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The comap as a diagnostic tool for non-stationary kriging models

Paul Harris®*, Chris Brunsdon® and Martin Charlton?

“National Centre for Geocomputation, National University of Ireland, Maynooth, Co. Kildare,
Ireland; *School of Environmental Sciences, University of Liverpool, Liverpool, UK

(Received 14 July 2011; final version received 11 May 2012)

In this study, we demonstrate a novel use of comaps to explore spatially the perfor-
mance, specification and parameterisation of a non-stationary geostatistical predictor.
The comap allows the spatial investigation of the relationship between two geo-
graphically referenced variables via conditional distributions. Rather than investigating
bivariate relationships in the study data, we use comaps to investigate bivariate relation-
ships in the key outputs of a spatial predictor. In particular, we calibrate moving window
kriging (MWK) models, where a local variogram is found at every target location. This
predictor has often proved worthy for processes that are heterogeneous, and most stan-
dard (global variogram) kriging algorithms can be adapted in this manner. We show
that the use of comaps enables a better understanding of our chosen MWK models,
which in turn allows a more informed choice when selecting one MWK specification
over another. As case studies, we apply four variants of MWK to two heterogeneous
example data sets: (i) freshwater acidification critical load data for Great Britain and
(i) London house price data. As both of these data sets are strewn with local anoma-
lies, three of our chosen models are robust (and novel) extensions of MWK, where at
least one of which is shown to perform better than a non-robust counterpart.
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1. Introduction

Geostatistical methods have been widely used in the analysis of spatial data, both as a
tool for prediction and as a means for investigating the spatial structure of measure-
ments made of a geographical process. However, one important aspect of this is that
some processes may exhibit heterogeneity in this structure. For this reason, a number of
localised approaches have been proposed. However, it is important to ensure that the cor-
rect approach is used in any particular situation and a key task is deciding on an appropriate
specification of a particular model and the interpretation of its output. Diagnostic tools play
an important role in reaching this decision; some are based on statistical models, whereas
others are more exploratory. In this study, we focus on the latter, where we demonstrate a
novel use of comaps (Brunsdon 2001, Brunsdon et al. 2007) to explore the performance,
specification and parameterisation of a non-stationary predictor from a spatial viewpoint.
We show that our understanding of this (complex) predictor whose parameters are allowed
to vary across space can benefit strongly from the use of comaps, as a diagnostic tool,
enabling a more informed choice when selecting one model specification over another.
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The comap is a direct geographical variant of the coplot (Cleveland 1993) and allows
the spatial investigation of the relationship between two geographically referenced vari-
ables via conditional distributions. In this study, we do not use comaps to investigate
bivariate relationships in the raw data but instead use them to investigate bivariate rela-
tionships in the outputs of a spatial predictor. Here we calibrate moving window kriging
(MWK) models (Haas 1990, 1996), where a local variogram is found at every tar-
get location. These models are designed for heterogeneous processes and most global
variogram-based kriging algorithms can be adapted in this manner. This non-stationary
adaptation not only has the potential to provide more accurate kriging predictions but
also improve their associated estimates of prediction confidence (i.e. provide more realistic
kriging variances).

We calibrate four variants of MWK, each with two case study data sets. Three of the
MWK models are robust in form, where (i) skewed sample data are Box—Cox transformed,
(ii) variograms are estimated robustly and (iii) the prediction data are winsorised. These
novel extensions of MWK show promise for our study data sets, both of which are het-
erogeneous and exhibit local anomalies. These data sets are (a) a freshwater acidification
critical load data set for Great Britain (CLAG Freshwaters 1995) and (b) a London house
price data set for 1998 provided by the Nationwide Building Society (Fotheringham et al.
2002). Both spatial processes are known to suit a local variogram modelling approach (for
the critical load data, see Harris ef al. (2010), and for house price data, see Case ef al.
(2004) and Paez et al. (2008)).

Our study is structured as follows. First, we introduce comaps together with spatial
kernel density estimation (KDE) (Diggle 1990), the latter being one option for spatial data
display in a comap. We also define a selection of geographically weighted (GW) sum-
mary statistics (Brunsdon et al. 2002) at this juncture, as these are used in various guises
throughout this study. We then describe the MWK models, together with how we choose
to assess them. Next, we describe and model each case study data set, demonstrating the
value of comaps in visualising MWK outputs.' Finally, we summarise this research and
discuss further work.

2. Comaps and other visualisation techniques

We not only demonstrate the use of comaps for visualising paired outputs from MWK
models but also demonstrate some univariate visualisations for context. For the latter,
GW summary statistic surfaces can be found for MWK outputs that vary continuously
across space (e.g. a variogram model parameter) and spatial KDE surfaces can be found
for MWK outputs akin to spatial point processes (e.g. a variogram model type). Common
to all techniques is a local theme, requiring the specification of some (isotropic) kernel
weighting function. Definitions for all kernels used in this study can be found in Wand and
Jones (1995).

2.1. Basic and robust GW summary statistics

For GW summary statistics, a locally defined statistic is determined at grid locations x,
so that a surface results, enabling a visual inspection of a certain spatial heterogeneity.
GW statistics can not only be calculated for MWK outputs but also enable a preliminary
investigation into the heterogeneous nature of the study data itself. Furthermore, the value
of applying a robust MWK model can be gauged if both basic and robust GW statis-
tics are calculated and compared. In this respect, we define (moment-based) GW means



International Journal of Geographical Information Science 513

and standard deviations (and coefficients of variation) together with their respective robust
(quantile-based) counterparts, in GW medians and interquartile ranges (IQRs).

A GW mean is defined as m(x) = Z wiz (X;) / Z w;, @ GW standard deviation s (x) =

i=1

Zwi (z (x;) — m (x))? Zwi and a GW coefficient of variation (CoV) CoV (x) =
i=1 i=1
K (x)/m (x), where z(xy),...,z(x,) at locations xi,. . .,X, refers to either the MWK
output data or the sample data. For GW medians and IQRs, 25%, 50% and 75%
local quantiles are needed. Here a local quantile can be defined as g (x) =z (x)) +
(z(x J+]) —z(xy)) % where J is the index of the largest z (x;), not exceeding ¢ (x);
wi + -+ +w; = wj is the probability that z (x) < ¢ (x) when ¢ (x) =z (x;); wi + -+
w1 = Wy, is the probability that z (x) < g (x) when g (x) =z (x;41) and p (x) is the
probability that z (x) < ¢ (x). For this study, let the weights w; accord to a bisquare kernel
with a user-specified adaptive bandwidth.

2.2. Spatial KDE

Spatial KDE allows the identification of clusters where a particular MWK model output is
most intense. The KDE of f(x) at a location x can be found using:

Jo = hzz ("“"‘) (1)

where k£ (-) is some spatially defined kernel function, % is the bandwidth that controls the
smoothing and the model output data are located at xi, . . ., x,,. We specify our study KDE
surfaces (outside of those used within a comap) using a quartic kernel with a user-specified
fixed bandwidth. For KDE details, see Wand and Jones (1995).

