
Creating Formal Specifications with Analogical Reasoning
D.P. O’Donoghue1 and R. Monahan1 and D. Grijincu1 and M. Pitu1 and F. Halim1 and F. Rahman1 and Y.

Abgaz1 and D. Hurley1

Abstract.1 We describe the Arís (Analogical Reasoning for
Implementations and Specifications) system that uses analogical
reasoning to create formal specifications for a given
implementation. Arís is built on the hypothesis that structurally
similar implementations often represent similar functionality. It
leverages this similarity to create new specifications, by analogy to
a retrieved similar example. Of course some similarly structured
implementations provide different functionality, so a major focus
of Arís is to discriminate between analogous and dis-analogous
pairs of code. Examples are used to highlight Arís’ ability to create
specifications, across a range of similar implementations and even
similar algorithms. Results are presented on Arís ability to create
verified specifications for a sample of ten textbook problems. We
argue that Arís both emulates and supports the workaday little-c
creativity of formal software developers.

1 INTRODUCTION

The Arís2 system described in this paper, targets an audience of
software developers through the creative reuse of existing formal
specifications by re-applying them to new and dissimilar source
code implementations. Writing computer source code is a complex
and creative task [1], programmers exhibit Gardner’s little-c

creativity [2] as part of their regular production of new or updated
software artefacts. But the task of writing formal specifications for
source code can be even more challenging, requiring knowledge of
the source code, the formal specification system and the underlying
theorem prover being used to verify the correctness of the
specifications' implementation. The system presented in this paper
can be considered at Boden’s [3] combinatorial level of creativity,
combining the facilities of the Spec# and C# languages. However,
one might consider each implementation and specification pair to
be H-creative [3] artefacts. This paper uses an inspiring set of
source code implementations (written in C#), for which we require
accompanying specification code (in Spec#).

This paper adopts a process centred approach to creativity,
based on the analogical reasoning process - for a wider discussion
on process vs. product centred creativity and created artefact that
are themselves processes see [4]. Analogical thinking is a very
powerful technique contributing to the creativity of scientific,
artistic and other disciplines [3, 4, 5, 6]. An analogy creates a new
likeness between some problem (target) and some well-known
base that is used to bring a new understanding to bear on that
target. It has also been noted that creative insight often involves
analogies with a strong imagery component [7]. Analogy models

1 Department of Computer Science, National University of Ireland

Maynooth, Co. Kildare, Ireland. email: Diarmuid.ODonoghue@nuim.ie
2 Arís is an Irish word meaning ‘again’ and is pronounced “ah-reesh”.

have previously addressed technical problems in; diagrammatic
sketch understanding [8], processing topographic maps [9] and
design [10].
 We describe the Arís [11, 12] system that uses analogical
reasoning to create new specifications for a given implementation,
reusing similar – and not so similar - source code that already
contains specifications. Arís [11] originally required near identical
implementations to generate new specifications. But more recently
[12] we have focused on creating specifications for less similar
implementations. Arís adapts Gentner’s Structure Mapping Theory
[13] to the task of re-purposing formal software specifications from
one implementation, for re-use in another implementation. This
paper will make it clear that the Arís system possesses the essential
qualities of creative systems: novelty and quality [3].
 The creation of new software artefacts has not received a great
deal of attention from the computational creativity community.
Disciplines like evolutionary and genetic programming routinely
generate programs, but have not explicitly looked at producing
creative outputs. Togelius et al [14] review the emerging topic of
Procedural Content Generation devoted to the creation of new
content for playable computer games. Cook et al [1] discuss the
MechanicMiner system that generates new game mechanics for
platform games, using evolutionary computing approaches.
However, these systems are focused on creating new game
dynamics and not on creating “general propose” software artefacts.
Rebuilder [15] does address general purpose software design using
analogical reasoning. However, Rebuilder is focused on software
design specified at the UML class diagram level, whereas Arís
focuses on the lower level of implementation and specification
code.
 The paper is structured as follows. First we describe the
background to our work. We then explain how the Arís system
identifies similar source code artefacts, re-purposing their
specifications to create “similar” specification in the problem code.
A simple example is used to highlight the operation of each phase
of Arís. We then discuss a series of examples showing how Arís
creates specifications for surprisingly different pairs of code.
Results are presented of Arís creating specifications for 10 problem
methods using source code information only, using a database of
43,051 methods.

