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Abstract—In  this study, we investigate the
performance of a non-Euclidean distance metric in
calibrating a Geographically Weighted Regression
(GWR) model with a simulated data set. Random
predictor variable and spatially varying coefficients
are generated on a square grid of size 20*20. We
respectively apply Manhattan and Euclidean distance
metrics for the GWR calibrations. The preliminary
findings show that Manhattan distance performs
significantly better than the traditional choice for
GWR - Euclidean distance. In particular, it out-
performs in the accuracy of coefficient estimates.
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I. INTRODUCTION

In the early development of spatial analytical
techniques in quantitative geography, invariably the
techniques were applied at a ‘global’ level, where
relationships were assumed to be constant across the
study region [1]. However, the existence of spatial
non-stationarity that appears in reality as
uncontrolled spatial variability, challenges these
global methods. This concept can be considered to
be a particular form of the second law of Geography
in the principle of spatial heterogeneity or non-
stationarity [2]. In recent years, there has been an
increasing interest in local multivariate methods for
spatial data analysis that produce local results
instead of ‘one-size-fits-all’ results from traditional
global methods [1, 3]. This evolution is well
reflected in the development of a particular class of
spatial regression methods, where a number of local
regression techniques have been introduced which
estimate relationships that vary across space [4]. In
Tobler’s first law (TFL) [5, p236], he indicated that
“Everything is related to everything else, but near
things are more related than distant things”.
Inherited from TFL, Geographically Weighted
Regression (GWR) has been developed as an
important local technique to investigate spatial non-
stationarity in data relationships [6].

The TFL statement requires a clear
understanding of the meaning of ‘“near”.
Accordingly, the concept of distance gives a
quantitative or qualitative description of the

nearness or similarity between any pair of objects or
entities. In discussions on how it impacts on
“related” objects, distance is generally recognised as
an enervating factor that attenuates spatial
interaction [7]. For GWR, the concern is to model a
hypothetical ‘bump of influence’ that surrounds
each regression point, where nearer observations are
given more influence in estimating a set of local
regression coefficients than observations farther
away. In particular, a spatial weighting function is
incorporated into its calibration to represent the
influence of “near” observations in each “related”
location-specific regression estimation. In practice,
Euclidean distance (ED) is used to calculate the
weighting matrix for GWR, although great circle
measurements for un-projected  geographical
coordinates are also used [8]. However, the scope of
possible distance metrics in spatial analysis is far
larger than simple Euclidean ones. Due to our
incomplete knowledge of geographical space, it is a
complex system rather than an intuitive “table-top
space” [9]. Its complexity determines that there can
be no globally imposed distance metric for spatial
analysis.

The many complex and diverse situations that
GWR can be applied requires the option of
specifying a non-ED metric in addition to the
Euclidean one. In some situations, an untested usage
of the ED metric may lead to inaccurate coefficient
estimates, and in turn, a spatial pattern in estimates
that is wrongly interpreted, due to artifacts from the
straight-line measure between regression and data
points. Intuitively, the more appropriate the distance
metric is, the better GWR should perform. Lu et al
[10] has applied network distance on modelling
London House Price Data and the results have
shown significant improvements on GWR.
However, such empirical work produced a few
difficulties in exactly exploring how a non-
Euclidean metric works for GWR in terms of
accuracy and effects control. The performances of
implementing non-Euclidean distance metrics in
GWR cannot be fully addressed due to the
uncertainties caused by those defects. As such,
simulated data is used to investigate performances
of non-Euclidean distance metrics in calibrating
GWR models in this paper.



IL METHODOLOGY

A.  Using non-Euclidean distance metrics in
GWR

A general form of a basic GWR model can be
written as:
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where , is the dependent variable at location i;

X, is the value of the kth independent variable at
location #; m is the number of independent variables;
B, (u,,v,)is the intercept parameter at location i;

B, (u,,v,)is the local regression coefficient for the

kth independent variable at location ; (u,,v,) are

the coordinates of location i; and &, is the random
error at location /.