2.3. Comaps

For bivariate visualisations of MWK outputs, comaps can be constructed.” The comap
is a geographical variant of the coplot for assessing conditional distributions, where the
underlying concept is based on the idea of using small multiples to emphasise variation in
pattern (Tufte 1990). In the coplot, the relationship between a pair of variables is plotted
conditional to either (i) the third variable or (ii) the third and fourth variables together.
Thus, any relationship seen in the initial pair of variables is assessed for dependence on
the value(s) of the conditioning variable(s). Each set of variables is a subset of the whole
data set, selected so that each conditioning variable lies within a given range. Principles of
the subsetting are governed by how the range of each subset overlaps with each adjoining
subset and that each subset should contain the same number of data points. These principles
are applied in order to ensure patterns are visible (overlapping ensures a reasonable number
of data points are used in each plot) and that no plot is more prone to outliers or unusual
patterns than any other due to sample size (i.e. by making each plot contain the same
number of points). These steps provide an intuitive and reliable tool for data exploration.
Each plot window in the coplot also represents the same extent, thus allowing an effective
comparison between them.
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In the spatial setting, the coplot is specified in the same manner, except that the
coordinate data are the first pair of variables conditioned on a single variable or a pair
of variables together. A coplot of this form can be extended to a comap by simply adding
a map outline to provide context to each plot window of the subsetted coordinate data.
A refinement of this basic comap is to then use spatial KDE to visualise the intensity of
the same geographic locations. Here the KDE is specified using a normal density kernel
function with a bandwidth selected automatically. This automated procedure is designed to
select a conservative bandwidth that is likely to produce a degree of over-smoothing (see
discussions given in Brunsdon (2001)).

Thus, for the coplot, the output is a panel (or matrix) of plots, whereas for the comap, it
is a panel of maps, where the number of plots or maps is user-specified. As an example, we
present a spatial coplot and two comaps in Figure 1 (each specified with a 3 x 3 panel of
plot or map windows), using data from our first case study (see Section 5). Observe that the
coordinate data are conditioned on a pair of variables of interest; and this will be the case
in all our comaps, as we are primarily interested in bivariate visualisations. We visualise the
relationship between freshwater acidification critical load data and a covariate (geological
sensitivity) at 189 sites across Great Britain. A critical load reflects a freshwater site’s
capacity to buffer the input of strong acid anions. For sites where deposition exceeds the
critical load, harmful levels of acidification are expected. Geological sensitivity reflects the
nature of a site’s catchment geology in its ability to buffer against acidification, where low
values have a low buffering capacity and vice-versa (Harris and Juggins 2011).

Thus, for each coplot or comap of Figure 1, the first column relates to low critical loads
(04 keq H* ha''year™); the second column to critical loads between 1.5 and 9.2 keq H*
ha'year! and the third column to critical loads between 4 and 26.4 keq H ha'year!.
Similarly, the first row relates to catchments with a high geological sensitivity (2—4 units),
the second row to catchments with an average geological sensitivity (1-3 units) and the
third row to catchments with a low geological sensitivity (1-2 units). Clearly, the spatial
coplot (Figure 1a) is little different to the basic comap (Figure 1b), the key difference being
context in that the subsetted coordinate data are set within an outline of Great Britain.
Finding a spatial pattern for critical load and geological sensitivity is difficult with these
visualisations. However, a certain clarity emerges in the second comap (Figure 1c), where
KDE surfaces are specified. Here the bottom-left map window depicts a relatively intense
clustering, suggesting that critical loads in north-west (NW) Scotland tend to be low valued
together with catchments that are geologically sensitive to acidification. Conversely, the
KDE surface in the top-right map window, which suggests the reverse is true in Central
England. Thus, depending on the nature of the associated deposition rates, freshwaters in
NW Scotland are likely to warrant some form of preferential management.

3. Non-stationary kriging models
3.1. Moving window kriging

For MWK, a local variogram is determined at every target location in this fully automatic,
continuous and locally adaptive geostatistical technique. At each location, the variogram
parameters are used to calibrate a kriging algorithm to provide a prediction and an
estimate of its error variance (the kriging variance). MWK models can extend most
standard (stationary variogram) algorithms; for example Haas (1990, 1996) constructs
lognormal, regression and co-kriging versions; Lloyd and Atkinson (2002) and Pardo-
Iguzquiza et al. (2005) present universal kriging versions and Cattle ef al. (2002) present
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Figure 1. From coplot to comap using critical load and geological sensitivity data: (a) spatial coplot;
(b) basic comap with locations (i.e. essentially a spatial coplot with map outlines) and (c) comap with
KDE surfaces.

an indicator kriging version. Typically, rudimentary MWK models globally specify (i.e.
the model specification is fixed in all locations): for example, an algorithm could use a
classic variogram estimator, a weighted least squares (WLS) variogram model fit and an
exponential variogram model everywhere, with only the numerical parameters varying.
Alternative globally specified components might include maximum likelihood parameter
estimation (Pardo-Iguzquiza et al. 2005, Lloyd 2010). Furthermore, models can locally
specify (i.e. the algorithm or model specification varies across space), so that the vari-
ogram estimator, the variogram model-type, the type of data detrending (Haas 1990, 1996,
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Pardo-Iguzquiza et al. 2005) or the type of data transform (Haas 2002) may change locally,
rather than just the numerical parameters.

3.2. Robust MWK

For this study, we calibrate a new set of robust MWK models. Study models are (i)
a basic MWK model extending simple kriging (SK; Schabenberger and Gotway 2005,
p. 223-225), where all inputs (except for the variogram model-type) are globally spec-
ified (Mod-1); (ii) a robust moving window SK model, where a Box—Cox transform, a
robust variogram and winsorised prediction data are globally specified (Mod-2); (iii) a
robust moving window SK model, where the Box—Cox transform of (ii) is locally specified
(Mod-3) and (iv) a robust moving window SK model, where a// robust specifications of (ii)
are locally specified (Mod-4). Observe that SK is chosen as the basic kriging algorithm as
it enables simpler back-transform corrections than ordinary kriging (OK). Unlike OK, SK
assumes a known mean, which we estimate using the sample data.’

Our robust MWK models are entirely novel, adapting the robust (stationary variogram)
algorithms of Hawkins and Cressie (1984), Costa (2003) and Marchant et al. (2010). As an
MWEK calibration only uses local data subsets, it is likely that at some locations, its local
variography, its locally weighted predictions and its kriging variances are more (adversely)
influenced by data non-normality and outliers than a global counterpart. In this respect, the
application of a robust MWK model may be of value for processes that are heterogeneous
with local anomalies. Both of our case study data sets exhibit these properties. However,
as is often the case, it is not known beforehand which particular robust MWK specifica-
tion will suit our study data sets? Furthermore, standard model performance diagnostics
(Section 4.1) are sometimes inconclusive (Sections 5.1 and 6.1) suggesting models per-
form more or less equally. It is precisely in these cases, that we aim to demonstrate the
value in exploring MWK outputs using comaps, so that key insights into a model’s spa-
tial behaviour can be gained. Comap results can supplement those found using standard
diagnostics, enabling an informed choice when selecting an MWK specification.