2 BACKGROUND

Programming is often seen as a creative endeavour. A study of
over 680 programmers involved in free/open source software [16]
found that the most pervasive factor motivating their participation
was “how creative a person feels when working on the project”.
The authors note that, for example, writing a device driver for an

operating system may not be considered very creative by an
outside observer, it is often rated as very creative by those engaged
in the project. They point to the subjective, personal interpretation
of creative acts offered by Amiable [17]. The majority of
respondents reported frequently losing track of time when engaged
in programming – something that Amiable attributes to the “flow”
[18] associated with creativity. Thus, we argue that producing
source code is considered by many of those involved at least, to be
a creative endeavour. We further argue that the production of
formal specifications for these implementations can also be
considered a creative endeavour.
 Writing formal specifications for source code is frequently
taught at advanced undergraduate or postgraduate levels. The
objective is to write formal declarative “contracts” which describe
the behaviour of a piece of software [19]. Automatic verification
tools, such as the Spec# programming system [20], KeY [21] and
ESC/Java [22] are used to statically verify that all future executions
of the corresponding software are correct with respect to its
contract.
 Software verification is often associated with safety-critical
systems (nuclear reactor control, air travel, telecommunications
and transportation systems) but are also being deployed to other
areas as the supporting tools become more advanced [23, 24, 25,
26]. Automatic verification tools are run like a compiler, returning
a list of compilation/verification error messages, if they exist.
These tools translate both the specification and the implementation
to an intermediate representation language, from which proof
obligations are generated using Dijkstras' weakest precondition
calculus [27]. These conditions are input into various theorem
provers/SMT solvers which discharge the proof obligations if the
implementation is correct. If the implementation cannot be
verified, error messages regarding the proof obligations that cannot
be discharged are reported. Errors primarily arise due to either
incorrect specifications or incorrect implementations. In these
cases the user must revisit these program components to correct
them. Errors can also occur due to the system’s inability to
automatically prove that the verification conditions can be
discharged. In this case the user must interact with the verification
system, by adding proof assisting assertions which contribute to the
verification process.
 In the past decade automated verification tools have become
more powerful, primarily due to the major advances in SMT solver
techniques. The verification tool used by Arís is the Spec#
programming system [20]. Spec# is an automated verifier for C#
programs, which uses the Boogie [28] intermediate representation
language to help generate proof obligations, and a back-end SMT
solver called Z3 [29] to discharge these obligations. While these
tools are becoming more powerful, the major difficulties facing
their users concern: (a) learning how to write good assertions to
express what the program must achieve; (b) given a correct
specification, produce a correct program whose verification is
easily achieved; and (c) reuse proof strategies within the tools.
 This paper discusses the Arís analogy-based system, which
addresses these difficulties through offering computational
creativity to an audience of formal software developers. It
automates the steps involved in writing specifications, taking its
inspiration from existing verified programs. For a given
implementation without a formal specification, Arís retrieves
similar verified code and seeks inspiration from the retrieved
specification that accompanies the retrieved code. It both creates
new formal specifications and assists developers in the process of

creating computer code. Arís finds appropriate analogs for a
presented problem and exploits these richer bases to suggest novel
and useful inferences – in the form of Spec# code. The motivations
for undertaking this work include: guaranteeing that software
functions correctly, according to a given specification; reduction of
the cost of developing formal software systems; and assisting
developers in the creation of formal specifications. This is
particularly beneficial when training software developers in a new
discipline or when automatically generating formal specifications
for libraries of code, so that it can be verified correct, to meet
certification requirements. In addition, Arís explores the creative
challenges found in a highly technical discipline, displaying some
creative flexibility [30] and even greater fluency.

2.1 Analogy Models and Creativity

This subsection briefly reviews some previous models of
analogical reasoning. MAC/FAC (Many are Called/Few Are
Chosen) [31] models similarity based analogy retrieval, by a two-
phase retrieval and mapping strategy. ARCS (Analog Retrieval by
Constraint Satisfaction) [32] was also designed to identify the best
analogy between a given target and a collection of base domains,
incorporating semantic and structural factors in the process. Baydin
et al [33] create analogs to describe a given problem, but do not
look at inferences to extend that problem description. O’Donoghue
et al [34] identified creative scientific analogies from within a
corpus of domain descriptions, but this too relied on handcrafted
data. Dr Inventor [35] aims to support creative reasoning for
different types of automatically processed “research objects” [36],
whereas Arís is specifically tailored to re-adapting existing
software artefacts.

3 THE ARÍS SYSTEM

Arís (Analogical Reasoning for Implementations and
Specifications) takes a problem method as its input and identifies
functionally similar methods from its repository of methods. Arís is
built on a multi-phase model of analogical reasoning encompassing
the phases of; representation, retrieval, mapping and validation.
By finding analogous source code, Arís aims to adapt the retrieved
specification to its new problem context. We may also think of
Arís as a Case-Based Reasoning (CBR) [37] assistant for software
development, encompassing the phases of retrieve, reuse, revise

and retain. We note other CBR systems have also been used to
address creative challenges, from creative explanations [38] to
creative design [15] .

