F A @
i M N

= L NP
i=1 _ I

x
log D = i(x > ? ) F O (x > @

i) dx

+ I
x

log D 1 L = i(x > ? ) F O (x > @
i) dx `

lim
nt W X CE =

NP
i=1

abcbd I
x

log D = i(x > ? ) F P(@
i A x)f g h i

gi(x)

O (x) dx

+ I
x

log D 1 L = i(x > ? ) F P(@
i A x)f g h i

1 q gi(x)

O (x) dx

kblbm
(40)

= G
A comparison of (40) and (34) confirms that each of the N
terms in (40) is equivalent to the cross entropy approxima-
tion error term of (34). Thus, minimizing the cross entropy
objective function of (36) (binary targets) also minimizes
the cross entropy approximation errors of (34) and (35). As
with the MSE objective function, it is necessary that the
MLP’s functional capacity exceed the functional complex-
ity of all the class-conditional densities O (x A @

i) in order
for G in (35) to be zero (see section 3.1.2).

Note that CE, much like its MSE counterpart, is a weighted
integral sum of the cross entropy between between the
MLP outputs = i(xp > ? ) and their corresponding discrim-
inant functions. As with the MSE objective function, the
form of G

i for the CE objective function in (40) indicates
that the approximation error minimization process focuses
on the mode(s) of x , where O (x) is large (see section 5).

4 CLASSIFICATION FIGURES OF
MERIT: LIMITED BAYESIAN
PERFORMANCE WITHOUT
EXPLICIT ESTIMATION OF A
POSTERIORI PROBABILITIES

The N-monotonic CFM objective function [8] is given by

CFMmono H= 1
nt

PP
p=1

NP
i=1 r npi Q s K t i(xp > ? )M u (41)

where

t i(xp > ? ) H= = i(xp > ? ) L max = j
v
=i(xp) (42)

Thus, for npi cases of the prototype xp , output = i(xp > ? )
represents the correct class @

i , while output = j
v
=i(xp) is

the most active output representing an incorrect class @
j
v
=i.

The function s K t i(xp > ? )M is typically a strictly increas-
ing continuously differentiable function of t i(xp > ? ). The
asymptotic form for CFMmono is

lim
nt W X CFMmono =

9



Table 3: A ranking of the N a posterioris (and their corresponding CFM terms) of CFMmono (xp) in (43).

P(@
r1 A xp) : s K t r1(xp > ? )M

P(@
r2 A xp) : s K t r2(xp > ? )M

P(@
r3 A xp) : s K t r3(xp > ? )Mw ww ww w

P(@
rN A xp) : s K t rN(xp > ? )M

kbbbbbbblbbbbbbbm =

abbbbbbbcbbbbbbbd
s (= r1 L = r2)s (= r2 L = r1)s (= r3 L = r1)wwws (= rN L = r1)

PP
p=1

P(xp)
NP

i=1

P(@
i A xp) Q s K t i(xp > ? )Mf g h i
CFMmono (xp)

(43)

\ NP
i=1

E KP(@
i A x) Q s K t i(x > ? )M M (44)

=
NP

i=1

I
x

P(@
i A x)f g h i

gi(x)

Q s K t i(x > ? )M O (x) dx (45)

Because s [t ] is a strictly increasing function of t ,s x [t ] Z 0 and it is impossible to find the maximum
of (43) by solving for the zero of its gradient with respect to
the outputs D = F . Furthermore, the identity of = j

v
=i(xp) in

(42) is stochastic, so (43) is not a continuouslydifferentiable
function of the classifier outputs. As a result one cannot an-
alytically determine the maximum CFMmono values of the
classifier outputs = i(x > ? ). Nevertheless, it is useful to con-
sider how CFMmono (xp) — the CFM for a single prototype
xp — in (43) is maximized. Table 3 depicts the a posteri-
oris and N CFMmono (xp) terms from (43) associated with
the prototype xp. The a posterioris are ranked in decreas-
ing order; their associated CFMmono terms are ranked in the
same order. Thus P(@

r1 A xp) is the largest a posteriori for
xp while P(@

rN A xp) is the smallest, and s K t r1(xp > ? )M is
the term involving output = r1 and its largest competitor= r2.

We wish to show that if the a posterioris are ranked as
shown in table 3, then the classifier output = r1 (underlined
in the last column in table 3) corresponding to class @

r1
will be the most active of all outputs when CFMmono (xp) is
maximized.