3.3. The four study models
3.3.1. Basic MWK: Mod-1

In this model, SK is applied within a window (or neighbourhood) using variogram
parameters found at the same spatial scale. Window size is specified in an adaptive form,
with each window extending to the nearest N model calibration observations (and is given
as a percentage of the full model calibration data set). A two-stage variographic procedure
is adopted, where a classic (isotropic) variogram is first estimated and then modelled to
get a smooth representation of spatial dependence. The classic variogram estimator can be
defined as:

1
29(h) = >z —z(x) ). for h>0 ©)
NG,
J) EN(h)
where z (x1),...,z (X,) denote observations from a constant mean spatial process at
locations xi,. . .,X,, and N(h) is a count of pairs of indices such that (i,j) € N(h) if

| H X —X; H —h | < ¢ (where this approximation reflects some user-specified tolerance &
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on the lag distance /). To interpret an estimated variogram, nugget and Matérn (1960)
variogram model types are specified, which can be defined as:

yNug (h) = co+ ¢ and (3)

Ymar (B) = co +c1 <1 — ! I (v) <h) K, <h>> , for h>0 4)
-1 a a

where y (h) =0 for A = 0. Here a is a correlation range parameter, v is a smoothing
parameter, K, is a modified Bessel function, I" is the gamma function and ¢y and ¢, are par-
tial sills that reflect small- and large-scale variations, respectively. The Matérn function is
very flexible, where the higher is the value of v, the smoother is the process. For this study,
v is fixed beforehand at 0.5, 1.0 or 1.5. This effectively provides four (not two) variogram
models to choose from in total.

Thus, at each target location, all four variogram models are fitted automatically to a
local estimated variogram, using the WLS approach of Zhang et al. (1995). Here a series of
sensible heuristics are used to define (i) the lag distance intervals, (ii) the minimum number
of pairs allowed at the first lag and (iii) the truncation of the variogram estimator at long
(unreliable) lag distances; together with (iv) the variogram model starting parameters for
the WLS fit. Such specifications are chosen so as to minimise the occurrence of a poor (or
failed) WLS fit and are crucial in determining a good kriging model performance (Lahiri
et al. 2002). One variogram model is then chosen that provides the smallest weighted sum
of squares (i.e. the variogram model is locally specified) and the corresponding parameters
are used to solve an SK system of equations. Similar automated procedures are used in
many other MWK studies (Haas 1990, 1996).

3.3.2. Robust MWK: Mod-2

In our first robust model, Mod-1 is (sequentially) adapted as follows: (i) globally Box—
Cox transform the data; (ii) locally estimate and model (isotropic) robust variograms
using the transformed data; (iii) locally apply (the four stages of) a robust form of SK,
where the robust variogram model parameters are used to find Winsorised data sets; (iv)
back-transform the robust SK results to the original data space. Observe that all robust
specifications are globally-defined. The techniques to conduct these adaptations are as
follows:

The Box—Cox method (Box and Cox 1964) transforms the data to univariate normality
according to:

2=l 0 #£0
o= llnk(z) A=0 (3)

where z; is the transformed value and z is the value to be transformed. We estimate the
parameter A using maximum likelihood based on an assumption that the transformed data
are Gaussian and correlated.*

Variography and kriging with transformed data is no different to that for
raw data. However, to account for a bias when back-transforming, the following
corrected back-transforms are used (Kitanidis and Shen 1996). When A #0, an
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unbiased back-transform for a prediction at any location x is taken as Zzpcg (X) =
B [ B* + a ofcyr (X)], where B =1+ A Zpckr (X), o = (1/):) —2, Zpexr (X) is the
SK prediction in transformed-space and o3y (X) is the SK variance in transformed
space. Alternatively when A =0, an unbiased back-transform results in Zpck (X) =

exp[ Zsckr (X) 4 0hckr (X) /2] An unbiased back-transform for the corresponding kriging
variance is as follows:

ook ) = odcxr X [ (opexr 0 /8) + B2], if & =0.5 (6)
opck (X) = exp[ (22pckr (%) + ogegr X)) ] x [exp(ogexr ®)) — 1], if A=0 (7)

and o2y (X) = B2 02cxr (X) for all other values of A, where § = (2 / 5\) -2 ®)

These analytical back-transforms are sensitive to values of the kriging variance, and, as a
consequence, poor or unusual kriging outputs can often be attributed to this.

To guard against the effects of outliers on variogram estimation, we use the robust
estimator proposed by Cressic and Hawkins (1980), although alternatives could be used
(Lark 2000). This robust estimator can be defined as:

[Wlh“ Z(i,/) eN(h) |Z (x;) —z (Xj) | %]4
(09014+ (%) + (p82))

where y, (h) is an approximately unbiased estimator of y (4).

To complement this use of robust variography, we can similarly reduce the influ-
ence of outlying observations in the prediction part of the SK algorithm by a process of
Winsorisation (Tukey 1962). Thus, generally following Hawkins and Cressie (1984), the
four stages of this robust kriging algorithm at a location x are as follows:

);r (h) =

for h>0 9)

A. Use a robust variogram to find the usual (mean-based) SK prediction z (x) =

N
> ;i (x) z (x;) and its standard error o (x) (where for MWK, n > N).
i=1

B. Find a corresponding (robust and weighted) median-based SK prediction Z (x)
using the same SK weights 7; (x) as used in (A).

C. Winsorise the sample data used in the SK predictions of (A) and (B) by replacing
z (x;) with:

Z(x) + bo (x) if  z(x;) — z(x) > bo(x)
Zy (X;) = | z(X;) it z(x) —z(x) | < bo(x) (10)
Z(x) — bo (X) if  z(x;) —z(x) < —bo (x)

where b is a constant that controls the degree of data editing. The higher the value
of b, the fewer the number of changes to the original z (x;) data, that is, z,,(x;) tends
to z (x;). It is recommended that 1.5 < b < 2.5 and we (conservatively) choose
b = 2.5. Further research could investigate this choice of b more closely (Costa
2003, Marchant et al. 2010) where it could be locally specified.
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D. Use a classic variogram to find a mean-based SK prediction Zz,(x) =
N
> @i (X) z(x;) and its standard error o,,(x), where z,(x;) has replaced z (x;) in

i=1
the variography and the SK prediction (¢;(x) are the new SK weights). These are
the robust SK results.