Arís is an analogy-based system for creating formal
specifications (written in the Spec# language) for a given
implementation written in the C# programming language. Thus
Arís creates new precondition (requires) statements, post

condition (ensures) statements and invariant (invariant)
statements that form verifiable formal contracts for the given
source code. It also outputs assume and assert statements that act
like directives to the underlying SMT solver, to overcome
efficiency and proof strategy related issues. Like [31], Arís uses an
inexpensive retrieval phase to identify candidate bases, which are
then examined in more detail by the more detailed and expensive
mapping phase.

3.1 The Code Base - Data

For this paper, we created a database of 43,051 C# programs
obtained from SourceForge, CodePlex and similar repositories.
Each program contained one method which typically consisted of
approximately 30 lines of source code. However, only 127 Spec#
specifications were contained in this database, obtained from only
29 methods. This small amount of specification code necessitated
the creative re-use of existing specifications to as-broad-a-range of
implementations as possible. This involved a flexible but still little-

c creative process, creating and suggesting solutions for diverse
pairs of source code artefacts.
 We envisage Arís operating as a practical tool, creating
specifications for a presented method. While Arís could iterate
through all available methods to find a related specification, this
“exhaustive search” approach would not scale well to large
numbers. Instead we evaluate Arís using a more realistic scenario,
retrieving relevant specifications based only on implementation
details. Thus 43,022 of the available methods acted as
“distractors”, testing the ability of Arís to identify relevant
specifications using only the implementation details.

public static int Summation(int k){

 int s = 0;

 for (int n=0; n < k; n++)

 s = s + n;

 return s;

 }

Figure 1: The target problem needing formal specification

The specifications that are required to enable the source code
implementation in Figure 1 to be successfully verified (after
variable renaming) are highlighted in the functionally similar
source code in Figure 3. We highlight that “functionally similar”
[39] and matching code may use different data types, different loop
constructs, may involve additional unmatched identifiers and other

differences. Arís was designed to support code reuse across this
breadth of implementation details.

3.2 Representation

The fundamental unit of representation in Arís is a method of
source code and the statements that implement that methods
functionality. That is, each source and target analog represents the
source code implementation of some method. In this paper we will
focus on target problems that describe some implementation for
which we require a formal specification. To this end, the source
domains at our disposal contain both the implementations and
associated specifications.

To support later processing the source-code is first translated
into the abstract syntax tree by a compiler. This syntax tree is then
processed to generate the corresponding code graph, which is a
semantic network representation of the source code constructs and
their inter-relationships. It is this code graph that is used by Arís
for most of its activities. Code graphs use 18 categories of concept
node (boxes with squared corners) in Figure 2, using the
categories: assignment, block, class, compareOp, Enum, field, if,

logicalOp, loop, mathOp, method, methodCall, namespace, null,

string, switch, tryCatch and variable. There are 6 types of relation
node (round-cornered boxes with italic text) in Figure 2, using the
categories: condition, contains, defines, depends, parameter and

returns. For example, a loop node can contain any of the following
statements: for, while, do-while and forEach while
a comparator node can contain: ==, >, <= etc.

A 30 line method typically produced a code graph containing
around 78 concept and relation nodes. Most of Arís’ subsequent
processing uses code graphs rather than the “raw” source code.
Multiply referenced variables such as input parameters are
frequently involved in multiple relation nodes within a CodeGraph.
In Figure 2 the input parameter “k” is also involved in a
“CompareOp” node. Arís’ analogy process will try to reuse
specifications attached to similarly structured CodeGraphs.

Figure 2: A CodeGraph depicting the deep structure of the source code listed in Figure 1

3.3 Retrieval

Rebuilder [15] has highlighted the crucial role that retrieval plays
in the reuse and adaptation of pre-existing software artefacts. Like
Rebuilder, Arís combines semantics and structure in its retrieval
process to identify both isomorphic and homomorphic code

graphs. Arís derives a vector space model from each code graph to
allow quick and inexpensive comparison between vectors. Among
the vector representations used are firstly, numeric identifiers for
each distinct API method call. A document-term relevance (using
TF-IDF) indicates the strength of the association between the API
terms and pre-stored documents in the collection. Secondly, graph-
based metrics derived from the code graphs, represent the number
of concepts for each node type, number of relations, node
references etc. Finally, Damerau-Levenshtein edit distance
estimates the difference in the sequential arrangements of the API
calls between methods. These metrics are generally very efficient
at identifying a small fraction of the available bases that will be
examined in greater detail by the subsequent mapping phase. A
simple threshold is used to determine which items are deemed to be
retrieved and which are not returned by the retrieval process.

3.4 Mapping

Arís next identifies the mapping between the base and target – to
identify the detailed pre-existing similarities. Hard constraints upon
the potential mappings considered ensure that only concept and
relation nodes from the same categories can be mapped together.
This greatly simplifies and expedites the mapping process, which is
a variant on the NP-complete Maximum Common Sub-graph
Isomorphism problem.