4.1 ASYMPTOTIC PERFORMANCE OF
CFMmono FOR s [t ] = u[t ]

Figure 4 illustrates three different functions (normalized
so that L 1 y s [t ] y 0) one might use to implement
CFMmono . The first of these functions is the Heaviside
step function (denoted by u[t ] ). Clearly this function is
an exception to the general rule stating that CFMmono is
a strictly increasing continuously differentiable function oft . This functional form is of interest for two reasons. First,

it is the MLP analog of the original perceptron learning
criterion (e.g., [6], pg. 141); second, it leads to a very
simple determination of the maximum CFMmono (xp) values
for the classifier outputs. When this objective function is
used to implement CFMmono learning, one can see readily
from table 3 that CFMmono will be maximized if output = r1
is marginally bigger than any of its competitors. Because
ux [t ] = 0 Y t z= 0 , there is no numerical incentive for= r1 to be made any more than marginally larger than its
competitors. The relative activation of outputs = r2 B = rN
is irrelevant beyond their being less that = r1. Thus, the
Heaviside step functional form of CFMmono implements the
Bayesian discriminant function — albeit marginally – for
asymptotically large training sets.

4.2 ASYMPTOTIC PERFORMANCE OF
CFMmono FOR STRICTLY INCREASING
DIFFERENTIABLE FUNCTIONS OF t

In practice, learning with a discontinuous s [t ] like the
Heaviside step is unstable. One can achieve stable learning
using strictly increasing continuously differentiable func-
tions of t [8]. One can analyze the asymptotic behavior
of these functions by considering their effect on a set of
classifier outputs in the initial equilibrium state for which
all outputs are equal. If we define s e as the value of the
CFMmono function s [t ] when its argument t = 0, and s xe
as the derivative of the CFMmono function at this same point
(see inset in Figure 4), we can observe how the outputs
will be perturbed from the equilibrium point as CFMmono is
maximized. A differential positive change in the value of= r1 results in a change to the over-all CFMmono of

dCFMmono (t = 0)
d= r1 { =s xe Q P(@

r1 A xp) L s xe Q P(@
r1 A xp) (46)Z 0 iff P(@

r1 A xp) Z P(@
r1 A xp)

or P(@
r1 A xp) Z 0 w5

A differential negative change in the value of = r1 results
in a re-ordering of the output rankings; = r1 becomes the
least active output (all the other outputs remain unchanged),
so all the terms in the right-most column of table 3 are
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altered to reflect this change in the identity of the most
active competitor (refer back to (42)), and the net change in
CFMmono is given by

dCFMmono (t = 0)
d= r1 | = L s xe Q P(@

r1 A xp) [ 0 (47)

One can show that altering any of the outputs= r2 > = r3 > w w w = rN independent of any alteration to = r1 from
the equilibrium point always results in a net reduction in
CFMmono

dCFMmono (t = 0)
d= rj

v
= r1 { =L s xe Q P(@

rj A xp) + s xe Q P(@
rj A xp)[ 0 (48)

dCFMmono (t = 0)
d= rj

v
= r1 | = L s xe Q P(@

rj A xp) [ 0 (49)

Equations (46) – (49) do not indicate what the optimum
values for = r1 B = rN are when P(@

r1 A xp) Z 0 w5. These
optimal values depend on the specific functional form ofs [t ]. When s [t ] is a linear function of t , the optimal
values of the outputs are = r1 = 1 and = rj

v
= r1 = 0. Non-

linear functional forms (such as the “maximally flat” one
shown in Figure 4) tend to produce non-binary outputs= r1 [ 1 and = rj

v
= r1 Z 0.

Equations (46) – (49) show that the equilibrium point yields
sub-optimal CFMmono only if the largest a posteriori is
greater than 0.5. Since the class boundaries for an N-
class problem are defined as the connected set of points
on x at which all non-zero a posterioris are equal, continu-
ously differentiable CFMmono functions will (in theory) fail
to form decision boundaries in regions on x where there are
more than two non-zero a posterioris for asymptotically
large training sets. Moreover, these equations indicate that
continuously differentiable CFMmono functions will set all
classifier outputs equal in all regions on x where no a
posteriori exceeds 0.5 — conceivably a large fraction of
the domain of x when the number of classes N is large.
While these asymptotic limitations would seem to render
the CFMmono class of objective functions useless for classi-
fication, in practice the functions compare quite favorably
with reasonable error measures. Equation (44) may provide
some insight into this apparent inconsistency.