The matrix expression for the estimation of the
above model can be expressed as
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where X is the matrix of the independent

variables with a column of /s for the intercept; y is
the dependent variable vector;

B(H,N,)=(ﬁo(u,,V,),---,/J’”(u,,V,))T is the vector of
n+1 local regression coefficients; and W (u,,v,) is

the diagonal matrix denoting the geographical
weighting of each observed data for regression point
i. Here, the weighting scheme W (u,v,) is calculated

with a kernel function based on the proximities
between regression point i and the n data points
around it. In practice, Euclidean distance (ED) is
generally employed with planar coordinates.

The Akaike Information Criterion (AIC) [11],
derived from the Kullback-Liebler information
distance (KLID) [12] is used as the model
diagnostic, it measures both goodness-of-fit and
degrees of freedom. In practice, a corrected version
of the AIC is applied for both model fit and
bandwidth selection, and its expression is shown as
[13]:
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where b is the kernel bandwidth. The bandwidth
is the key controlling parameter for GWR
calibration and can be specified either by a fixed
distance or by a fixed number of nearest neighbours,
which respectively refers to two terms: fixed spatial
kernel and adaptive spatial kernel.

Observe that the distance metric is an essential
but separate component of the GWR technique.
There is no special statement that the distance

metric d i has to be Euclidean. Thus, the ED metric

can be directly replaced by an appropriate non-ED
measure in the basic GWR model (with a proviso
the matrix algebra remains valid). The theoretical
framework of GWR and related GW models [e.g.
GWPCA - see 14] can still be followed with a
generalized distance metric (Euclidean or non-
Euclidean). In the next section, simple experiments
are performed to exemplify this usage of a non-ED
in GWR.

B.  Simulation design

Currently, only a simple simulation has been
conducted to provide some preliminary results. In
this simulation, a data set of size 20*20 is generated
on a square grid. For these data points, a predictor

variable X, is generated as a random numeric

vector ranging from 1 to 100, as shown in figure 1.
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Figure 1 Generated predictor variable x;

B, (u,,v,)=2log(u;)-3log(v,) (4
B (uyv,) = log (1, +1,) )
V=B, (uv,)+ B (u,,v,) x, (6)

Two non-stationary regression coefficient
surfaces, i.e. ﬂo and ,51 are also generated by

following equations (4) and (5). The actual surfaces
are shown in the figure 2. Accordingly, the
dependent variable is generated by following the
basic linear model (formula (6)), as shown in figure
3.
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Figure 2 Non-stationary regression coefficient surfaces for [3’0
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Figure 3 Generated dependent variable y

III. . RESULTS

The data set is simulated on a regular grid, and
then the Manhattan distance (MD) is tried for
calibrating the above model. In these tests, the AICc
values are used for both model diagnostic and
M2 bandwidth selection. Moreover, both fixed and

adaptive spatial kernels are tested respectively with
L ED and MD.

| & TABLE L DIAGNOSTIC INFORMATION OF THE OLS AND
GWR CALIBRATIONS USING ED AND MD WITH FIXED AND
ADAPTIVE KERNELS
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Figure 4 Coefficient (ﬁo and ’B]) and their estimates in the four

calibrations



The AICc values of the OLS and four GWR
calibrations are shown in table I. Overall, the GWR
calibrations perform much better than OLS; the
calibrations with fixed spatial kernels show
significant improvements over those with adaptive
kernels. Particularly, the calibration using MD with
a fixed spatial kernel makes the best performance
according to the smallest AICc value. This is also
clearly reflected by the comparisons between the
actual coefficients and corresponding estimates
from these calibrations. Seen from figure 4, the
coefficient estimates (for g and g ) from the

calibration using MD with a fixed spatial kernel
demonstrate the best approximation to their actual
values. In summary, MD has shown a better fitting
performance over ED in this simulated study.

IV. CONCLUSION

In this paper, a simple simulation study is
conducted to investigate performances of ED and
MD in calibrating a GWR model. The preliminary
results have displayed a promising outlook of
applying non-ED metrics in calibrating GWR
models. Currently, more work is being undertaken
to test our regression models and more fully
understand the performance of a non-ED metric in
GWR. This includes incorporating different
weighting schemes and specifying more realistic
simulations (e.g. those that include barriers where
ED and non-EDs are clearly different between two
data locations).
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