Arís is based on an incremental model of the mapping process
[12, 34] that favours the development of mappings that place
sequentially related lines of code in a mapping. It has a strong
preference for isomorphic or near isomorphic mappings – within
the bounds of the hard mapping constraint (a for node mapped to
a while node). Arís uses a 2-way mapping between code graphs –
by averaging the mapping size from base to target and also from
target to base. This helps ensure the greatest similarity between the
two code graphs. This was necessary because unmapped base or
target code has a detrimental effect on the creation of new
specification code. Use of a 2-way mapping appears to effectively
overcome these problems. A mapping threshold rejects mappings
that are too small to support viable inferences.

This mapping phase identifies paired items between the two
implementations in Figures 1 and 3. As part of this it maps the for
loop to the while loop, aligning their counter variables by
sourcing them from the code graphs. In this way surprisingly
dissimilar methods can form useful mappings.

Some of the items paired by Arís for the code in Figures 1 and 3
include: Sum <-> summation, x <-> k, s <-> add, k <-> n.
However Arís is tolerant to the many differences within a mapping,
including: for <-> while (different statements), s=s+n <->
add+=k (different expressions) as well as unmapped variables
(irrelevantVariable in the base) and unmapped statements
(console.WriteLine in the target). We note that all these
differences occur within a single mapping between two code
graphs, highlighting the wide range of differences that are allowed
between two mapping fragments of code in Arís.

public static int Sum(int x)

 requires 0 <= x;
 ensures result==sum{int i in (0:x); i};
 {

 int add = 0; int k = 0;

 int irrelevantVariable = 0;

 Console.WriteLine(irrelevantVariable);

 while (k < x)

 invariant k <= x;

 invariant add == sum{int i in (0:k); i};{

 add += k; k = k-1; k = k +2;}

 return (int)add;
}

Figure 3: Arís identified this code as being analogous to the problem listed
in Figure 1. Arís adapts the specifications (highlighted in yellow) to the

problem code.

We also highlight some of the potential problems that may arise,

even when very simple base and target constructs are mapped
together. A base containing while <condition> might map
with the target while (true). But no loop invariants should be
created for while (true) as the loop will never terminate
(unless of course a break statement has also been used!). Such
intricate problems pervade Arís’ attempts to re-create
specifications for non-identical methods. Distinguishing between
analogous and dis-analogous bases is primarily addressed by the
evaluation phase of Arís.

3.5 Inference and Validation

While the mapping process identifies pre-existing similarities, it is
the generation of inference that creates new specification code.
Arís uses the standard “pattern completion” algorithm [40] applied
to the inter-code mapping, to create new Spec# code.

Not only does Arís support the creation of new formal
specifications for a given segment of code, it also interacts with an
external SMT solver to help ensure the quality of the C#
implementation using those newly generated Spec# specifications.
Spec# code that successfully verifies is automatically accepted.
However, unverified Spec# code is presented to the (human) user
for possible adaptation, thereby using Arís in its role as a creativity
assistant tool.

Not only must Arís generate the correct specifications, but must
also insert them in the correct location in the problem code. The
first two specification components (the precondition and the post
condition) must be placed between the method header and the
opening bracket. The two invariants (which state the
conditions that should be true every time the loop iterates) must be
placed immediately before the opening bracket of the for loop.
We point out that variables k and add, in Figure 3, are referenced
both by the implementation and the specification, allowing the
tools to reason about the correctness of the specification as realised
by the given implementation.

4 ARÍS AS A CREATIVITY TOOL

In the simplest case Arís might retrieve source code that is lexically
identical to a presented problem. In such a situation involving two
lexically identical implementations, the specifications can be

trivially transferred between the two methods. However, presenting
an implementation that is lexically identical (sometimes called
code clones) to some stored code is extremely infrequent.

Even very small differences between two implementations can
cause significant differences in behaviour, making any pre-existing
specifications in one inapplicable to the other implementation.
Despite such problems, Arís is surprisingly successful at creating
new specifications that automatically verify using the Spec#
programming system. For the summation example in Figures 1 and
3 above, Arís identifies the correct mapping and the newly created
specifications verify automatically with the given target problem.

We argue that because Arís can produce new specifications for
target problems that are surprisingly different from the available
bases, its outputs (source code plus specifications) can be
considered novel. The argument that its outputs are useful would
appear to be more obvious. The argument in support of the
creativity of Arís may be supported using Gardner's four facets of
creativity (in [2] pp 33-35). Firstly, Arís is aimed at practitioners
working within a specific domain – in this case formal software
developers (which Gardner contrasts with general purpose
creativity). Secondly, Arís is aimed at being regularly creative (at
different levels), rather than being a tool for 1-off creativity.
However, Arís does not possesses the ability to “ask new

questions” of a domain. Finally, the acceptance by a culture of its
creative outputs is crucial to Arís – in terms of automatic
verification of its outputs (using a theorem prover) and in its role as
a “creative assistant” to prompt a software engineer with
potentially useful but unverified specifications.