Observe that at each target location four variogram models are fitted automatically to a
local robust variogram estimator (using pre-winsorised data) and four variogram mod-
els are fitted automatically to a local classic variogram estimator (using winsorised data).
These operations, together with the use of transformed data, ensure a considerable increase
in flexibility over the basic MWK model (Mod-1).

3.3.3.  Robust MWK: Mod-3

Our next robust model is the same as Mod-2, except that the Box—Cox transform is now
locally specified. Here we modify the Box—Cox procedure so that the local calibration data
subset relating to location x is transformed to normality only if A(x) < 0.55. This prag-
matic approach enables robust SK with raw data to be used at locations where outliers
create only a mild skew in the local distribution, which in turn should reduce the oppor-
tunities for an unrealistic back-transform to occur. Furthermore if )AL(X) < 0.05, ):(x) is
taken to equal 0 and a log transform is applied; if 0.05 < A(x) < 0.45, the transform is
applied as is; and if 0.45 < )A»(X) < 0.55, )A»(x) is taken to equal 0.5 and a square root trans-
form is applied. Log and square root transforms are promoted as they have a more natural
interpretation than a closely related Box—Cox transform.

3.3.4. Robust MWK: Mod-4 (hybrid)

Our third robust model is again similar to our first one, except that all robust specifications
are locally defined. This model is effectively a hybrid; where at some locations Mod-1 is
applied, whereas at others, Mod-3 is applied. The rationale for this model is that non-robust
SK predictions should be preferred at locations where local calibration data subsets con-
form well to a normal distribution model without local anomalies. At such locations, robust
SK predictions should be avoided as (i) back-transforms can produce unusual results, (ii)
our chosen robust variogram estimator is biased and less efficient than the classic esti-
mator (Schabenberger and Gotway 2005, p. 160—161) and (iii) data winsorisation adds an
unnecessary layer of complexity.

Thus, for this robust model, we simply need to calculate a local diagnostic at a target
location x, which can be used to indicate the likely presence of outliers (and non-normality)
in the corresponding local calibration data subset. This in turn allows a non-robust or robust
SK prediction to be chosen. There are various options for this diagnostic, but for simplicity
we use adjusted boxplot statistics (Hubert and Vandervieren 2008). Here the existence of at
least one observation that lies beyond the outer fences of the local boxplot indicates a robust
SK prediction. An adjusted boxplot is chosen as it uses a robust measure of skewness to
determine its whiskers (and so lessens the chance of a false positive identification). Observe
that this procedure depends on how we specify the outer fences of the boxplot. Here we
use defaults, but further research could vary this choice (Reimann et al. 2005).
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4. Model assessment
4.1. Standard diagnostics for model performance
For actual z(x,) and predicted Z(x,) data, a model’s prediction accuracy is measured by:

M
MPE = (1/M) Z{z(xv) —2(x)} (11)
v=1
M
RMSPE = | (1/M) Z {z(x) —2(x) }2 (12)
v=1
M
MAPE = (1/M) ) |z (x,) —=2(x,) | (13)

v=1

where expressions (11)—(13) are the mean prediction error (MPE), the root mean squared
prediction error (RMSPE) and the mean absolute prediction error (MAPE), respectively,
and M is the size of the model validation data set. A model’s (overall) prediction
uncertainty accuracy is measured using the mean squared deviation ratio (MSDR):

M
MSDR = (l/M)Z( {z(x)—2(x) }2/02 (xv)) (14)

v=1

An MSDR value <1 implies that the kriging variances o2(x,) tend to over-estimate the
squared prediction errors (and vice versa).® Similarly, a more locally orientated diagnos-
tic is taken as the linear correlation coefficient between the absolute prediction errors
|z(xv) —z(x,) ] and the kriging standard errors o (x,). This correlation (ERR-CORR)
should be positive and moderately strong if the values of o (x,) actually reflect the local
variability that is present in the sample data.®

Prediction confidence interval (PCI) accuracy can be assessed using coverage prob-
abilities (Goovaerts 2001). For example, if symmetric 95% PCls were calculated at each
validation site (i.e. Z(x,) £ 1.96 o (x,) under the Gaussian assumption), then a correct mod-
elling of local uncertainty would entail that there is a 0.95 (expected coverage) probability
that the actual value z(x,) falls within the interval. If a coverage probability is found for
a range of symmetric PCIs (say from a 1% to a 99% PCI in increments of 1%) and the
results plotted against the probability interval p, then an accuracy plot is found which
should follow the 45°, x = y line. In this study, we do not present accuracy plots but instead
summarise them via the G-statistic, defined as:

0
G-STAT =1 — 01[3a () —21[E(p) —p]dp (15)

where & is the fraction of actual values falling in the PCI, and a value of 1 is sought. The

indicator function a(p) is defined as a(p) = { é lfoil(lpe )rvisi ,

the importance is given to deviations when & (p) < p. For cases where two models provide
similar accuracy plots or G-STAT values, one model can be preferred if its PCI widths
containing the actual value are narrower (i.e. more precise). Here the corresponding PCI

which implies that twice
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width plots can be constructed and compared. Again we do not present PCI width plots, but
to act as a rough summary of this plot, a mean PCI width (M-PCI-W) for all p is reported,
which should be as small as possible. Thus, a model’s G-STAT and M-PCI-W values should
always be viewed in conjunction, as a strong G-STAT value is of little use if it is coupled
with a poor M-PCI-W value (and vice versa). Observe that the given prediction uncertainty
accuracy diagnostics must be viewed in the context that the kriging standard error o (x,) is
a statistical concept defined as the standard deviation of the error at a location x,, and its
use requires the assumption of multivariate normality (at the scale of the kriging window).
That is, we adopt a classical geostatistics viewpoint in this respect (David 1988).

4.2. Model performance: window size and naive models

Crucial to MWK is the spatial scale at which the local variography takes place. If the win-
dow is too small, then the variography tends to be unreliable as information is limited. If the
window is too large, the output of MWK will tend to that of its standard kriging counter-
part, and thus offers no benefit if the underlying process is not stationary. Unfortunately,
there is no easy way to choose a window size that can be considered optimal (Haas 1996,
2002). Commonly, a model’s window size that is optimal with respect to prediction accu-
racy (i.e. via MPE, RMSPE and MAPE values) does not coincide with a model’s window
size that is optimal with respect to prediction uncertainty accuracy (i.e. via MSDR, ERR-
CORR, G-STAT and M-PCI-W values). Haas (2002) tries to address this problem by using
a multi-criteria objective function, where a range of model performance diagnostics (sim-
ilar to those used in this study) are weighted according to the user’s relative priorities and
then summed to give a single diagnostic. The obvious drawback to this approach is decid-
ing on the weights. Given these problems, we present the performance results of our MWK
models using a range of window sizes. From this, we select a few MWK models for fur-
ther (visual) scrutiny; ones that are judged to offer a good compromise between prediction
accuracy and prediction uncertainty accuracy.