Using the definition of correlation (denoted by } ), we can
define the correlation between the ith CFMmono term and its
corresponding a posteriori by

} i(? ) =n E KP(@
i A x) Q s K t i(x > ? )M M

L E KP(@
i A x)M E K s K t i(x > ? )M M oQ n Var KP(@

i A x)M Q Var K s K t i(x > ? )M M o q 1~ 2
(50)

As a result, it is possible to express (44) as

CFMmono
\

NP
i=1 � � Var KP(@

i A x)M Q } i(? ) Q � Var K s K t i(x > ? )M M
+ P(@

i) Q E K s K t i(x > ? )M M � (51)

Since the terms � Var[P(@
i A x)] and P(@

i) are not func-
tions of the classifier’s parameters ? , they are constants
vis-a-vis optimizing CFMmono in (51). Thus, maximiz-
ing CFMmono tends to maximize the correlation between
P(@

i A x) and s K t i(x > ? )M , along with the expectation and
variance of s K t i(x > ? )M for each class @

i over the entire
domain of x. In fact empirical studies bear this out. Clas-
sifiers trained with CFMmono objective functions and rela-
tively small sets of statistically independent samples tend to
yield outputs with higher variance than their reasonable er-
ror measure counterparts; CFMmono -trained classifiers also
tend to yield multiple outputs with high activations when
uncertain as to the class of a test sample. There is strong
correlation between P(@

i A x) and s K t i(x > ? )M as indicated
by the CFMmono classifiers’ median error rate of 1.5% on a
speaker-dependent /b,d,g/ phoneme recognition task [8].

5 COMMENTS ON THE
APPLICABILITY OF THESE PROOFS
TO THE STUDY OF
GENERALIZATION IN MLP
CLASSIFIERS

When one sets out to classify an RV x , the total num-
ber of statistically independent training samples nt and the
functional capacity (denoted by ? ; see section 3.1.2) of
one’s classifier are two factors that will determine in large
part the classifier’s ultimate performance. We reproduce
expressions for the MSE and information theoretic reason-
able error measures and the analogous expression for the
CFMmono objective functions in order to illustrate the im-
portance of these factors. Probabilities that rely on the
asymptotic statistics of the training data are now presented
as estimates (denoted by brackets “ � � ”) of the true underly-
ing probabilities:

MSE \
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NP
i=1

abbcbbd I
x ��� = i(x > ? ) L � P(@

i A x)f g h i
gi(x)

� ��� 2 � O (x)� dx

L I
x

� (P(@
i A x)f g h i

gi(x)

)2 � � O (x)� dx

+ � P(@
i)� kbbblbbbm (52)

CE \
L NP

i=1

I
x ��� � P(@

i A x)f g h i
gi(x)

� log D = i(x > ? ) F
+ ��� 1 L � P(@

i A x)f g h i
gi(x)

� ��� log D 1 L = i(x > ? ) F ���Q � O (x)� dx
(53)

CFMmono
\

NP
i=1

I
x

� P(@
i A x)f g h i

gi(x)

� Q s K t i(x > ? )M � O (x)� dx (54)

Equations (52) – (54) indicate that the optimization of all of
these objective functions depends on accurate estimates of
the a posterioris and PDF of x — functions of the training
set itself. Optimization also depends on sufficient func-
tional capacity in ? . Finally, optimization — and thereby
approximation of Bayesian discriminant performance — re-
lies on the behavior of each objective function given some
fixed number of training samples nt and some fixed param-
eterization of the classifier ? .

In simplistic terms, there are four possible circumstances
one will encounter:� nt B C ; ? sufficient: For the case in which one has

plenty of independent training samples, one’s training
data will yield accurate estimates of the a posterioris
and PDF of x over its entire domain. Furthermore,
one’s classifier will have sufficient functional capac-
ity to model these estimates, and one will achieve
Bayesian discriminant performance.� nt B C ; ? insufficient: For this case, the estimates of
the a posterioris and PDF of x will be accurate, but the
classifier will have insufficient functional capacity to
model them. As a result, the classifier will not achieve
Bayesian performance.