5 ARÍS AS A CREATIVITY ASSISTANT

While similar implementations can sometimes lead to the reuse of
associated specifications, there is no guarantee that these
specifications will be valid within the target context. Arís also
creates many more specifications that are rejected by a verification
tool but that might prompt a novice specification writer to create a
verifiable specification.

5.1 Analogous Implementations

Even very small differences between mapped portions of source
code can impact the validity of associated specifications. The most
similar implementation found in a repository to a given problem
will often contain many of these differences, when aggregated
together may not support the same formal specifications. However,
some dissimilar implementations will inevitably be functionally
similar and should support the same types of formal specification.
Adapting specifications between similar (but not identical)
implementations is a creative endeavour.

Even a single character difference between the base and
problem can result in the newly created specifications being
rejected at the verification stage. For example, a base program that
calculates the minimum of two variables x and y will have a post
condition of the form ensures (x<y)? result == x:
result == y. Now consider a target that calculates the
maximum of two variables a and b. Arís will match with this
program and a new specification will be created, renaming the
variables to a and b. However, the minimum program with the post
condition above will not be automatically verified by the Spec#

tools. However, the failed specification might prompt the user to
change the “<” character and create the correct post condition
ensures (a>b)? result == a: result == b.

A similar situation can be seen where one formally specified
program sorts an array into increasing order and another program
without a specification sorts an array into decreasing order. The
specifications created by Arís for the second program, do not verify
automatically. The theorem prover issues warning messages
indicating an unsatisfied post condition and a loop invariant that
does not hold. But using Arís as a creativity assistant, a software
developer might again change the “<” (in the specification code
below) to “>” for successful verification. Thus the rejected
specification prompts the user to create the successful specification
- ensures (result == true) ==> forall{int i in
(0 : arr.Length-1); arr[i] <= arr[i+1]}

5.2 Analogous Algorithms

The next example involves mapping different algorithms as well as
implementation details. When verifying a binary search program
(which searches within sorted data), Arís may match with an
implementation of a Linear Search algorithm (performing search in
un-sorted data). In this case the post condition of the linear search
can be re-applied to the Binary Search algorithm. The
implementations are also significantly different where one simply
searches through the sequence of unordered data until the value is
found and the other uses a partitioning technique on the ordered
data to find the value more efficiently. The post condition for both
of these algorithms are identical but the users creativity is required
for the precondition of the Binary Search, stating that the input data
is ordered i.e. forall{int i in (0: a.Length), int
j in (i: a.Length); a[i] <= a[j]}

5.3 Further Creative Proof Strategies

As already shown using loop invariants, verification tools often
require the user to provide information in addition to preconditions
and post conditions, in order to contribute to the proof strategy
used to achieve automatic push button verification. This additional
information takes the form of the loop invariant, which states
the conditions that are true throughout an iterative section of code;
assert statements, which indicate to the verifier which
conditions it should check; and assume statements, which provide
user-added assumptions to the proof strategy used in the
verification. These invariant, assertions and assumptions are all
added to the source code as annotations. Typically usage of
assert is in verifying loop termination and in providing hints to
the verifier to direct the overall proof strategy. Arís allows for the
transfer of assertions to new program verifications, in both
scenarios. While developing a new proof, assumptions such as
assume x != null can be used to modularise the proofs,
thus assisting the users creativity. Using Arís we reduce this proof
strategy burden on the user by detecting such annotations in similar
problems and presenting them for adaptation by the user so that
they can be used in the verification of the new problem.

6 RESULTS OVERVIEW

This section provides an overview of the results produced by Arís.
The source code for each ten methods (listed in Table 1) was
presented to Arís, which then attempted to produce new
specifications for each of these methods. The codebase described
in Section 4.1 contained all 43,051 methods as well as a small
number of implementations that also contained specifications. The
methods discussed here are representative of the problems found in
competitions such as VerifyThis.org and VSComp.org.

The first three columns of Table 1 details the results produced
by the retrieval phase of Arís. On average 70% of the codebase was
retrieved for each problem. Thus it appears that the retrieval phase
was not particularly successful. However we point out that the
absence of API calls in most of these problem methods means that
these results are worse than generally achieved on “richer” problem
code.

Table 1. Retrieval and Mapping performance of Arís.

 Quantity of methods

Method name □ ■ ○ ●

Min(int, int) 39067 90.7 456 1.1

Max(int,int) 39067 90.7 455 1.1
Coincidence(int[],int[]) 3769 8.8 362 0.8
BinarySearch1(int[],int) 25 0.1 353 0.8
LinearSearch(int[] a, int key) 39178 91.0 478 1.1
Sum(int[]) 38804 90.1 409 1.0
Count(int[], int) 39244 91.2 469 1.1
ISqrt(int) 37817 87.8 386 0.9
Factorial(int) 38804 90.1 438 1.0
CountNonNull(string[]) 38637 89.7 469 1.1
average 31441 73.0 427.5 1.0

 □ Number of methods identified by the retrieval process ■ % of entire
database retrieved ○ number of methods mapped (above the threshold) ● %
of the entire code-base that mapped.