We also present the performance results for four naive kriging models (for Mod-1 and
Mod-2 only), where 100% window sizes are specified for the variography, two of which
have different window sizes for the prediction part (i.e. they assume quasi-stationarity,
Journel and Huijbregts 1978, p. 33-34). Such stationary variogram kriging models are pre-
sented to show the relative value of adopting a non-stationary adaptation in the first place.
Observe that the Box—Cox back-transforms defined in Section 3.3 are implicitly designed
to cater for a non-stationary variogram, but only if it is assumed to vary proportionally
across space (i.e. the global variogram is effectively locally re-scaled) (Chiles and Delfiner
1999, p. 56 and p. 107-108). In this respect, Mod-2 with a 100% window size for its
variography could in some cases be expected to perform in a similar manner to a true local
variogram kriging model (i.e. MWK where the local variography is more flexibly modelled
and thus caters for locally changing variographic shapes/structures). Finally, as a check on
the prediction accuracy gain (if any) in using a kriging to a non-kriging method, perfor-
mance results using a (simple and naive) nearest neighbour predictor are given. Here the
10th nearest neighbour is specified (call this model, NN10).7

4.3. Visualisation categories: performance, specification and parameterisation

We divide our visualisations into three categories: (i) model performance, (ii) model spec-
ification and (iii) model parameterisation. With respect to model performance, the output
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from MWK is treated identically to that of a stationary predictor as we are simply visual-
ising the (actual) prediction errors and the kriging standard errors (or estimated prediction
errors). We also find novel GW versions of G-STAT and M-PCI-W diagnostics in this
respect. For model specification and parameterisation, a wealth of information is possible
depending on the complexity of the MWK model. Here we visualise the following outputs
with respect to model specification: (i) the number of winsorised data edits found in each
local calibration data set (for Mod-3 only); (ii) the number of adjusted boxplot outliers
found in each local calibration data set (for Mod-4) and (iii) the location of robust predic-
tions in Mod-4. For model parameterisation, we visualise the following MWK outputs: (A)
the variogram parameters a(x) and c¢¢(x) and (B) the relative structural variability (RSV),
where RSV(x) = (c1(x) /(c1(x) 4 ¢ (x))) x 100% (Schabenberger and Gotway 2005).

5. Case study A: critical loads

Our first case study models a freshwater acidification critical load data set for Great Britain.
Here we are modelling (site-specific) threshold data. Resultant critical load predictions
(and estimates of uncertainty) would in turn need to be compared with their correspond-
ing deposition (contaminant) prediction model outputs (not modelled here) in order to find
critical load exceedances (critical load minus deposition). That is, apply the critical load
concept at un-sampled sites (Nilsson and Grennfeld 1988). This dual and interactive predic-
tion methodology should ultimately provide accurate estimates of critical load exceedance
risk so that freshwaters can be efficiently managed against harmful levels of acidification
to their ecosystems.

This data set consists of 686 values, which split into model calibration and validation
subsets of 497 and 189 observations, respectively (Figure 2a). The size and scale of this
data set suit non-stationary modelling, where preliminary investigations provided evidence
of (i) positively skewed data, (ii) a general trend in critical loads from high to low values in
a south-east (SE) to NW direction (Figure 3a and b), (iii) levels of variation (Figures 2a, 3¢
and d) and skewness changing across space, (iv) spatial outliers, (v) a nested global vari-
ogram (Figure 2¢) and (vi) structure in the local variography not only varying across space
but also varying according to the influence of outlying observations. Figure 3 depicts (a)
local averages (using GW means and medians) and (b) local measures of variability (using
GW standard deviations and IQRs). Clear regional differences can be observed between
the non-robust and robust paired surfaces, which are taken to confirm the presence of a
skewed critical load distribution together with some influential, outlying observations.

5.1. Model performance at the validation sites: standard diagnostics

Performance results of our four study models are presented in Table 1, where it is clear
that an MWK model does not improve critical load prediction accuracy when compared
with a non-robust naive model — Mod-1 with a 100% window size (see MPE, RMSPE and
MAPE values). However, this global variogram model performs weakly with respect to
prediction uncertainty accuracy (see ERR-CORR, G-STAT and M-PCI-W values) and here
a robust MWK model (Mod-3 with a 20% window size) is viewed as the best performer.
For prediction uncertainty accuracy via the MSDR diagnostic only, Mod-1 with a 100%
window size (for variogram and prediction) performs the best. Mod-3 with a 10% window
size is viewed as the best overall predictor, as it offers relatively good prediction accuracy
and prediction uncertainty accuracy results.
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Figure 2. Case study data sets and global variograms for (a and c) freshwater acidification critical
load data for Great Britain and (b and d) London house price data, ca. 1998. For context, each data
set is shown with a GW coefficient of variation (CoV) surface with bandwidths set at 20% and 2.5%
for the critical load and house price data, respectively. Both surfaces use the full case study data sets.
Classic and robust variogram estimators shown with a WLS model fit to the robust estimator only.

In summary, there is value in applying MWK to these data, but only marginal promise
in using a robust adaptation. This promise may be simply due to statistical noise or variabil-
ity in the data (which could be verified by using different model calibration and validation
subsets and re-fitting the MWK models). We view this as an instance, where an investi-
gation using comaps may be helpful, providing a more local assessment of differences in
model performance. As Mod-3 with a 10% window size is considered the best predictor,
we choose this model for a visual scrutiny, together with the models Mod-1, Mod-2 and
Mod-4 that use the same window size. For context, we first provide examples of univariate
visualisations of model outputs using GW statistics and spatial KDE for each of the three
visualisation categories. Here we observe various limitations that can be addressed by using
comaps instead.

5.2.  Univariate visualisations of MWK outputs

First, as an example of model performance, GW median surfaces are used to visualise the
actual prediction errors and the estimated prediction errors for Mod-1 and Mod-3. GW
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Figure 3. GW summary statistic surfaces for critical load data: (a) mean; (b) median; (c) standard
deviation (SD) and (d) interquartile range (IQR). All surfaces use the full case study data sets with
bandwidths set at 20%.

medians are specified in order to reduce the effect of a few outlying values. From Figure 4,
the largest actual prediction errors for Mod-1 (the non-robust model) are mainly found
in two regions: one centred on the coast of NW England and one centred on the coast
of Central/Southern England (both areas of known outliers). The robust Mod-3 model
has most success in reducing these large prediction errors on the coast of NW England,
and this reduction is loosely mirrored in a reduction in the corresponding prediction error
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Table 1. Prediction and prediction uncertainty accuracy at the validation sites (critical load data).