� nt � C ; ? sufficient: In practice one rarely has ac-
cess to a sufficient amount of training data. In such
cases the data will constitute poor estimates of the a
posterioris and PDF of x. If the classifier has sufficient
parameterization it will learn these inaccurate proba-
bilistic estimates and will generalize poorly on disjoint
test data ([6], section 3.8).� nt � C ; ? insufficient: For the case in which one has
insufficient data, it is often advantageous to train a clas-
sifier with reduced parameterization. In such cases the
data will constitute poor estimates of the a posterioris
and PDF of x, but the classifier will not have sufficient
functional capacity to learn the less representative fea-
tures of these inaccurate probabilistic estimates. In-
stead it will have only enough capacity to learn the
gross features of these poor estimates, and generaliza-
tion to disjoint test data will be as good as warranted
by the training data.

This case has been studied in great detail from a num-
ber of different perspectives. PAC4 analysis of learn-
ing using VC dimension applies a worst case analysis
to the problem of learning from examples by deriving
bounds on the number of exemplars needed to attain
(with a desired probability) a desired accuracy. The
VC dimension is defined only for concept classes that
are discrete, or in connectionist parlance, for binary
outputs (but potentially continuous inputs). Discrete
concept classes require that the class-conditional den-
sities of the input RV O (x A @

i) be non-overlapping.
For this reason the PAC formalism does not apply to
our situation, in which estimates of a posteriori proba-
bilities, or of the "best guess classification" (where the
best guess might not be very accurate) are required.

VC PAC analysis has been applied to feedforward net-
works of binary threshold elements, to which we direct
interested readers’ attention [2].

The study of classifier generalization is typically viewed as
a problem of determining the optimal parameterization for
a classifier, given some fixed number of training samples.
Interest in the functional form of the objective function used
to train the classifier has rarely gone beyond establishing
its validity as a learning metric on some information theo-
retic basis. But (52) – (54) clearly illustrate that different
objective functions approximate the Bayesian discriminant
function in markedly different ways. In this sense, given
fixed nt and ? , each objective function represents a dif-
ferent estimator of the Bayesian discriminant function. In
detection and estimation theory, estimators are evaluated
in terms of their bias and variance for finite sample sizes.
Good estimators are those that are unbiased with minimal
variance (as determined by the Cramér-Rao bound [5]);
such estimators are characterized as “efficient”. We feel
that the study of generalization in MLP classifiers can be

4Probably Approximately Correct.
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advanced by placing more emphasis on theoretical compar-
isons of objective functions as estimators of the Bayesian
discriminant function. The derivations of this paper serve
as a point of departure for such comparisons.

6 SUMMARY

Multi-Layer Perceptrons can be trained with two broad
classes of objective functions to yield Bayesian discrim-
inant performance. Reasonable error measures yield MLP
outputs that (under conditions summarized below) asymp-
totically converge to the a posteriori probabilities associ-
ated with the input RV. Mean-squared error and information
theoretic objective functions prove to be reasonable error
measures. Classification Figures of Merit (CFMmono ) yield
MLP outputs that generally reflect the identity of the max-
imum a posteriori associated with any sample of the input
RV for asymptotically large training sets.

The conditions necessary for MLP Bayesian discriminant
performance (given that the classifier is trained with a rea-
sonable error measure or a CFMmono objective function) are� The class-conditional densities of the input RV must

be “well-behaved” to the extent that their complexity
must be bounded (section 3.1.1).� The functional capacity of the MLP classifier, ex-
pressed in its parameterization ? , must be sufficient to
model the class-conditional densities of the input RV
(section 3.1.2).� The MLP training set must contain an asymptotically
large number of statistically independent training sam-
ples.

Given these results, we are inclined to view architecturally
identical MLPs trained with different Bayesian objective
functions as alternative estimators of the Bayesian dis-
criminant function. We offer these results as a basis for
evaluating MLP classifier generalization in the context of
traditional detection and estimation theory.
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Figure 1: The general N-class classification problem.
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Figure 3: The minimum MSE value of � i(xp � � ) is plotted
as a function of P(� i � xp) for various training target values.
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Figure 4: Three different functional implementations of the CFMmono learning rule: Heaviside step, linear, and “maximally
flat”. Inset: a CFMmono function in the vicinity of   = 0.
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