The last two columns of Table 1 summarise the results produced
by the mapping phase of Arís. These columns detail the number of
viable mappings produced for the ten target problems (i.e. the size
of the mapping was above a pre-set threshold). This mapping
process identified an average of just 1% of the available methods
as similar to the presented target problems. This identified any
code graphs that contained large systemic similarities to the target
problem, encompassing isomorphic and homomorphic code
graphs. Thus, the mapping phase of Arís appears to accurately
discriminate between different code structures.

Table 2. The number of specification statements that were created (but not

necessarily verified) by Arís.

 Quantity of

Method name requires ensures invariant

Min(int, int) 2 3 2
Max(int,int) 2 4 0
Coincidence(int[],int[]) 8 8 13
BinarySearch1(int[],int) 11 10 16
LinearSearch(int[] a, int key) 6 4 12
Sum(int[]) 6 5 14
Count(int[], int) 7 8 14
ISqrt(int) 3 5 3
Factorial(int) 4 4 9
CountNonNull(string[]) 6 7 14
total 55 58 97

Table 2 summarises results produced by Arís inference and
validation phases. This lists the number of new Spec# statements
that were generated for each of the ten methods. As can be seen
210 specification statements were created, comprised of 55
requires (preconditions), 58 ensures (post-conditions) and
97 invariant statements. That so many Spec# statements were
produced was seen as an excellent result and was pleasantly
surprising. However, not all of these statements were successfully
verified, but it was nevertheless a promising result.

Table 3. The number of specification statements created and verified by
Arís.

 Quantity of specification types

Method name requires ensures invariant

Min(int, int) 0 2 0
Max(int,int) 0 2 0
Coincidence(int[],int[]) 3 1 8
BinarySearch1(int[],int) 3 8 11
LinearSearch(int[] a, int key) 6 1 7
Sum(int[]) 3 1 3
Count(int[], int) 3 2 6
ISqrt(int) 1 2 2
Factorial(int) 1 1 2
CountNonNull(string[]) 4 2 9
total 24 22 48

 Table 3 details the number of verified specification statements
produced by Arís on this problem set. Arís created 24 new
precondition (requires) statements, 22 post conditions
(ensures) and 28 invariants. Thus for these 10 problem methods
Arís created a total of 74 verified specification statements, each
being successfully verified by an SMT theorem prover.
Interestingly, Arís generated at least two specifications for each of
these problems and even managed to generate twenty two
specifications for one problem.

7 ARÍS AND OTHER LANGUAGES

Recent developments have focused on enabling Arís to interchange
specifications with other implementation and specification
language-pairs (e.g. Java and JML - Java Modeling Language
[41]). The objective is to make Arís the central engine for many
implementation languages, using extensions to create code graphs
and to create specifications in new languages. The main
architectural additions involve generating code graphs for a new
implementation language and translating the new Spec#
specifications into a new specification language.

Arís was presented with a Java implementation of the
summation method in Figure 1. Using a code graph derived from
Java code it identified the correct C# method and re-created the
required specification – which Arís then translated from Spec# into
the JML specification language. Extending Arís in this way
supports creativity with a range of programming languages while
reusing the core Arís engine. In addition to providing a framework
for using Arís with new languages where the input and output is
the same, our framework allows for creativity between languages
e.g. while the input language could be Java, the generated
implementation and specification could be expressed in the Eiffel
language. This facilitates the creation of new problem solutions

which allow access to an extended range of tools and techniques
for software verification.

 requires 0 <= x;

 ensures \result == (\sum int i; 0 <= i &&

i < x; i);

 public static int sum(int x){

 int add = 0;

 int k = 0;

 maintaining k <= x;

 maintaining add == (\sum int i; 0 <= i

&& i < k; i);

 //@ (* decreasing x - k *);

 while(k < x){

 add += k;

 k++; }

 return add; }

Figure 4: Arís created specifications (in yellow) in JML (Java

Modelling Language) for a Java implementation using a C# and
Spec# as its base

8 CONCLUSION

This paper presented the Arís analogy-based system that creates
new formal specifications (in Spec#) for a presented
implementation (written in C#). Arís is effective at retrieving
functionally similar implementations to some presented problem
code. It successfully generates new specifications for that code,
based on the identified analogous structure between the paired
source code constructs.