Window size:  Window size: ERR- G- M-PCI-

Model variogram (%) prediction (%) MPE RMSPE MAPE MSDR CORR STAT W
Ideal — — 0 — 0 — 0 1 — 1 1 — 0
NN10 - - —-0.55 6.59 443 2078 —0.03 0.923 7.28
Mod-1 100* 100 —0.11 4.38 3.02 0973 0.12 0910 7.01
1002 10 —0.10 4.39 3.02 0.802 0.12 0.887 7.76

30 30 —-0.05 441 3.14 0.830 035 0944 7.09

20 20 —-0.12 447 3.15 0816 041 0946 7.04

10 10 —0.15 4.42 3.10 1.049 039 0.947 6.83

7 7 —0.06 4.65 326 1.116 042 0960 6.68

Mod-2 100? 100 0.25 4.50 3.06 2713 030 0897 4.11
100? 10 0.22 449 3.05 2290 031 0942 447

30 30 0.26 4.49 3.11 1.721 036 0963 5.54

20 20 0.18 4.52 3,12  1.531 039 0961 5.55

10 10 0.06 4.47 3.09 1.732 041 0.965 5.58

7 7 0.11 475 322 2359 036 0952 547

Mod-3 30 30 021 4.50 3.11 1.844 035 0974 5.56
20 20 0.20 4.51 3.10 1.397 041 0967 5.55

10 10 0.06 4.43 3.06 1.745 042 0.969 5.64

7 7 0.20 4.64 3.14 2172 037 0959 5.68

Mod-4 30 30 —0.02 442 3.11 1.141 037 0972 6.76
20 20 —0.05 4.3 3.16 1.036 042 0975 6.80

10 10 —0.07 4.40 3.06 1.247 041 0.962 6.60

7 7 0.01 4.60 320 1431 041 0975 6.50

Notes: Models highlighted in bold are chosen for further scrutiny. Window sizes smaller than 7% suffered from
calibration difficulties. *These naive models are the equivalent stationary (global) variogram kriging models.

estimates. Clearly, these model outputs are better investigated in pairs, and as such we
repeat this study using comaps in Section 5.3.

As an example of model specification, it is important to know where a robust prediction
is used in Mod-4 (the hybrid) and where it is not. Thus, we use KDE on the locations of
robust predictions, where it appears that they are predominantly specified in Scotland and
Central/Eastern England (Figure 5a). This behaviour is, in part, counter-intuitive to the
prediction error surfaces given in Figure 4 and may explain why Mod-4 does not perform
significantly better than its constituent models, Mod-1 and Mod-3 (see Table 1). Thus, for
a better understanding of how we have specified our model in this respect, a comap can
be used to investigate the paired relationship between the number of winsorised data edits
at each target location for Mod-3 (which can be viewed as spatial outlier detection) and
the number of adjusted boxplot outliers at each target location for Mod-4 (which can be
viewed as aspatial outlier detection). This comap is also described in Section 5.3.

As an example of model parameterisation, mapping cy(x) may provide local clues to
levels of measurement error and/or unmeasured small-scale variability. We can only map
this parameter for models where the variography is conducted in either the original data
space or the transformed data space, but not some mixture. As such, only Mod-1 and
Mod-2 are investigated via GW mean surfaces (Figure 5b and d). For both models, high
values of ¢y(x) are generally found in the same areas that result in large prediction errors
(i.e. outliers create a heightened local discontinuity in the critical load process). As would
be expected, Mod-2 reduces this influence of outliers on the estimates of ¢ (x), primarily in
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(b)

0 0

Figure 4. GW median surfaces of the actual (absolute) prediction errors, |z(x,) — Z(x,) ] and the
estimated prediction standard errors, o (x,), for Mod-1, (a) and (b), respectively, and for Mod-3, (c)
and (d), respectively. Surfaces are specified with a bandwidth of 10%. All surfaces are for the critical
load data.

NW England. Observe that any differences between the pre- and post-winsorised surfaces
for Mod-2 relate to a robust MWK model where only robust variograms are specified
and winsorisation does not occur. Greater insight into local variographic structure can be
found by using comaps to investigate the spatial relationship between a(x) and RSV (x)
(see Section 5.3).
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Figure 5. (a) Intensity surface for a robust prediction in Mod-4 (with black to white reflecting
low to high intensity, respectively, and KDE specified with a fixed bandwidth of 75 km). GW mean
surfaces for the local nugget variances ¢ (x) of (b) Mod-1; (c) Mod-2, pre-winsorisation, and (d)
Mod-2, post-winsorisation (each specified with an adaptive bandwidth of 20%). Variography for pre-
winsorisation uses robust variograms to transformed data. Variography for post-winsorisation uses
classic variograms to transformed Winsorised data. All surfaces are for the critical load data.
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Figure 6. Critical load comap of the actual (absolute) prediction errors, | z(x,) — Z(X,) ] from Mod-

1 compared with those from Mod-3; at the validation sites.

5.3.  Bivariate visualisations of MWK outputs with comaps

We now provide examples of bivariate visualisations of MWK outputs using comaps for
each of the three visualisation categories. First, we continue our model performance inves-
tigations with respect to the relationships between (i) the actual prediction errors for two
different models and (ii) the actual and estimated prediction errors for a single model.
As examples, a comap (using a 3 x 3 panel of map windows) is given for (i) Mod-1 and
Mod-3 in Figure 6 and (ii) Mod-3 in Figure 7.

From Figure 6, models predict equally as well in areas of clustering intensity along
the three leading diagonal map windows. Thus, prediction accuracy is relatively good
for both models in NW Scotland (the bottom-left map window), but relatively poor
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Figure 7. Critical load comap from Mod-3 output data: the estimated prediction standard errors,
o (x,) and the actual (absolute) prediction errors, | z(x,) — z(X,) |

for both models in Central England (the top-right map window). The robust model
(Mod-3) predicts much better than the basic model (Mod-1) in areas of clustering
intensity found in the bottom-right map window. As expected from the univariate visu-
alisations, this improved performance occurs on the coast of NW England, but now we
also see an improved performance on the coast of south-west (SW) Scotland. Conversely,
Mod-3 predicts less well than Mod-1 in other areas of Northern England (see top-left
map window).

From Figure 7, we can identify where the estimated prediction errors have a good
local correspondence with the actual prediction errors for Mod-3. These regions of clus-
tering intensity are depicted along the leading diagonal map windows. For example, small
estimated prediction errors tend to coincide with small actual predictions errors in NW
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Scotland, as shown in the bottom-left map window. Alternatively, estimated prediction
errors tend to over-estimate the actual prediction errors in an area centred near the coast
of Eastern England (bottom-right map window). Clearly, the comaps in Figures 6 and 7
provide a distinct improvement over the univariate visualisations in Figure 4, as we are
most interested in joint investigations of model performance data, rather than two separate
ones. Comaps reduce subjectivity in identifying regions of data similarity and dissimilarity,
enabling a more informed model choice.

For model specification, we use a comap (with a 3 x 4 panel of map windows) to inves-
tigate the pairwise relationship between the localised number of winsorised data edits (for
Mod-3) and the localised number of adjusted boxplot outliers (for Mod-4). Here the comap
in Figure 8 is constructed such that the fourth column reflects locations where the number
of data edits always exceeds the number of boxplot outliers. From Figure 8, it is difficult to
find a coherent pattern in the relationship between these data. Intuitively, relationships are
expected and a re-specification of our robust models may provide them. That is, we could
experiment with different values of the parameter b, which controls the number of data edits
in Mod-3 and/or re-specify the outer fences of the boxplot used in Mod-4 (see Section 3.3).
Alternatively, we could re-specify Mod-4, such that a robust prediction is only applied if
the number of data edits found at each target location in Mod-3 exceeds some threshold
(i.e. abandon the use of the boxplot diagnostic for this purpose altogether). In experimen-
tation, Mod-4 is re-specified in this manner where a robust prediction is only applied at
locations where the number of data edits exceeded eight (reflecting the fourth column of
the comap in Figure 8). This re-specified model results in a slight improvement in perfor-
mance (MPE = —0.03, RMPSE = 4.40, MAPE = 3.07, MSDR = 1.479, ERR-CORR =
0.43, G-STAT = 0.969, M-PCI-W = 6.17). Evidently, this particular model specification
requires further work, but we have demonstrated that a comap can be useful in flagging a
specification issue that requires additional scrutiny.

For model parameterisation, we can use comaps to investigate the local variographic
relationship between the correlation range a(x) and the relative structural variability
RSV (x) for a given model. Such comaps can identify regions most suited to kriging, as
kriging performs well in a relative sense when RSV (x) values tend to 100% together with
a long correlation range. In essence, we can use comaps to identify regions where spatial
dependence is relatively strong or weak. As an example, we provide a comap of this local
variogram parameter data for Mod-1 in Figure 9, where it appears that spatial dependence
is strong in an area that traverses the border of Wales and England (top-right map window),
but weak over much of Scotland (bottom-left map window). Observe that this comap taken
together with the surfaces of ¢y (x) (Figure 5b and d) provides clear evidence of variogram
non-stationarity.

Finally, it is interesting to identify regions where local variographic structure changes
when a robust MWK model is used. Intuitively, it is expected that spatial structure would
tend to be strengthened with a robust model, as the influence of outliers on the local
variography has been minimised. As an example, we present a comap of RSV (x) data
from Mod-1 and from Mod-3 in Figure 10 (i.e. we now use RSV (x) on its own as a guide
to the strength of local spatial structure). First, if we look at the axes of the comap, the
RSV (x) data for the robust model (Mod-3) are indeed generally higher than those found
for the basic model (Mod-1); however, there are regional differences. For example, RSV (x)
data for Mod-3 are lower than those found for Mod-1 in a small region of NW Scotland
(bottom-right map window).
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Figure 8. Critical load comap for the number of winsorised data edits found in each local calibration
data set (for Mod-3) and the number of adjusted boxplot outliers found in each local calibration data
set (for Mod-4) with respect to validation sites.

6. Case study B: house prices

Our second case study data is a set of house prices in London. Data were obtained
for 11,285 geo-coded properties in London during 1998 from the Nationwide Building
Society. These data were used to generate a sample of 2809 non-overlapping observa-
tions, which in turn was split into model calibration and validation data sets of 1405 and
1404 observations, respectively (Figure 2b). Again this data set suits a non-stationary
model, where preliminary investigations provided evidence of (i) positively skewed data,
(ii) local trends (Figure 11a and b), (iii) different levels of local variation (Figures 2b,
11c and d) and local skewness, (iv) spatial outliers, (v) a nested global variogram whose
structure at lower lags is strongly affected by outliers (Figure 2d) and (vi) structure in the
local variography not only varying across space but also varying according to the influence
of outliers. GW summary statistic surfaces for these data are given in Figures 11a, b, ¢ and
d comparing non-robust with robust versions. Local differences in these paired surfaces
are taken to confirm the presence of a skewed distribution with outliers. This behaviour
in house price is not unexpected, as house prices can change markedly from one street to
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Figure 9. Critical load comap from Mod-1 output data: the local correlation ranges (in logs) and
the local RSV values at the validation sites.

the next, which also gives rise to a high nugget effect in the variogram (see the classic
estimator in Figure 2d).

6.1. Model performance at the validation sites: standard diagnostics

Model performance diagnostics using the house price data are presented in Table 2. Here
we do not present the results for Mod-3 and Mod-4 as (i) results for Mod-3 are virtually
identical to Mod-2, indicating no worth in a local Box—Cox transform, and (ii) results for
Mod-4 are little different to Mod-2, indicating a universal spread of outliers across the
study area (since Mod-3 and Mod-4 outputs are similar, but Mod-1 and Mod-4 outputs
are strongly dissimilar). Clearly and unlike the first case study, the application of a robust
model provides a distinct improvement over its non-robust counterpart in most aspects of
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Figure 10. Critical load comap of the local RSV values from Mod-1 compared with those from
Mod-3 at the validation sites.

model performance. However, for this case study, there appears little benefit in a local
variogram kriging model in the first place, as Mod-2 specified with a global variogram
(100% window size) performs in a similar manner to Mod-2 with a local variogram (where
a 10% window size is considered optimal). This suggests a preponderance of proportional
local variograms for these data (see Section 4.2). Partial evidence of this proportionality
is provided in Figure 1le and f, where a clear linear relationship between local averages
and local measures of variability exists. Complementary evidence is also provided by the
fairly stationary CoV surface (Figure 2b). Thus, for this case study, we choose to focus
our visualisations on the outputs of these best performing models (Mod-2, 10% window
size and Mod-2, 100% window size for variogram and prediction), together with the best
performing non-robust model for context (Mod-1, 4% window size).
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Figure 11. GW summary statistic surfaces for house price data: (a) mean; (b) median; (c) standard
deviation (SD) and (d) interquartile range (IQR). Scatterplot relationships for the house price data
between (e) GW means and SDs and (f) GW medians and IQRs. All GW statistics found using the
full data set with bandwidths set at 2.5% and 15% for the surfaces and scatterplots, respectively.

6.2. Bivariate visualisations of MWK outputs with comaps

We limit our visualisations to an investigation of model performance, using only comaps.
Furthermore, we demonstrate the value of using GW versions of the G-STAT and
M-PCI-W diagnostics for this purpose. These diagnostics are found using a box-car ker-
nel and provide an interesting and novel way of investigating model performance locally.
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As these diagnostics are intrinsically linked to each other, it is ideal to visualise them using
comaps. The specification of a box-car kernel entails that the local G-STAT and M-PCI-W
values are calculated simply using only nearby data from some target location. These local
data subsets consist of the actual data z(x,), the MWK predictions Z(x,) and their standard
errors o (X,).