On a test using ten methods requiring specifications Arís’
retrieval phase did not appear to be particularly accurate. However,
its mapping phase accurately identified around 1% of the codebase
as similar to each presented problem. Arís created 74 verified
specification statements, composed of 24 precondition
(requires) statements, 22 post conditions (ensures) and 28
invariants. In addition Arís also produced a further 31 unverified
preconditions, 36 post conditions and 49 invariants. Many of these
“failed” specifications might prompt the creativity of a human
software developer to write successfully specifications.

Little-c creativity [2] can be seen at work in Arís’ ability to both
create new specifications and to assist in their creation. Examples
highlighted Arís’ ability to create new specifications for similar
and surprisingly dissimilar implementations, even creating
specifications for different algorithms. Arís may be seen to operate
at Boden’s combinatorial level of creativity. In the future Arís
might even approach exploratory creativity, creating new proof
strategies arising from non-obvious comparisons between
implementations.

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the
European Union Seventh Framework Programme [FP7/2007-2013]
under grant agreement 611383. This project has also been partly
funded with support from the European Commission. This
publication reflects the views only of the author, and the

Commission cannot be held responsible for any use which may be
made of the information contained therein.

REFERENCES

[1] M. Cook, S. Colton, A. Raad and J. Gow, "Mechanic Miner:
Reflection-Driven Game Mechanic Discovery and Level
Design," LNCS Vol 7835, pp. 284-293, 2013.

[2] H. Gardner, Creating Minds, Basic Books, NY., 1993.

[3] M. Boden, The Creative Mind, Abacus, 1992.

[4] D. O'Donoghue, J. Power, S. O'Briain, F. Dong, A. Mooney,
D. Hurley, Y. Abgaz and C. Markham, "Can a
Computationally Creative System Create Itself? Creative
Artefacts and Creative Processes," in International

Conference on Computational Creativity, Slovenia, 2014.

[5] A. Koestler, The Act of Creation, Penguin Books, NY, 1964.

[6] M. Boden, "Computer Models of Creativity," AI Magazine,

pp. 23-34, 2009.

[7] J. Davies, A. K. Goel and P. W. Yaner, "Proteus: Visuospatial
Analogy in Problem Solving," Knowledge-Based Systems,

vol. 21, no. 7, 2008.

[8] K. Forbus, J. Usher, A. Lovett, K. Lockwood and J. Wetzel,
"CogSketch: Sketch Understanding for Cognitive Science
Research and for Education," Topics in Cognitive Science, pp.
1-19, 2011.

[9] D. P. O'Donoghue, A. Bohan and M. Keane, "Seeing Things:
Inventive Reasoning with Geometric Analogies and
Topographic Maps," New Generation Computing, vol. 24, no.
3, pp. 267-288, 2006.

[10] A. K. Goel and S. R. Bhatta, "Use of design patterns in
analogy-based design," Advanced Engineering Informatics,

vol. 18, no. 2, p. 85–94, 2004.

[11] R. Monahan and D. P. O'Donoghue, "Case Based
Specifications – reusing specifications, programs and proofs,"
Dagstuhl Reports, vol. 2, no. 7, pp. 20-21, 2012.

[12] M. Pitu, D. Grijincu, P. Li, A. Saleem, R. Monahan and D. P.
O’Donoghue, "Arís: Analogical Reasoning for reuse of
Implementation & Specification," in AI4FM - 4th

International Workshop on Artificial Intelligence for Formal

Methods, Rennes, France, 2013.

[13] D. Gentner, "Structure-Mapping: A Theoretical Framework
for Analogy," Cognitive Science, vol. 7, no. 2, pp. 155-170,
1983.

[14] J. Togelius, G. Yannakakis, K. Stanley and C. Browne,
"Search-based Procedural Content Generation: A Taxonomy
and Survey," IEEE Transactions on Computational

Intelligence and AI in Games, vol. 3, no. 3, pp. 1-15, 2011.

[15] P. Gomes, N. Seco, F. Pereira, P. Paiva, P. Carreiro, J.
Ferreira and C. Bento, "The importance of retrieval in creative
design analogies," Knowledge-Based Systems, vol. 19, pp.
480-488, 2006.

[16] L. K.R and W. R.G., "Why Hackers Do What They Do:
Understanding Motivation and Effort in Free/Open Source
Software Projects," in Perspectives on Free and Open Source

Software, F. J., F. B., H. S. and a. L. K.R., Eds., MIT Press,
2005, pp. 1-27.

[17] T. Amabile, Creativity in context, Boulder, CO:: Westview
Press, 1996.

[18] M. Csikszentmihalyi, Creativity: Flow and the Psychology of
Discovery and Invention., New York.: Harper Collins, 1996.

[19] B. Meyer, Object-Oriented Software Construction, Prentice
Hall, January 1997.

[20] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Mülller, W.
Schulte and H. Venter, "Specification and Verification: The
Spec# Experience," CACM, 2010.

[21] B. Beckert, R. Hahnle and P. H. Schmitt, "Verification of
Object-Oriented Software: The KeY Approach," in Springer-

Verlag , Berlin, Heidelberg, 2007.

[22] P. Chalin, J. Kiniry, G. T. Leavens and E. Poll, "Beyond
Assertions: Advanced Specification and Verification with
JML and ESC/Java2," in The 4th Internaitonal Symposium of

Formal Methods for Components and Objects (FMCO'05),
Amsterdam, The Netherlands, November 2006.

[23] J. Woodcock, P. G. Larsen, J. Bicarregui and J. Fitzgerald,
"Formal Methods: Practice and Experience," ACM Computer

Survey, vol. 41, no. 4, p. Article 19, October 2009.

[24] C. Jones, P. O'Hearn and J. Woodcock, "Verified Software: A
Grand Challenge," Computer, vol. 39, no. 4, pp. 93-95, April
2006.

[25] C. Jones and A. Romanovsky, "Special Issue on Automated
Verification of Critical Systems (AVoCS’11)," Science of

Computer Programming, vol. 82, no. 0, p. 1, March 2014.

[26] Y. Moy, E. Ledinot, H. Delseny, V. Wiels and B. Monate,
"Testing or Formal Verification: DO-178C Alternatives and
Industrial Experience," IEEE Software, vol. 30, no. 3, pp. 50-
57, 2013.

[27] E. W. Dijkstra, A Discipline of Programming (1st ed.), Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1997.

[28] M. Barnett, B. Chang, R. DeLine, B. Jacobs and K. Leino,
"Boogie: A Modular Reusable Verifier for Object-Oriented
Programs," FMCO, 2005.

[29] N. De Moura and L. Bjørner, "Z3: An efficient SMT solver,"
in Tools and Algorithms for the Construction and Analysis of

Systems - LNCS 4963, 2008, pp. 337-340.

[30] J. P. Guilford, "Creativity," American Psychologist, vol. 5, no.
9, pp. 444-454, 1950.

[31] K. Forbus and D. Gentner, "MAC/FAC: A model of
similarity-based retrieval," Proceedings of the Cognitive

Science Society, 1991.

[32] P. Thagard, K. J. Holyoak, G. Nelson and D. Gochfeld,
"Analog Retrieval by Constraint Satisfaction," Artificial

Intelligence, 1990.

[33] A. G. Baydin, R. de Mantaras and S. Ontanon, "A semantic
network-based evolutionary algorithm for modeling memetic
evolution and creativity," Neural and Evolutionary

Computing, 2014 (pending).

[34] D. O'Donoghue and M. Keane, "A Creative Analogy
Machine: Results and Challenges," in Proc. 4th International

Conference on Computational Creativity (ICCC), Dublin,
Ireland, 2012.

[35] D. O’Donoghue, H. Saggion, F. Dong, D. Hurley, Y. Abgaz,

X. Zheng, O. Corcho, J. Zhang, J.-M. Careil, B. Mahdian and
X. Zhao, "Towards Dr Inventor : A Tool for Promoting
Scientific Creativity," in International Conference on

Computational Creativity, Ljubljana, Slovenia.

[36] Ó. Corcho, G. V. Daniel, K. Belhajjame, J. Zhao, P. Missier,
D. Newman, R. Palma and e. al, "Workflow-centric research
objects: First class citizens in scholarly discourse," in 9th

Extended Semantic Web Conference, Hersonissos, Greece,
2012.

[37] D. M. R.L., D. McSherry, D. Bridge, D. Leake, B. Smyth, S.
Craw, B. Faltings, M. Maher, M. Cox, K. Forbus, M. Keane,
A. A and W. I., "Retrieval, reuse, revision and retention in
case-based reasoning," The Knowledge Engineering Review,

vol. 20, no. 3, pp. 215-240, 2006.

[38] D. Leake, "Abduction, experience, and goals: a model of
everyday abductive explanation," Journal of Experimental &

Theoretical Artificial Intelligence, vol. 7, no. 4, 1995.

[39] B. Dit, B. Revelle, M. Gethers and M. Poshyvanyk, "Feature
Location in Source Code: A Taxonomy and Survey," Journal

of Software:Evolution and Process, vol. 25, no. 1, pp. 53-95,
2013.

[40] K. J. Holyoak, L. Novick and E. Melz, "Component Processes
in Analogical Transfer: Mapping, Pattern Completion and
Adaptation," in Analogy, Metaphor and Reminding, 1994.

[41] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kuniry, G. T.
Leavens, K. R. M. Leion and E. Poll, "An Overview of JML
tools and applications," International Journal on Software

Tools for Technology Transfer, vol. 7, no. 3, pp. 212-132,
June 2005.

	www.cs.nuim.ie
	Microsoft Word - 14 FINAL C3GI at ECAI.docx