Comaps of local G-STAT and M-PCI-W data, for each of our three retained models,
are given in Figures 12—14 (specified with a 4 x 4 panel of map windows). Here we need to
focus our attention on the off-diagonal map windows, where areas of strong model perfor-
mance relate to clustering intensity in the bottom-right map window, whereas areas of weak
model performance relate to clustering intensity in the top-left map window. Although our
most accurate models (Mod-2 with a global variogram and Mod-2 with a local variogram)
perform similarly in a global sense (from Table 2), this similarity does not always extend
locally. For example, Mod-2 with a global variogram performs strongly in SE London,
whereas Mod-2 with a local variogram not only performs well in the same area but also
in an area of NW London. Many local differences are also observed between the robust
models and the non-robust model (Mod-1 with a local variogram), and in this respect, one
model could be preferred according to its superior performance in a key real estate area
of interest. From the comap axes (for all three models), Mod-2 with a local variogram
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Figure 12. House price comap of local G-STAT versus local M-PCI-W (x £1000) values for Mod-1
(4% window size). G-STAT and M-PCI-W data are centred at the validation sites and were found by
applying a box-car kernel with an adaptive bandwidth of 10% to the actual data, the predictions and
their standard errors.
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Given: Local G-STAT
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Figure 13.  House price comap of local G-STAT versus local M-PCI-W (x £1000) values for Mod-2
(100% window size for variogram and prediction). G-STAT and M-PCI-W data were centred at the
validation sites and were found by applying a box-car kernel with an adaptive bandwidth of 10% to
the actual data, the predictions and their standard errors.

tends to have the highest G-STAT values and the lowest variability in this data, whereas
Mod-2 with a global variogram tends to have the lowest M-PCI-W values and the lowest
variability in these data. However, low M-PCI-W values are of little worth if coupled with
low G-STAT values, and for this reason, Mod-2 with a local variogram is marginally pre-
ferred to Mod-2 with a global variogram. Clearly, our use of comaps with local G-STAT
and M-PCI-W data has provided us with useful information that is hidden in the standard
(more global) diagnostics.

7. Discussion and conclusions

In this study, we have shown how comaps have value in visualising paired outputs from
a non-stationary spatial prediction model, both to help in its calibration and to help in
its interpretation. In particular, we used comaps to investigate non-stationary variogram
kriging models, where novel robust adaptations performed with promise. Bivariate visu-
alisations via comaps, together with simple univariate visualisations and standard model
diagnostics, each provided complementary insights into the performance, specification
and parameterisation of our study models. Our use of comaps was particularly useful in
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Figure 14. House price comap of local G-STAT versus local M-PCI-W (x £1000) values for Mod-2
(10% window size). G-STAT and M-PCI-W data were centred at the validation sites and were found
by applying a box-car kernel with an adaptive bandwidth of 10% to the actual data, the predictions
and their standard errors.

the development of the robust models whose benefits required much scrutiny. We also
introduced a novel local assessment of PCI accuracy in conjunction with a comap, which
should be of value to any spatial predictor and not only the non-stationary ones investigated
here.

Further work could investigate our models within an interactive visualisation environ-
ment. For example, the variographic methods of Glatzer and Miiller (2004) are useful,
or more generally, the methods demonstrated in Demsar ef al. (2008) in a non-stationary
regression context would be transferable. As all our predictors are univariate in construc-
tion, we did not make use of available explanatory data. However, the extension to the
multivariate case is straightforward, which for a robust form would represent a novel adap-
tation. For the critical load data, such predictors would complement those found in Harris
and Juggins (2011). For the house price data, such predictors are commonly informed with
hedonic variables (Paez 2009).
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Notes

1.

All study algorithms were implemented in R (lhaka and Gentleman 1996) using adaptations
of existing functions. Plots similar to comaps can be found in the GeoDa program (Anselin
et al. 2006). Software to implement basic MWK models can be found in the VESPER program
(Whelan et al. 2002) and in the ‘Geostatistical Analyst’ extension for ArcGIS 10 (ESRI Corp.,
Redlands, CA, USA).

As an alternative to comaps, GW correlation coefficient surfaces could be found to investigate
paired variables. However, GW correlations cannot distinguish between relationships that vary
linearly across space, even if values are not close to one another — and as such, important infor-
mation can be concealed. For this reason, we do not promote the use of GW correlations in this
context.

As the uncertainty of the estimated SK mean will be larger for small window size predic-
tions than for large window size predictions, it is important that this uncertainty is accounted
for in our MWK models. We do this by calculating the variance of the estimation error
Var{ m(xo) — m(Xg) } and then add this variance to the SK variance at location x,. This adjust-
ment provides the correct evaluation of uncertainty of the SK prediction. The variance is found

B N N N
using Var{ /(xo) — m(x9) } = C(xp,Xo) + X{ X% Vi U C(xi, %) — 2 X% ¥; C(X;,Xo), where N is
i=1j= i=

the prediction window size (i.e. the number of data used to estimate the SK mean), y; is the

W‘eﬂght assigned to the ith datum (i.e. 1//‘,-‘: 1 / N as the arithmetic mean is used), C(xg,Xq) =
C(u,v) dudv and C(x;,x9) = C(x;,V) dv, where S is the prediction window inside
ues ves ves
which the SK mean is estimated and x, an arbitrary point for denoting the window S (i.e. its
centroid). These integrals are approximated by summations in a similar manner as that done in
block kriging.
Commonly, A is estimated with an assumption of uncorrelated data. To overcome this simplicity,
maximum likelihood techniques to estimate A while simultaneously accounting for correlated
data can be found in Kitanidis and Shen (1996) and Christensen et al. (2001), both of which
can suffer from identification issues with respect to a coherent estimation of the transform, trend
and variogram parameters. Mindful of these difficulties and mindful of increasing MWK model
complexity, we estimate A as follows: (i) find an initial estimate of A using maximum likelihood
with an assumption of uncorrelated data; (ii) find a revised estimate of A using maximum like-
lihood, but hold fixed variogram parameters found from the transformed data of (i). Thus, the
likelihood is still a function of A only, but A is estimated with some consideration that the data
are correlated.
A robust version of the MSDR statistic is promoted in Lark (2000) and Marchant ez al. (2010).
ERR-CORR is not expected to be very strong as o (X,) is a statistical measure that is not going
to be coincidental with | z(x,) — z(x,) | However, for a non-stationary variogram predictor, this
correlation is expected to be stronger than that found in the stationary variogram case. For the
stationary case, and referring to the method of Verly in David (1988), on average and assuming
a Gaussian distribution for the errors, 75% of the data will be under the 1:1 line of the plot of
| z(x,) —z(x,) ] versus o (X,).
Values of MSDR, ERR-CORR, G-STAT and M-PCI-W are reported for the NN10 model.
Here we find the NN10 prediction variance at any location x using the same expression as
that used for the SK variance (Schabenberger and Gotway 2005, p. 224). This prediction vari-
ance is only a function of the variogram and the weights used in the linear predictor. Thus, to
evaluate the uncertainty of the NN10 prediction, the parameters from a raw data (global) var-
iogram are required and the SK weights are replaced with the single weight of 1 used in the
NN10 prediction.
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